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1 Introduction

In his famous paper [B1] on the moonshine conjectures Borcherds constructs
the monster algebra and shows that the monster group acts naturally on it.
From this action he calculates twisted denominator identities by taking the
trace over the denominator identity. These identities give enough information
on the Thompson series of the moonshine module to show that they are haupt-
moduls. In this way Borcherds proved the moonshine conjectures. The fact
that the Thompson series are hauptmoduls implies that the twisted denomina-
tor identities of the monster algebra are modular forms in 2 variables.

∗Supported by the Emmy Noether-program.
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The fake monster algebra carries a natural action of an extension of the
automorphism group of the Leech lattice. We show that the corresponding
twisted denominator identities are infinite products with multiplicities given by
coefficients of modular forms. This suggests that the identities are images of
vector valued modular forms under Borcherds’ singular theta correspondence
[B2] and therefore are automorphic forms. We also conjecture that they have
singular weight.

We prove the conjecture for elements with square-free level and nontrivial
fixpoint lattice in the following way. Let g be such an automorphism of level
N and fixpoint lattice Λg. First we associate to g its cycle shape and the
corresponding eta product ηg . Then we lift the scalar valued modular form
f = 1/ηg to a vector valued modular form F using the induced representation
of Γ0(N) in SL2(Z). Next we map F to an automorphic form Ψ of singular
weight (rk Λg)/2 by applying the singular theta correspondence. We get the
following diagram

g −→ 1/ηg −→ F −→ Ψ .

The automorphic form Ψ has an expansion for each divisor of N . The level N
expansion gives the twisted denominator identity corresponding to g

eρ
∏

k|N

∏

α∈(L∩kL′)+

(1 − eα)[ckf |Wk
](−α2/2k) =

∑

w∈W

det(w)w(ηg(eρ)) .

The function ηg is modular for a genus 0 subgroup Γ between Γ0(N) and its
normalizer in SL2(R). We show that the number of different expansions of Ψ is
equal to the number of cusps of Γ. While the expansion at the level N cusp gives
the twisted denominator identity of the fake monster algebra corresponding to
g, the expansions at the other cusps are often related to twisted denominator
identities of the fake monster superalgebra under the action of O+

8 (2) (cf. [S1]
and [S2]). Our construction also gives a family of nice generalized Kac-Moody
algebras corresponding to elements of square-free order in Mathieu’s group M23.

The above construction does not work for arbitrary automorphisms of Λ. If
we lift an arbitrary element in the above way to an automorphic form Ψ, then in
general Ψ neither gives the twisted denominator identity of g nor has singular
weight. This is only true for elements with square-free level and nontrivial
fixpoint lattice and some other sporadic elements.

In forthcoming papers we show how the more complicated cases can be
treated.

We describe the contents of the sections.
In sections 2 to 7 we summarize the results we need for our construction.

Most of them are well known.
In section 8 we describe the fake monster algebra and the twisted denomi-

nator identities under the action of an extension of Conway’s group Co1. We
calculate the multiplicities as coefficients of modular forms and present the main
conjecture.

We prove the conjecture for elements with square-free level and nontrivial
fixpoint lattice using the above construction in section 9. We show that the
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number of different expansions of Ψ is equal to the number of cusps of Γ and
we calculate the expansions explicitly.

In the last section we derive some special properties of families of elements.
We show that the elements of square-free order in M23 correspond to nice gener-
alized Kac-Moody algebras and that twisted denominator identities of the fake
monster algebra and the fake monster superalgebra often come from the same
automorphic form.

2 Lattices

Let L be a rational lattice with dual L′. We write L(k) for the lattice ob-
tained from L by multiplying all norms with k. A root α of L is a primitive
vector of positive norm such that the reflection σα(x) = x − 2(x, α)α/α2 is an
automorphism of L. This implies that 2α/α2 is in L′.

Let L be even. We define the level of L as the smallest positive integer N
such that Nλ2 ∈ 2Z for all λ ∈ L′. Let n be the exponent of the discriminant
group L′/L. Then N = n or N = 2n and N |n2. If N is square-free then clearly
N = n. The roots of L can be characterized as follows.

Proposition 2.1

Let L be an even lattice of level N and let α be a root of L with norm α2 = 2k.

Then k|N and α ∈ L ∩ kL′. Conversely a vector α in L with α2 = 2k and

α ∈ L ∩ kL′ where k|N is a multiple of a root.

Proof: Let α be a root of L of norm 2k. Then σα(x) = x−2(x, α)α/α2 is in L for
all x ∈ L. This implies that 2(x, α)α/α2 is in L. Since α is primitive 2(x, α)/α2

must be an integer and 2α/α2 = α/k is in L′. It follows that Nα2/k2 = 2N/k
is in 2Z because L has level N . This proves the first statement. The proof of
the other direction is clear now.

For example if N is square-free then the roots of L are the vectors in L∩kL′

of norm 2k where k ranges over the positive divisors of N .
Now let N be a positive integer such that the level of L divides N . Let m||N

and m′ = N/m. The Atkin-Lehner involution Wm(L) (cf. [Qu]) is defined as

Wm(L) =
√

m

(
L′ ∩ 1

m
L

)
=

1√
m

(L ∩ mL′) .

Wm(L) is also an even lattice of level dividing N . The Atkin-Lehner involutions
satisfy

W 2
m = 1 and WmWk = WkWm = Wk∗m with k ∗ m = km/(k, m)2 .

If L is invariant under Wm then the same holds for its theta function. L is
called strongly modular if det L = N (rk L)/2 and L is isomorphic to Wm(L) for
all m||N .
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Proposition 2.2

Let N be a positive integer, m||N and m′ = N/m. Then

II1,1 ⊕ II1,1(N) = II1,1(m) ⊕ II1,1(m
′) .

This implies that II1,1 ⊕ II1,1(N) is strongly modular.

3 Scalar valued modular forms

The group SL2(R) acts on the upper half plane by fractional linear transforma-

tions. It has a double cover S̃L2(R) with elements g = (M,±
√

cτ + d) where
M =

(
a b
c d

)
is in SL2(R). The map M 7→ M̃ = (M,

√
cτ + d) gives a locally

isomorphic embedding of SL2(R) into S̃L2(R). For a function f on the upper
half plane with values in C and k ∈ Z/2 we define

f |g(τ) = (±
√

cτ + d )−2kf(Mτ) .

Let Γ be a discrete subgroup of S̃L2(R) containing Z =
((−1 0

0 −1

)
, i

)
. A holo-

morphic function f on the upper half plane is a modular form for Γ of weight k
and character χ if

f |g(τ) = χ(g)f(τ)

for all g in Γ. We allow singularities at cusps.
Recall that η(τ) = q1/24

∏
n>0(1 − qn) is the Dedekind eta function.

Lemma 3.1

Let M =
(

a b
c d

)
∈ SL2(Z). Then

η|M̃ (τ) = ε(M̃)η(τ)

where

ε(M̃) =





(
d

c

)
e((−3c + bd(1 − c2) + c(a + d))/24) c odd, c > 0

(−d

−c

)
e((3c − 6 + bd(1 − c2) + c(a + d))/24) c odd, c < 0

(
c

d

)
e((3d − 3 + ac(1 − d2) + d(b − c))/24) c even, c ≥ 0

(−c

−d

)
e((−3d − 9 + ac(1 − d2) + d(b − c))/24) c even, c < 0

We generalize this as follows. For a positive integer k define

ηk(τ) = η(kτ) and Fk =
1√
k

(
k 0
0 1

)
.

Then we have
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Proposition 3.2

Let M = F−1
h

(
a b
c d

)
FhFm = 1√

m

(
a b/h
ch d

)
( m 0

0 1 ) where
(

a b
c d

)
is in SL2(Z).

Suppose we have integers r, s and t > 0 with rt = km, r|chm, th|kb and

km|(dr − chms). Then

ηk|M̃ (τ) = ε( ˜FkMN−1) 4
√

m/
√

t η((rτ + s)/t) .

where N = 1√
rt

( r s
0 t ).

Proof: The conditions on r, s and t imply that

FkMN−1 =

(
at (bk − ahst)/ht

chm/r (dr − chms)/km

)

is in SL2(Z). It follows

ηk|M̃ (τ)

= 4
√

m (
√

chmτ + d )−1η(FkMτ)

= 4
√

m (
√

chmτ + d )−1η(FkMN−1Nτ)

= 4
√

m (
√

chmτ + d )−1

√
cmh

r

(
rτ + s

t

)
+

dr − chms

km
ε( ˜FkMN−1) η(Nτ)

= ε( ˜FkMN−1) 4
√

m/
√

t η((rτ + s)/t) .

