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There are 10 generalized Kac-Moody algebras whose denominator identities
are completely reflective automorphic products of singular weight on lattices of
squarefree level. Under the assumption that the meromorphic vertex operator
algebra of central charge 24 and spin-1 algebra Âr

p−1,p exists we show that four
of them can be constructed in a uniform way from bosonic strings moving on
suitable target spaces.

1 Introduction

Generalized Kac-Moody algebras are natural generalizations of the finite dimen-
sional simple Lie algebras. They are defined by generators and relations and
are allowed to have imaginary simple roots. Generalized Kac-Moody algebras
are in general infinite dimensional but their theory is in many aspects similar
to the finite dimensional theory. In particular there is a character formula for
highest weight modules and a denominator identity. Borcherds has used twisted
versions of the denominator identity of the monster algebra to prove Conway
and Norton’s moonshine conjecture [B3].

Borcherds’ singular theta correspondence [B5] is a map from modular forms
for the Weil representation to automorphic forms on orthogonal groups. Since
these automorphic forms can be written as infinite products they are called auto-
morphic products. They have found various applications in geometry, arithmetic
and in the theory of Lie algebras. In particular the denominator identities of
generalized Kac-Moody algebras are sometimes automorphic products (cf. [S1],
[S2]). Reflective automorphic products are automorphic products whose divi-
sors correspond to roots of the underlying lattice and are zeros of order one.
They can be classified under certain conditions [S3].

In [S1] a family of 10 generalized Kac-Moody algebras is constructed. Re-
call that the Mathieu group M23 acts on the Leech lattice Λ. Let g be an
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element of squarefree order N in M23. Then g has characteristic polynomial
∏

k|N (xk − 1)24/σ1(N) as automorphism of Λ. The eta product

ηg(τ) =
∏

k|N
η(kτ)24/σ1(N)

is a cusp form for Γ0(N) with multiplicative coefficients. The fixpoint lattice
Λg is the unique lattice in its genus without roots. We lift fg = 1/ηg to a vector
valued modular form

Fg =
∑

M∈Γ0(N)\Γ
fg|M ρD(M−1)e0

for the Weil representation ρD of the lattice Λg⊕II1,1⊕
√

NII1,1. Then we apply
the singular theta correspondence to Fg to obtain an automorphic product Ψg

(cf. [B3], Theorem 13.3). We summarize this in the following diagram

g 7→ 1/ηg 7→ Fg 7→ Ψg .

The automorphic form Ψg has singular weight and is completely reflective, i.e.

has zeros of order one corresponding to all roots of Λg ⊕ II1,1 ⊕
√

NII1,1 (cf.
[S3]). The expansion of Ψg at any cusp is given by

eρ
∏

d|N

∏

α∈(L∩dL′)+

(1 − eα)[1/ηg ](−α2/2d) =
∑

w∈W

det(w)w(ηg (eρ))

where L = Λg ⊕ II1,1, ρ is a primitive norm 0 vector in II1,1 and W is the
full reflection group of L. This is the denominator identity of a generalized
Kac-Moody algebra whose real simple roots are the simple roots of W , i.e. the
roots α of L with (ρ, α) = −α2/2, and imaginary simple roots are the positive
multiples nρ of the Weyl vector with multiplicity 24 σ0((N, n))/σ1(N).

In the prime order case the above Lie algebras have also been constructed
by a different method in [N] (cf. also section 14 in [B3]).

One of the main results of [S3] is that the 10 generalized Kac-Moody al-
gebras corresponding to the elements of squarefree order in M23 are the only
generalized Kac-Moody algebras whose denominator identities are completely
reflective automorphic products of singular weight on lattices of squarefree level
splitting two hyperbolic planes.

For N = 1 and 2 these Lie algebras represent the physical states of bosonic
strings moving on suitable spacetimes (cf. [B2], [HS]).

Let V be a meromorphic vertex operator algebra of central charge 24 and
nonzero L0-eigenspace V1. Schellekens [ANS] proves that either V1 has dimen-
sion 24 and V is the vertex operator algebra of the Leech lattice or V1 has
dimension greater than 24. He shows that in this case there are exactly 69
modular invariant partition functions and describes explicitly the correspond-
ing vector spaces as sums of highest weight modules over affine Kac-Moody
algebras. If the monster vertex operator algebra is unique and for each of the
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69 partition functions there exists a unique vertex operator algebra, Schellekens’
result implies that there are 71 meromorphic vertex operator algebras of central
charge 24. Up to now these conjectures are open.

In this paper we prove the following results.
Let p = 2, 3, 5 or 7 and let V be the prospective vertex operator algebra V in

[ANS] of central charge 24, trivial fusion algebra and spin-1 algebra Âr
q,p where

q = p − 1 and r = 48/q(p + 1). Then the character of V as Âr
q-module can be

written as
χ =

∑

γ∈N ′/N

Fγ ϑγ .

Here N is the unique lattice of minimal norm 4 for p = 2, 3, 5 and minimal norm
6 for p = 7 in the genus

II2m,0

(

pεp(m+2)
)

where m = 24/(p+ 1) and εp = + for p = 2, 5 and εp = − for p = 3, 7, ϑγ is the
theta function of γ + N and Fγ the component corresponding to γ + N of the
lift of 1/η(τ)mη(pτ)m to the lattice N .

