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We prove some new structure results for automorphic products of singular
weight. First we give a simple characterisation of the Borcherds function Φ12.
Second we show that holomorphic automorphic products of singular weight on
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bound. Finally we give a complete classification of reflective automorphic prod-
ucts of singular weight on lattices of prime level.
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1 Introduction

The singular theta correspondence (cf. [B3] and also [Br1]) is a map from
modular forms for the Weil representation of SL2(Z) to automorphic forms on
orthogonal groups. More precisely let L be an even lattice of signature (n, 2),
n > 2 and even with discriminant form D and F a modular form for the Weil
representation of SL2(Z) on C[D] of weight (2− n)/2 which is holomorphic on
the upper halfplane and has integral principal part. Then Borcherds associates
an automorphic form Ψ(F ) of weight c0(0)/2 for O(L) to F where c0(0) denotes
the constant coefficient in the Fourier expansion of F0. The function Ψ(F ) has
nice product expansions at the rational 0-dimensional cusps and is called the
automorphic product associated to L and F . The divisor of Ψ(F ) is a linear
combination of rational quadratic divisors whose orders are determined by the
principal part of F . Bruinier [Br2] has shown that if L splits two hyperbolic
planes then every automorphic form for O(L) whose divisor is a linear combi-
nation of rational quadratic divisors is an automorphic product.
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The smallest possible weight of a non-constant holomorphic automorphic
form on On,2(R) is given by (n−2)/2. Forms of this so-called singular weight are
particularly interesting because their Fourier coefficients are supported only on
isotropic vectors. Holomorphic automorphic products of singular weight seem to
be very rare. The few known examples are all related to infinite-dimensional Lie
superalgebras, i.e. given by the denominator functions of generalised Kac-Moody
superalgebras. One of the main open problems in the theory of automorphic
forms on orthogonal groups is to classify holomorphic automorphic products of
singular weight [B2]. In this paper we prove some new results in this direction.

The simplest holomorphic automorphic product of singular weight is the
function Φ12. It is the theta lift of the inverse of the Dedekind function ∆ on
the unimodular lattice II26,2. The product expansion of Φ12 at a cusp is given
by

Φ12(Z) = e((ρ, Z))
∏

α∈II+25,1

(
1− e((α,Z))

)[1/∆](−α2/2)

where ρ is a primitive norm 0 vector in II25,1 corresponding to the Leech lattice.
The function Φ12 is holomorphic and has zeros of order 1 orthogonal to the roots
of II26,2. Since Φ12 has weight 12, i.e. singular weight, its Fourier coefficients
are supported only on norm 0 vectors. This can be used to show that it has the
sum expansion

e((ρ, Z))
∏

α∈II+25,1

(
1− e((α,Z))

)[1/∆](−α2/2)

=
∑
w∈W

det(w) e((wρ,Z))

∞∏
n=1

(
1− e((nwρ,Z))

)24
.

Here W is the reflection group of II25,1.
This identity is the denominator identity of an infinite-dimensional Lie al-

gebra describing the physical states of a bosonic string moving on the torus
R25,1/II25,1 called the fake monster algebra [B1].

The function Φ12 also has some nice geometric applications. In [GHS] the
authors show that the moduli space of polarised K3 surfaces of degree d is of
general type for d > 61 using quasi-pullbacks of Φ12.

The first main result of this paper is the following characterisation (cf. The-
orem 4.5).

The function Φ12 is the only holomorphic automorphic product of singular
weight on a unimodular lattice.

Next we consider lattices of prime level. We show that for a given discrimi-
nant form D of prime level the number of lattices with dual quotient isomorphic
to D carrying a holomorphic automorphic product of singular weight is finite
and we give an explicit bound for the signature. The precise statement is as
follows (cf. Theorems 5.7 and 5.12).

Let c > 1/ log(πe6 ) = 2.83309 . . . Then there exists a constant d with the
following property: Let L be an even lattice of signature (n, 2), n > 2 and prime
level splitting a hyperbolic plane II1,1. Let D be the discriminant form of L.
Suppose L carries a holomorphic automorphic product of singular weight. Then

n ≤ c log |D|+ d .
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The constant d does not depend on the level but only on c. The proof is
constructive. We can take for example c = 3.59750 . . . and d = 40.52171 . . .
Given a discriminant form D of prime level the theorem allows to determine
all holomorphic automorphic products of singular weight on lattices with dual
quotient isomorphic to D by working out the obstruction theory in the possible
signatures.

We sketch the proofs of the first two main results. In order to get a restriction
on the signature in the prime level case we pair the vector valued modular form
F associated to the automorphic product Ψ with an Eisenstein series for the
dual Weil representation. We obtain a relation between the signature and a
sum over the principal part of F . We expand this sum in the degrees of the
divisors which are non-negative by the holomorphicity of Ψ. Then we apply the
Riemann-Roch theorem to F to derive the bound. In the unimodular case a
similar argument gives the uniqueness.

The expansion of an automorphic form on On,2(R) at a cusp sometimes is
the denominator function of an infinite-dimensional Lie superalgebra. In that
case the divisor of the automorphic form is locally the sum of rational quadratic
divisors α⊥ of order 1 where α is a root. An automorphic form on On,2(R) is
called reflective if this condition holds globally (cf. also [B4] and [GN]). So far
all known examples of holomorphic automorphic products of singular weight are
reflective.

In [S4] certain reflective automorphic products of singular weight on lattices
of prime level are classified. The assumptions are that the underlying lattice
L does not have maximal p-rank and that all roots of a fixed norm give ze-
ros, i.e. the corresponding vector valued modular form is invariant under the
orthogonal group of the discriminant form of L. The second condition is quite
restrictive. Surprisingly we find only three additional cases when we remove
these assumptions. This is the third main result of this paper (cf. Theorem
6.28).

Let L be a lattice of prime level and signature (n, 2) with n > 2 and Ψ a
reflective automorphic product of singular weight on L. Then as a function on
the corresponding hermitian symmetric domain Ψ is the theta lift of one of the
following modular forms:

p L F Co0

2 II18,2(2+10
II ) Fη1−82−8 ,0 1828

II10,2(2+2
II ) F16η1−1628 ,0

1−8216

II10,2(2+10
II ) Fη182−16 ,0 1−8216

II6,2(2−6
II ) Fη142−8 ,γ 2−448

3 II14,2(3−8) Fη1−63−6 ,0 1636

II8,2(3−3) F9η1−933 ,0
1−339

II8,2(3−7) Fη133−9 ,0 1−339

II6,2(3+6) F(1/4)η(1/3)−3123−3 ,M+ 133−293

II4,2(3−5) Fη113−3 ,γ 3−193
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p L F Co0

5 II10,2(5+6) Fη1−45−4 ,0 1454

II6,2(5+3) F5η1−551 ,0
1−155

II6,2(5+5) Fη115−5 ,0 1−155

7 II8,2(7−5) Fη1−37−3 ,0 1373

11 II6,2(11−4) Fη1−211−2 ,0 12112

23 II4,2(23−3) Fη1−123−1 ,0 11231

With three exceptions all these functions come from symmetric modular forms.
At a suitable cusp Ψ is the twisted denominator function of the fake monster
algebra by the indicated element in Conway’s group.

Conversely all the given modular forms lift to reflective automorphic products
of singular weight on the respective lattices.

The cases not coming from symmetric modular forms are those correspond-
ing to the elements of order 4 and 9 in Conway’s group.

The sum expansion of the theta lift of F(1/4)η(1/3)−3123−3 ,M+ gives a new

infinite product identity (cf. Proposition 6.23).
The above result can be used to classify generalised Kac-Moody superalge-

bras whose denominator functions are reflective automorphic products of singu-
lar weight on lattices of prime level.

We describe the proof of the theorem. Reflective automorphic products of
singular weight associated to symmetric forms can be classified by the Eisenstein
condition [S4]. It turns out that in the non-symmetric case the Riemann-Roch
theorem imposes strong restrictions (cf. Theorem 6.5). In the remaining cases we
work out the obstruction theory and determine the possible reflective modular
forms. Many of them lift to the same function leaving us with the above list.

The paper is organised as follows.
In section 2 we summarise some results on modular forms for the Weil rep-

resentation.
Then we recall Borcherds’ singular theta correspondence and define reflective

forms.
In section 4 we prove that the only holomorphic automorphic product of

singular weight on a unimodular lattice is the theta lift of 1/∆ on II26,2.
Next we show that holomorphic automorphic products of singular weight on

lattices of prime level exist only in small signatures.
Finally we give a complete classification of reflective automorphic products

of singular weight on lattices of prime level.

The author thanks R. E. Borcherds, J. H. Bruinier, M. Dittmann, E. Freitag,
V. A. Gritsenko, G. Harder, S. Möller and M. Rössler for stimulating discussions
and the referee for helpful comments.
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2 Modular forms for the Weil representation

In this section we recall some results on modular forms for the Weil representa-
tion from [S5] and [S6].

Let D be a discriminant form with quadratic form q : D → Q/Z and asso-
ciated bilinear form ( , ) (cf. [S5], [N] and [CS], chapter 15). We assume that
D has even signature. The level of D is the smallest positive integer N such
that Nq(γ) = 0 mod 1 for all γ ∈ D. We define a scalar product on the group
ring C[D] which is linear in the first and antilinear in the second variable by
(eγ , eβ) = δγβ . Then there is a unitary action of the group Γ = SL2(Z) on C[D]
satisfying

ρD(T )eγ = e(−q(γ)) eγ

ρD(S)eγ =
e(sign(D)/8)√

|D|

∑
β∈D

e((γ, β)) eβ

where S =
(

0 −1
1 0

)
and T = ( 1 1

0 1 ) are the standard generators of Γ. This rep-
resentation is called the Weil representation of Γ on C[D]. It commutes with
the orthogonal group O(D) of D. Suppose the level of D divides N and let
M =

(
a b
c d

)
∈ Γ0(N). Then

ρD(M)eγ =

(
a

|D|

)
e
(
(a− 1) oddity(D)/8

)
e(−bdq(γ)) edγ .

A general formula for the action of ρD is given in [S5], Theorem 4.7.
Let

F (τ) =
∑
γ∈D

Fγ(τ)eγ

be a holomorphic function on the complex upper halfplane H with values in
C[D] and k an integer. Then F is a modular form for ρD of weight k if

F (Mτ) = (cτ + d)kρD(M)F (τ)

for all M =
(
a b
c d

)
∈ Γ and F is meromorphic at∞. We say that F is symmetric

if it is invariant under the action of O(D).
Classical examples of modular forms for the dual Weil representation ρD are

theta functions. Let L be a positive definite even lattice of even rank 2k with
discriminant form D. For γ ∈ D define

θγ(τ) =
∑

α∈γ+L

qα
2/2

where qα
2/2 = e(τα2/2). Then

θ =
∑
γ∈D

θγe
γ

is a modular form for the dual Weil representation ρD of weight k which is
holomorphic at ∞.

Let f be a complex function on H and k an integer. For M =
(
a b
c d

)
∈ Γ we

define the function f |k,M on H by f |k,M (τ) = (cτ + d)−kf(Mτ).
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We can easily construct modular forms for the Weil representation by sym-
metrising scalar valued modular forms on congruence subgroups (cf. [S6], The-
orem 3.1).

