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Abstract. We associate to a generalised deep hole of the Leech lattice vertex
operator algebra a generalised hole diagram. We show that this Dynkin dia-
gram determines the generalised deep hole up to conjugacy and that there are
exactly 70 such diagrams. In an earlier work we proved a bijection between the
generalised deep holes and the strongly rational, holomorphic vertex operator
algebras of central charge 24 with non-trivial weight-1 space. Hence, we obtain
a new, geometric classification of these vertex operator algebras.
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1. Introduction

In 1968 Niemeier classified the positive-definite, even, unimodular lattices of
rank 24 [Nie73]. He showed that up to isomorphism there are exactly 24 such
lattices and that the isomorphism class of a lattice is uniquely determined by its
root system. The Leech lattice Λ is the unique lattice in this genus without roots.
There are at least five proofs of the classification result. Niemeier applied Kneser’s
neighbourhood method. Venkov found a proof based on harmonic theta series
[Ven80]. It can also be derived from Conway, Parker and Sloane’s classification of
the deep holes of the Leech lattice [CPS82, Bor85] and from the Smith-Minkowski-
Siegel mass formula [CS82a, CS99]. Finally, it also follows from the classification
of certain automorphic representations of O24 [CL19].

We describe the third proof in more detail. In [Bor85] Borcherds showed that the
Leech lattice Λ is the unique Niemeier lattice without roots (see also [Con69]) and
that the orbits of deep holes of Λ, i.e. points in Λ⊗ZR which have maximal distance
to Λ, are in natural bijection with the other Niemeier lattices. These results are
proved without explicitly classifying the deep holes or the Niemeier lattices. In
[CPS82] Conway, Parker and Sloane associate a hole diagram to a deep hole in Λ
and classify the possible diagrams by geometric methods. They find 23 diagrams
and show that a deep hole is fixed up to equivalence by its hole diagram. This
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implies that there are exactly 23 Niemeier lattices with roots. In this paper we
generalise this approach to strongly rational, holomorphic vertex operator algebras
of central charge 24.

Vertex operator algebras describe 2-dimensional conformal field theories [Bor86,
FLM88]. They have found various applications in mathematics and mathematical
physics, e.g., in geometry, group theory and the theory of automorphic forms. The
theory of these algebras is in certain aspects similar to the theory of even lattices
over the integers.

The weight-1 subspace V1 of a strongly rational, holomorphic vertex operator
algebra V of central charge 24 is a reductive Lie algebra. In 1993 Schellekens
[Sch93] (see also [EMS20a]) showed that there are at most 71 possibilities for this
Lie algebra using the theory of Jacobi forms. He conjectured that all potential Lie
algebras are realised and that the V1-structure fixes the vertex operator algebra
up to isomorphism. By the work of many authors over the past three decades the
following result is now proved.
Theorem. Up to isomorphism there are exactly 70 strongly rational, holomorphic
vertex operator algebras V of central charge 24 with V1 6= {0}. Such a vertex
operator algebra is uniquely determined by its V1-structure.

The proof is based on a case-by-case analysis and uses a variety of methods.
The 24 vertex operator algebras VN associated with the Niemeier lattices N are

examples of the vertex operator algebras on Schellekens’ list.
In this paper we give a new, geometric proof of the theorem based on the results in

[MS19], which generalises the classification of the Niemeier lattices by enumeration
of the corresponding deep holes of the Leech lattice Λ [CPS82, Bor85].

One method to construct vertex operator algebras is the cyclic orbifold con-
struction [EMS20a]. Let V be a strongly rational, holomorphic vertex operator
algebra and g an automorphism of V of finite order n and type 0. Then the
fixed-point subalgebra V g is a strongly rational vertex operator algebra with n2

non-isomorphic irreducible modules, which can be realised as the eigenspaces of
g acting on the irreducible twisted modules V (gi) of V . If the twisted mod-
ules V (gi) have positive conformal weight for i 6= 0 mod n, then the direct sum
V orb(g) := ⊕i∈ZnV (gi)g is again a strongly rational, holomorphic vertex operator
algebra. There is also an inverse orbifold construction, i.e. an automorphism h of
V orb(g) such that (V orb(g))orb(h) = V .

Suppose that V has central charge 24 and that n > 1. Pairing the character of
V g with a certain vector-valued Eisenstein series of weight 2 we obtain [MS19]:

Theorem (Dimension Formula). The dimension of the weight-1 subspace of V orb(g)

is given by

dim(V orb(g)
1 ) = 24 +

∑
d|n

cn(d) dim(V g
d

1 )−R(g)

where the cn(d) ∈ Q are defined by
∑
d|n cn(d)(t, d) = n/t for all t | n and the rest

term R(g) is non-negative. In particular,

dim(V orb(g)
1 ) ≤ 24 +

∑
d|n

cn(d) dim(V g
d

1 ).

The rest term R(g) is described explicitly. It depends on the dimensions of the
weight spaces of the irreducible V g-modules of weight less than 1.

The upper bound in the theorem motivates the following definition. The auto-
morphism g is called a generalised deep hole of V if
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(1) the upper bound in the dimension formula is attained, i.e. dim(V orb(g)
1 ) =

24 +
∑
d|n cn(d) dim(V g

d

1 ),
(2) the Cartan subalgebra of V orb(g)

1 has no contributions from the twisted
modules, i.e. rk(V orb(g)

1 ) = rk(V g1 ).
We also call the identity a generalised deep hole.

Let VΛ be the vertex operator algebra of the Leech lattice Λ. Recall that algebraic
conjugacy means conjugacy of cyclic subgroups. An averaged version of Kac’s very
strange formula implies [MS19]:

Theorem (Holy Correspondence). The orbifold construction g 7→ V
orb(g)
Λ defines

a bijection between the algebraic conjugacy classes of generalised deep holes g in
Aut(VΛ) with rk((V gΛ )1) > 0 and the isomorphism classes of strongly rational, holo-
morphic vertex operator algebras V of central charge 24 with V1 6= {0}.

Let g ∈ Aut(VΛ) be a generalised deep hole. Then h = (V gΛ )1 is a Cartan
subalgebra of (V orb(g)

Λ )1. It acts on (VΛ(g))1. The corresponding weights form a
Dynkin diagram, which we denote by Φ(g). Then the generalised hole diagram of g
is defined as the pair (ϕ(g),Φ(g)) where ϕ(g) denotes the cycle shape of the image
of g under the natural projection Aut(VΛ) → O(Λ). For example, if V orb(g)

Λ is
isomorphic to the vertex operator algebra VN of the Niemeier lattice with Dynkin
diagram N , then the generalised hole diagram of g is (124, Ñ) where Ñ is the affine
Dynkin diagram corresponding to N .

Our main result is the following (see Theorem 5.25):
Theorem (Classification of Generalised Deep Holes). There are exactly 70 conju-
gacy classes of generalised deep holes g in Aut(VΛ) with rk((V gΛ )1) > 0. The class
of a generalised deep hole is uniquely determined by its generalised hole diagram.

We outline the proof. The holy correspondence together with the lowest-order
trace identity (see equation (1) in Section 3.1) imply that there are at most 82
possible generalised hole diagrams. These are described in Table 1 and Table 2.
Then, using geometric arguments similar to those by Conway, Parker and Sloane
in [CPS82] we reduce this number to 70. In [MS19] we explicitly list 70 generalised
deep holes with different diagrams so that there are exactly these diagrams.

We observe (see Theorem 5.27):
Theorem (Projection to Co0). Under the natural projection Aut(VΛ)→ O(Λ) the
70 conjugacy classes of generalised deep holes g with rk((V gΛ )1) > 0 map to the 11
conjugacy classes in O(Λ) ∼= Co0 with cycle shapes 124, 1828, 1636, 212, 142244,
1454, 12223262, 1373, 12214182, 2363 and 22102.

This is the decomposition of the genus of the Moonshine module described by
Höhn in [Höh17]. The connection is explored in [HM20].

A consequence of the classification of generalised deep holes is:
Theorem (Classification of Vertex Operator Algebras). Up to isomorphism there
are exactly 70 strongly rational, holomorphic vertex operator algebras V of central
charge 24 with V1 6= {0}. Such a vertex operator algebra is uniquely determined by
its V1-structure.

In contrast to the previous proof our argument is uniform and independent of
Schellekens’ results.

We remark that Höhn’s approach to the classification problem in [Höh17] (and
[Lam20]) based on coset constructions can in principle also be used to give a uniform
proof of the above classification result.
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Outline. In Section 2 we describe the orbifold construction, lattice vertex operator
algebras and the automorphisms of the Leech lattice vertex operator algebra.

In Section 3 we summarise some results on strongly rational, holomorphic vertex
operator algebras of central charge 24, in particular the bijection with the gener-
alised deep holes of the Leech lattice vertex operator algebra.

In Section 4 we associate a generalised hole diagram with a generalised deep hole
of the Leech lattice vertex operator algebra.

In Section 5 we finally use the generalised hole diagrams to classify the generalised
deep holes of the Leech lattice vertex operator algebra.
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lowship for Research in Japan and by JSPS Grant-in-Aid KAKENHI 20F40018.
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2. Vertex Operator Algebras and Their Automorphisms

In this section we review the cyclic orbifold construction and describe the auto-
morphisms of the Leech lattice vertex operator algebra VΛ.

A vertex operator algebra V is called strongly rational if it is rational (as defined,
e.g., in [DLM97]), C2-cofinite (or lisse), self-contragredient (or self-dual) and of
CFT-type. Then V is also simple.

Moreover, a simple vertex operator algebra V is said to be holomorphic if V
itself is the only irreducible V -module. The central charge of a strongly rational,
holomorphic vertex operator algebra V is necessarily a non-negative multiple of 8.

Examples of strongly rational vertex operator algebras are those associated with
positive-definite, even lattices. If the lattice is unimodular, then the associated
vertex operator algebra is holomorphic.

2.1. Orbifold Construction. The cyclic orbifold construction [EMS20a, Möl16]
is an important tool that allows to construct new vertex operator algebras from
known ones.

Let V be a strongly rational, holomorphic vertex operator algebra and G = 〈g〉
a finite, cyclic group of automorphisms of V of order n.

