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We develop an orbifold theory for finite, cyclic groups acting on holomorphic vertex operator
algebras. Then we show that Schellekens’ classification of Vi-structures of meromorphic confor-
mal field theories of central charge 24 is a theorem on vertex operator algebras. Finally we use
these results to construct some new holomorphic vertex operator algebras of central charge 24
as lattice orbifolds.

1 Introduction

Vertex algebras give a mathematically rigorous description of 2-dimensional quantum field theo-
ries. They have been introduced into mathematics by R. E. Borcherds [B1]. The most prominent
example is the moonshine module V¥ constructed by Frenkel, Lepowsky and Meurman [FLM].
This vertex algebra is Z-graded and carries an action of the largest sporadic simple group, the
monster. Borcherds showed that the corresponding twisted traces are hauptmoduls for genus 0
groups [B2].

The moonshine module was the first example of an orbifold in the theory of vertex algebras.
The (—1)-involution of the Leech lattice A lifts to an involution g of the associated lattice vertex
algebra V. The fixed points V{ of V) under g form a simple subalgebra of Vi. Let Vj(g) be
the unique irreducible g-twisted module of V and Vi (g)z the subspace of vectors with integral
Lo-weight. Then the vertex algebra structure on V{ can be extended to Vy & Va(g)z. This sum
is the moonshine module V¥. In contrast to VY, which has 4 irreducible modules, the moonshine
module V¥ has only itself as irreducible module.

It was believed for a long time that the above construction can be generalised to automor-
phisms of any finite order (cf. e.g. [D]). We show that under certain regularity assumptions this
conjecture is true. More precisely we prove (cf. Theorem 5.16):

Let 'V be a simple, rational, Cy-cofinite, holomorphic vertex operator algebra of CFT-type and
let g be an automorphism of V' of order n and type 0. Then the cyclic group G = {g) acts naturally
on the irreducible g*-twisted V-modules V (g') and these actions are unique up to multiplication
by an n-th root of unity. Suppose the modules V (g*) have positive conformal weight, i.e. positive
smallest Lg-eigenvalue, for i # 0 mod n. Then the actions can be chosen such that

Vorb(G) _ @ V(gi)G'
i€Zn,
has the structure of a vertex operator algebra extending that of V. With this structure VoP(G)
is simple, rational, Cs-cofinite, holomorphic and of CFT-type.



We sketch the proof. By [DM1], [M3] and [CM] the vertex operator algebra V¢ is simple,
rational, Cy-cofinite, self-contragredient and of CFT-type. The irreducible modules of V& are
given up to isomorphism by the eigenspaces W) = {v € V(g') | g.v = e(j/n)v} [MT]. Using
the Verlinde formula proved by Huang [H3] for vertex operator algebras we show that the modules
W(9) are simple currents and that the fusion group is isomorphic to Z2. This implies that the
sum W = @(i’ jezz W(7) is an abelian intertwining algebra whose braiding is determined by

the conformal weights of the modules W (7). From this the theorem can be derived.

We remark that our approach is inspired by Miyamoto’s theory of Zg-orbifolds of lattice
vertex algebras [M2].

Another important problem in the theory of vertex algebras is the classification of vertex
operator algebras satisfying the above regularity conditions.

The rank of a positive definite, even, unimodular lattice is divisible by 8. In rank 8 there is
exactly one such lattice up to isomorphism, the Fg-lattice. In rank 16 there are two isomorphism
classes, EZ and DIFG. Niemeier showed that in rank 24 there are exactly 24 isomorphism classes,
the Niemeier lattices, and that the isomorphism class of such a lattice is determined by its root
sublattice, the sublattice generated by the elements of norm 2. The Minkowski-Siegel mass
formula shows that with increasing rank the number of classes grows very rapidly. For example
in rank 32 there are more than 107 classes.

A similar result is expected to hold for simple, rational, Cs-cofinite, holomorphic vertex
operator algebras of CFT-type. Examples of such vertex operator algebras are obtained from
positive definite, even, unimodular lattices. The central charge of such a vertex operator algebra
is a positive integer multiple of 8. Dong and Mason [DM2] proved that for central charge 8
there is exactly one isomorphism class, the vertex operator algebra Vg, of the Es-lattice, and
for central charge 16 there are two classes, V2 and VD+ The vectors of weight 1 in a vertex
operator algebra of CFT-type form a Lie algebra We bhOW that the classification of V;-structures
given by Schellekens is a theorem on vertex operator algebras (Theorem 6.4):

Let V' be a simple, rational, Cy-cofinite, holomorphic vertex operator algebra of CFT-type
and central charge 24. Then either Vi = 0 or dim(Vy) = 24 and V is isomorphic to the vertex
operator algebra of the Leech lattice or V1, is one of 69 semisimple Lie algebras described in Table
1 of [S].

The argument is essentially the one given by Schellekens. The vertex operator subalgebra W
of V' generated by the elements in V7 is isomorphic to a tensor product of affine vertex operator
algebras. It is rational with well-known irreducible modules [FZ]. The vertex operator algebra
V' decomposes into finitely many irreducible W-modules under the action of W. The regularity
conditions imply that the character of V' is a Jacobi form of weight 0 and index 1 [KM]. This
imposes strong restrictions on W and the structure of V' as W-module. In particular the possible
isomorphism types of W are completely fixed and given in Schellekens list. The main difference
to [S] is that we write down explicitly the equations which imply the classification in terms of
homogeneous weight polynomials.

It is believed that all the Lie algebras given in Schellekens list are realised as Vj-structures of
holomorphic vertex operator algebras of central charge 24 and that the Vi-structure determines
the vertex operator algebra up to isomorphism.

Using the main results described above we construct 5 new holomorphic vertex operator
algebras of central charge 24 as orbifolds of Niemeier lattices and determine their Vj-structure
(Theorem 8.1):

There exist holomorphic vertex operator algebras of central charge 24 with the Lie algebra Vy
given by Ay 1Bs1Es 4, A 5, A26Da12, A1,1C53G22 and Cy 0.

Together with recent results by Lam et al. [LS1], [LS2], [LL] this implies that the first part
of the above classification conjecture holds.



Another application of our results is Carnahan’s proof of Norton’s generalised moonshine
conjecture [C].

The paper is organised as follows.

First we recall some important modularity properties of vertex operator algebras.

Let V' be a simple, rational, Cs-cofinite, self-contragredient vertex operator algebra of CFT-
type. Suppose that all irreducible V-modules are simple currents so that the fusion algebra of
V' is the group algebra of some finite abelian group D and that the irreducible modules different
from V' all have positive conformal weight.

In section 3 we show that the conformal weights of the irreducible modules of V' define a
quadratic form ga on D and that Zhu’s representation is up to a character the Weil representation
of D (Theorem 3.4).

The direct sum of the irreducible V-modules has the structure of an abelian intertwining
algebra whose associated quadratic form is —ga (Theorem 4.1). Restricting the sum to an
isotropic subgroup gives a vertex operator algebra extending V' (Theorem 4.2).

Next assume that V is a simple, rational, Cs-cofinite, holomorphic vertex operator algebra
of CFT-type and let G = (g) be a finite, cyclic group of order n acting by automorphisms on V.
Suppose that the gi-twisted modules V (g*) of V have positive conformal weight for i # 0.

In section 5 we show that the irreducible modules of V¢ are simple currents. This implies
that the fusion algebra of V' is the group algebra of some finite abelian group D. We show that
D is a central extension of Z, by Z, whose isomorphism type is determined by the conformal
weight of the twisted module V(g) (Theorem 5.13). Furthermore the direct sum of all irreducible
V& modules is an abelian intertwining algebra with the braiding determined by the conformal
weights of the irreducible V“-modules and the restriction of the sum to an isotropic subgroup
H of D is a vertex operator algebra extending V¢ called the orbifold of V with respect to G and
H (Theorem 5.16).

In section 6 we show that Schellekens’ classification of V;-structures of meromorphic conformal
field theories of central charge 24 is a rigorous theorem on vertex operator algebras.

Next we recall some results on lattice vertex algebras.

In the last section we apply our results to construct 5 new holomorphic vertex operator
algebras of central charge 24 as orbifolds of Niemeier lattices. We show that they have Vi-
structures A271B2,1E674, Ai57 A276D4712, A17105,3G272 and 04,10 (Theorem 81)
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M. Miyamoto, A. Schellekens, H. Shimakura and H. Yamauchi for valuable discussions and the
referee for suggesting several improvements.

The first author was supported by a grant from the Alexander von Humboldt Foundation
and later by CAPES-Brazil. The second author was partially supported by a scholarship of the
Studienstiftung des deutschen Volkes. The second and third author both were supported by the
DFG-project “Infinite-dimensional Lie algebras in string theory”.

After completion of this work we learned of [DRX] which has some overlap with our Section
5, in particular Proposition 5.6.

2 Modular invariance and the Verlinde formula

In this section we recall some important modularity properties of vertex operator algebras.

Let V be a rational, Cs-cofinite vertex operator algebra of central charge ¢ and W an irre-
ducible V-module. We denote the conformal weight of W, i.e. the smallest Lg-eigenvalue of W,
by p. Then ¢ and p are rational numbers ([DLM], Theorem 11.3). For v € V we define the formal



sum

(oo}
Ty (v, q) = trw o(v)g"~/* = ¢?=/** Y "try, o(v)q"
n=0

where 0(v) = vy (y)—1 for homogeneous v, extended linearly to V. Zhu has shown ([Z], Theorems
5.3.2 and 4.2.1)

Theorem 2.1
Let V' be a rational, Cy-cofinite vertex operator algebra of central charge ¢ and W € Irr(V'), the
set of isomorphism classes of irreducible V-modules. Then

i) Let ¢ = €*™7. Then the formal sum Ty (v,7) converges to a holomorphic function on the
complex upper halfplane H.

ii) Let v € Vj) be of weight k with respect to Zhu's second grading. Then there is a represen-
tation
pv : SLo(Z) — GL(V(V))

of SLy(Z) on the fusion algebra V(V) = @y cpe(vy CW of V such that

Tw(v,yr) = (et +d)* > pv(MwmTu(v,7)
Melrr(V)

for all v = (2Y) € SLy(Z).
We denote the images of the standard generators S = ({ ') and T = (} 1) of SLy(Z) under
Zhu’s representation py by S and 7. The definition of Ty, (v, 7) as trace implies

Tu.N = 5M,N€((P(M) —c/24))

where e(z) denotes e2™*. The S-matrix is related to the fusion coefficients by the Verlinde

formula proved for vertex operator algebras by Huang ([H3], section 5).

