Vorlesungsarchiv
Einführung in die Programmierung 2 | Gerisch, 2+2, Sem 2 |
Numerische Lineare Algebra | Lang, 2+1, ab Sem 4 |
Einführung in die Mathematische Modellierung | Lang, 2+2, ab Sem 4 |
Interdisziplinäres Projekt | Giesselmann, 2P, ab Sem 3 |
Efficient Methods for Data Assimilation | Giesselmann, 2+1, ab Sem 8, engl. |
Discontinuous Galerkin Methods | Giesselmann, 2+1, ab Sem 8, engl. |
Bachelor Seminar Numerik | Tscherpel, 2S, Ab Sem 5 |
Master Seminar Numerik | Giesselmann, 2S, Ab Sem 9 |
Mathematische Grundlagen des Maschinellen Lernens | Schmidt, 2+2, Service |
Elementare PDGL: Klassische Methoden | Schmidt, 2+2, Service |
Einführung in die Numerische Mathematik | Lang, 3+2+1P, Sem 3 |
Einführung in die Numerische Mathematik (für das Lehramt) | Lang, 2+1, Sem 3 |
Numerik Gewöhnlicher Differentialgleichungen | Tscherpel, 4 + 2, ab Sem 5 |
Numerical Methods for PDEs | Giesselmann, 4+2, ab Sem 7, engl. |
Computational Electromagnetics | Schmidt, 2+1, ab Sem 7 |
Proseminar Numerik und Proseminar (M. Ed.) | Lang, 2PS, Sem 3 |
Proseminar – Einführung | Schmidt, 2PS, Sem 3 |
Bachelor Seminar Numerik | Giesselmann, 2S, Ab Sem 5 |
Master Seminar Numerik | Lang, 2S, Ab Sem 9 |
Mathematik III (für ET) | Schmidt, 4+2, Service |
Einführung in die Programmierung 2 | Gerisch, 2+2, Sem 2 |
Numerische Lineare Algebra | Tscherpel, 2+1, ab Sem 4 |
Einführung in die Mathematische Modellierung | Kiehl, 2+2, ab Sem 4 |
Interdisziplinäres Projekt | Giesselmann, 2P, ab Sem 3 |
Numerik hyperbolischer partieller Differentialgleichungen | Lang, 2+1, ab Sem 8, engl. |
Stochasic Finite Elements | Lang, 2+1, ab Sem 8, engl. |
Bachelor Seminar Numerik | Giesselmann, 2S, Ab Sem 5 |
Master Seminar Numerik | Lang, 2S, Ab Sem 9 |
Mathematische Grundlagen des Maschinellen Lernens | Schmidt, 2+2, Service |
Einführung in die Numerische Mathematik | Tscherpel, 3+2+1P, Sem 3 |
Einführung in die Numerische Mathematik (für das Lehramt) | Tscherpel, 2+1, Sem 3 |
Numerik Gewöhnlicher Differentialgleichungen | Giesselmann, 4 + 2, ab Sem 5 |
Numerical Methods for PDEs | Lang, 4+2, ab Sem 7, engl. |
Computational Electromagnetics | Schmidt, 2+1, ab Sem 7 |
Proseminar Numerik | Schmidt, 2PS, Sem 3 |
Bachelor Seminar Numerik | Lang, 2S, Ab Sem 5 |
Master Seminar Numerik | Giesselmann, 2S, Ab Sem 9 |
Einführung in die Programmierung 2 | Gerisch, 2+2, Sem 2 |
Numerik der Linearen Algebra | Lang, 2+1, ab Sem 4 |
Einführung in die Mathematische Modellierung | Lang, 2+1, ab Sem 4 |
Bachelor Seminar Numerik | Lang, 0+2, ab Sem 6 |
Discontinuous Galerkin Methods | Giesselmann, 4+2, ab Sem 8, engl. |
Numerik Differentiell-algebraischer Gleichungen | Kiehl, 2+1, ab Sem 8 |
Maschinelles Lernen für MB | Schmidt, 2+2+2, Service |
Master Seminar Numerik/Analysis: Phasenfeldmodelle | Giesselmann/Hieber, 0+2, ab Sem 9 |
Elementare PDGLen für CE | Schmidt, 2+2, Service |
FD Seminar: Mathematische Modellierung mit Schülern | Kiehl, 0+2 |
Proseminar (Plenum) | Schmidt, 0+2 ab Sem 3 |
Proseminar | Kiehl, 0+2 ab Sem 3 |
