Prof. Dr. Jens Lang – Publikationen
Links & Downloads
Bücher
Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems. Theory, Algorithm, and Applications, Lecture Notes in Computational Sciences and Engineering, Volume 16, Springer Verlag, 2000 |
Mathematical Optimization of Water Networks. International Series of Numerical Mathematics 162. Martin, Klamroth, Lang, Leugering, Morsi, Oberlack, Ostrowski, Rosen (eds.), Birkhäuser, Springer Basel 2012 |
Multiphysics Problems in Computational Engineering. Int. J. Comput. Science and Engineering 9. Behr, Bode, Buecker, Lang, Rank, Schaefer (eds.), Inderscience Enterprise Ltd, 2014 |
Multiscale Models in Mechano and Tumor Biology. Modeling, Homogenization, and Applications. Lecture Notes in Computational Science and Engineering, Volume 122, Gerisch, Penta, Lang (eds.), Springer Nature, 2017 |
Numerical Solution of Differential and Differential-Algebraic Equations. Selected Papers from NUMDIFF-15 Journal of Computational and Applied Mathematics, Vol. 387:112611. Arnold, Celledoni, Frank, Lang, Podhaisky, Weiner (eds.), Elsevier 2021 |
Numerical Solution of Differential and Differential-Algebraic Equations. Selected Papers from NUMDIFF-16 Journal of Computational and Applied Mathematics, Vol. 430:115233. Arnold, Celledoni, Frank, Handtke, Kruse, Lang, Podhaisky, (eds.), Elsevier 2023 |
Aktuell
J. Lang, B.A. Schmitt Variable-Stepsize Implicit Peer Triplets in ODE Constrained Optimal Control http://arxiv.org/abs/2404.13716, 2024 |
H. Wilka, J. Lang Adaptive hp-Polynomial Based Sparse Grid Collocation Algorithms for Piecewise Smooth Functions with Kinks http://arxiv.org/abs/2404.02556, 2024 |
J. Lang, B.A. Schmitt Implicit Peer Triplets in Gradient-Based Solution Algorithms for ODE Constrained Optimal Control Journal of Optimization Theory and Applications, 2024, https://doi.org/10.1007/s10957-024-02541-z. Coefficients of the methods are available at https://git-ce.rwth-aachen.de/jens.lang/LangSchmittOptCtrGrad.git |
J. Lang, B.A. Schmitt Exact Discrete Solutions of Boundary Control Problems for the 1D Heat Equation Journal of Optimization Theory and Applications 196:1106-1118, 2023, https://doi.org/10.1007/s10957-022-02154-4. Collection of Matlab files is available at https://git-ce.rwth-aachen.de/jens.lang/LangSchmittOptCtr1DHeat.git |
E.L. Strelow, A. Gerisch, J. Lang, M.E. Pfetsch, Physics-Informed Neural Networks: A Case Study for Gas Transport Problems Journal of Computational Physics 481:112041, 2023 |
Alle Artikel sortiert nach Thema:
D. Schröder, A. Gerisch, J. Lang Space-time adaptive linearly implicit Peer methods for parabolic problems J. Comp. Appl. Math., Vol. 316, pp. 330-344, 2016; doi:10.1016/j.cam.2016.08.023 |
S. Ullmann, M. Rotkvic, J. Lang POD-Galerkin reduced-order modeling with adaptive finite element snapshots J. Comput. Phys., Vol. 325, pp. 244-258, 2016; doi:10.1016/j.jcp.2016.08.018 |
K. Debrabant, J. Lang On asymptotic global error estimation and control of finite difference solutions for semilinear parabolic equations, Computer Methods in Applied Mechanics and Engineering, Vol. 288, pp. 110-126, 2015, doi:10.1016/j.cma.2014.11.032, arXiv:0911.2656v2http://arxiv.org/abs/0911.2656v2 |
K. Debrabant, J. Lang On Global Error Estimation and Control of Finite Difference Solutions for Parabolic Equations, In: Adaptive Modeling and Simulation 2013, ed. by J. P. Moitinho de Almeida, P. Díez, C. Tiago and N. Parés, International Center for Numerical Methods in Engineering (CIMNE), Barcelona, Spain, 2013, pp. 187–198 |
M. Braack, J. Lang, N. Taschenberger Stabilized finite elements for transient flow problems on varying spatial meshes, Computer Methods in Applied Mechanics and Engineering, Vol. 253, pp. 106-116, DOI 10.1016/j.cma.2012.08.006, 2012 |
W. Huang, L. Kamenski, J. Lang Adaptive finite elements with anisotropic meshes, Numerical Mathematics and Advanced Applications 2011: Proceedings of ENUMATH 2011, the 9th European Conference on Numerical Mathematics and Advanced Applications, Leicester, September 2011, A. Cangiani et al. (eds.), pp. 33-42 , Springer 2013 |
P. Domschke, O. Kolb, J. Lang Adjoint-based control of model and discretization errors for gas flow in networks, Int. J. Mathematical Modelling and Numerical Optimisation, Vol. 2, Number 2 (2011), pp. 175-193 |
J. Lang, M. Lilienthal, S. Schnepp Eiffizienz durch adaptive Simulationsverfahren, in thema FORSCHUNG 2/2011, Computational Engineering, TU Darmstadt, 16-21, Germany |
P. Domschke, O. Kolb, J. Lang Adjoint-based control of model and discretisation errors for gas and water supply networks, In: Computational Optimization and Applications in Engineering and Industry, Yang, Koziel (eds.), Studies in Computational Intelligence, Vol. 359, pp. 1-17, Springer (2011) |
M. Frank, J. Lang, M. Schäfer Adaptive Finite Element Simulation of the Time-dependent Simplified PN Equations, Journal of Scientific Computing, Vol. 49, Number 3 (2011), pp. 332-350 |
A. Gerisch, J. Lang, H. Podhaisky, R. Weiner High-order linearly implicit two-step peer – finite element methods for time-dependent PDEs, Appl. Numer. Math. 59 (2009), pp. 624-638 |