Theorem 2.2
Let V be a simple, rational, Cy-cofinite, self-contragredient vertex operator algebra of CFT-type.
Then

i) The matrix S is symmetric and S is the permutation matrix sending M to its contragredient
module M'. Moreover Sy # 0 for U € Irr(V).

ii) The fusion coefficients are given by

SmuSnuSwr .U
Min= Z s

S
Uelrr(V) v.u

Now let V be a simple, rational, Cs-cofinite vertex operator algebra of central charge ¢ which
is holomorphic, i.e. V has only one irreducible module, and let G = (g) be a finite, cyclic group
of automorphisms of V' of order n. Then for each h € G there is a unique irreducible h-twisted
V-module V' (h) of conformal weight p(V(h)) € Q and a representation

én : G — Aute(V(h))



of G on the vector space V(h) such that

on(k)Yy ) (v, 2)dn (k)™ = Yy (kv, 2)

for all K € G and v € V [DLM]. By Schur’s lemma this representation is unique up to multipli-
cation by an n-th root of unity. Setting h = ¢*, k = ¢’ we define the twisted trace functions

T(v,i,5,9) = trv(g) 0(v)dy: (g7 g™~/

Dong, Li and Mason have shown ([DLM], Theorem 1.4)

Theorem 2.3
Let V' be a simple, rational, Cy-cofinite, holomorphic vertex operator algebra of central charge c
and G = (g) a finite, cyclic group of automorphisms of V' of order n. Then

i) Let ¢ = €*7. Then the twisted trace function T(v,i,j,T) converges to a holomorphic
function on H.

ii) For homogeneous v € V} the twisted trace functions satisfy

T(v,i,4,77) = o(i,5,7)(cr + d)* T (v, (i, )7, 7)

for all v = (2%) € SLy(Z). The constants o(i,j,y) € C depend only on i, j, v and the
choice of the functions ¢, .

3 Simple currents

In this section we show that a rational vertex operator algebra satisfying certain regularity
conditions and whose modules are all simple currents has group-like fusion and that the conformal
weights define a quadratic form on the fusion group. We also show that Zhu’s representation is
up to a character the Weil representation in this case.

Let V be a rational, Cs-cofinite vertex operator algebra of CFT-type. It is well-known that
the fusion algebra V(V') of V is a finite-dimensional, associative, commutative algebra over C
with unit V. A V-module M is called a simple current if the fusion product M Xy W is irreducible
for any irreducible V-module W. We define Irr(V) = {W*|a € D} as the set of isomorphism
classes of irreducible V-modules and assume that all W< are simple currents. Then we can
define a composition on D by WXy W# = We+8_ The following result is well-known (cf. [LY],
Corollary 1).

Theorem 3.1

Let V be a simple, rational, Cy-cofinite, self-contragredient vertex operator algebra of CFT-type.
Assume that all irreducible V-modules are simple currents. Then the fusion algebra V(V') of V
is the group algebra C[D] of some finite abelian group D, i.e.

we Xy Wﬁ o~ Woz+5

for all o, B € D. The neutral element is given by W° =V and the inverse of a by W% = we' =~
(we)'.



If V is as in the theorem we say that V' has group-like fusion. We will assume this from now
on. We denote the conformal weight of W* by p(W®) and define

an : D — Q/Z
with
ga(a) = p(W?*) mod 1
and
ba: D x D — Q/Z
by

ba(a, B) = gala+ B) — gala) — ga(B) mod 1.

Proposition 3.2
Suppose V' has group-like fusion with fusion group D and the modules W have positive confor-

mal weights for a # 0. Then
1
Soo = So0 = —F—
D]
for all « € D.

Proof: Using the results on quantum dimensions in [DJX] it is easy to see that Spo = Spa =
Sao € RT. Now

1=1000 = (8%)oo = 3 S0yS40 = [D|S5y
~yeD

implies the statement. O

Proposition 3.3
Suppose V' has group-like fusion with fusion group D and the modules W have positive confor-
mal weights for o # 0. Then

Sap = Soo e(—ba(a, B))
for all a, 8 € D.

Proof: The relation TSTST = S in SLy(Z) implies TSTST = S. Using the above formula for
T we obtain

Sap =Y SarSyselgala) +qa(B) +aa(y) — ¢/8).

¥ED

By the Verlinde formula we have

SapSppS—s
Suth = 3 Srbusas = 3 SNl = 3 Sy =oegete
14

seD seD 8,p€D
SapS SapS S S
_Z 3 ﬂpzsévs 5o = Z S 5y = e
Sop So~y
peD 6eD peED
because
Z SoyS—6,p = Z S160-6,uSup = Z S“ré suS, (84)7p =0y
éeD s,ueD 6,neD
Hence

Sat 84S0y = SarSpy



so that

Saﬁ = Z Sa’ys'y,é’ B(QA (a) + qA(B) + qA(,)/) - 0/8)

~yeD

=Y SatpSoye(an(@) +9a(B) + qa(v) — ¢/8)
yED

= e(qa(@) +qa(B) = ¢/8) D Sa+sS0 e(aa (7))

yeD
= e(qa(a) +qa(B) — ¢/8)Sarpoe(—qala+ B) +¢/8)
= e(=ba(a, B)) Satp.0

since

Sa0 = Y SarSyoe(aala) + aa(7) = ¢/8) = e(ga(@) = ¢/8) Y SarSyo e(ga (7)) -

yeD yeD
This finishes the proof. O

Theorem 3.4

Let V be a simple, rational, Cy-cofinite, self-contragredient vertex operator algebra of CF'T-
type. Suppose V has group-like fusion with fusion group D and the modules W have positive
conformal weights for av # 0. Then

Sap = —— e(~ba(a, B)).

V1Dl

Tap = e(ga(a) — c/24)d4p.
Moreover qa is a quadratic form on D and ba the associated bilinear form.

Proof: The formula for S follows from the previous two results. The relation SoySgy = Sa+8,vSoy
together with Proposition 3.3 shows that ba is bilinear. We have ga(0) = 0 mod 1 and
ga(a) = ga(—a) for all @« € D. This implies that ga is a quadratic form with associated
bilinear form ba . O

Proposition 3.5
Suppose V' has group-like fusion with fusion-group D and the modules W< have positive confor-
mal weights for o # 0. Then the bilinear form ba is non-degenerate.

Proof: We have
1
ba—p = (8)ap = Z SarSpy = Bl Z e(=ba(a+ B,7))
yeD yeD

so that

1
5040 = ﬁ Z 6(7bA(a7Py)) :

This implies the statement. (I

It follows that D is a finite abelian group with a quadratic form ga : D — Q/Z such that
the corresponding bilinear form is non-degenerate, i.e. a discriminant form [N]. The group



algebra C[D] carries two representations of the metaplectic group Mpy(Z), one coming from
Zhu’s theorem and the other being the Weil representation [B3], [NRS]. These representations
commute and the explicit formulas for S and T show that they are related by a character. As a
consequence we have

Theorem 3.6

Let V be a simple, rational, Cs-cofinite, self-contragredient vertex operator algebra of CFT-
type. Suppose V' has group-like fusion with fusion group D and the modules W have positive
conformal weights for o # 0. Then the central charge ¢ of V' is a integer and D is a discriminant

form under ga of signature
sign(D) = ¢ mod 8.

4 Abelian intertwining algebras

In this section we show that the irreducible modules of a rational vertex operator algebra V'
satisfying certain regularity conditions and with group-like fusion form an abelian intertwining
algebra whose quadratic form is determined by the conformal weights. Restricting the sum to
an isotropic subgroup gives a vertex operator algebra extending V.

Let D be a finite abelian group and (F,2) a normalised abelian 3-cocycle on D with coeffi-
cients in C*, i.e. the maps

F:DxDxD—C*
Q:DxD—C*

satisfy
F(a, B,7)F(a, B,y + 0) ' Fla, B+7,8)F(a+ B,7,6) " F(B,7,0) =1
F(a,8,7) 7' Qa, B+)F(B,7,0) " = Qa, B)F(B,a,7) ' Qa,)
F(a, 8,7)Qa+ B,7)F (v, o, ) = QB,v)F (e, v, B)a, )
and

F(a, 8,0) = F(a,0,7) = F(0,8,7) = 1

Q(a,0) = 9(0,8) =1
for all «, 8,7, € D. Define

B:DxDxD—C*
by

B(a, 8,7) = F(8,a,7) ' Q(a, B)F(a, B,7) .
We also define a quadratic form
qQ - D — Q/Z
by
Qa, a) = e(ga(a))

for all @« € D. We denote the corresponding bilinear form by bg. The level of (F,€) is the
smallest positive integer N such that Ngq(a) =0 mod 1 for all « € D.



An abelian intertwining algebra [DL1] of level N associated to D, F' and {2 is a C-vector space
V with a %Z—grading and a D-grading

V- @ - @
nG%Z aeD
such that
ve= @ vy,
nG%Z
where V¢ =V, NV, equipped with a state-field correspondence
Y : V. = End(V)[[z"N, 2V/N]]
a —Y(a,z)= Z Apz "1

neﬁZ

and with two distinguished vectors 1 € V¥, w € V¥ satisfying the following conditions. For
a,ﬂED,a,beVandne%Z

a VP cVeth ifaev®
a,b =0 for n sufficiently large
Y(a,2)1 € V[[z]] and lin%J Y(a,2)1=a
z—r

Y(a,z)|ys = Z anz "t ifaeV?,
nebq(a,B)+7Z

the Jacobi identity

2! (y - Z>bn(w) 5 (y - Z) Y(a,y)Y (b, 2)c

xT
Z—y bo(a,B) z—y
~ Bl B,) 2" ( ‘ ) 5 ( ) Y(b,2)Y (a,y)e

—X
y _ CU) 7bﬂ(0‘#7)
C

z

= Flag) 8 (120 ) Yv o) (
2
holds for all @ € V, b € V# and ¢ € V7, the operators L,, defined by

Y(w,2) = Z Lyz~ "2
neZ

satisfy

mg—m

g Omtnc

[Lin, Lp) = (m —n)Lppyn +
for some ¢ € C and
Loa =na foracV,,

d
aY(a7 z)=Y(L_1a,2).



The cohomology class of (F, ) in H3, (G, C*) is determined by gq (cf. [ML], Theorem 3 and
[DL1], Remark 12.22). We also remark that rescaling the intertwining operators amounts to
changing (F,2) by a coboundary ([DL1], Remark 12.23).

A consequence of the Jacobi identity is the skew-symmetry formula

1 )
Y(a,2)b= ———e*F1Y (b, e ™ 2)a
(a,2) 2G.a) ( )

forae Ve, be VP,

It is well-known that the vertex operator algebra of a positive definite, even lattice together
with its irreducible modules forms an abelian intertwining algebra where gq is determined by
the conformal weights ([DL1], Theorem 12.24). More generally we have

Theorem 4.1

Let V' be a simple, rational, Cy-cofinite, self-contragredient vertex operator algebra of CFT-type.
Assume that V' has group-like fusion, i.e. the fusion algebra of V is C[D] for some finite abelian
group D, and that the irreducible V-modules W<, o # 0 have positive conformal weights. Then

W= we

aeD

can be given the structure of an abelian intertwining algebra with normalised abelian 3-cocycle
(F, Q) such that

qo = —4qa -

Proof: Choosing non-trivial intertwining operators between the modules W< of V' the Jacobi
identity defines maps F and Q. Huang has shown that (F,2) is an abelian 3-cocycle on D
(cf. [H2], Theorem 3.7 and [H1]). Any abelian 3-cocycle is cohomologous to a normalised one
so that W is an abelian intertwining algebra. Furthermore the modules of V' form a modular
tensor category with the twist morphisms 6, : W — W% on the irreducible modules given by
0o = e(ga(@))idwa (cf. [H4]). Since V has group-like fusion the braiding isomorphism

Cap : WORWE - WPRW
is for &« = (3 given by
Ca,a = €(qa(a))e(2qa(a)) idwemwe -

We have
tI'Wa HQ = trwagwu Co,x

(cf. Proposition 2.32 in [DGNO]) so that

e(ga (@) trwe idwa = e(ga(a))e(24a () trype idyae .