Suppose the vertex operator algebra V of central charge 24, trivial fusion
algebra and spin-1 algebra Âr

q,p exists and admits a real form. Then the co-
homology group of ghost number one of the BRST-operator Q acting on the
vertex superalgebra

V ⊗ VII1,1
⊗ Vb,c

gives a natural realization of the generalized Kac-Moody algebra corresponding
to the elements of order p in M23.

For p = 2 these results are also obtained in [HS]. The advantage of the
methods used here is that they do not use explicit formulas for the string func-
tions which are in general unknown so that they can probably be applied to all
the prospective vertex operator algebras in [ANS].

The above result puts evidence to the conjecture that the generalized Kac-
Moody algebras whose denominator identities are completely reflective automor-
phic products of singular weight on lattices of squarefree level describe bosonic
strings moving on suitable spacetimes.

The paper is organized as follows.
In section 2 we recall some results on the affine Kac-Moody algebras and

their highest weight representations.
In section 3 we describe the Weil representation of SL2(Z) and construct

vector valued modular forms.
In section 4 we recall some properties of vertex operator algebras and WZW

models.
In section 5 we show that the character of the prospective vertex operator

algebra V in [ANS] of spin-1 algebra Âr
q,p can be written in the form χ =

∑

Fγ ϑγ as described above.
In the last section we show that the physical states of a chiral bosonic string

with vertex algebra V ⊗ VII1,1
give a realization of the generalized Kac-Moody

algebra corresponding to the elements of order p in M23.
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2 Affine Kac-Moody algebras

In this section we recall some results on the untwisted affine Kac-Moody algebras
and their highest weight representations from [K].

Let g be a finite dimensional simple complex Lie algebra with Cartan sub-
algebra h and root system ∆. Then g has an invariant symmetric bilinear form
which is nondegenerate on g and on h so that there is a natural isomorphism
ν : h → h∗. We will often write α2 for (α, α). The coroot α∨ of a root α is
the inverse image of 2α/α2 under ν. Let {α1, . . . , αl} be a set of simple roots
of g and aij = αj(α

∨
i ) the corresponding Cartan matrix. We denote the set

of positive roots by ∆+. The reflections in the hyperplanes orthogonal to the
simple roots generate the Weyl group W . The Lie algebra g has at most two
different root lengths. The highest root

θ =

l
∑

i=1

aiαi

is a long root and

θ∨ =

l
∑

i=1

a∨
i α∨

i .

We normalize the bilinear form such that θ2 = 2.
The untwisted affine Kac-Moody algebra corresponding to g is

ĝ = C[t, t−1] ⊗ g ⊕ CK ⊕ Cd

where K is central and

[ tm ⊗ x, tn ⊗ y ] = tm+n ⊗ [x, y] + mδm+n(x, y)K

[ d, tn ⊗ y ] = ntn ⊗ y .

The vector space
ĥ = h ⊕ CK ⊕ Cd

is a commutative subalgebra of ĝ. We extend a linear function λ on h to ĥ by
setting λ(K) = λ(d) = 0. We define linear functions Λ0 and δ on ĥ by

Λ0(h ⊕ Cd) = 0 , Λ0(K) = 1

δ(h ⊕ CK) = 0 , δ(d) = 1 .

Then
ĥ∗ = h∗ ⊕ CΛ0 ⊕ Cδ
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and we have a natural projection ĥ∗ → h∗, λ 7→ λ with Λ0 = δ = 0. A linear
function λ in ĥ∗ can be written

λ = λ + λ(K)Λ0 + λ(d)δ

and λ(K) is called the level of λ. We also extend the bilinear form from g to ĝ
by setting

(tm ⊗ x, tn ⊗ y) = δm+n(x, y)

(tm ⊗ x, K) = (tm ⊗ x, d) = 0

(K, K) = (d, d) = 0

(K, d) = 1.

Define
α0 = δ − θ .

Then
α∨

0 = K − θ∨

and {α0, α1, . . . , αl} is a set of simple roots of ĝ and {α∨
0 , α∨

1 , . . . , α∨
l } is the set

of coroots. The fundamental weights Λ0, . . . , Λl satisfy

Λi(α
∨
j ) = δij , Λi(d) = 0 .

Then Λi = Λi + a∨
i Λ0 and Λ1, . . . , Λl are the fundamental weights of g. Let bij

be the inverse of the Cartan matrix of g. The scalar products of the fundamental
weights are

(Λ0, Λi) = 0

for i = 0, . . . , l and

(Λi, Λj) = (Λi, Λj) =
a∨

i

ai
bij

for i, j = 1, . . . , l.
The Weyl vector ρ ∈ ĥ∗ is defined by ρ(α∨

i ) = 1 for i = 0, . . . , l and ρ(d) = 0
([K], p. 82). The level of the Weyl vector is the dual Coxeter number h∨.

We can write Λ ∈ ĥ∗ as

Λ =

l
∑

i=0

niΛi + cδ

with labels ni = Λ(α∨
i ) and c = Λ(d). In representation theory the value of

c is often unimportant. For example if two weights Λ and Λ′ have the same
labels the corresponding irreducible highest weight modules L(Λ) and L(Λ′) are
isomorphic as irreducible modules of the derived algebra ĝ′ = [ĝ, ĝ].

Let
P = {λ ∈ ĥ∗ |λ(α∨

i ) ∈ Z for i = 0, . . . , l}
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be the weight lattice and

P+ = {λ ∈ P |λ(α∨
i ) ≥ 0 for i = 0, . . . , l}

be the set of dominant integral weights. Then

P =

l
∑

i=0

ZΛi + Cδ .