This proves the proposition.
We will use this result in the next section to calculate Atkin-Lehner trans-

formations of eta functions.

4 Properties of Γ0(N)

The group Γ0(N) has index N
∏

p|N (1+1/p) in SL2(Z) and
∑

d|N,d>0 φ((d, N/d))

equivalence classes of cusps. The invariants of a cusp a/c with (a, c) = 1 are
d = (c, N) and (c/(c, N))−1a considered as element in the group of units of
Z/(d, N/d). The width of a/c is N/(c2, N). A complete set of representatives
for the cusps is given by a/c for c|N , c > 0, 0 < a ≤ (c, N/c) and (a, c) = 1.

We describe the normalizer of Γ0(N) in SL2(R) (cf. [AL] and [CN]).
Let m||N and m′ = N/m. The matrices

Wm =
1√
m

(
a b
c d

) (
m 0
0 1

)
with

(
a b
c d

)
∈ Γ0(m

′) and d = 0 mod m

form a coset of Γ0(N) in its normalizer in SL2(R). They satisfy

W 2
m = 1 and WmWk = WkWm = Wk∗m mod Γ0(N) .

The Wm are called Atkin-Lehner involutions of Γ0(N). The Fricke involution

1√
N

(
0 −1
N 0

)
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is a representative of WN .
Let h|n. We define

Γ0(n|h) = F−1
h Γ0(n/h)Fh =

{(
a b/h
ch d

) ∣∣∣
(

a b
c d

)
∈ Γ0(n/h)

}

and

wm = F−1
h WmFh =

1√
m

(
a b/h
ch d

) (
m 0
0 1

)
for m||n/h.

The wm are called Atkin-Lehner involutions of Γ0(n|h).
The group obtained by adjoining the Atkin-Lehner involutions wk, wm, . . .

to Γ0(n|h) is denoted n|h+k, m, . . . and n|h+ if all m||n/h are present. Γ0(n|h)
is also written n|h− and h is omitted if h = 1.

Suppose N = nh, h|24 and h2|N . Then the matrices n|h + k, m, . . . where
k, m, . . . are Hall divisors of n/h normalize Γ0(N). The full normalizer of Γ0(N)
in SL2(R) is n|h+ where h is the largest divisor of 24 such that h2|N .

The following proposition describes the action of Atkin-Lehner transforma-
tions on eta functions.

Proposition 4.1

Let h|k|n and m||n/h. Then

ηk|w̃m = ε

( ˜(
a(k, mh)/h bk/(k, mh)
c(k, mh)/k dh/(k, mh)

))
4
√

m√
(k/h, m)

ηh(m∗k/h) .

Proof: The statement follows from Prop. 3.2 by taking r = km/(k/h, m), t =
(k/h, m) and s = 0. We show that r|chm. The other conditions on r, s and
t are trivial to check. From k|n and hm|n it follows that khm/(k, hm) =
km/(k/h, m) = r divides n. Now c = 0 mod n/hm implies r|chm. This proves
the proposition.

Suppose that N is square-free. Then Γ0(N) has index σ1(N) =
∑

d|N d in

SL2(Z) and σ0(N) =
∑

d|N cusps which can be represented by 1/c where c|N ,

c > 0. The normalizer of Γ0(N) in SL2(R) is Γ0(N)+. Up to scalar factors

the eta product ηk with k|N is invariant under Γ̃0(N) and goes over to ηk∗m

under W̃m. The Atkin-Lehner involutions act simply transitive on the cusps.
Wm maps the cusp 1/c to the cusp 1/(c ∗ m).

5 Properties of Aut(Λ)

The automorphism group of the Leech lattice gives probably the simplest and
most natural realization of any of the sporadic simple groups via Aut(Λ) =
2.Co1.

Let g be an automorphism of the Leech lattice of order n. Then the char-
acteristic polynomial of g on Q⊗Λ can be written

∏
(xk − 1)bk where k ranges

over the positive divisors of n. The symbol
∏

kbk is called the cycle shape of g.
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Let m be a positive integer. Then gm has cycle shape
∏

(k/(k, m))bk(k,m) and
trace tr(gm) =

∑
k|m kbk so that bm =

∑
k|m µ(m/k) tr(gk)/m.

The sum
∑

k|n bk is always even. We define the eta product corresponding

to g as ηg(τ) =
∏

k|n η(kτ)bk . The level of g is the level of the subgroup of

SL2(Z) fixing ηg . It is also the smallest positive multiple N of n such that 24
divides N

∑
bk/k. The eta product ηg is modular possibly with character of

weight
∑

bk/2 for a group between Γ0(N) and its normalizer in SL2(R). Let
h = N/n. Then h|24 and h2|N .

Theorem 5.1

ηg is modular for a genus 0 group of the form n|h + k, m, . . . .

Proof: This can be proven using Prop. 4.1. If g has trivial fixpoint lattice the
statement follows already from the corresponding result for the monster group.

We list further properties of g.

Theorem 5.2

Let g have nontrivial fixpoint lattice Λg.

Then the exponent of Λg divides the order of g and the level of Λg divides

the level of g.

If ηg is invariant up to a scalar under Wk for k||N where N is the level of g
then Λg is also invariant under Wk.

Λg is the unique lattice in its genus with minimal norm ≥ 4.

Λg is the unique lattice of maximal minimal norm in its genus.

We remark that the converse of the second statement is false. The elements
in class −6F give a counterexample.

We say that 2 elements g and h of the same level are Atkin-Lehner related
if ηg |Wm is equal to ηh up to a complex scalar. If g has cycle shape

∏
kbk this

is equivalent to h having cycle shape
∏

(k ∗ m)bk =
∏

kbk∗m . Note that in this
case ηg and ηh have the same weight.

Proposition 5.3

g is either conjugate to no other element or is conjugate to itself or is in

one of the following Atkin-Lehner triples: (6C,−6C,−6D), (10D,−10D,−10E),
(−12H, 12I,−12I), (−18B, 18C,−18C), (30D,−30D,−30E).

Conway and Norton conjectured in [CN] that for each automorphism g of
the Leech lattice the quotient θΛg/ηg is up to a constant equal to a Thompson
series of the monster group. Lang showed that this is true for all elements but
the Atkin-Lehner triples (cf. [L]).

6 Vector valued modular forms

Suppose that Γ is a discrete subgroup of S̃L2(R) containing Z and ρ a represen-
tation of Γ on a complex vector space V . Let k be in Z/2. A holomorphic map
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F from the upper half plane to V is a modular form for Γ of weight k and type
ρ if

F

(
aτ + b

cτ + d

)
= (±

√
cτ + d )2kρ(g)F (τ)

for all g =
((

a b
c d

)
,±

√
cτ + d

)
in Γ. Again we allow singularities at cusps.

Let L be an even lattice of signature (b+, b−). The discriminant form L′/L

gives a representation ρL of S̃L2(Z) on the group ring C[L′/L] defined by

ρL(T )eγ = e(−γ2/2) eγ

ρL(S)eγ =
e(sign(L)/8)√

|L′/L|
∑

β∈L′/L

e((γ, β)) eβ

where S =
((

0 −1
1 0

)
,
√

τ
)

and T = (( 1 1
0 1 ) , 1) are the standard generators of

S̃L2(Z). This representation is called Weil representation. We remark that we
use a slightly different notation than Borcherds in [B2] and [B3] because we
prefer to work with positive definite lattices.

A scalar valued modular form for Γ̃0(N) can be lifted to a vector valued
modular form (cf. [B3]).

Proposition 6.1

Let L be an even lattice of level dividing N and f a scalar valued modular form

for Γ̃0(N) of weight k and character χL. Then

F (τ) =
∑

g∈eΓ0(N)\fSL2(Z)

f |g(τ)ρL(g−1)(e0)

is a vector valued modular form of weight k and type ρL that is invariant under

the automorphisms of the discriminant group.

7 The singular theta correspondence

Borcherds’ singular theta correspondence (cf. [B2]) gives a construction of au-
tomorphic forms from vector valued modular forms.

Theorem 7.1

Let M be an even lattice of signature (b+, 2) and F a modular form of weight

1 − b+/2 and representation ρM which is holomorphic on H and meromorphic

at cusps and whose coefficients [fλ](m) are integers for m ≤ 0. Then there is a

meromorphic function ΨM (ZM , F ) for Z ∈ P with the following properties.