The trace
da = tI‘Wa ldWa

is the categorical quantum dimension of W<. For Huang’s construction under the positivity
assumption on the conformal weights it coincides with the definition of the quantum dimension
as the limit of a certain character ratio so that d, = 1 if W is a simple current (cf. [DLN],
Proposition 3.11 and [DJX], Proposition 4.17). Then the above identity implies

e(go(@)) = e(—ga(a))

10



for all & € D. This proves the theorem. (I

This result is also stated as Theorem 2.7 in [HS]. In the above proof we fill a gap pointed out
by S. Carnahan. The theorem can also be derived from Bantay’s formula for the Frobenius-Schur
indicator and the fact that the theorem holds for abelian intertwining algebras associated with
positive definite, even lattices.

An explicit construction of the 3-cocycle (F,() in the lattice case is described in [DL1],
Theorem 12.24. Since every discriminant form can be realised as dual quotient of a positive
definite, even lattice this also covers the general case.

As an application we obtain

Theorem 4.2

Let V be a simple, rational, Cy-cofinite, self-contragredient vertex operator algebra of CF'T-
type with group-like fusion and fusion group D. Suppose that the irreducible V-modules W,
a € D\ {0} have positive conformal weights. Let H be an isotropic subgroup of D with respect

to ga. Then
Wi =g w
yeH

admits the structure of a simple, rational, Cy-cofinite, self-contragredient vertex operator algebra
of CFT-type extending the vertex operator algebra structure on V. If H = H+ then WH is
holomorphic.

Proof: Suppose galg = galg = 0 mod 1. Then (F|g,Q|g) is cohomologous to the trivial 3-
cocycle in Hgb(H ,C*). Hence the abelian intertwining algebra W¥# admits the structure of a
vertex operator algebra upon rescaling of the intertwining operators. The irreducible modules of

WH are given by
WH,’y — @ W
acy+H

where v ranges over H+/H (cf. [Y], Theorems 3.2 and 3.3). O

5 Orbifolds

Let G = (g) be a finite, cyclic group of order n acting on a holomorphic vertex operator algebra
V. We show that the fixed-point subalgebra V¢ has group-like fusion and that the fusion group
is a central extension of Z,, by Z, whose isomorphism type is fixed by the conformal weight of
the twisted module V(g). We also determine the S-matrix and describe the level of the trace
functions. If the twisted modules V' (¢g7) have positive conformal weights for j # 0 then the direct
sum of the irreducible V&-modules is an abelian intertwining algebra and the restriction of the
sum to an isotropic subgroup with respect to the conformal weights is a vertex operator algebra
extending V¢. Our approach is inspired by Miyamoto’s theory of Zsz-orbifolds [M2].

Let V be a simple, rational, Cs-cofinite, holomorphic vertex operator algebra of CFT-type
and G = (g) a finite, cyclic group of order n acting by automorphisms on V. Then we have (cf.
[CM], [M3])

Theorem 5.1

The fixed-point subalgebra V& is a simple, rational, Cy-cofinite, self-contragredient vertex op-
erator algebra of CFT-type. Every irreducible V&-module is isomorphic to a V-submodule of
the irreducible g'-twisted V-module V (g*) for some i.

11



Recall that for each h € G there is a representation ¢, : G — Autc(V (h)) of G on the vector
space V (h) such that ¢ (k)Yy ) (v, 2)on(k)~1 = Yy () (kv, z) for all k € G and v € V and these
representations are unique up to multiplication by an n-th root of unity. If h is the identity we
can and will assume that ¢ (k) = k for all k € G. We will often write ¢; for ¢4:. We denote the
eigenspace of ¢;(g) in V(g") with eigenvalue e(j/n) = e?™/™ by W) ie.

W) = {v e V(g') | gi(g)v = e(j/n)v}.
The twisted trace functions T'(v, 4, j, 7) transform under S as

T(Ua i7j7 ST) = T(U7 i)ja _1/T) = th[v] Ai,jT(Umja _i7 T)

where the \; ; = (i, j,S) are complex numbers depending only on 1, j.
Combining Theorem 5.1 with Theorem 2 of [MT] we obtain

Theorem 5.2
The fixed-point subalgebra V& has exactly n? distinct irreducible modules up to isomorphism,
the eigenspaces W ("9,

We describe the contragredient module W' of W),

Proposition 5.3
We have
WD o (=i —5)

for some function « : Z,, — Z, satisfying a(i) = a(—i) and «(0) = 0.

Proof: Let W be an irreducible twisted or untwisted V-module and let ¢y : G — Autc(W)
denote the action of G on the vector space W such that

Yiv (gv,2) = dw (9)Yw (v, 2)dw (9) ™"

for all g € G. The definition of the contragredient module implies

Y (gv,2) = ¢ (9) " Yiv (v, 2) i (9)

where @1, : G — Autc(W') denotes the graded dual representation of ¢y . Hence by uniqueness
the representation ¢y is proportional to the inverse of ¢f;,. From V(g")’ = V(¢g~") we obtain

EB W) o EB W (i)

JE€ELn JE€ELn

so that W) = W) for some j/ € Z,. Write ¢_; = e(a(i)/n)d, " for some a(i) € Z,.
The subspace W) of V(g?) is the eigenspace of ¢;(g) with eigenvalue e(j/n). The subspace
W) o (=id") of V(g")" = V(g™") is the eigenspace of ¢.(g) = e(a(i)/n)¢;(g) with the
same eigenvalue e(j/n). Hence e(j/n) = e(a(i)/n)e(—j’/n) so that

Wwd) =y (—ia)—i)

Now W” = W implies j = a(—i) — (a(i) — j) and a(i) = a(—i). With ¢o(g) = g we have
W0 = V& 50 that a(0) = 0. O

We determine the fusion algebra V(V) of V.
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Proposition 5.4
The S-matrix of V& is given by

Lo+ gR) )i

n

S(i.3). (k1)
Proof: We have
T(v,i,j,7) = try (g o(v)di(g”)g 0~/

= Z try e o(v)e(jk/n)groe/* = Z e(jk/n) Ty i (v, T)

k€EZn kEZn
so that .
Ty i ) = - —lj 7.7 )
o (v,7) = > e(=lj/m)T(v,i,1,7)
IEZy,

and

1

T _1 . ,
Wi (v, ST) - Z e(—jk/n)T(v,i,k,ST)
keZn
1
== Z e(—jk/n)TWt[”])\LkT(v,k, —i,7)
" ez,
1
= e(—(jk + i) /n)T "IN Ty e (v, 7)

=
by twisted modular invariance. O
Proposition 5.5
The constants \; ; satisfy

AijAi—j = e(ia(j)/n)
)\071' =1

for alli,j € Z,.

Proof: The first equation follows from the symmetry of the S-matrix. S? is a permutation matrix
sending the index (i, j) to the index of the contragredient module (—i, —j + «(i)), i.e.

(82)(i,j)7(l,m) = 0i,—10j,—m-+a(i) -
By the previous proposition we have

2
(S dym) = Y Sig)(ab)Sab).tm)

a,b€Zy,
1
= — Y e(—(ib+ja+ am+bl)/n)AiaAas
a,bELy,
1 ‘ .
=3 Z e(—a(j +m)/n)NiaAa e(=b(i+1)/n)
€Ly, bEZm
1
=01 — —a(J Aiaa
o Y el=a(j +m)/n)Xiadas

a€ly

13



so that
1

~ > e(=ali+m)/m)Xiada i = 8ja(i)-m
a€ly
and 1
E Z e(_ab/n))\i,a)\a,fi = 5b7m,o¢(i)7m

a€Zln

Multiplying with e(db/n) and summing over b gives the second equation of the proposition. This
equation implies )\(2)71- = 1. In order to prove the last equation we show that A\g; € R>o. We have
T(1,0,4,—1/7) = Xo;T(1,,0,7) so that

D e((=1/7)(k = ¢/24)) try, g = No > ellk—c/24)m) dim(V (¢7))
k=0 kEp;+(1/n)Z0

where p; € Q is the conformal weight of V(g7) and ¢ € Q the central charge of V. Specialising
to 7 =it with ¢t € Ry we obtain

1 & , ,
r e—27rk/t try, g] — 627rc(t—1/t)/24 Z e—27rkt dim(V(gJ)k) c Rzo-
07 k=0 k€p;+(1/n)Zz0

The limit of the left hand side for ¢ — 0 exists and is 1/Xg ; because V' is of CFT-type. Hence
Ao,j is a non-negative real number. 0

Proposition 5.6 N
The irreducible V&-modules W (3) are simple currents.

Proof: As before let (i,7)" denote the index of the contragredient module of W) Then

S(i,5), (k1) S(ig) (k1) = S0, (kD) S(—i,0(8) =), (kD)

%6(7(1@]‘ + il)/n))\i,k%(i(f(k(a(i) — )+ (=)D /n)A_ik

1 , 1
= ﬁe(fka(z)/n))\@k)\_i,k = ﬁ

by Proposition 5.5. We compute the fusion coefficients with the Verlinde formula

NEB Y S(i.9).(a:0)S(.3)' (a:5)S(a,b) (LK)

(5,5)(5,5)" = S(0,0),(a.b)

_ 1 Z S(ab),(1,k)’ 1 Z S(ab),(~la(l)—k)
n? S0,0),(ap) N? S(0,0),(a,b)

a,b€EZy, a,b€Zn
1 e(—((=Db+a(a(l) — k))/n)Aa.—

S (=((=) (Ao(a) ))/1)Aa,~1

a,b€EZy, ’
_ % 3 elalk — a(®)/m)Aa—1 Y e(lb/n)

A€EZLn bEZy,
- 5170% > ela(k — a(0))/n)Aap = 6l,o% > elak/n) = 61,0010

a€Zy, €Ly,

14



This means
W d) ) W (83) 2 7 (0,0)

for all i, j € Z,. By Corollary 1 in [LY] this implies that all W (/) are simple currents. O

Hence the fusion algebra of V& is the group algebra C[D] of a finite abelian group D of order
n?. Propositions 5.4 and 5.5 show

1
8(010)7(010) = 8(00),(7,,]) = ﬁ .

Since the positivity assumption in the results of Section 3 only enters through Proposition 3.2
this implies that all results of Section 3 hold for V¢ without the assumption on the conformal
weights. In particular the reduction of the conformal weights modulo 1 defines a quadratic form
ga on D whose associated bilinear form ba is non-degenerate.

Proposition 5.7
The fusion product takes the form

W) g (kD o Jy7 ik, +H+e(ik))

for some symmetric, normalised 2-cocycle ¢ : Z, X Ly, — Z,, satisfying

)\i,a)\laa

e(—ac(i,k)/n) = Nre

for all i,k,a € Zy,.
Proof: Let W) QW (kD o 1y7(s:t)  Then
S(i.)(a0) S(hud) (ah) = %Sw,t),(a,b)
for all a,b € Z,, as shown in the proof of Proposition 3.3. This implies
Ai,aMe,a/As,a = e(—(sb+ta)/n)e((ib+ ja)/n)e((kb+la)/n) .
Taking a = 0 we obtain s =i + k mod n because A; o = 1. For b = 0 we get
XiaMka/Nitka =€((F+1—1)a/n).