P. Bales, O. Kolb, J. Lang Hierarchical modelling and model adaptivity for gas flow on networks, Lecture Notes in Computer Science 5544, Part I, pp. 337-346, Springer-Verlag (2009) |
M. Clemens, J. Lang, D. Teleaga, G. Wimmer Adaptivity in Space and Time for Magnetoquasistatics, J. Comput. Mathematics 27 (2009), pp. 642-656 |
J. Lang, D. Teleaga Towards a Fully Space-Time Adaptive FEM for Magnetoquasistatics, IEEE Trans. Magn. 44 (2008), pp. 1238-1241 |
B. Erdmann, J. Lang, S. Matera, K. Wilmanski Adaptive Linearly Implicit Methods for Linear Poroelastic Equations, ZIB-Report 06-37 (July 2006), Zuse-Institute Berlin |
P. Colle Franzone, P. Deuflhard, B. Erdmann, J. Lang, L.F. Pavarino Adaptivity in Space and Time for Reaction-Diffusion Systems in Electrocardiology, SIAM J. Sci. Comput. 28 (2006), pp. 942-962. |
J. Lang Adaptive Computation for Boundary Control of Radiative Heat Transfer in Glass, Journal of Computational and Applied Mathematics 183 (2005), pp. 312-326 |
A. Klar, J. Lang, M. Seaid Adaptive Solution of SPN-Approximations to Radiative Heat Transfer in Glass, International Journal of Thermal Sciences 44 (2005), pp. 1013-1023 |
C. Kober, B. Erdmann, J. Lang, R. Sader, H.-F. Zeilhofer Adaptive Finite Element Simulation of the Human Mandible Using a New Physiological Model of the Masticatory Muscles, in Proceedings of the 75th Annual GAMM-Meeting of the GAMM Dresden, PAMM, Vol. 4, Issue 1, Dec. 2004, pp. 332-333 |
J. Lang, B. Erdmann, C. Kober, P. Deuflhard, H.-F. Zeilhofer, R. Sader Effiziente und zuverlässige Finite-Elemente-Methoden zur Simulation des menschlichen Unterkiefers, in: W. Alt, M. Hermann (eds.), Berichte des Interdisziplinären Zentrums für Wissenschaftliches Rechnen, Friedrich-Schiller-Universität Jena, Band 1, 2003, pp. 49-57 |
B. Erdmann, J. Lang, R. Roitzsch KARDOS User's Guide, ZR 02-42 (2002), Konrad-Zuse-Zentrum Berlin |
J. Lang, B. Erdmann Three-Dimensional Adaptive Computation of Brine Transport in Porous Media, Numerical Heat Transfer: Applications 42 (2002) 107-119 |
B. Erdmann, C. Kober, J. Lang, P. Deuflhard, H.-F. Zeilhofer, R. Sader Efficient and Reliable Finite Element Methods for Simulation of the Human Mandible, in Proceedings of 9th Workshop on The Finite Element Method in Biomedical Engineering, Biomechanics and Related Fields, Ulm, Germany, July 2002 |
J. Lang, B. Erdmann Three-Dimensional Adaptive Computation of Brine Transport in Porous Media, in: G. de Vahl Davis and E. Leonardi (eds.), CHT'01: Advances in Computational Heat Transfer, 1001-1008 (Begell House Inc., New York 2001) |
B. Erdmann, J. Lang, R. Roitzsch Adaptive Linearly Implicit Methods for Instationary Nonlinear Problems, in Finite Element Methods: Three-Dimensional Problems, Gakuta International Series: Mathematical Sciences and Applications, Vol. 15 (2001) 66-75 |
J. Lang, W. Merz Two-Dimensional Adaptive Simulation of Dopant Diffusion in Silicon, Computing and Visualization in Science 3 (2001) 169-176 |
W. Merz, J. Lang Analysis and Simulation of Two-Dimensional Dopant Diffusion in Silicon, in K.-H. Hoffmann (ed.), Smart Materials, Proceedings of the First Caesarium, Springer--Verlag, 2001 |
J. Lang, B. Erdmann Adaptive Linearly Implicit Methods for Heat and Mass Transfer, in: A.V. Wouver, P. Saucez, W.E. Schiesser (eds.), Adaptive Method of Lines, 295-316 (CRC Press, 2000) |
M.J. Lourenco, S.C.S. Rosa, C.A. Nieto de Castro, C. Albuquerque, B. Erdmann, J. Lang, R. Roitzsch Simulation of the Transient Heating in an Unsymmetrical Coated Hot-Strip Sensor with a Self-Adaptive Finite Element Method, Int. J. Thermophysics 21 (2000) 377-384 |
J. Lang Adaptive Multilevel Solutions of Nonlinear Parabolic PDE Systems, in: P. Neittaanmäki, T. Tiihonen, P. Tarvainen (eds.), Numerical Mathematics and Advanced Applications, 141-145 (World Scientific, Singapore, New Jersey, London, Hong Kong 2000) |
F. Seewald, A. Pollei, M. Kraume, W. Mittelbach, J. Lang Numerical Calculation of the Heat Transfer in an Adsorption Energy Storage with KARDOS, SC 99-04 (1999), Konrad-Zuse-Zentrum Berlin |
J. Lang, B. Erdmann, M. Seebass Impact of Nonlinear Heat Transfer on Temperature Distribution in Regional Hyperthermia, IEEE Transaction on Biomedical Engineering 46 (1999) 1129-1138 |
J. Lang, W. Merz Dynamic Mesh Design Control in Semiconductor Device Simulation, in: V.B. Bajic (ed.), Advances in Systems, Signals, Control and Computers, Vol. 2, 82-86 (Academy of Nonlinear Science, Durban, South Africa, 1998) |
M.J. Lourenco, S.C.S. Rosa, C.A. Nieto de Castro, C. Albuquerque, B. Erdmann, J. Lang, R. Roitzsch Simulation of the Transient Heating in an Unsymmetrical Coated Hot-Strip Sensor with a Self-Adaptive Finite Element Method, in: M.S. Kim and S.T. Ro (eds.), Proc. 5th Asian Thermophysical Properties Conference, Seoul, 1998, Vol. 1, 91-94 (Seoul National University, 1998) |
J. Lang Adaptive FEM for Reaction-Diffusion Equations, Appl. Numer. Math. 26 (1998) 105-116 |
J. Fröhlich, J. Lang Twodimensional Cascadic Finite Element Computations of Combustion Problems, Comp. Meth. Appl. Mech. Engrg. 158 (1998) 255-267 |