By [DLM00] there is an up to isomorphism unique irreducible gi-twisted V -
module V (gi) for each i ∈ Zn. The uniqueness of V (gi) implies that there is a
representation φi : G→ AutC(V (gi)) of G on the vector space V (gi) such that

φi(g)YV (gi)(v, x)φi(g)−1 = YV (gi)(gv, x)

for all i ∈ Zn, v ∈ V . This representation is unique up to an n-th root of unity.
Denote the eigenspace of φi(g) in V (gi) corresponding to the eigenvalue e2πij/n by
W (i,j). On V (g0) = V we choose φ0(g) = g.

By [DM97, Miy15, CM16] the fixed-point vertex operator subalgebra V g =
W (0,0) is again strongly rational. It has exactly n2 irreducible modules, namely
the W (i,j), i, j ∈ Zn [MT04]. One can further show that the conformal weight
ρ(V (g)) of V (g) is in (1/n2)Z, and we define the type t ∈ Zn of g by t = n2ρ(V (g))
mod n.

Assume for simplicity that g has type 0, i.e. that ρ(V (g)) ∈ (1/n)Z. Then it is
possible to choose the representations φi such that the conformal weights satisfy

ρ(W (i,j)) = ij

n
mod 1
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and V g has fusion rules

W (i,j) �W (k,l) ∼= W (i+k,j+l)

for all i, j, k, l ∈ Zn, i.e. the fusion ring of V g is the group ring C[Zn×Zn] [EMS20a].
In particular, all irreducible V g-modules are simple currents.

In essence, the results in [EMS20a] show that for cyclic G ∼= Zn and strongly
rational, holomorphic V the module category of V G is the twisted group double
Dω(G) where the 3-cocycle [ω] ∈ H3(G,C×) ∼= Zn is determined by the type
t ∈ Zn. This proves a special case of a conjecture by Dijkgraaf, Vafa, Verlinde and
Verlinde [DVVV89] who stated it for arbitrary finite G.

In general, a simple vertex operator algebra V is said to satisfy the positivity
condition if the conformal weight ρ(W ) > 0 for any irreducible V -module W 6∼= V
and ρ(V ) = 0.

Now, if V g satisfies the positivity condition (it is shown in [Möl18] that this
condition is almost automatically satisfied if V is strongly rational), then the direct
sum of V g-modules

V orb(g) :=
⊕
i∈Zn

W (i,0)

admits the structure of a strongly rational, holomorphic vertex operator algebra
of the same central charge as V and is called orbifold construction associated with
V and g [EMS20a]. Note that

⊕
j∈ZnW

(0,j) gives back the old vertex operator
algebra V .

We briefly describe the inverse (or reverse) orbifold construction [EMS20a, LS19].
Suppose that the strongly rational, holomorphic vertex operator algebra V orb(g) is
obtained by an orbifold construction as described above. Then via ζv := e2πij/nv
for v ∈ W (j,0) we define an automorphism ζ of V orb(g) of order n and type 0,
and the unique irreducible ζj-twisted V orb(g)-module is given by V orb(g)(ζj) =⊕

i∈ZnW
(i,j), j ∈ Zn. Then

(V orb(g))orb(ζ) =
⊕
j∈Zn

W (0,j) = V,

i.e. orbifolding with ζ is inverse to orbifolding with g.

2.2. Automorphisms of the Leech Lattice Vertex Operator Algebra. We
describe lattice vertex operator algebras [Bor86, FLM88], the automorphism group
of the Leech lattice vertex operator algebra VΛ and in particular its conjugacy
classes, which were determined in [MS19].

For a positive-definite, even lattice L with bilinear form 〈·, ·〉 : L × L → Z the
associated vertex operator algebra is given by

VL = M(1)⊗ Cε[L]

where M(1) is the Heisenberg vertex operator algebra of rank rk(L) associated
with hL = L⊗Z C and Cε[L] the twisted group algebra, i.e. the algebra with basis
{eα |α ∈ L} and products eαeβ = ε(α, β)eα+β where ε : L×L→ {±1} is a 2-cocycle
satisfying ε(α, β)/ε(β, α) = (−1)〈α,β〉.

Let O(L) denote the orthogonal group (or automorphism group) of the lattice
L. For ν ∈ O(L) and a function η : L → {±1} the map φη(ν) acting on Cε[L] as
φη(ν)(eα) = η(α)eνα for α ∈ L and as ν on M(1) defines an automorphism of VL if
and only if

η(α)η(β)
η(α+ β) = ε(α, β)

ε(να, νβ)
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for all α, β ∈ L. In this case φη(ν) is called a lift of ν and all such automorphisms
form the subgroup O(L̂) of Aut(VL). There is a short exact sequence

1→ Hom(L, {±1})→ O(L̂)→ O(L)→ 1

with the surjection O(L̂)→ O(L) given by φη(ν) 7→ ν. The image of Hom(L, {±1})
in O(L̂) are exactly the lifts of id ∈ O(L).

If the restriction of η to the fixed-point lattice Lν is trivial, we call φη(ν) a
standard lift of ν. It is always possible to choose η in this way [Lep85]. It was
proved in [EMS20a] that all standard lifts of a given ν ∈ O(L) are conjugate in
Aut(VL).

For any vertex operator algebra V of CFT-type K := 〈{ev0 | v ∈ V1}〉 defines
a subgroup of Aut(V ) called the inner automorphism group of V . By [DN99] the
automorphism group of VL is of the form

Aut(VL) = O(L̂) ·K

where K is a normal subgroup of Aut(VL), Hom(L, {±1}) a subgroup of K ∩O(L̂)
and Aut(VL)/K is isomorphic to a quotient of O(L).

In the following we specialise to the Leech lattice Λ, the up to isomorphism
unique unimodular, positive-definite, even lattice of rank 24 without roots, i.e.
vectors of norm 2. The automorphism group O(Λ) is Conway’s group Co0. Since
(VΛ)1 = {h(−1) ⊗ e0 |h ∈ hΛ} ∼= hΛ with hΛ = Λ ⊗Z C, the inner automorphism
group satisfies

K = {eh0 |h ∈ hΛ}

and is abelian. Since K ∩ O(Λ̂) = Hom(Λ, {±1}) in the special case of the Leech
lattice, there is a short exact sequence

1→ K → Aut(VΛ)→ O(Λ)→ 1.

Hence, every automorphism of VΛ is of the form

φη(ν)σh

for a lift φη(ν) of some ν ∈ O(Λ) and σh = e2πih0 for some h ∈ hΛ. The surjection
Aut(VΛ)→ O(Λ) in the short exact sequence is given by φη(ν)σh 7→ ν.

It suffices to take a standard lift φη(ν) of ν because any two lifts of ν only differ
by a homomorphism Λ → {±1}, which can be absorbed into σh. Moreover, since
σh = id if and only if h ∈ Λ′ = Λ, it is enough to take h ∈ hΛ/Λ.

We describe the conjugacy classes of Aut(VΛ). For ν ∈ O(Λ) let πν = 1
|ν|
∑|ν|−1
i=0 νi

denote the projection from hΛ onto the elements of hΛ fixed by ν. The automor-
phism φη(ν)σh is conjugate to φη(ν)σπν(h) for any h ∈ hΛ, and φη(ν) and σπν(h)
commute.

In [MS19] all automorphisms in Aut(VΛ) were classified up to conjugacy. A
similar result for arbitrary lattice vertex operator algebras was proved in [HM20].
Choose a section ν 7→ φη(ν).

Proposition 2.1 ([MS19]). Let Q := {(ν, h) | ν ∈ N,h ∈ Hν} where
(1) N is a set of representatives for the conjugacy classes in O(Λ),
(2) Hν is a set of representatives for the orbits of the action of CO(Λ)(ν) on

πν(hΛ)/πν(Λ).
Then the map (ν, h) 7→ φη(ν)σh is a bijection from the set Q to the conjugacy
classes of Aut(VΛ).
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Since h ∈ πν(hΛ), φη(ν) and σh commute. The automorphism φη(ν)σh in
Aut(VΛ) has finite order if and only if h is in πν(Λ⊗Z Q).

We also describe the conjugacy classes in Aut(VΛ) of a given finite order n. First
note that a standard lift φη(ν) of ν has order m = |ν| if m is odd or if m is even
and 〈α, νm/2α〉 ∈ 2Z for all α ∈ Λ, and order 2m otherwise. In the latter case
we say that ν exhibits order doubling. Then φη(ν)meα = (−1)m〈πν(α),πν(α)〉eα =
(−1)〈α,νm/2α〉eα for all α ∈ Λ. Note that the map sending α to m〈πν(α), πν(α)〉 =
〈α, νm/2α〉 mod 2 defines a homomorphism Λ→ Z2.

Let φη(ν) be a standard lift. If ν exhibits order doubling, then there exists a
vector sν ∈ (1/2m)Λν defining an inner automorphism σsν = e2πi(sν)0 of order 2m
such that φη(ν)σsν has orderm. If ν does not exhibit order doubling, we set sν = 0.
Then the order of an automorphism φη(ν)σsν+f for f ∈ Λ⊗ZQ is given by lcm(m, k)
where k is the smallest positive integer such that kf is in Λ or equivalently in the
fixed-point lattice Λν .

For convenience, we define the sν-shifted action of CO(Λ)(ν) on πν(hΛ) by

τ.f = τf + (τ − id)sν
for all τ ∈ CO(Λ)(ν) and f ∈ πν(hΛ). Choose a section ν 7→ φη(ν) mapping only to
standard lifts. Then:

Proposition 2.2 ([ELMS21]). A complete system of representatives for the con-
jugacy classes of automorphisms in Aut(VΛ) of order n is given by the φη(ν)σsν+f
where

(1) ν is from the representatives in N ⊆ O(Λ) of order m dividing n,
(2) f is from the orbit representatives of the sν-shifted action of CO(Λ)(ν) on

(Λν/n)/πν(Λ)
such that lcm(m, |σf |) = n.

We conclude this section by recalling some results on the twisted modules of
lattice vertex operator algebras. For a standard lift φη(ν) the irreducible φη(ν)-
twisted modules of a lattice vertex operator algebra VL are described in [DL96,
BK04]. Together with the results in [Li96] this allows us to describe the irreducible
g-twisted VL-modules for all finite-order automorphisms g ∈ Aut(VL).