This shows that ¢t — j — | depends only on ¢ and k and we define ¢(i,k) =t — j — . The associa-
tivity of the fusion algebra V(V¢) implies that ¢ : Z, x Z, — Z, is a 2-cocycle. This cocycle is
symmetric since V(V¢) is commutative and normalised because Ao = 1. (]

The 2-cocycle c is related to the map a by

a(i) +c(i,—i) =0 mod n.
The maps Z,, — D, j — (0,j) and D — Z,, (i,j) — i give an exact sequence

0—-%,—D—7,—0,

15



i.e. D is a central extension of Z, by Z,. This extension is determined up to isomorphism by
the cohomology class of the 2-cocycle ¢ in H?(Zy,Zy,). The group H?*(Z,,,Zy) is isomorphic to
Z,, and the 2-cocycle ¢4 corresponding to d in Z,, is represented by

ealingy = O ifintin<n
D=V d iyt e >0

where i,, denotes the representative of ¢ in {0,...,n — 1}. Since ¢ is normalised its cohomology
class d can be determined by

d=c(1,1)+¢(1,2)+...+¢(l,n—1) mod n.
We write p; for the conformal weight p(V (g%)) of the irreducible g'-twisted V-module V (g*).

Proposition 5.8
We can choose the representation ¢; of G on V(g') such that

¢i(g™") = e((i/(i.n) "} (Lo — p1)
where (i/(i,n))~! denotes the inverse of i/(i,n) modulo n/(i,n).

Proof: First we consider the case (i,n) = 1. The module W = V(g%) has Lo-decomposition

W= @WPiJrj/" :
JEZ
For k € Z,, define

Wi= @B Wotim-
JEZ
j=k mod n

Let v € V be a homogeneous eigenvector of g with eigenvalue e(r/n), i.e. gv = e(r/n)v. Then
by the definition of g’-twisted modules the modes v; of Yiy (v, 2) vanish unless t € —ir/n+Z and
increase the Lg-eigenvalue by wt(v) — (t + 1) € ir/n + Z. Hence v;Wj, C W14 Define the map

£(g’) = e(i™"jLo)

where i~1 denotes the inverse of i modulo n. Then for homogeneous w € W and t € —ir/n+7Z
we have (¢7v),w = e(jr/n)vsw and

£(g")uié(g") ™ w = e(i™"j Lo)vse(—i~ ' jLo)w = e(i™"j Lo)vswe(—i~"j wi(w))
= e(i"Yj(wt(w) + ir/n))vawe(—i~j wt(w)) = e(jr/n)viw
so that
&(9")Yw (v, 2)€(¢7) " w = Yiw (g v, 2)w.
The same relation holds for
¢(¢7) = e(i™j(Lo — pi)) -
The shift by p; implies that ¢ defines a group homomorphism ¢ : G — Autc(W). Hence by

uniqueness ¢ is up to a constant equal to ¢; or put differently we can choose ¢; as ¢. This
finishes the proof for (i,n) = 1. The general case follows by replacing g with (™). O

16



Proposition 5.9
Choose the representation ¢; of G on V(g') such that

(g™ = e((i/(i,n)) " (Lo = pi)) -
Then the irreducible V& -modules W (") have conformal weights
p(W@)) = p; +ij/n mod 1

and the function « satisfies
ia(i) =0 mod n.

Proof: The first statement is easy to see. For the second statement about the map a observe
that p; = p—;. (]

If we choose the maps ¢; as in the proposition then the quadratic form ga on D is given by
qa((i,4)) = pi +ij/n mod 1
and
il + jk " (¢ + k)e(i, k)
n

mod 1.

ba((4,5), (k1)) = pitk — pi — px +
We will use this choice in the proofs of the next 3 results.

Proposition 5.10
The cohomology class of the central extension defined by the 2-cocycle c is given by

d=2n%p; modn.
Proof: We have ga((¢,7)) = pi +1j/n mod 1 so that
Aii = ne(2ij /n)S 5, (i) = €(2ig/n)e(=2qa((i,5))) = e(—=2p:)
by Proposition 5.4 and Theorem 3.4. It follows that

e(d/n) =e((c(1,1)+¢(1,2) +... 4+ ¢(1,n —1))/n)
_ a1 Asi g _ An
AMaAd A2 Aadem1a AR

) ) s

because A\, 1 = Ao = 1. O

Since D has order n? the bilinear form b takes its values in (1/n?)Z/Z and the associated
quadratic form ga in (1/2n?)Z/Z. We show that the values of ga actually lie in (1/n?)Z/Z.

Theorem 5.11
The unique irreducible g-twisted V-module V' (g) has conformal weight

p1 € (l/nz)Z

and more generally V (g*) has conformal weight p; € ((n,i)?/n?)Z.

17



Proof: Tt is sufficient to prove the statement for ¢ = 1. We have

n?p1 =n%qa((1,7)) = ga(n(1,5)) = qa((0,k)) mod 1
for some k € Z,,. But this last value is 0 mod 1. This proves the theorem. O

This result generalises Theorem 1.6 (i) in [DLM]. The value of p; determines the group
structure of D. We will see that it also determines the quadratic form ga up to isomorphism.
We define the type t € Z,, of g by

t = n2p1 mod n .

Then d = 2t mod n. Let N be the smallest positive multiple of n such that Np; = 0 mod 1,
i.e. N =n?/(t,n). Then N is the level of ga.

Proposition 5.12
The conformal weights p; satisfy

Proof: We have

i2p1 = i%qa((1,0)) = qa(i(1,0)) = qa((i,c(1,1) + ... + (1,7 — 1))

n i(c(1,1) + n—l— c(l,i—1))

so that

i’p1 = p; mod

(i,n)

On the other hand i2p; = i%t/n? mod (i,n)/n. This proves the proposition. O

The 2-cocycle ¢ is cohomologous to c¢g with d = 2t mod n. Changing the representations ¢;
amounts to shifting ¢ by a coboundary.
Recall that 4,, denotes the representative of ¢ € Z,, in {0,...,n — 1}.

Theorem 5.13

Let V' be a simple, rational, Cy-cofinite, holomorphic vertex operator algebra of CFT-type and
G = (g) a finite, cyclic group of automorphisms of V' of order n. Suppose g has type t mod n
and let d = 2t mod n. Then we can define the maps ¢; such that

i) W0 W kD o2 7 itk +itea(ik)

- i 2t
ii) W(9) has conformal weight qa((i, 7)) = T

. 2 mod 1

i) W) o py(—imi—ea(i—i)

(G4 JR) )N = (il 4 ) m)e(—2tihn /),

n

v) Sij),k0)
ie N = e(—2tyink,/n?)

for i, j, k,l € Z,,.
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Proof: We prove the statement for ¢ = 0 mod n. The general case is similar. Then p; = 0
mod (i,n)/n. This implies that we can choose the representations ¢; of G on V(g*) such that

¢i(g""™) = e((i/(i,n)) "' Lo)
(cf. the proof of Proposition 5.8). Then
0a((6:)) = p(W) = mod 1
and

Aiyi = ne(2i7 /)8 j) i) = e(2ij/n)e(—=2qa((i,5))) = 1
(cf. the proof of Proposition 5.10). The equation

)\i,a)\k,a
>\i+k,a

= e(—ac(i, k)/n)
in Proposition 5.7 implies that the A; ; are n-th roots of unity. We define a map ¢ : Z,, — Z,, by
Ari = e(=p(i)/n).
In particular ¢(0) = ¢(1) = 0 mod n. Then
c(i, k) = @(i) + (k) — (i + k),

i.e. ¢ is a 2-coboundary arising from ¢. We show that ip(i) = 0 mod n. The above equation
implies
Ait1g = e(=p(3)/n)e(i (@) = (i +1))/n)Ai ;
so that by induction
Aij = e(=(ip(d) + je(i)/n) .

Hence \; ; = )\5)1)\;,1. Define & = A| ; = e(—igp(i)/n). Then & = \;; = 1 so that & = £1. Now
Aige = ne((il + jk)/n)SG g,y = e((il + jk) /n)e(=ba((E 7). (k,1)))
=e(—(i+k)c(i, k)/n) = N itk Ak ith/Nitkithk = NijitkNe,itk

implies £;&; = &4; so that & = 1 for all ¢ because §; = A1 = 1. We define representations
¢; = e(p(i)/n)d; and the corresponding eigenspaces

WD) = (v e V(g') | i(g)v = e(i/n)v} = W2
Then

Wd) W kD = Wi—e@) g kl=ek) o py7litk.g+ite(ik)—e (i) —e(k))

— wlitkgti—e(it+k)) _ py7(itkj+1)

and . . . ..
(WD) = pwti=ety = U =2@) gy
n n
because i@(i) = 0 mod n. Furthermore

Wi = lid—e@) o ppr(—ia()=i+e@) _ ppr(—i—i—e(~D) _ J(=i—i)
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because a(i) = —c(i, —i) = —¢(i) — ¢(—i) mod n. Finally

- 1 o . 1 . .
S(ig), (k) = S(ii—p(0)), (ko= (k) = 56(—%((17] — (i), (k1 = o(k))) = 56(—(21 +jk)/n).

This finishes the proof. O

We emphasise that the maps ¢; chosen in the theorem are not necessarily the same as in
Proposition 5.8.

The fusion group D is given as a set by D = Z,, x Z,, with multiplication (i,7) + (k,l) =
(i +k,j+1+cq(i,k)). This group is isomorphic to the group Zy2 /5,4y X Zn,a)-

Proposition 5.14
The discriminant form D is isomorphic to the discriminant form of the even lattice with Gram

matrix (7?” ’5)

For homogeneous v € V& the functions Tyw .5 (v, 7) transform under Zhu’s representation
pyve. Up to a character this representation is the Weil representation pp. Since V' is holomorphic
the central charge ¢ of V is a positive integer multiple of 8. In particular c is even so that the
Weil representation pp is a representation of SLy(Z) and

pve (M) = xo(M)pp (M)
for all M € SLy(Z). The character x. is defined by
Xe(S) =e(c/8) =1 and xc(T) = e(—c/24).
The Weil representation is trivial on I'(N) where N is the level of D so that we obtain

Theorem 5.15

Let V' be a simple, rational, Cy-cofinite, holomorphic vertex operator algebra of CFT-type and
central charge c. Let G = (g) be a finite, cyclic group of automorphisms of V' of order n. Suppose
the fusion group D of V¢ has level N under qa. Then the trace functions Ty, .5 (v, 7) and the
twisted traces T (v, 1, j, T) are modular forms of weight wt[v] for a congruence subgroup of SLy(Z)
of level N if 24|c and level lem(3, N) otherwise.

This result generalises Theorem 1.6 (ii) in [DLM].
Combining our knowledge of the fusion algebra of V& with the results about abelian inter-
twining algebras we can construct new holomorphic vertex operator algebras.

Theorem 5.16

Let V' be a simple, rational, C-cofinite, holomorphic vertex operator algebra of CFT-type and
central charge c. Let G = (g) be a finite, cyclic group of automorphisms of V' of order n. Suppose
the modules W9, (i, j) # (0,0) of VC have positive conformal weights. Then the direct sum

W = @ W (i) — @ WY
i,5€Ln yeD

has the structure of an abelian intertwining algebra extending the vertex operator algebra struc-
ture of V¢ with associated discriminant form (D, —qa). Let H be an isotropic subgroup of D.

Then
wH =@ w

YEH
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admits the structure of a simple, rational, Cy-cofinite, self-contragredient vertex operator algebra
of CET-type and central charge c extending the vertex operator algebra structure of V&. If
H = H* then WH is holomorphic.