Theorem 2.1
Let D be a discriminant form of even signature and level dividing N .

Let f be a scalar valued modular form on Γ0(N) of weight k and character
χD and H an isotropic subset of D which is invariant under (Z/NZ)∗. Then

FΓ0(N),f,H =
∑

M∈Γ0(N)\Γ

∑
γ∈H

f |k,M ρD(M−1)eγ

is a modular form for ρD of weight k.
Let γ ∈ D and f a scalar valued modular form on Γ1(N) of weight k and

character χγ . Then

FΓ1(N),f,γ =
∑

M∈Γ1(N)\Γ

f |k,M ρD(M−1)eγ

is a modular form for ρD of weight k.
Let f be a scalar valued modular form on Γ(N) of weight k and γ ∈ D.

Then
FΓ(N),f,γ =

∑
M∈Γ(N)\Γ

f |k,M ρD(M−1)eγ

is a modular form for ρD of weight k.
Every modular form for ρD can be written as a linear combination of liftings

from Γ1(N) or Γ(N).

Explicit formulas for these function are given in [S6], section 3.
We also have

Proposition 2.2
Let D be a discriminant form of even signature and H an isotropic subgroup of

D. Then DH = H⊥/H is a discriminant form of the same signature as D.
Let FD be a modular form for ρD. For γ ∈ H⊥ define

FDH ,γ+H =
∑

β∈γ+H

FD,β .

Then FDH is a modular form for ρDH .
Conversely let FDH be a modular form for the Weil representation of DH .

Define
FD,γ = FDH ,γ+H

if γ ∈ H⊥ and FD,γ = 0 otherwise. Then FD is a modular form for ρD.

We will need the Eisenstein series for the dual Weil representation. They
can be constructed as follows. Let D be a discriminant form of even signature
and level dividing N . Let Γ+

∞ = {Tn |n ∈ Z }. Then

Ek =
1

2

∑
M∈Γ+

∞\Γ1(N)

1|k,M
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is an Eisenstein series for Γ1(N) of weight k. Let γ ∈ D be isotropic. Then

Eγ =
∑

M∈Γ1(N)\Γ

Ek|k,M ρD(M−1)eγ

is an Eisenstein series for the dual Weil representation ρD. It is easy to see that
Eγ gives the Eisenstein series defined in [Br1]. For γ = 0 we have

E0 =
∑

M∈Γ0(N)\Γ

Ek,χ|k,M ρD(M−1)e0

where
Ek,χ =

∑
M∈Γ1(N)\Γ0(N)

χ(M)Ek|k,M

is an Eisenstein series for Γ0(N) of weight k and character χ = χ = χD. We
will write E for the Eisenstein series E0.

The dimension of the space of holomorphic modular forms for the Weil repre-
sentation can be worked out using the Riemann-Roch theorem [F] or the Selberg
trace formula [ES, B5].

The residue theorem implies

Proposition 2.3
Let D be a discriminant form of even signature and F a modular form for ρD
of weight 2− k with k ≥ 3. Let G be a modular form for ρD of weight k. Then
the constant coefficient of (F,G) =

∑
γ∈D FγGγ vanishes.

More generally we have (cf. [B4], Theorem 3.1 and [Br1], Theorem 1.17)

Theorem 2.4
Let P =

∑
γ∈D Pγe

γ , where

Pγ =
∑

n∈Z−q(γ)
n<0

cγ(n)qn

is a finite Fourier polynomial with complex coefficients. Then P is the principal
part of a modular form of weight 2 − k, k ≥ 3 for ρD if and only if the linear
map

φP : SρD,k −→ C
G 7−→ constant coefficient of (P,G)

vanishes on SρD,k.

We will use Theorem 2.1 to work out the obstruction spaces SρD,k in several
cases in section 6.

3 Automorphic products

We describe some properties of automorphic products [B3] and define reflective
automorphic products.

Let L be an even lattice of signature (n, 2), n > 2 even, V = L ⊗Z R and
V (C) = V ⊗R C. Then

K = {Z ∈ V (C) | (Z,Z) = 0, (Z,Z) < 0}
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is a complex manifold with two connected components which are exchanged by
the map Z 7→ Z. We choose one of the components and denote it by H. There
is a subgroup O(V )+ of index 2 in the orthogonal group O(V ) which preserves
the two connected components of K. This group acts holomorphically on H.

Let Γ be a finite index subgroup of O(L)+ and χ : Γ → C∗ a unitary
character. Since the abelianisation of Γ is finite, χ has finite order. Let k be an
integer. A meromorphic function Ψ : H → C is called an automorphic form of
weight k for Γ with character χ if

Ψ(MZ) = χ(M)Ψ(Z)

Ψ(tZ) = t−kΨ(Z)

for all M ∈ Γ and t ∈ C∗.
The weight of a holomorphic automorphic form is bounded below (cf. [B2],

Corollary 3.3).

Proposition 3.1
Let L be an even lattice of signature (n, 2), n > 2 even and rational Witt rank
2. Let Ψ be a non-constant holomorphic automorphic form of weight k for the
discriminant kernel of O(L)+. Then k ≥ (n − 2)/2. If Ψ has weight (n − 2)/2
then the non-vanishing Fourier coefficients correspond to isotropic vectors.

The weight (n− 2)/2 is called the singular weight.
Let L be an even lattice of signature (n, 2), n > 2 even with discriminant

form D. Let F be a modular form for the Weil representation of Γ on C[D] of
weight 1− n/2 with integral principal part. We denote the Fourier coefficients
of F by cγ(n) and assume that c0(0) is even. Then Borcherds’ singular theta
correspondence ([B3], Theorem 13.3) associates an automorphic form Ψ to F .

Theorem 3.2
There is a meromorphic function Ψ : H → C with the following properties:

1. Ψ is an automorphic form of weight c0(0)/2 for the group O(L,F )+.
2. The only zeros or poles of Ψ lie on rational quadratic divisors γ⊥ where

γ is a primitive vector of positive norm in L′. The divisor γ⊥ has order∑
m>0

cmγ(−m2γ2/2) .

3. For each primitive isotropic vector z in L and for each Weyl chamber
W of K = (L ∩ z⊥)/Zz the restriction Ψz has an infinite product expansion
converging in a neighbourhood of the cusp corresponding to z which is up to a
constant

e((Z, ρ))
∏

α∈K′+

∏
γ∈L′/L

γ|
(L∩z⊥)

=α

(
1− e((γ, z′) + (α,Z))

)cγ(−α2/2)
.

The function Ψ is called the automorphic product corresponding to F .
Bruinier proved the following converse theorem ([Br2], Theorem 1.2).
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Theorem 3.3
Let L be an even lattice of signature (n, 2), n > 2 even and Ψ an automorphic
form for the discriminant kernel of O(L)+ whose divisor is a linear combination
of rational quadratic divisors. If L = K ⊕ II1,1 ⊕ II1,1(m) for some positive
integer m then up to a constant factor Ψ is the theta lift of a modular form for
the Weil representation of L.

Let L and FL be as above. Suppose L = K ⊕ II1,1(m) for some positive
integer m. Let M be a finite index sublattice of K. Then H = K/M ⊂
K ′/M ⊂ M ′/M is an isotropic subgroup of the discriminant form of M with
orthogonal complement H⊥ = K ′/M . Note that H⊥/H is naturally isomorphic
to K ′/K. The function FL induces a modular form FN on N = M ⊕ II1,1(m).
The embedding N → L gives an identification of the domains HN and HL.

Proposition 3.4
Under this identification the automorphic products Ψ(FL) and Ψ(FN ) coincide
as functions on HL.

Proof: We choose a primitive norm 0 vector z in II1,1(m). Then the product
expansion of Ψ(FN ) at the cusp corresponding to z is given by

Ψ(FN )z(Z)

= cN e((ρN , Z))
∏

α∈M ′+

∏
j∈Z/mZ

(
1− e(j/m)e((α,Z))

)cN,α+jz/m(−α2/2)
.

The components FN,α+jz/m of FN vanish unless α ∈ H⊥ and FN,α+jz/m =
FL,(α+H)+jz/m in that case. It follows

Ψ(FN )z(Z)

= cN e((ρN , Z))
∏

α∈K′+

∏
j∈Z/mZ

(
1− e(j/m)e((α,Z))

)cL,α+jz/m(−α2/2)
.

This implies

Ψ(FN )z(Z) =
cN
cL

Ψ(FL)z(Z) .

It is not difficult to see that cN/cL = 1. Hence Ψ(FN ) and Ψ(FL) coincide in a
neighbourhood of the cusp z and therefore coincide on HL. �

Let L be an even lattice of signature (n, 2), n > 2 even with discriminant
form D. A root of L is a primitive vector α of positive norm in L such that
the reflection σα(x) = x − 2(x, α)α/α2 is in O(L). Let γ ∈ D be of norm
q(γ) = 1/k mod 1 for some positive integer k. We say that γ corresponds to
roots if the order of γ divides k and if there is a vector α ∈ L ∩ kL′ of norm
α2 = 2k with α/k = γ mod L then α is a root. Let F be a modular form
for the Weil representation of L. The function F is called reflective if F has
weight 1 − n/2 and the only singular terms of F come from components Fγ
with γ corresponding to roots of L and are of the form q−1/k. An automorphic
product Ψ on L is called reflective if it is the theta lift of a reflective modular
form F . The divisor of Ψ has a nice geometric description in this case (cf. [S4],
section 9).
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Proposition 3.5
Let Ψ be a reflective automorphic product on L. Then Ψ is holomorphic and

its zeros are zeros of order 1 at the rational quadratic divisors α⊥ where α is a
root of L with α2 = 2k and cα/k(−1/k) = 1.

4 Singular weight forms on unimodular lattices

In this section we show that the function Φ12 is the only holomorphic automor-
phic product of singular weight on a unimodular lattice.

Let L be an even unimodular lattice of signature (n, 2) with n > 2 and Ψ(F )
a holomorphic automorphic product of singular weight on L.

Since L is unimodular we have n = 2 mod 8. By assumption the modular
form F has weight 1− n/2, is holomorphic on H and has a finite order pole at
∞. We write

F (τ) =
∑
m∈Z

c(m)qm

with c(0) = n− 2 and define m∞ = −ν∞(F ), i.e. m∞ is the largest integer such
that c(−m∞) 6= 0. The coefficients c(−m), m > 0 of the principal part of F are
integral.

Let

Ek(τ) = 1− 2k

Bk

∑
m>0

σk−1(m)qm

be the Eisenstein series of weight k = 1 + n/2 for Γ. Pairing F with Ek (cf.
Proposition 2.3) we obtain

Proposition 4.1
The principal part of F satisfies

2(k − 2)− 2k

Bk

∑
m>0

c(−m)σk−1(m) = 0 .

It follows

Proposition 4.2
We have k = 2 mod 12.

Proof: The previous proposition implies (k−2)Bk ∈ Z. The von Staudt-Clausen
theorem states that

Bk +
∑

(p−1)|k

1

p
∈ Z .