We define P k = {λ ∈ P |λ(K) = k} and P k
+ = P k ∩ P+.

Let Λ ∈ P k
+ with k > 0 and L(Λ) the corresponding irreducible highest

weight module. We define

mΛ =
(Λ + ρ)2

2(k + h∨)
− ρ2

2h∨

and the normalized character

χΛ = e−mΛδch L(Λ) .

For λ ∈ ĥ∗ we define

mΛ,λ = mΛ − λ2

2k

and the string function

cΛ
λ = e−mΛ,λδ

∑

n∈Z

multL(Λ)(λ − nδ)e−nδ .

The string functions are invariant under the action of the affine Weyl group, i.e.

cΛ
w(λ) = cΛ

λ

for w ∈ Ŵ , so that
cΛ
w(λ)+kγ+aδ = cΛ

λ

for w ∈ W, γ ∈ M and a ∈ C ([K], (12.7.9)).
The multiplicities can be calculated with Freudenthal’s recursion formula

((Λ + ρ)2 − (λ + ρ)2) multL(Λ)(λ) =

2
∑

α∈∆+

∑

j≥1

multL(Λ)(α) (λ + jα, α) multL(Λ)(λ + jα) .

Let
θλ = ekΛ0

∑

γ∈M+λ/k

e−kγ2δ/2+kγ

where M is the lattice generated by the long roots of g ([K], (12.7.3)). Then

θλ+kγ+aδ = θλ
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for γ ∈ M and a ∈ C ([K], (13.2.3)).
The normalized character is given by

χΛ =
∑

λ∈P k mod (kM+Cδ)

cΛ
λθλ

([K], (12.7.12)).
We obtain modular forms if we replace in the above definitions e−δ = q with

q = e2πiτ . The string functions transform under the generators of SL2(Z) as

cΛ
λ (−1/τ) =

|M ′/kM |−1/2 (−iτ)−l/2
∑

Λ′∈P k
+ mod Cδ

λ′∈P k mod (kM+Cδ)

SΛ,Λ′ e
(

(λ, λ′)/k
)

cΛ′

λ′ (τ)

with

SΛ,Λ′ =

i|∆+| |M ′/(k + h∨)M |−1/2
∑

w∈W

det(w) e
(

− (Λ + ρ, w(Λ′ + ρ))/(k + h∨)
)

([K], Theorems 13.8 and 13.10) and

cΛ
λ (τ + 1) = e(mΛ,λ) cΛ

λ (τ)

([K], (13.10.4)).

3 The Weil representation

In this section we describe the Weil representation of SL2(Z) and construct
vector valued modular forms. More details can be found in [S3].

A discriminant form is a finite abelian group D with a quadratic form
D → Q/Z, γ 7→ γ2/2 such that (β, γ) = (β + γ)2/2 − β2/2 − γ2/2 mod 1
is a nondegenerate symmetric bilinear form. The level of D is the smallest pos-
itive integer N such that Nγ2/2 ∈ Z for all γ ∈ D. The group algebra C[D] of
D is the algebra with basis {eγ | γ ∈ D} and products eβeγ = eβ+γ.

Let L be an even lattice with dual lattice L′. Then L′/L is a discriminant
form with the quadratic form given by γ2/2 mod 1. Conversely every discrim-
inant form can be obtained in this way. The signature sign(D) ∈ Z/8Z of a
discriminant form is defined as the signature modulo 8 of any even lattice with
that discriminant form.

Let D be a discriminant form of even signature. There is a unitary action
of the group SL2(Z) on C[D] defined by

ρD(T )eγ = e(−γ2/2) eγ

ρD(S)eγ =
e(sign(D)/8)

√

|D|
∑

β∈D

e((γ, β)) eβ
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where S =
(

0 −1
1 0

)

and T = ( 1 1
0 1 ) are the standard generators of SL2(Z). This

representation is called Weil representation.
Let

F (τ) =
∑

γ∈D

Fγ(τ)eγ

be a holomorphic function on the upper halfplane with values in C[D] and k an
integer. Then F is a modular form for ρD of weight k if

F (Mτ) = (cτ + d)kρD(M)F (τ)

for all M =
(

a b
c d

)

in SL2(Z) and F is meromorphic at ∞.
We can construct modular forms for the Weil representation by lifting scalar

valued modular forms on Γ0(N). Suppose the level of D divides N where N is
a positive integer. Let f be a scalar valued modular form on Γ0(N) of weight k
and character χD. Again we allow poles at cusps. Then

F (τ) =
∑

M∈Γ0(N)\Γ
f |M (τ) ρD(M−1) e0

is a vector valued modular form for ρD of weight k which is invariant under the
automorphisms of the discriminant form.