For simplicity, let L be unimodular. Then VL is holomorphic and there is a unique
irreducible g-twisted VL-module VL(g) for each g ∈ Aut(VL) of finite order. Let
g = φη(ν)σh for some standard lift φη(ν) and σh = e2πih0 for some h ∈ πν(L⊗ZQ).
Then

VL(g) = M(1)[ν]⊗ C[−h+ πν(L)]⊗ Cd(ν)

with twisted Heisenberg module M(1)[ν], grading by the lattice coset −h+ πν(L)
and defect d(ν) ∈ Z>0. (The minus sign in −h + πν(Λ) has to do with the sign
convention in the definition of twisted modules. Here, we follow the convention in,
e.g., [DLM00] as opposed to some older texts.)

Assume that ν has order m and cycle shape
∏
t|m t

bt with bt ∈ Z, i.e. the exten-
sion of ν to hL has characteristic polynomial

∏
t|m(xt − 1)bt . Then the conformal

weight of VL(g) is given by

ρ(VL(g)) = 1
24
∑
t|m

bt

(
t− 1

t

)
+ min
α∈−h+πν(L)

〈α, α〉
2 ≥ 0,

where ρν = 1
24
∑
t|m bt

(
t− 1

t

)
is called the vacuum anomaly of VL(g) [DL96]. Note

that ρν is positive for ν 6= id. The second term is half of the norm of a shortest
vector in the lattice coset −h+ πν(L).
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3. Holomorphic Vertex Operator Algebras of Central Charge 24

In this section we recall the notion of the affine structure of a strongly rational,
holomorphic vertex operator algebra of central charge 24 and describe the bijection
between these vertex operator algebras and the generalised deep holes of the Leech
lattice vertex operator algebra [MS19].

3.1. Affine Structure. Let V =
⊕∞

n=0 Vn be a vertex operator algebra of CFT-
type. Then the zero modes

[a, b] := a0b

for a, b ∈ V1 endow the weight-1 space V1 with the structure of a Lie algebra.
Moreover, the zero modes a0 for a ∈ V1 equip each V -module with a weight-
preserving action of this Lie algebra.

If g ∈ Aut(V ) is an automorphism of the vertex operator algebra V , fixing the
vacuum vector 1 ∈ V0 and the Virasoro vector ω ∈ V2 by definition, then the
restriction of g to V1 is a Lie algebra automorphism, possibly of smaller order.

If V is also self-contragredient, then there exists a non-degenerate, invariant
bilinear form 〈·, ·〉 on V , which is unique up to a non-zero scalar and symmetric
[FHL93, Li94]. We normalise this form such that 〈1,1〉 = −1, where 1 is the
vacuum vector of V . Then a1b = b1a = 〈a, b〉1 for all for a, b ∈ V1.

Let g be a simple, finite-dimensional Lie algebra with invariant bilinear form
(·, ·) normalised such that (α, α) = 2 for all long roots α. The affine Kac-Moody
algebra ĝ associated with g is the Lie algebra ĝ := g⊗ C[t, t−1]⊕ CK with central
element K and Lie bracket

[a⊗ tm, b⊗ tn] := [a, b]⊗ tm+n +m(a, b)δm+n,0K

for a, b ∈ g, m,n ∈ Z.
A ĝ-module is said to have level k ∈ C if K acts as k id. Let λ ∈ P+ be a

dominant integral weight and k ∈ C. Then we denote by Lĝ(k, λ) the irreducible
quotient of the ĝ-module of level k induced from the irreducible highest-weight
g-module Lg(λ).

For a positive integer k ∈ Z>0, Lĝ(k, 0) admits the structure of a rational vertex
operator algebra whose irreducible modules are given by the modules Lĝ(k, λ) for
λ ∈ P k+, the subset of the dominant integral weights P+ of level at most k [FZ92].

If V is a self-contragredient vertex operator algebra of CFT-type, the commuta-
tor formula implies that the modes satisfy

[am, bn] = (a0b)m+n +m(a1b)m+n−1 = [a, b]m+n +m〈a, b〉δm+n,0 idV
for all a, b ∈ V1, m,n ∈ Z. Comparing this with the definition above we see that for
a simple Lie subalgebra g of V1 the map a⊗ tn 7→ an for a ∈ g and n ∈ Z defines a
representation of ĝ on V of some level kg ∈ C with 〈·, ·〉|g = kg(·, ·).

Suppose that V is strongly rational. Then it is shown in [DM04b] that the Lie
algebra V1 is reductive, i.e. a direct sum of a semisimple and an abelian Lie algebra.
Moreover, Theorem 3.1 in [DM06] states that for a simple Lie subalgebra g of V1
the restriction of 〈·, ·〉 to g is non-degenerate, the level kg is a positive integer, the
vertex operator subalgebra of V generated by g is isomorphic to Lĝ(kg, 0) and V is
an integrable ĝ-module.

Assume in addition that V is holomorphic and of central charge 24. Then the
Lie algebra V1 is zero, abelian of dimension 24 or semisimple of rank at most 24
[DM04a]. If the Lie algebra V1 is semisimple, then it decomposes into a direct sum

V1 ∼= g1 ⊕ . . .⊕ gr
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of simple ideals gi and the vertex operator subalgebra 〈V1〉 of V generated by V1 is
isomorphic to the tensor product of affine vertex operator algebras

〈V1〉 ∼= Lĝ1(k1, 0)⊗ . . .⊗ Lĝr (kr, 0)
with levels ki := kgi ∈ Z>0 and has the same Virasoro vector as V . The decomposi-
tion of the vertex operator algebra 〈V1〉 is called the affine structure of V , denoted
by g1,k1 . . . gr,kr .

Since 〈V1〉 ∼= Lĝ1(k1, 0)⊗. . .⊗Lĝr (kr, 0) is rational, V decomposes into the direct
sum of finitely many irreducible 〈V1〉-modules

V ∼=
⊕
λ

mλLĝ1(k1, λ1)⊗ . . .⊗ Lĝr (kr, λr)

withmλ ∈ Z≥0 and the sum runs over finitely many λ = (λ1, . . . , λr) with dominant
integral weights λi ∈ P ki+ (gi), i.e. of level at most ki.

Let h∨i denote the dual Coxeter number of gi. The fact that the character of V
is a Jacobi form of lattice index implies the trace identity

(1) h∨i
ki

= dim(V1)− 24
24

for all i = 1, . . . , r (see [Sch93, DM04a, EMS20a]). As a consequence, the Lie
algebra V1 uniquely determines the affine structure, i.e. the levels ki. The equation
has exactly 221 solutions (see Table 3 in [ELMS21]).

In [Sch93] Schellekens also derived so-called higher-order trace identities (cf.
[EMS20a], Theorem 6.1), which allowed him to reduce the above 221 affine struc-
tures down to 69 by solving large integer linear programming problems on the
computer. Together with the zero Lie algebra and the 24-dimensional abelian Lie
algebra this gives Schellekens’ list of 71 Lie algebras (see Table 2) that occur as
the weight-1 space of a strongly rational, holomorphic vertex operator algebra of
central charge 24 [Sch93].

We shall however not make use of Schellekens’ classification result, but give an
independent proof based the classification of certain geometric structures in the
Leech lattice Λ.

3.2. Generalised Deep Holes. One of the main results of [MS19] is a dimension
formula for the weight-1 space of the cyclic orbifold construction V orb(g).

Theorem 3.1 (Dimension Formula, [MS19], Theorem 5.3 and Corollary 5.7). Let
V be a strongly rational, holomorphic vertex operator algebra of central charge 24
and g an automorphism of V of finite order n > 1 and type 0 such that V g satisfies
the positivity condition. Then the dimension of the weight-1 subspace of V orb(g) is

dim(V orb(g)
1 ) = 24 +

∑
d|n

cn(d) dim(V g
d

1 )−R(g)

where the cn(d) ∈ Q are defined by
∑
d|n cn(d)(t, d) = n/t for all t | n and the rest

term R(g) is non-negative. In particular,

dim(V orb(g)
1 ) ≤ 24 +

∑
d|n

cn(d) dim(V g
d

1 ).

This dimension formula is obtained by pairing the vector-valued character of the
fixed-point vertex operator subalgebra V g with a vector-valued Eisenstein series of
weight 2, and it generalises earlier results in [Mon94, LS19, Möl16, EMS20b] under
the assumption that the modular curve Γ0(n)\H∗ has genus zero.

We note that the upper bound in the dimension formula depends only on the
action of g on the weight-1 Lie algebra V1.
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An automorphism g such that dim(V orb(g)
1 ) attains the above upper bound is

called extremal. We also call the identity extremal.
The upper bound in the dimension formula motivates the following definition.

Definition 3.2 (Generalised Deep Hole, [MS19]). Let V be a strongly rational,
holomorphic vertex operator algebra of central charge 24 and g ∈ Aut(V ) of finite
order n > 1. Suppose g has type 0 and V g satisfies the positivity condition. Then
g is called a generalised deep hole of V if

(1) g is extremal, i.e. dim(V orb(g)
1 ) = 24 +

∑
d|n cn(d) dim(V g

d

1 ),
(2) rk(V orb(g)

1 ) = rk(V g1 ).

In other words, we demand the dimension of the Lie algebra V orb(g)
1 to be max-

imal with respect to the upper bound from the dimension formula and the rank to
be minimal with respect to the obvious lower bound rk(V g1 ).

By convention, we call the identity a generalised deep hole.
Recall that the Lie algebras V g1 and V

orb(g)
1 are reductive. By Lemma 8.1 in

[Kac90] the centraliser in V
orb(g)
1 of any choice of Cartan subalgebra of V g1 is a

Cartan subalgebra of V orb(g)
1 . The second condition is hence equivalent to demand-

ing that the Cartan subalgebra of V g1 also be a Cartan subalgebra of V orb(g)
1 . It

can be replaced by the equivalent condition that the inverse-orbifold automorphism
restricts to an inner automorphism on V orb(g)

1 .
If V = VΛ, the vertex operator algebra associated with the Leech lattice Λ, then

the rank condition is equivalent to demanding that (V gΛ )1, which as subalgebra of
(VΛ)1 is abelian, be a Cartan subalgebra of (V orb(g)

Λ )1.
The second main result of [MS19] is a natural bijection between the generalised

deep holes of the Leech lattice vertex operator algebra VΛ and the strongly ratio-
nal, holomorphic vertex operator algebras of central charge 24 with non-vanishing
weight-1 space.

Theorem 3.3 (Holy Correspondence, [MS19]). The cyclic orbifold construction
g 7→ V

orb(g)
Λ defines a bijection between the algebraic conjugacy classes of generalised

deep holes g ∈ Aut(VΛ) with rk((V gΛ )1) > 0 and the isomorphism classes of strongly
rational, holomorphic vertex operator algebras V of central charge 24 with V1 6= {0}.

