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Modular forms for the Weil representation of SL2(Z) play an important role in
the theory of automorphic forms on orthogonal groups. In this paper we give
some explicit constructions of these functions. As an application we construct
new examples of generalized Kac-Moody algebras whose denominator identities
are holomorphic automorphic products of singular weight. They correspond
naturally to the Niemeier lattices with root systems D2
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1 Introduction

The singular theta correspondence (cf. [B2] and also [Br]) is a map from modular
forms for the Weil representation of SL2(Z) to automorphic forms on orthogonal
groups. More precisely let L be an even lattice of signature (n, 2), n > 2 even
with discriminant form D and F a modular form for the Weil representation of
SL2(Z) on C[D] of weight (2−n)/2 which is holomorphic on the upper halfplane
and has integral principal part. Then the integral∫

F
F (τ)θ(Z, τ)y

dx dy

y2
,
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where F is the standard fundamental domain of SL2(Z) on the upper halfplane
and θ is the Siegel theta function of L, can be regularized. Let Ψ(Z) be the ex-
ponential of the regularized value. Then Ψ(Z) is an automorphic form for a sub-
group of O(L) which has nice product expansions at the rational 0-dimensional
cusps. The function Ψ(Z) is called the automorphic product associated to F .
The weight of Ψ is determined by the constant coefficient of F0 and its divisor
by the principal part of F .

The smallest possible weight of a nonconstant holomorphic automorphic
form on On,2(R) is given by (n− 2)/2. Holomorphic automorphic forms of this
so-called singular weight are particularly interesting because their Fourier co-
efficients are supported only on isotropic vectors. It has turned out that the
denominator identities of infinite-dimensional Lie algebras are sometimes holo-
morphic automorphic products of singular weight. These Lie algebras describe
strings moving on suitable orbifolds and they seem to be very rare [S1]. So far
there are only 12 known examples [S2].

In this paper we give some explicit constructions of modular forms for the
Weil representation of SL2(Z). As an application we construct 3 new gener-
alized Kac-Moody algebras whose denominator identities are holomorphic au-
tomorphic products of singular weight. In contrast to the previous examples
the corresponding vector valued modular forms are not symmetric under O(D)
which makes their construction more difficult.

We describe the results in more detail.
First we show how scalar valued modular forms on congruence subgroups

induce modular forms for the Weil representation of SL2(Z). For Γ1(N) the
result is as follows (see Theorems 3.1 and 3.7).

Let D be a discriminant form of even signature and level dividing N and ρD
the Weil representation of SL2(Z) on C[D]. Let γ ∈ D and f be a modular form
on Γ1(N) with character χγ . Then

FΓ1(N),f,γ =
∑

M∈Γ1(N)\Γ

f |M ρD(M−1)eγ

is a modular form for ρD. Every modular form for ρD is a linear combination
of such functions. The function FΓ1(N),f,γ can be written as a sum

∑
Fs over

the cusps of Γ1(N) where

Fs = ξ(M−1)

√
|Dc|√
|D|

∑
µ∈aγ+Dc∗

e(d(µ− aγ)2
c/2)e(bµγ)e(−abγ2/2)

t gmt,jµ
{
eµ + (−1)ke(sign(D)/4)e−µ

}
.

if N > 2 and s is regular and similarly in the other cases.
There are analogous results for the congruence subgroups Γ(N) and Γ0(N).

However the liftings are not equivalent. In section 6 we give an example of a
modular form for the Weil representation which is not induced from Γ0(N).

Next we describe an induction from the isotropic subgroups of a discriminant
form (cf. Theorem 4.1).

2



Let D be a discriminant form of even signature and H an isotropic subgroup
of D. Let FDH =

∑
γ∈DH FDH ,γ e

γ be a modular form for the Weil representa-

tion of the discriminant form DH = H⊥/H. Then

F =
∑
γ∈H⊥

FDH ,γ+H e
γ

is a modular form for ρD.
Modular forms which are induced in this way can be considered as oldforms.
Let D be a discriminant form of even signature and level dividing N . We

have seen that all modular forms for ρD are induced from Γ(N) or Γ1(N).
However calculating the corresponding liftings is often laborious because the
indices of these groups in SL2(Z) are rather large. We give a natural sufficient
condition for a modular form for ρD to be induced from Γ0(N) (see Proposition
5.3 and Theorem 5.4).

Let D be a discriminant form of squarefree level N and F =
∑
Fγe

γ a
modular form for ρD which is invariant under O(D). Then the complex vector
space W spanned by the components Fγ , γ ∈ D is generated by the functions
F0|M , M ∈ SL2(Z). Let W0 be the subspace of W with T -eigenvalue e(0). Then
the map

Φ : W0 −→ W0

f 7−→ 0-component of FΓ0(N),f,0

is a bijection. In particular F = FΓ0(N),f,0 for a suitable function f in W0.
Finally we use the above results to construct some modular forms for the

Weil representation with nonnegative integral coefficients and reflective poles.
The theta lifts of these functions have singular weight and give the denominator
identities of some new generalized Kac-Moody algebras. The simplest example
is the following (see section 6).

Let N be the Niemeier lattice with root system E3
8 . Let g be a permutation

of the three E8-components of order 3. Then the fixed point sublattice Ng of g
is isomorphic to

√
3E8 and the orthogonal complement Ng⊥ is isomorphic to

A2 ⊗E8. The theta function θNg⊥ defines a modular form for the discriminant
form of Ng. This function is invariant under O(Ng) because the centralizer of
g in O(N) induces the full orthogonal group of Ng. Let L = Ng⊕

(−2 3
3 0

)
. Then

θNg⊥ induces a modular form on L. Denote the quotient of this form by the
invariant 3∆ by Fθ

Ng⊥/3∆. Define ηg(τ) = η(3τ)8. Then the sum

F = Fθ
Ng⊥/3∆ + 1

3 FΓ0(9),1/ηg,0

is a modular form for the Weil representation of L ⊕ II1,1 with nonnegative
integral coefficients and reflective poles. The theta lift of F is holomorphic, has
singular weight and is up to a constant given by

e((ρ, Z))
∏

α∈L′+

(
1− e((α,Z))

)[Fα+L](−α2/2)

=
∑
w∈W

det(w) e((wρ,Z))
∏
n>0

(
1− e((3nwρ,Z))

)8
.
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This is the denominator identity of a generalized Kac-Moody algebra with root
lattice L′ whose multiplicities and simple roots can be described easily.

There are similar examples for the Niemeier lattice with root system D2
12

and for the Leech lattice.
The paper is organized as follows.
In section 2 we recall some properties of modular forms for the Weil repre-

sentation of SL2(Z).
Then we describe the liftings from modular forms on congruence subgroups

to modular forms for the Weil representation of SL2(Z).
In the next section we show that a modular form for the Weil representation

of an even lattice induces a modular form for the Weil representation of any
finite index sublattice.

In section 5 we show that symmetric modular forms on discriminant forms
of squarefree level N are induced from Γ0(N).

Finally we use the above methods to construct some new generalized Kac-
Moody algebras with automorphic denominator identity. These Lie algebras
correspond naturally to the Niemeier lattices with root systems D2

12 and E3
8

and to the Leech lattice.
The author thanks R. E. Borcherds, G. Höhn and F. Werner for stimulating

discussions and helpful comments.

2 Modular forms for the Weil representation of
SL2(Z)

In this section we recall some properties of modular forms for the Weil repre-
sentation of SL2(Z) from [S2].

Let D be a discriminant form with quadratic form D → Q/Z, γ 7→ γ2/2
(cf. also [N], [CS]). The level of D is the smallest positive integer N such that
Nγ2/2 = 0 mod 1 for all γ ∈ D.

Let c be an integer. Then c acts by multiplication on D and we have an
exact sequence 0 → Dc → D → Dc → 0 where Dc is the kernel and Dc the
image of this map. The group Dc is the orthogonal complement of Dc.

Let Dc∗ be the set of elements α ∈ D satisfying cγ2/2 + αγ = 0 mod 1
for all γ ∈ Dc. Then Dc∗ is a coset of Dc. When we have chosen a Jordan
decomposition of D then there is a canonical coset representative xc of Dc∗

satisfying 2xc = 0. Write α ∈ Dc∗ as α = xc + cγ. Then α2
c/2 = cγ2/2 +

xcγ mod 1 is independent of the choice of γ. This gives a well defined map
Dc∗ → Q/Z, α 7→ α2

c/2.
More generally let H be an isotropic subgroup of D. We define Dc∗

H as the
set of elements α ∈ D satisfying cγ2/2+αγ = 0 mod 1 for all γ ∈ c−1(H)∩H⊥.
Then Dc∗

H = Dc∗ if H = 0.
Suppose D has even signature. We define a scalar product on the group

ring C[D] which is linear in the first and antilinear in the second variable by
(eγ , eβ) = δγβ . Then there is a unitary action of the group Γ = SL2(Z) on C[D]
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defined by

ρD(T )eγ = e(−γ2/2) eγ

ρD(S)eγ =
e(sign(D)/8)√

|D|

∑
β∈D

e(γβ) eβ

where S =
(

0 −1
1 0

)
and T = ( 1 1

0 1 ) are the standard generators of Γ. This rep-
resentation is called the Weil representation of Γ on C[D]. It commutes with
O(D).

Let M =
(
a b
c d

)
∈ Γ. Then

ρD(M)eγ = ξ

√
|Dc|√
|D|

∑
β∈Dc∗

e(−aβ2
c/2)e(−bβγ)e(−bdγ2/2)edγ+β

where ξ = e(sign(D)/4)
∏
ξp. The local factors ξp can be expressed by means

of the Jordan components of D (cf. [S2]).
Let

F (τ) =
∑
γ∈D

Fγ(τ)eγ

be a holomorphic function on the upper halfplane with values in C[D] and k an
integer. Then F is a modular form for ρD of weight k if

F (Mτ) = (cτ + d)kρD(M)F (τ)

for all M =
(
a b
c d

)
in Γ and F is meromorphic at ∞. Note that the transforma-

tion formula can be written equivalently as

F =
∑
γ∈D

Fγ |M−1 ρD(M)eγ

for all M ∈ Γ.
The components of a modular form F =

∑
γ∈D Fγe

γ for ρD transform as

Fγ |M = ξ(M−1)

√
|Dc|√
|D|

∑
β∈Dc∗

e(−dβ2
c/2)e(−bβγ)e(−abγ2/2)Faγ+β

where M =
(
a b
c d

)
∈ Γ and ξ(M−1) is the above root of unity corresponding to

M−1.
Classical examples of modular forms transforming under the Weil represen-

tation are theta functions. Let L be a positive definite even lattice of even rank
2k with discriminant form D. For γ ∈ D define

θγ(τ) =
∑

α∈γ+L

qα
2/2
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with qα
2/2 = e(τα2/2). Then

θ =
∑
γ∈D

θγe
γ

is a modular form for the dual Weil representation ρD of weight k which is
holomorphic at ∞.