Hence (k − 2)
∑

(p−1)|k
1
p ∈ Z and k − 2 = 0 mod 3. The assertion now follows

from the condition on n. �

The modular form F∆(k−2)/12 has weight 0, is holomorphic on H and pos-
sibly has a pole at ∞. Hence

m∞ ≥
k − 2

12
.
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The divisor of Ψ(F ) is a linear combination of rational quadratic divisors
γ⊥ where γ is a primitive vector of positive norm in L. The order of γ⊥ is∑
m>0 c(−m2γ2/2). The holomorphicity of Ψ(F ) does not imply that the coef-

ficients of the principal part of F are non-negative. However the function g on
the positive integers defined by

g(d) =
∑
m>0

c(−dm2)

is non-negative because the lattice L splits a hyperbolic plane II1,1 and therefore
contains primitive vectors of arbitrary norm. This implies

Theorem 4.3
The principal part of F satisfies the inequality∑

m>0

c(−m)σk−1(m) ≥ mk−1
∞ .

Proof: We have∑
m>0

c(−m)σk−1(m) =
∑
m>0

c(−m)
∑
d|m

dk−1

=
∑
d>0

dk−1
∑
d|m

c(−m)

=
∑
d>0

dk−1
∑
t>0

c(−td)

=
∑
d>0

dk−1
∑
m>0

t squarefree

c(−m2td)

=
∑
d>0

dk−1
∑

t squarefree

g(td)

=
∑
m>0

g(m)
∑
d|m

m/d squarefree

dk−1

so that ∑
m>0

c(−m)σk−1(m) ≥ g(m∞)mk−1
∞ = c(−m∞)mk−1

∞ ≥ mk−1
∞ .

This proves the theorem. �

We obtain the inequalities(
k − 2

12

)k−1

≤ mk−1
∞ ≤ k − 2

k
Bk .

Note that k = 2 mod 4 implies that the Bernoulli numbers Bk are positive.

Proposition 4.4
The only solution of the inequality(

k − 2

12

)k−1

≤ k − 2

k
Bk

with k > 2 and k = 2 mod 12 is k = 14. In this case equality holds.
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Proof: We can write the inequality as

1 ≤ (k − 2)2

12k

(
12

k − 2

)k
Bk .

For k →∞ we have Bk ∼ 2 k!
(2π)k

and k! ∼
√

2πk
(
k
e

)k
so that

(k − 2)2

12k

(
12

k − 2

)k
Bk ∼ 2

√
2πk

(k − 2)2

12k

(
k

k − 2

)k (
6

πe

)k
∼ 1

6

√
2π e2 k3/2

(
6

πe

)k
.

Since πe > 6 the last expression tends to 0 for k → ∞. Hence the inequality
has only finitely many solutions. It is easy to verify that k = 14 is the only
solution. �

Now the classification result follows.

Theorem 4.5
Let L be an even unimodular lattice of signature (n, 2) with n > 2 and Ψ(F )
a holomorphic automorphic product of singular weight on L. Then n = 26 and
F = 1/∆. The expansion of Ψ at a cusp is given by

e((ρ, Z))
∏

α∈II+25,1

(
1− e((α,Z))

)[1/∆](−α2/2)
=
∑
w∈W

det(w) ∆((wρ,Z)) .

Proof: We have k = 14 and m∞ = 1. Hence

F (τ) = q−1 + 24 + . . .

by Proposition 4.1. Since F is holomorphic on H we obtain F = 1/∆. �

We conclude the section with some examples.
Let

j(τ) = q−1 + 744 + 196884q + 21493760q2 + . . .

be the modular invariant. Then the function

F (τ) = (j(τ)3 − 2256j(τ)2 + 1105920j(τ)− 40890369)/∆(τ)

= q−4 − q−1 + 1610809344 + 11828339932860q + . . .

=
∑
m∈Z

c(m)qm

is a modular form of weight −12 for Γ, holomorphic on H with a pole of order
4 at ∞. Note that the coefficient c(−1) = −1 of the principal part of F is
negative. Let L be an even unimodular lattice of signature (26, 2) and Ψ(F ) the
automorphic product corresponding to F on L. Then Ψ(F ) is a holomorphic
automorphic form of weight 805404672 whose zeros are zeros of order 1 at the
divisors γ⊥ where γ is a primitive vector of norm γ2 = 8 in L. If γ is a vector
of norm γ2 = 2 in L then the divisor γ⊥ has order c(−4) + c(−1) = 0.

Next we consider non-holomorphic automorphic products.
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Proposition 4.6
Let L be an even unimodular lattice of signature (n, 2) with

n = 26, 50, 74, 122, 146, 170 or 194 .

Then L carries infinitely many meromorphic automorphic products of weight
12.

Proof: First we consider the case n = 26. Let F = (aj + b)/∆ with a, b ∈ Z.
Then

F (τ) = aq−2 + (768a+ b)q−1 + (215064a+ 24b) + . . .

Since (215064, 24) = 24 there are infinitely many choices for a and b such that
F has constant coefficient 24. This implies that there are infinitely many mero-
morphic automorphic products of weight 12 on L. In the general case write
n = 24m+ 2 and let

F = (amj
m + . . .+ a1j + a0)/∆m

Then there are infinitely many (a0, . . . , am) ∈ Zm+1 such that F has constant
coefficient 24. �

We explain the exception at n = 98. Let

F (τ) =
∑
m∈Z

c(m)qm

be a modular form of weight 1 − 98/2 = −48 for Γ, holomorphic on H with a
pole at ∞. Suppose F has integral principal part. Since the Eisenstein series
E10 has Fourier expansion

E10(τ) = 1− 264
∑
m>0

σ9(m)qm

the constant coefficient of FE5
10 is given by c(0) + 264(. . .). This coefficient

has to vanish so that c(0) = 0 mod 264. This implies that the weight of a
meromorphic automorphic product on a unimodular lattice of signature (98, 2)
is divisible by 132.

Finally we remark that lifting constants with Gritsenko’s additive lift [G]
(cf. also Theorem 14.3 in [B3]) shows that holomorphic automorphic forms of
singular weight exist on any unimodular lattice of signature (n, 2) with n > 2.
By Theorem 3.3 the divisor of such a function is not a linear combination of
rational quadratic divisors.

5 The prime level case

Let L be an even lattice of prime level carrying a holomorphic automorphic
product of singular weight. We derive an explicit bound for the signature of L.

We consider the cases of even and odd p-ranks separately.
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Even p-rank

Let L be an even lattice of prime level p and genus IIn,2(pεpnp) with n > 2 and
np even carrying a holomorphic automorphic product Ψ(F ) of singular weight.

Let D be the discriminant form of L. The oddity formula (cf. [CS], chapter
15, section 7.7)

e(sign(D)/8) = γp(D)

implies

e((n− 2)/8) = εp

(
−1

p

)np/2
.

Hence n = ±2 mod 8 and k = 1 + n/2 is an even integer. Note that k ≥ 4.
Define

ξ = εp

(
−1

p

)np/2
= −(−1)k/2 .

Let E be the Eisenstein series of weight k for ρD corresponding to 0. Write

E =
∑
γ∈D

Eγe
γ

with
Eγ(τ) =

∑
m∈Z+q(γ)

aγ(m)qm .

Define

ck,p,np = ξ
2k

Bk

1

pk − 1

1

p(np−2)/2
.

Note that ck,p,np is positive. By explicit calculation we can derive the following
formulas for the Fourier coefficients aγ(m) (cf. also Theorem 7.1 in [S4]).

Proposition 5.1
Let γ ∈ D and m ∈ q(γ) + Z, m > 0.

If q(γ) 6= 0 mod 1 then

aγ(m) = −ck,p,np σk−1(pm)

Suppose q(γ) = 0 mod 1. Write m = pνa with (a, p) = 1. Then

aγ(m) = −ck,p,np p(ν+1)(k−1) σk−1(a)

if γ 6= 0 and

aγ(m) = −ck,p,np p(ν+1)(k−1) σk−1(a)

+ ξ ck,p,np p
np/2 σk−1(a)− ξ ck,p,np p(np−2)/2 (p− 1)σk−1(m)

if γ = 0.

Write
F =

∑
γ∈D

Fγe
γ

14



with
Fγ(τ) =

∑
m∈Z−q(γ)

cγ(m)qm .

Pairing F with the Eisenstein series E (cf. Proposition 2.3) we obtain

2(k − 2) +
∑
γ∈D

∑
m>0

cγ(−m)aγ(m) = 0 .

In the following we will often need that L splits a hyperbolic plane II1,1. We
give a criterion for this.

Proposition 5.2
The lattice L splits a hyperbolic plane II1,1 if and only if

np = n and ξ = +1

or
np ≤ n− 2 .

Proof: Suppose L splits II1,1, i.e. IIn,2(pεpnp) = IIn−1,1(pεpnp) ⊕ II1,1. If np ≤
n − 2 this gives no restriction on εp. If np = n then the sign rule (cf. [CS],
chapter 15, section 7.7) applied to IIn−1,1(pεpnp) implies εp =

(−1
p

)
so that

ξ = εp

(
−1

p

)np/2
=

(
−1

p

)1+n/2

= +1 .

The converse is clear now. �

Let d be a positive rational number such that pd is integral. We define
functions

gγ(d) =
∑
m>0

cmγ(−m2d)

where we assume m to be integral. We have

gγ(d) = g0(p2d) +
∑

(m,p)=1

cmγ(−m2d) .

This implies
gγ(d) = g0(p2d)

if q(γ) 6= d mod 1.
The divisor of Ψ(F ) is a linear combination of rational quadratic divisors

γ⊥ where γ is a primitive vector of positive norm in L. The divisor γ⊥ has
order

∑
m>0 cmγ(−m2γ2/2). Since Ψ(F ) is holomorphic this is a non-negative

integer.

Proposition 5.3
Suppose L splits a hyperbolic plane II1,1. Then

gγ(d) ≥ 0

for all γ ∈ D.
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Proof: By the above remark we can assume that d = q(γ) mod 1. Write L =
M⊕II1,1. Choose a representative of γ in M ′. By adding a primitive element of
suitable norm in II1,1 we obtain a primitive element γ ∈ L′ of norm γ2/2 = d.
The holomorphicity of Ψ(F ) implies

gγ(d) =
∑
m>0

cmγ(−m2d) =
∑
m>0

cmγ(−m2γ2/2) ≥ 0 .

This proves the proposition. �

We also define the multiplicative function

h(m) =
∑
d|m

m/d squarefree

(m/d,p)=1

dk−1 .

Now we expand the sum −
∑
γ∈D

∑
m>0 cγ(−m)aγ(m) in terms of the non-

negative divisor degrees gγ .

Theorem 5.4
Suppose L splits II1,1. Let cp = 1− 1/p. Then

−
∑
γ∈D

∑
m>0

cγ(−m)aγ(m)

≥ ck,p,np
∑
γ∈D

q(γ)6=0 mod 1

∑
m/p=q(γ) mod 1

gγ(m/p)h(m)

+ ck,p,np p
k−1

∑
γ∈D\{0}

q(γ)=0 mod 1

∑
m>0

gγ(m)h(m)

+ cp ck,p,np p
k−1

∑
m>0

g0(m)h(m) .

