Prof. Dr. Jan Giesselmann

Contact

work +49 6151 16-23167

Work S4|10 108
Dolivostraße 15
64293 Darmstadt

News

Consultation hour

Friday 1:30pm – 2:30pm.

There will be consultation hour on November 15th

If this time is inconvenient for you please send me a mail so that we can arrange another date – or just drop by at my office.

Publications

  • Hyperbolic conservation laws
  • Compressible fluid flows
  • Discontinuous Galerkin Methods
  • A-priori and a-posteriori error estimates
  • Model-adaptation
  • Uncertainty quantification
  • Observer-based data assimilation

Winter term 2024/25

  • Introduction to numerical mathematics
  • MSc Seminar Numerical Mathematics

These are examples of thesis topics that I would be happy to supervise. If you are interested in any of these topics please send me an email. The topic will be made precise once we have discussed your scientific background and interests. If you are interested in different topic in numerical mathematics that is also possible,

BSc

  • Structure preserving DG-in-time scheme for gradient flows
  • Structure preserving DG-in-time schemes for Hamiltonian systems
  • Model adaptation in port-Hamiltonian systems

MSc

  • A posteriori error estimates for mixed finite elements for wave equations
  • A posteriori error estimates for finite volume schemes for the heat equation
  • A priori error estimates for a finite volume scheme for the Keller-Segel system
  • A posteriori error estimates for moment approximations of kinetic equations
  • A posteriori estimates for convection diffusion equations
  • A high order energy consistent scheme for a phase field fracture model
  • Operator learning for hyperbolic conservation laws

Other areas of my expertise where I would be happy to supervise theses are

  • Discontinuous Galerkin schemes
  • hyperbolic conservation laws
  • a-priori and a-posteriori error estimators
  • compressible multiphase flows

please contact me if you are interested in one of those.

Observer-based data assimilation for time-dependent flows in gas networks (Subproject C05 in SFB-TRR154 funded by German Research Foundation – DFG). This is a joint project with Martin Gugat, FAU Erlangen-Nuremberg.

A posteriori error control for statistical solutions of barotropic Navier-Stokes equations. Project in DFG SPP-2410 jointly with S. Krumscheid (KIT).

Dissipative solutions for the Navier-Stokes-Korteweg system and their numerical treatment. Project in DFG SPP-2410 jointly with Ph. Öffner (JGU Mainz).

Education
2001 Abitur, Widukind Gymnasium Enger
2006 Diplom in Mathematics, University of Bielefeld
2011 PhD in Mathematics, University of Stuttgart
2015 Habilitation in Mathematics, University of Stuttgart
Academic Career
2007 – 2018 Research and Teaching Assistant, University of Stuttgart
2011/12 Postdoc, University of Crete
2012/13 Research Assistant, Weierstrass Institute, Berlin
2013/14 Associate Professor (not tenured) “Numerical Mathematics”, University of Stuttgart
2015 – 17 Associate Professor (not tenured) “Optimisation and Inverse Problems”, University of Stuttgart
2017/18 Associate Professor (not tenured) “Numerical Simulations”, RWTH Aachen University
since October 2018 Professor “Mathematics – Numerics”, Technical University of Darmstadt
since October 2024 Dean of Department of Mathematics


Summer term 2024
  • Efficient Methods for Data Assimilation
  • Discontinuous Galerkin Methods
  • MSc Seminar Numerics
  • Interdisciplinary project


Winter Term 2023/24
  • BSc Seminar Numerics
  • Numerics of Partial Differential Equations



Summer Term 2023
  • Interdisciplinary project


Winter Term 2022/23
  • Numerical Methods for Ordinary Differential Equations (in German)
  • MSc Seminar Numerical Mathematics



Summer Term 2022
  • Discontinuous Galerkin Methods
  • Mathematische Unternehmensberatung (gemeinsam mit Wirtschaftsingenieurwesen)
  • MSc Seminar: Gradientenflüsse (gemeinsam mit Matthias Hieber)
  • Projektkurs Computational Engineering


Winter Term 2021/22

  • Introduction to Numerical Mathematics (in German)
  • Numerical Methods for PDEs (in English)
  • BSc Seminar Numerical Mathematics



Summer Term 2021
  • Numerical Linear Algebra
  • Numerical Mathematics (Math 4 for mech. engineering)
  • BSc Seminar Numerics



Winter Term 2020/21
  • Lecture Numerics of Ordinary Differential Equations (German)
  • Mathematical Consulting: Introduction to Mechanical Engineering
  • Proseminar : Numerical Mathematics


Sommersemester 2020


Winter Term 2019/20
Summer Term 2019Wintersemester 2018/19
Sommersemester 2018
Uncertainty Quantification (RWTH Aachen)
Mathematische Grundlagen für Computational Engineering Science II (RWTH Aachen)
Wintersemester 2017/18
Mathematische Grundlagen für Computational Engineering Science I (RWTH Aachen)
Mathematische Grundlagen für Computational Engineering Science V (RWTH Aachen)
Sommersemester 2017
Numerical Methods for Differential Equations (Uni Stuttgart)
Masterseminar Mehrskalenmodellierung (Uni Stuttgart)
Wintersemester 2016/17
Einführung in die Numerik Partieller Differentialgleichungen (Uni Stuttgart)
Sommersemester 2016
Numerical Methods for Differential Equations (Uni Stuttgart)
Wintersemester 2015/16
Einführung in die Numerik Partieller Differentialgleichungen (Uni Stuttgart)
Sommersemester 2015
Numerical Methods for Differential Equations (Uni Stuttgart)
Masterseminar Diskontinuitäten im Kontinuum (Uni Stuttgart)
Proseminar Iterative Lösungsverfahren (Uni Stuttgart)
Wintersemester 2014/15
Lineare Strukturen (Uni Stuttgart)
Sommersemester 2014
Numerische Methoden des Strömungsmechanik (Uni Stuttgart)
Wintersemester 2013/14
Einführung in die Numerik Partieller Differentialgleichungen (Uni Stuttgart)
Proseminar Mathematische Modellierung (Uni Stuttgart)
Sommersemester 2013
Numerische Lineare Algebra (Uni Stuttgart)
Sommersemester 2012
Numerical Methods for Differential Equations (Uni Stuttgart)

I was co-leader of working group 5 “numerical methods and applications” of COST Action CA18232 – Mathematical models for interacting dynamics on networks from 2022 to 2024.

Some conference videos:

Dynamical, spatially heterogeneous model adaptation in compressible flows (funded by German research foundation (DFG))

Numerical methods for multi-phase flows with strongly varying Mach numbers Elite-program for Postdocs of Baden-Wuerttemberg Stiftung

Mathematical modeling of compressible fluids – from wild solutions to data integration – Research Seed Capital of University of Stuttgart and Ministry of Science, Research and Art Baden-Württemberg