Einführung in die Numerische Mathematik | Giesselmann, 3+2+1, Sem 3 |
Einführung in die Numerische Mathematik (für das Lehramt) | Giesselmann 2+1 |
Proseminar Numerik | Kiehl, 0+2, Sem 3 |
Numerik Gewöhnlicher Differentialgleichungen | Lang, 4+2, Sem 5 |
Bachelor Seminar Numerik | Giesselmann, 0+2, ab Sem 6 |
Numerical Methods for PDEs | Giesselmann, 4+2, ab Sem 7, engl. |
Numerics for Hyperbolic Differential Equations | Lang, 2+1, ab Sem 5, dt./engl. |
Master Seminar Numerik | Kiehl, 0+2, ab Sem 9 |
Mathematik III für Elektrotechnik | Schmidt, 4+2, Service |
Proseminar M.Ed. | Kiehl, 0+2, Sem 3 |
Interdisziplinäres Projekt | Kiehl, 0+2, ab Sem 3 |
Projekt: Mathematische Unternehmensberatung (EIMB) | Giesselmann, 0+2, ab Sem 7 |
Einführung in die Programmierung 2 | Gerisch, 2+1, Sem 2 |
Numerik der Linearen Algebra | NN, 2+1, ab Sem 4 |
Einführung in die Mathematische Modellierung | Kiehl, 2+1, ab Sem 4 |
Bachelor Seminar Numerik | Giesselmann, 0+2, ab Sem 6 |
Computational Fluid Dynamics | Egger, 4+2, ab Sem 8, engl. |
Modelling and Efficient Simulation of Dynamical Systems | Kiehl, 2+1, ab Sem 8 |
Vertiefung Numerik | Schmidt, 2+1, ab Sem 8 |
Master Seminar Numerik | Egger, 0+2, ab Sem 9 |
Numerische Methoden für Maschinenbau | Giesselmann, 2+2+2, Service |
Elementare PDGLen für CE | Egger, 2+2, Service |
Mathematik II für Elektrotechnik | Schmidt, 4+2, Service |
FD Seminar: Mathematische Modellierung mit Schülern | Kiehl, 0+2 |
Einführung in die Numerische Mathematik | Lang, 3+2+1, Sem 3 |
Proseminar Numerik | Kiehl, 0+2, Sem 3 |
Numerik Gewöhnlicher Differentialgleichungen | Giesselmann, 4+2, Sem 5 |
Bachelor Seminar Numerik | Egger, 0+2, ab Sem 6 |
Numerical Methods for PDEs | Egger, 4+2, ab Sem 7, engl. |
Modelling and Simulation in Mathematical Biology | Gerisch, 2+1, ab Sem 5, dt./engl. |
Asymptotic Analysis | Schmidt, 2+1, ab Sem 5, dt./engl. |
Master Seminar Numerik | Lang, 0+2, ab Sem 9 |
Mathematik I für Elektrotechnik | Schmidt, 4+2, Service |
Proseminar M.Ed. | Kiehl, 0+2, Sem 3 |
Interdisziplinäres Projekt | Kiehl, 0+2, ab Sem 3 |
Projekt: Mathematische Unternehmensberatung (ETIT) | Kiehl, 0+2, ab Sem 7 |
Projekt: Mathematische Unternehmensberatung (EMB) | Giesselmann, 0+2, ab Sem 7 |
Gewöhnliche Differentialgleichungen | Schmidt, 2+1, Sem 3 |
Proseminar (Arbeitstechniken und Latex) | Schmidt, 0+2 |
Einführung in die Programmierung 2 | Gerisch, 2+1, Sem 2 |
Proseminar Numerik | Giesselmann/Schmidt, 0+2, Sem 3 |
Numerik der Linearen Algebra | Giesselmann, 2+1, ab Sem 4 |
Einführung in the Mathematische Modellierung | Kiehl, 2+1, ab Sem 4 |
Bachelor Seminar Numerik | Kiehl/Egger, 0+2, ab Sem 6 |
Numerik von Hyperbolischen Differentialgleichungen | Lang, 2+1, ab Sem 8, dt./engl. |
Stochastic Finite Elements | Lang, 2+1, ab Sem 8, engl./dt. |
Discontinuous Galerkin Methods | Giesselmann, 2+1+1P, ab Sem 8, engl. |
Numerische Methoden für Variationsungleichungen | Walloth, 2+1, ab Sem 8, dt./engl. |
Master Seminar Numerik | Lang/Erath, 0+2, ab Sem 9, dt./engl. |
