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1 Introduction

In the 80s Koike, Norton and Zagier have proven the following product identity
for the elliptic j-function

1

q1

∏

n1>0
n2∈Z

(1 − qn1
1 qn2

2 )[j−744](n1n2) = j(τ1) − j(τ2) .

Let N be squarefree. Then the normalizer Γ0(N)+ =
⋃

k|N WkΓ0(N) of

Γ0(N) in SL2(R) is obtained by adjoining the Atkin-Lehner involutions Wk to
Γ0(N). Let Γ be a genus 0 group between Γ0(N) and its normalizer Γ0(N)+
and TΓ the corresponding normalized hauptmodul.

Borcherds has shown in [B1] that if Γ = Γ0(N)+ then the following product
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formula holds

1

q1

∏

d|N

∏

n1>0
n2∈Z

(1 − qdn1
1 qdn2

2 )[TΓ](dn1n2) = TΓ(τ1) − TΓ(τ2) .

In this paper we derive similar identities for arbitrary genus 0 groups satis-
fying the above conditions. For example we prove that

1

q1

∏

d|N

∏

n1,n2>0
n1,−n2>0

(1 − qdn1
1 qdn2

2 )[TΓ|Wd
](dn1n2) = TΓ(τ1) − TΓ(τ2) .

We describe our approach in more detail. Let N be squarefree and Γ0(N) ⊂
Γ ⊂ Γ0(N)+ be a genus 0 group. We define constants cd such that TΓ|Wd

+ cd

has constant coefficient 0. Then we lift TΓ to a vector valued modular form

FTΓ =
∑

M∈Γ0(N)\SL2(Z)

TΓ|MρD(M−1)e0

for the Weil representation of the lattice II1,1⊕II1,1(N). The maximal isotropic
subgroups of the discriminant form of II1,1 ⊕ II1,1(N) can be labelled by the
positive divisors of N . We denote them by Sk where k|N . The characteristic
function δSk

of Sk is invariant under the Weil representation and we define a
vector valued modular form

Fk = ckδSk
.

Then we apply Borcherds’ singular theta correspondence [B2] to the modular
form

F = FTΓ +
∑

k|N

Fk

to obtain the automorphic product Ψ(F ). We calculate the sum expansions of Ψ
at the different cusps using a generalization of Conway and Norton’s compression
formula and twisted denominator identities of the monster algebra. In this way
we obtain product expansions of TΓ as described above. The main difference to
Borcherds’ result is that the expansions of TΓ at the different cusps appear.

The above results have applications in the theory of generalized Kac-Moody
algebras which we describe in the following.

Conway’s group Co0 is the automorphism group of the Leech lattice Λ. The
characteristic polynomial of an element g in O(Λ) of order n can be written as
∏

k|n(xk −1)bk . The eta product ηg(τ) =
∏

η(kτ)bk is a modular form, possibly
with poles at cusps, for a group of level N . We call N the level of g.

The Leech lattice has a unique central extension 0 → {±1} → Λ̂ → Λ → 0
such that the commutator of the inverse images of α, β in Λ is (−1)(α,β). The
group O(Λ̂) = 224.O(Λ) of automorphisms preserving the inner product acts
naturally on the fake monster algebra. This is a generalized Kac-Moody algebra
describing the physical states of a bosonic string moving on a 26-dimensional
torus.
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Each element g in O(Λ) has a lift ĝ to O(Λ̂) which acts trivial on the inverse
image of the fixed point lattice Λg. The corresponding twisted denominator
identity is independent of the choice of ĝ. We conjecture that this identity
defines an automorphic product of singular weight k/2 where k = dim Λg.

Let g be an element in Co0 of squarefree level N and trivial fixed point
lattice. Then fg = 1/ηg is equal up to a constant to TΓ for some genus 0 group
Γ as above. The expansion of Ψ at a suitable cusp gives the twisted denominator
identity of g

q2

∏

d|N

∏

n1>0, n2∈Z

n1=0, n2>0

(1 − qdn1
1 qdn2

2 )[fg |Wd
+ad](dn1n2) = ηg(τ2) − ηg(τ1) .

Here ad is a constant such that fg|Wd
+ ad has constant coefficient bd. This

proves the moonshine conjecture for g.
In [S1] we show that the twisted denominator identities corresponding to

elements in Co0 of squarefree level and nontrivial fixed point lattice define au-
tomorphic products of singular weight. Together with the above results this
implies that the moonshine conjecture for Co0 is true for all elements of square-
free level.

We also show that a similar result holds for the monster. The monster
algebra is a generalized Kac-Moody algebra describing the physical states of a
bosonic string moving on a 2-dimensional orbifold. The largest sporadic group,
the monster, acts on this Lie algebra. Let g be an element in the monster whose
McKay-Thompson series Tg has squarefree level N . Then Tg = TΓ for some
genus 0 group Γ as above and the expansion of Ψ at a suitable cusp is the
twisted denominator identity of g

1

q1

∏

d|N

∏

n1,n2>0
n1,−n2>0

(1 − qdn1
1 qdn2

2 )[Tg |Wd
](dn1n2) = Tg(τ1) − Tg(τ2) .

We describe the contents of the sections.
In section 2 we calculate the twisted denominator identities of the monster

algebra under the action of the monster group for elements of squarefree level.
In section 3 we derive the twisted denominator identities of the fake monster

algebra under Conway’s group Co0 for elements of trivial fixed point lattice
from the twisted denominator identities of the monster algebra. We calculate
these identities explicitly for elements of squarefree level.

In section 4 we describe a map from modular forms on Γ0(N) to modular
forms for the Weil representation. We determine this lift explicitly for discrim-
inant forms of squarefree level.

In section 5 we construct for each genus 0 group Γ between Γ0(N) and its
normalizer Γ0(N)+, where N is squarefree, an automorphic product Ψ of weight
0 on Γ×Γ and determine the sum expansions of Ψ at the different cusps. These
results imply that the twisted denominator identities of the monster algebra
corresponding to elements of squarefree level are automorphic products of weight
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0 for discrete subgroups of O2,2(R) and that the moonshine conjecture for Co0

is true for the elements of squarefree level.
In the appendix we list the genus 0 groups Γ0(N) ⊂ Γ ⊂ Γ0(N)+ where N

is squarefree and some related information.
We thank R. E. Borcherds, E. Freitag and G. Höhn for stimulating discus-

sions and helpful comments. We also thank the referee for suggesting several
improvements. In particular the idea to use genus 0 groups instead of Co0 and
the monster as starting point for our considerations is due to him.

2 The monster algebra

The monster is the largest sporadic simple group. Its action on the monster
algebra gives twisted denominator identities. Borcherds used these identities to
prove the moonshine conjectures [B1]. In this section we calculate the twisted
denominator identities explicitly for elements of squarefree level using a gener-
alization of Conway and Norton’s compression formula.

First we recall some results about the monster and the monster algebra. The
monster acts on the monster vertex algebra V . We write V = ⊕m∈ZVm where
Vm is the subspace of conformal weight m + 1. The McKay-Thompson series of
an element g in the monster is defined as

Tg(τ) =
∑

tr(g|Vm)qm ,

for example

T1(τ) = j(τ) − 744 = q−1 + 196884q + 21493760q2 + . . . .

If g has order n then Tgk = Tg(k,n) for all integers k. The level of g is defined as
the level of the group leaving Tg invariant.

The monster algebra G is a generalized Kac-Moody algebra describing the
physical states of a bosonic string moving on a Z/2Z-twisted orbifold. The root
lattice L of G is the even unimodular Lorentzian lattice II1,1 with elements
(m1, m2) ∈ Z2 and norm (m1, m2)

2 = −2m1m2. A nonzero vector α in L is
a root if and only if α2 = 2 or α2 < 0. A root α has multiplicity [J ](−α2/2)
where J = j − 744. The denominator identity of G is given by

eρ
∏

α∈L+

(1 − eα)[J](−α2/2) =
∑

w∈W

det(w) w
(

J(e−ρ)
)

.

The Weyl vector is ρ = (−1, 0) and the positive roots are the vectors (1,−1)
and (m1, m2) with m1, m2 > 0. The Weyl group has order 2 and the nontrivial
element exchanges the coordinates of a vector. The simple roots of G are the
vectors (1, m2), where m2 = −1 or m2 > 0, of multiplicity [J ](m2).