The proof combines the dimension formula with an averaged version of Kac’s
very strange formula [Kac90]. It does not use any classification result for either
side of the correspondence.

This theorem generalises the natural bijection between the deep holes of the
Leech lattice Λ and the Niemeier lattices with roots [Bor85], which is mediated by
the holy construction [CS82b].

Recall that the weight-1 Lie algebra V1 of a strongly rational, holomorphic vertex
operator algebra V of central charge 24 is either abelian or semisimple. In the
situation of the above theorem it is abelian if and only if dim(V1) = 24 if and only
if V ∼= VΛ if and only if g = id.

The inverse orbifold construction corresponding to a generalised deep hole g of
the Leech lattice vertex operator algebra VΛ takes a very simple form [ELMS21].
Assume that V = V

orb(g)
Λ is a strongly rational, holomorphic vertex operator algebra

V of central charge 24 with V1 = g1⊕ . . .⊕gr semisimple. Then the inverse-orbifold
automorphism of g (which must be of type 0 and extremal) is given by the inner
automorphism

σu = e2πiu0 with u :=
r∑
i=1

ρi/h
∨
i
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where h∨i is the dual Coxeter number and ρi the Weyl vector of gi. The order of
σu on each simple ideal gi is lih∨i where li ∈ {1, 2, 3} is the lacing number of gi.
Hence, the order on V1 is lcm({lih∨i }ri=1), which can be shown to equal the order n
of σu on the whole vertex operator algebra V . Of course, this equals the order of
the corresponding generalised deep hole g ∈ Aut(VΛ).

4. Generalised Hole Diagrams

In this section we associate generalised hole diagrams to automorphisms of the
Leech lattice vertex operator algebra VΛ. They will be the main datum we use to
classify the generalised deep holes in Aut(VΛ).

Let VΛ be the Leech lattice vertex operator algebra and g ∈ Aut(VΛ) of order
n > 1 such that V gΛ satisfies the positivity condition. Consider the orbifold con-
struction V orb(g)

Λ =
⊕

i∈ZnW
(i,0)
Λ and assume that rk((V orb(g)

Λ )1) = rk((V gΛ )1) > 0.
Then g = (V orb(g)

Λ )1 is a semisimple or abelian Lie algebra and h = (V gΛ )1 =
{h(−1)⊗ e0 |h ∈ πν(hΛ)} is a Cartan subalgebra of g.

The non-degenerate, invariant bilinear form 〈·, ·〉 on V orb(g)
Λ , normalised such that

〈1,1〉 = −1, restricts to a non-degenerate, invariant bilinear form on g. The Cartan
subalgebra h with the form 〈·, ·〉 is naturally isometric to the subspace πν(hΛ) of
hΛ = C ⊗Z Λ. We may also identify h with h∗ via 〈·, ·〉. We write the Cartan
decomposition corresponding to h as

g = h⊕
⊕
α∈Φ

gα

with root system Φ ⊆ h∗, which is empty if and only if g is abelian. The in-
verse orbifold automorphism ζ of g restricts to an inner automorphism of g, and g
decomposes into eigenspaces

g = g(0) ⊕ g(1) ⊕ . . .⊕ g(n−1)

where g(i) = g ∩W (i,0)
Λ = (W (i,0)

Λ )1 and g(0) = h. Since the action of ζ commutes
with the adjoint action of h on g and the spaces gα are 1-dimensional, each gα lies
in exactly one g(i). Hence the root system Φ decomposes into a disjoint union

Φ = Φ(1) ∪ . . . ∪ Φ(n−1)

with Φ(i) = {α ∈ Φ | gα ⊆ g(i)}. We define
Π(g) := Φ(1).

Since (1, n) = 1, the weight-1 subspace of the irreducible g-twisted V -module VΛ(g)
is (W (1,0)

Λ )1. Hence Π(g) ⊆ h∗ can also be defined as the set of weights of the adjoint
action of h on VΛ(g)1.

Proposition 4.1. Assume Φ is non-empty. The inner products 2〈αi, αj〉/〈αi, αi〉
for αi, αj ∈ Π(g) form a generalised Cartan matrix with Dynkin diagram Φ(g) given
by a subdiagram of the extended affine Dynkin diagram associated with the (finite)
Dynkin diagram of Φ.

Proof. This follows from Proposition 8.6 c) in [Kac90]. �

Let ϕ(g) be the cycle shape of the image of g under the natural projection
Aut(VΛ)→ O(Λ). We define the generalised hole diagram of g as the pair

(ϕ(g),Φ(g)).
Note that the generalised hole diagram only depends on the algebraic conjugacy
class of g in Aut(VΛ). For g = id we set Φ(g) = ∅.
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Let g be as above. We study the weights Π(g) ⊆ h∗ and the corresponding
Dynkin diagram Φ(g) in more detail.

By Proposition 2.1, up to conjugacy, g = φη(ν)σh for some standard lift φη(ν) of
ν ∈ O(Λ) = Co0 and h ∈ πν(Λ⊗Z Q). Denote m = |ν|, which divides n = |g|, and
let
∏
t|m t

bt be the cycle shape of ν. Recall that the unique irreducible g-twisted
VΛ-module is of the form

VΛ(g) = M(1)[ν]⊗ C[−h+ πν(Λ)]⊗ Cd(ν)

with the twisted Heisenberg algebra M(1)[ν] and defect d(ν) ∈ Z>0. VΛ(g) is
spanned by the vectors

v = h1(−n1) . . . hr(−nr)⊗ eα ⊗ t

where the hi are in certain eigenspaces of hΛ, ni ∈ (1/m)Z>0, α ∈ −h+ πν(Λ) and
t ∈ Cd(ν). Such a vector has L0-weight

wt(v) = ρν + n1 + . . .+ nr + 〈α, α〉2
with vacuum anomaly ρν = 1

24
∑
t|m bt(t − 1/t) and is acted on by the Cartan

subalgebra h = (V gΛ )1 ∼= πν(hΛ) of g = (V orb(g)
Λ )1 as

h0v = 〈h, α〉v

for h ∈ πν(hΛ).

Proposition 4.2. The weights of the action of h on VΛ(g)1 are given by

Π(g) =
{
α ∈ −h+ πν(Λ)

∣∣ 〈α, α〉/2 = 1− ρν
}

if d(ν) = 1 and
Π(g) = ∅

if d(ν) > 1. In particular, each connected component of Φ(g) is simply-laced.

Proof. First, note that ρν > 1− 1/m for all ν ∈ O(Λ). Hence, a vector v ∈ VΛ(g)1
must be of the form v = 1⊗ eα⊗ t for some α ∈ −h+πν(Λ) and t ∈ Cd(ν), i.e. there
can be no contribution to the weight from the twisted Heisenberg algebra except
for the vacuum anomaly. Hence,

VΛ(g)1 =
{

1⊗ eα ⊗ t
∣∣α ∈ −h+ πν(Λ) s.t. 〈α, α〉/2 = 1− ρν , t ∈ Cd(ν)}.

Since the action of the Cartan subalgebra h is independent of t and all weight spaces
are 1-dimensional, either d(ν) = 1 or VΛ(g)1 = {0}. In the first case

Π(g) =
{
α ∈ −h+ πν(Λ)

∣∣ 〈α, α〉/2 = 1− ρν
}
,

while Π(g) = ∅ if d(ν) > 1. �

Even if d(ν) = 1, it is possible for Π(g) to be empty, for instance if the shortest
vectors in −h+ πν(Λ) have norm greater than 2(1− ρν). This is in particular the
case if ρν > 1.

Proposition 4.3. The Dynkin diagram Φ(g) of Π(g) can also be obtained as fol-
lows. Each vector αi ∈ Π(g) ⊆ h∗ defines a node of Φ(g). The nodes i and j for
i 6= j are joined by

(1) no edge if 〈αi − αj , αi − αj〉/2 = 2(1− ρν),
(2) a single edge if 〈αi − αj , αi − αj〉/2 = 3(1− ρν),
(3) an undirected double edge if 〈αi − αj , αi − αj〉/2 = 4(1− ρν),

corresponding to angles of 2π/4, 2π/3 and 2π/2, respectively, between αi and αj.
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We define the shifted weights
Π̃(g) := Π(g) + h =

{
β ∈ πν(Λ)

∣∣ 〈β − h, β − h〉/2 = 1− ρν
}
⊆ πν(Λ).

We can associate a Dynkin diagram to Π̃(g) in the same way as to Π(g), using
Proposition 4.3. Since the translation by h does not affect the distances between
the weights, both diagrams coincide. Geometrically, Π̃(g) is given by the elements
in πν(Λ) lying on the sphere in πν(Λ⊗Z R) with centre h and radius

√
2(1− ρν).

Examples of Dynkin diagrams inside the lattice A2 (with different radii) are
shown in Figure 1. The centres are coloured red, the diagrams blue.

Figure 1. Dynkin diagrams in the lattice A2.

A2
~

A1
~

A1

In a connected extended affine Dynkin diagram with simple roots α0, . . . , αl there
is a linear relation between the αi. More precisely, there are positive integers ai
such that

∑l
i=0 aiαi = 0. If chosen coprime, the ai are unique and sometimes called

Kac labels (see, e.g., Table Aff in [Kac90]).

Proposition 4.4. If Φ(g) contains a connected component of affine type, then the
centre h of Π̃(g) can be reconstructed from the weights in Π̃(g).

Proof. Denote the shifted weights of the connected affine component by β0, . . . , βl.
Write βi = αi + h. Then

h =
l∑
i=0

aiβi

/( l∑
i=0

ai

)
. �

We now additionally assume that the automorphism g = φη(ν)σh ∈ Aut(VΛ) is
extremal, i.e. that g is a generalised deep hole. Then ρ(VΛ(g)) ≥ 1, so that

min
β∈πν(Λ)

〈β − h, β − h〉
2 ≥ 1− ρν .

This means that if the hole diagram Φ(g) is non-empty, then the points in Π̃(g) are
exactly the closest vectors to h in πν(Λ). However, h is in general not a deep hole or
even just a hole of the lattice πν(Λ). Indeed, for most ν ∈ O(Λ) the covering radius
of πν(Λ) is greater than

√
2(1− ρν) so that h cannot be a deep hole of πν(Λ). In

fact, usually the number of points in Π̃(g) is less than rk(πν(Λ)) + 1, which means
that h cannot be a hole.