1. ΨM (ZM , F ) is an automorphic form of weight [f0](0)/2 for the group

Aut(M, F )+ with respect to some unitary character.
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2. The only zeros or poles of ΨM lie on the rational quadratic divisors λ⊥

for λ ∈ M with λ2 > 0 and are zeros of order

∑

0<x
xλ∈M ′

[fxλ](−x2λ2/2)

or poles if this number is negative.

3. ΨM is a holomorphic function if the orders of all zeros are nonnegative.

If in addition M has dimension at least 5, or if M has dimension 4 and

contains no 2 dimensional isotropic sublattice, then ΨM is a holomorphic

automorphic form. If in addition [f0](0) = b+ − 2 then ΨM has singular

weight and the only nonzero Fourier coefficients of ΨM correspond to norm

0 vectors in L.

4. For each primitive norm 0 vector z in M and for each Weyl chamber W

of L = K/Zz with K = M ∩ z⊥ the restriction Ψz(Z, F ) has an infinite

product expansion converging when Z is in the neighborhood of the cusp

of z and Y ∈ W which is up to a constant

e((Z, ρ(L, W, FL)))
∏

λ∈L′+

∏

δ∈M ′/M
δ|K=λ

(
1 − e((λ, Z) + (δ, z′))

)[fδ ](−λ2/2)
.

We make a remark on the primitive norm 0 vectors in M . The level of a
primitive norm 0 vector z is defined as the smallest positive value of (z, v) with
v in M .

Lemma 7.2

The level of z divides the exponent of M .

Proof: Let z have level N . Then {(z, v) | v ∈ M} is a subgroup of Z generated
by N . There is an element z′ in M ′ such that (z, z′) = 1. Let n be the exponent
of M ′/M . Then nz′ is in M and N divides (z, nz′) = n.

8 The fake monster algebra

The fake monster algebra G is a generalized Kac-Moody algebra describing the
physical states of a bosonic string moving on a torus. The root lattice of G is the
Lorentzian lattice II25,1 = Λ ⊕ II1,1 where Λ is the Leech lattice with elements
α = (r, m, n) and norm α2 = r2 − 2mn. A nonzero vector α ∈ II25,1 is a root if
and only if α2 ≤ 2. The multiplicity of a root α is given by [1/∆](−α2/2) where
1/∆ is the modular form 1/∆(τ) = 1/η(τ)24 = q−1 + 24 + 324q + 3200q2 + . . . .
The real simple roots of the fake monster algebra are the norm 2 vectors α in
II25,1 with (ρ, α) = −1 where ρ = (0, 0, 1) is the Weyl vector. They generate the
Weyl group W of G which is the full reflection group of II25,1. The imaginary
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simple roots are the positive multiples kρ of the Weyl vector with multiplicity
24. The denominator identity of G is given by

eρ
∏

α∈II+
25,1

(
1 − eα)[1/∆](−α2/2) =

∑

w∈W

det(w)w
(
eρ

∏

n>0

(
1 − enρ

)24
)

.

The sum in this identity defines the denominator function of the fake monster
algebra. It is an automorphic form for Aut(II26,2)

+ of weight 12.
We describe the action of 224. Aut(Λ) on G. The vertex algebra V of the

Leech lattice Λ is acted on by the group 224. Aut(Λ). The fake monster algebra
has a natural II1,1-grading and we write Ga for the corresponding subspaces.
By the no-ghost theorem Ga with a 6= 0 is isomorphic to the subspace V1−a2/2

of L0-degree 1 − a2/2 as Λ-graded 224. Aut(Λ)-module and Ga with a = 0 is
isomorphic to the subspace V1 ⊕ R1,1 as Λ-graded 224. Aut(Λ)-module.

Let g be an automorphism of the Leech lattice of order n and cycle shape∏
kbk . For simplicity we assume that (v, gkv) is even for all v ∈ Λg2k

if n is
even. This implies that g has a nice lift to 224. Aut(Λ) of the same order (cf.
[B1] section 12). The sublattice Λg of Λ fixed by g is a primitive sublattice
of Λ of even dimension

∑
bk and exponent dividing n (cf. [T]). The natural

projection π : Q ⊗ Λ → Q ⊗ Λg maps Λ onto the dual lattice Λg ′.
As usual E denotes the subalgebra of G corresponding to the positive roots.

Let L = Λg ⊕ II1,1. For α = (r′, a) ∈ L′ we define Ẽα = ⊕π(r)=r′E(r,a). Then
we have the following result due to Borcherds (cf. [B1] section 13).

Theorem 8.1

The twisted denominator identity corresponding to g is given by

eρ
∏

α∈L′+

(1 − eα)mult(α) =
∑

w∈W g

det(w)w
(
ηg(e

ρ)
)

where

mult(α) =
∑

ds|((α,L),n)

µ(s)

ds
tr(gd|Ẽα/ds)

and W g is the subgroup of W mapping L into L.

This identity is the denominator identity of a generalized Kac-Moody super-
algebra whose real simple roots are the simple roots of W g , i.e. the roots with
(ρ, α) = −α2/2, and the imaginary simple roots are the positive multiples kρ of
the Weyl vector with multiplicity

∑
d|k bd.

We remark that there are similar results for elements in Aut(Λ) that do not
satisfy the condition mentioned above.

Now we describe how the multiplicities can be calculated explicitly. Let d

be a divisor of n. Λg is a primitive sublattice of Λgd

. The lattices Λg and

Λg,d = Λg⊥ ∩Λgd

can be glued together in a canonical way to give Λgd

. Clearly

rkΛg,d = rkΛgd − rkΛg . The glue vectors are given by r′ + γd(r
′) where r′ is in

a subgroup Gd,Λg of Λg ′/Λg and γd is an isomorphism from Gd,Λg to a subgroup

Gd,Λg,d of Λg,d′/Λg,d (cf. Prop. 1.5.1. in [N]).
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Proposition 8.2

The exponent of the glue group Gd,Λg divides d.

Proof: (1 + g + . . . + gd−1) maps Λgd

to Λg because gd = 1 on Λgd

.
We show that Q⊗Λg,d is invariant under (1+ g + . . .+ gd−1). It is sufficient

to prove this for Λg,d. Clearly (1+ g + . . .+ gd−1)Λg,d is in Λgd

. Let r ∈ Λg and
v ∈ Λg,d. Then

(r, (1 + g + . . . + gd−1)v) = (r, v) + (r, gv) + . . . + (r, gd−1v)

= (r, v) + (gr, gv) + . . . + (gd−1r, gd−1v)

= d(r, v)

= 0

Hence (1 + g + . . . + gd−1)Λg,d is orthogonal to Λg .

Now let r′ ∈ Λg ′ ⊂ Q ⊗ Λg and v′ ∈ Λg,d′ ⊂ Q ⊗ Λg,d such that r′ + v′ is in
Λgd

. Then

(1 + g + . . . + gd−1)(r′ + v′) = (1 + g + . . . + gd−1)r′ + (1 + g + . . . + gd−1)v′

is in Λg. Hence (1 + g + . . . + gd−1)v′ = 0 and dr′ ∈ Λg . This proves the
proposition.

For r′ ∈ Λg ′ we define θγd(r′)(τ) as the theta function of the coset γd(r
′)+Λg,d

if r′ ∈ Gd,Λg and θγd(r′)(τ) = 0 otherwise. For example θγ1(r′)(τ) = 1 if r′ is in
Λg and θγ1(r′)(τ) = 0 if r′ is in Λg ′ but not in Λg. Sometimes we extend this
notation in the obvious way to elements of L′.

Proposition 8.3

Let α = (r′, a) be in L′ = Λg ′ ⊕ II1,1. Then tr(gd|Ẽα) is given by the coefficient

of q−α2/2 in

θγd(r′)(τ)/ηgd (τ)

In particular tr(gd|Ẽα) = 0 if dr′ is not in Λg.

Proof: There is an element r⊥
′ ∈ Λg⊥′

unique up to Λg⊥ such that r′ +r⊥
′ ∈ Λ.

We have
Ẽα = ⊕π(r)=r′E(r,a) = ⊕s∈r⊥′+Λg⊥E(r′+s,a) .

The nonzero contributions to the trace come from the spaces E(r′+s,a) with

r′ + s ∈ Λgd

. This is equivalent to s ∈ (−r′ + Λgd

) ∩ (r⊥
′
+ Λg⊥) = S.