Proof: Let γ ∈ D with q(γ) 6= 0 mod 1. Then

−
p−1∑
j=1

∑
m>0

cjγ(−m)ajγ(m)

= ck,p,np

p−1∑
j=1

∑
(m,p)=1

cjγ(−m/p)
∑
d|m

dk−1

= ck,p,np
∑

(d,p)=1

dk−1

p−1∑
j=1

∑
(t,p)=1

cjγ(−td/p)

= ck,p,np
∑

(d,p)=1

dk−1

p−1∑
j=1

∑
t squarefree

(t,p)=1

∑
(m,p)=1

cjγ(−m2td/p)

= ck,p,np
∑

(d,p)=1

dk−1

p−1∑
j=1

p−1∑
l=1

∑
t squarefree

(t,p)=1

∑
m=l mod p

cjγ(−m2td/p)
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= ck,p,np
∑

(d,p)=1

dk−1

p−1∑
j=1

p−1∑
l=1

∑
t squarefree

(t,p)=1

∑
m=l mod p

c ljγ(−m2td/p)

= ck,p,np
∑

(d,p)=1

dk−1

p−1∑
j=1

∑
t squarefree

(t,p)=1

(
gjγ(td/p)− g0(tdp)

)

= ck,p,np

p−1∑
j=1

∑
(m,p)=1

(
gjγ(m/p)− g0(mp)

) ∑
d|m

m/d squarefree

dk−1

= ck,p,np

p−1∑
j=1

∑
m/p=q(jγ) mod 1

(
gjγ(m/p)− g0(mp)

)
h(m) .

For γ ∈ D \ {0} with q(γ) = 0 mod 1 we find analogously

−
p−1∑
j=1

∑
m>0

cjγ(−m)ajγ(m)

= ck,p,np p
k−1

p−1∑
j=1

∑
m>0

(
gjγ(m)− g0

(
mp2

))
h(m) .

For γ = 0 we have

−
∑
m>0

cγ(−m)aγ(m)

= ck,p,np p
k−1

∑
d>0

dk−1
∑

(t,p)=1

c0(−td)

− ξ ck,p,np pnp/2
∑

(d,p)=1

dk−1
∑
t>0

c0(−td)

+ ξ ck,p,np p
(np−2)/2(p− 1)

∑
d>0

dk−1
∑
t>0

c0(−td)

= ck,p,np p
k−1

∑
d>0

dk−1
∑

t squarefree
(t,p)=1

(
g0(td)− g0

(
tdp2

))

− ξ ck,p,np pnp/2
∑

(d,p)=1

dk−1
∑

t squarefree
(t,p)=1

(
g0(td) + g0(tdp)

)

+ ξ ck,p,np p
(np−2)/2(p− 1)

∑
d>0

dk−1
∑

t squarefree
(t,p)=1

(
g0(td) + g0(tdp)

)
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= ck,p,np p
k−1

∑
m>0

(
g0(m)− g0

(
mp2

))
h(m)

− ξ ck,p,np pnp/2
∑

(m,p)=1

(
g0(m) + g0(mp)

)
h(m)

+ ξ ck,p,np p
(np−2)/2(p− 1)

∑
m>0

(
g0(m) + g0(mp)

)
h(m) .

Using∑
m>0

g0(m)h(m) =
∑

(m,p)=1

g0(m)h(m) + pk−1
∑

(m,p)=1

g0(mp)h(m)

+ p2(k−1)
∑
m>0

g0

(
mp2

)
h(m)

and ∑
m>0

g0(mp)h(m) =
∑

(m,p)=1

g0(mp)h(m) + pk−1
∑
m>0

g0

(
mp2

)
h(m)

we find

−
∑
γ∈D

∑
m>0

cγ(−m)aγ(m)

= ck,p,np
∑
γ∈D

q(γ)6=0 mod 1

∑
m/p=q(γ) mod 1

gγ(m/p)h(m)

+ ck,p,np p
k−1

∑
γ∈D\{0}

q(γ)=0 mod 1

∑
m>0

gγ(m)h(m)

+ ck,p,np c
0
k,p,np

∑
(m,p)=1

g0(m)h(m)

+ ck,p,np

p−1∑
j=1

c1k,np,j
∑

m=j mod p

g0(mp)h(m)

+ ck,p,np c
≥2
k,p,np

∑
m>0

g0

(
mp2

)
h(m)

with

c0k,p,np = pk−1 − ξp(np−2)/2

c1k,p,np,j = pn − ak,p,np,j + ξp(np−2)/2
(
(p− 1)pk−1 − 1

)
c≥2
k,p,np

= pk−1
(
pn − ak,p,np,0 + ξp(np−2)/2(p− 1)

(
pk−1 + 1

))
where ak,p,np,j denotes the number of elements γ ∈ D of norm q(γ) = j/p
mod 1. For j 6= 0 mod p we have

ak,p,np,j = pnp−1 − ξp(np−2)/2
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(cf. [S4], Proposition 3.2) so that

c1k,p,np,j = pn − pnp−1 + ξp(n+np−2)/2(p− 1)

c≥2
k,p,np

= pk−1
(
pn − pnp−1 + ξp(n+np−2)/2(p− 1)

)
.

Since L splits II1,1 we obtain the following bounds

c0k,p,np ≥ (1− 1/p) pk−1

c1k,p,np,j ≥ (1− 1/p) p2(k−1)

c≥2
k,p,np

≥ (1− 1/p) p3(k−1) .

Applying again the above formula for
∑
m>0 g0(m)h(m) we obtain

−
∑
γ∈D

∑
m>0

cγ(−m)aγ(m)

≥ ck,p,np
∑
γ∈D

q(γ)6=0 mod 1

∑
m/p=q(γ) mod 1

gγ(m/p)h(m)

+ ck,p,np p
k−1

∑
γ∈D\{0}

q(γ)=0 mod 1

∑
m>0

gγ(m)h(m)

+ cp ck,p,np p
k−1

∑
m>0

g0(m)h(m)

This proves the theorem. �

Define m∞ = maxγ∈D(−ν∞(Fγ)). Note that m∞ > 0.

Proposition 5.5
Suppose L splits II1,1. Then

m∞ ≥
k − 2

12
.

Let γ ∈ D such that ν∞(Fγ) = −m∞. Then cγ(−m∞) is a positive integer.

Proof: The function F0 is a non-zero modular form for Γ0(p) of weight 2 − k.
Applying the Riemann-Roch theorem to F0 we obtain

pν0(F0) + ν∞(F0) ≤ −k − 2

12
(p+ 1)

(cf. Theorem 4.1 in [HBJ]). The formula for the S-transformation (cf. section
2) implies

ν0(F0) = ν∞

(∑
γ∈D

Fγ

)
.

Let γ ∈ D such that ν∞(Fγ) is minimal. Since L splits II1,1 there is a primitive
vector µ in L′ with µ = γ mod L and µ2/2 = m∞. Then the divisor µ⊥

has order cγ(−m∞) which is a positive integer by the holomorphicity of Ψ(F ).
Hence

ν∞

(∑
γ∈D

Fγ

)
= min
γ∈D

ν∞(Fγ) .
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It follows

p min
γ∈D

ν∞(Fγ) + min
γ∈D

ν∞(Fγ) ≤ −k − 2

12
(p+ 1) .

This finishes the proof. �

We obtain the following inequalities.

Proposition 5.6
Suppose L splits II1,1. Then(

k − 2

12

)k−1

≤ mk−1
∞ ≤ ξ

pnp/2

cp

k − 2

k
Bk .

Proof: Suppose ν∞(F0) < ν∞(Fγ) for all γ ∈ D \ {0}. Then the Eisenstein
condition and the estimate in Theorem 5.4 give

2(k − 2) = −
∑
γ∈D

∑
m>0

cγ(−m)aγ(m)

≥ cp ck,p,np pk−1g0(m∞)h(m∞)

≥ cp ck,p,np pk−1mk−1
∞

so that

mk−1
∞ ≤ ξ

pnp/2

cp

k − 2

k
Bk .

The assertion now follows from Proposition 5.5. Suppose ν∞(Fγ) ≤ ν∞(F0) for
some γ ∈ D \ {0}. Choose γ 6= 0 such that −ν∞(Fγ) = m∞. Then

−
∑
γ∈D

∑
m>0

cγ(−m)aγ(m) ≥ ck,p,np p
k−1mk−1

∞

and the statement follows analogously. �

We remark that the first inequality in the proposition is a consequence of
the Riemann-Roch theorem and the second of the Eisenstein condition.

Theorem 5.7
Let L be an even lattice of level p and genus IIn,2(pεpnp) with n > 2 and np even
splitting a hyperbolic plane II1,1. Suppose L carries a holomorphic automorphic
product of singular weight. Then for each c > 1/ log(πe6 ) there exists a constant
d depending only on c such that

n ≤ c np log(p) + d .

Proof: Recall that k ≥ 4. Using 2ζ(k) = ξ (2π)k

k! Bk and k! ≤ e
√
k
(
k
e

)k
we derive

from Proposition 5.6 the inequality

1 ≤ e2 pnp/2 k3/2

(
6

πe

)k
resp.

0 ≤ 2 +
np
2

log(p) +
3

2
log(k)− k log

(πe
6

)
.
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If t is a tangent of the real logarithm then log(x) ≤ t(x) for all x > 0. Hence
log(k) ≤ (k − x)/x+ log(x) for all x > 0. It follows

0 ≤ −
(

log
(πe

6

)
− 3

2x

)
k +

np
2

log(p) +
3

2

(
log(x)− 1

)
+ 2

for all x > 0. If x > 3
2 log(πe6 ) = 4.24964 . . . this gives an upper bound on k and

on n, i.e.
n ≤ c(x)np log(p) + d(x)

with

c(x) =
2

2 log
(
πe
6

)
− 3

x

d(x) = (3 log(x) + 1)c(x)− 2

in this case. �

Note that the proof is constructive. For example taking x = 20 gives the
bounds c = 3.59750 . . . and d = 33.92899 . . .

Odd p-rank

Now let L be an even lattice of prime level p and genus IIn,2(pεpnp) with n > 2
and np odd. Suppose Ψ(F ) is a holomorphic automorphic product of singular
weight on L.

Since np is odd p is odd as well.
The oddity formula implies

e((n− 2)/8) =


εp

(
2

p

)
if p = 1 mod 4

εp

(
2

p

)
(−1)(np−1)/2 e(1/4) if p = 3 mod 4

so that

n =

{
±2 mod 8 if p = 1 mod 4

0 mod 4 if p = 3 mod 4.

Define k = 1 + n/2 and

ξ = εp

(
2

p

)(
−1

p

)(np−1)/2

.

Then

ξ =

{
−(−1)k/2 if p = 1 mod 4

−(−1)(k−1)/2 if p = 3 mod 4.

Let χ(j) =
(
j
p

)
. Define the twisted divisor sum

σl,χ(m) =
∑
d|m

χ(m/d)d l
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and the generalised Bernoulli numbers Bm,χ by

p∑
j=1

χ(j)xejx

epx − 1
=
∑
m≥0

Bm,χ
xm

m!

(cf. [I]). Let

ck,p,np = ξ
2k

Bk,χ

1

p(np−1)/2
.