On the other hand, if ν ∈ O(Λ) is such that the covering radius of πν(Λ) is
less than

√
2(1− ρν), then there can be no extremal automorphism in Aut(VΛ)

projecting to ν.
We now exploit the fact that the inverse-orbifold automorphism of such a gen-

eralised deep hole g is known [ELMS21]. Since we assumed that g has order
n > 1, g = (V orb(g)

Λ )1 must be semisimple, with decomposition g = g1 ⊕ . . . ⊕ gr
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into simple ideals. Recall that the inverse-orbifold automorphism is given by
σu = e2πiu0 ∈ Aut(V orb(g)

Λ ) with u =
∑r
i=1 ρi/h

∨
i where h∨i is the dual Coxeter

number and ρi the Weyl vector of gi (see Section 3). The restriction of σu to g only
depends on the Lie algebra structure of g, which means that the Dynkin diagram
Φ(g) can be easily read off from the isomorphism type of g:
Proposition 4.5. Let g be a generalised deep hole of VΛ of order n > 1 with
rk((V gΛ )1) > 0. Then (V orb(g)

Λ )1 = g1 ⊕ . . . ⊕ gr is semisimple and the Dynkin
diagram Φ(g) is of type

r⋃
i=1

lih
∨
i =n



Ãl if gi has type Al, l ≥ 1,
A1 if gi has type Bl, l ≥ 2,
Al−1 if gi has type Cl, l ≥ 3,
D̃l if gi has type Dl, l ≥ 4,
Ẽl if gi has type El, l ∈ {6, 7, 8},
A2 if gi has type F4,

A1 if gi has type G2

where li ∈ {1, 2, 3} is the lacing number of the simple ideal gi.
The order of σu on each simple ideal gi is lih∨i so that the order of σu on

(V orb(g)
Λ )1 is lcm({lih∨i }ri=1), which can be shown to equal the order n of σu on

the whole vertex operator algebra V
orb(g)
Λ . The proposition states in particular

that only those simple ideals contribute to the Dynkin diagram Φ(g), on which σu
assumes its order.

Proof. Recall that the inverse orbifold automorphism acts on (W (1,0)
Λ )1 = VΛ(g)1 as

multiplication by e(1/n). Hence the simple ideal gi can only contribute to (VΛ(g))1
if the order of σu restricted to gi, which is lih∨i , equals n. On a simple ideal
where this is the case, the eigenspace for the eigenvalue e(1/n) is now determined
following Proposition 8.6 c) in [Kac90]. For this one uses the type (in the language
of [Kac90]) of σu restricted to gi, which is described in the proof of Proposition 5.1
in [ELMS21]. �

The special case of the proposition for types A, D and E was already discussed
in [LS20] (see Lemma 2.6).

From what we have seen so far, the Dynkin diagram Φ(g) of a generalised deep
hole could in principle be empty. The following is immediate:
Corollary 4.6. Let g be a generalised deep hole of VΛ of order n > 1 with
rk((V gΛ )1) > 0. Then the following are equivalent:

(1) The Dynkin diagram Φ(g) is non-empty,
(2) the set of shifted weights Π̃(g) is non-empty,
(3) ρ(VΛ(g)) = 1,
(4) lih∨i = lcm({ljh∨j }rj=1) for some i ∈ {1, . . . , r},
(5) |σu| =

∣∣σu|gi∣∣ for some i ∈ {1, . . . , r}.

We now discuss the special case of g being an inner automorphism. In this case
we exactly recover the classical hole diagrams in [CPS82]:
Proposition 4.7. Let g be a generalised deep hole of VΛ of order n > 1 with
rk((V gΛ )1) > 0. Assume that g is inner. Then g = σh for some deep hole h ∈ Λ⊗Z Q
corresponding to the Niemeier lattice N . Let Ñ be the extended affine Dynkin
diagram corresponding to N , which is the hole diagram of h. Then V

orb(g)
Λ

∼= VN
and g has the generalised hole diagram (124, Ñ).
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Proof. Since g is inner, g = σh for some h ∈ Λ⊗Z Q. The extremality of g implies
that ρ(V (g)) ≥ 1. But the covering radius of the Leech lattice Λ is

√
2, so that

ρ(V (g)) = min
β∈Λ

〈β − h, β − h〉
2 = 1,

i.e. h is a deep hole of Λ. The rest follows from Proposition 4.3 and [CPS82]. �

5. Classification of Generalised Deep Holes

In this section we classify the generalised deep holes of the Leech lattice vertex
operator algebra by enumerating the corresponding generalised hole diagrams. As
a consequence we obtain a new, geometric classification of the strongly rational,
holomorphic vertex operator algebras of central charge 24 with non-trivial weight-1
space, which is independent of Schellekens’ results.

The possible generalised hole diagrams are strongly restricted by the following
result (see Lemma 6.1 in [ELMS21]):

Proposition 5.1. Let V be a strongly rational, holomorphic vertex operator algebra
of central charge 24 with V1 semisimple and affine structure g1,k1 . . . gr,kr . Then

(1) h∨i /ki = (dim(V1)− 24)/24
for all i = 1, . . . , r, and there exists a ν ∈ O(Λ) such that

(2) rk(Λν) = rk(V1),
(3) |ν|

∣∣ lcm({lih∨i }ri=1),
(4) 1/(1− ρν) = lcm({liki}ri=1).

The automorphism ν is exactly the projection Aut(VΛ)→ O(Λ) of the generalised
deep hole corresponding to V . Recall that ρν denotes the vacuum anomaly of ν
and only depends on the cycle shape of ν.

The first equation is Schellekens’ lowest-order trace identity (1). The other
conditions follow from the bijection in Theorem 3.3

It is straightforward to list all solutions, i.e. pairs of affine structures and auto-
morphisms of the Leech lattice Λ, to the equations in Proposition 5.1 (see Propo-
sition 6.2 in [ELMS21]):

Proposition 5.2. There are exactly 82 pairs of affine structures and conjugacy
classes in O(Λ) satisfying the four equations in Proposition 5.1. These are the 69
cases described in Table 2 plus the 13 spurious cases listed in Table 1.

Note that there is no affine structure that appears in more than one pair. By
Proposition 4.5, the affine structure fixes the generalised hole diagram of the cor-
responding generalised deep hole.

We observe that, except for g = id, the Dynkin diagram Φ(g) of a generalised
deep hole is never empty.

Lemma 5.3. There are no generalised deep holes in Aut(VΛ) corresponding to the
eight spurious cases in Table 1 with cycle shapes 64, 46, 38 and 2444.

Proof. We write the potential generalised deep hole as g = φη(ν)σh where φη(ν) is
a standard lift of ν ∈ O(Λ). Note that 〈β, β〉/2 ∈ (1/|φη(ν)|)Z for all β ∈ πν(Λ).
The hole diagrams Φ(g) are determined by Proposition 4.5 and listed in Table 1.
Based on Proposition 4.3 we can also read off the norms of the differences of the
elements in Π̃(g) ⊆ πν(Λ). Hence, none of the eight cases in the assertion can occur
as in each case not all the computed norms are in (2/|φη(ν)|)Z. �

As a consequence, we are left with 5 spurious cases, namely those entries in
Table 1 with cycle shapes 12223262 and 212.
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Table 1. 13 spurious cases in Proposition 5.2.

ν ∈ O(Λ) |φη(ν)| ρν n Aff. Struct. Φ(g) Norms
64 12 35/36 6 D4,36 D̃4 2/18, 2/12

46 8 15/16 4 A2
3,16 Ã2

3 2/8, 6/16
8 C3,8A3,8 A2 6/16

38 3 8/9
3 A4

2,9 Ã4
2 4/9, 2/3

6 D4,9A
4
1,3 D̃4 4/9, 2/3

12 G4
2,3 A4

1 4/9

2444 4 7/8 4 A2
3,8A

2
1,4 Ã2

3 2/4, 6/8
8 C2

3,4A
2
1,2 A2

2 2/4, 6/8
12223262 6 5/6 6 D4,6B

2
2,3 D̃4A

2
1 2/3, 2/2

212 4 3/4

4 A2
3,4A

6
1,2 Ã2

3 2/2, 6/4
8 D5,4A3,2A

4
1,1 D̃5 2/2, 6/4

8 C3
3,2A

3
1,1 A3

2 2/2, 6/4
8 C2

3,2A
2
3,2 A3

2 2/2, 6/4

5.1. Affine Case. Suppose that g is a generalised deep hole projecting to ν ∈ O(Λ)
and that the corresponding set of shifted weights Π̃(g) ⊆ πν(Λ) contains a connected
affine component X̃l. Our strategy will be to search for the Dynkin diagram X̃l

inside πν(Λ) as lattice points lying on a sphere around some point h ∈ πν(Λ⊗ZQ) of
radius

√
2(1− ρν) with edges defined as in Proposition 4.3 (see also Figure 1). We

enumerate the occurrences of X̃l in πν(Λ), more precisely the finitely many orbits
under the action of CO(Λ)(ν)nπν(Λ). This can be done by moving one vertex to the
origin and then performing a short vector search in Magma [BCP97]. In principle,
this could also be done by hand, as is demonstrated in [CPS82] in the case ν = id.
Note that CO(Λ)(ν) in general only induces a subgroup of O(πν(Λ)), but in view of
Proposition 2.1 it is important to consider the orbits under CO(Λ)(ν) rather than
the full orthogonal group O(πν(Λ)).

Then, since X̃l is of affine type, its centre h is uniquely determined by the
concrete realisation of X̃l inside πν(Λ) (see Proposition 4.4). For each orbit, this
immediately yields the complete hole diagram X̃l . . . defined by h, which is some
Dynkin diagram containing X̃l as connected component.

Finally, by Proposition 2.1, each generalised deep hole in Aut(VΛ) defining a hole
diagram containing X̃l in πν(Λ) must be conjugate to g = φη(ν)σh where φη(ν) is
a standard lift of ν and h is one of the centres in the finite list of orbits.

Now, we go through the potential generalised deep holes in Table 1 and Table 2
containing a connected affine component (3+54 cases) and show that the entries of
Table 1 cannot be realised by generalised deep holes while the candidates of Table 2
by at most one class in Aut(VΛ). We sort the results by cycle shape.