Numerische Methoden für Maschinenbau | Schmidt, 2+2+2, Service |
Elementare Partielle Differentialgleichungen für CE | Schmidt, 2+2 Service |
FD Seminar: Mathematische Modellierung mit Schülern | Kiehl, 0+2 |
Proseminar (Arbeitstechniken + Latex) | Schmidt, 0+2, |
Einführung in die Numerische Mathematik | Giesselmann, 3+2+1, Sem 3 |
Proseminar Numerik | Kiehl, 0+2, Sem 3 |
Proseminar Numerik engl. | Kiehl, 0+2, Sem 3 |
Numerik Gewöhnlicher Differentialgleichungen | Egger, 4+2, Sem 5 |
Bachelor Seminar Numerik | Lang/Gerisch, 0+2, ab Sem 6 |
Numerik Partieller Differentialgleichungen | Lang, 4+2, ab Sem 7 |
Modellierung und Effiziente Simulation Dynamischer Systeme |
Kiehl, 2+1, ab Sem 7, engl. |
Computational Inverse Problems | Egger/Dölz, 2+1, ab Sem 7, engl. |
Master Seminar Numerik | Egger/Erath, 0+2, ab Sem 9 |
Mathematik III für Maschinenbau | Schmidt 2+2, Service |
Mathematik III für Elektrotechnik | Schmidt 4+2, Service |
Proseminar M.Ed. | Kiehl, 0+2 |
Interdisziplinäres Projekt | Giesselmann/Kiehl, 0+2, ab Sem 3 |
Projekt: Mathematische Unternehmensberatung (ETIT) | Kiehl, 0+2, ab Sem 7 |
Projekt: Mathematische Unternehmensberatung (EMB) | Giesselmann, 0+2, ab Sem 7 |
Einführung in die Programmierung 2 | Gerisch, 2+2, Sem 2 |
Numerik der Linearen Algebra | Dölz, 2+1, ab Sem 4 |
Einführung in the Mathematische Modellierung | Lang, 2+2, ab Sem 4 |
Bachelor Seminar Numerik | Lang/Gerisch, 0+2, ab Sem 6 |
Computational Electromagnetics | Schmidt/Semin, 4+2, ab Sem 8 |
Stochastische Finite Elemente | Lang, 2+1, ab Sem 8 |
Reduzierte Basis Methoden | Domschke, 2+1, ab Sem 8 |
Master Seminar Numerik | Giesselmann/Minbashian, 0+2, ab Sem 9 |
Numerische Methoden für Maschinenbau | Egger, 2+2+2, Service |
Elementare PDGLen für CE | Egger, 2+2, Service |
Mathematik II für Elektrotechniker | Schmidt, 4+2, Service |
FD Seminar: Mathematische Modellierung mit Schülern | Kiehl, 0+2, Modellierungswoche |
Einführung in die Numerische Mathematik | Egger, 3+2+1, Sem 3 |
Proseminar Numerik | Kiehl/Giesselmann, 0+2, Sem 3 |
Proseminar M.Ed. | Kiehl, 0+2, Sem 3 |
Numerik Gewöhnlicher Differentialgleichungen | Lang, 4+2, Sem 5 |
Bachelor Seminar Numerik | Egger/Lang, 0+2, ab Sem 6 |
Numerical Methods for PDEs | Erath, 4+2, ab Sem 7, engl. |
Kinetische Gleichungen | Giesselmann, 2+1, ab Sem 7 |
Discontinuous Galerkin Verfahren für kompressible Strömungen | Giesselmann, 2+1, ab Sem 7 |
Master Seminar Numerik | Erath, 0+2, ab Sem 9 |
Mathematik III für Maschinenbau | Kiehl, 2+2, Service |
Mathematik I für Elektrotechniker | Schmidt, 4+2, Service |
Mathematik III für Elektrotechniker | Schmidt, 4+2, Service |
Arbeitstechniken | Schmidt, 0+2, BSc Pflicht |
KIVA Interdisziplinäres Projekt | Kiehl, 0+2, BSc Ü-Bereich |
KIVA Projekt Mathematische Unternehmensberatung | Kiehl, 0+2, MSc |
Einführung in das wiss.-techn. Programmieren |
Gerisch, 0+2, Sem 2, P |
Numerik der Linearen Algebra | Lang, 2+1, ab Sem 4 |
Einführung in the Mathematische Modellierung | Kiehl, 2+2, ab Sem 4 |