We show that S = γd(r
′) + Λg,d if and only if r′ is in the domain of γd and

S = ∅ otherwise. Suppose that r′ is in the domain of γd. Then r′ +γd(r
′) ∈ Λgd

and γd(r
′) ∈ −r′ + Λgd

. Furthermore γd(r
′)− r⊥

′
= (r′ + γd(r

′))− (r′ + r⊥
′
) is

in Λ and orthogonal to Λg. Hence γd(r
′) is in S. S is a subset of Λg,d′ because

S ⊂ r⊥
′
+ Λg⊥ ⊂ Λg⊥′

has integral inner products with all elements of Λg,d.
The difference of two elements in S is in Λg,d and S + Λg,d ⊂ S. This implies
S = γd(r

′) + Λg,d. The rest of the statement is clear now.
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The no-ghost theorem implies tr(gd|Ẽα) =
∑

s∈S tr(gd|V1−a2/2(r
′ +s)). The

space V1−a2/2(r
′ + s) is generated by bosonic oscillators and er′+s. The sum

of the L0-contribution of the oscillators and the L0-contribution of er′+s is
1−a2/2. Hence the L0-contribution of the oscillators and s2/2 add to 1−α2/2.
The proposition now follows from counting.

The proposition shows that mult(α) = 0 if α is in L′ but not in L.
Putting these results together we get

Theorem 8.4

The twisted denominator identity corresponding to g is

eρ
∏

k|n

∏

α∈(L∩kL′)+

(1 − eα)

[ P
d|k µ(k/d)θγd(α/k)/kη

gd

]
(−α2/2k2)

=
∑

w∈W g

det(w)w
(
ηg(e

ρ)
)
.

The multiplicities in the identity are given by coefficients of modular forms of
weight −∑

bk/2. This suggests that the identity might be the theta lift of a
vector valued modular form and therefore an automorphic form.

Proposition 8.5

The constant term in the Fourier expansion of
∑

d|k µ(k/d)θΛg,d(τ)/kηgd (τ) at

i∞ is bk.

Proof: The constant term in the Fourier expansion of
∑

d|k µ(k/d)θΛg,d/kηgd

is equal to that of
∑

d|k µ(k/d)/kηgd because the Leech lattice has no vectors
of norm 2. We define arithmetic functions g and h on the positive integers by
g(m) = mbm if m|n and 0 otherwise and h(k) =

∑
m|k g(m). The constant

term in the Fourier expansion of 1/ηgd is
∑

m|d mbm = h(d). The Möbius
inversion formula implies that the constant term in the Fourier expansion of∑

d|k µ(k/d)/ηgd is
∑

d|k µ(k/d)h(d) = g(k) = kbk. This proves the claim.
It follows that the function

f(τ) =
∑

k|n

∑

d|k

µ(k/d)

k

θΛg,d(τ)

ηgd(τ)
=

1

n

∑

d|n
ϕ(n/d)

θΛg,d(τ)

ηgd(τ)

is a modular form of integral weight −∑
bk/2 whose Fourier expansion at i∞

has constant term
∑

bk.
The above results motivate the following conjecture.
There is a vector valued modular form F of weight −(rkΛg)/2 for a lattice

M of signature (2 + rkΛg , 2) with zero component f whose theta lift Ψ is an
automorphic form of singular weight (rkΛg)/2. The expansion of Ψ at the level
n cusp gives the twisted denominator identity corresponding to g.

We will see that this conjecture is true if g has square-free level N and
nontrivial fixpoint lattice.
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9 Main results

Let g be an automorphism of the Leech lattice with square-free level N and
nontrivial fixpoint lattice. In the following table we describe some properties of
the corresponding class. Here G denotes the genus of the fixpoint lattice Λg .

class cycle shape group Λg G

1A 124 1 Leech lattice II24,0

2A 1828 2+ Barnes-Wall lattice II16,0(2
+8
II )

−2A 216/18 2− E8(2) II8,0(2
+8
II )

3B 1636 3+ Coxeter-Todd lattice II12,0(3
+6)

3C 39/13 3− E6
′(3) II6,0(3

+5)

5B 1454 5+ Maass lattice II8,0(5
+4)

5C 55/1 5− A4
′(5) II4,0(5

+3)

6C 142.65/34 6− E6(2) II6,0(2
−6
II 3−1)

−6C 25346/14 6− E6
′(6) II6,0(2

−6
II 3−5)

−6D 153.64/24 6− E6
′(3) II6,0(3

+5)

6E 12223262 6+ A2 ⊗ D4 II8,0(2
+4
II 3+4)

−6E 2464/1232 6 + 3 A2(2) ⊕ A2(2) II4,0(2
+4
II 3+2)

6F 3363/1.2 6 + 2 D4(3) II4,0(2
−2
II 3+4)

−6F 1.66/2233 6− A2(2) II2,0(2
−2
II 3+1)

7B 1373 7+ Barnes-Craig lattice II6,0(7
+3)

10D 122.103/52 10− A4(2) II4,0(2
−4
II 5−1)

−10D 235210/12 10− A4
′(10) II4,0(2

−4
II 5−3)

−10E 135.102/22 10− A4
′(5) II4,0(5

+3)

For N ≥ 11 we also give the Gram matrix of Λg because these lattices are
less familiar.
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class cycle shape group Λg G

11A 12112 11+




4 1 0 −2

1 4 2 0

0 2 4 1

−2 0 1 4


 II4,0(11+2)

14B 1.2.7.14 14+




4 1 0 −1

1 4 1 0

0 1 4 1

−1 0 1 4


 II4,0(2

+2
II 7+2)

−14B 22142/1.7 14 + 7

(
4 2

2 8

)
II2,0(2

+2
II 7+1)

15D 1.3.5.15 15+




4 2 2 1

2 4 1 2

2 1 6 3

1 2 3 6


 II4,0(3

−25−2)

15E 12152/3.5 15 + 15

(
4 1

1 4

)
II2,0(3

−15−1)

23A 1.23 23+

(
4 1

1 6

)
II2,0(23+1)

30D 1.6.10.15/3.5 30 + 15

(
8 2

2 8

)
II2,0(2

+2
II 3+15+1)

−30D 2.3.5.30/1.15 30 + 15

(
4 2

2 16

)
II2,0(2

+2
II 3−15−1)

−30E 2.3.5.30/6.10 30 + 15

(
4 1

1 4

)
II2,0(3

−15−1)

The lattices corresponding to the groups N+ are all similar to the Leech lattice.
They can be defined as the unique lattice in their genus without roots.

We observe the following properties.

Proposition 9.1

g has order N and a nice lift to 224. Aut(Λ) of the same order.

Proposition 9.2

ηg is a modular form for a genus 0 group Γ between Γ0(N) and its normalizer

in SL2(R). ηg vanishes at the cusp i∞ of Γ and at the cusps coming from the

Atkin-Lehner relations.

Proposition 9.3

The level of Λg is equal to the exponent of Λg.
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We define the lattice

M = Λg ⊕ II1,1 ⊕ II1,1(N) .

Clearly M has level N . Since N is square-free the discriminant form of M de-
composes into the orthogonal sum of elementary abelian p-groups. This implies
that the automorphism group of the discriminant form acts transitively on the
elements of given norm and order.

For the rest of the section let m be a positive divisor of N and m′ = N/m.

Theorem 9.4

M has exactly one orbit of primitive norm 0 vectors of level m for each divisor

m of N .

Proof: Let z be a primitive norm 0 vector of level m in M . Using that M ′/M
decomposes into the orthogonal sum of the m- and m′-torsion subgroup we
can find a vector z′ ∈ M ′ with zz′ = 1 and mz′ ∈ M . M has level N so
that mz′2 ∈ (2Z/m ∩ 2Z/m′) = 2Z. Define n = −mz′2/2 and z̃ = nz + mz′.
Then z̃ is a primitive norm 0 vector of level m in M and z and z̃ generate
a primitive sublattice II1,1(m) in M . Let L be the orthogonal complement of
this lattice in M . Then we can glue II1,1(m) and L together to get M . Let
α = nz/m + ñz̃/m + x, where x is in L′, be a glue vector. Then m divides
zα = ñ and z̃α = n so that α is trivial. Hence M = II1,1(m) ⊕ L. L is in the
same genus as Λg ⊕ II1,1(m

′). By corollary 22 p. 395 in [CS] this genus contains
only one class so that L = Λg ⊕ II1,1(m

′). This implies the theorem.
Let

F =
∑

fγeγ

be the lift of f = 1/ηg to M . The components fγ depend only on the norm and
order of γ.

Let d be a divisor of N and

fd/N (τ) = f |Wd
(τ/d) .