Let D and D′ be two discriminant forms of even signature and let i : D → D′

be an isomorphism of groups satisfying i(γ)2/2 = −γ2/2 for all γ ∈ D. If FD′ =∑
γ∈D′ Fγe

γ is a modular form for the dual Weil representation ρD′ then FD =∑
γ∈D Fi(γ)e

γ transforms under ρD. For example if L is an even unimodular

lattice and K a primitive sublattice of L with orthogonal complement K⊥ then
we have a natural isomorphism i : DK → DK⊥ such that i(γ)2/2 = −γ2/2.

3 Liftings from congruence subgroups

In this section we describe how modular forms on congruence subgroups induce
modular forms on Γ transforming under the Weil representation and we calculate
these liftings explicitly. For the congruence subgroup Γ0(N) these results are
already known [S2]. We include them here because we need the corresponding
formulas later.

Let D be a discriminant form of even signature and N a positive integer
such that the level of D divides N . Let F =

∑
γ∈D Fγe

γ be a modular form for

ρD and M =
(
a b
c d

)
∈ Γ0(N). Then the formula for ρD gives

ρD(M)eγ =

(
a

|D|

)
e
(
(a− 1) oddity(D)/8

)
e(−bdγ2/2) edγ

and

Fγ |M =

(
d

|D|

)
e
(
(d− 1) oddity(D)/8

)
e(−abγ2/2)Faγ .

We define the quadratic Dirichlet character χD : Γ0(N)→ C∗ by

χD

((
a b
c d

))
=

(
a

|D|

)
e
(
(a− 1) oddity(D)/8

)
and for γ ∈ D the character χγ : Γ1(N)→ C∗ with

χγ

((
a b
c d

))
= e(−bγ2/2) .

Then F0 is a modular form on Γ0(N) of character χD and Fγ is a modular form
on Γ1(N) with character χγ . Conversely we have the following result.

Theorem 3.1
Let D be a discriminant form of even signature and level dividing N .
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1. Let f be a scalar valued modular form on Γ0(N) of weight k and character
χD and H an isotropic subset of D which is invariant under (Z/NZ)∗ as a set.
Then

FΓ0(N),f,H =
∑

M∈Γ0(N)\Γ

∑
γ∈H

f |M ρD(M−1)eγ

is a modular form for ρD of weight k which is invariant under the automorphisms
of the discriminant form that stabilize H as a set.

2. Let γ ∈ D and f a scalar valued modular form for Γ1(N) of weight k and
character χγ . Then

FΓ1(N),f,γ =
∑

M∈Γ1(N)\Γ

f |M ρD(M−1)eγ

is a modular form for ρD of weight k which is invariant under the stabilizer of
γ in O(D).

3. Finally if f is a scalar valued modular form on Γ(N) of weight k and
γ ∈ D then

FΓ(N),f,γ =
∑

M∈Γ(N)\Γ

f |M ρD(M−1)eγ

is a modular form for ρD of weight k which is invariant under the stabilizer of
γ in O(D).

Proof: We have to show that the liftings are well defined, transform correctly
under Γ and have the stated symmetries. We describe this in the second case.
The other cases are analogous.

For M ∈ Γ we define the function FM = f |M ρD(M−1)eγ . Then

FKM = f |KM ρD((KM)−1) eγ = χγ(K)f |M ρD(M−1)ρD(K−1)eγ = FM

for K ∈ Γ1(N). Hence F =
∑
M∈Γ1(N)\Γ FM is well defined. Now let K =(

a b
c d

)
∈ Γ. Then

F (Kτ) =
∑

M∈Γ1(N)\Γ

f |M (Kτ) ρD(M−1)eγ

= (cτ + d)k
∑

M∈Γ1(N)\Γ

f |MK(τ) ρD(M−1)eγ

= (cτ + d)kρD(K)
∑

M∈Γ1(N)\Γ

f |MK(τ) ρD(K−1)ρD(M−1)eγ

= (cτ + d)kρD(K)
∑

M∈Γ1(N)\Γ

f |MK(τ) ρD((MK)−1)eγ

= (cτ + d)kρD(K)F (τ)

by shifting the summation index. Finally the functions FM and F are invariant
under the stabilizer of γ in O(D) because the Weil representation commutes
with O(D). �
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The liftings satisfy some obvious relations. However they are not equivalent.
We will see that there are modular forms for the Weil representation which are
not induced from Γ0(N). On the other hand let F =

∑
γ∈D Fγe

γ be a modular
form for ρD. Then

F =
1

|Γ/Γ1(N)|
∑

M∈Γ1(N)\Γ

∑
γ∈D

Fγ |M ρD(M−1)eγ

=
1

|Γ/Γ1(N)|
∑
γ∈D

FΓ1(N),Fγ ,γ .

Hence F can be written as a linear combination of liftings from Γ1(N). Finally
let V be the complex vector space generated by the components Fγ . Then Γ acts
on V ⊗C[D] by ρ(M)(f ⊗eγ) = f |M−1 ⊗ρD(M)eγ . The invariants (V ⊗C[D])Γ

are modular forms for ρD. This space is spanned by the functions FΓ(N),Fγ ,µ .
We calculate the liftings explicitly.
The group Γ0(N) has index N

∏
p|N (1 + 1/p) in Γ and

∑
c|N φ((c,N/c))

classes of cusps. Let a/c ∈ Q with (a, c) = 1. Then the equivalence class of a/c
as a cusp of Γ0(N) is determined by the invariants (c,N) (a divisor of N) and
ac/(c,N) (a unit in Z/(c,N/(c,N))Z ). The width of a/c is t = N/(c2, N) and
the stabilizer of a/c in Γ0(N) is given by Γ0(N)a/c = {±Tna/c |n ∈ Z } with

Ta/c = MT tM−1 =

(
1− act a2t
−c2t 1 + act

)
for any matrix M ∈ Γ satisfying M∞ = a/c.

Let M =
(
a b
c d

)
∈ Γ. Then the cosets of Γ0(N)\Γ sending∞ to a/c are given

by MTn where n ranges over a complete set of residues modulo t = N/(c2, N).
Let D be a discriminant form of even signature and level dividing N and f

a modular form on Γ0(N) with character χD.
We denote the order of χD(Ta/c) by m.

For M =
(
a b
c d

)
∈ Γ the function f |M has a Fourier expansion of the form

f |M (τ) =
∑

anq
n
mt

with qmt = e(τ/mt) and n integral if m = 1 and n odd integral if m = 2.
Let a/c ∈ Q with (a, c) = 1 and µ ∈ Dc∗. Then µ2/2 = −n/mt mod 1

where n is integral if m = 1 and n odd integral if m = 2.
Let H be an isotropic subset of D which is invariant under (Z/NZ)∗. Then

we can write
∑
γ∈H e

γ as a linear combination of sums
∑
γ∈I e

γ where I is an
isotropic subgroup of D. Therefore it is sufficient to calculate the lift F of f
on H in the case that H is an isotropic subgroup. We will assume this in the
following.

We can write F as
F =

∑
s∈Γ0(N)\P

Fs
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where P is the set of cusps of Γ and

Fs =
∑

M∈Γ0(N)\Γ
M∞=s

∑
γ∈H

f |M ρD(M−1)eγ .

The function Fs is T -invariant, i.e. Fs(Tτ) = ρD(T )Fs(τ). We have

Theorem 3.2
Let a/c ∈ Q be a representative of s with (a,N) = 1 and c|N and M =(
a b
c d

)
∈ Γ. Decompose f |M = gmt,0 + . . .+ gmt,mt−1 into T -invariant functions

gmt,j satisfying gmt,j |T = e(j/mt)gmt,j and for w ∈ Dc∗ define jw by w2/2 =
−jw/mt mod 1. Then

Fs = ξ(M−1)

√
|Dc|√
|D|
|H ∩ cH⊥|

∑
v∈H/(H∩Dc)

∑
w∈(Dc∗∩Dc∗H )

e(dw2
c/2)

ΦH,a,c(w) t gmt,jw e
v+w

where
ΦH,a,c(w) =

∑
γ∈GH,c

e(acγ2/2 + wγ)

and

GH,c =
c−1(H)/Dc

((c−1(H) ∩H⊥) +Dc)/Dc
.

The group Γ1(N) has index N2
∏
p|N (1− 1/p2) in Γ and

2 if N = 2,
3 if N = 4,

(1/2)
∑
d|N φ(d)φ(N/d) if N = 3 or N > 4

classes of cusps. Two cusps a/c and a′/c′ in Q with (a, c) = (a′, c′) = 1 are
equivalent modulo Γ1(N) if and only if(

a′

c′

)
= ±

(
a+ jc
c

)
mod N

for some j (cf. [DS], section 3.8). The cusp 1/2 of Γ1(4) is irregular and has width
t = 1. All other classes of cusps a/c are regular and have width t = N/(c,N).
For a cusp a/c in Q with (a, c) = 1 and width t define as above Ta/c = MT tM−1

where M is any matrix in Γ sending ∞ to a/c. Then the stabilizer of a/c in
Γ1(N) is given by {Tna/c |n ∈ Z} if a/c is regular and by {(−Ta/c)n |n ∈ Z} if

a/c is irregular.
It is easy to prove the following result.
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Proposition 3.3
Let M =

(
a b
c d

)
∈ Γ. Then the cosets of Γ1(N)\Γ sending ∞ to a/c are repre-

sented by
MTn if N = 2,
±MTn if N > 2

where n ranges over a complete set of residues modulo t.