We introduce the notation (cf. [CPS82])

X̃l =⇒ X̃l . . .

to mean that there is a unique orbit under CO(Λ)(ν)nπν(Λ) of the connected affine
diagram X̃l in πν(Λ) (as lattice points sitting on a sphere of radius

√
2(1− ρν)

around the centre of X̃l) and that it defines the complete diagram X̃l . . . (all the
lattice points sitting on said sphere). If there are several orbits, each defining a
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different diagram X̃l . . ., we shall separate these by or. If X̃l does not appear at all
in πν(Λ), we write X̃l =⇒ ∅.

The first case was already covered in [CPS82]:

Lemma 5.4 ([CPS82]). Let ν ∈ O(Λ) be of cycle shape 124. Then in πν(Λ) = Λ:

Ã1 =⇒ Ã24
1 , D̃4 =⇒ D̃6

4 or Ã4
5D̃4,

Ã2 =⇒ Ã12
2 , D̃5 =⇒ Ã2

7D̃
2
5,

Ã3 =⇒ Ã8
3, D̃6 =⇒ D̃4

6 or Ã2
9D̃6,

Ã4 =⇒ Ã6
4, D̃7 =⇒ Ã11D̃7Ẽ6,

Ã5 =⇒ Ã4
5D̃4, D̃8 =⇒ D̃3

8,

Ã6 =⇒ Ã4
6, D̃9 =⇒ Ã15D̃9,

Ã7 =⇒ Ã2
7D̃

2
5, D̃10 =⇒ D̃10Ẽ

2
7 ,

Ã8 =⇒ Ã3
8, D̃12 =⇒ D̃2

12,

Ã9 =⇒ Ã2
9D̃6, D̃16 =⇒ D̃16Ẽ8,

Ã11 =⇒ Ã11D̃7Ẽ6, D̃24 =⇒ D̃24,

Ã12 =⇒ Ã2
12,

Ã15 =⇒ Ã15D̃9, Ẽ6 =⇒ Ẽ4
6 or Ã11D̃7Ẽ6,

Ã17 =⇒ Ã17Ẽ7, Ẽ7 =⇒ D̃10Ẽ
2
7 or Ã17Ẽ7,

Ã24 =⇒ Ã24, Ẽ8 =⇒ Ẽ3
8 or D̃16Ẽ8.

In particular, there is at most one generalised deep hole in Aut(VΛ) up to conjugacy
projecting to ν for each of the 23 non-empty hole diagrams listed in Table 2.

Lemma 5.5. Let ν ∈ O(Λ) be of cycle shape 1828. Then in πν(Λ):

Ã1 =⇒ Ã8
1 or Ã16

1 ,

Ã3 =⇒ A4
1Ã

2
3 or Ã4

3,

Ã5 =⇒ A2
1A3Ã5 or A1Ã

2
5,

Ã7 =⇒ A2
1Ã7 (at most 2 orbits) or A2

2Ã7,

Ã9 =⇒ A1Ã9,

D̃4 =⇒ A8
1D̃4 or D̃2

4 or A4
1D̃

2
4,

D̃5 =⇒ D4D̃5 or D̃2
5,

D̃6 =⇒ A4
1D̃6 or A2

1A3D̃6,

D̃8 =⇒ D̃8 (at most 2 orbits) or A2
1D̃8,

D̃9 =⇒ D̃9,

Ẽ6 =⇒ A3Ẽ6 or A4Ẽ6,

Ẽ7 =⇒ A2
1Ẽ7 or A1A2Ẽ7,

Ẽ8 =⇒ Ẽ8 or A1Ẽ8.

In particular, there is at most one generalised deep hole in Aut(VΛ) up to conjugacy
projecting to ν for each of the hole diagrams A1Ẽ8, A1A2Ẽ7, D̃9, A2

1D̃8, A4Ẽ6,
A1Ã9, A2

1A3D̃6, A2
2Ã7, D̃2

5, A1Ã
2
5, A4

1D̃
2
4, Ã4

3 and Ã16
1 .
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We can explicitly check, for instance, that the automorphism g = φη(ν)σh de-
fined by the diagram Ã16

1 and its centre h is a generalised deep hole, while for the
diagram Ã8

1 this is not the case.

Lemma 5.6. Let ν ∈ O(Λ) be of cycle shape 1636. Then in πν(Λ):

Ã2 =⇒ Ã3
2 or Ã6

2,

Ã5 =⇒ A2Ã5 (at most 2 orbits) or Ã5D̃4,

Ã8 =⇒ Ã8,

D̃4 =⇒ A2
2D̃4 or Ã5D̃4,

D̃7 =⇒ A1D̃7,

Ẽ6 =⇒ Ẽ6 (at most 2 orbits) or A3
1Ẽ6,

Ẽ7 =⇒ Ẽ7.

In particular, there is at most one generalised deep hole in Aut(VΛ) up to conjugacy
projecting to ν for each of the hole diagrams Ẽ7, A1D̃7, A3

1Ẽ6, Ã8, Ã5D̃4 and Ã6
2.

For the cycle shape 212 we first remove two more spurious cases.

Lemma 5.7. Let ν ∈ O(Λ) be of cycle shape 212. Then in πν(Λ):

Ã3 =⇒ Ã3,

D̃5 =⇒ ∅

In particular, there is no generalised deep hole in Aut(VΛ) projecting to ν with the
hole diagram Ã2

3 or D̃5.

Lemma 5.8. Let ν ∈ O(Λ) be of cycle shape 212. Then in πν(Λ):

Ã1 =⇒ Ã4
1 or Ã12

1 ,

D̃4 =⇒ D̃4 (2 orbits).

One of the two orbits of type D̃4 has a centre defining an automorphism of order
12, the other one an automorphism of order 6.

In particular, there is at most one generalised deep hole in Aut(VΛ) up to con-
jugacy projecting to ν for each of the hole diagrams Ã12

1 and D̃4.

Lemma 5.9. Let ν ∈ O(Λ) be of cycle shape 142244. Then in πν(Λ):

Ã3 =⇒ Ã2
3 or A2

1Ã3 (at most 2 orbits) or A4
1Ã3 or Ã3

3,

Ã7 =⇒ Ã7,

D̃5 =⇒ D̃5 or A2D̃5,

Ẽ6 =⇒ Ẽ6.

In particular, there is at most one generalised deep hole in Aut(VΛ) up to conjugacy
projecting to ν for each of the hole diagrams Ẽ6, Ã7, A2D̃5 and Ã3

3.

Lemma 5.10. Let ν ∈ O(Λ) be of cycle shape 1454. Then in πν(Λ):

Ã4 =⇒ Ã4 (at most 3 orbits) or Ã2
4,

D̃6 =⇒ D̃6.

In particular, there is at most one generalised deep hole in Aut(VΛ) up to conjugacy
projecting to ν for each of the hole diagrams D̃6 and Ã2

4.

We remove the spurious case for the cycle shape 12223262.
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Lemma 5.11. Let ν ∈ O(Λ) be of cycle shape 12223262. Then in πν(Λ):

D̃4 =⇒ ∅

In particular, there is no generalised deep hole in Aut(VΛ) projecting to ν with the
hole diagram A2

1D̃4.

Lemma 5.12. Let ν ∈ O(Λ) be of cycle shape 12223262. Then in πν(Λ):

Ã5 =⇒ A1Ã5.

In particular, there is at most one generalised deep hole in Aut(VΛ) up to conjugacy
projecting to ν with the hole diagram A1Ã5.

Lemma 5.13. Let ν ∈ O(Λ) be of cycle shape 1373. Then in πν(Λ):

Ã6 =⇒ Ã6.

In particular, there is at most one generalised deep hole in Aut(VΛ) up to conjugacy
projecting to ν with the hole diagram Ã6.

Lemma 5.14. Let ν ∈ O(Λ) be of cycle shape 12214182. Then in πν(Λ):

D̃5 =⇒ D̃5.

In particular, there is at most one generalised deep hole in Aut(VΛ) up to conjugacy
projecting to ν with the hole diagram D̃5.

Lemma 5.15. Let ν ∈ O(Λ) be of cycle shape 2363. Then in πν(Λ):

D̃4 =⇒ D̃4.

In particular, there is at most one generalised deep hole in Aut(VΛ) up to conjugacy
projecting to ν with the hole diagram D̃4.

5.2. Non-Affine Case. We now consider the more difficult case of potential gen-
eralised deep holes g with hole diagrams that do not contain any affine component.
These are 15 plus two spurious cases (see Table 2 and Table 1).

First, we enumerate the orbits under CO(Λ)(ν) n πν(Λ) of the diagram realised
in πν(Λ) as lattice points with relative distances defined as in Proposition 4.3.
This is the same computation as in the affine case, with the exception that we are
now directly searching for the complete diagram. Again, this is a relatively cheap
computation using the short vector search in Magma [BCP97].

The points of the hole diagram must lie on a sphere of radius
√

2(1− ρν) around
some centre h ∈ πν(Λ⊗Z Q). However, in contrast to the affine case, this centre is
not uniquely determined by the diagram. (In the most extreme case of the diagram
A1, h could be any point at distance

√
2(1− ρν) from the single vertex defining A1.)

The second and generally computationally more expensive part is to determine all
the possible h ∈ πν(Λ⊗Z Q) that could be the centre of the diagram.

We employ two methods to facilitate this search. First, from Proposition 5.2 we
know the order n of the generalised deep hole (see Table 2). Then Proposition 2.2
implies that h must lie in sν + Λν/n (where sν is non-zero if and only if ν exhibits
order doubling). Second, as h must have distance

√
2(1− ρν) to all the vertices in

the hole diagram, it must in particular lie on the hyperplanes of points equidistant
to all pairs of vertices. This reduces the dimension of the eventual close vector
search, which is again performed in Magma [BCP97].

As a result, for each orbit of the original diagram search we obtain a finite list
of possible centres h. We then only keep those h

(1) whose corresponding automorphism g = φη(ν)σh with standard lift φη(ν)
has order n (i.e. g must satisfy lcm(|ν|, |σh−sν |) = n),
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(2) such that Π̃(g) =
{
β ∈ πν(Λ)

∣∣ 〈β − h, β − h〉/2 = 1 − ρν
}
has exactly the

diagram we are searching for (a priori we only know that it contains this
diagram as a subdiagram),

(3) that actually correspond to a generalised deep hole g = φη(ν)σh (in partic-
ular, g must be extremal).

Again we sort the results by cycle shape and treat the case 212 at the end because
it is the most complicated one.