R. Roitzsch, B. Erdmann, J. Lang The Benefits of Modularization: from KASKADE to KARDOS, SC 98-15 (1998), Konrad-Zuse-Zentrum Berlin |
B. Erdmann, J. Lang, M. Seebass Adaptive Solutions of Nonlinear Parabolic Equations with Application to Hyperthermia Treatments, in: G. de Vahl Davis and E.Leonardi (eds.), CHT'97: Advances in Computational Heat Transfer,103-110, (Begell House Inc., New York 1998) |
J. Lang, W. Merz Numerical Simulation of Single Species Dopant Diffusion in Silicon under Extrinsic Conditions, SC 97-47 (1997), Konrad-Zuse-Zentrum Berlin |
J. Lang, B. Erdmann, R. Roitzsch Adaptive Time-Space Discretization for Combustion Problems, in: A. Sydow (ed.), 15th IMACS World Congress on Scientific Computation, Modelling and Applied Mathematics, Vol. 2 (Numerical Mathematics), 149-155 (Wissenschaft und Technik Verlag, Berlin, 1997) |
J. Lang, B. Erdmann, R. Roitzsch Three-Dimensional Fully Adaptive Solution of Thermo-Diffusive Flame Propagation Problems, in: R.W. Lewis, J.T.Cross (eds.), Numerical Methods in Thermal Problems, 857-862 (Pineridge Press, Swansea, UK 1997) |
J. Lang Numerical Solution of Reaction-Diffusion Equations, in: F.Keil, W.Mackens, H.Voss, J.Werther (eds.), Scientific Computing in Chemical Engineering, 136-141 (Springer 1996) |
J. Fröhlich, J. Lang, R. Roitzsch Selfadaptive Finite Element Computations with Smooth Time Controller and Anisotropic Refinement, in: J.A. Desideri, P.Le. Tallec, E. Onate, J. Periaux, E. Stein (eds.), Numerical Methods in Engineering '96, 523-527 (John Wiley & Sons, New York 1996) |
P. Deuflhard, J. Lang, U. Nowak Adaptive Algorithms in Dynamical Process Simulation, in: H. Neunzert (ed.), Progress in Industrial Mathematics at ECMI 94, 122-137 (Wiley-Teubner 1996) |
J. Lang High-Resolution Self-Adaptive Computations on Chemical Reaction-Diffusion Problems with Internal Boundaries, Chem. Engrg. Sci. 51 (1996) 1055-1070 |
J. Lang, J. Fröhlich Selfadaptive Finite Element Computations of Combustion Problems, in: R.W.Lewis, P.Durbetaki (eds.), Numerical Methods in Thermal Problems Vol. IX, 761-769 (Pineridge Press, Swansea 1995) |
J. Lang Two-Dimensional Fully Adaptive Solutions of Reaction-Diffusion Equations, Appl. Numer. Math. 18 (1995) 223-240 |
J. Lang, A. Walter An Adaptive Discontinuous Finite Element Method for the Transport Equation, J. Comp. Phys. 117 (1995) 28-34 |
J. Lang KARDOS – KAskade Reaction Diffusion One-dimensional System, TR 93-9 (1993), Konrad-Zuse-Zentrum Berlin |
B. Erdmann, J. Lang, R. Roitzsch KASKADE – Manual, TR 93-5 (1993), Konrad-Zuse-Zentrum Berlin |
J. Lang, A. Walter An Adaptiv Rothe-Method for Nonlinear Reaction-Diffusion-Systems, Appl. Numer. Math. 13 (1993) 135-146 |
J. Lang Raum- und zeitadaptive Finite-Elemente-Methoden für Reaktions-Diffusionsgleichungen, in Modellierung Technischer Flammen, Proc. 8.TECFLAM--Seminar, 115-123 (Darmstadt 1992) |
J. Lang, A. Walter A Finite Element Method Adaptive in Space and Time for Nonlinear Reaction-Diffusion-Systems, Impact Comput. Sci. Engrg. 4 (1992) 269-314 |
J. Lang An Adaptive Finite Element Method for Convection-Diffusion Problems by Interpolation Techniques, TR 91-4 (1991), Konrad-Zuse-Zentrum Berlin |
J. Lang Rosenbrock-Wanner Methods: Construction and Mission in Rosenbrock-Wanner-Type Methods, p. 1-17, Jax, Bartel, Ehrhardt, Günther, Steinebach (eds.), Mathematics Online First Collection Vol. 1, Springer, 2021 |
M. Schneider, J. Lang Well-Balanced and Asymptotic Preserving IMEX-Peer Methods Conference Proceedings of ENUMATH 2019, Springer, arXiv:2010.13479 |
M. Schneider, J. Lang, R. Weiner Super-Convergent Implicit-Explicit Peer Methods with Variable Step Sizes J. Comput. Appl. Math., Vol. 387, pp. 112501, 2021; doi:10.1016/j.cam.2019.112501 |
W. Huang, L. Kamenski, J. Lang Conditioning of Implicit Runge-Kutta Integration for Finite Element Approximation of Linear Diffusion Equations on Anisotropic Meshes J. Comput. Appl. Math., Vol. 387, pp. 112497, 20121; doi:10.1016/j.cam.2019.112497 |
M. Schneider, J. Lang, W. Hundsdorfer Extrapolation-Based Super-Convergent Implicit-Explicit Peer Methods with A-stable Implicit Part J. Comput. Physics, Vol. 367, pp. 121-133, 2018; doi:10.1016/j.jcp.2018.04.006 |
J. Lang, W. Hundsdorfer Extrapolation-based implicit-explicit Peer methods with optimised stability regions J. Comput. Phys., Vol. 337, pp. 203-215, 2017; doi:10.1016/j.jcp.2017.02.034 |
D. Schröder, A. Gerisch, J. Lang Space-time adaptive linearly implicit Peer methods for parabolic problems J. Comp. Appl. Math., Vol. 316, pp. 330-344, 2016; doi:10.1016/j.cam.2016.08.023 |
L. Wagner, J. Lang, O. Kolb Second order implicit schemes for scalar conservation laws, Lecture Notes in Computational Science and Engineering, Vol. 112, pp. 33-41, Springer; B. Karasözen, M. Manguoglu, S. Göktepe, Ö. Ugur (Eds.), Numerical Mathematics and Advanced Applications, ENUMATH 2015, Ankara, 14-18 September 2015. |
K. Debrabant, J. Lang On asymptotic global error estimation and control of finite difference solutions for semilinear parabolic equations, Computer Methods in Applied Mechanics and Engineering, Vol. 288, pp. 110-126, 2015, doi:10.1016/j.cma.2014.11.032, arXiv:0911.2656v2 |