We make some comments on the theorem.

We call W the orbifold of V' with respect to G and H and denote it by VorP(GH) — Any
isotropic subgroup H of D of order n satisfies H = H* .

If g is of type t # 0 mod n then W can already be obtained from some lower order auto-
morphism with ¢t =0 mod n.

The case when g is of type t = 0 mod n is particularly nice. Then it is possible to choose
the representations ¢; such that

i) W) W kD oy itk
ii) W) has conformal weight ga((4,75)) = ij/n mod 1
iii) W) o py(=i—d)
: 1 . . .
iv) Syt = ﬁe(—(jk +il)/n), ie. o(i,k,S) =N =1

V) 'T(i)j))(;g,l) = e(zg/n — 6/24)5(i7j)7(k,l)a ie. U(i, k,T) = 6(—0/24)

for i,j,k,1 € Z,. This means that the fusion algebra of V¢ is the group algebra of the abelian
group Zy, X Z, with quadratic form

4a((i.7)) = = mod 1.

The direct sum of irreducible V' %-modules
W = @ W ()
1,J€Ln
has the structure of an abelian intertwining algebra and the sum

wH = @ W (@.0)
i€y,

over the maximal isotropic subgroup H = {(¢,0)|7 € Z, } is a simple, rational, Cs-cofinite,
holomorphic vertex operator algebra of CFT-type which extends the vertex operator algebra
structure on V. In this case we simply write Vo) for the orbifold W

We can define an automorphism k of V(@) of order n by setting kv = e(i/n)v for v € W0,
Let K be the cyclic group generated by k. Then (VOP(E)E — 1 (©0.0) — V& and the twisted
modules of V°™P(©) corresponding to k7 are given by VOrb(@) (ki) = Dicz, W(7) | Hence

(Vorb(G))orb(K) _ @ w0 — v,

JE€Ln

i.e. there is an inverse orbifold which gives back V.
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6 Schellekens’ list

In this section we show that Schellekens’ classification of V;-structures of meromorphic conformal
field theories of central charge 24 [S] is a rigorous theorem on vertex operator algebras.

Let g be a finite-dimensional simple Lie algebra over C and h a Cartan subalgebra of g. We
fix a system ®* of positive roots. Let 6 be the corresponding highest root and p the Weyl vector,
ie. p= %Ea€¢+ «. We normalise the non-degenerate, invariant, symmetric bilinear form on
g such that (6,6) = 2. This form is related to the Killing form (, )x on g by (,) = 55 (, )k
where h" is the dual Coxeter number of g (cf. [K], section 6). Note that dim(g) > (h"/2)2. The
affine Lie algebra § associated to g is defined as

a=g®C[t,t '|oCK
where K is central and
[a(m), b(n)] = [a, b}(m + 1) + Mmbpm4n(a, b) K
with a(m) = a ®t™. Define g, = g® tC[t], g_ = g®t 'C[t!] and identify g with g ® 1. Then
0=0,09-0gdCK.

Let V be a g-module and k£ € C. We can extend the action of g to an action of g ® g ® CK by
letting g4+ act trivially and K as kId. Then we form the induced g-module

Vi = U(8) @u (g, agack) V -

Applied to an irreducible highest-weight module L(\) of g we obtain the g-module I:(A) , which
we denote by My x. If k # —hY then My o is a vertex operator algebra of central charge

kdim(g)

k+hY

The graded pieces of Mj, g are g-modules, and the lowest few are
Mpo=Cogao(goA*(g)®...

Let Ji » be the maximal proper g-submodule of My, x. Then the quotient Ly y = My x/Jg x is
an irreducible g-module. Suppose k is a positive integer. Then J o is generated by eg(—1)F11
where ey is any non-zero element in the root space gy of g. By the PBW theorem the lowest
graded piece of Jj o has Lo-degree k + 1 and is given by U(g)eg(—1)kT11. Since (Jxo)k+1 is a
finite-dimensional g-module with highest weight vector eg(—1)*+11 of weight (k 4 1)@ it follows
that

(Jr,0)k+1 = L((k+1)0)

as a g-module. Furthermore Ly, ¢ is a rational vertex operator algebra whose irreducible modules
are the spaces Ly » where A € h* ranges over the integrable weights satisfying (X,6) < k ([FZ],
Theorem 3.1.3). The irreducible Ly g-module Ly ) has conformal weight

(M A+2p)
2(k+ hV)

([K], Corollary 12.8) and its piece of lowest degree is an irreducible g-module isomorphic to L())
because it contains a highest weight vector of weight .
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Let V be a simple, rational, Cs-cofinite, self-contragredient vertex operator algebra of CFT-
type. Then V carries a unique symmetric, invariant, bilinear form (, ) satisfying (1,1) = —1
where 1 denotes the vacuum of V' and the subspace Vi of Lg-degree 1 is a Lie algebra under
[a,b] = apb. The bilinear form (, ) is non-degenerate on V' and on V;.

Now we assume in addition that V' is holomorphic and of central charge 24. Then V7 is either
trivial or abelian of dimension 24 or semisimple (cf. [S] and [DM2]). In the second case V is
isomorphic to the vertex algebra of the Leech lattice. We consider the third case where V; is a
semisimple Lie algebra g. Then the restriction of (, ) to a simple ideal g; of g satisfies

<7>:ki(v)

where (, ) is the normalised bilinear form on g; and k; a positive integer [DM3]. We indicate
these integers by writing
9= 01,k b...P In.k, -

We choose a Cartan subalgebra h of g and decompose b accordingly as

hb=011 @...Obnk, -

The map a(m) — a,, defines a representation of g;, on V of level k;. The vertex operator
subalgebra of V' generated by Vi is isomorphic to

Lk1,0 ®... Lkn,O

and the Virasoro elements of both vertex operator algebras coincide. Since Ly, 0 ® ... ® Ly, o
is rational and the Ly-eigenspaces of V' are finite-dimensional, V' decomposes into finitely many
irreducible Ly, 0 ® ... ® Ly, o-modules

V = @ M\, An)Lkl,Al ®"'®Lkn,>\n'
(A1yeesAn)

The sum extends over the integrable weights A; of g, x, satisfying (\;,0;) < k; where §; is the
highest root of g; ;. The character chy : H x h — C defined by

chy (7, 2) = try e?mizglo—1

is holomorphic on H x § and transforms as a Jacobi form of weight 0 and index 1 (cf. [G], section
2, [M1] and [KM], Theorem 2). In particular it satisfies

atr+b 2z . 5 A{z,2) ¢ (r.2)
- =ex i - T
xv ct+d er+d P 2 er+d XVAT:

for all (24) € SLy(Z). A finite-dimensional g-module M decomposes into weight spaces and we
define for z € h the function

Sulz)= Y muu(z)’

peIl(M)
where II1(M) denotes the set of weights of M and m,, the multiplicity of u. For example S$,(z) =
dim(M).
Theorem 6.1
We have

Sy (z) = %(dim(vl) —24)(z, 2)
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and for V5

Sy, () = 196884

Sy, () = 32808(z,z) — 2dim(Vy)(z, 2)

Sy, (2) = 240 Sy, (2) + 15264(z, z)* — dim(V;)(z, 2)*

sz (z) = —504SY, (2) + 900 Sy, (2)(z, 2) + 11160(z, z)* — 15 dim(V1)(z, z)*
Sy, (z) = 480 S}, (2) — 235257, (2)(z, ) + 2520 Sy, (2)(z, 2)* + 10920(z, z)*

— 35dim(V71)(z, 2)*
Si(z) = — 26457 (z) + 2700 Sy, (2)(z, z) — 7560 Sy, (2)(z, 2)*
1
+ 6300 Sy, (2)(z, 2)* 4+ 13230(z, 2)° — % dim(Vy)(z, z)°

and

48 Sy (2) — 364 517 (2)(z, z) = —1152 Sy (=)
+ 288288 510 (2)(z, 2)? — 2162160 S}, (2)(z, z)* + 5045040 S}, (2)(z, 2)*
— 3783780 5y, (2)(z, z)° — 5405400(z, 2)" + 45045 dim(V;)(z, 2)".

Proof: Let

P(7,2) = exp ((2m)2 <22’4'Z> E (7)> A(7) chy (7, 2)
where -
Ar)=q [0 -gm*
is Dedekind’s A-function and

o0
T):1—24Zam
m=1

the Eisenstein series of weight 2. Since A is a modular form of weight 12 and Es transforms as

ar +b B 9 12
B, (cr—!—d) = Ey(7)(cT + d) +%c(07+d)

for (¢ %) € SLy(Z) we have

P(aT—I—b z

arre )2 d)'2P(7, 2) .
CT+d’CT+d) (er +d)"P(r,2)

This implies that the m-th coefficient in the Taylor expansion of P in z is a modular form for
SLa(Z) of weight 12 + m. Using

chy(r,2) =q ' + Z mae?™ ) 4 g Z mae?™MNE) 4

AETI(V}) AETI(Va)
= @2m)™ (2mi)™
:ql+z ] SVI(Z)JFQZ il St (2) +
m=0 : m=0
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we find that the coefficient of degree 2 in the Taylor expansion of P(7,z2) is (27i)? times

<22’j> +q (;sa (z) — %(dim(vl) - 48))

1 63
4 <2532(z) — 1287, (2) — dim(V4 )<Z24> + 2dim(V3)(z, z) — 2(2,2)) + o
Since the space of modular forms for SLs(Z) of weight 14 is spanned by

Era(1) = 1 — 24q — 196632¢> — 38263776¢° + . ..

this implies

(z,2) = %s@l (2) — <22’:> (dim(V;) — 48)

which gives the first equation in the theorem. The second equation is clear. Comparing the co-
efficients at ¢ and ¢ we obtain the third equation of the theorem. Looking at higher orders in
z and using the relations between the coefficients of modular forms we can derive the remaining
relations. |

The following result is well-known (cf. [S], [DM2]).

Corollary 6.2
For each simple component g, , of g we have

hy  dim(g)— 24
ki 24 '
Proof: The first equation of Theorem 6.1 gives
1., 9
15 (dim(g) — 24)(z, 2) = > ulz)
pned
where ® is the root system of g. Restricting z to z; € h; and using
D =) =20 (24, 2)
pned;
we obtain the assertion. O

Now we show how Theorem 6.1 and Corollary 6.2 can be used to classify the possible affine
structures of V.

Proposition 6.3
The equation h} /k; = (dim(g) — 24)/24 has 221 solutions.

Proof: The equation gives the following inequality

n

dim(g Zdlm Gik) 1Z(hv) =3 (dlm ) ZkQ

=1

Since Y | k? > 1 this implies dim(g) < 2352. There is a finite set of semisimple Lie algebras
satisfying this condition and a computer search yields from this set a list of 221 solutions. [
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Let V be as above with V] given by one of the solutions

=01k D..-DOnk,

of hY/k; = (dim(g) — 24)/24. Let k = (k1,...,kn), A= (M,...,A\n) and Lgx = Ly, \, @ ... ®
Li, ., - Then V decomposes as Ly, o-module as

V= @ mxLy
A

where A ranges over the integrable weights of g whose components A; satisfy (A\;,6;) < k;. Since
Vo = C1 and Vi = g, the modules Ly » with A # 0 that appear in the decomposition have
conformal weight at least 2. Hence

Vo = (Lgo)2 ® @mA(Lk,A)Q
X

where the sum extends over the weights A such that L » has conformal weight exactly 2. The
structure of (Ly )2 as g-module is given by

(Lio)2 = (Myo)2 = g ® A*(g)

if k> 2 and
(Lio)2 = (Mr0)2/(Jk0)2 = (8 ® A*(g))/L(26)
with 8 = (61,...,60,) if k =1. If Ly  has conformal weight 2 then

(Lga)2 = L(A).