Lemma 5.16. Let ν ∈ O(Λ) be of cycle shape 1828. Then in πν(Λ) there is exactly:
One orbit under CO(Λ)(ν) n πν(Λ) of the diagram A1A9. There are 16 possible

centres h ∈ Λν/22 of this diagram but only one of them satisfies (1) to (3).
One orbit under CO(Λ)(ν) n πν(Λ) of the diagram A2

2A7. There are six possible
centres h ∈ Λν/18 of this diagram but only two of them satisfy (1) to (3). They are
both in the same orbit under CO(Λ)(ν) n πν(Λ).

One orbit under CO(Λ)(ν)nπν(Λ) of the diagram A1A
2
5. There are seven possible

centres h ∈ Λν/14 of this diagram but only one of them satisfies (1) to (3).
Two orbits under CO(Λ)(ν) n πν(Λ) of the diagram A4

3. For the first orbit there
is one possible centre h ∈ Λν/10 and it satisfies (1) to (3). For the second orbit
there are six possible centres h ∈ Λν/10 but none of them satisfy (1) to (3).

In particular, there is at most one generalised deep hole in Aut(VΛ) up to con-
jugacy projecting to ν for each of the hole diagrams A1A9, A2

2A7, A1A
2
5 and A4

3.

Lemma 5.17. Let ν ∈ O(Λ) be of cycle shape 142244. Then in πν(Λ) there is
exactly:

One orbit under CO(Λ)(ν) n πν(Λ) of the diagram A6. There are nine possible
centres h ∈ Λν/16 of this diagram but only one of them satisfies (1) to (3).

In particular, there is at most one generalised deep hole in Aut(VΛ) up to con-
jugacy projecting to ν with the hole diagram A6.

Lemma 5.18. Let ν ∈ O(Λ) be of cycle shape 12223262. Then in πν(Λ) there is
exactly:

One orbit under CO(Λ)(ν)nπν(Λ) of the diagram A1A4. There are seven possible
centres h ∈ Λν/12 of this diagram but only two of them satisfy (1) to (3). They are
both in the same orbit under CO(Λ)(ν) n πν(Λ).

In particular, there is at most one generalised deep hole in Aut(VΛ) up to con-
jugacy projecting to ν with the hole diagram A1A4.

Lemma 5.19. Let ν ∈ O(Λ) be of cycle shape 2363. Then in πν(Λ) there is exactly:
One orbit under CO(Λ)(ν) n πν(Λ) of the diagram A2. There are 98 possible

centres h ∈ sν + Λν/18 of this diagram but only 36 of them satisfy (1) to (3). They
are all in the same orbit under CO(Λ)(ν) n πν(Λ).

In particular, there is at most one generalised deep hole in Aut(VΛ) up to con-
jugacy projecting to ν with the hole diagram A2.

Lemma 5.20. Let ν ∈ O(Λ) be of cycle shape 22102. Then in πν(Λ) there is
exactly:

One orbit under CO(Λ)(ν) n πν(Λ) of the diagram A3. There are two possible
centres h ∈ sν + Λν/10 of this diagram and both of them satisfy (1) to (3). They
are both in the same orbit under CO(Λ)(ν) n πν(Λ).

In particular, there is at most one generalised deep hole in Aut(VΛ) up to con-
jugacy projecting to ν with the hole diagram A3.

Now we consider the case 212. We start by excluding the last two spurious cases.
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Lemma 5.21. Let ν ∈ O(Λ) be of cycle shape 212. There is no hole diagram in
πν(Λ) containing A3

2.
In particular, there is no generalised deep hole in Aut(VΛ) projecting to ν with

the hole diagram A3
2.

Lemma 5.22. Let ν ∈ O(Λ) be of cycle shape 212. Then in πν(Λ) there is exactly:
One orbit under CO(Λ)(ν)nπν(Λ) of the diagram A2. There are 9,132,200 possible

centres h ∈ sν + Λν/18 of this diagram but only 31,680 of them satisfy (1) to (3).
They are all in the same orbit under CO(Λ)(ν) n πν(Λ).

One orbit under CO(Λ)(ν) n πν(Λ) of the diagram A3. There are 432 possible
centres h ∈ Λν/10 of this diagram but only 72 of them satisfy (1) to (3). They are
all in the same orbit under CO(Λ)(ν) n πν(Λ).

In particular, there is at most one generalised deep hole in Aut(VΛ) up to con-
jugacy projecting to ν for each of the hole diagrams A2 and A3.

We now discuss the most difficult cases, the generalised deep holes with cycle
shape 212 and hole diagrams A1, A2

1, A3
1, A4

1 and A6
1. The hardest case is the

potential generalised deep hole of order 46 with hole diagram A1. Here, the hole
diagram merely implies that the vector h is the only and closest point at distance
1− ρν = 1/4 from the single vertex β1 ∈ πν(Λ) defining A1.

Fortunately, we can exploit that the fixed-point lattice Λν has a very symmet-
ric embedding into Euclidean space. Indeed, let D+

12 denote the positive-definite,
integral lattice

D+
12 :=

{
(x1, . . . , x12) ∈ R12

∣∣∣ all xi ∈ Z or all xi ∈ Z + 1/2 and
12∑
i=1

xi ∈ 2Z
}

embedded into Euclidean space R12 with the standard scalar product. It is the
unique indecomposable, positive-definite, integral, unimodular lattice of rank 12.
Let K :=

√
2D+

12 denote the lattice with lattice vectors scaled by
√

2. Then K is
even and

Λν ∼= K.

Moreover, we note that
πν(Λ) = (Λν)′ = Λν/2.

The first equality holds since Λ is unimodular, but the second equality (which is
not just an isomorphism but a proper equality) is a special property of ν.

The automorphism group of D+
12 (and of K) is generated by permutations and

even sign changes, i.e.
O(K) = S12 n 211.

The kernel of the map CO(Λ)(ν) → O(Λν) ∼= O(K) has order 2 and is generated
by ν. The image has index 5040 and is of the form P n 211 where P is some
permutation group of index 5040 in S12.

In the following we want to show that there is a unique h ∈ πν(Λ⊗ZQ)/πν(Λ) ∼=
K ⊗Z Q/(K/2) with a certain list of properties up to the action of CO(Λ)(ν). The
number of elements we have to consider is too big to be amenable to a brute-force
approach. We therefore split the computation into three parts, first considering
only properties invariant under the much bigger group S12 n 212 (where we allow
all sign changes) and computing the orbits satisfying these, then under the group
O(K) = S12 n 211 and finally under the group CO(Λ)(ν), i.e. P n 211. In each step
the number of orbits we consider remains manageable.

Lemma 5.23. Let ν ∈ O(Λ) be of cycle shape 212. Then there is at most one
generalised deep hole in Aut(VΛ) up to conjugacy projecting to ν for each of the
hole diagrams A1, A2

1, A3
1, A4

1 and A6
1.
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Proof. We only describe the hardest case of the diagram A1. The other cases are
analogous.

A generalised deep hole with hole diagram A1 has order 46 and is conjugate to
g = φη(ν)σh for some standard lift φη(ν) and h ∈ sν+Λν/46 ⊆ Λν/92. By applying
a translation in πν(Λ), we may assume that the only vertex of the hole diagram A1
in πν(Λ) is the origin. Then h has the following properties:

(1) h ∈ Λν/92,
(2) 〈h, h〉/2 = 1/4,
(3) 〈h− β, h− β〉/2 ≥ 1/4 for all β ∈ πν(Λ),
(4) 〈h− β, h− β〉/2 = 1/4 and β ∈ πν(Λ) if and only if β = 0.

We consider h̃ := 92h. The above conditions are equivalent to:

(1) h̃ ∈ Λν ,
(2) 〈h̃, h̃〉/2 = 462,
(3) 〈h̃, β〉 ≤ 46〈β, β〉/2 for all β ∈ Λν ,
(4) 〈h̃, β〉 = 46〈β, β〉/2 and β ∈ Λν if and only if β = 0.

We identify Λν with K and write h̃ =
√

2(h1, . . . , h12). Then the first condition is
equivalent to either all hi ∈ Z or all hi ∈ Z+ 1/2, and moreover

∑12
i=1 hi ∈ 2Z. We

actually know that h̃ ∈ 92sν + 2Λν for some sν ∈ Λν/4 (such that φη(ν)σsν has
order 2). By choosing an sν we see that either all hi ∈ 2Z or all hi ∈ 2Z + 1. In
total, the above conditions imply:

(1’) all hi ∈ 2Z or all hi ∈ 2Z + 1,
(2’)

∑12
i=1 h

2
i = 462,

(3’) |hi|+ |hj | < 46 for i 6= j.

We determine the orbits of the solutions of these three conditions up to the action
of S12 n 212, i.e. we ignore signs and permutations. This is a simple combinatorial
problem with 10, 301 solutions.

We then consider the corresponding orbits under O(K) = S12n211, i.e. each orbit
represented by a sequence (h1, . . . , h12) not containing a 0 splits up into two orbits
by introducing a sign at, e.g., the first entry. The fact that g is extremal implies that
the twisted modules V (g), V (g5), V (g9), V (g13), V (g17) and V (g21) have conformal
weight at least 1. Since φη(ν)4 = id, it follows that g4k+1 = φη(ν)σ(4k+1)h so that
these conditions translate to

(4’) min
β∈46Λν

〈(4k + 1)h̃− β, (4k + 1)h̃− β〉
2 = 462

for k = 0, 1, . . . , 11. In fact, for k = 0 we require equality and that there is exactly
one closest vector, namely the one forming the diagram A1. These conditions are
invariant under O(K) = S12n211. The result is that there is exactly one orbit under
O(K) satisfying conditions (1’) to (4’), namely (0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 24).

Finally, we split up this orbit into the 5040 orbits under the action of the cen-
traliser CO(Λ)(ν), i.e. under P n 211. In this case, since all the hi are distinct,
these are in bijection with the cosets of P in S12, which can be computed using GAP
[GAP19]. For these orbits we then explicitly check if they can be generalised deep
holes of order 46, i.e. in particular extremal. In the end, this leaves us with just
one orbit h ∈ πν(Λ⊗ZQ)/πν(Λ) under the action of CO(Λ)(ν), which concludes the
proof. �
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We remark that the generalised deep holes (of order n) for the diagrams A1, A2
1,

A3
1, A4

1 and A6
1 correspond to the vectors h =

√
2(h1, . . . , h12)/(2n) inK/(2n) ⊆ R12

specified by the following hi:
A1 0 2 4 6 8 10 12 14 16 18 20 24
A2

1 0 0 2 2 4 4 6 6 8 8 10 12
A3

1 0 0 0 2 2 2 4 4 4 6 6 8
A4

1 0 0 0 0 2 2 2 2 4 4 4 6
A6

1 0 0 0 0 0 0 2 2 2 2 2 4
Ã12

1 0 0 0 0 0 0 0 0 0 0 0 2
Here, we ignore signs and the order of the entries, which in any case depend on the
concrete choice of the isomorphism Λν ∼= K.