Then fd/N gives an expansion of f at the cusp d/N of Γ0(N) with width d. We
also define numbers cd such that either

cdf |Wd
(τ) = q−1 + bd + . . .

if f |Wd
is singular at i∞ or

cdf |Wd
(τ) = bd + . . . .

if f |Wd
is holomorphic at i∞. Decompose

cdfd/N = gd,0 + gd,1 + . . . + gd,d−1

where the gd,j satisfy gd,j|T = e(j/d)gd,j . We have
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Proposition 9.5

Let F =
∑

fγeγ be the lift of f to M . Then the components fγ with γ ∈ M ′/M
are given by

fγ =
∑

j/d=−γ2/2
dγ=0

gd,j .

The constant term in the Fourier expansion of gk,0 is bk so that the constant
term in the zero component

f0 =
∑

k|N
gk,0

of F is
∑

bk. Hence the theta lift Ψ of F is a holomorphic automorphic form
for Aut(M)+ of singular weight (rk Λg)/2.

Lemma 9.6

Let K = Λg ⊕ II1,1(m
′) and L = Wk(Λg) ⊕ II1,1(m

′/k) with k|m′. Then for

each divisor d of N we have

(m, d)(K ′ ∩ K/d)(k) = (km, n)(L′ ∩ L/n)

with n = k ∗ d.

An expansion of Ψ corresponding to a primitive norm 0 vector of level m is
called a level m expansion of Ψ.

Proposition 9.7

The level m product expansion of Ψ is given by

e((ρ, Z))
∏

d|N

∏

α∈(L∩dL′)+

(1 − e((α, Z)))[cd∗m′f |W
d∗m′ ](−α2/2d)

where L = Wm′(Λg) ⊕ II1,1.

If ηg is modular for N + k then the level m product expansion is equal to

the level k ∗ m expansion. In particular the number of different expansions of

Ψ is equal to the number of cusps of Γ.

Proof: We decompose M = K ⊕ II1,1(m) with K = Λg ⊕ II1,1(m
′) and choose

z as primitive norm 0 vector in II1,1(m). Then we find the following level m
product expansion of Ψ from the description of the components of F

e((ρ, Z))
∏

d|N

∏

α∈(K′∩K/d)+

(1 − e((m, d)(α, Z)))[cdfd/N ](−α2/2) .

We rescale the expression with m′ and use (m, d)(K ′ ∩ K/d)(m′) = L ∩ nL′

with n = m′ ∗ d to get the product given in the proposition. Th. 9.4 gives the
uniqueness of the expansion. The second statement follows from the fact that
the transformation properties of ηg under Atkin-Lehner involutions imply those
of Λg .
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We can calculate a sum expansion of the level m product expansion of Ψ by
using the fact that Ψ has singular weight so that only vectors of norm 0 appear
in the sum. We have to distinguish two cases. In one case we have a nontrivial
Weyl group and a nonzero Weyl vector of norm 0. In the other case the Weyl
group is trivial and the Weyl vector is 0.

We define numbers εd such that either

εdηg |Wd
(τ) = q + . . .

if ηg |Wd
vanishes at i∞ or

εdηg |Wd
(τ) = 1 + . . .

if ηg |Wd
is nonzero at i∞.

Theorem 9.8

Suppose that f |Wm′ is singular at i∞. Then the level m expansion of Ψ is given

by

e((ρ, Z))
∏

d|N

∏

α∈(L∩dL′)+

(1 − e((α, Z)))[cd∗m′f |W
d∗m′ ](−α2/2d)

=
∑

w∈W

det(w)εm′ηg|Wm′ ((wρ, Z))

where L = Wm′(Λg)⊕II1,1, ρ = (0, 0, 1) and W is the reflection group generated

by the roots α ∈ L∩ dL′ with α2 = 2d for all d such that f |Wd∗m′ is singular at

i∞.

Proof: The proof is purely combinatorial. The product expansion of Ψ at the
level m cusp is antisymmetric under the Weyl group W so that we have

e((ρ, Z))
∏

d|N

∏

α∈(L∩dL′)+

(1 − e((α, Z)))[cd∗m′f |W
d∗m′ ](−α2/2d)

=
∑

det(w)c(λ)e((w(ρ + λ), Z))

where the sum extends over W and elements λ with ρ + λ in the fundamental
Weyl chamber. We know that (ρ+λ)2 = 0 because Ψ has singular weight. This
implies (ρ, λ) = −λ2/2. λ must also be positive so that λ has inner product at
most 0 with all elements in the intersection of the fundamental Weyl chamber
with the positive cone, in particular (ρ, λ) ≤ 0. We can not have (ρ, λ) < 0
because then λ would be a simple root of W and not in the fundamental Weyl
chamber. Hence (ρ, λ) = 0. ρ + λ and ρ are both in the positive cone of L and
(ρ + λ)2 = ρ2 = (ρ + λ, ρ) = 0. Since ρ is primitive it follows ρ + λ = nρ for a
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positive integer n and

e((ρ, Z))
∏

d|N

∏

α∈(L∩dL′)+

(1 − e((α, Z)))[cd∗m′f |W
d∗m′ ](−α2/2d)

=
∑

w∈W
n>0

det(w)c(n)e((wnρ, Z)) .

The contributions of the left hand side to e((nρ, Z)) come from

e((ρ, Z))
∏

d|N

∏

n>0

(1 − e((ndρ, Z)))bd∗m′

= e((ρ, Z))
∏

d|N

∏

n>0

(1 − e((n(d ∗ m′)ρ, Z)))bd

= εm′ηg |Wm′ ((ρ, Z))

because the constant term in ckf |Wk
is bk. Hence c(n) is given by the coefficient

of qn in εm′ηg |Wm′ . This proves the theorem.
We remark that in contrast to the situation in M the lattice L has in general

more than one orbit of primitive norm 0 vectors of a certain level under the
automorphism group. For example the lattice II25,1 = Λ⊕ II1,1 has 24 orbits of
primitive norm 0 vectors necessarily of level 1, one for each Niemeier lattice.

If we replace the complex exponentials in the identity by formal exponentials,
we obtain the denominator identity of a generalized Kac-Moody superalgebra
whose real simple roots are the simple roots of W and imaginary simple roots
are the positive multiples nρ of the Weyl vector with multiplicity

∑
d|n bd∗m′ .

We will see that the above identities are always related to twisted denomi-
nator identities of the fake monster algebra.

Now we consider the other case.

Proposition 9.9

Suppose that f |Wm′ is holomorphic at i∞. If f |Wd
is singular at i∞ then Wd(Λ

g)
has no vectors r with r2 = 2 mod 2(m′ ∗ d).

Theorem 9.10

Suppose that f |Wm′ is holomorphic at i∞. Then the level m expansion of Ψ is

given by

∏

d|N

∏

α∈(L∩dL′)+

(1 − e((α, Z)))[cd∗m′f |W
d∗m′ ](−α2/2d) = 1 +

∑
c(λ)e((λ, Z))

where L = Wm′(Λg)⊕ II1,1 and c(λ) is the coefficient of qn in εm′ηg |Wm′ if λ is

n times a primitive norm 0 vector in the positive cone and 0 otherwise.

Proof: The proof is similar to the case before. The main difference is that the
Weyl vector is 0 and that no vectors of positive norm appear in the product
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so that the Weyl group is trivial. Hence in this case we can write the level m
product expansion as

∏

d|N

∏

α∈(L∩dL′)+

(1 − e((α, Z)))[cd∗m′f |W
d∗m′ ](−α2/2d) = 1 +

∑
c(λ)e((λ, Z))

where the sum extends over elements λ of norm 0 in the positive cone of L.
Suppose λ = nν where n is a positive integer and ν is a primitive norm 0 vector
in L+. Then the contributions of the left hand side to e((λ, Z)) come from

∏

d|N

∏

n>0

(1 − e((ndν, Z)))bd∗m′ = εm′ηg|Wm′ ((ν, Z)) .

This implies that c(λ) is given by the coefficient of qn in εm′ηg |Wm′ and proves
the theorem.

Again this identity transforms into the denominator identity of a generalized
Kac-Moody superalgebra by replacing the complex exponentials by formal ex-
ponentials. This algebra has only imaginary roots. The imaginary simple roots
are the norm 0 vectors in the positive cone of L. An imaginary simple root has
multiplicity

∑
d|n bd∗m′ if it is n times a primitive norm 0 vector in the positive

cone.
We will see in the next section that these identities are often twisted denom-

inator identities of the fake monster superalgebra.
The relation to the fake monster algebra is described in

Theorem 9.11

The level N expansion of Ψ is

e((ρ, Z))
∏

d|N

∏

α∈(L∩dL′)+

(1 − e((α, Z)))[cdf |Wd
](−α2/2d)

=
∑

w∈W

det(w)ηg((wρ, Z))

where L = Λg ⊕ II1,1, ρ = (0, 0, 1) and W is the reflection group generated by

the roots α ∈ L ∩ dL′ with α2 = 2d for all d such that f |Wd
is singular at i∞.