The positivity of L(k, χ) implies that ck,p,np is positive. We describe the Fourier
coefficients aγ(m) of the Eisenstein series E.

Proposition 5.8
Let γ ∈ D and m ∈ q(γ) + Z, m > 0.

If q(γ) 6= 0 mod 1 then

aγ(m) = −ck,p,np σk−1,χ(pm)

Suppose q(γ) = 0 mod 1. Write m = pνa with (a, p) = 1. Then

aγ(m) = −ck,p,np p(ν+1)(k−1) σk−1,χ(a)

if γ 6= 0 and

aγ(m) = −ck,p,np p(ν+1)(k−1) σk−1,χ(a)− ξ ck,p,np p(np−1)/2 χ(a)σk−1,χ(a)

if γ = 0.

We have

Proposition 5.9
L splits a hyperbolic plane II1,1 if and only if

np ≤ n− 1 .

As above we denote the Fourier coefficients of F by cγ and define the func-
tions gγ . We also define

hχ(m) =
∑
d|m

m/d squarefree

χ(m/d)dk−1 .

The function hχ is bounded below by hχ(m) ≥ (2− ζ(2))mk−1 ≥ 1
3 m

k−1.

Theorem 5.10
Suppose L splits II1,1. Let cp = 1− 1/p. Then

−
∑
γ∈D

∑
m>0

cγ(−m)aγ(m)

≥ ck,p,np
∑
γ∈D

q(γ)6=0 mod 1

∑
m/p=q(γ) mod 1

gγ(m/p)hχ(m)

+ ck,p,np p
k−1

∑
γ∈D\{0}

q(γ)=0 mod 1

∑
m>0

gγ(m)hχ(m)

+ cp ck,p,np p
k−1

∑
m>0

g0(m)hχ(m) .
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Proof: The argument is analogous to the proof of Theorem 5.4. We describe
the necessary modifications.

Let γ ∈ D with q(γ) 6= 0 mod 1. Then

−
p−1∑
j=1

∑
m>0

cjγ(−m)ajγ(m)

= ck,p,np

p−1∑
j=1

∑
m/p=q(jγ) mod 1

(
gjγ(m/p)− g0(mp)

)
hχ(m) .

For γ ∈ D \ {0} with q(γ) = 0 mod 1 we find

−
p−1∑
j=1

∑
m>0

cjγ(−m)ajγ(m)

= ck,p,np p
k−1

p−1∑
j=1

∑
m>0

(
gjγ(m)− g0

(
mp2

))
hχ(m) .

If γ = 0 then

−
∑
m>0

cγ(−m)aγ(m)

= ck,p,np p
k−1

∑
m>0

(
g0(m)− g0

(
mp2

))
hχ(m)

+ ξ ck,p,np p
(np−1)/2

∑
(m,p)=1

(g0(m) + g0(mp))χ(m)hχ(m) .

Using∑
m>0

g0(m)hχ(m) =
∑

(m,p)=1

g0(m)hχ(m) + pk−1
∑

(m,p)=1

g0(mp)hχ(m)

+ p2(k−1)
∑
m>0

g0

(
mp2

)
hχ(m)
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we obtain

−
∑
γ∈D

∑
m>0

cγ(−m)aγ(m)

= ck,p,np
∑
γ∈D

q(γ)6=0 mod 1

∑
m/p=q(γ) mod 1

gγ(m/p)hχ(m)

+ ck,p,np p
k−1

∑
γ∈D\{0}

q(γ)=0 mod 1

∑
m>0

gγ(m)hχ(m)

+ ck,p,np

p−1∑
j=1

∑
m=j mod p

c0k,p,np,j g0(m)hχ(m)

+ ck,p,np

p−1∑
j=1

∑
m=j mod p

c1k,p,np,j g0(mp)hχ(m)

+ ck,p,np c
≥2
k,p,np

∑
m>0

g0

(
mp2

)
hχ(m)

with

c0k,p,np,j = pk−1 + ξχ(j)p(np−1)/2

c1k,p,np,j = p2(k−1) − ak,p,np,j + ξχ(j)p(np−1)/2

c≥2
k,p,np

= p3(k−1) − pk−1ak,p,np,0

where ak,p,np,j denotes the number of elements γ ∈ D of norm q(γ) = j/p
mod 1. Since L splits II1,1 we have

c0k,p,np,j ≥ (1− 1/p) pk−1

c1k,p,np,j ≥ (1− 1/p2) p2(k−1)

c≥2
k,p,np,m

≥ (1− 1/p2) p3(k−1) .

This implies the assertion. �

Pairing F with the Eisenstein series E and applying the Riemann-Roch
theorem to F0 we obtain

Proposition 5.11
Suppose L splits II1,1. Then(

k − 2

12

)k−1

≤ mk−1
∞ ≤ 3 ξ

p(np+1)/2

cp

k − 2

k

Bk,χ
pk

.

Now we can derive a bound on n.

Theorem 5.12
Let L be an even lattice of level p and genus IIn,2(pεpnp) with n > 2 and np odd
splitting a hyperbolic plane II1,1. Suppose L carries a holomorphic automorphic
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product of singular weight. Then for each c > 1/ log(πe6 ) there exists a constant
d depending only on c such that

n ≤ c np log(p) + d .

Proof: Here we use 2L(k, χ) = ξ
√
p (2π)k

k!
Bk,χ
pk

and L(k, χ) ≤ ζ(3) to obtain

1 ≤ 5

2
e2 pnp/2 k3/2

(
6

πe

)k
.

As above this implies
n ≤ c(x)np log(p) + d(x)

with

c(x) =
2

2 log
(
πe
6

)
− 3

x

d(x) =
(
3 log(x) + 1 + 2 log( 5

2 )
)
c(x)− 2

for x > 3
2 log(πe6 ) . �

Note that the constant d is slightly larger here than in Theorem 5.7. Taking
x = 20 we obtain the bounds c = 3.59750 . . . and d = 40.52171 . . .

An example

Let L be a lattice of genus IIn,2(2+n2

II ) with n > 2 and n2 = 2, 4 or 6 carrying a
holomorphic automorphic product of singular weight. Then n ≤ 34, 42 resp. 42
and

k − 2

12
≤ m∞ ≤

(
2(n2+2)/2 k − 2

k
Bk

)1/(k−1)

by Theorem 5.7 and Proposition 5.6. The values of the bounds are given in the
following table:

n k (k − 2)/12 2+2
II 2+4

II 2+6
II

10 6 0.33333 . . . 0.57616 . . . 0.66183 . . . 0.76024 . . .

18 10 0.66666 . . . 0.85431 . . . 0.92271 . . . 0.99658 . . .

26 14 1 1.11253 . . . 1.17346 . . . 1.23772 . . .

34 18 1.33333 . . . 1.36385 . . . 1.42060 . . . 1.47973 . . .

42 22 1.66666 . . . 1.61161 . . . 1.66570 . . . 1.72159 . . .

50 26 2 1.85716 . . . 1.90937 . . . 1.96305 . . .

Since m∞ is half-integral we obtain

Theorem 5.13
Let L be a lattice of genus IIn,2(2+n2

II ) with n > 2 and n2 = 2, 4 or 6 carrying a
holomorphic automorphic product of singular weight. Then n = 10 or 26.
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6 Reflective forms

In this section we remove the hypotheses made in [S4] and give a complete
classification of reflective automorphic products of singular weight on lattices of
prime level.

General results

We derive some general bounds and formulate the Eisenstein condition for re-
flective modular forms.

Let L be an even lattice of prime level p and genus IIn,2(pεpnp) with n > 2.
Let F =

∑
γ∈D Fγe

γ be a non-zero reflective modular form on L (cf. section 3).
Then F has weight 1− n/2,

F0(τ) = c0(−1)q−1 +
∑
m∈Z
m≥0

c0(m)qm

with c0(−1) = 0 or 1,

Fγ(τ) = cγ(−1/p)q−1/p +
∑

m∈Z−1/p
m>0

cγ(m)qm

with cγ(−1/p) = 0 or 1 if q(γ) = 1/p mod 1 and the other components Fγ
of F are holomorphic at ∞. We define integers c1 = c0(−1) and cp = |{γ ∈
D | q(γ) = 1/p mod 1 and Fγ singular }|.

Proposition 6.1
We have n < 26. If c1 = 0 then n ≤ 2 + 24/(p+ 1).

Proof: The conditions imply F0 6= 0. Since F is reflective the product F0∆ is a
modular form for Γ0(p) of weight 13 − n/2 which is holomorphic on the upper
halfplane and at the cusps. Hence n ≤ 26. If n = 26 the function F0 must be
1/∆. But then F does not transform correctly under S. This proves the first
statement. If c1 = 0 the Riemann-Roch theorem applied to F0 gives

−1 ≤ pν0(F0) + ν∞(F0) ≤ m

12
(p+ 1)

where m = 1− n/2 is the weight of F0. This implies the second statement. �

Pairing F with the Eisenstein series E of weight k = 1 + n/2 we obtain (cf.
Propositions 5.1 and 5.8)

Proposition 6.2
Suppose F0 has constant coefficient n− 2. Then

k − 2

k
Bk(pk − 1) = ξeven

(
pk−np/2c1 + p1−np/2cp

)
− c1

with ξeven = −(−1)k/2 if np is even and

k − 2

k
Bk,χ = ξodd

(
pk−(np+1)/2c1 + p(1−np)/2cp

)
+ c1
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with

ξodd =

{
−(−1)k/2 if p = 1 mod 4

−(−1)(k−1)/2 if p = 3 mod 4

if np is odd.

We will also need the following result.

Proposition 6.3
If np = n+ 2 then n− 2 = 0 mod 8 and L is a rescaling of IIn,2 by p.

Proof: Since γp(D) is a fourth root of unity the oddity formula e(sign(D)/8) =
γp(D) implies that n is even. Then np is also even and

γp(D) = εp

(
−1

p

)np/2
.

Hence n − 2 = 0 or 4 mod 8 and γp(D) = εp. The lattice L has determinant
pn+2 so that ε1εp = 1 by the sign rule. Now ε1 = +1 because L has maximal
p-rank and therefore εp = +1. Applying the oddity formula again we obtain
n− 2 = 0 mod 8. The second statement follows from the fact that there is only
one class in the genus IIn,2(pεpnp) under the given conditions. �

Symmetric forms

Here we classify reflective modular forms which are invariant under O(D).

Let L be an even lattice of prime level p and genus IIn,2(pεpnp) with n > 2.
Then the number of elements γ in D of order p and norm q(γ) = 1/p mod 1 is
given by

pnp−1 − ξevenp
(np−2)/2

if np is even and by

pnp−1 + ξoddp
(np−1)/2

if np is odd (cf. [S4], Proposition 3.2). Suppose L carries a symmetric reflective
modular form F with [F0](0) = n− 2. Then the Eisenstein condition takes the
form

k − 2

k
Bk(pk − 1) = ξeven

(
pk−np/2d1 + pnp/2dp

)
− d1 − dp

if np is even and

k − 2

k
Bk,χ = ξodd

(
pk−(np+1)/2d1 + p(np−1)/2dp

)
+ d1 + dp

if np is odd. Here d1 and dp can be 0 or 1. In the case np < n+ 2 the solutions
of these equations have been determined in [S4].