5.3. Classification Results. We summarise the above results in:

Proposition 5.24. There are at most 70 conjugacy classes of generalised deep
holes g in Aut(VΛ) with rk((V gΛ )1) > 0. They are described in Table 2.

In [MS19] we list 70 generalised deep holes g in Aut(VΛ) with rk((V gΛ )1) > 0.
Using Proposition 5.24 we can easily determine their generalised hole diagrams.
This implies the main result:

Theorem 5.25 (Classification of Generalised Deep Holes). There are exactly 70
conjugacy classes of generalised deep holes g in Aut(VΛ) with rk((V gΛ )1) > 0. The
conjugacy class of g is uniquely fixed by its generalised hole diagram.

An automorphism g of order n is called rational if g is conjugate to gi for
all i ∈ Zn with (i, n) = 1 (see, e.g., Chapter 7 in [Ser08]). Equivalently, the
conjugacy class and the algebraic conjugacy class (i.e. the conjugacy class of the
cyclic subgroup) of g coincide. The following observation is immediate:

Corollary 5.26. The generalised deep holes g in Aut(VΛ) with rk((V gΛ )1) > 0 are
rational, i.e. conjugacy is equivalent to algebraic conjugacy.

We also observe:

Theorem 5.27 (Projection to Co0). Under the natural projection Aut(VΛ)→ O(Λ)
the generalised deep holes g of VΛ with rk((V gΛ )1) > 0 map to the 11 algebraic
conjugacy classes in O(Λ) ∼= Co0 with cycle shapes 124, 1828, 1636, 212, 142244,
1454, 12223262, 1373, 12214182, 2363 and 22102.

This is the decomposition of the genus of the Moonshine module described by
Höhn in [Höh17].

A consequence of the above classification of generalised deep holes and the holy
correspondence in [MS19] is a new, geometric proof of the following result:

Theorem 5.28 (Classification of Vertex Operator Algebras). Up to isomorphism
there are exactly 70 strongly rational, holomorphic vertex operator algebras V of
central charge 24 with V1 6= {0}. Such a vertex operator algebra is uniquely deter-
mined by its V1-structure.

We have thus obtained a geometric proof of this classification that is analogous
to the classification of the Niemeier lattices by enumeration of the corresponding
deep holes of the Leech lattice Λ [CPS82, Bor85]. In fact, it includes it as a special
case (see last paragraph of Section 4).
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Table 2. The 70 generalised deep holes of VΛ whose correspond-
ing orbifold constructions realise all non-zero Lie algebras on
Schellekens’ list (continued on next page).

No. No. (V orb(g)
Λ )1 Dim. n ρ(VΛ(gm)) Φ(g)

Rk. 24, cycle shape 124

70 A1 D24,1 1128 46 1, 22/23, 1, 0 D̃24
69 A2 D16,1E8,1 744 30 1, 14/15, 1, 1, 1, 1, 1, 0 D̃16Ẽ8
68 A3 E3

8,1 744 30 1, 14/15, 9/10, 5/6, 1, 1, 1, 0 Ẽ3
8

67 A4 A24,1 624 25 1, 1, 0 Ã24
66 A5 D2

12,1 552 22 1, 10/11, 1, 0 D̃2
12

65 A6 A17,1E7,1 456 18 1, 1, 1, 1, 1, 0 Ã17Ẽ7
64 A7 D10,1E

2
7,1 456 18 1, 8/9, 1, 1, 1, 0 D̃10Ẽ

2
7

63 A8 A15,1D9,1 408 16 1, 1, 1, 1, 0 Ã15D̃9
61 A9 D3

8,1 360 14 1, 6/7, 1, 0 D̃3
8

60 A10 A2
12,1 336 13 1, 0 Ã2

12
59 A11 A11,1D7,1E6,1 312 12 1, 1, 1, 1, 1, 0 Ã11D̃7Ẽ6
58 A12 E4

6,1 312 12 1, 1, 3/4, 1, 1, 0 Ẽ4
6

55 A13 A2
9,1D6,1 264 10 1, 1, 1, 0 Ã2

9D̃6
54 A14 D4

6,1 264 10 1, 4/5, 1, 0 D̃4
6

51 A15 A3
8,1 240 9 1, 1, 0 Ã3

8
49 A16 A2

7,1D
2
5,1 216 8 1, 1, 1, 0 Ã2

7D̃
2
5

46 A17 A4
6,1 192 7 1, 0 Ã4

6
43 A18 A4

5,1D4,1 168 6 1, 1, 1, 0 Ã4
5D̃4

42 A19 D6
4,1 168 6 1, 2/3, 1, 0 D̃6

4
37 A20 A6

4,1 144 5 1, 0 Ã6
4

30 A21 A8
3,1 120 4 1, 1, 0 Ã8

3
24 A22 A12

2,1 96 3 1, 0 Ã12
2

15 A23 A24
1,1 72 2 1, 0 Ã24

1
1 A24 C24 24 1 0 ∅

Rk. 16, cycle shape 1828

62 B1 B8,1E8,2 384 30 1, 14/15, 1, 1, 1, 1, 1, 0 A1Ẽ8
56 B2 C10,1B6,1 288 22 1, 10/11, 1, 0 A1A9
52 B3 C8,1F

2
4,1 240 18 1, 8/9, 1, 1, 1, 0 A2

2A7
53 B4 B5,1E7,2F4,1 240 18 1, 8/9, 1, 1, 1, 0 A1A2Ẽ7
50 B5 A7,1D9,2 216 16 1, 1, 1, 1, 0 D̃9
47 B6 B2

4,1D8,2 192 14 1, 6/7, 1, 0 A2
1D̃8

48 B7 B4,1C
2
6,1 192 14 1, 6/7, 1, 0 A1A

2
5

44 B8 A5,1C5,1E6,2 168 12 1, 1, 1, 1, 1, 0 A4Ẽ6
40 B9 A4,1A9,2B3,1 144 10 1, 1, 1, 0 A1Ã9
39 B10 B2

3,1C4,1D6,2 144 10 1, 4/5, 1, 0 A2
1A3D̃6

38 B11 C4
4,1 144 10 1, 4/5, 1, 0 A4

3
33 B12 A3,1A7,2C

2
3,1 120 8 1, 1, 1, 0 A2

2Ã7
31 B13 A2

3,1D
2
5,2 120 8 1, 1, 1, 0 D̃2

5
26 B14 A2

2,1A
2
5,2B2,1 96 6 1, 1, 1, 0 A1Ã

2
5

25 B15 B4
2,1D

2
4,2 96 6 1, 2/3, 1, 0 A4

1D̃
2
4

16 B16 A4
1,1A

4
3,2 72 4 1, 1, 0 Ã4

3
5 B17 A16

1,2 48 2 1, 0 Ã16
1
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Table 2. (continued)

No. No. (V orb(g)
Λ )1 Dim. n ρ(VΛ(gm)) Φ(g)
Rk. 12, cycle shape 1636

45 C1 A5,1E7,1 168 18 1, 1, 1, 1, 1, 0 Ẽ7

34 C2 A3,1D7,3G2,1 120 12 1, 1, 1, 1, 1, 0 A1D̃7

32 C3 E6,3G
3
2,1 120 12 1, 1, 3/4, 1, 1, 0 A3

1Ẽ6

27 C4 A2
2,1A8,3 96 9 1, 1, 0 Ã8

17 C5 A3
1,1A5,3D4,3 72 6 1, 1, 1, 0 Ã5D̃4

6 C6 A6
2,3 48 3 1, 0 Ã6

2

Rk. 12, cycle shape 212 (order doubling)
57 D1a B12,2 300 46 1, 22/23, 1, 0 A1

41 D1b B2
6,2 156 22 1, 10/11, 1, 0 A2

1
29 D1c B3

4,2 108 14 1, 6/7, 1, 0 A3
1

23 D1d B4
3,2 84 10 1, 4/5, 1, 0 A4

1
12 D1e B6

2,2 60 6 1, 2/3, 1, 0 A6
1

2 D1f A12
1,4 36 2 1, 0 Ã12

1
36 D2a A8,2F4,2 132 18 1, 1, 1, 1, 1, 0 A2

22 D2b A2
4,2C4,2 84 10 1, 1, 1, 0 A3

13 D2c A4
2,2D4,4 60 6 1, 1, 1, 0 D̃4

Rk. 10, cycle shape 142244

35 E1 A3,1C7,2 120 16 1, 1, 1, 1, 0 A6

28 E2 A2,1B2,1E6,4 96 12 1, 1, 1, 1, 1, 0 Ẽ6

18 E3 A3
1,1A7,4 72 8 1, 1, 1, 0 Ã7

19 E4 A2
1,1C3,2D5,4 72 8 1, 1, 1, 0 A2D̃5

7 E5 A1,2A
3
3,4 48 4 1, 1, 0 Ã3

3

Rk. 8, cycle shape 1454

20 F1 A2
1,1D6,5 72 10 1, 1, 1, 0 D̃6

9 F2 A2
4,5 48 5 1, 0 Ã2

4

Rk. 8, cycle shape 12223262

21 G1 A1,1C5,3G2,2 72 12 1, 1, 1, 1, 1, 0 A1A4

8 G2 A1,2A5,6B2,3 48 6 1, 1, 1, 0 A1Ã5

Rk. 6, cycle shape 1373

11 H1 A6,7 48 7 1, 0 Ã6

Rk. 6, cycle shape 12214182

10 I1 A1,2D5,8 48 8 1, 1, 1, 0 D̃5

Rk. 6, cycle shape 2363 (order doubling)
14 J1a A2,2F4,6 60 18 1, 1, 1, 1, 1, 0 A2

3 J1b A2,6D4,12 36 6 1, 1, 1, 0 D̃4

Rk. 4, cycle shape 22102 (order doubling)
4 K1 C4,10 36 10 1, 1, 1, 0 A3
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