Introducing elements q1 = e(1,0) and q2 = e(0,1) we can write the denomina-
tor identity as

1

q1

∏

m1>0
m2∈Z

(1 − qm1

1 qm2

2 )[J](m1m2) = J(τ1) − J(τ2) .
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This equation should be understood as identity of modular forms. Clearly it
would be sufficient to extend the product over m1, m2 > 0 and (m1, m2) =
(1,−1).

The monster has a natural action on G coming from the action on the
monster vertex algebra. The denominator identity of G can be written as co-
homological identity. Applying an element g in the monster of order n to this
identity and taking the trace we obtain the twisted denominator identity

eρ
∏

α∈L+

(1 − eα)mult(α) =
∑

w∈W

det(w)w
(

Tg(e
−ρ)
)

with

mult(α) =
∑

dk|((α,L),n)

µ(k)

dk
tr(gd|V−α2/2d2k2) .

We can rewrite the twisted denominator identity of g as

eρ
∏

k|n

∏

α∈kL+

(1 − eα)

[

P

d|k µ(k/d)T
gd /k

]

(−α2/2k2) =
∑

w∈W

det(w)w
(

Tg(e
−ρ)
)

.

This identity shows that the McKay-Thompson series are completely replicable
functions (cf. e.g. [F]) which in turn implies that they are hauptmoduln for
genus 0 groups. In this way Borcherds proved the moonshine conjectures.

Conversely the fact that the McKay-Thompson series are replicable haupt-
moduln for genus 0 groups implies the twisted denominator identities (cf. Lemma
A.2 in [CuN]).

Suppose that g has squarefree level N . Then g has order N . We calculate
the twisted denominator identity of g explicitly.

We start with a generalization of Conway and Norton’s compression formula.

Proposition 2.1

Let p be a prime dividing N . Then

Tgp(τ) =Tg(τ) + Tg|Wp

(

τ
p

)

+ Tg|Wp

(

τ+1
p

)

+ . . . + Tg |Wp

(

τ+p−1
p

)

+ pcp

=Tg(τ) + pTg|WpTp(τ) + pcp

where Tp is a Hecke operator and Tg|Wp has constant coefficient −cp.

Proof: This can be proven in the same way as the compression formula. �

We generalize the formula in the following way.

Proposition 2.2

Let d be a positive integer. Then

Tgd =
∑

m|(d,N)

m(Tg|WmTm + cm)
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Proof: Since Tgd = Tg(d,N) it is sufficient to prove the statement for d|N . We do
this by induction on the number of divisors of d. The statement is true for d = 1
and d = p. Now suppose dp|N and (d, p) = 1. Then for all m|d the operators
Tm and Wp commute, WmWp = Wmp and TmTp = Tmp. From

Tgd =
∑

m|d

m(Tg|WmTm + cm)

we get

Tgd |WpTp =
∑

m|d

m(Tg|WpmTpm + cm)

so that the constant coefficient in Tgd |WpTp is

−
∑

m|d

m(cpm − cm) .

Then

Tgdp = T(gd)p

= Tgd + pTgd |WpTp +
∑

m|d

pm(cpm − cm)

= Tgd +
∑

m|d

pm(Tg |WpmTpm + cm) +
∑

m|d

pm(cpm − cm)

= Tgd +
∑

m|d

pm(Tg |WpmTpm + cpm)

=
∑

m|d

m(Tg|WmTm + cm) +
∑

m|d

pm(Tg|WpmTpm + cpm)

=
∑

m|dp

m(Tg |WmTm + cm) .

This finishes the induction and proves the proposition. �

Proposition 2.3

Let k|N . Then

Tg|WkTk
+ ck =

∑

d|k

µ(k/d)

k
Tgd .

Proof: Define a function f on the positive integers by

f(m) =

{

m(Tg|WmTm + cm) if m|N
0 otherwise.

For a positive integer k let

g(k) =
∑

m|k

f(m) =
∑

m|(k,N)

m(Tg|WmTm + cm) = Tgk .
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The Möbius inversion formula implies

f(m) =
∑

k|m

µ(m/k)g(k) =
∑

k|m

µ(m/k)Tgk

so that for a divisor m of N

m(Tg|WmTm + cm) =
∑

k|m

µ(m/k)Tgk .

This proves the proposition. �

The twisted denominator identity of g takes the following simple form.

Theorem 2.4

Let g be an element in the monster of squarefree level N . Then g has order N
and the twisted denominator identity of the monster algebra corresponding to

g is

eρ
∏

k|N

∏

α∈kL+

(1 − eα)[Tg |Wk
](−α2/2k) = Tg(e

−ρ) − Tg(e
−wρ) .

Proof: The last proposition and the fact that L+ does not contain any vectors
of norm 0 imply that the twisted denominator identity of g is given by

eρ
∏

k|N

∏

α∈kL+

(1 − eα)[Tg |WkTk
](−α2/2k2) = Tg(e

−ρ) − Tg(e
−wρ) .

The statement now follows from [Tg|WkTk
](m) = [Tg|Wk

](km). �

3 The fake monster algebra

In this section we give an independent proof of the twisted denominator iden-
tities of the fake monster algebra under automorphisms of the Leech lattice of
trivial fixed point lattice using the twisted denominator identities of the monster
algebra. We calculate these identities explicitly for elements of squarefree level.

The fake monster algebra G is a generalized Kac-Moody algebra describ-
ing the physical states of a bosonic string moving on a 26-dimensional torus.
The root lattice L of G is the even unimodular Lorentzian lattice II25,1. A
nonzero vector α in L is a root if and only if α2 ≤ 2. A root α has multiplicity
[1/∆](−α2/2) where

1/∆(τ) = 1/η(τ)24 = q−1 + 24 + 324q + 3200q2 + . . . .

The denominator identity of G is given by

eρ
∏

α∈L+

(

1 − eα)[1/∆](−α2/2) =
∑

w∈W

det(w)w
(

eρ
∏

n>0

(

1 − enρ
)24
)

.
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The Weyl vector ρ is a primitive norm 0 vector in L corresponding to the Leech
lattice and W is the reflection group L. The positive roots are the roots which
either have negative inner product with ρ or are positive multiples of ρ. The
real simple roots of G are the norm 2 vectors α in L with (ρ, α) = −1 and the
imaginary simple roots are the positive multiples nρ of the Weyl vector with
multiplicity 24.

Conway’s group Co0 is the automorphism group of the Leech lattice Λ. The
characteristic polynomial of an element g in O(Λ) of order n acting on Λ ⊗ R

can be written as
∏

k|n

(xk − 1)bk .

The eta product

ηg(τ) =
∏

η(kτ)bk

is a modular form, possibly with poles at cusps, for a group of level N . We call
N the level of g.

The Leech lattice has a unique central extension 0 → {±1} → Λ̂ → Λ → 0
such that the commutator of the inverse images of α, β in Λ is (−1)(α,β). The
natural action of O(Λ̂) = 224.O(Λ) on the vertex algebra of the Leech lattice VΛ

can be used to define an action of O(Λ̂) on the fake monster algebra.
Each element g in O(Λ) has a lift ĝ to O(Λ̂) which acts trivially on the inverse

image of the fixed point lattice Λg. The corresponding twisted denominator
identity is independent of the choice of ĝ. We conjecture that this identity
defines an automorphic form of singular weight k/2, where k = dim Λg , for a
discrete subgroup of Ok+2,2(R) in the image of the singular theta correspondence
[B2].

Let g be an element in Co0 of order n and trivial fixed point lattice. Then
the lift ĝ described above has order n. Borcherds has shown in [B1] that the
twisted denominator identity of g is given by

eρ
∏

α∈L+

(1 − eα)mult(α) =
∑

w∈W

det(w)w
(

ηg(e
ρ)
)

where

mult(α) =
∑

dk|((α,L),n)

µ(k)

dk
tr(ĝd|VΛ,−α2/2d2k2 ) .

Here L = II1,1, W is the reflection group of L, ρ = (−1, 0) ∈ L and VΛ,m is
the subspace of VΛ of L0-eigenvalue m + 1. A nonzero vector (m1, m2) in L is
positive if and only if m1, m2 ≥ 0 or (m1, m2) = (1,−1). Note that in contrast
to the monster case there are roots of norm 0.