Let D be a discriminant form of even signature and level dividing N and
γ ∈ D with γ2/2 = −j/N mod 1.

Proposition 3.4
Let a/c ∈ Q with (a, c) = 1 be a cusp of Γ1(N).

If a/c is regular then χγ(Ta/c) has order m = (c,N)/(c,N, j).
If a/c is irregular then χγ(−Ta/c) has order m = 4/(4, j).

Let f be a modular form on Γ1(N) of weight k and character χγ .

Proposition 3.5
Let a/c ∈ Q with (a, c) = 1 be a cusp of Γ1(N) and let M =

(
a b
c d

)
∈ Γ.

If a/c is regular then

f |M (τ) =
∑

anq
n
mt

where n is integral and n = a2jmt/N mod m.
Suppose a/c is irregular. If km is even then

f |M (τ) =
∑

anq
n
m

where n is integral and n = km/2− jm/4 mod m. If km is odd then

f |M (τ) =
∑

anq
n
2

with n = 1 mod 2.

Proof: Let a/c be regular. Then

f |M (T tτ) = f |MT t(τ) = f |Ta/cM (τ) = χγ(Ta/c)f |M (τ) .

Since χγ(Ta/c) has order m it follows that f |M has an expansion in integral
powers of qmt. Write f |M (τ) =

∑
anq

n
mt. Then f |M (T tτ) =

∑
ane(nt/mt)q

n
mt

so that fM (T tτ) = χγ(Ta/c)f |M (τ) holds if and only if e(n/m) = χγ(Ta/c) for
all n with an 6= 0. But this is equivalent to n = a2jmt/N mod m.

If a/c is irregular then

f |M (Tτ) = f |Ta/cM (τ) = χγ(−Ta/c)f |−M (τ) = (−1)kχγ(−Ta/c)f |M (τ)

and the statement follows by a similar argument. �
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Proposition 3.6
Let a/c ∈ Q with (a, c) = 1 be a cusp of Γ1(N) and µ ∈ aγ +Dc∗.

If a/c is regular then µ2/2 = −n/mt mod 1 where n is an integer such that
n = a2jmt/N mod m.

Suppose a/c is irregular and (−1)ke(sign(D)/4)e(γµ) = 1. If km is even
then µ2/2 = k/2 + j/4 mod 1. If km is odd then µ2/2 = 1/2 mod 1.

Proof: Choose a Jordan decomposition of D and let xc be the canonical coset
representative of Dc∗. Write µ = aγ + (xc + cβ). Then

µ2/2 = a2γ2/2 + x2
c/2 + c2β2/2 + acγβ + axcγ mod 1 .

Let a/c be regular. Then tx2
c/2 = tc2β2/2 = tacγβ = taxcγ = 0 mod 1 and

mta2γ2/2 = 0 mod 1. Hence mtµ2/2 = 0 mod 1. Define n = −mtµ2/2 mod m.
Then n = −mta2γ2/2 = a2jmt/N mod m.

Now let a/c be irregular. Then N = 4, a = 1 mod 2 and c = 2 mod 4.
The Jordan decomposition of D is of the form 2ε2n2

II 4ε4n4

II or 2ε2n2
t2 4ε4n4

II . In the
first case sign(D) = oddity(D) = 0 mod 4 and xc = 0 and in the second case
sign(D) = oddity(D) = t2 mod 4 and x2

c/2 = t2/4 = sign(D)/4 mod 1. The
formula for the norm of µ simplifies to

µ2/2 = γ2/2 + x2
c/2 + cγβ + xcγ mod 1 .

Using γµ = cγ2/2 + xcγ + cγβ mod 1 we obtain

µ2/2 = −γ2/2 + x2
c/2 + γµ mod 1 .

Finally k/2 + sign(D)/4 + γµ = k/2 + x2
c/2 + γµ = 0 mod 1 so that

µ2/2 = k/2− γ2/2 mod 1 .

This implies the last statement. �

Let F be the lift of f on γ. Then as above

F =
∑

s∈Γ1(N)\P

Fs

with
Fs =

∑
M∈Γ1(N)\Γ
M∞=s

f |M ρD(M−1)eγ .

The functions Fs are given in the following theorem.

Theorem 3.7
Let a/c ∈ Q with (a, c) = 1 be a representative of s and M =

(
a b
c d

)
∈ Γ.

If s is regular write f |M = gmt,0 +. . .+gmt,mt−1 with gmt,j |T = e(j/mt)gmt,j
and for µ ∈ aγ +Dc∗ define jµ by µ2/2 = −jµ/mt mod 1. Then

Fs = ξ(M−1)

√
|Dc|√
|D|

∑
µ∈aγ+Dc∗

e(d(µ− aγ)2
c/2)e(bµγ)e(−abγ2/2)

t gmt,jµ
{
eµ + (−1)ke(sign(D)/4)e−µ

}
.

11



if N > 2 and

Fs = ξ(M−1)

√
|Dc|√
|D|

∑
µ∈aγ+Dc∗

e(d(µ− aγ)2
c/2)e(bγµ)e(−abγ2/2)

t gmt,jµe
µ .

if N = 2.
If a/c is irregular then

Fs = ξ(M−1)

√
|Dc|√
|D|

∑
µ∈aγ+Dc∗

e(d(µ− aγ)2
c/2)e(bµγ)e(−abγ2/2)

{
1 + (−1)ke(sign(D)/4)e(µγ)

}
f |Meµ .

Proof: Let s be regular and N > 2. The cosets of Γ1(N) sending ∞ to s are
represented by ±MTn where n ranges over a complete set of residues modulo
t = N/(c,N). Using f |−1 = (−1)kf and ρD(−1)eγ = e(sign(D)/4)e−γ we get

Fs =
∑

n mod t

f |MTnρD(T−n)ρD(M−1)eγ

+ (−1)ke(sign(D)/4)
∑

n mod t

f |MTnρD(T−n)ρD(M−1)e−γ .

Now

ρD(M−1)eγ = ξ(M−1)

√
|Dc|√
|D|

∑
β∈Dc∗

e(dβ2
c/2)e(bβγ)e(abγ2/2)eaγ+β

so that

Fs = ξ(M−1)

√
|Dc|√
|D|

∑
n mod t

f |MTnρD(T−n){ ∑
β∈Dc∗

e(dβ2
c/2)e(bβγ)e(abγ2/2)eaγ+β

+ (−1)ke(sign(D)/4)
∑
β∈Dc∗

e(dβ2
c/2)e(−bβγ)e(abγ2/2)e−aγ+β

}
.

Replacing β by −β in the last sum and putting µ = aγ + β gives

Fs = ξ(M−1)

√
|Dc|√
|D|

∑
µ∈aγ+Dc∗

∑
n mod t

f |MTne(nµ
2/2)

e(d(µ− aγ)2
c/2)e(bµγ)e(−abγ2/2){eµ + (−1)ke(sign(D)/4)e−µ} .

12



The formula now follows from∑
n mod t

f |MTne(nµ
2/2) = t gmt,jµ .

The case N = 2 is now clear.
Suppose s is irregular, i.e. N = 4, a = 1 mod 2 and c = 2 mod 4. We argue

slightly differently here because aγ +Dc∗ = −aγ −Dc∗ in this case. We have

Fs = f |M ρD(M−1)eγ + f |−M ρD(−M−1)e−γ

= f |M ρD(M−1)eγ + (−1)ke(sign(D)/4)f |M ρD(M−1)e−γ

and

ρD(M−1)e−γ

= ξ(M−1)

√
|Dc|√
|D|

∑
β∈Dc∗

e(dβ2
c/2)e(−bβγ)e(abγ2/2)e−aγ+β

= ξ(M−1)

√
|Dc|√
|D|

∑
β∈2aγ+Dc∗

e(dβ2
c/2)e(−bβγ)e(abγ2/2)e−aγ+β

= ξ(M−1)

√
|Dc|√
|D|

∑
β∈Dc∗

e(d(2aγ + β)2
c/2)e(−b(2aγ + β)γ)e(abγ2/2)eaγ+β

= ξ(M−1)

√
|Dc|√
|D|

∑
β∈Dc∗

e(dβ2
c/2)e(cγ2/2 + γβ)e(bγβ)e(abγ2/2)eaγ+β

because d(2aγ+β)2
c/2 = dβ2

c/2+cγ2/2+γβ mod 1 and −b(2aγ+β)γ = bβγ mod
1. Hence

Fs = ξ(M−1)

√
|Dc|√
|D|

∑
β∈Dc∗

e(dβ2
c/2)e(bγβ)e(abγ2/2)

{
1 + (−1)ke(sign(D)/4)e(cγ2/2 + γβ)

}
f |Meaγ+β

Let µ = aγ + β. Then abγ2/2 + bγβ = −abγ2/2 + bγµ mod 1 and cγ2/2 + γβ =
γµ mod 1 so that

Fs = ξ(M−1)

√
|Dc|√
|D|

∑
µ∈aγ+Dc∗

e(d(µ− aγ)2
c/2)e(bµγ)e(−abγ2/2)

{
1 + (−1)ke(sign(D)/4)e(µγ)

}
f |Meµ .

This proves the theorem. �

The group Γ(N) has index N3
∏
p|N (1− 1/p2) in Γ and

3 if N = 2,
(N2/2)

∏
p|N (1− 1/p2) if N > 2

13



classes of cusps. Two cusps a/c and a′/c′ in Q with (a, c) = (a′, c′) = 1 are
equivalent modulo Γ(N) if and only if(

a′

c′

)
= ±

(
a
c

)
mod N .

The width of a/c is N and the stabilizer of a/c in Γ(N) is generated by Ta/c
defined as above.

Let M =
(
a b
c d

)
∈ Γ. Then the cosets of Γ(N)\Γ sending ∞ to a/c are

represented by
MTn if N = 2,
±MTn if N > 2

where n ranges over a complete set of residues modulo N .
Let D be a discriminant form of even signature and level dividing N and f

a modular form on Γ(N) of weight k.
The function f |M has a Fourier expansion in integral powers of qN for all

M ∈ Γ.
Let F be the lift of f on γ ∈ D. Then F =

∑
s∈Γ(N)\P Fs and as above we

find

Theorem 3.8
Let a/c ∈ Q with (a, c) = 1 be a representative of s and M =

(
a b
c d

)
∈ Γ.

