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We describe in this article relations between infinite dimensional Lie algebras
and automorphic forms.

Let Mn(C) be the algebra of complex n × n-matrices. We can define a new
product [a, b] = ab− ba on Mn(C). This product is antisymmetric,

[a, b] = −[b, a] ,

and satisfies the Jacobi identity

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0 .

An algebra with such a product is called a Lie algebra. It has turned out
that there are close relations between certain infinite dimensional Lie algebras
and automorphic forms. These are meromorphic functions which have simple
transformation properties under suitable groups. In this article we describe
three examples for the connection between Lie algebras and automorphic forms.
We sketch Borcherds’ proof of the moonshine conjecture. Then we formulate
a similar conjecture for Conway’s group Co0. In the last section we describe
classification results for infinite dimensional Lie algebras.

1 Lie algebras

The theory of Lie groups and Lie algebras was introduced in 1873 by S. Lie. A
Lie group is a group with the structure of a differentiable manifold such that
the multiplication and inverse operation are differentiable. Examples for Lie
groups are the spheres S1 = {z ∈ C | |z| = 1 } and S3 = {x ∈ H | |x| = 1 }
and the matrix groups GLn(R) and GLn(C). Many geometrical properties of
a Lie group can be described in terms of its Lie algebra. The Lie algebra of a
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Lie group is the tangent space at the identity. The group structure induces a
product on the tangent space which is antisymmetric and satisfies the Jacobi
identity. This is the starting point for the abstract definition of a Lie algebra.
A Lie algebra is a vector space with an antisymmetric product satisfying the
Jacobi identity.

At the end of the 19th century Killing and Cartan classified the finite dimen-
sional simple Lie algebras over the complex numbers. There are 4 infinite fam-
ilies, the classical Lie algebras An = sln+1(C), Bn = so2n+1(C), Cn = sp2n(C)
and Dn = so2n(C), and 5 exceptional Lie algebras G2, F4, E6, E7 and E8. A
finite dimensional irreducible representation of a finite dimensional simple Lie
algebra decomposes into weight spaces. The representation is characterized by
the highest weight in this decomposition. The character of the representation
is a series whose coefficients are given by the dimensions of the weight spaces.
Weyl’s character formula describes the character as the quotient of a sum over
the Weyl group and a product over positive roots. Applying Weyl’s character
formula to the trivial representation we obtain the denominator identity which
will play an important role in the following. Outer automorphisms give twisted
denominator identities. We can also associate a matrix, the Cartan matrix, to
a finite dimensional simple Lie algebra. The elements on the diagonal and the
principal minors of this matrix are positive. By a result of Serre we can recon-
struct the Lie algebra from its Cartan matrix by dividing a free Lie algebra by
certain relations given by the matrix.

Serre’s construction can also be applied to matrices whose principal minors
are not necessarily positive. In this way we obtain Kac-Moody algebras [K].
These Lie algebras are in general infinite dimensional but their theory is similar
to the finite dimensional theory in many aspects. In particular there is a char-
acter formula for irreducible highest weight representations and a denominator
identity. Kac-Moody algebras can only be classified under certain assumptions
on the Cartan matrices. For example if we assume that the determinant of the
Cartan matrix vanishes and the proper principal minors are positive we obtain
the class of affine Kac-Moody algebras. They can be written as tensor products
of the finite dimensional simple Lie algebras with Laurent polynomials in one
variable. The denominator identities of the affine Kac-Moody algebras give sum
expansions of infinite products. For example the denominator identity of the
affinization of sl2(C)

∏

n>0

(1 − q2n)(1 − q2n−1z)(1− q2n−1z−1) =
∑

n∈Z

(−1)nqn2

zn

is Jacobi’s triple product identity. The denominator identities of the affine Kac-
Moody algebras transform nicely under suitable Jacobi groups, i.e. are Jacobi
forms [K, B2].

Borcherds found out that the conditions on the Cartan matrix can be weak-
ened further. Applying Serre’s construction to matrices whose diagonal ele-
ments are not necessarily positive we obtain generalized Kac-Moody algebras.
The theory of these Lie algebras is still similar to the finite dimensional theory.
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In particular a denominator identity holds. We will see that they are sometimes
automorphic forms for orthogonal groups. Generalized Kac-Moody algebras
have found natural realizations in physics. Some of these Lie algebras describe
bosonic strings moving on suitable space times.

2 Automorphic forms

The modular group SL2(Z) acts on the upper half plane H = { τ ∈ C | Im(τ)
> 0 } by fractional linear transformations

(

a b

c d

)

τ =
aτ + b

cτ + d
.