The twisted denominator identity of g can also be written as

eρ
∏

k|n

∏

α∈kL+

(1 − eα)

[

P

d|k µ(k/d)θ
Λgd /kη

gd

]

(−α2/2k2)
=
∑

w∈W

det(w)w
(

ηg(e
ρ)
)
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(cf. [S1]). It is easy to see that the constant term in the Fourier expansion of

∑

d|k

µ(k/d)θΛgd /kηgd

is bk.
Now we give an independent proof of the twisted denominator identity for

elements with trivial fixed point lattice. The idea is that this identity differs
from the corresponding identity of the monster only by some boundary terms.
Let g be an element in Co0 of order n and trivial fixed point lattice. The eta
product 1/ηg is up to a constant equal to the McKay-Thompson series of some
element in the monster which we also denote by g. More generally we have

Proposition 3.1

Let k|n. Then

θΛgk

ηgk

−
∑

d|k

dbd = Tgk .

Proof: A case-by-case analysis shows that θ
Λgk /ηgk and Tgk have the same

invariance group so that θΛgk /ηgk is a rational function of Tgk . The only poles
of θΛgk /ηgk are at the cusp ∞ so that θΛgk /ηgk is actually a polynomial in Tgk .
The statement now follows from comparing the coefficients at qm for m ≤ 0 on
both sides. �

Using this formula we can show

Theorem 3.2

Let g be an automorphism of the Leech lattice of order n and trivial fixed point

lattice. Then

q2

∏

k|n

∏

m1>0, m2∈Z

m1=0, m2>0

(1 − qkm1
1 qkm2

2 )

[

P

d|k µ(k/d)θ
Λgd /kη

gd

]

(m1m2)

= ηg(τ2) − ηg(τ1) .

Proof: We separate the factors coming from the norm 0 vectors and then use
the twisted denominator identity of the monster algebra corresponding to g to
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obtain

q2

∏

k|n

∏

m1>0, m2∈Z

m1=0, m2>0

(1 − qkm1
1 qkm2

2 )

[

P

d|k µ(k/d)θ
Λgd /kη

gd

]

(m1m2)

= q2

∏

k|n

∏

m1>0, m2∈Z

m1=0, m2>0

(1 − qkm1
1 qkm2

2 )

[

bk+
P

d|k µ(k/d)T
gd /k

]

(m1m2)

=
(

q2

∏

k|n

∏

m2>0

(1 − qkm2
2 )bk

)(

q1

∏

k|n

∏

m1>0

(1 − qkm1
1 )bk

)

(

1

q1

∏

k|n

∏

m1>0
m2∈Z

(1 − qkm1
1 qkm2

2 )

[

P

d|k µ(k/d)T
gd /k

]

(m1m2)

)

= ηg(τ2)ηg(τ1)
(

Tg(τ1) − Tg(τ2)
)

= ηg(τ2)ηg(τ1)
(

1/ηg(τ1) − 1/ηg(τ2)
)

= ηg(τ2) − ηg(τ1) .

This proves the theorem. �

For elements of trivial fixed point lattice and squarefree level the twisted
denominator identity takes a very simple form. We write fg = 1/ηg. Then

Theorem 3.3

Let g be an automorphism of the Leech lattice of trivial fixed point lattice and

squarefree level N . Then g has order N and the twisted denominator identity

corresponding to g is

eρ
∏

k|N

∏

α∈kL+

(1 − eα)[fg |Wk
+ak ](−α2/2k) = ηg(e

ρ) − ηg(e
wρ)

where ak is a constant such that fg|Wk
+ ak has constant term bk.

Proof: From Propositions 2.3 and 3.1 we get

fg|WkTk
+ ak =

∑

d|k

µ(k/d) θΛgd /kηgd .

Inserting this into the formula of Theorem 3.2 gives the assertion. Another way
of proving the identity is to separate the contributions of the norm 0 vectors
and then to use Theorem 2.4. �

4 Modular forms

In this section we define a map from modular forms on Γ0(N) to modular forms
for the Weil representation. We calculate this lift explicitly for discriminant
forms of squarefree level.
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Let L be an even lattice of even rank with dual lattice L′. The discriminant
form D of L is the finite abelian group L′/L with quadratic form γ2/2 mod 1.
The level of D is the smallest positive integer N such that Nγ2/2 = 0 mod 1.
We define the signature of D as sign(D) = sign(L) mod 8. The discriminant
form decomposes into orthogonal p-groups

D =
⊕

D(p) .

We define
γ2(D) = e(oddity(D)/8)

and
γp(D) = e(−p-excess(D)/8)

for odd primes so that

∏

γp(D) = e(sign(D)/8)

(cf. [CS], chapter 15).
There is an action of SL2(Z) on the group algebra C[D] defined by

ρD(T ) eγ = e(−γ2/2) eγ

ρD(S) eγ =
e(sign(D)/8)

√

|D|
∑

β∈D

e((γ, β)) eβ

where S =
(

0 −1
1 0

)

and T = ( 1 1
0 1 ) are the standard generators of SL2(Z). This

representation is called Weil representation. Clearly it commutes with the au-
tomorphisms of the discriminant form.

Now let N be a positive integer such that the level of D divides N . It is
easy to see that

χD(a) =

(

a

|D|

)

e
(

(a − 1)oddity(D)/8
)

defines a quadratic Dirichlet character modulo N . A matrix M =
(

a b
c d

)

∈ Γ0(N)
acts in the Weil representation as

ρD(M) eγ = χD(M) e(−bdγ2/2) edγ

where χD(M) = χD(a) = χD(d).
Let f be a holomorphic function on the upper halfplane with values in C

and k an integer. We say that f is a modular form for Γ0(N) of character χD

and weight k if
f(Mτ) = (cτ + d)kχD(M)f(τ)

for all M =
(

a b
c d

)

in Γ0(N) and f is meromorphic at the cusps of Γ0(N). This
definition is slightly more general than the standard definition of modular forms
because we allow poles at cusps.
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Let
F (τ) =

∑

γ∈D

Fγ(τ)eγ

be a holomorphic function on the upper halfplane with values in C[D] and k an
integer. Then F is a modular form for ρD of weight k if

F (Mτ) = (cτ + d)kρD(M)F (τ)

for all M =
(

a b
c d

)

in SL2(Z) and F is meromorphic at ∞.
We can lift modular forms on Γ0(N) to modular forms for the Weil repre-

sentation.

Theorem 4.1

Let L be an even lattice of even rank and discriminant form D of level dividing

N . Let f be a scalar valued modular form on Γ0(N) of weight k and character

χD and S an isotropic subset of D which is invariant under (Z/NZ)∗ as a set.

Then

F (τ) =
∑

M∈Γ0(N)\SL2(Z)

∑

γ∈S

f |M (τ) ρD(M−1)eγ

is a modular form for ρD of weight k which is invariant under the automorphisms

of the discriminant form that stabilize S as a set.

Proof: Let M ∈ SL2(Z). First we show that the function

FM =
∑

γ∈S

f |M ρD(M−1)eγ

depends only on the coset of M in Γ0(N)\SL2(Z) so that F is well defined. Let
K =

(

a b
c d

)

∈ Γ0(N). Then (a, N) = 1 and

FKM =
∑

γ∈S

f |KM ρD((KM)−1)eγ

= χD(K)
∑

γ∈S

f |M ρD(M−1)ρD(K−1)eγ

= χD(K)
∑

γ∈S

f |M ρD(M−1)χD(K−1)eaγ

=
∑

γ∈S

f |M ρD(M−1)eaγ

= FM

because S is invariant under (Z/NZ)∗. Now we show that F transforms correctly

12



under SL2(Z). For a matrix K =
(

a b
c d

)

∈ SL2(Z) we have

F (Kτ) =
∑

M∈Γ0(N)\SL2(Z)

∑

γ∈S

f |M (Kτ) ρD(M−1)eγ

= (cτ + d)k
∑

M∈Γ0(N)\SL2(Z)

∑

γ∈S

f |MK(τ) ρD(M−1)eγ

= (cτ + d)kρD(K)
∑

M∈Γ0(N)\SL2(Z)

∑

γ∈S

f |MK(τ) ρD(K−1)ρD(M−1)eγ

= (cτ + d)kρD(K)
∑

M∈Γ0(N)\SL2(Z)

∑

γ∈S

f |MK(τ) ρD((MK)−1)eγ

= (cτ + d)kρD(K)F (τ)

by shifting the summation index. Finally the FM and hence F are invariant
under the stabilizer of S because the Weil representation commutes with the
automorphisms of the discriminant form. This proves the theorem. �

Let N be a squarefree positive integer. Suppose the level of D divides N . In
this case we can calculate the lift explicitly (cf. [S2], chapter 6). The character
χD reduces to

χD(j) =

(

j

|D|

)

.