Decompose f |M into T -eigenfunctions gN,j and for µ ∈ aγ + Dc∗ define jµ by
µ2/2 = −jµ/N mod 1. Then

Fs = ξ(M−1)

√
|Dc|√
|D|

∑
µ∈aγ+Dc∗

e(d(µ− aγ)2
c/2)e(bµγ)e(−abγ2/2)

N gN,jµ
{
eµ + (−1)ke(sign(D)/4)e−µ

}
.

if N > 2 and

Fs = ξ(M−1)

√
|Dc|√
|D|

∑
µ∈aγ+Dc∗

e(d(µ− aγ)2
c/2)e(bγµ)e(−abγ2/2)

N gN,jµe
µ .

if N = 2.

4 Induction from isotropic subgroups

Let L be an even lattice and M a sublattice of L of finite index. We show that
a modular form on the discriminant form of L induces in a canonical way a
modular form on the discriminant form of M .

Let D be a discriminant form of even signature. Let H be an isotropic
subgroup of D and H⊥ the orthogonal complement of H in D. Then DH =

14



H⊥/H is a discriminant form of the same signature as D with |DH | = |D|/|H|2.
Let FDH =

∑
γ∈DH FDH ,γ e

γ be a modular form for ρDH . Define

F =
∑
γ∈H⊥

FDH ,γ+H e
γ .

Then

Theorem 4.1
F is a modular form for ρD.

Proof: It is sufficient to show that F =
∑
γ∈D Fγe

γ transforms correctly under
the generators of Γ. This is clear for T .

For γ ∈ H⊥ we have

Fγ |S(τ) = FDH ,γ+H |S(τ)

=
e(sign(DH)/8)√

|DH |

∑
β∈DH

e((γ +H)β)FDH ,β (τ)

=
e(sign(DH)/8)

|H|
√
|DH |

|H|
∑
β∈DH

e((γ +H)β)FDH ,β (τ)

=
e(sign(DH)/8)

|H|
√
|DH |

∑
β∈H⊥

e(γβ)Fβ(τ)

=
e(sign(D)/8)√

|D|

∑
β∈D

e(γβ)Fβ(τ) .

If γ /∈ H⊥ then Fγ |S(τ) = 0 and∑
β∈D

e(γβ)Fβ(τ) =
∑
β∈H⊥

e(γβ)Fβ(τ)

=
∑

β∈H⊥/H

∑
µ∈H

e(γ(β + µ))Fβ+µ(τ)

=
∑
β∈DH

e((γ +H)β)FDH ,β (τ)
∑
µ∈H

e(γµ)

= 0

because
∑
µ∈H e(γµ) is the sum over a nontrivial character of H and therefore

is 0. �

We can easily construct some automorphisms of F . An automorphism of D
stabilizes H as a set if and only if it stabilizes H⊥. Such automorphisms act on
H⊥/H = DH so that we get a natural map from the stabilizer of H in O(D) to
O(DH). The inverse image of O(FDH ) under this map is a subgroup of O(F ).

A standard situation in which the above result can be applied is the following.
Let L be an even lattice of even signature and let M be a sublattice of L of

15



finite index. Then we have embeddings M ⊂ L ⊂ L′ ⊂ M ′ and H = L/M is
an isotropic subgroup of DM = M ′/M . The orthogonal complement of H in
DM is H⊥ = L′/M and H⊥/H is naturally isomorphic to DL = L′/L. The
theorem then shows that a modular form for the discriminant form of L induces
a modular form for the discriminant form of the sublattice M .

5 Discriminant forms of squarefree level

Let D be a discriminant form of even signature and level N . Let f be a modular
form on Γ0(N) of character χD. Then FΓ0(N),f,0 is a modular form for ρD which
is invariant under O(D). We show now that every modular form for ρD which
is invariant under O(D) can be obtained in this way if N is squarefree.

First we describe some properties of discriminant forms of prime level.

Proposition 5.1
Let D be a discriminant form of prime level and let β and γ be two nonzero
elements in D of the same norm. Then β and γ are conjugate under O(D).

Proof: Let p be the level of D. If p is an odd prime we can consider D as a
vector space over Fp with a quadratic form. The statement then follows from
Witt’s theorem (cf. [O]). For p = 2 we can argue as follows. The statement is
true if D has 2-rank 2. Suppose that the 2-rank is ≥ 4. If β2/2 = 0 mod 1 then
there is an α ∈ D such that αβ = 1/2 mod 1. Replacing α by α+β if necessary
we can assume that α2/2 = 0 mod 1. Similarly if β2/2 = 1/2 mod 1 we can find
α ∈ D such that αβ = α2/2 = 1/2 mod 1. In both cases D decomposes into the
orthogonal sum D = 〈α, β〉⊕ 〈α, β〉⊥. This proves the proposition for p = 2. �

For a discriminant form D we denote by I the subset of isotropic elements
and by Ik the isotropic elements of order k.

Proposition 5.2
Let D be a discriminant form of prime level p. Then we have for γ ∈ Ip∑

β∈Ip

e(βγ) = |Ip| −
|D|
p
.

Proof: We prove the statement in the case that D has Jordan decomposition
pεn with p odd and n ≥ 3. The other cases are similar. We can assume that

D = D′ ⊕D′′

where D′ is generated by γ1, γ2 with γ2
1/2 = 1/p mod 1, γ2

2/2 = −1/p mod 1,
γ1γ2 = 0, i.e. has Jordan decomposition pε

′2 with ε′ =
(

2
p

)(−2
p

)
=
(−1
p

)
, and

contains γ, and D′′ has Jordan decomposition pε
′′(n−2) with ε′′ =

(−1
p

)
ε. Then

γ⊥ = 〈γ〉 ⊕D′′

16



so that by Proposition 3.2 in [S1]

|γ⊥ ∩ I| = p

{
pn−3 + ε′′

(−1
p

)(n−2)/2(
p(n−2)/2 − p(n−4)/2

)
if n is even

pn−3 if n is odd

=

{
pn−2 + ε

(−1
p

)n/2(
pn/2 − p(n−2)/2

)
if n is even

pn−2 if n is odd

Define Aj = {β ∈ I | γβ = j/p mod 1}. Then

I =

p−1⋃
j=0

Aj .

We have A0 = γ⊥ ∩ I and |A1| = . . . = |Ap−1| = m because multiplication
by elements in (Z/pZ)∗ maps the sets into each other. Hence applying again
Proposition 3.2 in [S1] we obtain

m =
|I| − |A0|
p− 1

= pn−2 .

It follows

∑
β∈I

e(γβ) = |A0|+m

p−1∑
j=1

e(j/p)

= |A0| −m
= |A0| − pn−2

= |I| − pn−1

= |Ip|+ 1− |D|
p

This proves the statement. �

Let D be a discriminant form of squarefree level N . Then Proposition 5.1
implies that two elements of D are in the same orbit under O(D) if and only if
they have the same norm and order. Let F =

∑
γ∈D Fγe

γ be a modular form
for ρD which is invariant under O(D). Then the components Fγ with isotropic
γ are modular forms on Γ0(N) with character χD.

Proposition 5.3
Let D be a discriminant form of squarefree level N and F =

∑
γ∈D Fγe

γ a
modular form for ρD which is invariant under O(D). Then the complex vector
space W spanned by the components Fγ , γ ∈ D is generated by the functions
F0|M , M ∈ Γ. In particular F = 0 if F0 = 0.

17



Proof: Clearly W contains the functions F0|M , M ∈ Γ. Let M =
(
a b
c d

)
∈ Γ.

Then F0|M decomposes into T -eigenfunctions, i.e.

F0|M = gt,0 + . . .+ gt,t−1

where t = N/(c2, N) is the width of a/c and gt,j |T = e(j/t)gt,j . The function
gt,j can be written as

gt,j =
1

t

∑
n mod t

e(−jn/t)F0|MTn

hence is in W . Now let M =
(
a b
c d

)
∈ Γ with c|N and d = 0 mod c′ where

c′ = N/c. Then

F0|M = ξ(M−1)
1√
|Dc′ |

∑
γ∈Dc′

Fγ .

Since Fγ is determined by the norm and order of γ we see that Fγ can be written
as a linear combination of functions F0|M , M ∈ Γ. �

The main result of this section is the following.

Theorem 5.4
Let D be a discriminant form of squarefree level N and F =

∑
γ∈D Fγe

γ a
modular form for ρD which is invariant under O(D). Let NR be the product
over the primes with nonvanishing Ip. For k|NR define Fk = Fγ where γ is
any element in Ik. Then the functions Fk span the subspace W0 of W with
T -eigenvalue e(0). Define

Φ : W0 −→ W0

f 7−→ 0-component of FΓ0(N),f,0

Then
Φ(Fk) =

∑
j|NR

ajkFj

with

ajk =
N

|D|
|Ij |

∑
c|(N/j,N/k)

|Dc|
c

=
N

|D|
∏
p|j

|Ip|
∏

p|(N/j,N/k)

(
1 +
|Dp|
p

)
.

The matrix A = (ajk) has determinant

det(A) =

(
N

|D|

)σ(NR)
( ∑

d|N/NR

|Dd|
d

)σ(NR) ∏
d|NR

|Id|
∏
d|NR

|Dd|
d

.

In particular Φ is invertible.
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Proof: Let γ ∈ Ik where k|NR. Then

Φ(Fγ) =
∑

s∈Γ0(N)\P

Φs(Fγ)

with
Φs(Fγ) =

∑
M∈Γ0(N)\Γ
M∞=s

Fγ |M 〈ρD(M−1)e0, e0〉 .

The cusps of Γ0(N) are given by 1/c, where c ranges over the positive divisors
of N , and the cusp 1/c has width c′ = N/c.