A meromorphic function on the upper half plane is a modular function of weight
k, where k is an integer, if

f(Mτ) = (cτ + d)kf(τ)

for all M =
(

a b
c d

)

in SL2(Z) and f is meromorphic at the cusp i∞. The function
f is a modular form if in addition f is holomorphic on H and in i∞.

For example for an even integer k ≥ 4 the Eisenstein series

Ek(τ) =
1

2

∑

m,n∈Z

(m,n)=1

1

(mτ + n)k

is a modular form of weight k. The transformation behaviour under the modular
group easily follows by reordering the sum. Using the partial fraction expansion
of the cotangent we can show that the Fourier expansion of the Eisenstein series
is given by

Ek(τ) = 1 −
2k

Bk

∞
∑

n=1

σk−1(n)qn

with q = e2πiτ and σk−1(n) =
∑

d|n dk−1. The function

j(τ) = 1728
E4(τ)3

E4(τ)3 − E6(τ)2
= q−1 + 744 + 196884q + 21493760q2 + . . .

is a modular function of weight 0.
The definition of a modular form can be generalized in several ways. Jacobi

forms are functions on H × C which transform in a simple way under the Ja-
cobi group SL2(Z) n Z2. An example is the Jacobi theta series given above. In
general the denominator identities of the affine Kac-Moody algebras are auto-
morphic forms on H × Cn for generalizations of the above Jacobi group. For
the theory of generalized Kac-Moody algebras automorphic forms on orthogo-
nal groups are important. These are meromorphic functions on Grassmannians
transforming nicely under discrete subgroups of the orthogonal groups On,2(R).
Borcherds found a map from vector valued modular forms on SL2(Z) to auto-
morphic forms on orthogonal groups [B3]. These automorphic forms have nice
product expansions and therefore are called automorphic products.
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3 The monster

Around 1983 the classification of finite simple groups was achieved. There are
18 infinite families, the cyclic groups of prime order, the alternating groups and
the groups of Lie type, and moreover there are 26 sporadic simple groups. The
proof of this result comprises the work of more than hundred mathematicians
and consists of several thousand journal pages. The largest sporadic simple
group is the monster. This group was predicted by Fischer and Griess in 1973
and constructed by Griess in 1982. The smallest irreducible representations
of the monster have dimensions 1, 196883, 21296876, . . . . McKay noticed the
following relations between the coefficients of the function j and the dimensions
of the irreducible representations of the monster

1 = 1

196884 = 196883 + 1

21493760 = 21296876 + 196883 + 1 .

This observation led Conway and Norton [CN] in 1979, i.e. before the existence
of the monster was actually proven, to the conjecture that there should be a
module V =

⊕

n∈Z
Vn for the monster such that the McKay-Thompson series

Tg(τ) =
∑

n∈Z
tr(g|Vn)qn, where tr(g|Vn) is the trace of the element g in the

monster on Vn, are modular functions of weight 0 for genus 0 subgroups of
SL2(R). This conjecture is called moonshine conjecture. However in this context
moonshine does not refer to the light of the moon but means nonsense. Frenkel,
Lepowsky and Meurman [FLM] constructed 1988 a candidate for V on which
the monster acts. The module V has an additional algebraic structure, that of
a vertex algebra, which is invariant under the action of the monster. Frenkel
et al. showed that the graded dimensions of V are given by the coefficients
of j − 744, i.e. the McKay-Thompson series of the identity is j − 744. But
they could not show in general that the McKay-Thompson series are modular
functions for genus 0 groups. This was proven by Borcherds applying the theory
of generalized Kac-Moody algebras [B1]. He constructed by means of the module
V a generalized Kac-Moody algebra, the monster Lie algebra. The denominator
identity of this Lie algebra

1

q1

∏

n1>0
n2∈Z

(1 − qn1

1 qn2

2 )[j](n1n2) = j(τ1) − j(τ2)

gives a product expansion of the function j. Here the exponent [j](n) de-
notes the coefficient at qn in the Fourier expansion of j. Borcherds showed
that the monster acts naturally on the monster Lie algebra and calculated the
corresponding twisted denominator identities. These identities imply that the
McKay-Thompson series are modular functions of weight 0 for genus 0 groups.
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4 Conway’s group