D. Schröder, J. Lang, R. Weiner Stability and consistency of discrete adjoint implicit peer methods, Journal of Computational and Applied Mathematics, Vol. 262, pp. 73-86, Elsevier 2014. |
K. Kuhn, J. Lang Comparison of the asymptotic stability for multirate Rosenbrock methods, Journal of Computational and Applied Mathematics, Vol. 262, pp. 139-149, Elsevier 2014. |
J. Lang, J. Verwer W-Methods in Optimal Control, Numer. Math., Vol. 124, pp. 337-360, 2013 |
B. Gottermeier, J. Lang Adaptive Two-Step Peer Methods for Incompressible Navier-Stokes Equations, Numerical Mathematics and Advanced Applications 2009, Part II, pp. 387-395, Proceedings of ENUMATH 2009, G. Kreiss. P. Lötstedt, A. Malqvist, M. Neytcheva (Eds.), Uppsala, Sweden |
B. Gottermeier, J. Lang Adaptive Two-Step Peer Methods for Thermally Coupled Incompressible Flow, Proceedings of the V European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010 J.C.F. Pereira, A. Sequeira and J.M.C. Pereira (Eds), Lisbon, Portugal, 14-17 June 2010 |
A. Gerisch, J. Lang, H. Podhaisky, R. Weiner High-order linearly implicit two-step peer – finite element methods for time-dependent PDEs, Appl. Numer. Math. 59 (2009), pp. 624-638 |
I. Teleaga, J. Lang Higher-order linearly implicit one-step methods for three-dimensional incompressible Navier-Stokes equations, Studia Babes-Bolyai Matematica 53 (2008), pp. 109-121 |
B. Erdmann, J. Lang, S. Matera, K. Wilmanski Adaptive Linearly Implicit Methods for Linear Poroelastic Equations, ZIB-Report 06-37 (July 2006), Zuse-Institute Berlin |
J. Lang, J. Verwer On Global Error Estimation and Control for Initial Value Problems, SIAM J. Sci. Comput. 29 (2007), pp. 1460-1475 |
B. Erdmann, J. Lang, R. Roitzsch Adaptive Linearly Implicit Methods for Instationary Nonlinear Problems, in Finite Element Methods: Three-Dimensional Problems, Gakuta International Series: Mathematical Sciences and Applications, Vol. 15 (2001) 66-75 |
J. Lang, J. Verwer ROS3P – an Accurate Third-Order Rosenbrock Solver Designed for Parabolic Problems, BIT 41 (2001) 730-737 |
J. Lang, B. Erdmann Adaptive Linearly Implicit Methods for Heat and Mass Transfer, in: A.V. Wouver, P. Saucez, W.E. Schiesser (eds.), Adaptive Method of Lines, 295-316 (CRC Press, 2000) |
J. Lang Adaptive Linearly Implicit Methods in Dynamical Process Simulation, CD-ROM Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS, Barcelona, 2000) |
J. Lang Adaptive Multilevel Solutions of Nonlinear Parabolic PDE Systems, in: P. Neittaanmäki, T. Tiihonen, P. Tarvainen (eds.), Numerical Mathematics and Advanced Applications, 141-145 (World Scientific, Singapore, New Jersey, London, Hong Kong 2000) |
Z. Sun, M. Braack, J. Lang An Adaptive Moving Finite Element Method for Steady Low Mach Number Compressible Combustion Problems International Journal of Numerical Methods in Fluids, Vol. 92, pp. 1081–1095, 2020, doi:10.1002/fld.4818 |
C. Gräßle, M. Hinze, J. Lang, S. Ullmann POD model order reduction with space-adapted snapshots for incompressible flows Advances in Computational Mathematics, Vol. 45, pp. 2401–2428, 2019; doi:10.1007/s10444-019-09716-7 |
C. Gräßle, M. Hinze, J. Lang, S. Ullmann Model order reduction for space-adaptive simulations of Navier-Stokes Proceedings of Applied Mathematrics and Mechanics, 2019; doi:10.1002/pamm.201900435 |
C. Müller, S. Ullmann, J. Lang A Bramble-Pasciak conjugate gradient method for discrete Stokes problems with random viscosity SIAM/ASA J. Uncertainty Quantification, Vol. 7, pp. 787-805, 2019; doi:10.1137/18M1163920 |
J. Lang, P. Mindt Entropy-Preserving Coupling Conditions for One-dimensional Euler Systems at Junctions Networks and Heterogeneous Media, Vol. 13, pp. 177-190, 2018; doi:10.3934/nhm.2018008 |
L. Wagner, J. Lang, O. Kolb Second order implicit schemes for scalar conservation laws, Lecture Notes in Computational Science and Engineering, Vol. 112, pp. 33-41, Springer; B. Karasözen, M. Manguoglu, S. Göktepe, Ö. Ugur (Eds.), Numerical Mathematics and Advanced Applications, ENUMATH 2015, Ankara, 14-18 September 2015. |
C. Liersch, M. Frankenbach, J. Fröhlich, J. Lang Recent Progress in designing moving meshes for complex turbulent flows, Meteorologische Zeitschrift, Vol. 23, No. 4, pp. 425-439, 2014 (open access article) |
C. Hertel, M. Schümichen, J. Lang, J. Fröhlich Using a Moving Mesh PDE for Cell Centres to Adapt a Finite Volume Grid, Flow, Turbulence and Combustion, Vol. 90, Issue 4, pp. 785-812, Springer 2013. |
S. Ullmann, S. Löbig, J. Lang Adaptive Large Eddy Simulation and Reduced-Order Modeling, In: Flow and Combustion in Advanced Turbine Combustors, J. Janicka et al. (eds.), Fluid Mechanics and Its Application, Vol. 102, pp. 349-378, Springer 2013 |
C. Hertel, M. Schümichen, S. Löbig, J. Fröhlich, J. Lang Adaptive Large Eddy Simulation with Moving Meshes, Theoretical and Computational Fluid Dynamics, Volume 27, Issue 6, pp. 817-841, Springer 2013 |
B. Gottermeier, J. Lang Adaptive Two-Step Peer Methods for Incompressible Navier-Stokes Equations, Numerical Mathematics and Advanced Applications 2009, Part II, pp. 387-395, Proceedings of ENUMATH 2009, G. Kreiss. P. Lötstedt, A. Malqvist, M. Neytcheva (Eds.), Uppsala, Sweden |