Let c|N . Choose M =
(
a b
c d

)
∈ Γ with d = 1 mod c and d = 0 mod c′. Then

Φ1/c(Fγ) =
∑

n mod c′

Fγ |MTn〈ρD((MTn)−1)e0, e0〉

=
∑

n mod c′

∑
α∈D

Fα〈ρD(MTn)eα, eγ〉〈ρD((MTn)−1)e0, e0〉

Φ1/c(Fγ) is T -invariant so that the contributions of the α ∈ D with nonzero
norm cancel each other. Hence

Φ1/c(Fγ) =
N

c

∑
α∈D

α2/2=0 mod 1

Fα〈eα, ρD(M−1)eγ〉〈ρD(M−1)e0, e0〉 .

Now

ρD(M−1)eγ = ξ(M−1)

√
|Dc|√
|D|

∑
β∈Dc′

e(bβγ)eaγ+β

= ξ(M−1)

√
|Dc|√
|D|

∑
β∈Dc′

e(−c−1βγ)eaγ+β

where c−1 is the inverse of c modulo c′ so that

Φ1/c(Fγ) =
N

c

|Dc|
|D|

∑
α∈D

α2/2=0 mod 1

Fα
∑
β∈Dc′

e(c−1βγ)〈eα, eaγ+β〉

=
N

c

|Dc|
|D|

∑
α∈(γ+Dc′ )

α2/2=0 mod 1

e(c−1αγ)Fα

and

Φ(Fγ) =
∑
c|N

N

c

|Dc|
|D|

∑
α∈(γ+Dc′ )

α2/2=0 mod 1

e(c−1αγ)Fα .
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Since ∑
α∈(γ+Dc′ )

α2/2=0 mod 1

e(c−1αγ)Fα =
∑
j|NR

Fj
∑

α∈(γ+Dc′ )∩Ij

e(c−1αγ)

we get

Φ(Fk) =
∑
j|NR

ajkFj

with

ajk =
∑
c|N

N

c

|Dc|
|D|

∑
α∈(γ+Dc′ )∩Ij

e(c−1αγ) .

The elements in γ + Dc′ have order (k, c)d where d|c′ and the elements in Ij
have order j. Hence

ajk =
∑
c|N

(k,c)|j|(k,c)c′

N

c

|Dc|
|D|

∑
α∈(γ+Dc′ )∩Ij

e(c−1αγ)

=
∑
c|N

(k,c)|j|(k,c)c′

N

c

|Dc|
|D|

∑
α∈Ij/(k,c)

e(c−1αγ)

=
∑
c|N

(j,c)=(k,c)

N

c

|Dc|
|D|

∑
α∈I(j,c′)

e(αγ) .

We can evaluate the last sum using Proposition 5.2. We get

ajk =
N

|D|
∑
c|N

(j,c)=(k,c)

|Dc|
c

∏
p|(j,c′)
p|/k

|Ip|
∏

p|(j,c′)
p|k

(
|Ip| −

|Dp|
p

)
.

Induction on the number of prime divisors of N shows

ajk =
N

|D|
∏
p|j

|Ip|
∑

c|(N/j,N/k)

|Dc|
c

=
N

|D|
|Ij |

∏
p|(N/j,N/k)

(
1 +
|Dp|
p

)

=
N

|D|
∏

p|N/NR

(
1 +
|Dp|
p

)
|Ij |

∏
p|(NR/j,NR/k)

(
1 +
|Dp|
p

)
.

We can write A = (ajk) as

A =
N

|D|
∏

p|N/NR

(
1 +
|Dp|
p

)
BC
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where B = (bjk) is a diagonal matrix with entries

bjk = δjk|Ij |

and C = (cjk) is a symmetric matrix with entries

cjk =
∏

p|(NR/j,NR/k)

(
1 +
|Dp|
p

)
.

We have
det(B) =

∏
d|NR

|Id|

and

det(C) =
∏
d|NR

|Dd|
d

so that

det(A) =

(
N

|D|

)σ(NR)
( ∑

d|N/NR

|Dd|
d

)σ(NR) ∏
d|NR

|Id|
∏
d|NR

|Dd|
d

where σ(NR) denotes the number of divisors of NR. This finishes the proof of
the theorem. �

Proposition 5.3 and Theorem 5.4 imply

Corollary 5.5
Let D be a discriminant form of squarefree level N and F a modular form for
ρD which is invariant under O(D). Then F = FΓ0(N),f,0 for a suitable modular
form f on Γ0(N) with character χD.

The last result is also stated as Theorem 4.2.17 in [Ba]. However the proof
given there is incomplete as the author does not show that the matrix A is
invertible.

6 Some new generalized Kac-Moody algebras

In this section we use the above results to construct some modular forms for the
Weil representation with nonnegative integral coefficients and reflective poles.
The theta lifts of these modular forms are holomorphic automorphic products
of singular weight. They give new examples of generalized Kac-Moody algebras
with automorphic denominator identity.

The automorphic forms of this section are related to automorphisms of the
Leech lattice with cycle shapes 212, 38 and 3.21. However we will see that the
first two examples can be constructed more naturally from the Niemeier lattices
with root system D2

12 and E3
8 .

We have used the computer algebra systems Magma [BCP] and PARI/GP
[P] in the proof of some statements.

We begin with the case of cycle shape 38 because this is the simplest example.
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Cycle shape 38

Let Λ be the Leech lattice and g an automorphism of Λ of cycle shape 38. Then
the fixed point sublattice Λg of g is a primitive sublattice of Λ isomorphic to√

3E8.
The lattice

√
3E8 has genus II8,0(3+8) and represents the unique class in this

genus. The orthogonal group of
√

3E8 acts transitively on the vectors of norm
6, 12 and 18. The vectors of norm 24 decompose into 2 orbits of length 240 and
17280. It follows that O(

√
3E8) has 5 orbits on the discriminant form of

√
3E8

which we describe in the following table.

norm length order name

0 1 1 00

0 2240 3 0

1/3 240 3 1S

1920 3 1L

2/3 2160 3 2

The centralizer C(g) of g in O(Λ) does not induce the full orthogonal group
of Λg. It acts transitively on the vectors of norm 6, 12 and 18 in Λg and the
vectors of norm 24 decompose into 3 orbits of length 240, 2160 and 15120. The
orbit 1L in the above table splits into 2 orbits under C(g) which we denote by
1LS and 1LL . They contain 240 respectively 1680 elements.

The orthogonal complement Λg⊥ of Λg in Λ is isomorphic to A2 ⊗ E8.
The lattice A2⊗E8 is 3-modular and has genus II16,0(3+8). The orthogonal

group of A2 ⊗ E8 has 5 orbits on the discriminant form of A2 ⊗ E8 which are
as follows.

norm length order name

0 1 1 00

0 2240 3 0

1/3 2160 3 1

2/3 240 3 2S

1920 3 2L

The theta functions of the corresponding cosets are given by

θ00
(τ) = 1 + 720q2 + 13440q3 + 97200q4 + 455040q5 + 1714320q6 + . . .

θ0(τ) = 6q + 765q2 + 12960q3 + 97863q4 + 463068q5 + 1672083q6 + . . .

θ1(τ) = 45q4/3 + 2232q7/3 + 27306q10/3 + 170064q13/3 + . . .

θ2S (τ) = 3q2/3 + 168q5/3 + 6009q8/3 + 51960q11/3 + 288600q14/3 + . . .

θ2L(τ) = 216q5/3 + 5697q8/3 + 52920q11/3 + 287820q14/3 + . . .

Under the action of the centralizer C(g) the orbit 2L splits into 2 orbits of
length 240 and 1680 which we denote by 2LS and 2LL .
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Since Λg is a primitive sublattice of Λ we have a natural isomorphism of
groups

i : DΛg → DΛg⊥

satisfying i(γ)2/2 = −γ2/2 for all γ ∈ DΛg . The map i sends the orbit 1S into
2LS and 1LS into 2S because Λ has no vectors of norm 2.

Let H be a lattice with Gram matrix
(−2 3

3 0

)
. Then H has genus II1,1(9−1)

and we can consider H as a sublattice of II1,1 of index 3. Hence θΛg⊥/3∆
induces a modular form Fθ

Λg⊥/3∆ of weight −4 for the Weil representation of
L = Λg ⊕ H (cf. the remarks at the end of Section 2, Theorem 4.1 and the
remark at the end of Section 4). We decompose DL = DΛg ⊕ DH . Then the
components of Fθ

Λg⊥/3∆ are given by

Fθ
Λg⊥/3∆, γ = θi(γΛg )+Λg⊥/3∆

if γ = (γΛg , γH) with γH ∈ D3
H and Fθ

Λg⊥/3∆, γ = 0 otherwise.

The function ηg(τ) = η(3τ)8 is a modular form for Γ0(9) of weight 4 with
trivial character. This function is related to the theta functions by

(θ2S − θ2L)/3∆(τ) = 1/ηg(τ/3) .

We decompose
1/ηg(τ/9) = g0(τ) + . . .+ g8(τ)

where gj |T (τ) = e(j/9)gj(τ). Note that the only nonvanishing gj are g2, g5 and
g8. Then the lifting of 1/ηg on the trivial subgroup of DL is given by

FΓ0(9),1/ηg,0 =
3

ηg
e0 −

∑
γ∈D3

L

1

ηg
eγ + 3

∑
γ∈DL

gjγe
γ

where jγ is defined by jγ/9 = −γ2/2 mod 1 (cf. Theorem 3.2). Let

F = Fθ
Λg⊥/3∆ + 1

3 FΓ0(9),1/ηg,0 .

Then we have

Theorem 6.1
F is a modular form for ρDL of weight −4. The components of F are given by

F0 =
1

ηg
+

1

3

(
θ00

∆
− 1

ηg

)
= q−1 + 8 + 108q + 1072q2 + 8790q3 + 64512q4 + 440176q5 + . . .

and

Fγ =
1

3

(
θ00

∆
− 1

ηg

)
= 8 + 108q + 1064q2 + 8790q3 + 64512q4 + 440132q5 + . . .
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if γ ∈ D3
L\{0},

Fγ =
θ0

3∆
= 2 + 303q + 11088q2 + 225321q3 + 3204240q4 + . . .

if γ2/2 = 0 mod 1 and γ /∈ D3
L,

Fγ =
θ2S

3∆
= q−1/3 + 80q2/3 + 3671q5/3 + 86736q8/3 + 1365702q11/3 + . . .

if γ2/2 = 1/3 mod 1 and γ = (γΛg , γH) with γΛg ∈ 1LS ,

Fγ =
θ2L

3∆
= 72q2/3 + 3627q5/3 + 86544q8/3 + 1364976q11/3 + . . .

if γ2/2 = 1/3 mod 1 and γ = (γΛg , γH) with γΛg ∈ 1S ∪ 1LL ,

Fγ =
θ1

3∆
= 15q1/3 + 1104q4/3 + 31818q7/3 + 564192q10/3 + . . .

if γ2/2 = 2/3 mod 1,

Fγ = g8 = q−1/9 + 192q8/9 + 7704q17/9 + 164560q26/9 + . . .

if γ2/2 = 1/9 mod 1,

Fγ = g5 = 44q5/9 + 2464q14/9 + 62337q23/9 + 1020416q32/9 + . . .

if γ2/2 = 4/9 mod 1,

Fγ = g2 = 8q2/9 + 726q11/9 + 22528q20/9 + 417140q29/9 + . . .

if γ2/2 = 7/9 mod 1.
The Fourier coefficients of the Fγ are nonnegative rational integers.