A lattice in Rn is the integral span of n linearly independent vectors. A lattice
is called unimodular if the n basis vectors span a parallelotop of unit volume.
Furthermore a lattice is even if all vectors in the lattice have even norm. Using
the theory of modular forms we can show that even unimodular lattices only
exist in dimensions which are divisible by 8. In dimension 8 there is up to
isometry exactly one such lattice, in dimension 16 two and in dimension 24 there
are exactly 24 even unimodular lattices up to isometry. Thereafter the number
of lattices increases very rapidly. Among the 24 even unimodular lattices in
R24 there is exactly one lattice which has no vectors of norm 2. This implies
that there is no vector in this lattice such that the reflection in the hyperplane
orthogonal to this vector maps the lattice into itself, i.e. the lattice has no
roots. This lattice is called Leech lattice. The automorphism group of the Leech
lattice is Conway’s group Co0. Dividing Co0 by the normal subgroup generated
by −1 gives the sporadic simple group Co1. The characteristic polynomial
of an element g of order n in Co0 can be written as

∏

d|n(xd − 1)bd . The

level of g is defined as the level of the modular function ηg(τ) =
∏

d|n η(dτ)bd .

Conway’s group Co0 acts naturally on the fake monster Lie algebra [B1]. This
is a generalized Kac-Moody algebra describing the physical states of a bosonic
string moving on a 26-dimensional torus. The twisted denominator identities
under the action of Co0 are probably automorphic forms of singular weight
for orthogonal groups. This conjecture is analogous to Conway and Norton’s
conjecture. It is proven for elements of squarefree level in [S1, S2, S3]. This
theorem implies the following result. Let N be a squarefree positive integer such
that σ1(N)|24. Then there is an element g in Co0 of order N and characteristic
polynomial

∏

d|N(xd − 1)24/σ1(N). Let Λg be the fixpoint lattice of g. Then the
twisted denominator identity of g is given by

eρ
∏

d|N

∏

α∈(L∩dL′)+

(1 − eα)[1/ηg ](−α2/2d) =
∑

w∈W

det(w)w
(

ηg(e
ρ)

)

,

where L = Λg ⊕ II1,1 and W is the reflection group of L. This identity defines
an automorphic form of singular weight for an orthogonal group and also is the
untwisted denominator identity of a generalized Kac-Moody algebra. In this
way we obtain 10 generalized Kac-Moody algebras which are very similar to the
fake monster Lie algebra.

5 Classification results

We have already seen that the known classification results of Kac-Moody alge-
bras assume certain properties of the Cartan matrices. In particular the Cartan
matrix must be finite. For generalized Kac-Moody algebras this assumption is
not reasonable because the most interesting generalized Kac-Moody algebras,
the monster Lie algebra and the fake monster Lie algebra, have infinitely many
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simple roots and therefore infinite Cartan matrices. The fact that the denomi-
nator identities of some generalized Kac-Moody algebras are automorphic forms
of singular weight for orthogonal groups suggests to analyze whether such Lie
algebras can be classified. This idea seems to be promising. For example we can
show [S4] that the 10 Lie algebras constructed above are the only generalized
Kac-Moody algebras whose denominator identities are completely reflective au-
tomorphic products of singular weight on lattices of squarefree level and positive
signature. This classification result relies on properties of the Eisenstein series
and the Bernoulli numbers Bk. For example the fake monster Lie algebra owes
its existence to the fact that

2k

Bk
= 24

for k = 14. In contrast to the affine Kac-Moody algebras there are only finitely
many Lie algebras with automorphic denominator identity in this case.

References

[B1] R. E. Borcherds, Monstrous moonshine and monstrous Lie super-

algebras, Invent. math. 109 (1992), 405–444

[B2] R. E. Borcherds, Automorphic forms on Os+2,2(R) and infinite prod-

ucts, Invent. math. 120 (1995), 161–213

[B3] R. E. Borcherds, Automorphic forms with singularities on Grassman-

nians, Invent. math. 132 (1998), 491–562

[CN] J. H. Conway and S. P. Norton, Monstrous moonshine, Bull. London
Math. Soc. 11 (1979), 308–339

[FLM] I. Frenkel, J. Lepowsky, A. Meurman, Vertex operator algebras and

the monster, Pure and Applied Mathematics 134, Academic Press,
Boston, 1988

[K] V. Kac, Infinite dimensional Lie algebras, 3rd ed., Cambridge Uni-
versity Press, Cambridge, 1990

[S1] N. R. Scheithauer, Generalized Kac-Moody algebras, automorphic

forms and Conway’s group I, Adv. Math. 183 (2004), 240–270

[S2] N. R. Scheithauer, Generalized Kac-Moody algebras, automorphic

forms and Conway’s group II, preprint 2004, submitted

[S3] N. R. Scheithauer, Moonshine for Conway’s group, Habilitations-
schrift, Heidelberg, 2004

[S4] N. R. Scheithauer, On the classification of automorphic products and

generalized Kac-Moody algebras, Invent. math. 164 (2006), 641–678

6