Let f be a modular form on Γ0(N) of character χD and integral weight. For
each positive divisor c of N we choose a matrix

M1/c =

(

1 b
c d

)

in SL2(Z) with d = 0 mod c′ where c′ = N/c. Then

Wc′ =
1√
c′

(

1 b
c d

)(

c′ 0
0 1

)

is an Atkin-Lehner involution of Γ0(N) and

f1/c(τ) = f |M1/c
(τ) = f |Wc′

(τ/c′)

gives an expansion of f at the cusp 1/c. Since f1/c has a Fourier expansion in
powers of qc′ we can write

f1/c(τ) = gc′,0(τ) + gc′,1(τ) + . . . + gc′,c′−1(τ)

where
gc′,j |T (τ) = e(j/c′) gc′,j(τ) .

Let S be an isotropic subset of D which is invariant under (Z/NZ)∗ and

F =
∑

Fγeγ

13



be the lift of f with support S. If S ∩ (γ + D(c′)) is nonempty then we can
define the integer jc′ with 0 ≤ jc′ ≤ c′ − 1 by −γ2/2 = jc′/c′ mod 1. We write
c−1 for the inverse of c modulo c′. Then

Theorem 4.2

The components Fγ are given by

Fγ =
∑

c|N

∑

β∈S∩(γ+D(c′))

e(−c−1(β, γ)) εc
c′

√

|D(c′)|
gc′,jc′

where

εc = e(sign(D)/8)

( −c

|Dc′ |

)

∏

p|c

γp(D)

=

( −c

|Dc′ |

)

∏

p|c′

γp(D) .

We describe two cases which will become important later.

Theorem 4.3

Suppose S = {0}. Then

Fγ =
∑

c|N, c′γ=0

jc′/c′=−γ2/2

εc
c′

√

|D(c′)|
gc′,jc′

.

We see that Fγ is completely determined by the norm and order of γ. This also
follows from the fact that F is invariant under the full automorphism group of
the discriminant form.

By lifting constant functions we obtain

Theorem 4.4

Let S be an isotropic subgroup of D such that S = S⊥. Then the characteristic

function of S is invariant under the Weil representation.

Of course this can also easily be proven directly.

5 Automorphic forms

Let N be squarefree. We construct for each genus 0 group Γ between Γ0(N)
and its normalizer Γ0(N)+ an automorphic product Ψ of weight 0 on Γ×Γ and
determine the sum expansions of Ψ at the different cusps. These results imply
that the twisted denominator identities of the monster algebra corresponding to
elements of squarefree level are automorphic products of weight 0 for discrete
subgroups of O2,2(R) and that the moonshine conjecture for Co0 is true for the
elements of squarefree level.

14



Let N be a squarefree positive integer.
The normalizer Γ0(N)+ of Γ0(N) in SL2(R) is obtained by adjoining Atkin-

Lehner involutions Wk to Γ0(N), i.e.

Γ0(N)+ =
⋃

k|N

WkΓ0(N) .

We have
WkWm = Wk∗m mod Γ0(N)

where k ∗ m = km/(k, m)2. In particular W 2
k = 1 mod Γ0(N).

We define the lattice
M = II1,1 ⊕ II1,1(N)

with II1,1(N) =
√

NII1,1. If m is a divisor of N then we can also decompose M
into the orthogonal sum

M = II1,1(m) ⊕ II1,1(m
′)

where m′ = N/m.
Let z be a primitive norm 0 vector in M . The level of z is defined as the

greatest common divisor of {(z, x) |x ∈ M}. Then the level of z divides N and
for each divisor m of N there is exactly one orbit of primitive norm 0 vectors of
level m in M under Aut(M).

Let D = M ′/M be the discriminant form of M . The automorphisms of M
act on D and the image of Aut(M) in Aut(D) is surjective.

If z is a primitive norm 0 vector of level m in M then γ = z/m mod M is
an isotropic element in D of order m. Conversely if γ is an isotropic element of
order m in D then there is a primitive norm 0 vector z in M of level m such
that z/m = γ mod M . It follows that the orbits of primitive norm 0 vectors
in M under Aut(M) can be identified with the orbits of isotropic elements in D
under Aut(D).

The discriminant form of M decomposes into the orthogonal sum D =
⊕

p|N D(p) where D(p) is the discriminant form of the lattice II1,1(p).

The discriminant form of II1,1(p) has 2p− 1 isotropic elements and thus two
different isotropic subgroups. There is an automorphism Vp of II1,1(p) which
interchanges these two groups. We extend this automorphism to M .

It follows that the discriminant form D has σ0(N) =
∏

p|N 2 maximal
isotropic subgroups and these groups can be parametrized by the divisors of
N . We do this by labelling one of the isotropic subgroups of order p by 1 and
the other by p. The label of a maximal isotropic subgroup is then obtained
by multiplying the labels of its p-subgroups. The automorphisms of M act
transitively on the maximal isotropic subgroups.

Let Aut(M, I) be the normal subgroup of Aut(M) fixing the maximal iso-
tropic subgroups of D. Note that the automorphisms Vp of M commute mod-
ulo Aut(M, I). For k|N we define the automorphisms V1 = 1 and Vk =

15



Vp1Vp2 . . . Vpn if k = p1p2 . . . pn and p1 < p2 < . . . < pn. Then

Aut(M) =
⋃

k|N

Vk Aut(M, I)

and
VkVm = Vk∗m mod Aut(M, I)

so that the groups Aut(M)/Aut(M, I) and Γ0(N)+/ Γ0(N) are naturally iso-
morphic.

Let z be a primitive norm 0 vector of level m in M . Then γ = z/m mod M
is an isotropic element in D of order m. We decompose γ =

∑

p|m γp where γp

is a nonzero element in D(p). Then γp is in one of the two isotropic subgroups
of order p. By multiplying the labels of these groups we obtain a divisor k of
m. The orbit of z in M under Aut(M, I) is determined by the pair (m, k).

Now let N be a squarefree positive integer and

Γ = N + k1, . . . , kj

be a genus 0 subgroup of SL2(R) (cf. p. 27).
Let TΓ be the normalized hauptmodul corresponding to Γ. Then

TΓ,k/N (τ) = TΓ|Wk
(τ/k)

gives an expansion of TΓ at the cusp k/N of Γ0(N) of width k. We decompose

TΓ,k/N = gk,0 + gk,1 + . . . + gk,k−1

where the gk,j satisfy
gk,j |T = e(j/k)gk,j .

We define cd as the constant coefficient in −TΓ|Wd
(cf. p. 27). Then c1 = 0

and ck∗d = cd for all k ∈ Γ/ Γ0(N). The group Γ/ Γ0(N) acts on the cm by
k.cm = ck∗m and the number of orbits under this action is the index of Γ in
Γ0(N)+.

Let FTΓ be the lift of TΓ on M = II1,1⊕II1,1(N) with trivial support. We fix
a labelling of the isotropic p-subgroups of D as described above. Let Sk be the
maximal isotropic subgroup with label k dividing N and Fk the lift of ck/σ1(N)
on M with support Sk. Then Fk = ckδSk

. Define

F = FTΓ +
∑

k|N

Fk .

Then the coefficients of F are given by

Fγ =
∑

k|N, kγ=0

j/k=−γ2/2

gk,j +
∑

γ∈Sk

ck .

16



In particular we have

F0 =
∑

k|N

(gk,0 + ck) =
∑

k|N

(TΓ|WkTk
+ ck)

so that the constant coefficient of F0 is 0. Hence the theta lift Ψ of F is an
automorphic form of weight 0 for Aut(M, F )+ (cf. [B2], Theorem 13.3).