The poles of F define a reflection group of L which has a Weyl vector (cf.
Theorems 12.1 and 10.4 in [B2]). For our purposes it is more convenient to
consider the corresponding dual notions. We define W as the reflection group
of the dual lattice L′ generated by the roots

α ∈ L with α2 = 2,
α ∈ L′ with α2 = 2/3 and αΛg + Λg ∈ 1LS ,
α ∈ L′ with α2 = 2/9.

Then W has a Weyl vector ρ in R⊗ L, i.e. the simple roots of W are the roots
α satisfying ρα = −α2/2. The vector 3ρ is a primitive norm 0 vector in L′ and
3ρ + L is in D3

L\{0}. The primitive norm 0 vectors in H ′ are conjugate under
O(H ′). We can choose any of these vectors for 3ρ.

Let
M = L⊕ II1,1 .

Then F defines a modular form for ρDM . The singular theta correspondence (cf.
[B2], Theorem 13.3) maps F to an automorphic form Ψ on the Grassmannian
of 2-dimensional negative definite subspaces of R ⊗M . The lattice M has one
orbit of primitive norm 0 vectors of level 1 under O(M) and has no primitive
norm 0 vectors of level 9.
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Theorem 6.2
The automorphic form Ψ is holomorphic and has singular weight 4. The level 1
expansion is given by

e((ρ, Z))
∏

α∈L′+

(
1− e((α,Z))

)[Fα+L](−α2/2)
=
∑
w∈W

det(w) ηg((wρ,Z))

Proof: The level 1 product expansion of Ψ is

e((ρ, Z))
∏

α∈L′+

(
1− e((α,Z))

)[Fα+L](−α2/2)
.

Since Ψ is holomorphic and has singular weight its Fourier expansion is sup-
ported only on norm 0 vectors. Furthermore Ψ is antisymmetric under the
Weyl group W because the roots of W have multiplicity 1. It follows that Ψ
has the sum expansion∑

w∈W
det(w) e((wρ,Z))

∏
n>0

(
1− e((3nwρ,Z))

)8
.

This proves the theorem. �

The above identity is also the denominator identity of a generalized Kac-
Moody algebra whose real simple roots are the simple roots of W and imaginary
simple roots are the positive integral multiples of 3ρ with multiplicity 8. The
root lattice is L′ and the multiplicity of a root α in L′ is given by [Fα+L](−α2/2).
This Lie algebra can also be constructed by orbifolding the fake monster algebra
with a lift of g (cf. [B1], [S1]).

We describe a slight variation of the above construction which simplifies some
aspects. Let N be the Niemeier lattice with root system E3

8 (cf. [CS]). Then the
direct product O(E8)3 is a normal subgroup of O(N) with quotient S3. Let g
be a permutation of the three E8-components of N of order 3. Then g has cycle
shape 38 and fixed point sublattice Ng isomorphic to

√
3E8. The orthogonal

complement Ng⊥ is isomorphic to A2 ⊗ E8. Here the centralizer C(g) of g in
O(N) induces the full orthogonal group of Ng so that the natural isomorphism
i : DNg → DNg⊥ maps the orbits of the corresponding size into each other. If
we construct F as above we can describe the components entirely in terms of
the orbits of O(

√
3E8) on D√3E8

. This also leads to a simpler description of W .
For example the roots of norm 2/3 then correspond to the elements in 1S .

Cycle shape 212

Let g be an automorphism of Λ of cycle shape 212. Then Λg is a primitive
sublattice of Λ isomorphic to

√
2D+

12.
The lattice

√
2D+

12 has genus II12,0(2+12
4 ) and there are 3 classes in this

genus given by A12
1 ,
√

2E8 ⊕ A4
1 and

√
2D+

12. The orthogonal group of
√

2D+
12

acts transitively on the vectors of norm 4, 6 and 10. The vectors of length 8
decompose into 2 orbits of length 24 and 7920 and the vectors of length 12
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decompose into 2 orbits of length 5280 and 59136. This implies that O(
√

2D+
12)

has 7 orbits on the discriminant form of
√

2D+
12. They are described in the

following table.

norm length order name

0 1 1 00

0 1 2 0S

990 2 0L

1/4 1024 2 1

1/2 132 2 2S

924 2 2L

3/4 1024 2 3

The centralizer C(g) of g in O(Λ) does not induce the full orthogonal group
of Λg. It acts transitively on the vectors of norm 4, 6 and 10 in Λg while the
vectors of norm 8 decompose into 2 orbits of length 24 and 7920 and the vectors
of norm 12 decompose into 3 orbits of length 5280, 8448 and 50688. Therefore
the orbit 2L in the above table splits into 2 orbits under C(g) which we denote
by 2LS and 2LL . They contain 132 respectively 792 elements.

The orthogonal complement Λg⊥ of Λg in Λ is Λ−g and is also isomorphic
to
√

2D+
12. The theta functions of the cosets are given by

θ00
(τ) = 1 + 264q2 + 2048q3 + 7944q4 + 24576q5 + 64416q6 + . . .

θ0S (τ) = 24q + 3808q3 + 50448q5 + 268224q7 + 947896q9 + . . .

θ0L(τ) = 8q + 256q2 + 1952q3 + 8192q4 + 25008q5 + 62464q6 + . . .

θ1(τ) = 24q5/4 + 464q9/4 + 2904q13/4 + 11088q17/4 + 32032q21/4 + . . .

θ2S (τ) = 2q2/4 + 40q6/4 + 876q10/4 + 4048q14/4 + 14650q18/4 + . . .

θ2L(τ) = 64q6/4 + 768q10/4 + 4224q14/4 + 14848q18/4 + 40128q22/4 + . . .

θ3(τ) = 2q3/4 + 132q7/4 + 1254q11/4 + 5964q15/4 + 19338q19/4 + . . .

The lattice Λg is a primitive sublattice of Λ so that we have a natural iso-
morphism of groups

i : DΛg → DΛg⊥

satisfying i(γ)2/2 = −γ2/2 for all γ ∈ DΛg . Since Λ has no roots i maps the
orbit 2LS of DΛg into the orbit 2S of DΛg⊥ and the orbit 2S into 2LS .

Let K be a lattice isomorphic to
√

2D12. Then K has genus II12,0(2−10
II 4−2

II ).

There are 2 classes in this genus and the other class is given by
√

2(E8 ⊕D4).
The group O(K) has 16 orbits on DK . We describe them in the following tables.
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norm length order

0 1 1

0 1 2

990 2

990 2

2 2

1/2 132 2

1848 2

132 2

norm length order

1/4 24 4

1584 4

4096 4

440 4

3/4 440 4

4096 4

1548 4

24 4

Λg contains a unique sublattice isomorphic to K. This is the sublattice
generated by the 264 vectors of norm 4 in Λg.

We consider K as a sublattice of Λg. Then H = Λg/K is a subgroup of
D2
K of order 2. Note that the elements in DK of norm 0 or 1/2 all have order

dividing 2 and therefore are in H⊥. The function θΛg⊥/2∆ induces a modular
form Fθ

Λg⊥/2∆ of weight −6 for the Weil representation of K. The components
are given by

Fθ
Λg⊥/2∆, γ = θi(γ+H)+Λg⊥/2∆

if γ ∈ H⊥ and Fθ
Λg⊥/2∆, γ = 0 otherwise.

The function ηg(τ) = η(2τ)12 is a modular form for Γ0(4) of weight 6 with
trivial character. We have the following relations

(θ00 − θ0S )/∆(τ) = 1/ηg(τ)

(θ2S − θ2L)/2∆(τ) = 1/ηg(τ/2)

(θ1 + θ3)/2∆(τ) = 1/ηg(τ/4)

We decompose 1/ηg(τ/4) as

1/ηg(τ/4) = g0(τ) + g1(τ) + g2(τ) + g3(τ)

with gj |T (τ) = e(j/4)gj(τ). Then the lifting of 1/ηg on the trivial subgroup of
DK is given by

FΓ0(4),1/ηg,0 =
2

ηg
e0 − 1

2

∑
γ∈D2

K

1

ηg
eγ + 2

∑
γ∈DK

gjγe
γ

where jγ is defined by jγ/4 = −γ2/2 mod 1. The lift of 1/ηg on H is

FΓ0(4),1/ηg,H = 2
∑
γ∈H

1

ηg
eγ −

∑
γ∈D2

K

1

ηg
eγ + 4

∑
γ∈H⊥

gjγ e
γ .

Finally we define

F = Fθ
Λg⊥/2∆ + 1

2FΓ0(4),1/ηg,0 − 1
4FΓ0(4),1/ηg,H .

