Prof. Dr. Nils Scheithauer

Contact

work +49 6151 16-22464

Work S2|15 412
Schlossgartenstraße 7
64289 Darmstadt

Research Interests

  • Automorphic forms
  • Conformal field theory
  • Infinite-dimensional Lie algebras

Research papers

  • T. Driscoll-Spittler, N. R. Scheithauer, J. Wilhelm, Reflective modular varieties and their cusps, preprint, submitted. (pdf) (opens in new tab)
  • M. K.-H. Müller, N. R. Scheithauer, The invariants of the Weil representation of SL2(Z), preprint, submitted. (pdf) (opens in new tab)
  • S. Möller, N. R. Scheithauer, A geometric classification of the holomorphic vertex operator algebras of central charge 24, preprint, submitted. (pdf) (opens in new tab)
  • S. Möller, N. R. Scheithauer, Dimension formulae and generalised deep holes of the Leech lattice vertex operator algebra, Ann. of Math. 197 (2023), 221–288. (pdf) (opens in new tab)
  • M. Dittmann, R. Salvati Manni, N. R. Scheithauer, Harmonic theta series and the Kodaira dimension of A6, Algebra Number Theory 15 (2021), 271–285. (pdf) (opens in new tab)
  • J. van Ekeren, S. Möller, N. R. Scheithauer, Dimension formulae in genus 0 and uniqueness of vertex operator algebras, Int. Math. Res. Not. IMRN 2020, no. 7, 2145–2204. (pdf) (opens in new tab)
  • J. van Ekeren, S. Möller, N. R. Scheithauer, Construction and classification of holomorphic vertex operator algebras, J. Reine Angew. Math. 759 (2020), 61–99. (pdf) (opens in new tab)
  • N. R. Scheithauer, Automorphic products of singular weight, Compositio Math. 153 (2017), 1855-1892. (pdf) (opens in new tab)
  • N. R. Scheithauer, Some constructions of modular forms for the Weil representation of SL2(Z), Nagoya Math. J. 220 (2015), 1-43. (pdf) (opens in new tab)
  • G. Höhn and N. R. Scheithauer, A generalized Kac-Moody algebra of rank 14, J. Alg. 404 (2014), 222-239. (pdf) (opens in new tab)
  • N. R. Scheithauer, The Weil representation of SL2(Z) and some applications, Int. Math. Res. Not. IMRN 2009, no. 8, 1488-1545. (pdf) (opens in new tab)
  • N. R. Scheithauer, Generalized Kac-Moody algebras, automorphic forms and Conway's group II, J. Reine Angew. Math. 625 (2008), 125-154. (pdf) (opens in new tab)
  • T. Creutzig, A. Klauer, N. R. Scheithauer, Natural constructions of some generalized Kac-Moody algebras as bosonic strings, Comm. Number Theory Phys. 1 (2007), 453-477. (pdf) (opens in new tab)
  • N. R. Scheithauer, On the classification of automorphic products and generalized Kac-Moody algebras, Invent. Math. 164 (2006), 641-678. (pdf) (opens in new tab)
  • N. R. Scheithauer, Generalized Kac-Moody algebras, automorphic forms and Conway's group I, Adv. Math. 183 (2004), 240-270. (pdf) (opens in new tab)
  • G. Höhn and N. R. Scheithauer, A natural construction of Borcherds' fake baby monster Lie algebra, Amer. J. Math. 125 (2003), 655-667. (pdf) (opens in new tab)
  • N. R. Scheithauer, Automorphic forms, fake monster algebras and hyperbolic reflection groups, Adv. Math. 164 (2001), 301-324.
  • N. R. Scheithauer, Twisting the fake monster superalgebra, Adv. Math. 164 (2001), 325-348.
  • N. R. Scheithauer, The fake monster superalgebra, Adv. Math. 151 (2000), 226-269. (pdf) (opens in new tab)
  • N. R. Scheithauer, Vertex algebras, Lie algebras and superstrings, J. Alg. 200 (1998), 363-403.

Expository papers

  • N. R. Scheithauer, Lie algebras, vertex algebras and automorphic forms, in: Developments and trends in infinite-dimensional Lie theory, edited by K.-H. Neeb and A. Pianzola, Progress in Mathematics, Birkhäuser, Boston, 2010, 151-168. (pdf) (opens in new tab)
  • N. R. Scheithauer, Lie algebras and automorphic forms, EMS Newsletter 61 (2006), 19-21. (pdf) (opens in new tab)