Theorem 6.4
Let L be an even lattice of prime level p and genus IIn,2(pεpnp) with n > 2
carrying a symmetric reflective modular form F . Suppose F0 has constant
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coefficient n− 2. Then L and F are given in the following table:

p L F

2 II18,2(2+10
II ) η1−82−8

II10,2(2+2
II ), II10,2(2+10

II ) 16η1−1628 , η182−16

3 II14,2(3−8) η1−63−6

II8,2(3−3), II8,2(3−7) 9η1−933 , η133−9

5 II10,2(5+6) η1−45−4

II6,2(5+3), II6,2(5+5) 5η1−551 , η115−5

7 II8,2(7−5) η1−37−3

11 II6,2(11−4) η1−211−2

23 II4,2(23−3) η1−123−1

The η-product in the last column is a modular form for Γ0(p) whose lift on 0
gives F .

Conversely each of these functions is a reflective modular form on L with
the above stated properties.

Proof: We only have to consider the case np = n + 2. Then n = 10 or 18 and
ξeven = +1 by Propositions 6.3 and 6.1. The Eisenstein condition simplifies to

k − 2

k
Bk = dp .

Now the left hand side is 1/63 for k = 6 and 2/33 for k = 10. Hence there are
no reflective forms if np = n+ 2. �

Bounds in the non-symmetric case

In this subsection we derive bounds on the signature for reflective modular forms
which are not invariant under O(D).

First we recall the Riemann-Roch theorem for Γ1(p).
Let p be a prime. For p ≥ 3 the group Γ1(p) has p− 1 classes of cusps which

can be represented by 1/c with c = 1, . . . , (p − 1)/2 of width p and a/p with
a = 1, . . . , (p − 1)/2 of width 1. The cusps of Γ1(2) can be represented by 1/2
of width 1 and 1/1 of width 2. Let f 6= 0 be a meromorphic modular form on
Γ1(p) of weight m and finite order character. For p ≥ 5 there are no torsion
points and the Riemann-Roch theorem states

(p−1)/2∑
c=1

pν1/c(f) +

(p−1)/2∑
a=1

νa/p(f) +
∑

τ∈Γ1(p)\H

ντ (f) =
m

24
(p2 − 1) .

For p = 3 we have

3ν1/1(f) + ν1/3(f) +
1

3
νe3(f) +

∑
τ∈Γ1(3)\H

τ 6=e3 mod Γ1(3)

ντ (f) =
m

3
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with e3 = (3 + i
√

3)/6 and

2ν1/1(f) + ν1/2(f) +
1

2
νe2(f) +

∑
τ∈Γ1(2)\H

τ 6=e2 mod Γ1(2)

ντ (f) =
m

4

with e2 = (1 + i)/2 if p = 2.

Theorem 6.5
Let L be an even lattice of prime level p and signature (n, 2) with n > 2 carrying
a non-symmetric reflective modular form F . Then p ≤ 11 and n ≤ 2 + 24/p.

Proof: Since F is non-symmetric there are γ1, γ2 ∈ D \ {0} of the same norm
such that

f = Fγ1 − Fγ2 6= 0 .

The function f is a modular form on Γ1(p) of weight m = 1 − n/2 and finite
order character.

Let γ ∈ D and M =
(
a b
c d

)
∈ Γ. Then

Fγ |m,M =

(
a

|D|

)
e(−abq(γ))Faγ

if c = 0 mod p and

Fγ |m,M =

e(− sign(D)/8)√
|D|

(
−c
|D|

)∑
µ∈D

e(−c−1dq(µ))e(−b(µ, γ))e(−abq(γ))Faγ+µ

if c 6= 0 mod p. The coefficient at F0 in this sum is

e(−c−1dq(µ))e(−b(µ, γ))e(−abq(γ)) = e(−c−1aq(γ)) ,

i.e. only depends on the norm of γ.
This implies that for all M ∈ Γ the function f |m,M is a linear combination

of functions Fγ with γ 6= 0. Hence

νs(f) ≥ −1/p

for all cusps s of Γ1(p). It follows

−p− 1

2

(
1 +

1

p

)
≤ m

24
(p2 − 1)

This proves the theorem. �

Note that the bounds do not hold in the symmetric case.
Using Theorem 6.5 we can determine the non-symmetric forms on lattices

of prime level by analysing the obstructions in a finite number of cases. For
p = 3, which is the most complicated case, we describe this explicitly in the
next subsection. The other cases are analogous.
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Level 3

We determine the reflective forms on lattices of level 3 and signature (n, 2) where
n = 4, 6, 8 or 10.

Let L be a lattice of genus II10,2(3ε3n3) and F a reflective form on L. Suppose
F0 has constant coefficient [F0](0) = 8. Then c1 = 1 (cf. Proposition 6.1) and
the Eisenstein condition gives the following value for c3 (cf. Proposition 6.2):

II10,2(3−2) II10,2(3+4) II10,23−6) II10,2(3+8)

c1 = 1 −2074/9 −616/3 −130 96

II10,2(3−10) II10,2(3+12)

c1 = 1 774 2808

Since c3 should be a non-negative integer this excludes already the first 3
cases.

The space S6(Γ(3)) has dimension 3 and is spanned by the functions η18θ 2
A2

,
η18θA2

θν+A2
and η1636 . The liftings of these functions generate the obstruction

space SρD,6.
Pairing F with the lift Fη1636 ,0

of the η-product η1636(τ) = η(τ)6η(3τ)6 we
obtain

1− 1

3n3/2
− c3

3(n3+4)/2
= 0 .

This implies

Proposition 6.6
There are no reflective modular forms with constant coefficient 8 on lattices of
genus II10,2(3ε3n3).

Next we consider the case n = 8. Let L be a lattice of genus II8,2(3ε3n3) and
F a reflective modular form on L with [F0](0) = 6. Then we obtain for c3:

II8,2(3+1) II8,2(3−3) II8,2(3+5) II8,2(3−7) II8,2(3+9)

c1 = 0 2 6 18 54 162
c1 = 1 −78 −72 −54 0 162

The discriminant form of type 3+1 contains no elements γ of norm q(γ) = 1/3
mod 1. Hence this case can be excluded.

The space S5(Γ(3)) has dimension 2 and is spanned by the functions η18θA2

and η18θν+A2
. The liftings of these functions generate the obstruction space

SρD,5.
The lattice A2 has genus II2,0(3−1) and is isomorphic to its rescaled dual

A′2(3). The theta functions of A2 can be written as

θA2
=
η13 + 9η93

η31

,

θν+A2
=

1

2
(θA′2 − θA2

) .
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They transform under S =
(

0 −1
1 0

)
as

θA2
|1,S =

e(−1/4)√
3

(θA2 + 2θν+A2) =
e(−1/4)√

3
θA′2 ,

θν+A2
|1,S =

e(−1/4)√
3

(
θA2
− θν+A2

)
.

Let γ ∈ D be of norm q(γ) = 1/3 mod 1. Then the lift of η18θA2
with

respect to the dual Weil representation ρD on γ is given by

Fη18θA2
,γ = F1/3 + F1/1

with
F1/3 = η18θA2

(eγ + e−γ)

and

F1/1 = − 1

3(n3−1)/2

∑
µ∈D

e((γ, µ))gjµ(eµ + e−µ)

where
η18(θA2

+ 2θν+A2
) = g0 + g1 + g2

and gj |5,T = e(j/3)gj . Note that g0 = 0. We obtain an analogous result for the
lift of η18θν+A2 with respect to ρD on an element γ ∈ D of norm q(γ) = 2/3
mod 1.

Let
M = {γ ∈ D | q(γ) = 1/3 mod 1 and Fγ singular } .

We assume now that M is non-empty. Then |M | = c3 = 2 · 3(n3−1)/2 and
M = −M because Fγ = F−γ . The crucial result to determine the structure of
M is the following

Proposition 6.7
Let γ ∈ D be of norm q(γ) 6= 0 mod 1. Then

|M ∩ γ⊥| =

{
2|M |/3 if γ ∈M ,

|M |/3 otherwise.

Proof: Let γ ∈ D be of norm q(γ) = 1/3 mod 1. Suppose γ ∈M . Then pairing
F with Fη18θA2

,γ gives

2− 1

3(n3−1)/2

∑
µ∈M

(e((γ, µ)) + e(−(γ, µ))) = 0

so that ∑
µ∈M

(
e((γ, µ)) + e(−(γ, µ))

)
= |M | .

This implies
|M ∩ γ⊥| = 2|M |/3 .

If γ /∈M the same argument shows |M∩γ⊥| = |M |/3. In case q(γ) = 2/3 mod 1
the statement follows from pairing F with Fη18θν+A2

,γ . �

The proposition implies that M⊥ is an isotropic subgroup of D. Let γ ∈M
and µ ∈M⊥. Then M ∩ γ⊥ = M ∩ (γ + µ)⊥. Hence the group M⊥ acts on M
by translations.
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Proposition 6.8
Let γ, µ ∈M such that (γ, µ) = 2/3 mod 1. Then γ + µ ∈M .

Proof: The sets M ∩ γ⊥ and M ∩ µ⊥ are both subsets of M \ {±γ}. Hence

|(M ∩ γ⊥) ∩ (M ∩ µ⊥)| ≥ 4|M |/3− (|M | − 2) = |M |/3 + 2 .

Since (M∩γ⊥)∩(M∩µ⊥) ⊂ (M∩(γ+µ)⊥) this implies |M∩(γ+µ)⊥| = 2|M |/3
and γ + µ ∈M . �

Proposition 6.9
Let γ, µ ∈M such that (γ, µ) = 0 mod 1. Then

(M ∩ γ⊥) ∩ (M ∩ µ⊥) = M ∩ (γ + µ)⊥

Proof: We have |M ∩ γ⊥| = |M ∩ µ⊥| = 2|M |/3 so that

|(M ∩ γ⊥) ∩ (M ∩ µ⊥)| ≥ 4|M |/3− |M | = |M |/3 .

On the other hand (M ∩γ⊥)∩ (M ∩µ⊥) ⊂ (M ∩ (γ+µ)⊥) and |M ∩ (γ+µ)⊥| =
|M |/3 because q(γ + µ) = 2/3 mod 1. This implies the statement. �

Proposition 6.10
Let γ, µ, ν ∈M such that

(γ, µ) = (µ, ν) = 2/3 mod 1 .

Then
(γ, ν) = 2/3 mod 1 .

Proof: First suppose (γ, ν) = 0 mod 1. Define σ = γ− ν. Then (σ, µ) = 0. But
this contradicts (M ∩ γ⊥) ∩ (M ∩ ν⊥) = M ∩ σ⊥. Next we assume (γ, ν) = 1/3
mod 1. Here we define σ = γ+µ+ν. Note that γ+µ is in M and (γ+µ, ν) = 0
mod 1. Then (σ, µ) = 0 mod 1. This contradicts (M ∩ (γ + µ)⊥)∩ (M ∩ ν⊥) =
M ∩ σ⊥. Hence (γ, ν) = 2/3 mod 1. �

A consequence of this result is

Proposition 6.11
Let γ, µ ∈M such that (γ, µ) 6= 0 mod 1. Then

M ∩ γ⊥ = M ∩ µ⊥ .