Then the above relations imply
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Theorem 6.3
F is a modular form of weight −6 for ρDK . The components of F are given by

F0 =
1

ηg
+

1

2

(
θ00

∆
− 1

ηg

)
= q−1 + 12 + 300q + 5792q2 + 84186q3 + 949920q4 + 8813768q5 + . . .

and

Fγ =
1

2

(
θ00

∆
− 1

ηg

)
= 12 + 288q + 5792q2 + 84096q3 + 949920q4 + 8813248q5 + . . .

if γ ∈ D2
K\{0},

Fγ =
θ0L

2∆
= 4 + 224q + 5344q2 + 81792q3 + 939232q4 + 8769856q5 + . . .

if γ2/2 = 0 mod 1 and γ 6∈ D2
K ,

Fγ =
θ2S

2∆
= q−1/2 + 44q1/2 + 1242q3/2 + 22216q5/2 + 287463q7/2 + . . .

if γ2/2 = 1/2 mod 1 and γ +H ∈ 2LS ,

Fγ =
θ2L

2∆
= 32q1/2 + 1152q3/2 + 21696q5/2 + 284928q7/2 + . . .

if γ2/2 = 1/2 mod 1 and γ +H ∈ 2S ∪ 2LL ,

Fγ =
θ3

2∆
= q−1/4 + 90q3/4 + 2535q7/4 + 42614q11/4 + 521235q15/4 + . . .

if γ2/2 = 1/4 mod 1 and

Fγ =
θ1

2∆
= 12q1/4 + 520q5/4 + 10908q9/4 + 153960q13/4 + 1669720q17/4 + . . .

if γ2/2 = 3/4 mod 1.
The Fourier coefficients of the Fγ are nonnegative rational integers.

Now let
L = K ⊕ II1,1 .

We can consider F as a modular form for ρDL . Then the poles of F define
a reflection group W of L′ which has a Weyl vector. The roots of W are the
vectors

α ∈ L with α2 = 2,
α ∈ L′ with α2 = 1 and (αK +K) +H ∈ 2LS ,
α ∈ L′ with α2 = 1/2.
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The reflection group W has a Weyl vector ρ in R ⊗ L, i.e. the simple roots of
W are the roots α satisfying ρα = −α2/2. The vector 2ρ is a primitive norm 0
vector in L′ and 2ρ+ L is in D2

L\{0}.
Let

M = L⊕ II1,1 .

Then F defines a modular form for ρDM . Let Ψ be the theta lift of F . The
lattice M has one orbit of primitive norm 0 vectors of level 1 under O(M) and
has no primitive norm 0 vectors of level 4.

Theorem 6.4
The automorphic form Ψ is holomorphic and has singular weight 6. The level 1
expansion is given by

e((ρ, Z))
∏

α∈L′+

(
1− e((α,Z))

)[Fα+L](−α2/2)
=
∑
w∈W

det(w) ηg((wρ,Z))

As in the previous case this identity is also the denominator identity of a
generalized Kac-Moody algebra whose real simple roots are the simple roots of
W and imaginary simple roots are the positive integral multiples of 2ρ with
multiplicity 12. The root lattice is L′ and the multiplicity of a root α in L′ is
given by [Fα+L](−α2/2). This Lie algebra can also be constructed by orbifolding
the fake monster algebra with a lift of g.

We show now that the Niemeier lattice N with root system D2
12 gives a sim-

pler construction of the above objects. The quotientD′12/D12 can be represented
by the elements 0 = (012), s = (( 1

2 )12), c = (( 1
2 )11(− 1

2 )) and v = (0111). Adding
the glue vectors (0, 0), (s, s), (c, v) and (v, c) to the orthogonal sum D12⊕D12 we
obtain an even unimodular lattice N with root system D2

12. The direct product
O(D+

12)2 is a normal subgroup of O(N) with quotient S2. Define g ∈ O(N) by
g(x, y) = (y, x). Then g has order 2 and Ng and Ng⊥ are both isomorphic to√

2D+
12. The centralizer C(g) of g in O(N) induces the full orthogonal group

of Ng. Hence the orbits of the corresponding size are mapped into each other
under the natural map i : DNg → DNg⊥ . We construct a modular form F as
above. Then the components of F depend only on the orbits of O(

√
2D12) on

D√2D12
. In particular the generators of the Weyl group of norm 1 correspond

to the elements in the two orbits of length 132 in DK .

Cycle shape 3.21

Let g be an automorphism of the Leech lattice of cycle shape 3.21. Then the
fixed point lattice Λg has genus II2,0(3+27−1) and a Gram matrix is given by
( 6 3

3 12 ). The lattice Λg represents the unique class in this genus. The centralizer
of g induces the full orthogonal group of Λg (cf. also [HL]).

The lattice Λg,3 = Λg
3 ∩Λg⊥ has some very nice properties. It is isomorphic
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to ( 2 1
1 4 )⊗A2 and a Gram matrix is given by

(
2 1
1 4

)
⊗
(

2 1
1 2

)
=


4 2 2 1
2 4 1 2
2 1 8 4
1 2 4 8

 .

The lattice Λg,3 has genus II4,0(3+27−2). It is strongly modular, i.e. invariant
up to isomorphism under the Atkin-Lehner involutions Wd, d|21. There are 3
classes in the genus of Λg,3 with minima 2, 2 and 4, i.e. Λg,3 represents the
unique class without roots. The orthogonal group of Λg,3 has 40 orbits on the
discriminant form DΛg,3 and 4 orbits on DΛg,3,3. They are described in the
following table.

norm length order name

0 1 1 00

1/3 4 3 1

2/3 2 3 2S

2 3 2L

The corresponding theta functions are given by

θ00
(τ) = 1 + 6q2 + 12q4 + 12q5 + 6q6 + 24q7 + 18q8 + 24q10 + . . .

θ1(τ) = 3q4/3 + 6q7/3 + 6q10/3 + 6q13/3 + 12q16/3 + 6q19/3 + . . .

θ2S (τ) = 3q2/3 + 3q8/3 + 6q11/3 + 18q14/3 + 12q17/3 + 12q20/3 + . . .

θ2L(τ) = 6q5/3 + 6q8/3 + 15q14/3 + 6q17/3 + 18q20/3 + 12q23/3 + . . .

We have
(θ2S − θ2L)/3ηg3(τ) = 1/ηg(τ/3) .

Since Λg,3 is a primitive sublattice of the Leech lattice the theta function of Λg,3

defines a modular form F for the Weil representation of the orthogonal comple-
ment Λg,3⊥ of Λg,3 in Λ. This lattice has genus II20,0(3+27−2). In particular
there are no nontrivial isotropic elements in DΛg,3⊥,3. This implies that the
function F cannot be written as a linear combination of liftings from Γ0(21) be-
cause such a function would be invariant under the automorphisms of DΛg,3⊥,3

but as we have seen above F does not have this symmetry.
We remark that Λg,7 = Λg

7 ∩ Λg⊥ is isomorphic to
√

3A6 and has genus
II6,0(3+67+1). There is exactly one class in this genus.

We write θΛg,3 for the scalar valued theta function of Λg,3. Then θΛg,3 is
a modular form for Γ0(21) of weight 2 with trivial character. We describe
the expansions at the cusps. Let M =

(
a b
c d

)
∈ Γ such that c|21, c > 0 and

d = 0 mod c′ where c′ = N/c. Then

θΛg,3 |M (τ) = ε
1

c′
θΛg,3(τ/c′)
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with ε =
(
c′

2

)
.

Let K = Λg ⊕
√

7II1,1. Then K has genus II3,1(3+27+3). The quotient
θΛg,3/ηg3 where ηg3(τ) = η(τ)3η(7τ)3 is a modular form for Γ0(21) of weight −1
with character χ(M) =

(
d
7

)
for M =

(
a b
c d

)
∈ Γ0(21). We have

θΛg,3(τ)/ηg3(τ) = q−1 + 3 + 15q + 40q2 + 117q3 + 288q4 + 677q5 + . . .

θΛg,3(τ/3)/ηg3(τ) = q−1 + 6q−1/3 + 3 + 12q1/3 + 30q2/3 + 15q + . . .

The lift of θΛg,3/ηg3 on K with trivial support is given by

FΓ0(21),θΛg,3/ηg3 ,0 =

θΛg,3

ηg3

e0 +
1

3

∑
γ∈DK,3

g3,jγe
γ +

∑
γ∈DK,7

g7,jγe
γ +

1

3

∑
γ∈DK

g21,jγe
γ

where the gc,j are T -eigenfunctions with eigenvalue e(j/c) defined by the fol-
lowing decompositions

θΛg,3(τ/3)/ηg3(τ) = g3,0(τ) + g3,1(τ) + g3,2(τ)

θΛg,3(τ/7)/ηg3(τ/7) = g7,0(τ) + g7,1(τ) + . . .+ g7,6(τ)

θΛg,3(τ/21)/ηg3(τ/7) = g21,0(τ) + g21,1(τ) + . . .+ g21,20(τ) .

Note that

θΛg,3/ηg3 = g3,0

g7,j = g21,3j .

The functions with poles are θΛg,3/ηg3 = g3,0 and

g3,2 = 6q−1/3 + 30q2/3 + 108q5/3 + 306q8/3 + 834q11/3 + . . .

g21,20 = 6q−1/21 + 9792q20/21 + 835008q41/21 + 28697184q62/21 + . . .

g7,6 = g21,18 = q−1/7 + 1494q6/7 + 143829q13/7 + 5254648q20/7 + . . .

For c|63 we define the functions hc(τ) = 1/ηg(τ/c) and their T -eigenfunctions
hc,j with hc,j |T = e(j/c)hc,j .

The group DK,3 is generated by two orthogonal elements γ1, γ2 of norm
γ2

1/2 = γ2
2/2 = 1/3 mod 1. The function h3 is a modular form of weight −1 for

Γ1(21) with character χ(M) = e(−b/3) for M =
(
a b
c d

)
∈ Γ1(21). The lift of h3

on γ1 is given by (cf. Theorem 3.7)

1

12
FΓ1(21),h3,γ1

= h3(eγ1 + e−γ1)− h3(eγ2 + e−γ2)

−
∑

γ∈γ1+DK,7

h21,jγ (eγ + e−γ) +
∑

γ∈γ2+DK,7

h21,jγ (eγ + e−γ) .
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We have

1

4
FΓ0(21),θΛg,3/ηg3 ,0 +

1

24
FΓ1(21),h3,γ1

=
1

4

θΛg,3

ηg3

e0

+
1

12

∑
γ∈DK,3

γ2/2 6= 1/3 mod 1

g3,jγe
γ

+
1

12
(g3,2 + 6h3)(eγ1 + e−γ1)

+
1

12
(g3,2 − 6h3)(eγ2 + e−γ2)

+
1

4

∑
γ∈DK,7

g7,jγe
γ

+
1

12

∑
γ∈DK

γ2/2 6= 1/3+n/7 mod 1

g21,jγe
γ

+
1

12

∑
γ∈γ1+DK,7

(g21,jγ − 6h21,jγ )(eγ + e−γ)

+
1

12

∑
γ∈γ2+DK,7

(g21,jγ + 6h21,jγ )(eγ + e−γ) .