Now we consider the following cases. Let p = 2, 3, 5 or 7. Then there is an
automorphism of the Leech lattice of cycle shape 1mpm with m = 24/(p + 1).
The fixpoint lattice Λp is the unique lattice in its genus without roots. Let II1,1

be the even unimodular Lorentzian lattice of rank 2. Then the lattice

Λp ⊕
√

pII1,1

has level p and genus

II2m+1,1

(

pεp(m+2)
)

with εp = +,−, +,− for p = 2, 3, 5, 7. The eta product

f(τ) =
1

η(τ)mη(pτ)m

is a modular form for Γ0(p) of weight −m with poles at the cusps 0 and ∞ and
trivial character for p = 2, 3 and 5 and character χ

((

a b
c d

))

=
(

d
7

)

in the case
p = 7. We define T -invariant functions gj by

f(τ/p) = g0(τ) + g1(τ) + . . . + gp−1(τ)

with gj |T (τ) = e(j/p)gj(τ), i.e.

gj(τ) =
1

p

p−1
∑

k=0

e(−kj/p)f
(

(τ + k)/p
)

.
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We lift the modular form f to a modular form F =
∑

Fγeγ on Λp ⊕ √
pII1,1

using the above construction. Then F has components

Fγ(τ) =

{

f(τ) + g0(τ) , if γ = 0,

gj(τ) , if γ 6= 0 and γ2/2 = −j/p mod 1.

The components Fγ with γ2/2 = 0 mod 1 are modular forms for Γ0(p) of weight
−m and of nontrivial quadratic character in the case p = 7.

4 WZW theories

In this section we recall some results on vertex operator algebras and WZW
models. References are [FHL], [Hö], [Fu2], [FZ] and [ANS].

Let V be a vertex operator algebra satisfying certain regularity properties.
In particular we assume that V is simple and rational, i.e. V is irreducible as a
module over itself and V has only finitely many nonisomorphic simple modules
and every module decomposes into a finite direct sum of irreducible modules.
Let {M0, . . . , Mn} with M0 = V be the set of nonisomorphic simple modules.
The dimensions of the intertwining spaces

Nk
ij = dim

(

Mk

Mi Mj

)

satisfy Nk
ij = Nk

ji, N j
0i = δj

i and N0
ij = δji+ for a unique i+ depending on i. The

fusion algebra is the free vector space C[I ] where I = {0, . . . , n} with products

i × j =
∑

k∈I

Nk
ij k .

The fusion algebra is commutative, associative and i × 0 = i.
Zhu [Z] has shown that the space of genus 1 correlation functions of V is

invariant under SL2(Z) and has a basis corresponding to the modules Mi. We
denote the S-matrix with respect to this basis by Sij . A consequence of this
result is that the characters χi of the modules Mi are invariant under SL2(Z).

The S-matrix is related to the structure constants of the fusion algebra by
the Verlinde formula (cf. [Hu])

Nk
ij =

∑

n∈I

SinSjnS−1
kn

S0n
.

A module Mi is called a simple current if for each j there is a unique k such
that i × j = k. Then of course i × i+ = 0. This condition is also sufficient, i.e.
Mi is a simple current if and only if N j

ii+ = δj0. A simple current generates an
action of a group Z/NZ on the set of modules.

An important problem is when there is a vertex algebra structure on a sum
over the modules Mi extending V . In some special cases, e.g. simple current
extensions of WZW models, this problem has been solved.
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Let g be a finite dimensional simple complex Lie algebra with affinization ĝ
and k a positive integer. Then the irreducible ĝ-module L(kΛ0) has a canonical
structure as a simple rational vertex operator algebra which satisfies the above
mentioned regularity properties. The simple modules are the irreducible ĝ-
modules L(Λ) with Λ ∈ P k

+ and Λ(d) = 0. This theory is called the WZW
model corresponding to g of level k. Since in this case the S-matrix is known
the structure constants of the fusion algebra can be calculated by the Verlinde
formula. Fuchs [Fu1] has determined the simple currents of the WZW models.
The nontrivial simple currents correspond to the weights Λ where Λ is k times
a cominimal weight of g. If g is E8 there is an exceptional simple current at
level 2.

Let V be a vertex operator algebra. Then the L0-eigenspace V1 is a Lie
algebra under [u, v] = u0v with invariant bilinear form (u, v) = u1v. The
components of the fields u(z) =

∑

m∈Z
umz−m−1 and v(z) =

∑

n∈Z
vnz−n−1

satisfy the commutation relations

[um, vn] = ([u, v])m+n + m(u, v)δm+n1 .

Schellekens [ANS] studies the character valued partition functions of meromor-
phic vertex operator algebras of central charge 24. With the help of the level
1 trace identities he proves the following result. Let V be a vertex operator
algebra of central charge 24, trivial fusion algebra and nonzero V1. Then either
dim V1 = 24 and V1 is commutative or dim V1 > 24 and V1 is semisimple. In the
first case V is the vertex operator algebra of the Leech lattice. In the second
case V can be written as a sum of modules over the affinization V̂1 of V1. Using
the trace identities of level 2 he shows that there are at most 69 possibilities
for the Lie algebra V1 if dim V1 > 24. For each of these possibilities he finds
exactly one modular invariant partition function and describes explicitly the de-
composition of V as V̂1-module. For many of these vector spaces it is still open
whether they have a vertex algebra structure because the extension problem for
WZW models has not been solved in general so far. Schellekens’ results suggest
that there are 71 meromorphic vertex operator algebras of central charge 24,
the monster vertex operator algebra, the vertex operator algebra of the Leech
lattice and the 69 vertex operator algebras with Kac-Moody symmetry.

5 Characters of some vertex operator algebras

In this section we show that the character of the prospective conformal field
theory in [ANS] of spin-1 algebra Âr

p−1,p can be written in the form χ =
∑

Fγ ϑγ .
Let p = 2, 3, 5 or 7 and q = p − 1.
First we describe some properties of the affine Kac-Moody algebra Âq . The

central element K is given by

K = α∨
0 + . . . + α∨

q .