The group Aut(M, F ) of automorphisms of M leaving F invariant is

Aut(M, F ) =
⋃

k∈Γ/ Γ0(N)

Vk Aut(M, I) .

From this the orbits of primitive norm 0 vectors in M under Aut(M, F ) immedi-
ately follow. Note that two primitive norm 0 vectors of level m and parameters
k and (k ∗ l, m) = k ∗ (l, m) with l ∈ Γ/ Γ0(N) are in the same orbit under
Aut(M, F ).

For example suppose Γ = 6+6. Then the orbits of primitive norm 0 vectors
in M under Aut(M, I) are given by

(1, 1),

(2, 1), (2, 2),

(3, 1), (3, 3),

(6, 1), (6, 2), (6, 3), (6, 6) .

The automorphism V6 interchanges the orbits

(2, 1) and (2, 2),

(3, 1) and (3, 3),

(6, 1) and (6, 6),

(6, 2) and (6, 3),

so that there are 5 orbits of primitive norm 0 vectors in M under Aut(M, F ).
Now we determine the product expansions of Ψ.

Theorem 5.1

Let z be a primitive norm 0 vector in M with parameters m and k. Then the

expansion of Ψ corresponding to z is given by

e((ρ, Z))
∏

d|N

∏

α∈(L′∩L/d)+

(

1 − e((m, d)(α, Z))
)[TΓ,d/N ](−α2/2)

∏

d|N

∏

α∈(Sk′∗d(m′)+L)+

(

(1 − e((m, d)(α, Z))
)[ck′∗d](−α2/2)

where m′ = N/m, k′ = N/k and L = II1,1(m
′).

17



Proof: The lattice L = (M ∩ z⊥)/Zz is isomorphic to II1,1(m
′) and M decom-

poses into the sum of L and its orthogonal complement L⊥ in M . This yields an
isomorphism between the m′-torsion subgroup D(m′) of D and the discriminant
form of L.

The isotropic element γ = z/m mod M in D has order m and

D ∩ γ⊥ = (D(m) ∩ γ⊥) ⊕ D(m′)

= 〈 γ 〉 ⊕ D(m′) .

The projection
〈 γ 〉 ⊕ D(m′) → D(m′)

defines a map from D ∩ γ⊥ to L′/L which preserves norms. For α ∈ L′ we
denote the inverse image of α mod L under this map as α + 〈 γ 〉.

Furthermore we choose a vector z′ in the dual of L⊥ such that (z, z′) = 1.
Then the theta lift Ψ of F is given by

e((ρ, Z))
∏

α∈L′+

∏

δ∈α+〈γ〉

(

1 − e((δ, z′))e((α, Z))
)[fδ](−α2/2)

= e((ρ, Z))
∏

α∈L′+

∏

δ∈α+〈γ〉

(

1 − e((δ, z′))e((α, Z))
)

[

P

dδ=0

j/d=−δ2/2

gd,j

]

(−α2/2)

∏

α∈L′+

∏

δ∈α+〈γ〉

(

1 − e((δ, z′))e((α, Z))
)

[

P

δ∈Sj
cj

]

(−α2/2)

We simplify the first product. Let α ∈ L′+ be of order l|m′ in L′/L and
d|N . Then (α+ 〈γ〉)∩D(d) is nonempty if and only if α ∈ D(d) and if and only
if l|d. In this case (α + 〈γ〉) ∩ D(d) = α + (〈γ〉 ∩ D(d)) has cardinality (m, d).
Hence the contribution of α to the first product is

∏

l|d|N

(

1 − e((m, d)(α, Z))
)[gd,j ](−α2/2)

where j is given by −α2/2 = j/d mod 1. Note that dα ∈ L implies α2/2 ∈ Z/d.
Clearly [gd,j ](−α2/2) = [TΓ,d/N ](−α2/2). It follows that we can write the first
product as

∏

d|N

∏

α∈(L′∩L/d)+

(

1− e((m, d)(α, Z))
)[TΓ,d/N ](−α2/2)

.

The second product can be simplified as follows. The group Sd decomposes
in the sum Sd = Sd(m)⊕Sd(m

′) of the m- and m′-torsion subgroup. Therefore
the intersection (α + 〈γ〉) ∩ Sd is nonempty if and only if α ∈ Sd. In this case
(α + 〈γ〉)∩ Sd = α + (〈γ〉 ∩ Sd) has cardinality (m, k′ ∗ d) where k′ = N/k. The
second product becomes

∏

d|N

∏

α∈(Sd(m′)+L)+

(

1 − e((m, k′ ∗ d)(α, Z))
)[cd](−α2/2)

.
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Hence Ψ is given by

e((ρ, Z))
∏

d|N

∏

α∈(L′∩L/d)+

(

1 − e((m, d)(α, Z))
)[TΓ,d/N ](−α2/2)

∏

d|N

∏

α∈(Sd(m′)+L)+

(

1 − e((m, k′ ∗ d)(α, Z))
)[cd](−α2/2)

.

This proves the theorem. �

Note that the identification of D(m′) with L′/L and hence of Sd(m
′) with a

subgroup of L′/L depends on z.
We determine how the product expansion of Ψ changes if we replace k by

k̃ = (k∗ l, m) = k∗ (l, m) where l|N . This means that we replace z by z̃ = Vl(z).
To clarify notations we denote the isomorphism from D(m′) to L′/L by jm,k.
The first product remains unchanged under the above substitution. For the
second product we obtain

∏

d|N

∏

α∈(jm,k̃(Sd(m′))+L̃)+

(

1 − e((m, k̃′ ∗ d)(α, Z))
)[cd](−α2/2)

=
∏

d|N

∏

α∈(jm,k̃(Sd(m′))+L̃)+

(

1 − e((m, k′ ∗ d ∗ l)(α, Z))
)[cd](−α2/2)

=
∏

d|N

∏

α∈(jm,k̃(Sd∗l(m′))+L̃)+

(

1 − e((m, k′ ∗ l)(α, Z))
)[cd∗l](−α2/2)

=
∏

d|N

∏

α∈(jm,k̃(Vl(Sd(m′)))+L̃)+

(

1 − e((m, k′ ∗ l)(α, Z))
)[cd∗l](−α2/2)

=
∏

d|N

∏

α∈(Vl(jm,k(Sd(m′)))+L̃)+

(

1 − e((m, k′ ∗ l)(α, Z))
)[cd∗l](−α2/2)

because
k̃′ = (k ∗ (l, m))′ = k′ ∗ (l, m)

and
(m, k′ ∗ d ∗ (l, m)) = (m, k′ ∗ d) ∗ (l, m) = (m, k′ ∗ d ∗ l) .

Hence the product expansion of Ψ corresponding to z̃ = Vl(z) is

e((ρ̃, Z))
∏

d|N

∏

α∈(L̃′∩L̃/d)+

(

1 − e((m, d)(α, Z))
)[TΓ,d/N ](−α2/2)

∏

d|N

∏

α∈((Vljm,k)(Sd(m′))+L̃)+

(

1 − e((m, k′ ∗ d)(α, Z))
)[cd∗l](−α2/2)

.

If Wl ∈ Γ then cd = cd∗l so that z and z̃ give the same expansion up to
isomorphism.
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If m = N then the product expansion of Ψ simplifies to

e((ρ, Z))
∏

d|N

∏

α∈dL+

(

1 − e((α, Z))
)[TΓ,d/N +ck′∗d](−α2/2d2)

where L = II1,1.
The product expansion of Ψ in Theorem 5.1 extends over a subset of the dual

lattice of II1,1(m
′) =

√
m′II1,1. We rescale the expression by m′, i.e. replace

α in II1,1(m
′)′ = II1,1/

√
m′ by

√
m′α, to obtain an expansion over the even

lattice II1,1. Note that the discriminant form II1,1(m
′)′/II1,1(m

′) is identified
with II1,1/m′II1,1 under this rescaling. We have

√
m′(m, d)

(

II1,1(m
′)′ ∩ II1,1(m

′)/d
)

= (m, d)II1,1 ∩ (m, d)m′II1,1/d

= (m, d)II1,1 ∩ m′II1,1/(m′, d)

= (m′ ∗ d)II1,1

because d = (d, m)(d, m′). Hence the rescaled expansion of Ψ is given by

e((ρ, Z))
∏

d|N

∏

α∈(m′∗d)L+

(

1 − e((α, Z))
)[TΓ|Wd

](−α2/2(m′∗d))

∏

d|N

∏

α∈(m,d)(Sk′∗d(m′)+m′L)+

(

1 − e((α, Z))
)[ck′∗d](−α2/2)

with L = II1,1.
The second product in the expansion extends over norm 0 vectors in II1,1.