The Fourier expansions of the functions g3,1/12, (g3,2 ± 6h3)/12 and g21,3j/12,
g21,3j+1/12, (g21,3j+2 ± 6h21,3j+2)/12 have nonnegative integral coefficients, for
example

1

12
g3,1 = q1/3 + 5q4/3 + 17q7/3 + 48q10/3 + 123q13/3 + 286q16/3 + . . .

=
θ1

3ηg3

1

12
(g3,2 + 6h3) = q−1/3 + 3q2/3 + 10q5/3 + 27q8/3 + 72q11/3 + 170q14/3 + . . .

=
θ2S

3ηg3

1

12
(g3,2 − 6h3) = 2q2/3 + 8q5/3 + 24q8/3 + 67q11/3 + 163q14/3 + 375q17/3 + . . .

=
θ2L

3ηg3

.

Let M = Λg ⊕
√

7II1,1 ⊕H where H is a lattice with Gram matrix
(−2 3

3 0

)
.

Then M has genus II4,2(3+29−17+3).
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The modular form

1
4 FΓ0(21),θΛg,3/ηg3 ,0 + 1

24 FΓ1(21),h3,γ1

on K induces a modular form FθΛg,3/ηg3
on M .

We remark that FθΛg,3/ηg3
can also be obtained as

FθΛg,3/ηg3
=

1

12
FΓ0(63),θΛg,3/ηg3 ,D21 +

1

216

∑
γ∈γ1+D21

FΓ1(63),h3,γ .

The function ηg(τ) = η(3τ)η(21τ) is a modular form for Γ0(63) of weight 1
with character χ(M) =

(
d
7

)
for M =

(
a b
c d

)
∈ Γ0(63). For the lift of 1/ηg on M

with trivial support we find

1

3
FΓ0(63),1/ηg,0

=
1

ηg
e0 − 1

3

∑
γ∈D21

1

ηg
eγ +

∑
γ∈D7

h7,jγe
γ − 1

3

∑
γ∈D3

h7,jγe
γ

+
∑
γ∈D9

h9,jγe
γ +

∑
γ∈D

h63,jγe
γ .

Let
F = FθΛg,3/ηg3

+ 1
3 FΓ0(63),1/ηg,0 .

Then F is a modular form of weight −1 on M . Using θΛg,3/ηg3 = g3,0 and
g7,j = g21,3j we obtain

33



Theorem 6.5
The function F is given by

F =
1

ηg
e0 +

1

3

∑
γ∈D21

(
θΛg,3

ηg3

− 1

ηg

)
eγ

+
1

12

∑
γ∈D3

γ2/2 = 2/3 mod 1

g3,1 e
γ

+
1

12

∑
γ∈γ1+D21

(g3,2 + 6h3) (eγ + e−γ)

+
1

12

∑
γ∈γ2+D21

(g3,2 − 6h3) (eγ + e−γ)

+
∑
γ∈D7

h7,jγe
γ +

1

3

∑
γ∈D3

(
g7,jγ − h7,jγ

)
eγ

+
1

12

∑
γ∈D21

γ2/2 = 2/3+n/7 mod 1

g21,jγe
γ

+
1

12

∑
γ∈γ1+D3

(g21,jγ − 6h21,jγ )(eγ + e−γ)

+
1

12

∑
γ∈γ2+D3

(g21,jγ + 6h21,jγ )(eγ + e−γ)

+
∑
γ∈D9

h9,jγe
γ

+
∑
γ∈D

h63,jγe
γ

The coefficients of the components Fγ of F are nonnegative rational integers.

Note that without the contributions of the lifting of h3 the Fourier coefficients
of the principal part of F would be rational but not integral so that we could
not apply the singular theta correspondence to F .

We describe some components of F . They are important to understand the
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properties of the Weyl group and the Weyl vector we define below.

Let γ be an isotropic element in D. Then γ is in D3 = D21 ⊕D7. We have

Fγ =
1

ηg
+

1

3

(
θΛg,3

ηg3

− 1

ηg

)
+ h7,0 +

1

3
(g7,0 − h7,0)

=
1

ηg
+

1

3

(
θΛg,3

ηg3

− 1

ηg

)
+

1

7

(
θΛg,7

ηg7

− 1

ηg

)
+

1

21

(
θΛg⊥

∆
− θΛg,7

ηg7

− θΛg,3

ηg3

+
1

ηg

)
= q−1 + 2 + 1060q + 83728q2 + 2790636q3 + 57148320q4 + . . .

if γ = 0,

Fγ =
1

3

(
θΛg,3

ηg3

− 1

ηg

)
+

1

3
(g7,0 − h7,0)

=
1

3

(
θΛg,3

ηg3

− 1

ηg

)
+

1

21

(
θΛg⊥

∆
− θΛg,7

ηg7

− θΛg,3

ηg3

+
1

ηg

)
= 2 + 1060q + 83720q2 + 2790636q3 + 57148320q4 + 846724518q5 + . . .

if γ ∈ D21\{0},

Fγ = h7,0 +
1

3
(g7,0 − h7,0)

=
1

7

(
θΛg,7

ηg7

− 1

ηg

)
+

1

21

(
θΛg⊥

∆
− θΛg,7

ηg7

− θΛg,3

ηg3

+
1

ηg

)
= 1 + 1055q + 83714q2 + 2790597q3 + 57148224q4 + 846724377q5 + . . .

if γ ∈ D7\{0}, and

Fγ =
1

3
(g7,0 − h7,0)

=
1

21

(
θΛg⊥

∆
− θΛg,7

ηg7

− θΛg,3

ηg3

+
1

ηg

)
= 1 + 1055q + 83707q2 + 2790597q3 + 57148224q4 + 846724293q5 + . . .

if γ ∈ D3\{D21 ∪D7}.
Next we describe the singular components of F . They are given by

F0 =
1

ηg
+

1

3

(
θΛg,3

ηg3

− 1

ηg

)
+ h7,0 +

1

3
(g7,0 − h7,0)

= q−1 + 2 + 1060q + 83728q2 + 2790636q3 + 57148320q4 + . . .
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and

Fγ =
1

12
(g3,2 + 6h3) +

1

12
(g21,14 − 6h21,14)

= q−1/3 + 166q2/3 + 22071q5/3 + 925654q8/3 + 21777668q11/3 + . . .

if γ2/2 = 1/3 mod 1 and γ ∈ ±γ1 +D21,

Fγ = h7,6 +
1

3
(g7,6 − h7,6) + h63,54

= h7,6 +
1

3
(g7,6 − h7,6)

= q−1/7 + 498q6/7 + 47943q13/7 + 1751560q20/7 + 37970952q27/7 + . . .

if γ2/2 = 1/7 mod 1 and γ ∈ D7,

Fγ = h9,8 + h63,56

= q−1/9 + 584q8/9 + 54268q17/9 + 1943680q26/9 + 41603422q35/9 + . . .

if γ2/2 = 1/9 mod 1 and γ ∈ D9,

Fγ =
1

12
(g21,20 + 6h21,20) + h63,60

=
1

12
(g21,20 + 6h21,20)

= q−1/21 + 824q20/21 + 69660q41/21 + 2391912q62/21 + . . .

if γ2/2 = 1/21 mod 1 and γ ∈ ±γ2 +D3, and

Fγ = h63,62

= q−1/63 + 960q62/63 + 78660q125/63 + 2650432q188/63 + . . .

if γ2/2 = 1/63 mod 1.
The lattices

√
7II1,1⊕H and II1,1⊕

√
7H are in the same genus and therefore

isomorphic. This implies that we can consider F as a modular form on

L = Λg ⊕
√

7H .

The poles of F define a reflection group W of L′. The roots of W are the vectors

α ∈ L with α2 = 2,
α ∈ L′ with α2 = 2/3 and α+ L ∈ ±γ1 +D3

L,
α ∈ L′ with α2 = 2/7 and α+ L ∈ DL,7,
α ∈ L′ with α2 = 2/9 and α+ L ∈ DL,9,
α ∈ L′ with α2 = 2/21 and α+ L ∈ ±γ2 +D3

L,
α ∈ L′ with α2 = 2/63.
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The reflection group W has a Weyl vector ρ in R ⊗ L, i.e. the simple roots of
W are the roots α satisfying ρα = −α2/2. The vector 3ρ is a primitive norm 0
vector in L′ and 3ρ+ L is in D3

L\(D21
L ∪DL,7). There is one orbit of primitive

norm 0 vectors in (
√

7H)′ under the orthogonal group of (
√

7H)′ and we can
take any vector in this orbit for 3ρ.

The function F is a modular form for M = L⊕ II1,1. Let Ψ be the theta lift
of F . The lattice M has one orbit of primitive norm 0 vectors of level 1 under
O(M).

Theorem 6.6
The automorphic form Ψ is holomorphic and has singular weight 1. The level 1
expansion is given by

e((ρ, Z))
∏

α∈L′+

(
1− e((α,Z))

)[Fα+L](−α2/2)
=
∑
w∈W

det(w) ηg((wρ,Z))

As in the previous cases this identity is also the denominator identity of a
generalized Kac-Moody algebra whose real simple roots are the simple roots of
W and imaginary simple roots are the positive integral multiples 3nρ of 3ρ with
multiplicity 2 if 7|n and multiplicity 1 otherwise. The root lattice is L′ and the
multiplicity of a root α in L′ is given by [Fα+L](−α2/2). Again this Lie algebra
can also be constructed by orbifolding the fake monster algebra with a lift of g.
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