Let
λ = n0Λ0 + . . . + nqΛq = (n0, . . . , nq)
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be in P mod Cδ. Then λ has level

λ(K) = n0 + . . . + nq

and norm

(λ, λ) = λ2 =

q
∑

i,j=1

bijninj

where bij is the inverse of the Cartan matrix of Aq .
The natural projection from P mod Cδ to the lattice A′

q sends

λ = n0Λ0 + . . . + nqΛq

to
λ = n1Λ1 + . . . + nqΛq .

This map induces a bijection from the weights of level p in P mod Cδ to the
lattice A′

q .
The group A′

q/Aq
∼= Z/pZ is sometimes called congruence group and its

elements congruence classes. It can be represented by the elements Λi with
Λi + Λj = Λi+j where addition is taken modulo p.

Let λ = pΛ0 = (p, 0, . . . , 0). Then the irreducible highest weight module
L(λ) is a vertex operator algebra whose irreducible modules correspond to the
weights (n0, . . . , nq) where the ni are nonnegative integers and n0+ . . .+nq = p.
The simple currents are given by the weights pΛi. They act by cyclicly shifting
the coefficients to the right, i.e. (pΛi).(n0, . . . , nq) = (nq+1−i, . . . , nq−i), and
form a group isomorphic to Z/pZ.

We describe some properties of the simple currents.
Let λ be a weight of level p and s a simple current. Then λ and s.λ are in

the same class.
Furthermore

Proposition 5.1

The string functions of Âq of level p are invariant under the following action of

a simple current s
cΛ
λ = cs.Λ

s.λ .

Proof: There is a diagram automorphism φ acting on
⊕l

i=0 Cαi such that

φ.αi mod Cδ = s.(αi mod Cδ) for i = 0, . . . , l. We extend φ to ĥ∗ by φ.Λ0 =

s.Λ0. Then there is a unique map φ on ĥ satisfying (φ.λ)(φ.y) = λ(y) for all

λ ∈ ĥ∗ and y ∈ ĥ. This map gives an isomorphic realization and therefore an
isomorphism of ĝ. Hence

cs.Λ
s.λ = cφ.Λ+Cδ

φ.λ+cδ = cφ.Λ
φ.λ = cΛ

λ .

�

The isomorphism from the discriminant group to the group of simple currents
sending Λi to pΛi satisfies
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Proposition 5.2

Let µ be a weight of level 0 such that µ = Λi mod Aq . Then

cΛ
λ+pµ = cΛ

(pΛi).λ

for all Λ in P p
+ and all λ in P p.

Proof: Let λ = (n0, . . . , nq) be a weight of level p and µ = (m0, . . . , mq) a weight

of level 0 such that µ = Λ1 mod Aq . Then

w1w2 . . . wq(λ + pµ) = (nq , n0, . . . , nq−1) mod Aq

= (pΛ1).λ mod Aq

so that
cΛ
λ+pµ = cΛ

w1w2...wq(λ+pµ) = cΛ
(pΛ1).λ .

This implies the statement. �

Let V be the prospective vertex operator algebra in [ANS] of spin-1 algebra
Âr

q,p where r = 48/q(p + 1). Then V is a sum of irreducible highest weight

modules of Âr
q , the weight of each factor Âq having level p. We denote the set of

highest weight vectors by M . The set M is invariant under the natural action
of a subgroup G of the group of simple currents and decomposes into G-orbits
G\M . In the appendix we list G and orbit representatives of G\M together
with their multiplicities.

Using the isomorphism from the discriminant group to the group of simple
currents we can consider G as subgroup of Ar

q
′/Ar

q . We denote by (Ar
q , G) the

rational lattice obtained by gluing the elements of G to Ar
q and analogously by

(Ar
q , G

⊥) the rational lattice obtained by gluing the elements of the orthogonal

complement G⊥ to Ar
q . Note that (Ar

q , G
⊥) is the dual lattice of (Ar

q , G).

The character of V as Âr
q-module is given by

χV =
∑

Λ∈M

mult(Λ) χΛ

=
∑

Λ∈M

mult(Λ)

r
∏

i=1

∑

λi∈A′
q/pAq

cΛi

λi
(τ) θλi

(τ, zi, ui)

=
∑

λ∈Ar
q
′/pAr

q

∑

Λ∈M

mult(Λ)

r
∏

i=1

cΛi

λi
(τ) θλi

(τ, zi, ui) .

We have

Proposition 5.3

The only nonzero contributions in the above expression for the character of V

come from weights λ in (Ar
q , G

⊥).

12



Proof: A case-by-case analysis shows M ⊂ (Ar
q , G

⊥). It is easy to see that

cΛ
λ = 0 if Λ and λ are not in the same class. Therefore any nonzero contribution

to the character of V comes from a weight λ in (Ar
q , G

⊥). �

It follows

Proposition 5.4

The character of V as Âr
q-module can be written as

χV =
∑

λ∈N ′/N

F̃λ ϑλ

where N =
√

p(Ar
q , G), ϑλ is the theta function of the coset λ + N and

F̃λ =
∑

Λ∈G\M

∑

g∈G

mult(Λ)

|GΛ|

r
∏

i=1

cΛi

gi.
√

pλi
.