Proposition 6.12
Let γ, µ ∈M such that (γ, µ) = 2/3 mod 1. Then γ − µ ∈M⊥.

Proof: Define σ = γ−µ. Then M ∩γ⊥ = M ∩µ⊥ implies (M ∩γ⊥) ⊂ (M ∩σ⊥).
Let ν ∈ M such that (γ, ν) = 2/3 mod 1. Then (γ, µ) = (µ, ν) = (γ, ν) = 2/3
mod 1 by the above transitivity result. Hence (σ, ν) = 0 mod 1. Similarly if
ν ∈M such that (γ, ν) = 1/3 mod 1 then (σ, ν) = 0 mod 1. Hence all elements
in M are orthogonal to σ. �

Proposition 6.13
The group M⊥ is an isotropic subgroup of D order 3(n3−3)/2.
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Proof: Let γ ∈ M . Then the elements µ ∈ M with (γ, µ) 6= 0 mod 1 are in
±γ +M⊥. Hence M decomposes as

M = (γ +M⊥) ∪ (−γ +M⊥) ∪ (M ∩ γ⊥)

so that
|M | = 2|M⊥|+ 2|M |/3 .

This implies the statement. �

Proposition 6.14
M is of the form

M =

3⋃
i=1

(
γi +M⊥

)
∪

3⋃
i=1

(
− γi +M⊥

)
with γi ∈M and (γi, γj) = 0 mod 1 for i 6= j.

Let H be an isotropic subgroup of D of order |H| = 3(n3−3)/2. Then the lift
of 9η1−933 with respect to ρD on H is given by

F9η1−933 ,H
= F1/3 + F1/1

with
F1/3 =

∑
γ∈H

9η1−933 eγ

and
F1/1 =

∑
γ∈H⊥

gjγe
γ

where η133−9(τ/3) = g0(τ) + g1(τ) + g2(τ) and gj |−3,T = e(j/3)gj . Note that

g0 = −3η1−933 ,

g1 = 0 .

The function F9η1−933 ,H
has 0-component F0 = 6η1−933 and is reflective. The

singular components are the Fγ with γ ∈ H⊥ and q(γ) = 1/3 mod 1. The
discriminant form H⊥/H is of type 3−3. It is generated by elements {γ1, γ2, γ3}
with q(γi) = 1/3 mod 1 and (γi, γj) = 0 mod 1 for i 6= j. It follows (cf.
Theorem 2.1 and Proposition 2.2)

Proposition 6.15
Let L be a lattice of genus II8,2(3ε3n3) carrying a reflective modular form. Sup-
pose F0 is holomorphic at ∞ and has constant coefficient 6. Then n3 ≥ 3 and
F = F9η1−933 ,H

for some isotropic subgroup H of D of order |H| = 3(n3−3)/2. In

this case the overlattice LH of L corresponding to H has genus II8,2(3−3) and
the function F can also be induced from the symmetric form F9η1−933 ,0

on LH .

We can decompose L = K ⊕ II1,1(3) where K has genus II7,1(3−ε3(n3−2))
and assume that H is a maximal isotropic subgroup of the discriminant form of
K. Then the embedding K ⊂ KH gives an embedding L ⊂ LH and identifies
the corresponding domains HL and HLH . Proposition 3.4 implies
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Proposition 6.16
The theta lifts of F and F9η1−933 ,0

coincide as functions under this identification.

We calculate the product expansions of the automorphic product Ψ corre-
sponding to F9η1−933 ,0

on L of genus II8,2(3−3).
First we decompose L = K ⊕ II1,1(3). Then K = E6 ⊕ II1,1. We choose a

primitive norm 0 vector z in II1,1(3).

Proposition 6.17
The expansion of Ψ at the cusp corresponding to z is given by∏

α∈K+

(
1− e((α,Z))

)[9η1−933 ](−α2/2) ∏
α∈(3K′)+

(
1− e((α,Z))

)[−3η1−933 ](−α2/6)

= 1 +
∑

c(λ)e((λ, Z))

where c(λ) is the coefficient at qn in η193−3 if λ is n times a primitive norm 0
vector in K+ and 0 otherwise.

Proof: The product expansion of Ψ at the cusp corresponding to z is∏
α∈K′+

(
1− e((α,Z))

)[Fα](−α2/2)(
1− e(1/3)e((α,Z))

)[Fα+z/3](−α2/2)

(
1− e(2/3)e((α,Z))

)[Fα+2z/3](−α2/2)
.

By the above formulas for the components of F9η1−933 ,0
this product is equal to∏

α∈K+

(
1− e((α,Z))

)[9η1−933 ](−α2/2)

∏
α∈(3K′)+

(
1− e((α,Z))

)[−3η1−933 ](−α2/6)
.

Since Ψ has singular weight the Fourier expansion of Ψz is supported only on
norm 0 vectors of K ′. Hence Ψz has the stated sum expansion. �

This is the twisted denominator identity of the fake monster superalgebra [S1]
corresponding to an element of class 3A in O(E8) (cf. Proposition 6.1 in [S2]).

Now we decompose L = K ⊕ II1,1 with K = E6 ⊕ II1,1(3) and choose a
primitive norm 0 vector z in II1,1. Then

Proposition 6.18
The expansion of Ψ at the cusp corresponding to z is given by

e((ρ, Z))
∏

α∈K′+

(
1− e((α,Z))

)[η133−9 ](−3α2/2)

∏
α∈K+

(
1− e((α,Z))

)[9η1−933 ](−α2/2)

=
∑
w∈W

det(w)η1−339((wρ,Z))

where W is the reflection group of K ′ generated by the roots of norm α2 = 2/3.
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This is the twisted denominator identity of the fake monster algebra correspond-
ing to an element of class 3C in Co0 (cf. Proposition 10.7 in [S3]).

Now let L again be a lattice of genus II8,2(3ε3n3) carrying a reflective modular
form F .

The lift of η133−9(τ) = η(τ)3η(3τ)−9 with respect to ρD on 0 is given by

Fη133−9 ,0 = F1/3 + F1/1

with
F1/3 = η133−9 e0

and
F1/1 = 3(11−n3)/2

∑
γ∈D

gjγe
γ

where η1−933(τ/3) = g0(τ)+g1(τ)+g2(τ) and gj |−3,T = e(j/3)gj . The modular
form Fη133−9 ,0 is reflective and has 0-component

F0(τ) = q−1 +
(
3(11−n3)/2 − 3

)
+ . . .

Proposition 6.19
Let L be a lattice of genus II8,2(3ε3n3) and F a reflective modular form on L
with c1 = 1 and [F0](0) = 6. Then n3 = 7 and F = Fη133−9 ,0 or n3 = 9 and
F = Fη133−9 ,0 + F9η1−933 ,H

for some isotropic subgroup H of order 27.

Suppose L has genus II8,2(3−7). Then the level 1 expansion of the theta
lift of Fη133−9 ,0 on L is the twisted denominator identity of the fake monster
superalgebra corresponding to an element in O(E8) of class 3A and the level 3
expansion gives the twisted denominator identity of the fake monster algebra
corresponding to an element in Co0 of class 3C.

The case n3 = 9 has already been described above because we have

Proposition 6.20
Let L be of genus II8,2(3+9). Then the theta lift of Fη133−9 ,0 on L is constant.

Proof: We decompose L = K⊕II1,1(3) where K has genus II7,1(3−7) and choose
a primitive norm 0 vector z in II1,1(3). Then the product expansion of the theta
lift Ψ of Fη133−9 ,0 at the cusp corresponding to z is given by

e((ρ, Z))
∏

α∈K+

(
1− e((α,Z))

)[η133−9 ](−α2/2)

∏
α∈(3K′)+

(
1− e((α,Z))

)[3η1−933 ](−α2/6)
.

The Fourier coefficients [η133−9 ](n) vanish for n = 1 mod 3 and K = E′6(3) ⊕
II1,1(3) contains no elements α of norm −α2/2 = 2 mod 3. This implies that
the first product extends only over the elements α ∈ K satisfying α2/2 = 0
mod 3, i.e. α ∈ 3K ′. Now [η133−9 ](3n) = −[3η1−933 ](n) so that the product is
constant. This finishes the proof. �
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Now we consider the case n = 6. Let L be a lattice of genus II6,2(3ε3n3) and
F a reflective form on L with [F0](0) = 4. We find the following value for c3:

II6,2(3+2) II6,2(3−4) II6,2(3+6)

c1 = 0 4/3 4 12
c1 = 1 −80/3 −26 −24

Hence we can assume that F0 is holomorphic at ∞ and n3 = 4 or 6.
The space S4(Γ(3)) has dimension 1 and is spanned by the function η18 . The

liftings of this function generate the obstruction space SρD,4.
Let γ ∈ D be of norm q(γ) = 1/3 mod 1. Then the lift of η18(τ) = η(τ)8

with respect to the dual Weil representation ρD on γ is given by

Fη18 ,γ = F1/3 + F1/1

with
F1/3 = η18 (eγ + e−γ)

and

F1/1 = − 1

3(n3−2)/2

∑
µ∈D

q(µ)=1/3 mod 1

e((µ, γ)) η18 (eµ + e−µ) .

As above we define

M = {γ ∈ D | q(γ) = 1/3 mod 1 and Fγ singular } .

Then |M | = 4 · 3(n3−4)/2 and M = −M . Pairing F with Fη18 ,γ we obtain

Proposition 6.21
Let γ ∈ D be of norm q(γ) = 1/3 mod 1. Then

|M ∩ γ⊥| =

{
5|M |/6 if γ ∈M ,

|M |/3 otherwise.

This excludes the case n3 = 4. We assume now that n3 = 6. Then the
proposition shows that M must be of the form

M = {±γ1, . . . ,±γ6}

with (γi, γj) = 0 mod 1 for i 6= j. In particular M+ = {γ1, . . . , γ6} is a basis of
D. Let γ ∈ D be of norm q(γ) = 1/3 mod 1 with γ /∈ M . Then γ is a linear
combination of four of the γi so that |M ∩ γ⊥| = 4. Hence the principal part
of F satisfies all obstructions coming from SρD,4. This implies that a reflective
modular form with constant coefficient 4 on II6,2(3+6) exists.

We give an explicit construction. Let γ ∈ D be of norm q(γ) = 1/3 mod 1.
Then the lift of θ 2

A2
/η18 on γ with respect to ρD is given by

Fθ 2
A2
/η18 ,γ

= F1/3 + F1/1

with

F1/3 =
θ 2
A2

η18

(eγ + e−γ)

36



and

F1/1 =
1

33

∑
µ∈D

e(−(γ, µ)) gjµ(eµ + e−µ)

where θ 2
A′2
/η18 = g0 + g1 + g2 and gj |−2,T = e(j/3)gj . Note that g2 = θ 2

A2
/η18 .