Upon replacing the complex exponentials by formal exponentials this is the

twisted denominator identity of the fake monster algebra corresponding to g.

Proof: The first statement is clear. The second follows from comparing the sum
expansions in both identities.

We can prove the explicit form of the twisted denominator identity corre-
sponding to g also in a direct way using the following two results.

Proposition 9.12

Let d|N . Then the glue groups Gd,Λg and Gd,Λg,d are given by

Gd,Λg = {γ ∈ Λg ′/Λg | dγ = 0}
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and

Gd,Λg,d = {γ ∈ Λg,d′/Λg,d | dγ = 0} .

Theorem 9.13

Let r′ be in Λg ′ with kr′ ∈ Λg and k|N . Then r′2/2 is in Z/k and

∑

d|k
µ(k/d)θγd(r′)/kηgd = gk,j

where j/k = −r′2/2 mod 1.

Both statements can be proven in a tedious case-by-case analysis.
For r in Λg the theorem gives

∑

d|k
µ(k/d)θΛg,d/kηgd = gk,0

for each divisor k of N . The zero component of F is

∑

k|N
gk,0 =

∑

k|N

∑

d|k

µ(k/d)

k

θΛg,d

ηgd

showing that our main conjecture is true for automorphisms of square-free level
and nontrivial fixpoint lattice.

We conclude the section with the following result.

Theorem 9.14

The function cmf |Wm lifts to an automorphic form of singular weight (rkΛg)/2
for Aut(Wm(M))+ on Wm(M) = Wm(Λg) ⊕ II1,1 ⊕ II1,1(N). Up to rescalings

the expansions of this automorphic form are the same as those of Ψ.

The advantage of this construction is that sometimes the discriminant form
of Wm(Λg) is smaller, i.e. simpler, than that of Λg. Let us consider the case
−2A as an example. The function f(τ) = η(τ)8/η(2τ)16 lifts to an automorphic
form Ψf of singular weight on M = E8(2) ⊕ II1,1 ⊕ II1,1(2). By the theorem
c2f |W2(τ) = 16η(2τ)8/η(τ)16 lifts to an automorphic form Ψc2f |W2

of singular
weight on W2(M) = E8 ⊕ II1,1 ⊕ II1,1(2). The level 1 expansion of Ψf rescaled
by 2 is equal to the level 2 expansion of Ψc2f |W2

and the level 2 expansion of
Ψf is equal to the level 1 expansion of Ψc2f |W2

rescaled by 2. This generalizes
in the obvious way to the other classes.

10 Families of elements

In this section we organize the automorphisms of square-free level and nontrivial
fixpoint lattice into families and describe some of their properties. We obtain
a family of nice generalized Kac-Moody algebras corresponding to elements of
square-free order in M23 and we explain the relation to twisted denominator
identities of the fake monster superalgebra (cf. [S1] and [S2]).
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Elements related to M23

Here we consider the following elements.

class cycle shape group cusps zeros of ηg G |G |
1A 124 1 i∞ i∞ II24,0 24

2A 1828 2+ i∞ i∞ II16,0(2
+8
II ) 24

3B 1636 3+ i∞ i∞ II12,0(3
+6) 10

5B 1454 5+ i∞ i∞ II8,0(5
+4) 5

6E 12223262 6+ i∞ i∞ II8,0(2
+4
II 3+4) 8

7B 1373 7+ i∞ i∞ II6,0(7
+3) 3

11A 12112 11+ i∞ i∞ II4,0(11+2) 3

14B 1.2.7.14 14+ i∞ i∞ II4,0(2
+2
II 7+2) 3

15D 1.3.5.15 15+ i∞ i∞ II4,0(3
−25−2) 3

23A 1.23 23+ i∞ i∞ II2,0(23+1) 2

For this family of elements Λg is not unique in its genus but it is the unique
lattice in G with minimal norm 4. All other lattices in the genus have minimum
2. In the other families Λg is the only lattice in G. The group Γ has only one
cusp, namely i∞ = 1/N , so that Ψ has only one expansion.

The above elements correspond to the Mathieu group M23 which acts natu-
rally on the Leech lattice.

Theorem 10.1

Let N be a square-free integer such that σ1(N)|24. Then there is an element

g in M23 with cycle shape
∏

d|N d 24/σ1(N). The eta product ηg is a cusp form

for Γ0(N) with multiplicative coefficients. The fixpoint lattice Λg is strongly

modular and has no roots. Furthermore Λg is the unique lattice in its genus

without roots. The twisted denominator identity corresponding to g is

eρ
∏

d|N

∏

α∈(L∩dL′)+

(1 − eα)[1/ηg ](−α2/2d) =
∑

w∈W

det(w)w
(
ηg(e

ρ)
)

where L = Λg ⊕ II1,1, ρ = (0, 0, 1) and W is the full reflection group of L. It

defines a generalized Kac-Moody algebra whose denominator identity is an au-

tomorphic form of singular weight for Aut(L⊕II1,1(N))+. The real simple roots

of this algebra are the simple roots of W and the imaginary simple roots are the

positive multiples nρ of the Weyl vector with multiplicity 24σ0((N, n))/σ1(N).

The generalized Kac-Moody algebras described in the theorem are the nicest
ones obtained by twisting the fake monster algebra. They have root lattice
L = Λg⊕II1,1 and their multiplicities can be seen from the denominator identity.

By reducing the vector valued modular form to sublattices we obtain (cf.
Th. 12.1 in [B2])
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Proposition 10.2

The lattice L = Λg ⊕ II1,1(m) where m|N has a Weyl vector of norm 0. The

quotient Aut(L)+/W contains a free abelian group of finite index.

In the case m = 1 the quotient Aut(L)+/W is equal to the group of affine
automorphisms of Λg.

The supersymmetric family

The elements in this family are related to supersymmetric generalized Kac-
Moody superalgebras.

class cycle shape group cusps zeros Λg

−2A 216/18 2− i∞, 0 i∞ E8(2)

−6E 2464/1232 6 + 3 i∞, 0 i∞ A2(2) ⊕ A2(2)

−14B 22142/1.7 14 + 7 i∞, 0 i∞
(

4 2

2 8

)

Λg is unique in its genus. We have W2(Λ
g) = Λg(1/2). This fixes all the other

Atkin-Lehner transformations. The group Γ has 2 cusps, i∞ and 0, so that we
get 2 different expansions. One is the twisted denominator identity of the fake
monster algebra and the other gives a twisted denominator identity of a the fake
monster superalgebra.

We will need the following identities. The first one is due to Jacobi.

Proposition 10.3

We have the following supersymmetry relations

1

2q1/2

{
∏

n≥1

(1 + qn−1/2)8 −
∏

n≥1

(1 − qn−1/2)8

}
= 8

∏

n≥1

(1 + qn)8

1

2q1/2

{
∏

n≥1

(1 + q3n−3/2)2(1 + qn−1/2)2 −
∏

n≥1

(1 − q3n−3/2)2(1 − qn−1/2)2

}

= 2
∏

n≥1

(1 + q3n)2(1 + qn)2

1

2q1/2

{
∏

n≥1

(1 + q7n−7/2)(1 + qn−1/2) −
∏

n≥1

(1 − q7n−7/2)(1 − qn−1/2)

}

=
∏

n≥1

(1 + q7n)(1 + qn) .

Proof: These are identities between modular forms so can be proven by com-
paring sufficiently many coefficients. Another very simple proof is given in [S2].
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Let L = E8(2) ⊕ II1,1 and K = E8 ⊕ II1,1 = II9,1. Define modular forms

f1(τ) = η(τ)8/η(2τ)16 = q−1 − 8 + 36q − 128q2 + 402q3 − 1152q4 + . . .

f2(τ) = η(2τ)8/η(τ)16 = 1 + 16q + 144q2 + 960q3 + 5264q4 + 25056q5 + . . .

h1(τ) = η(2τ)16/η(τ)8 = q + 8q2 + 28q3 + 64q4 + 126q5 + 224q6 + . . .

h2(τ) = η(τ)16/η(2τ)8 = 1 − 16q + 112q2 − 448q3 + 1136q4 − 2016q5 + . . .

Proposition 10.4

The twisted denominator identity corresponding to an element in −2A is

eρ
∏

α∈L+

(1 − eα)[f1](−α2/2)
∏

α∈2L′+

(1 − eα)[16f2](−α2/4) =
∑

w∈W

det(w)h1(e
wρ)

where W is generated by the norm 2 vectors of L.