Hence we can decompose the polynomials S{é as
J o Qd J
S = Slros T 2510
A

Since the polynomials S{ﬁ are also known we can write down the second set of equations in
Theorem 6.1 explicitly. By equating coefficients we obtain a system of linear equations for the
my which, by the existence of V', has a solution in the non-negative integers. We can define
an equivalence relation on the weights of g by identifying weights which become equal after a
permutation of isomorphic components of g. Then the linear system for the m) gives a reduced
system for the multiplicities my) = > pe Mu of the classes [A]. This system still has a solution
in Zzo.

We illustrate this discussion with an example. One of the solutions of the equation b} /k; =
(dim(g) —24)/24 is g = C3 1 A3 ;. We write the weights of Cy = s05(C) as (s1,52) = s1w1 + Sawo
where w; denotes the fundamental weight corresponding to the short root of Cs and ws the
fundamental weight corresponding to the long root of Cy and similarly for Ay 22 sl3(C). The
irreducible module L(u) of C§A3 with highest weight u = ((0,0)%,(0,1)%, (0,0)?) has dimension
dim L(p) = 1*-5%- 1% = 625. It may be verified that the Ly o-module Ly, has conformal weight
2. The other irreducible Ly o-modules Ly » of conformal weight 2 can be obtained by permuting
the first 8 components of p. In particular they all have dimension 625. Since dim(Lg )2 = 4418
the second equation of Theorem 6.1 becomes

625 ka = 192466
A
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where the sum extends over the (i) = 840 permutations of the weight u introduced above. This
equation has no solution in integers so that there is no holomorphic vertex operator algebra of
central charge 24 with V; isomorphic to C§A3.

Theorem 6.4
Let V' be a simple, rational, Cy-cofinite, holomorphic vertex operator algebra of CFT-type and
central charge 24. Then either V1 = 0 or dim(V;) = 24 and V is isomorphic to the lattice vertex

operator algebra of the Leech lattice or V; is one of 69 semisimple Lie algebras described in Table
1 of [S].

Proof: If the Lie algebra V; is non-abelian then it is one of the 221 solutions g of the condition
h Jk; = (dim(g) —24)/24. For each of these cases we obtain from Theorem 6.1 a system of linear
equations on the multiplicities my of the decomposition Vo = (Ly,0)2®ED, ma(Ly,x)2. We reduce
the system by rewriting it as a system on the multiplicities mpyy = > pein Mu of equivalence
classes as described above. These computations are done using the computer algebra system
Magma. For 69 of the Lie algebras g Schellekens [S] gives an explicit candidate decomposition
V =@, maLir(N). We verified in these cases that the multiplicities satisfy the reduced linear
system described above. It remains to eliminate the other g which we do by ruling out the
existence of a solution in my) € Z>o to the corresponding reduced linear system. Since

> mpy dim (L (X)) < 196884
A

and mpy > 0 we have mpy < 196884/ dim(Ly(\)). The whole linear system imposes a possibly
stronger upper bound on each mjy). We use the simplex algorithm implemented in Mathematica
to determine upper bounds for each my) subject to the condition my,) > 0 for all [u] # [A]. For
140 of the g at least one of the upper bounds on the myy) is strictly negative and the case is thus
ruled out. We eliminate a further 4 cases as we did C’§,1A§,1 above by showing that there is no
solution in my) € Z. This leaves 8 cases. From the preceding discussion we have a rational upper
bound on each multiplicity myy. If for some [A] this upper bound is less than 1 then in fact mjy
should vanish, so we augment the system with the equation my = 0. Adding this equation to
the reduced system we can exclude the cases Az 1647 g, A7 gA3 19, AS Ga,12, A3 g and AT ,C3 6.
In the cases A} ;5 and A% we isolate a subset of variables possessing small upper bounds and
assign integer values to these variables within their ranges. All possibilities lead to systems that
have no solution in Q. The only remaining case is A%AA?Q. We supplement the reduced linear
system by additional conditions coming from the equality of multiplicities under orbits by fusion
with a simple current (cf. [S], Section 3). With these extra equations the system is shown not
to possess a solution in m[y) € Z>¢ in the same manner as above. ([l

We remark that the first six of the total seven equations in Theorem 6.1 on V5 are not
sufficient to rule out V; = g = A1%. Only the addition of the seventh equation eliminates this
case.

Furthermore entry 62 in Table 1 of [S] should read Eg2Bs 1.

7 Lattice vertex algebras
In this section we describe some results on lattice vertex algebras and their twisted modules.
Let L be an even lattice and ¢ : L x L — {£1} a 2-cocycle satisfying e(a, a) = (—1)(®)/2

and e(a, B)/e(B,a) = (=1)(®A). Then e(a,0) = £(0,a) = 1, i.e. ¢ is normalised. The twisted
group algebra C[L]. is the algebra with basis {e%|a € L} and products e®e” = ¢(a, B)e*+A.
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Let g € O(L), the orthogonal group of L, and n: L — {£1} a function. Then the map § on
C[L]. defined by §(e®) = n(a)ed® is an automorphism of C[L]. if and only if

na+p)  elgle),9(8))

n(@)n () £(a, B)
for all o, 8 € L. In this case we call § a lift of g.

Proposition 7.1
Let g € O(L) and g1, g2 be two lifts of g with associated functions ny,m2 : L — {£1}. Suppose
11 = n2 on the fixed-point sublattice LY. Then g; and g are conjugate in Aut(C[L].).

Proof: Let f =1—gand M = f(L). Set n = n1/n2. Then 7 is a homomorphism on L which is
trivial on L9. Furthermore for all o, 5 € L with f(«) = f(8) we have n(a) = n(5). We construct
a homomorphism p : L — C* satistying puo f = n as follows. By the elementary divisor theorem
there is a basis (v1,...,v,) of L such that (ajvy,...,amnvy) with m < n and non-zero integers
a; is a basis of M. For i = 1,...,m choose «; € L such that a;v; = f(a;) and define p(v;) € C*
such that p(v;)* = n(ay). For i =m+1,...,n define p(v;) € C* arbitarily. Then extend p to L
by multiplicativity. Note that pu(a)/u(g(a)) = n(a) for all o € L. This implies that the function
h on C[L]. defined by h(e®*) = u(a)e® is an automorphism of C[L]. satisfying hg; = goh. O

Proposition 7.2
Let g € O(L) and suppose i : L — {£1} satisfies the above lifting condition. Then for all

a € "

n(a+ge)+...+¢" @) = n(@)n(g(@))...n(g" (@)
if k is odd and

n(a+g(@)+ ...+ g" (@) = (=)@ n(ayn(g(a)) ... (" (@)
if k is even.
Proof: We have n(a + 8) = n(a)n(B)e(g(a), g(8))/e(a, B) for all a, B € L. This implies
(e +g(a)) = n(@)n(g(a)e(g(@), g° (@) /e(a, g(@)) .
More generally using the 2-cocycle property of e, induction on k shows that
n(a+g(a) + ...+ ¢" () = n(a)n(g(@)) ... n(¢" " (a))
e(gle) + ...+ ¢" @), g" (@) /e(a,g(e) + ...+ ¢* (o).
Hence for all a € LI"
n(a+g(a)+ ...+ (@) = n(@)n(g(@)) ... n(g" " (@) (=1)(@slerttot e,

From this the statement follows easily. ([

There is a lift g of g such that n = 1 on the fixed-point sublattice LY of L. We call such a lift
a standard lift of g.

Proposition 7.3
Suppose g has odd order n and let § be a standard lift of g. Then

7 () = e

for all € L9". In particular g has order n.
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Proof: First suppose that k is odd. Then

3" (e®) = nla)n(g(a))...n(g" " (@)e® =nla+g(a) + ...+ g" (a))e* = e

because a + g(a) + ...+ ¢*"!(a) is in LI and n = 1 on L9. Now suppose that k is even. Then
k+nis odd and e* = gFtm(e®) = §F(§"(e®)) = §*(e®) because § has order n. O

In the same way one shows

Proposition 7.4 .
Suppose g has even order n and let § be a standard lift of g. Then for all o € LY

g () = e

if k is odd and oo
(%) = (-~ @ee

if k is even. In particular § has order n if (o, g™/?(«v)) is even for all o« € L and order 2n otherwise.

Let h = L ® C and h be the Heisenberg algebra corresponding to h. Then the group O(L)
acts on S(h~). The elements of O(L) can be lifted as described above to automorphisms of C[L].
and these liftings act naturally on the vertex algebra Vi, = S(h~) ® C[L]. corresponding to L.
Proposition 7.1 implies that two standard lifts of g € O(L) are conjugate in Aut(Vy).

Now let L be a positive definite even lattice and g € O(L) of order n. Then for even k the
map £ : L — {£1} defined by &(a) = (—1)("79k/2(“)) is a group homomorphism on L9 and we
define the twisted theta function

957Lg’C = Z {(a)g” /2.

acLs®
Let § be a standard lift of g. We describe the trace of §* on V.

Proposition 7.5
Suppose n is odd. Then
0 T
try, gquofc/zz; _ Lg’“( )
gk (T>
for all k. If n is even then

0, (1)
try, §Fqloc/24 = ‘Lo
‘ Mgk (T)

for odd k and

[’“()

~ —c , LY

try, §Fgloe/2t 6énk( )
g9

for even k. Here ngx denotes the eta-product corresponding to gk,

Finally we describe the twisted modules of lattice vertex algebras. We assume for simplicity
that L is an even unimodular lattice. Let g € O(L) and L9 the orthogonal complement of L9 in
L. Then the orthogonal projection 7 : h — h of h onto LY ® C sends L to the dual lattice L9 of
LY. Let n be a function on L satisfying the lifting condition. Then 7 is a homomorphism on LY
and there is an element s,, € w(h) such that n(a) = e((s,, a)) for all & € LY. The element 2s,, is
in L9 and Sy is unique up to L9'. Let § be the lift of g corresponding to 1. A minor variation
on the arguments in [BK] and [DL2] which deal with the case of standard lifts only gives
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Theorem 7.6
The unique irreducible g-twisted Vi -module is isomorphic as a vector space to

S(hy) ® e*1Clr(L)] ® X

where X is a complex vector space of dimension d with d*> = |L9*/(1 — g)L| and S(ﬁg’) the
twisted Fock space. Under this identification the Ly-eigenvalue of the vector

(al(_nl) e al(—nl)) ® esn-i-ﬂ'(a) Qx

is equal to > n; + (s, + m(a))?/2 + p where

n—1

1 . N
P=12 Z](n —j)dim(h;).
j=1
Here h; denotes the e(j/n)-eigenspace of g in h.
We need the description of twisted modules for non-standard lifts because sometimes §" is

not a standard lift of g™ if § is a standard lift of g. For example in the case of the order 4 orbifold
in the next section §2, where § is a standard lift of g, is not a standard lift of g2.