S. Ullmann, J. Lang A POD-Galerkin Reduced Model with Updated Coefficients for Smagorinsky LES, Proceedings of the V European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010 J.C.F. Pereira, A. Sequeira and J.M.C. Pereira (Eds) Lisbon, Portugal, 14-17 June 2010 |
B. Gottermeier, J. Lang Adaptive Two-Step Peer Methods for Thermally Coupled Incompressible Flow, Proceedings of the V European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010 J.C.F. Pereira, A. Sequeira and J.M.C. Pereira (Eds), Lisbon, Portugal, 14-17 June 2010 |
O. Kolb, J. Lang, P. Bales An Implicit Box Scheme for Subsonic Compressible Flow with Dissipative Source Term, Numerical Algorithms 53 (2010), pp. 293-307 |
S. Löbig, A. Dörnbrack, J. Fröhlich, C. Hertel, Ch. Kühnlein, J. Lang Towards large eddy simulation on moving grids, Proc. Appl. Math. Mech. 9, 445-446 (2009) |
I. Teleaga, J. Lang Higher-order linearly implicit one-step methods for three-dimensional incompressible Navier-Stokes equations, Studia Babes-Bolyai Matematica 53 (2008), pp. 109-121 |
I. Teleaga, J. Lang Towards the Description of Modelling and Numerical Errors in LES, in: Proceedings of Quality Assessment of Unsteady Methods for Turbulent Combustion Prediction and Validation, June 16-17, Seeheim, Germany, (2005) |
J. Lang Optimale Berechnungsstrategien in der Strömungssimulation, in thema FORSCHUNG 2/2003, TU Darmstadt, 58-63, Germany, ISSN 1434-7768, 2003 |
J. Lang Adaptive Incompressible Flow Computations with Linearly Implicit Time Discretization and Stabilized Finite Elements, in: K.D. Papailiou, D. Tsahalis, J. Periaux, C. Hirsch, M. Pandolfi (eds.), Computational Fluid Dynamics '98, 200-204 (John Wiley & Sons, New York 1998) |
M. Clemens, J. Lang, D. Teleaga, G. Wimmer Transient 3D Magnetic Field Simulation with Combined Space and Time Mesh Adaptivity for Lowest Order WFEM Formulations, IET Sci. Meas. & Technol. 3 (2009), pp. 377-383 |
D. Teleaga, J. Lang Numerically Solving Maxwell's Equations. Implementation Issues for Magnetoquasistatics, Report No. 2551 (2008), Technische Universität Darmstadt, Department of Mathematics |
M. Clemens, J. Lang, D. Teleaga, G. Wimmer Space and Time Adaptive Calculation of Transient 3D Magnetic Fields, in: K. Kunisch, G. Of, O. Steinebach (eds.), Numerical Mathematics ans Advanced Applications, Proceedings of ENUMATH 2007, Graz, pp. 109-116 |
M. Clemens, J. Lang, D. Teleaga, G. Wimmer Adaptivity in Space and Time for Magnetoquasistatics, J. Comput. Mathematics 27 (2009), pp. 642-656 |
G. Wimmer, M. Clemens, J. Lang Calculation of Magnetic Fields with Finite Elements, in: M.H. Breitner, G. Denk, P. Rentrop (eds.), From Nano to Space, Applied Mathematics Inspired by Roland Bulirsch, Springer-Verlag Berlin Heidelberg (2007) |
J. Lang, D. Teleaga Towards a Fully Space-Time Adaptive FEM for Magnetoquasistatics, IEEE Trans. Magn. 44 (2008), pp. 1238-1241 |
J. Lang, B.A. Schmitt Implicit A-Stable Peer Triplets for ODE Constrained Optimal Control Problems Algorithms 15:310, 2022, https://doi.org/10.3390/a15090310 |
M. Schuster, E. Strauch, M. Gugat, J. Lang, Probabilistic constrained optimization on flow networks Optimization and Engineering 23, 1-50, 2022, https://doi.org/10.1007/s11081-021-09619-x |
J. Lang, B.A. Schmitt Discrete Adjoint Implicit Peer Methods in Optimal Control Journal of Computational and Applied Mathematics 416:114596, 2022, https://doi.org/10.1016/j.cam.2022.114596 |
P. Domschke, O. Kolb, J. Lang Fast and Reliable Transient Simulation and Continuous Optimization of Large-Scale Gas Networks Math. Meth. Oper. Res., 2022, https://doi.org/10.1007/s00186-021-00765-7 |
D. Frenzel, J. Lang A Third-Order Weighted Essentially Non-Oscillatory Scheme in Optimal Control Problems Governed by Nonlinear Hyperbolic Conservation Laws Computational Optimization and Applications, 80:301-320, 2021 |
P. Domschke, O. Kolb, J. Lang Adjoint-based error control for the simulation and optimization of gas and water supply networks, Applied Mathematics and Computation, Vol. 259, pp. 1003-1018, 2015; doi:10.1016/j.amc.2015.03.029 |
S. Bott, D. Clever, J. Lang, S. Ulbrich, C.Ziems, D. Schröder On a Fully Adaptive SQP Method for PDAE-Constrained Optimal Control Problems with Control and State Constraints, International Series of Numerical Mathematics, Vol. 165, pp. 85-108, 2014, Springer Basel AG |
D. Clever, J. Lang, D. Schröder Model Hierarchy Based Optimal Control of Radiative Heat Transfer, Int. J. Computational Science and Engineering, Vol. 9, Nos. 5/6, pp. 509-525, Inderscience Enterprises Ltd. 2014. |
J. Lang, J. Verwer W-Methods in Optimal Control, Numer. Math., Vol. 124, pp. 337-360, 2013 |
O. Kolb, J. Lang Simulation and Continuous Optimization, In: Mathematical Optimization of Water Networks, A. Martin et al. (eds.), International Series of Numerical Mathematics, Vol. 162, pp. 17-33, Springer Basel 2012 |
O. Kolb, A. Morsi, J. Lang, A. Martin Nonlinear and Mixed Integer Linear Programming, In: Mathematical Optimization of Water Networks, A. Martin et al. (eds.), International Series of Numerical Mathematics, Vol. 162, pp. 55-65, Springer Basel 2012 |