Proof: By Propositions 5.3 and 5.1 we have

χV =
∑

λ∈Ar
q
′/pAr

q

∑

Λ∈M

mult(Λ)

r
∏

i=1

cΛi

λi
(τ) θλi

(τ, zi, ui)

=
∑

λ∈(Ar
q ,G⊥)/pAr

q

∑

Λ∈M

mult(Λ)

r
∏

i=1

cΛi

λi
(τ) θλi

(τ, zi, ui)

=
∑

λ∈(Ar
q ,G⊥)/pAr

q

∑

Γ∈G\M

∑

Λ∈G.Γ

mult(Γ)

r
∏

i=1

cΛi

λi
(τ) θλi

(τ, zi, ui)

=
∑

λ∈(Ar
q ,G⊥)/pAr

q

∑

Λ∈G\M

∑

g∈G

mult(Λ)

|GΛ|

r
∏

i=1

cgi.Λi

λi
(τ) θλi

(τ, zi, ui)

=
∑

λ∈(Ar
q ,G⊥)/pAr

q

∑

Λ∈G\M

∑

g∈G

mult(Λ)

|GΛ|

r
∏

i=1

cΛi

gi.λi
(τ) θλi

(τ, zi, ui)

=
∑

λ∈(Ar
q ,G⊥)/pAr

q

r
∏

i=1

θλi
(τ, zi, ui)

∑

Λ∈G\M

∑

g∈G

mult(Λ)

|GΛ|

r
∏

i=1

cΛi

gi.λi
(τ)

13



where GΛ denotes the stabilizer of Λ in G. Using Proposition 5.2 we get

χV =
∑

λ∈(Ar
q ,G⊥)/p(Ar

q ,G)

∑

µ∈p(Ar
q ,G)/pAr

q

r
∏

i=1

θλi+µi
(τ, zi, ui)

·
∑

Λ∈G\M

∑

g∈G

mult(Λ)

|GΛ|

r
∏

i=1

cΛi

gi.(λi+µi)
(τ)

=
∑

λ∈(Ar
q ,G⊥)/p(Ar

q ,G)

∑

µ∈p(Ar
q ,G)/pAr

q

r
∏

i=1

θλi+µi
(τ, zi, ui)

·
∑

Λ∈G\M

∑

g∈G

mult(Λ)

|GΛ|

r
∏

i=1

cΛi

si.gi.λi
(τ)

=
∑

λ∈(Ar
q ,G⊥)/p(Ar

q ,G)

∑

µ∈p(Ar
q ,G)/pAr

q

r
∏

i=1

θλi+µi
(τ, zi, ui)

·
∑

Λ∈G\M

∑

g∈G

mult(Λ)

|GΛ|

r
∏

i=1

cΛi

gi.λi
(τ) .

Here si is the simple current of Âq such that cΛi

gi.λi+gi.µi
= cΛi

si.gi.λi
. Note that

s = (s1, . . . , sr) is in G because µ = (µ1, . . . , µr) is in p(Ar
q , G)/pAr

q . Now

∑

µ∈p(Ar
q ,G)/pAr

q

r
∏

i=1

θλi+µi
(τ, zi, ui)

=
∑

µ∈p(Ar
q ,G)/pAr

q

∑

ν∈pAr
q

r
∏

i=1

e(pui) e
(

τ(λi + µi + νi)
2/2p + (λi + µi + νi, zi)

)

=
∑

µ∈p(Ar
q ,G)

r
∏

i=1

e(pui) e
(

τ(λi + µi)
2/2p + (λi + µi, zi)

)

=
∑

µ∈√
p(Ar

q ,G)

r
∏

i=1

e(pui) e
(

τ(λi +
√

pµi)
2/2p + (λi +

√
pµi, zi)

)

=
∑

µ∈√
p(Ar

q ,G)

r
∏

i=1

e(pui) e
(

τ(λi/
√

p + µi)
2/2 + (λi/

√
p + µi,

√
pzi)

)

14



so that

χV =
∑

λ∈(Ar
q ,G⊥)/p(Ar

q ,G)

∑

µ∈√
p(Ar

q ,G)

r
∏

i=1

e(pui) e
(

τ(λi/
√

p + µi)
2/2 + (λi/

√
p + µi,

√
pzi)

)

·
∑

Λ∈G\M

∑

g∈G

mult(Λ)

|GΛ|

r
∏

i=1

cΛi

gi.λi
(τ)

=
∑

λ∈(1/
√

p)(Ar
q ,G⊥)/

√
p(Ar

q ,G)

∑

µ∈√
p(Ar

q ,G)

r
∏

i=1

e(pui) e
(

τ(λi + µi)
2/2 + (λi + µi,

√
pzi)

)

·
∑

Λ∈G\M

∑

g∈G

mult(Λ)

|GΛ|

r
∏

i=1

cΛi

gi.
√

pλi
(τ) .

This implies the proposition. �

Note that the functions F̃γ are invariant under G, the permutations Sym(G)
of the r components which leave G invariant and by Proposition 5.1 also under
Ŵ r.

Proposition 5.5

The lattice N =
√

p(Ar
q , G) has genus

II2m,0

(

pεp(m+2)
)

where m = 24/(p + 1) and εp = +,−, +,− for p = 2, 3, 5, 7. In the case p = 2
the 2-adic Jordan components are even. The minimal norm of N is 4 for p = 2,

3 and 5, and 6 for p = 7. This is the largest possible minimal norm of a lattice

in this genus and N is the unique lattice up to isomorphism with this minimal

norm.