The function η(1/3)−3123−3(τ) = η1−3329−3(τ/3) is a modular form for Γ(3) of
weight −2. If we decompose η(1/3)−3123−3 = h0+h1+h2 with hj |−2,T = e(j/3)hj
then g2 = h2, g1 = 4h1 and g0 = 4h0. It follows

Fθ 2
A2
/η18 ,γ

=
1

3
Fη(1/3)−3123−3 ,γ .

Now let M+ = {γ1, . . . , γ6} ⊂ D such that q(γi) = 1/3 mod 1, (γi, γj) = 0
mod 1 for i 6= j and M = M+ ∪ (−M+). Define

F3θ 2
A2
/4η18 ,M

+ =
3

4

6∑
i=1

Fθ 2
A2
/η18 ,γi

.

The components of F3θ 2
A2
/4η18 ,M

+ can be described as follows. Write µ ∈ D as

µ =
∑6
i=1 ciγi and let wt(µ) denote the number of non-zero ci. Then

Fµ(τ) = g2(τ) = q−1/3 + 20q2/3 + 176q5/3 + 1020q8/3 + 4794q11/3 + . . .

if µ ∈M and

Fµ =
1

12
(4− wt(µ)) gjµ

with jµ/3 = −q(µ) mod 1 otherwise. In particular

F0(τ) =
1

3
g0(τ) = 4 + 60q + 432q2 + 2328q3 + 10320q4 + 40068q5 + . . .

and Fµ = 0 if q(µ) = 1/3 mod 1 and µ /∈M . Hence F is reflective. Conversely
we have

Proposition 6.22
Let L be a lattice of genus II6,2(3ε3n3) and F a reflective form on L with [F0](0)
= 4. Then n3 = 6 and F = F3θ 2

A2
/4η18 ,M

+ for some M+ ⊂ D as above.

Let L be a lattice of genus II6,2(3+6). We can decompose L as L = K ⊕
II1,1(3) with K = A2 ⊕A2 ⊕ II1,1(3). Then K has genus II5,1(3−4). We choose
an orthogonal basis {γ1, γ2, γ3, µ4} of the discriminant form of K satisfying
q(γ1) = q(γ2) = q(γ3) = −q(µ4) = 1/3 mod 1 and an orthogonal basis {µ5, γ6}
of the discriminant form of II1,1(3) satisfying −q(µ5) = q(γ6) = 1/3 mod 1.
We define γ4 = µ4 + µ5, γ5 = µ4 − µ5 and M+ = {γ1, . . . , γ6}. Let Ψ be the
theta lift of F = F3θ 2

A2
/4η18 ,M

+ on L. We choose a primitive norm 0 vector z in

II1,1(3). Then z has level 3 and wt(z/3) = 3.
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Proposition 6.23
The expansion of Ψ at the cusp corresponding to z is given by

e((ρ, Z))
∏

α∈K′+
wt(α)=0

(
1− e((α,Z))

)[g0/4](−α2/2)(
1− e((3α,Z))

)[g0/12](−α2/2)

∏
α∈K′+

wt(α)=3
wt(α±z/3)=3

(
1− e((3α,Z))

)[g0/12](−α2/2)

∏
α∈K′+

wt(α)=3
wt(α±z/3)=6

(
1− e((α,Z))

)[g0/4](−α2/2)(
1− e((3α,Z))

)[−g0/6](−α2/2)

∏
α∈K′+

wt(α)=2
wt(α±z/3)=2

(
1− e((3α,Z))

)[g1/6](−α2/2)

∏
α∈K′+

wt(α)=2
wt(α±z/3)=5

(
1− e((α,Z))

)[g1/4](−α2/2)(
1− e((3α,Z))

)[−g1/12](−α2/2)

∏
α∈K′+

wt(α)=5

(
1− e((α,Z))

)[−g1/12](−α2/2)

∏
α∈K′+

wt(α)=1

(
1− e((α,Z))

)[g2](−α2/2)

=
∑
w∈W

det(w)η133−293((wρ,Z))

where ρ is a primitive norm 0 vector in K ′ with wt(ρ) = 3 and wt(ρ± z/3) = 6
and W is the reflection group of K ′ generated by the roots α ∈ K ′ of norm
α2 = 2/3 and weight wt(α) = 1.

This identity is a new infinite product identity. One can show that it can also
be obtained by twisting the denominator identity of the fake monster algebra
by an element of class 9C in Co0.

Finally we consider the case n = 4. Let L be a lattice of genus II4,2(3ε3n3)
and F a reflective form on L with [F0](0) = 2. Then the Eisenstein condition
gives the following value for c3:

II4,2(3−1) II4,2(3+3) II4,2(3−5)

c1 = 0 2/9 2/3 2
c1 = 1 −88/9 −34/3 −16

Since S3(Γ(3)) is trivial the obstruction space SρD,3 vanishes. Hence L car-
ries a reflective form with constant coefficient 2 if and only if it has genus
II4,2(3−5).
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Let D be a discriminant form of type 3−5 and γ ∈ D of norm q(γ) = 1/3
mod 1. Then the lift of η113−3 on γ with respect to the Weil representation ρD
is given by

Fη113−3 ,γ = F1/3 + F1/1

with
F1/3 = η113−3 (eγ + e−γ)

and
F1/1 =

∑
µ∈D

e(−(γ, µ)) gjµ(eµ + e−µ)

where η1−331(τ/3) = g0(τ) + g1(τ) + g2(τ) and gj |−1,T = e(j/3)gj . Note that
Fη113−3 ,γ is reflective and F0 has constant coefficient 2.

Proposition 6.24
Let L be a lattice of genus II4,2(3ε3n3) and F a reflective form on L with [F0](0) =
2. Then L has genus II4,2(3−5) and F = Fη113−3 ,γ for some element γ ∈ D of
norm q(γ) = 1/3 mod 1.

Let L be a lattice of genus II4,2(3−5). We choose an element γ ∈ D of
norm q(γ) = 1/3 mod 1. Let Ψ be the automorphic product corresponding to
Fη113−3 ,γ on L.

We decompose L = K ⊕ II1,1(3) such that γ is in the discriminant form of
II1,1(3) and choose a primitive norm 0 vector z in II1,1(3). Then (γ, z/3) 6= 0
mod 1. Note that K = A2 ⊕ II1,1(3).

Proposition 6.25
The expansion of Ψ at the cusp corresponding to z is given by∏

α∈K′+

(
1− e((α,Z))

)[3η1−331 ](−3α2/2)(
1− e((3α,Z))

)[−η1−331 ](−3α2/2)

= 1 +
∑

c(λ)e((λ, Z))

where c(λ) is the coefficient at qn in η133−1 if λ is n times a primitive norm 0
vector in K ′+ and 0 otherwise.

This is the twisted denominator identity of the fake monster superalgebra cor-
responding to an element of class 9A.

We can also decompose L = K ⊕ II1,1(3) such that γ is in the discriminant
form of K. Again we choose a primitive norm 0 vector z in II1,1(3). Then

Proposition 6.26
The expansion of Ψ at the cusp corresponding to z is given by

e((ρ, Z))
∏

α∈K′+

(
1− e((3α,Z))

)[(e((γ,α))+e(−(γ,α)))η1−331 ](−3α2/2)

∏
α∈K′+

α=±γ mod K

(
1− e((α,Z))

)[η113−3 ](−α2/2)

=
∑
w∈W

det(w)η3−193((wρ,Z))
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where W is the reflection group of K ′ generated by the vectors α ∈ K ′ of norm
α2 = 2/3 satisfying α = ±γ mod K.

This is the twisted denominator identity of the fake monster algebra correspond-
ing to an element in Co0 of class 9B.

The automorphic product Ψ was first described in [DHS].

Classification

In this subsection we formulate the classification theorems for reflective forms.

First we list the reflective modular forms on lattices of prime level.

Theorem 6.27
Let L be a lattice of prime level and signature (n, 2) with n > 2 carrying a
reflective modular form F . Suppose F0 has constant coefficient n− 2. Then L
and F are given in the following table:

p L F Remarks

2 II18,2(2+10
II ) Fη1−82−8 ,0 symmetric

II10,2(2+2
II ) F16η1−1628 ,0

symmetric

II10,2(2+n2

II ), F16η1−1628 ,H
|H| = 2(n2−2)/2

n2 = 4, 6, . . . , 12

II10,2(2+10
II ) Fη182−16 ,0 symmetric

II10,2(2+12
II ) Fη182−16 ,0 + F16η1−1628 ,H

|H| = 25

II6,2(2−6
II ) Fη142−8 ,γ

3 II14,2(3−8) Fη1−63−6 ,0 symmetric

II8,2(3−3) F9η1−933 ,0
symmetric

II8,2(3ε3n3) F9η1−933 ,H
|H| = 3(n3−3)/2

n3 = 5, 7, 9

II8,2(3−7) Fη133−9 ,0 symmetric

II8,2(3+9) Fη133−9 ,0 + F9η1−933 ,H
|H| = 33

II6,2(3+6) F(1/4)η(1/3)−3123−3 ,M+ M+ = {γ1, . . . , γ6},
(γi, γj) = 0 mod 1

II4,2(3−5) Fη113−3 ,γ

5 II10,2(5+6) Fη1−45−4 ,0 symmetric

II6,2(5+3) F5η1−551 ,0
symmetric

II6,2(5+n5) F5η1−551 ,H
|H| = 5(n5−3)/2

n5 = 5, 7

II6,2(5+5) Fη115−5 ,0 symmetric

II6,2(5+7) Fη115−5 ,0 + F5η1−551 ,H
|H| = 52

7 II8,2(7−5) Fη1−37−3 ,0 symmetric

11 II6,2(11−4) Fη1−211−2 ,0 symmetric

23 II4,2(23−3) Fη1−123−1 ,0 symmetric
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Conversely each of the functions F is a reflective modular form on L with
constant coefficient [F0](0) = n− 2.

We have seen that many of these forms give the same function under the
singular theta correspondence.

Theorem 6.28
Let L be a lattice of prime level and signature (n, 2) with n > 2 and Ψ a
reflective automorphic product of singular weight on L. Then as a function on
the corresponding hermitian symmetric domain the automorphic product Ψ is
the theta lift of one of the following modular forms:

p L F Co0

2 II18,2(2+10
II ) Fη1−82−8 ,0 1828

II10,2(2+2
II ) F16η1−1628 ,0

1−8216

II10,2(2+10
II ) Fη182−16 ,0 1−8216

II6,2(2−6
II ) Fη142−8 ,γ 2−448

3 II14,2(3−8) Fη1−63−6 ,0 1636

II8,2(3−3) F9η1−933 ,0
1−339

II8,2(3−7) Fη133−9 ,0 1−339

II6,2(3+6) F(1/4)η(1/3)−3123−3 ,M+ 133−293

II4,2(3−5) Fη113−3 ,γ 3−193

5 II10,2(5+6) Fη1−45−4 ,0 1454

II6,2(5+3) F5η1−551 ,0
1−155

II6,2(5+5) Fη115−5 ,0 1−155

7 II8,2(7−5) Fη1−37−3 ,0 1373

11 II6,2(11−4) Fη1−211−2 ,0 12112

23 II4,2(23−3) Fη1−123−1 ,0 11231

Hence with 3 exceptions all these functions come from symmetric modular forms.
Moreover at a suitable cusp Ψ is the twisted denominator identity of the fake
monster algebra by the indicated element in Conway’s group.

Conversely all the given modular forms lift to reflective automorphic prod-
ucts of singular weight on the corresponding lattices.
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