D. Clever, J. Lang, D. Schröder Model Hierarchy Based Optimal Control of Radiative Heat Transfer, Preprint, December 2011, Department of Mathematics, Technische Universität Darmstadt |
D. Clever, J. Lang, S. Ulbrich, C.Ziems Generalized Multilevel SQP-methods for PDAE-constrained Optimization Based on Space-Time Adaptive PDAE Solvers, International Series of Numerical Mathematics, Vol. 160, pp. 37-60, 2011 Springer Basel AG |
D. Clever, J. Lang Optimal Control of Radiative Heat Transfer in Glass Cooling with Restrictions on the Temperature Gradient, Optim. Control Appl. Meth., Vol. 33 (2012), pp. 157-175, published online 31 January 2011 |
B. Geissler, O. Kolb, J. Lang, G. Leugering, A. Martin, A. Morsi Mixed Integer Linear Models for the Optimization of Dynamic Transport Networks, Mathematical Methods of Operations Research, Vol. 73, Issue 3 (2011), pp. 339-362 |
D. Clever, J. Lang, S. Ulbrich, C. Ziems Combination of an Adaptive Multilevel SQP Method and a Space-Time Adaptive PDAE Solver for Optimal Control Problems, Procedia Computer Science 1 (2010), pp. 1429-1437 |
P. Domschke, B. Geissler, O. Kolb, J. Lang, A. Martin, A. Morsi Combination of Nonlinear and Linear Optimization of Transient Gas Networks, INFORMS Journal on Computing 23 (2011), No. 4, pp. 605-617 |
J. Lang Adaptive Computation for Boundary Control of Radiative Heat Transfer in Glass, Journal of Computational and Applied Mathematics 183 (2005), pp. 312-326 |
B. Erdmann, J. Lang, M. Seebass Optimization of Temperature Distributions for Regional Hyperthermia Based on a Nonlinear Heat Transfer Model, in: K. Diller (ed.), Biotransport: Heat and Mass Transfer in Living Systems, Annals of the New York Academy of Sciences, Vol. 858, 36-46, 1998 |
J. Lang, P. Domschke, E. Strauch Adaptive Single- and Multilevel Stochastic Collocation Methods for Uncertain Gas Transport in Large-Scale Networks In: Mesh Generation and Adaptation, Cutting-Edge Techniques. R. Sevilla, S. Perotto, K. Morgan (eds.), SEMA-SIMAI Springer Series, Vol. 30, pp. 113-135, 2022 |
P. Steinbach, D.O. Schulte, B. Welsch, I. Sass, J. Lang Quantification of Bore Path Uncertainty in Borehole Heat Exchanger Arrays Geothermics 97:102194, 2021 |
Y. Mao, A. Gerisch, J. Lang, M. Böhm, F. Müller-Plathe Uncertainty quantification guided parameter selection in a fully coupled molecular dynamics-finite element model of the mechanical behaviour of polymers J. Chem. Theory Comput. 17:3760-3771, 2021 |
S. Ullmann, C. Müller, J. Lang Stochastic Galerkin Reduced Basis Methods for Parametrized Linear Convection-Diffusion-Reaction Equations Fluids 6:263, 2021, https://doi.org/10.3390/fluids6080263 |
J. Lang, R. Scheichl, D. Silvester A Fully Adaptive Multilevel Stochastic Collocation Strategy for Solving Elliptic PDEs with Random Data Journal of Computational Physics, Vol. 419, 2020; doi:10.1016/j.jcp.2020.109692 |
C. Müller, S. Ullmann, J. Lang A Bramble-Pasciak conjugate gradient method for discrete Stokes problems with random viscosity SIAM/ASA J. Uncertainty Quantification, Vol. 7, pp. 787-805, 2019; doi:10.1137/18M1163920 |
C. Müller, S. Ullmann, J. Lang A Bramble-Pasciak conjugate gradient method for discrete Stokes problems with lognormal random viscosity Lecture Notes in Computational Science and Engineering, Vol. 124, Recent Advances in Computational Engineering – Darmstadt 2017, M. Schäfer, M. Behr, M. Mehl, B. Wohlmuth (eds.), pp. 63-87, Springer 2018. |
C. Spannring, S. Ullmann, J. Lang A weighted reduced basis method for parabolic PDEs with random data Lecture Notes in Computational Science and Engineering, Vol. 124, Recent Advances in Computational Engineering – Darmstadt 2017, M. Schäfer, M. Behr, M. Mehl, B. Wohlmuth (eds.), pp. 145-161, Springer 2018. |
S. Liu, A. Gerisch, M. Rahimi, J. Lang, M. Böhm, F. Müller-Plathe Robustness of a new molecular dynamics–finite element coupling approach for soft matter systems analyzed by uncertainty quantification, The Journal of Chemical Physics 142, 104105 (2015); doi: 10.1063/1.4914020 |
S. Ullmann, J. Lang POD-Galerkin Modelling and Sparse-Grid Collocation for a Natural Convection Problem with Stochastic Boundary Conditions, Lecture Notes on Computational Science and Engineering, Vol. 97, Sparse Grids and Applications – Munich 2012, J. Garcke, D. Pflüger (eds.), pp. 295-316, Springer 2014. The final publication is available at link.springer.com. |
B. Schieche, J. Lang Uncertainty Quantification for Poiseuille Flow Using Stochastic Collocation, Int. J. Computational Science and Engineering, Vol. 9, Nos. 5/6, pp. 465-477, Inderscience Enterprises Ltd. 2014. |
B. Schieche, J. Lang Adjoint Error Estimation for Stochastic Collocation Methods, Lecture Notes on Computational Science and Engineering, Vol. 97, Sparse Grids and Applications – Munich 2012, J. Garcke, D. Pflüger (eds.), pp. 271-294, Springer 2014. The final publication is available at link.springer.com. |
B. Schieche, J. Lang Uncertainty Quantification for Poiseuille Flow Using Stochastic Collocation, Preprint, December 2011, Department of Mathematics, Technische Universität Darmstadt |