The level 1 expansion of the corresponding automorphic form gives the de-

nominator identity of the fake monster superalgebra

∏

α∈K+

(1 − eα)[8f2](−α2/2)

(1 + eα)[8f2](−α2/2)
= 1 +

∑
c(λ)eλ

where c(λ) is the coefficient of qn in h2 if λ is n times a primitive norm 0 vector

in K+ and 0 otherwise.

Proof: We only need to prove the second identity. Replacing the complex expo-
nentials by formal exponentials the level 1 expansion of the automorphic form
becomes

∏

α∈K+

(1 − eα)[16f2](−α2/2)
∏

α∈2K′+

(1 − eα)[f1](−α2/4) = 1 +
∑

c(λ)eλ .

Using K ′ = K we can write the second product as

∏

α∈2K′+

(1 − eα)[f1](−α2/4) =
∏

α∈K+

(1 − e2α)[f1](−α2) =
∏

α∈K+

(1 − eα)[f1](−α2)

(1 + eα)[−f1](−α2)
.

The first supersymmetry relation implies that the even Fourier coefficients of
f1(τ) are equal to those of −8f2(2τ), i.e. [f1](2n) = [−8f2](n), so that

∏

α∈K+

(1 − eα)[f1](−α2)

(1 + eα)[−f1](−α2)
=

∏

α∈K+

(1 − eα)[−8f2](−α2/2)

(1 + eα)[8f2](−α2/2)
.

Inserting this into the level 1 expansion gives the desired identity.
Next let L = A2(2) ⊕ A2(2) ⊕ II1,1 and K = A2 ⊕ A2 ⊕ II1,1. Define

f1(τ) = η(τ)2η(3τ)2/η(2τ)4η(6τ)4 = q−1 − 2 + 3q − 8q2 + 15q3 − 24q4 + . . .

f2(τ) = η(2τ)2η(6τ)2/η(τ)4η(3τ)4 = 1 + 4q + 12q2 + 36q3 + 92q4 + 216q5 + . . .

h1(τ) = η(2τ)4η(6τ)4/η(τ)2η(3τ)2 = q + 2q2 + q3 + 4q4 + 6q5 + 2q6 + . . .

h2(τ) = η(τ)4η(3τ)4/η(2τ)2η(6τ)2 = 1 − 4q + 4q2 − 4q3 + 20q4 − 24q5 + . . .
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Proposition 10.5

The twisted denominator identity corresponding to an element in −6E is

eρ
∏

α∈L+

(1 − eα)[f1](−α2/2)
∏

α∈(L∩2L′)+

(1 − eα)[4f2](−α2/4)

∏

α∈(L∩3L′)+

(1 − eα)[f1](−α2/6)
∏

α∈6L′+

(1 − eα)[4f2](−α2/12) =
∑

w∈W

det(w)h1(e
wρ)

where W is generated by the norm 2 vectors of L and the norm 6 vectors in

L ∩ 3L′.
The level 1 expansion of the corresponding automorphic form gives

∏

α∈K+

(1 − eα)[2f2](−α2/2)

(1 + eα)[2f2](−α2/2)

∏

α∈3K′+

(1 − eα)[2f2](−α2/6)

(1 + eα)[2f2](−α2/6)
= 1 +

∑
c(λ)eλ

where c(λ) is the coefficient of qn in h2 if λ is n times a primitive norm 0 vector

in K+ and 0 otherwise. This is the twisted denominator identity of the fake

monster superalgebra corresponding to an element of type 3E.

Proof: The proof is similar to the one before. Here we use the second super-
symmetry identity.

Finally we put L = ( 4 2
2 8 ) ⊕ II1,1 and K = ( 2 1

1 4 ) ⊕ II1,1 and define

f1(τ) = η(τ)η(7τ)/η(2τ)2η(14τ)2 = q−1 − 1 + q − 2q2 + 3q3 − 4q4 + . . .

f2(τ) = η(2τ)η(14τ)/η(τ)2η(7τ)2 = 1 + 2q + 4q2 + 8q3 + 14q4 + 24q5 + . . .

h1(τ) = η(2τ)2η(14τ)2/η(τ)η(7τ) = q + q2 + q4 + q7 + q8 + q9 + 2q11 + . . .

h2(τ) = η(τ)2η(7τ)2/η(2τ)η(14τ) = 1 − 2q + 2q4 − 2q7 + 4q8 − 2q9 + . . .

Proposition 10.6

The twisted denominator identity corresponding to an element in −14B is

eρ
∏

α∈L+

(1 − eα)[f1](−α2/2)
∏

α∈(L∩2L′)+

(1 − eα)[2f2](−α2/4)

∏

α∈(L∩7L′)+

(1 − eα)[f1](−α2/14)
∏

α∈14L′+

(1 − eα)[2f2](−α2/28) =
∑

w∈W

det(w)h1(e
wρ)

where W is generated by the norm 2 vectors of L and the norm 14 vectors in

L ∩ 7L′.
The level 1 expansion of the corresponding automorphic form gives

∏

α∈K+

(1 − eα)[f2](−α2/2)

(1 + eα)[f2](−α2/2)

∏

α∈7K′+

(1 − eα)[f2](−α2/14)

(1 + eα)[f2](−α2/14)
= 1 +

∑
c(λ)eλ

where c(λ) is the coefficient of qn in h2 if λ is n times a primitive norm 0 vector

in K+ and 0 otherwise. This is the twisted denominator identity of the fake

monster superalgebra corresponding to an element of type 7A.
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Another family related to the fake monster superalgebra

The following elements are also related to the fake monster superalgebra.

class cycle shape group cusps zeros Λg

3C 39/13 3− i∞, 0 i∞ E6
′(3)

5C 55/1 5− i∞, 0 i∞ A4
′(5)

15E 12152/3.5 15 + 15 i∞, 1/3 i∞
(

4 1

1 4

)

As before Λg is the unique lattice in its genus. The Atkin-Lehner transfor-
mations follow from W3(E6

′(3)) = E6, W5(A4
′(5)) = A4 and W3 (( 4 1

1 4 )) =
W5 (( 4 1

1 4 )) = ( 2 1
1 8 ). Γ has 2 cusps here so that we get 2 different expansions.

One comes from the fake monster algebra and the other gives a twisted denom-
inator identity of the fake monster superalgebra.

Let L = E6
′(3) ⊕ II1,1 and K = E6 ⊕ II1,1. Define

f1(τ) = η(τ)3/η(3τ)9 = q−1 − 3 + 14q2 − 27q3 + 92q5 − 162q6 + . . .

f3(τ) = η(3τ)3/η(τ)9 = 1 + 9q + 54q2 + 252q3 + 1008q4 + 3591q5 + . . .

h1(τ) = η(3τ)9/η(τ)3 = q + 3q2 + 9q3 + 13q4 + 24q5 + 27q6 + 50q7 + . . .

h3(τ) = η(τ)9/η(3τ)3 = 1 − 9q + 27q2 − 9q3 − 117q4 + 216q5 + 27q6 + . . .

Here the Fourier coefficients of f1 at qn vanish for n = 1 mod 3.

Proposition 10.7

The twisted denominator identity corresponding to an element in 3C is

eρ
∏

α∈L+

(1 − eα)[f1](−α2/2)
∏

α∈3L′+

(1 − eα)[9f3](−α2/6) =
∑

w∈W

det(w)h1(e
wρ)

where W is generated by the norm 2 vectors of L.

The level 1 expansion of the corresponding automorphic form gives
∏

α∈K+

(1 − eα)[9f3](−α2/2)
∏

α∈3K+

(1 − eα)[−3f3](−α2/18) = 1 +
∑

c(λ)eλ

where c(λ) is the coefficient of qn in h3 if λ is n times a primitive norm 0 vector

in K+ and 0 otherwise. This is the twisted denominator identity of the fake

monster superalgebra corresponding to an element of type 3A.

Proof: Again we only have to prove the second identity. From Theorem 9.10 we
get

∏

α∈K+

(1 − eα)[9f3](−α2/2)
∏

α∈3K′+

(1 − eα)[f1](−α2/6) = 1 +
∑

c(λ)eλ .