We choose a primitive isotropic vector e1 in II1,1 such that γ1 = e1/
√

m′

mod II1,1(m
′) is in the isotropic subgroup of label 1 in D and a primitive

isotropic vector em′ in II1,1 such that γm′ = em′/
√

m′ mod II1,1(m
′) is in the

isotropic subgroup of label m′ in D. Then the norm 0 vectors in II1,1 decompose
into the union Ze1 ∪ Zem′ and

Theorem 5.2

The product expansion of Ψ at a cusp with parameters m and k is given by

e((ρ, Z))
∏

d|N

∏

α∈dL+

(

1 − e((α, Z))
)[TΓ|W

d∗m′ ](−α2/2d)

∏

d|N

∏

α∈(Zde1)+

(

1 − e((α, Z))
)cd∗k′

∏

d|N

∏

α∈(Zdem′ )+

(

1 − e((α, Z))
)cd∗m/k .

Proof: Recall that m′ = (d, m′)(d′, m′). The norm 0 vectors in Sd(m
′) + m′L

are given by

(Sd(m
′) + m′L) ∩ Ze1 = Z(d′, m′)e1

(Sd(m
′) + m′L) ∩ Zem′ = Z(d, m′)em′ .
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Now

(m, k′ ∗ d) = (m, k ∗ d′) = k ∗ (d′, m) =
k(d′, m)

(k, d′, m)2
=

k(d′, m)

(k, d′)2

so that

(m, k′ ∗ d)(d′, m′) =
kd′

(k, d′)2
= k ∗ d′ = d ∗ k′

and similarly
(m, k′ ∗ d)(d, m′) = d ∗ m/k .

Hence

∏

d|N

∏

α∈(m,k′∗d)(Sd(m′)+m′L)+

(

1 − e((α, Z))
)cd

=
∏

d|N

∏

α∈(Z(d∗k′)e1)+

(

1 − e((α, Z))
)cd

∏

d|N

∏

α∈(Z(d∗m/k)em′ )+

(

1 − e((α, Z))
)cd .

This proves the theorem. �

We see that the multiplicities of the norm 0 vectors in the expansion get
contributions from the constant coefficients in the TΓ|Wd

and the constants cd.
If m = N then the contributions of the constants cd to multiplicities of the

positive multiples of e1 and em′ are equal.
If m = k then the multiplicities of the positive multiples of e1 become trivial

because the constant coefficient in TΓ|Wd
+ cd is 0.

Also note that m′ = m/k is only possible if m = k = N .
Now we show that Ψ has another symmetry which is not visible on the level

of the orbits of primitive norm 0 vectors in M under Aut(M, F ).
Let l|N and suppose that k|(m∗l). Then the expansion of Ψ with parameters

m ∗ l and k is given by

e((ρ̃, Z))
∏

d|N

∏

α∈dL̃+

(

1 − e((α, Z))
)[TΓ|W

d∗l∗m′ ](−α2/2d)

∏

d|N

∏

α∈(Zdẽ1)+

(

1 − e((α, Z))
)cd∗k′

∏

d|N

∏

α∈(Zdẽ(m∗l)′ )
+

(

1 − e((α, Z))
)cd∗(m∗l)/k .

Using
(m ∗ l)/k = l ∗ m/k
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we get

e((ρ̃, Z))
∏

d|N

∏

α∈dL̃+

(

1 − e((α, Z))
)[TΓ|W

d∗l∗m′ ](−α2/2d)

∏

d|N

∏

α∈(Zdẽ1)+

(

1 − e((α, Z))
)cd∗k′

∏

d|N

∏

α∈(Zdẽ(m∗l)′ )
+

(

1 − e((α, Z))
)cd∗l∗m/k .

Hence if l ∈ Γ/ Γ0(N) then the expansions of Ψ with parameters m and k and
parameters m ∗ l and k are the same up to isomorphism.

This implies that Ψ has 1, 3 or 9 different product expansions depending on
whether Γ has index 1, 2 or 4 in Γ0(N)+. We determine now the corresponding
sum expansions. Here we introduce coordinates q1 = e(τ1) and q2 = e(τ2).

Suppose Γ = Γ0(N)+. Then cd = 0 for all d|N and Aut(M, F ) = Aut(M).
Hence there are σ0(N) orbits of primitive norm 0 vectors in M and they all give
the same expansion of Ψ.

Theorem 5.3

Suppose Γ = Γ0(N)+. Then the expansion of Ψ at any cusp is given by

1

q1

∏

d|N

∏

n1>0
n2∈Z

(1 − qdn1
1 qdn2

2 )[TΓ](dn1n2) = TΓ(τ1) − TΓ(τ2) .

Proof: The product expansion of Ψ follows from the last theorem. The function
TΓ is the McKay-Thompson series Tg of an element g in the monster so that
the identity is just the twisted denominator identity of g (cf. Theorem 2.4). �

Suppose Γ has index 2 in Γ0(N)+. Using the above symmetries we see that
the expansion of Ψ at a cusp is equal to one of the following.

(M) The expansion of Ψ at the cusp with parameters m = k = N .

(FM) The expansion of Ψ at a cusp with parameters m = N and

k not conjugate to N under Γ/ Γ0(N), i.e. k′ /∈ Γ/ Γ0(N).

(O) The expansion of Ψ at a cusp with parameters m not conjugate

to N under Γ/ Γ0(N), i.e. m′ /∈ Γ/ Γ0(N), and k = m.

For example in the case Γ = 6 + 6 the expansions of Ψ are of types

(M) (1, 1), (6, 1), (6, 6)

(FM) (6, 2), (6, 3)

(O) (2, 1), (2, 2), (3, 1), (3, 3)

We have
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Theorem 5.4

Suppose Γ has index 2 in Γ0(N)+.

The expansion of Ψ at the cusp with parameters m = k = N is given by

1

q1

∏

d|N

∏

n1,n2>0
n1,−n2>0

(1 − qdn1
1 qdn2

2 )[TΓ|Wd
](dn1n2) = TΓ(τ1) − TΓ(τ2) .

The expansion of Ψ at a cusp with parameters m = N and k′ /∈ Γ/ Γ0(N) is

given by

q2

∏

d|N

∏

n1>0, n2∈Z

n1=0, n2>0

(1 − qdn1
1 qdn2

2 )[TΓ|Wd
+cd∗k′ ](dn1n2)

=
1

TΓ(τ2) + ck′

− 1

TΓ(τ1) + ck′

.

The expansion of Ψ at a cusp with parameters m′ /∈ Γ/ Γ0(N) and k = m is

given by

(TΓ(τ1) + cm′)
∏

d|N

∏

n1,n2>0

(1 − qdn1
1 qdn2

2 )[TΓ|W
m′∗d

](dn1n2)

= TΓ(τ1) − TΓ|Wm′ (τ2) .

Proof: First we consider the case m = k = N . The product expansion of Ψ
is given in Theorem 5.2. Since the constant coefficient of TΓ|Wd

+ cd is 0 the
norm 0 vectors only give trivial contributions to the product so that Ψ has the
stated product expansion. The identity is the twisted denominator identity of
the monster algebra corresponding to an element in the monster with McKay-
Thompson series TΓ (cf. Theorem 2.4).

Now we consider the second case. The product expansion of Ψ is clear. Here
we note that there is an element g in Co0 of cycle shape

∏

d|N dbd such that

TΓ + ck′ = fg .

The constant coefficient of TΓ|Wd
+ cd∗k′ is bd so that the identity is the twisted

denominator identity of the fake monster algebra corresponding to g (cf. Theo-
rem 3.3).

Finally let m′ /∈ Γ/ Γ0(N) and k = m. Then the contributions of the norm 0
vectors on one boundary vanish. Since the constant coefficient of TΓ|Wd∗m′ + cd

is −bd the contributions of the norm 0 vectors on the other boundary are given
by

∏

d|N

∏

n1>0

(1 − qdn1
1 )−bd .