Z. Sun, M. Braack, J. Lang An Adaptive Moving Finite Element Method for Steady Low Mach Number Compressible Combustion Problems International Journal of Numerical Methods in Fluids, Vol. 92, pp. 1081–1095, 2020, doi:10.1002/fld.4818 |
W. Huang, L. Kamenski, J. Lang Conditioning of Implicit Runge-Kutta Integration for Finite Element Approximation of Linear Diffusion Equations on Anisotropic Meshes J. Comput. Appl. Math., 2019; doi:10.1016/j.cam.2019.112497 |
W. Huang, L. Kamenski, J. Lang Stability of explicit one-step methods for P1-finite element approximation of linear diffusion equations on anisotropic meshes, SIAM J. Numer. Anal., Vol. 54, pp. 1612-1634, 2016; doi:10.1137/130949531 |
W. Huang, L. Kamenski, J. Lang Stability of explicit Runge-Kutta methods for higher order finite element approximation of linear parabolic equations, Preprint No. 1904, Weierstrass-Institute for Applied Analysis and Stochastics, Berlin, 2013. Published in Numerical Mathematics and Advanced Applications – ENUMATH 2013, Abdulle, A., Deparis, S., Kressner, D., Nobile, F., Picasso, M. (Eds.), Lecture Notes in Computational Science and Engineering, Vol. 103, pp. 165-173, 2015. |
C. Liersch, M. Frankenbach, J. Fröhlich, J. Lang Recent Progress in designing moving meshes for complex turbulent flows, Meteorologische Zeitschrift, Vol. 23, No. 4, pp. 425-439, 2014 (open access article) |
W. Huang, L. Kamenski, J. Lang Stability of explicit Runge-Kutta methods for finite element approximation of linear parabolic equations on anisotropic meshes, Preprint No. 1869, Weierstrass-Institute for Applied Analysis and Stochastics, Berlin, 2013. |
C. Hertel, M. Schümichen, J. Lang, J. Fröhlich Using a Moving Mesh PDE for Cell Centres to Adapt a Finite Volume Grid, Flow, Turbulence and Combustion, Vol. 90, Issue 4, pp. 785-812, Springer 2013. |
W. Huang, L. Kamenski, J. Lang Adaptive finite elements with anisotropic meshes, Numerical Mathematics and Advanced Applications 2011: Proceedings of ENUMATH 2011, the 9th European Conference on Numerical Mathematics and Advanced Applications, Leicester, September 2011, A. Cangiani et al. (eds.), pp. 33-42 , Springer 2013 |
C. Hertel, M. Schümichen, S. Löbig, J. Fröhlich, J. Lang Adaptive Large Eddy Simulation with Moving Meshes, Theoretical and Computational Fluid Dynamics, Volume 27, Issue 6, pp. 817-841, Springer 2013 |
W. Huang, L. Kamenski, J. Lang A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates, J. Comp. Phys. 229 (2010), pp. 2179-2198 |
S. Löbig, A. Dörnbrack, J. Fröhlich, C. Hertel, Ch. Kühnlein, J. Lang Towards large eddy simulation on moving grids, Proc. Appl. Math. Mech. 9, 445-446 (2009) |
J. Lang, W. Cao, W. Huang, R.D. Russell A Two-Dimensional Moving Finite Element Method with Local Refinement Based on A Posteriori Error Estimates, Appl. Numer. Math. 46 (2003), pp. 75-94 |
P. Domschke, O. Kolb, J. Lang Fast and Reliable Transient Simulation and Continuous Optimization of Large-Scale Gas Networks Math. Meth. Oper. Res., Vol. 95, pp. 475-501, 2022, https://doi.org/10.1007/s00186-021-00765-7 |
J. Lang, P. Domschke, E. Strauch Adaptive Single- and Multilevel Stochastic Collocation Methods for Uncertain Gas Transport in Large-Scale Networks In: Mesh Generation and Adaptation, Cutting-Edge Techniques. R. Sevilla, S. Perotto, K. Morgan (eds.), SEMA-SIMAI Springer Series, Vol. 30, pp. 113-135, 2022 |
M. Schuster, E. Strauch, M. Gugat, J. Lang, Probabilistic constrained optimization on flow networks Optimization and Engineering 23, 1-50, 2022, https://doi.org/10.1007/s11081-021-09619-x |
B. Geißler, A. Martin, A. Morsi, M. Walther, O. Kolb, J. Lang, L. Wagner Optimization in Decision Support Systems for Water Supply Systems, Smart Water System to Improve the Operation of Water Supply Systems by Using Applied Mathematics, eds. A. Pirsing, A. Morsi, EMS Series in Industrial and Applied Mathematics Vol. 2, pp. 73-104, 2020, doi:10.4171/207 |
P. Mindt, J. Lang, P. Domschke Entropy-Preserving Coupling of Hierarchical Gas Models SIAM Journal on Mathematical Analysis, Vol. 51, pp. 4754-4775, 2019; doi:10.1137/19M1240034 |
J. Lang, P. Mindt Entropy-Preserving Coupling Conditions for One-dimensional Euler Systems at Junctions Networks and Heterogeneous Media, Vol. 13, pp. 177-190, 2018; doi:10.3934/nhm.2018008 |
P. Domschke, A. Dua, J.J. Stolwijk, J. Lang, V. Mehrmann Adaptive Refinement Strategies for the Simulation of Gas Flow in Networks using a Model Hierarchy Electronic Transactions on Numerical Analysis, Vol. 48, pp. 97-113, 2018; doi:10.1553/etna_vol48s97 |
P. Domschke, O. Kolb, J. Lang Adjoint-based error control for the simulation and optimization of gas and water supply networks, Applied Mathematics and Computation, Vol. 259, pp. 1003-1018, 2015; doi:10.1016/j.amc.2015.03.029 |
O. Kolb, J. Lang Simulation and Continuous Optimization, In: Mathematical Optimization of Water Networks, A. Martin et al. (eds.), International Series of Numerical Mathematics, Vol. 162, pp. 17-33, Springer Basel 2012 |