Proof: It is easy to see that N is an even lattice. Furthermore we have pN ′ =√
p(Ar

q , G
⊥) ⊂ √

p(Ar
q , G) = N because G⊥ ⊂ G. Using |G|2 = p24/q−2 we get

det(N) = det(Ar
q , G)(p)

= prq det(Ar
q , G)

= prq det(Ar
q)/|G|2

= prp/|G|2

= pm+2 .
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This implies that N has the stated genus (cf. [CS], p. 386 ff., Theorem 13). The
minimal norm of N follows from the minimal distance of G considered as linear
code in Fr

p. We find that the minimal norm of N is 4 for p = 2, 3 and 5, and 6
for p = 7. We leave the proof of the other statements to the reader. �

Now we determine the function

F̃ =
∑

γ∈D

F̃γeγ ,

where D is the discriminant form of N , explicitly.

Theorem 5.6

The function F̃ is a modular form of weight −24/(p + 1) for the Weil represen-

tation of N .

Proof: We have to show that

F̃γ(τ + 1) = e(−γ2/2) F̃γ(τ)

and

F̃γ(−1/τ) =
e(sign(D)/8)

√

|D|
τk
∑

β∈D

e
(

(γ, β)
)

F̃β(τ)

with k = −24/(p + 1) for all γ in D.
To prove these equations we proceed as follows. We choose a set of functions

{F̃γ1
, F̃γ2

, . . . , F̃γn
} such that each F̃γ is conjugate to exactly one F̃γj

under the

action of G, Sym(G) and Ŵ r.
Using the T -invariance of the string functions we verify that

F̃γj
(Tτ) = e(−γ2

j /2) F̃γj
(τ) .

This implies that the F̃γ transform correctly under T .
Let γ ∈ D. We define constants cγ,γl

by

∑

β∈D

e
(

(γ, β)
)

F̃β =
∑

l

cγ,γl
F̃γl

.

If γ is equivalent to γj under the above symmetries then

cγ,γl
= cγj ,γl

.

The action of S on F̃γj
is given by

F̃γj
(Sτ) =

∑

Λ∈G\M

∑

g∈G

mult(Λ)

|GΛ|

r
∏

i=1

cΛi

gi.
√

p(γj)i
(Sτ) .
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We determine the S-matrix of the string functions by computer calculations
using the formula in section 2 and write F̃γj

(Sτ) as polynomial in the string
functions. We check that

F̃γj
(Sτ) =

e(sign(D)/8)
√

|D|
τk
∑

l

cγj ,γl
F̃γl

(τ) .

To see this it is helpful to replace the weight λ in the string function cΛ
λ in

the expression of F̃γj
(Sτ) and of the F̃γl

by the unique dominant weight in the

Ŵ -orbit of λ in the set of weights of L(Λ). This shows that F̃γj
and the F̃γ have

the desired transformation behaviour under S. �

Since the theta function of a lattice transforms under the dual Weil repre-
sentation of the corresponding lattice it is now obvious that the character

χV =
∑

γ∈N ′/N

F̃γ ϑγ

is invariant under SL2(Z).
As in section 3 let

f(τ) =
1

η(τ)mη(pτ)m

and define T -invariant functions gj by

f(τ/p) = g0(τ) + g1(τ) + . . . + gp−1(τ)

where gj |T (τ) = e(j/p)gj(τ). Then

Theorem 5.7

The modular form F̃ is equal to the lift F of the modular form f to N .

Proof: Since the lattices N and Λp ⊕√
pII1,1 have the same signature modulo

8 and isomorphic discriminant forms the components of F =
∑

Fγeγ are given
by

Fγ =

{

f + g0 , if γ = 0,

gj , if γ 6= 0 and γ2/2 = −j/p mod 1.

We calculate the first nonvanishing coefficient of the string functions by com-
puter using Freudenthal’s formula and determine the singular coefficients of F̃ .
It turns out that they are equal to the singular coefficients of F . Hence the
difference of F̃ and F is a holomorphic modular form of negative weight which
is finite at ∞ and therefore must be 0. �

If explicit formulas for the string functions are available then Theorem 5.7
can also be proved in the following way. The modular properties of the string
functions imply that F̃γ in the formula of Proposition 5.4 is a modular form
of weight k and some level N with poles at cusps. The same is true for Fγ .
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Hence we can deduce equality of these functions by comparing sufficiently many
coefficients. For Â1 and Â2 there are explicit formulas for the string functions
determined by Kac and Peterson [KP]. We have used them to verify the state-
ment of Theorem 5.7 in the cases p = 2 and 3.

Unfortunately explicit formulas for the string functions are known only in a
very few cases. The advantage of the proof of Theorem 5.7 given above is that
it only needs the first nonvanishing coefficient of the string functions which is
easy to determine using Freudenthal’s formula. Therefore our method can also
be applied to the other prospective vertex operator algebras in [ANS].

6 Construction of some generalized Kac-Moody

algebras as bosonic strings

We show that the physical states of a chiral bosonic string with vertex algebra
V ⊗VII1,1

give a realization of the generalized Kac-Moody algebra corresponding
to the elements of order p in M23.

We assume now that the prospective vertex operator algebra V in [ANS]
with spin-1 algebra Âr

p−1,p exists and has a real form.
We will work in this section over the real numbers.
Let VII1,1

be the vertex algebra of the Lorentzian lattice II1,1. Recall that
the b,c -ghost system of the bosonic string is described by the vertex superal-
gebra of the lattice Z. It carries a conformal structure of weight −26. We call
the corresponding vertex operator superalgebra Vb,c. There is an action of the
BRST-operator Q with Q2 = 0 on the vertex superalgebra

V ⊗ VII1,1
⊗ Vb,c .