Hence Ψ has the stated product expansion. The function TΓ + TΓ|Wm′ + cm′

is holomorphic on the upper halfplane and invariant under Γ0(N)+. Since
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TΓ|Wm′ + cm′ vanishes at ∞ the function TΓ +TΓ|Wm′ + cm′ is equal to TΓ0(N)+.
We have shown above that

∏

d|N

∏

n1,n2>0

(1 − qdn1
1 qdn2

2 )[TΓ0(N)+|Wd
](dn1n2)

(1 − qdn1
1 qdn2

2 )[TΓ|Wd
](dn1n2)

=
TΓ0(N)+(τ1) − TΓ0(N)+(τ2)

TΓ(τ1) − TΓ(τ2)
.

It follows

∏

d|N

∏

n1,n2>0

(1 − qdn1
1 qdn2

2 )[TΓ|W
d∗m′ ](dn1n2) = 1 +

TΓ|Wm′ (τ1) − TΓ|Wm′ (τ2)

TΓ(τ1) − TΓ(τ2)

and

∏

d|N

∏

n1,n2>0

(1 − qdn1
1 qdn2

2 )[TΓ|W
d∗m′ ](dn1n2) = 1 − TΓ|Wm′ (τ2) + cm′

TΓ(τ1) + cm′

because TΓ|Wm′ + cm′ is a multiple of 1/(TΓ + cm′). Multiplying this identity
by TΓ(τ1) + cm′ gives the sum expansion of Ψ at this cusp.

This proves the theorem. �

Now suppose that Γ has index 4 in Γ0(N)+. Then the expansion of Ψ at a
cusp is equal to one of the following.

(M) The expansion of Ψ at the cusp with parameters m = k = N .

(FM) The expansion of Ψ at a cusp with parameters m = N and

k not conjugate to N under Γ/ Γ0(N), i.e. k′ /∈ Γ/ Γ0(N).

(O) The expansion of Ψ at a cusp with parameters m not conjugate

to N under Γ/ Γ0(N), i.e. m′ /∈ Γ/Γ0(N), and k = m.

(R) An expansion of Ψ which is not covered by the previous cases.

There are 3 different expansions of type (FM) corresponding to the 3 different
values of k′ modulo Γ/ Γ0(N).

There are also 3 different expansions of type (O).
If we have an expansion of type (R) then m not conjugate to N under

Γ/ Γ0(N) and there is no expansion with parameters m = k which is equal
to this expansion. There are 2 different expansions of type (R). In contrast
to the previous cases there seem to be no canonical representatives for these
expansions.

The 9 expansions of Ψ are described in the following theorem.

Theorem 5.5

Suppose Γ has index 4 in Γ0(N)+.

The expansion of Ψ at the cusp with parameters m = k = N is given by

1

q1

∏

d|N

∏

n1,n2>0
n1,−n2>0

(1 − qdn1
1 qdn2

2 )[TΓ|Wd
](dn1n2) = TΓ(τ1) − TΓ(τ2) .
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The expansion of Ψ at a cusp with parameters m = N and k′ /∈ Γ/ Γ0(N) is

given by

q2

∏

d|N

∏

n1>0, n2∈Z

n1=0, n2>0

(1 − qdn1
1 qdn2

2 )[TΓ|Wd
+cd∗k′ ](dn1n2)

=
1

TΓ(τ2) + ck′

− 1

TΓ(τ1) + ck′

.

The expansion of Ψ at a cusp with parameters m′ /∈ Γ/ Γ0(N) and k = m is

given by

(TΓ(τ1) + cm′)
∏

d|N

∏

n1,n2>0

(1 − qdn1
1 qdn2

2 )[TΓ|W
m′∗d

](dn1n2)

= TΓ(τ1) − TΓ|Wm′ (τ2) .

The other expansions of Ψ are of the following form

ak′,m/k am/k,k′ (TΓ(τ1) + ck′)|Wm/k
(TΓ(τ2) + cm/k)|Wk′

∏

d|N

∏

n1,n2>0

(1 − qdn1
1 qdn2

2 )[TΓ|W
m′∗d

](dn1n2)

= ak′,m/k (TΓ(τ1) + ck′)|Wm/k
− ak′,m/k (TΓ(τ2) + ck′)|Wk′

where ak′,m/k is a normalizing factor such that ak′,m/k(TΓ(τ1) + ck′)|Wm/k
has

constant coefficient 1 and analogously for am/k,k′ .

Proof: In the first 3 cases the proof is analogous to the proof of Theorem 5.4.
Note that if k′ /∈ Γ/ Γ0(N) then for each value of k′ mod Γ/ Γ0(N) there is an
element g in Co0 such that

TΓ + ck′ = fg .

We prove the last statement and determine the expansions of Ψ of type (R). The
constant coefficient in TΓ|Wd∗m′ + cd∗k′ is −cd∗m′ + cd∗k′ so that the multiples
of e1 contribute the factor

∏

d|N

∏

n1>0

(1 − qdn1
1 )−cd∗m′+cd∗k′ = am/k,k′ (TΓ(τ1) + cm/k)|Wk′

to the product expansion of Ψ. The multiples of em′ contribute
∏

d|N

∏

n1>0

(1 − qdn1
2 )−cd∗m′+cd∗m/k = ak′,m/k (TΓ(τ2) + ck′)|Wm/k

.

Hence the product expansion of Ψ is given by

am/k,k′ ak′,m/k (TΓ(τ1) + cm/k)|Wk′ (TΓ(τ2) + ck′)|Wm/k

∏

d|N

∏

n1,n2>0

(1 − qdn1
1 qdn2

2 )[TΓ|W
m′∗d

](dn1n2) .
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We determine the sum expansion of this product. We have already seen that

∏

d|N

∏

n1,n2>0

(1 − qdn1

1 qdn2

2 )[TΓ|W
m′∗d

](dn1n2) =
TΓ(τ1) − TΓ|Wm′ (τ2)

TΓ(τ1) + cm′

.

Since
am/k,k′ (TΓ(τ1) + cm/k)|Wk′

TΓ(τ1) + cm′

= b (TΓ(τ1) + ck′)|Wk′

for some constant b we can write Ψ as

ak′,m/k b (TΓ(τ1) + ck′)|Wk′ (TΓ(τ2) + ck′)|Wm/k
(

(TΓ(τ1) + ck′) − (TΓ(τ2) + ck′)|Wm′

)

.

Now
b (TΓ(τ1) + ck′)|Wk′ (TΓ(τ1) + ck′ ) = 1

and

b (TΓ(τ2) + ck′)|Wm/k
(TΓ(τ2) + ck′)|Wm′

=
(

b (TΓ(τ2) + ck′)|Wm′∗m/k
(TΓ(τ2) + ck′)

)
∣

∣

Wm′

=
(

b (TΓ(τ2) + ck′)|Wk′ (TΓ(τ2) + ck′)
)∣

∣

Wm′

= 1

so that Ψ has the following sum expansion

ak′,m/k (TΓ(τ2) + ck′)|Wm/k
− ak′,m/k (TΓ(τ1) + ck′)|Wk′ .

Hence the expansions of Ψ of type (R) are given by

am/k,k′ ak′,m/k (TΓ(τ1) + cm/k)|Wk′ (TΓ(τ2) + ck′)|Wm/k

∏

d|N

∏

n1,n2>0

(1 − qdn1
1 qdn2

2 )[TΓ|W
m′∗d

](dn1n2)

= ak′,m/k (TΓ(τ2) + ck′)|Wm/k
− ak′,m/k (TΓ(τ1) + ck′)|Wk′ .

This proves the last statement of the theorem. �

We summarize our results on the monster.

Theorem 5.6

Let g be an element in the monster of squarefree level N . Then g has order N
and the twisted denominator identity corresponding to g

1

q1

∏

d|N

∏

n1,n2>0
n1,−n2>0

(1 − qdn1

1 qdn2

2 )[Tg |Wd
](dn1n2) = Tg(τ1) − Tg(τ2) .

is an automorphic product of weight 0 for a discrete subgroup of O2,2(R).
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For Conway’s group Co0 we have shown

Theorem 5.7

Let g be an element in Co0 of squarefree level N and trivial fixed point lattice.