O. Kolb, A. Morsi, J. Lang, A. Martin Nonlinear and Mixed Integer Linear Programming, In: Mathematical Optimization of Water Networks, A. Martin et al. (eds.), International Series of Numerical Mathematics, Vol. 162, pp. 55-65, Springer Basel 2012 |
P. Domschke, O. Kolb, J. Lang Adjoint-based error control for the simulation of gas and water supply networks, In: Adaptive Modeling and Simulation (ADMOS2011), edited by D. Aubry, P. Diez, B. Tie, N. Pares, pp. 183-194; CIMNE 2011 |
P. Domschke, O. Kolb, J. Lang Adjoint-based control of model and discretization errors for gas flow in networks, Int. J. Mathematical Modelling and Numerical Optimisation, Vol. 2, Number 2 (2011), pp. 175-193 |
P. Domschke, O. Kolb, J. Lang Adjoint-based control of model and discretisation errors for gas and water supply networks, In: Computational Optimization and Applications in Engineering and Industry, Yang, Koziel (eds.), Studies in Computational Intelligence, Vol. 359, pp. 1-17, Springer (2011) |
P. Domschke, O. Kolb, J. Lang An Adaptive Model Switching and Discretization Algorithm for Gas Flow on Networks, Procedia Computer Science 1 (2010), pp. 1325-1334 |
O. Kolb, P. Domschke, J. Lang Modified QR Decomposition to Avoid Non-Uniqueness in Water Supply Networks with Extension to Adjoint Calculus, Procedia Computer Science 1 (2010), pp. 1421-1428 |
P. Domschke, B. Geissler, O. Kolb, J. Lang, A. Martin, A. Morsi Combination of Nonlinear and Linear Optimization of Transient Gas Networks, INFORMS Journal on Computing 23 (2011), No. 4, pp. 605-617 |
O. Kolb, P. Bales, J. Lang Moving Penalty Functions for Optimal Control with PDEs on Networks, in: Proceedings of ECMI2008, 30 June – 4 July, London (2010) |
P. Bales, O. Kolb, J. Lang Hierarchical modelling and model adaptivity for gas flow on networks, Lecture Notes in Computer Science 5544, Part I, pp. 337-346, Springer-Verlag (2009) |
O. Kolb, J. Lang, P. Bales Adaptive linearization for the optimal control problem of gas flow in pipeline networks, Report No. 2553 (2008), Technische Universität Darmstadt, Department of Mathematics |
O. Kolb, J. Lang, P. Bales Adaptive linearized models for optimization of gas networks, Proc. Appl. Math. Mech. 7 (2007), pp. 1061301-1061302 |
M.-C. Weber, L. Fischer, A. Damerau, I. Pomomarev, M. Pfeiffenberger, T. Gaber, S. Götschel, J. Lang, S. Röblitz, F. Buttgereit, R. Ehrig, A. Lang In vitro and in silico modeling of cellular and matrix-related changes during the early phase of osteoarthritis Biofabrication, Vol. 12, 2020, 045016; doi:10.1088/1758-5090/aba08f |
P. Colle Franzone, P. Deuflhard, B. Erdmann, J. Lang, L.F. Pavarino Adaptivity in Space and Time for Reaction-Diffusion Systems in Electrocardiology, SIAM J. Sci. Comput. 28 (2006), pp. 942-962. |
C. Kober, B. Erdmann, J. Lang, R. Sader, H.-F. Zeilhofer Sensitivity of the Temporomandibular Joint Capsule for the Structural Behaviour of the Human Mandible, in Proceedings of BMT2004, Ilmenau, Germany, 2004, Biomedizinische Technik 49, Ergänzungsband 2, pp. 372-373, ISSN 0939-4990, 2004 |
C. Kober, B. Erdmann, J. Lang, R. Sader, H.-F. Zeilhofer Adaptive Finite Element Simulation of the Human Mandible Using a New Physiological Model of the Masticatory Muscles, in Proceedings of the 75th Annual GAMM-Meeting of the GAMM Dresden, PAMM, Vol. 4, Issue 1, Dec. 2004, pp. 332-333 |
J. Lang, B. Erdmann, C. Kober, P. Deuflhard, H.-F. Zeilhofer, R. Sader Effiziente und zuverlässige Finite-Elemente-Methoden zur Simulation des menschlichen Unterkiefers, in: W. Alt, M. Hermann (eds.), Berichte des Interdisziplinären Zentrums für Wissenschaftliches Rechnen, Friedrich-Schiller-Universität Jena, Band 1, 2003, pp. 49-57 |
B. Erdmann, C. Kober, J. Lang, P. Deuflhard, H.-F. Zeilhofer, R. Sader Efficient and Reliable Finite Element Methods for Simulation of the Human Mandible, in Proceedings of 9th Workshop on The Finite Element Method in Biomedical Engineering, Biomechanics and Related Fields, Ulm, Germany, July 2002 |
J. Lang, B. Erdmann, M. Seebass Impact of Nonlinear Heat Transfer on Temperature Distribution in Regional Hyperthermia, IEEE Transaction on Biomedical Engineering 46 (1999) 1129-1138 |
B. Erdmann, J. Lang, M. Seebass Optimization of Temperature Distributions for Regional Hyperthermia based on a Nonlinear Heat Transfer Model in: K. Diller (ed.), Biotransport: Heat and Mass Transfer in Living Systems, Annals of the New York Academy of Sciences, Vol. 858, pp. 36-46, 1998 |
B. Erdmann, J. Lang, M. Seebass Adaptive Solutions of Nonlinear Parabolic Equations with Application to Hyperthermia Treatments, in: G. de Vahl Davis and E.Leonardi (eds.), CHT'97: Advances in Computational Heat Transfer,103-110, (Begell House Inc., New York 1998) |
Abschlussarbeiten
Habilitation thesis, 1999 Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems. Theory, Algorithm, and Applications, Math. Institute, Free University Berlin |
Ph.D. thesis, 1988, Ein Beitrag zur adaptiven Netzsteuerung bei der Methode der Finiten Elemente auf der Grundlage von Interpolationsfehler-Abschätzungen, Math. Institute, Martin-Luther University Halle-Wittenberg |
Diploma thesis, 1986, Konstanten bei der Interpolation in Sobolevräumen, Math. Institute, Martin-Luther University Halle-Wittenberg |