Since the Fourier coefficients of f1 vanish for n = 1 mod 3 the second product
only extends over 3K+. Using [f1](3n) = [−3f3](n) we get the expression given
the proposition.
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Let L = A4
′(5) ⊕ II1,1 and K = A4 ⊕ II1,1. Define

f1(τ) = η(τ)/η(5τ)5 = q−1 − 1 − q + 6q4 − 5q5 − 4q6 + 25q9 − 20q10 + . . .

f5(τ) = η(5τ)/η(τ)5 = 1 + 5q + 20q2 + 65q3 + 190q4 + 505q5 + 1260q6 + . . .

h1(τ) = η(5τ)5/η(τ) = q + q2 + 2q3 + 3q4 + 5q5 + 2q6 + 6q7 + 5q8 + 7q9 + . . .

h5(τ) = η(τ)5/η(5τ) = 1 − 5q + 5q2 + 10q3 − 15q4 − 5q5 − 10q6 + 30q7 + . . .

Here the Fourier coefficients of f1 at qn vanish for n = 2, 3 mod 5.

Proposition 10.8

The twisted denominator identity corresponding to an element in 5C is

eρ
∏

α∈L+

(1 − eα)[f1](−α2/2)
∏

α∈5L′+

(1 − eα)[5f5](−α2/10) =
∑

w∈W

det(w)h1(e
wρ)

where W is generated by the norm 2 vectors of L.

The level 1 expansion of the corresponding automorphic form gives

∏

α∈K+

(1 − eα)[5f5](−α2/2)
∏

α∈5K+

(1 − eα)[−f5](−α2/50) = 1 +
∑

c(λ)eλ

where c(λ) is the coefficient of qn in h5 if λ is n times a primitive norm 0 vector

in K+ and 0 otherwise. This is the twisted denominator identity of the fake

monster superalgebra corresponding to an element of type 5A.

Proof: The second statement follows as before from the vanishing of the Fourier
coefficients of f1 for n = 2, 3 mod 5 and [f1](5n) = [−f5](n).

Finally we put L = ( 4 1
1 4 ) ⊕ II1,1 and K = ( 2 1

1 8 ) ⊕ II1,1 and define

f1(τ) = η(3τ)η(5τ)/η(τ)2η(15τ)2 = q−1 + 2 + 5q + 9q2 + 18q3 + 30q4 + . . .

f3(τ) = η(τ)η(15τ)/η(3τ)2η(5τ)2 = 1 − q − q2 + 2q3 − 2q4 + q5 + 3q6 + . . .

h1(τ) = η(τ)2η(15τ)2/η(3τ)η(5τ) = q − 2q2 − q3 + 3q4 − q5 + 2q6 − 4q8 + . . .

h3(τ) = η(3τ)2η(5τ)2/η(τ)η(15τ) = 1 + q + 2q2 + q3 + 3q4 + q5 + 2q6 + . . .

Proposition 10.9

The twisted denominator identity corresponding to an element in 15E is

eρ
∏

α∈L+

(1 − eα)[f1](−α2/2)
∏

α∈(L∩3L′)+

(1 − eα)[−f3](−α2/6)

∏

α∈(L∩5L′)+

(1−eα)[−f3](−α2/10)
∏

α∈15L′+

(1−eα)[f1](−α2/30) =
∑

w∈W

det(w)h1(e
wρ)

where W is generated by the norm 2 vectors of L and the norm 30 vectors in

15L′.
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The level 3 expansion of the corresponding automorphic form gives

∏

α∈K+

(1 − eα)[−f3](−α2/2)
∏

α∈(K∩3K′)+

(1 − eα)[f1](−α2/6)

∏

α∈(K∩5K′)+

(1 − eα)[f1](−α2/10)
∏

α∈15K′+

(1 − eα)[−f3](−α2/30) = 1 +
∑

c(λ)eλ

where c(λ) is the coefficient of qn in h3 if λ is n times a primitive norm 0 vector

in K+ and 0 otherwise. This is the twisted denominator identity of the fake

monster superalgebra corresponding to an element of type 15A.

Atkin-Lehner triples

Here we consider the following elements.

class cycle shape group cusps zeros

6C 142.65/34 6− i∞, 1/3, 1/2, 0 i∞, 1/2, 0

−6C 25346/14 6− i∞, 1/3, 1/2, 0 i∞, 1/3, 1/2

−6D 153.64/24 6− i∞, 1/3, 1/2, 0 i∞, 1/3, 0

10D 122.103/52 10− i∞, 1/5, 1/2, 0 i∞, 1/2, 0

−10D 235210/12 10− i∞, 1/5, 1/2, 0 i∞, 1/5, 1/2

−10E 135.102/22 10− i∞, 1/5, 1/2, 0 i∞, 1/5, 0

30D 1.6.10.15/3.5 30 + 15 i∞, 1/10, 1/5, 0 i∞, 1/10, 0

−30D 2.3.5.30/1.15 30 + 15 i∞, 1/10, 1/5, 0 i∞, 1/10, 1/5

−30E 2.3.5.30/6.10 30 + 15 i∞, 1/10, 1/5, 0 i∞, 1/5, 0

Λg is the unique lattice in its genus. The group Γ has 4 cusps so that
the automorphic form corresponding to g has 4 different expansions. Three of
them are twisted denominator identities of the fake monster algebra and one of
them gives the denominator identity of a generalized Kac-Moody superalgebra
without real roots. The Atkin-Lehner relations are described in the following
diagrams.
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64/1.2435 E6

−6D 24/153.64 E6
′(3)

6C 34/142.65 E6(2)

3 6

2

2

6 3

−6C 14/25346 E6
′(6)

102/1.2253 A4

−10E 22/135.102 A4
′(5)

5 10

2

2

10 5

−10D 12/235210 A4
′(10)

10D 52/122.103 A4(2)

All elements in one diagram give the same expansions. Only the levels are
changed. The function in the middle of the diagram also lifts to an automorphic
form of singular weight on the obvious lattice. It does not correspond to an
automorphism of the Leech lattice but it gives the same expansions as the
other functions in the diagram. For example the level 3 expansion of 6C is
equal to the level 1 expansion of −6C and equal to the level 2 expansion of
−6D. All these expansions are equal to the level 6 expansion of the lift of
η(6τ)4/η(τ)η(2τ)4η(3τ)5 on E6 ⊕ II1,1 ⊕ II1,1(6).
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−30E 6.10/2.3.5.30 ( 4 1
1 4 )−30D 1.15/2.3.5.30 ( 4 2

2 16 )

2.30/1.6.10.15 ( 2 1
1 8 )

30D 3.5/1.6.10.15 ( 8 2
2 8 )

6,10

3,5 2,30

2,30 3,5

6,10

The cases ±6F

Finally we consider the classes ±6F .

class cycle shape group cusps zeros Λg

6F 3363/1.2 6 + 2 i∞, 0 i∞ D4(3)

−6F 1.66/2233 6− i∞, 1/3, 1/2, 1 i∞ A2(2)

Again Λg is the unique lattice in its genus. For class 6F the Atkin-Lehner trans-
formations follow from W3(D4(3)) = D4. For class −6F we have W2(A2(2)) =
A2 and W3(A2(2)) = A2(2). In this case Λg has more symmetries than ηg .

We only give the level 3 expansion of Ψ for −6F because this case is related
to the fake monster superalgebra. The other cases are left to the reader.

Let K = A2 ⊕ II1,1 and

f1(τ) = η(2τ)2η(3τ)3/η(τ)η(6τ)6 = q−1 + 1 − 2q2 − 3q3 + 4q5 + 6q6 + . . .

f2(τ) = η(τ)2η(6τ)3/η(2τ)η(3τ)6 = 1 − 2q + 6q3 − 10q4 + 24q6 − 36q7 + . . .

f3(τ) = η(6τ)2η(τ)3/η(3τ)η(2τ)6 = 1 − 3q + 6q2 − 12q3 + 24q4 − 45q5 + . . .

f6(τ) = η(3τ)2η(2τ)3/η(6τ)η(τ)6 = 1 + 6q + 24q2 + 78q3 + 222q4 + . . .

h(τ) = η(2τ)η(3τ)6/η(τ)2η(6τ)3 = 1 + 2q + 4q2 + 2q3 + 2q4 + 4q6 + 4q7 + . . .
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Proposition 10.10

The level 3 expansion of the automorphic form corresponding to class −6F is

∏

α∈K+

(1 − eα)[−2f2](−α2/2)
∏

α∈(K∩2K′)+

(1 − eα)[f1](−α2/4)

∏

α∈(K∩3K′)+

(1 − eα)[6f6](−α2/6)
∏

α∈6K′+

(1 − eα)[−3f3](−α2/12) = 1 +
∑

c(λ)eλ

where c(λ) is the coefficient of qn in h if λ is n times a primitive norm 0 vector

in K+ and 0 otherwise. This is the twisted denominator identity of the fake

monster superalgebra corresponding to an element of type 3D.
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