Then g has order N and the twisted denominator identity of g

q2

∏

d|N

∏

n1>0, n2∈Z

n1=0, n2>0

(1 − qdn1
1 qdn2

2 )[fg |Wd
+ad](dn1n2) = ηg(τ2) − ηg(τ1)

is an automorphic product of weight 0 for a discrete subgroup of O2,2(R).

Genus 0 groups

We list the genus 0 groups Γ0(N) ⊂ Γ ⊂ Γ0(N)+ where N is squarefree and
some related information.

Let N be squarefree and Γ a genus 0 group between Γ0(N) and Γ0(N)+
and TΓ the corresponding normalized hauptmodul. For each divisor d of N
the constant cd is defined as the constant coefficient in the Fourier expansion
of −TΓ|Wd

. In the following table we list the groups Γ (cf. Table 1 in [CMS])
together with the constants cd. In the case Γ = Γ0(N)+ all cd vanish and there-
fore are not given in the table. If TΓ is equal to the McKay-Thompson series Tg

of some element g in the monster we give the class of g in the notation of [C].
If TΓ is equal to fg = 1/ηg up to a constant for some element g in Co0 we also
list fg and the class of g.

N Γ index formula cd monster Co0

1 1+ 1 1A

2 2+ 1 2A

2− 2 124/224 (0,−24) 2B −1A

3 3+ 1 3A

3− 2 112/312 (0,−12) 3B 3A

5 5+ 1 5A

5− 2 16/56 (0,−6) 5B 5A
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N Γ index formula cd monster Co0

6 6+ 1 6A

6 + 6 2 212312/112612 (0, 12, 12, 0) 6B −3A

6 + 3 2 1636/2666 (0,−6, 0,−6) 6C −3B

6 + 2 2 1424/3464 (0, 0,−4,−4) 6D 6A

6− 4 153/2.65 (0, 3, 4,−5) 6E 6D

2834/1468 −6A

2339/1369 −3C

7 7+ 1 7A

7− 2 14/74 (0,−4) 7B 7A

10 10+ 1 10A

10 + 10 2 2656/16106 (0, 6, 6, 0) 10D −5A

10 + 5 2 1454/24104 (0,−4, 0,−4) 10B −5B

10 + 2 2 1222/52102 (0, 0,−2,−2) 10C 10A

10− 4 135/2.103 (0, 1, 2,−3) 10E 10E

2452/12104 −10A

2.55/1.105 −5C

11 11+ 1 11A

13 13+ 1 13A

13− 2 12/132 (0,−2) 13B 13A

14 14+ 1 14A

14 + 14 2 2474/14144 (0, 4, 4, 0) 14C −7A

14 + 7 2 1373/23143 (0,−3, 0,−3) 14B −7B

15 15+ 1 15A

15 + 15 2 3353/13153 (0, 3, 3, 0) 15C 15A

15 + 5 2 1252/32152 (0,−2, 0,−2) 15B 15B

17 17+ 1 17A

19 19+ 1 19A

21 21+ 1 21A

21 + 21 2 3272/12212 (0, 2, 2, 0) 21D 21A

21 + 3 2 1.3/7.21 (0, 0,−1,−1) 21B 21B

22 22+ 1 22A

22 + 11 2 12112/22222 (0,−2, 0,−2) 22B −11A

23 23+ 1 23A, B

26 26+ 1 26A

26 + 26 2 22132/12262 (0, 2, 2, 0) 26B −13A
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N Γ index formula cd monster Co0

29 29+ 1 29A

30 30+ 1 30B

30 + 2, 15, 30 2 3.5.6.10 (0, 0, 1, 1, 30F 30A

/1.2.15.30 1, 1, 0, 0)

30 + 5, 6, 30 2 2232102152 (0, 2, 2, 0, 30D −15B

/125262302 0, 2, 2, 0)

30 + 6, 10, 15 2 1363103153 (0,−3,−3,−3 30A −15A

/233353303 0, 0, 0,−3)

30 + 3, 5, 15 2 1.3.5.15 (0,−1, 0, 0, 30C −15D

/2.6.10.30 −1,−1, 0,−1)

30 + 15 4 126.10.152 (0,−2,−1,−1, 30G −15E

/223.5.302 0, 0, 0,−2)

1.6210215 −30A

/223.5.302

3.5/2.30 30E

31 31+ 1 31A, B

33 33+ 1 33B

33 + 11 2 1.11/3.33 (0,−1, 0,−1) 33A 33A

34 34+ 1 34A

35 35+ 1 35A

35 + 35 2 5.7/1.35 (0, 1, 1, 0) 35B 35A

38 38+ 1 38A

39 39+ 1 39A

39 + 39 2 3.13/1.39 (0, 1, 1, 0) 39C, D 39A, B

41 41+ 1 41A

42 42+ 1 42A

42 + 3, 14, 42 2 2.6.7.21 (0, 1, 0, 1 42D −21B

/1.3.14.42 1, 0, 1, 0)

42 + 6, 14, 21 2 1262142212 (0,−2,−2, 0, 42B −21A

/223272422 −2, 0, 0,−2)

46 46+ 1 46C, D

46 + 23 2 1.23/2.46 (0,−1, 0,−1) 46A, B −23A, B

47 47+ 1 47A, B

51 51+ 1 51A

55 55+ 1 55A
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N Γ index formula cd monster Co0

59 59+ 1 59A, B

62 62+ 1 62A, B

66 66+ 1 66A

66 + 6, 11, 66 2 2.3.22.33 (0, 1, 1, 0, 66B −33A

/1.6.11.66 0, 1, 1, 0)

69 69+ 1 69A, B

70 70+ 1 70A

70 + 10, 14, 35 2 1.10.14.35 (0,−1,−1,−1, 70B −35A

/2.5.7.70 0, 0, 0,−1)

71 71+ 1 71A, B

78 78+ 1 78A

78 + 6, 26, 39 2 1.6.26.39 (0,−1,−1, 0, 78B, C −39A, B

/2.3.13.78 −1, 0, 0,−1)

87 87+ 1 87A, B

94 94+ 1 94A, B

95 95+ 1 95A, B

105 105+ 1 105A

110 110+ 1 110A

119 119+ 1 119A, B

We describe an example. The group

Γ =
⋃

k∈{1,15}

WkΓ0(30)

is written as 30 + 15. It has index 4 in Γ0(30)+. The normalized hauptmodul
TΓ is equal to the McKay-Thompson series Tg for g of class 30G in the monster
and up to a constant equal to fg for g of class −15E,−30A or 30E in Co0. This
implies that

TΓ(τ) =
η(τ)

2
η(6τ)η(10τ)η(15τ)

2

η(2τ)2η(3τ)η(5τ)η(30τ)2
+ 2

=
η(τ)η(6τ)2η(10τ)2η(15τ)

η(2τ)
2
η(3τ)η(5τ)η(30τ)

2 + 1

=
η(3τ)η(5τ)

η(2τ)η(30τ)

= q−1 + q − q2 + 2q3 − 2q4 + 2q5 − 3q6 + 5q7 − 5q8 + . . . .
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From these formulas it is easy to derive the values of the constants cd. We find

(c1, c2, c3, c5, c6, c10, c15, c30) = (0,−2,−1,−1, 0, 0, 0,−2) .

We observe the following results. Let N be squarefree and Γ a genus 0 group
between Γ0(N) and Γ0(N)+. Then Γ has index 1, 2 or 4 in Γ0(N)+. In each
case there is an element g in the monster such that TΓ is equal to Tg. If Γ has
index 2 in Γ0(N)+ then there is an element g in Co0 such that TΓ is equal to fg

up to a constant. If Γ has index 4 in Γ0(N)+ then there are 3 different conjugacy
classes in Co0 such that TΓ is equal to fg up to a constant. Conversely let g
be an element of squarefree level N in the monster. Then Tg is equal to TΓ for
some genus 0 group Γ between Γ0(N) and Γ0(N)+. If g is an element of trivial
fixed point lattice and squarefree level N in Co0 then fg is equal to TΓ up to
a constant for some genus 0 group Γ0(N) ⊂ Γ ⊂ Γ0(N)+ of index 2 or 4 in
Γ0(N)+.
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