The cohomology group of ghost number one has a Lie bracket [LZ] and we
denote this Lie algebra by G. The vertex algebra V is graded by the rational
lattice N ′ so that G is graded by N ′⊕II1,1. The no-ghost theorem (cf. Theorem
5.1 in [B2]) implies that the graded dimensions are given by dim Gα = 2m + 2
if α = 0 and dim Gα = [Fα](−α2/2) if α 6= 0. Here Fα is the component of
F corresponding to α mod II1,1 (cf. Theorem 5.7). Furthermore Theorem 2 in
[B4] shows that G is a generalized Kac-Moody algebra.

In order to obtain an even grading lattice L we rescale N ′ ⊕ II1,1 by p. It
is easy to see that L has genus II2m+1,1(p

+m). The lattice Λp ⊕ II1,1 has the
same genus. It follows from Eichler’s theory of spinor genera that there is only
one class in this genus so that L is isomorphic to Λp ⊕ II1,1. Thus we have

Proposition 6.1

The Lie algebra G is a generalized Kac-Moody algebra graded by the Lorentzian

lattice L. The Cartan subalgebra has dimension 2m + 2 and

dim Gα =

{

[f ](−α2/2) , if α ∈ L\pL′,

[f ](−α2/2) + [f ](−α2/2p) , if α ∈ pL′,
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for nonzero α, where

f(τ) =
1

η(τ)mη(pτ)m
= q−1 + m + . . . .

We recall that [f ](n) denotes the coefficient at qn in the Fourier expansion
of the function f .

Let ρ be a primitive norm 0 vector in II1,1. Then ρ is a Weyl vector for the
reflection group W of L = Λp ⊕ II1,1 (cf. [B1]).

Theorem 6.2

The denominator identity of G is

eρ
∏

α∈L+

(1 − eα)[f ](−α2/2)
∏

α∈pL′+

(1 − eα)[f ](−α2/2p)

=
∑

w∈W

det(w) w

(

eρ
∞
∏

n=1

(1 − enρ)m(1 − epnρ)m

)

.

The real simple roots of G are the simple roots of W , i.e. the norm 2 vectors

in L with (ρ, α) = −1 and the norm 2p vectors in pL′ with (ρ, α) = −p. The

imaginary simple roots of G are the positive multiples nρ of the Weyl vector

with multiplicity m if p 6 |n and multiplicity 2m if p|n.

Proof: We only have to prove the second statement. Let K be the generalized
Kac-Moody algebra with root lattice L, Cartan subalgebra L ⊗ R and simple
roots as stated in the theorem. We lift f to a vector valued modular form F
on L ⊕ √

pII1,1. Note that F admits the same description as the lift of f on
Λp ⊕

√
pII1,1 in section 3. Then we apply the singular theta correspondence to

F to obtain an automorphic form Ψ of singular weight. The expansion of Ψ at
any cusp is given by

eρ
∏

α∈L+

(1 − eα)[f ](−α2/2)
∏

α∈pL′+

(1 − eα)[f ](−α2/2p)

=
∑

w∈W

det(w) w

(

eρ
∞
∏

n=1

(1 − enρ)m(1 − epnρ)m

)

.

This is the denominator identity of K. We see that G and K have the same
root multiplicities. The product in the denominator identity determines the
simple roots of G because we have fixed a Cartan subalgebra and a fundamental
Weyl chamber. It follows that G and K have the same simple roots and are
isomorphic. �

Appendix

Below we list the groups G as linear codes in Fr
p and orbit representatives of

G\M together with their multiplicities.
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In the case p = 2 the glue code G is the binary Hamming code of length 16
and orbit representatives are

• (2, 0)16

• 8 × (1, 1)16

• The remaining orbit representatives can be described as follows. In the
dual binary Hamming code of length 16, for every codeword of weight
8, identify the 1-components with the highest weight (1, 1) and for the
0-components allow all combinations of (2, 0) and (0, 2) such that both of
these highest weights appear an odd number of times.

In the case p = 3 the glue code G is the ternary zero sum code of length 6
and orbit representatives are

• (3, 0, 0)6

• (1, 1, 1)4(3, 0, 0)2 and all permutations

• (2, 0, 1)5(0, 1, 2) and (2, 1, 0)5(0, 2, 1)

• 6 × (1, 1, 1)6.

In the case p = 5 the glue code is F2
5 and orbit representatives are

• (5, 0, 0, 0, 0)2

• (2, 0, 1, 0, 2)2

• (2, 0, 0, 2, 1)(3, 0, 1, 1, 0) and (3, 0, 1, 1, 0)(2, 0, 0, 2, 1)

• (1, 1, 1, 1, 1)(1, 0, 0, 1, 3) and (1, 0, 0, 1, 3)(1, 1, 1, 1, 1)

• 4 × (1, 1, 1, 1, 1)2.

In the case p = 7 the glue code is F7 and orbit representatives are

• (7, 0, 0, 0, 0, 0, 0)

• (2, 0, 0, 1, 3, 0, 1) and (2, 1, 0, 3, 1, 0, 0)

• (2, 0, 0, 2, 0, 3, 0)

• (1, 0, 1, 0, 1, 2, 2)

• 3 × (1, 1, 1, 1, 1, 1, 1).
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