8 Construction of some new holomorphic vertex operator
algebras
In this section we construct 5 new holomorphic vertex operator algebras of central charge 24 as
orbifolds of lattice vertex algebras.
We proceed as follows. Let N(®) be a Niemeier lattice with root system ® and g an auto-
morphism of N(®) of order n. We take a standard lift of g to the vertex algebra V of N(®)
which we also denote by g. Then the twisted modules V (¢g’) have positive conformal weights for

j # 0 mod n and we can compute the type of g using Theorem 7.6. Suppose that g has type 0.
Then the orbifold of V' corresponding to g is given by

Vorb(G) — @ W(i,O) )
1€ L

The twisted traces T'(1,0,7,7) are described in Proposition 7.5. We can determine the other
twisted traces T'(1,4, j,7) using the twisted modular invariance

T(1,i,5, M7) =T, (i,j)M,7)
which holds for all M € SLy(Z). We have

1 ‘ :
chyy i (7) = Ty (1,7) = — > e(=lj/n)T(1,i,1,7)

l€Zn
so that )
hyi = i = — ]
chw o (1) = Twao (1,7) = — Z T1,1,5,7)
JE€ELn
and finally

1 .
chyorb(a) (T) = Z chy o (1) = n Z T(1,i,5,7).

1€ZLp 4,J€Ln
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orb(G)).

The constant coefficient in the Fourier expansion of chyemc) is dim(V] Once we we

have determined the dimension of Vlorb(G)7 Theorem 6.4 gives the possible Lie algebra structures

of Vlorb(G). We can further restrict the structure of Vlorb(G) by an argument which is due to
Montague [M]. We have seen that there is an automorphism & of order n acting on V°rP(&)
such that the corresponding orbifold (VOrP(G))erb(K) gives back V. The fixed-point subalgebra is
(VorbENK — VG 5o that V,C is the fixed-point subalgebra of an automorphism of Vlorb(G) whose
order divides n. Kac classified the finite order automorphisms of finite-dimensional simple Lie
algebras and their fixed-point subalgebras (see Theorem 8.6 and Proposition 8.6 in [K]). This
reduces the possible affine structures of Vlorb(G)
completely fix this structure.

. In two cases we need additional arguments to

The affine structure A}, as a Zs-orbifold

The lattice A4 can be written as Ay = { (21,...,25) € Z° |21 + ... + 25 = 0} C R®. The dual
lattice is given by A} = U?:o ((i) + A4) where (i) = (£,...,%,—L,...,—L) with j components
equal to % and i+j = 5. The lattice L = A$ has an automorphism g of order 5 obtained by acting
with a permutation of order 5 on the coordinates of the first A4-component and a permutation of
order 5 of the remaining A4-components. The characteristic polynomial of g is (x—1)~!(2° —1)3,
i.e. g has cycle shape 17'5°. Let H be the isotropic subgroup of L'/L generated by the glue
vectors [1(01441)] (see [CS], Chapter 16). Then the lattice N(A§) = U, ¢y (v + L) is a Niemeier
lattice with root system A$ and g defines an automorphism of N(A$). The fixed-point sublattice
of g in N(AS) is isomorphic to A)(5). Let V be the vertex operator algebra corresponding to
N(AS). We take a standard lift of g which we also denote by g. Then g has order 5 and type 0.
The functions

0 T
fi(r) = N(A“‘(‘ZT))() = j(7) — 600 = ¢~ + 144 + 196884¢ + 21493760¢> + . ..

0 (T
O™ _ o0 — =g =14+ 9¢+ 104> — 30¢° + 6¢* + ...
19(7) n(57)

are modular forms of weight 0 for SLy(Z) and T'o(5), respectively and

T(1,0,0,7) = fi(1)

T(1,0,4,7) = f5(7)

f5(m) =

for i #0 mod 5. An expansion of f5 at the cusp 1/1 = 0 is given by

n(r)°
n(t/5)%

= fs,1/1,0(7) + -+ f51/1,4(7)
with f5,1/1,j(T7') = 6(]/5)f5 1/173'(7'). We obtain

fsan(r) = f5(S7) =5+5° =5+ 125¢"/° + 750¢%/° + 3375¢°/° +

chyoo Z T(,0,4,7) (f1 +4fs) = q " + 28 4 39384q + 4298760¢° + . ..
ZEZ5

and

chyy o) (7 ZT].,Z,], ZT (1,0)T7, 1)

JGZS jEZs
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772T (0,4)ST7, ) Zf51/1T3

JEZs ]EZs
= faayi0(r) = 5+ 39375q + 429875042 + 172860000¢° + .. .

for i # 0 mod 5 so that

chyorie) (1) = Y chypio (1) = ¢~ + 48 + 196884¢ + 21493760¢° + ...

1€ZLs
Hence the subspace Vlorb( of VOrb(&) has dimension 48 and by Theorem 6.4 is isomorphic
as a Lie algebra to A6 AS A;A3, A3, A1A5Bs, A1Ds or Ag. It is not difficult to see that
W(O 0) — V1 is 1somorph1c to A4,C* with C* coming from the 4 orbits of G on the 20 roots of the
first A4-component. Hence V™ (@) 5 dmits an automorphism of order dividing 5 whose fixed-point
subalgebra contains A4. The simple components in the above list possessing such an automor-
phism are Ay, A5, D5 and Ag. The corresponding fixed-point subalgebras are A4, A4C, A4,C and
A4C2. Hence Vlorb(G) = A2 or A} A5B;. The conformal weight of the spaces W9 i % 0 mod 5
is 1. By Lemma 2.2.2 in [SS] this implies that A, C V. is not only a subalgebra but an ideal in

Vlorb(G). Hence V(%) has the affine structure A%

The affine structure Cy o as a Zp-orbifold

Again we consider the Niemeier lattice N(A$) with root system AS. Let g be the product of
the automorphism of the previous example with —1. Then g has order 10 and cycle shape
1'27157°10°. The inner product (a,g*(a)) is even for all o € N(Ag)‘]%. We take a standard
lift of g to the vertex algebra V of N(A$) which we also denote by g. Then g has order 10 and
type 0. We define functions

fi(7) = §(1) — 600 = ¢~ + 144 + 196884q + 21493760¢> + . ..

24
fo(r) = 77"((2:))24 =q " — 24+ 276¢ — 2048¢” + 11202¢° — 49152¢" + . ..
n()° -1 2 3 4 5
f5(7')=5+n(57_)6 —1+49¢ +10¢” — 30¢” + 6¢™ — 25¢° + . ..
n(27)n(57 5 _
fulr) = nET)g(l(OTif') =q 't 1420 +2¢° — 2" —¢° —4q + ...

Then f, is a modular form for T'g(n) with trivial character of weight 0 and
T(1,0,i,7) =try g' g™ ! = J10/¢,10)(T) -

In order to calculate the characters of the modules W% we need the expansions of these
functions at the different cusps. The group I'g(2) has 2 cusps and an expansion of fs at the cusp
1/1 is given by

24
faap (1) = f2(ST) = 212777(7;)2)24 = 4096¢"/% 4 98304¢ + 1228800¢%/2 + ...
= fa,1/1,0(7) + f2,1/11(7)
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with fa1/1,;(T'7) = e(j/2) f2,11,;(7). The group I'g(5) has 2 cusps and an expansion of f5 at the
cusp 1/1 is

n(r)°
n(r/5)°
= fsa10(T) .+ fr1/14(7)
Finally the expansions of fig at the cusps 1/5,1/2 and 1/1 of T'x(10) are given by

7/2)n(57)°
‘%%f?ﬁm% = —4¢'/% +4q +4¢° — 4> — 164" + ...
= f10,1/5,0(7) + fi0,1/5.1(7)

where M = (%),

fsa1(7) = f5(ST) =5 +5° =5+ 125¢"° + 750¢%/° + 3375¢%/° + . ..

f10,1/5(7) = fio(MT) =

B __n(27)n(7/5)°
f10,1/2(7) = fio(NT) = _W

= f10,172,0(7) + ... + f10,1/2,4(7)
with N = (3 Z2) and

= —1+45¢"/% —10¢*° + 15¢%/> — 30¢"/° + ...

n(r/2)n(r/5)°
fro,1/1(7) = fro(S7) = 4:7((7/)77)(7;(/1/0))5 = 44 20q"/"% 4 60¢°/1" + 160¢*/ 1" + . ..

= f10,1/1,0(7) + ... + fro,1/1,0(7) -
It follows

1 1
chyy .0 (7) = 10 Z 7(1,0,i,7) = To(fl + fat+4fs +4f10) = ¢ 1 +124+19720g + ...

1€Z10
and
‘ 1 : ‘
chyy .0 (7) = 5 > T(1.5,47) = o > (T(,5,5,7) + T(1,5,5+ j,7))

J€Z1o J€Zs

= —(T(1,5,0,7) +T(1,5,5,7))

+— > (T(,5,4,7) +T(1,5,5+j,7))
JEZLs
(4,5)=1

= L(I(1(0,5)8,7) + T(L (0,5)S7,7))
Fao S0 (T 0.)M,7) + T(L, (0, /)MT, )

J€Z1o

(4,10)=1

T ((87) + Fa(STD) + 15 (oM7) + fro(MT7))

(f2,11(7) + f2,11(T'T)) ! (f10,1/5(7) + fr0,1/5(T'T))

1 L4
10 10

1 4
= = fau/10(T) + £ fr0,1/5.0 = 19664g + 2149584¢> + 86428864¢° + . . .
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In particular dim(Wl(5’O)) = 0. Suppose (i,10) = 2. Choose k € Zj such that 2k = ¢ mod 10
and (k,10) = 1. Then

1 . 1 .. 1 .
ChW(iYO)(T) Z T(17lvja7-):7 Z T(1a27]77)+T0 Z T(].,Z,_],T)

~ 10 10 ,
J€Z1o VIS/AT) J€Z10o
(,2)=2 (,2)=1
1 . 1 .
- - ; Jj - Jj
0. T(L,(0.)8T,7) + 15 Z T(1,(0,k)NT?, 1)
JEZs JEZLs

_ 1i0 S f5(ST97) + %0 S Fo(NTi7)

JEZs JEZLs
1 . 1 .
= > fsan(Tin) + 0 > fi0a/2(T77)
JEZs JELs

= %fm/l,o + %f10;1/2,0 =24 19715¢ + 2149170¢* + 86431120¢> + . ..
Finally for (,10) = 1 we find
chyy o) (T) = fr0,1/1,0(7) = 4 + 19660g + 2149580¢> + 86428880¢° + ... .
Hence the character of Vo*(©) is given by
chyorn(e (1) = ¢~ 1 + 36 + 196884q 4 214937604 + 864299970¢° + ... .

The space Vlorb(G) has dimension 36 and therefore is isomorphic as a Lie algebra to A}2, A;Dy
or Cy. The Lie algebra structure of V;% is BoC?. This excludes the first possibility. Recall that
the automorphism k& on VoP(©) acts as kv = e(i/10)v for v € W&, Hence the fixed-point
subalgebra of k2 on VorP(@) s (Vorb(@)K* — j7(0.0) g 7 (5:0) | Gince dim(Wl(5’0)) = 0 this implies
that V,¢ = 1(0’0) is the fixed-point subalgebra of Vlorb(G) of an automorphism whose order
divides 5 and not just 10. It follows Vfrb(G) =Cy.

The affine structure A, ;C53G5, as a Zg-orbifold

Recall that the lattice Eg has 3 conjugacy classes of automorphisms of order 3 of cycle shape
17333, 3% and 1231, The lattice L = E§ has an automorphism of order 3 acting by a fixed-point
free automorphism of order 3 on the first Eg-component and a permutation of order 3 of the
remaining FEg-components. Let g be the product of this automorphism with —1. Then ¢ has
cycle shape 132733796%. Let H be the isotropic subgroup of L'/L generated by the glue vectors
[1(012)] (see [CS], Chapter 16). Then the lattice N(Eg) = U, em(y + L) is a Niemeier lattice
with root system EY and g defines an automorphism of N(E§) satisfying (—1)(a7gk(a)) =1 for
all a € N(Egl)g%. Let V be the vertex operator algebra corresponding to N(Eg). We take a
standard lift of g to V which we also denote by ¢g. Then ¢ has order 6 and type 0. Let V(&) be
the corresponding orbifold. We determine the dimension of Vlorb(G) as in the previous examples.
We find dim(Vlorb(G)) = 72 so that Vlorb(G) is isomorphic as a Lie algebra to A3*, A}A3, A3AsD,,
A2C3Ds5, A3A7, A1C5Go or A?2Dg. The Lie algebra structure of V,* is A; A,C4C'. The only

orb(G)

simple components in the list for V] which admit an automorphism of order dividing 6

whose fixed-point subalgebra contains Cy are Ay and Ds. This implies that Vfrb(c) = A3A7 or
A1C5G5. In the first case Cy is the full fixed-point subalgebra of A; so that As would have to

be a subalgebra of A; which is impossible. Hence Vlorb(G) = A:C5G>.
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The affine structure A,;B51Es4 as a Z4-orbifold

The lattice Dg = {(21,...,76) € Z5| 21 + ...+ 26 = 0 mod 2} C R® has an automorphism of
order 4 defined by (x1,x9,x3, x4, x5, x¢) — (21, %2, x4, T3, —Tg,25). Composing this map with
the automorphism (z,y) — (—y,z) on A3 we obtain an automorphism g of the Niemeier lattice
N(A3Dg) (see [CS], Chapter 16) of cycle shape 1227941°. Here (—1)(®9(®)) = —1 for some
clements v € N(A2Dg)?" while (—1)(@9° (@) = 1 for all « € N(A2Dg). We take a standard lift
of g to the vertex algebra V of N(A23Dg) which we also denote by g. Then g has order 4 and type
0. The dimension of Vlorb(G) is 96 so that Vlorb(G) = A2, B3D3?, A3AZB,, A3As or AyByEg.
The Lie algebra structure of VlG is A3 BoDsC!. Out of the list of simple components of Vlorb(G)
only Fg admits an automorphism of order dividing 4 whose fixed-point subalgebra contains Ds.

This implies Vlorb(c) = Ay B> Fg.

The affine structure A,¢D, 2 as a Zg-orbifold

The lattice Ay has a fixed-point free automorphism of order 3 which we denote by f. We define
an automorphism of A2 = {(z1,...,212) |z; € A} of order 6 by composing the maps

(z2, 73, 77,79, T10, T12) = (T3, T12, T9, T10, T2, T7)
(z6,8,711) = (T8, —T11, —T)
(1, 25) = (= f(@5), = f(z1))
x4 — —f(x4)
This automorphism has cycle shape 112723736% and defines an automorphism g of the Niemeier
lattice N (A3?) (see [CS], Chapter 16) because it preserves the glue group. Then (—1)(a’9k(0‘)) =1

for all o € N(AL2)9”" . We take a standard lift of g to the vertex algebra V of N(A12) which we
also denote by g. Then g has order 6 and type 0. The Lie algebra structure of V& is A; A;C3.

For the dimension of Vlorb(G) we find dim(Vlorb(G)) = 36 so that Vlorb(G) = Al%2, 43D, or Cy.
This implies Vlorb(G) = AsDy.

Lattice orbifolds

We summarise our results in the following theorem.

Theorem 8.1
There exist holomorphic vertex operator algebras of central charge ¢ = 24 with the following 5
affine structures.

Aff. structure | No. in [S] | Niemeier lat. | Aut. order
As1BonFes | 28 A2Dg 4
Al 9 AS 5
Az 6Dy 10 3 Al? 6
A11C5 3G9 21 E} 6
Curo 4 A8 10

Together with some recent results by Lam et al. (cf. [LS1], [LS2], [LL]) this implies that
all Lie algebras in Schellekens list are realised as Vj-algebras of holomorphic vertex operator
algebras of central charge 24.

35



References

[BK]
[B1]
[B2]

(B3]

B. Bakalov, V. G. Kac, Twisted modules over lattice vertex algebras in “Lie theory
and its applications in physics V7, 3-26, World Sci. Publ., River Edge, NJ, 2004

R. E. Borcherds, Vertex algebras, Kac-Moody algebras and the Monster, Proc. Nat.
Acad. Sci. U.S.A. 83 (1986), 3068-3071

R. E. Borcherds, Monstrous moonshine and monstrous Lie superalgebras, Invent.
Math. 109 (1992), 405-444

R. E. Borcherds, Automorphic forms with singularities on Grassmannians, Invent.
Math. 132 (1998), 491-562

S. Carnahan, Generalized moonshine IV: monstrous Lie algebras, arXiv:1208.6254
S. Carnahan, M. Miyamoto, Regularity of fixed-point vertex operator subalgebras,
arXiv:1603.05645

J. H. Conway, N. J. A. Sloane, Sphere packings, lattices and groups, Grundlehren der
Math. Wiss. 290, 3 ed., Springer, New York, 1999

C. Dong, Representations of the moonshine module vertex operator algebra, in “Math-
ematical aspects of conformal and topological field theories and quantum groups”,
Contemp. Math., 175, Amer. Math. Soc., Providence, RI, 1994

V. Drinfeld, S. Gelaki, D. Nikshych, V. Ostrik, On braided fusion categories I, Selecta
Math. (N.S.) 16 (2010), 1-119

C. Dong, X. Jiao, F. Xu, Quantum dimensions and quantum Galois theory, Trans.
Amer. Math. Soc. 365 (2013), 6441-6469

C. Dong, J. Lepowsky, Generalized vertex algebras and relative vertex operators,
Progr. Math. 112, Birkh&user, Boston, MA, 1993

C. Dong, J. Lepowsky, The algebraic structure of relative twisted vertex operators, J.
Pure Appl. Algebra 110 (1996), 259295

C. Dong, H. Li, G. Mason, Modular-invariance of trace functions in orbifold theory
and generalized Moonshine, Comm. Math. Phys. 214 (2000), 1-56

C. Dong, X. Lin, S.-H. Ng, Congruence property in conformal field theory, Algebra
Number Theory 9 (2015), 2121-2166

C. Dong, G. Mason, On quantum Galois theory, Duke Math. J. 86 (1997), 305-321
C. Dong, G. Mason, Holomorphic vertex operator algebras of small central charge,
Pacific J. Math. 213 (2004), 253-266

C. Dong, G. Mason, Rational vertex operator algebras and the effective central charge,
Int. Math. Res. Not. 2004, 2989-3008

C. Dong, L. Ren, F. Xu, On Orbifold Theory, Adv. Math. 321 (2017), 1-30

I. Frenkel, J. Lepowsky, A. Meurman, Vertex operator algebras and the Monster, Pure
Appl. Math. 134, Academic Press, Boston, MA, 1988

1. B. Frenkel, Y. Zhu, Vertex operator algebras associated to representations of affine
and Virasoro algebras, Duke Math. J. 66 (1992), 123-168

V. Gritsenko, 24 faces of the Borcherds modular form ®1s, arXiv:1203.6503

Y .-Z. Huang, Generalized rationality and a “Jacobi identity” for intertwining operator
algebras, Selecta Math. (N.S.) 6 (2000), 225-267

Y .-Z. Huang, Differential equations and intertwining operators, Commun. Contemp.
Math. 7 (2005), 375-400

Y .-Z. Huang, Vertex operator algebras and the Verlinde conjecture, Commun. Con-
temp. Math. 10 (2008), 103-154

Y .-Z. Huang, Rigidity and modularity of vertex tensor categories, Commun. Contemp.
Math. 10 (2008), 871-911

36



G. Hohn, N. R. Scheithauer, A generalized Kac-Moody algebra of rank 14, J. Algebra
404 (2014), 222239

V. G. Kac, Infinite-dimensional Lie algebras, 3 ed., Cambridge University Press,
Cambridge, 1990

M. Krauel, G. Mason, Vertex operator algebras and weak Jacobi forms, Internat. J.
Math. 23 (2012)

C.-H. Lam, X. Lin A Holomorphic vertex operator algebra of central charge 24 with
weight one Lie algebra FygAs o, arXiv:1612.08123

C.-H. Lam, H. Shimakura, Orbifold construction of holomorphic vertex operator al-
gebras associated to inner automorphisms, Comm. Math. Phys. 342 (2016), 803-841
C.-H. Lam, H. Shimakura, A holomorphic vertex operator algebra of central charge 24
whose weight one Lie algebra has type Ag 7, Lett. Math. Phys. 106 (2016), 1575-1585
C.-H. Lam, H. Yamauchi, On the structure of framed vertex operator algebras and
their pointwise frame stabilizers, Comm. Math. Phys. 277 (2008), 237-285

S. MacLane, Cohomology theory of abelian groups, Proceedings of the International
Congress of Mathematicians, Cambridge, Mass., 1950, vol. 2, 8-14, Amer. Math. Soc.,
Providence, R. 1., 1952

M. Miyamoto, A modular invariance on the theta functions defined on vertex operator
algebras, Duke Math. J. 101 (2000), 221-236

M. Miyamoto, A Zs-orbifold theory of lattice vertex operator algebra and Zs-orbifold
constructions, Symmetries, integrable systems and representations, Springer Proc.
Math. Stat. 40 , 319-344, Springer, Heidelberg, 2013

M. Miyamoto, Cs-cofiniteness of cyclic-orbifold models, Comm. Math. Phys. 335
(2015), 1279-1286

M. Miyamoto, K. Tanabe, Uniform product of Ag,,(V') for an orbifold model V' and
G-twisted Zhu algebra, J. Algebra 274 (2004), 80-96

P. S. Montague, Conjectured Zso-orbifold constructions of self-dual conformal field
theories at central charge 24 — the neighborhood graph, Lett. Math. Phys. 44 (1998),
105-120

V. V. Nikulin, Integer symmetric bilinear forms and some of their geometric applica-
tions, Math. USSR Izv. 14 (1979), 103-167

D. Sagaki, H. Shimakura, Application of a Zs-orbifold construction to the lattice
vertex operator algebras associated to Niemeier lattices, Trans. Amer. Math. Soc. 368
(2016), 1621-1646

N. R. Scheithauer, The Weil representation of SLy(Z) and some applications, Int.
Math. Res. Notices 2009, no. 8, 1488-1545

A. N. Schellekens, Meromorphic c=24 conformal field theories, Comm. Math. Phys.
153 (1993), 159-185

H. Yamauchi, Module categories of simple current extensions of vertex operator alge-
bras, J. Pure Appl. Algebra 189 (2004), 315-328

Y. Zhu, Modular invariance of characters of vertex operator algebras, J. Amer. Math.
Soc. 9 (1996), 237-302

37