Bachelor Seminar Numerik | Kiehl/Lang, 0+2, ab Sem 6 |
Numerik Differential-Algebraischer Gleichungen | Egger, 4+2, ab Sem 8 |
Discontinuous Galerkin Methoden | Erath, 2+1, ab Sem 8 |
Numerik von Erhaltungsgleichungen | Lang, 2+1, ab Sem 8 |
Master Seminar Numerik | Egger/Erath, 0+2, ab Sem 9 |
Numerische Methoden für Maschinenbau | Schmidt, 2+2+2, Service |
Fachdidaktisches Seminar: Mathematische Modellierung | Kiehl, 2, LA |
Ausgewählte Themen aus der Numerik | Schmidt, 2+1, ab Sem 8 |
Interdisziplinäres Projekt | Kiehl, 0+2, ab Sem 3 |
Einführung in die Numerische Mathematik | Lang, 3+2+1, Sem 3 |
Arbeitstechniken | Schmidt, Sem 3 |
Proseminar (engl: Mathematical Biology) | Schmidt, 0+2, Sem 3 |
Proseminar (Populationsmodelle) | Kiehl, 0+2, Sem 3 |
Numerik Gewöhnlicher Differentialgleichungen | Kiehl, 4+2, Sem 5 |
Bachelor Seminar Numerik | Lang/Gerisch, 0+2, ab Sem 6 |
Numerik Partieller Differentialgleichungen | Egger, 4+2, ab Sem 7 |
Numerik von Integralgleichungen | Erath, 2+1, ab Sem 7 |
Master Seminar Numerik | Erath/Egger, 0+2, ab Sem 9 |
Mathematik III für Elektrotechnik | Schmidt, 4+2, Service |
Darstellende Geometrie | Schmidt, 2+2, Service |
Projekt: Mathematische Unternehmensberatung | Kiehl, 0+2, ab Sem 7 |
Einführung in das wiss.-techn. Programmieren | Gerisch, 0+2, Sem 2 |
Numerik der Linearen Algebra | Lass, 2+1, ab Sem 4 |
Einführung in the Mathematische Modellierung | Kiehl, 2+1, ab Sem 4 |
Bachelor Seminar Numerik | Egger/Gerisch, 0+2, ab Sem 6 |
Computational Fluid Dynamics | Egger, 4+2, ab Sem 8 |
Reduced Basis Methods | Ullmann, 2+1, ab Sem 8 |
Master Seminar Numerik | Egger/Erath, 0+2, ab Sem 9 |
Master Seminar Numerik | Kiehl, 2+2+2, Service |
Elementare PDGL: Klassische Methoden | Egger, 2+2, Service |
Einführung in die Numerische Mathematik | Kiehl, 3+2+1, Sem 3 |
Proseminar Numerik | Kiehl, 0+2, Sem 3 |
Proseminar Numerik engl. | Egger/Lass, 0+2, Sem 3 |
Numerik Gewöhnlicher Differentialgleichungen | Egger, 4+2, Sem 5 |
Bachelor Seminar Numerik | Egger/Gerisch, 0+2, ab Sem 6 |
Numerik Partieller Differentialgleichungen | Erath, 4+2, ab Sem 7 |
Numerik hyperbolische Differentialgleichungen | Lang, 2+1, ab Sem 7 |
Master Seminar Numerik | Egger/Lang/Kiehl, 0+2, ab Sem 9 |
Mathematik III für Maschinenbau | Lang, 2+2, Service |
Einführung in das wiss.-techn. Programmieren | Gerisch, 0+2, Sem 2 |
Numerik der Linearen Algebra | Gerisch, 2+1, ab Sem 4 |
Einführung in die Mathematische Modellierung | Lang, 2+1, ab Sem 4 |
Bachelor Seminar Numerik | Erath/Gerisch,0+2, ab Sem 6 |
Numerik Differentialalgebraischer Gleichungen | Kiehl, 4+2, ab Sem 6 |
Stochastische Finite Elemente | Ullmann, 2+1+1, ab Sem 8 |
Master Seminar Numerik | 0+2, ab Sem 9 |
Numerische Methoden für Maschinenbau | Kiehl, 2+2+2 |
Einführung in die Numerik | Egger, 3+2+1, Sem 3 |
Numerik Gewöhnlicher Differentialgleichungen | Erath, 4+2, Sem 5 |
Bachelor Seminar Numerik | 0+2, ab Sem 6 |
Numerik Partieller Differentialgleichungen | Lang, 4+2, ab Sem 7 |
Master Seminar Numerik | 0+2, ab Sem 9 |
Mathe III fuer Maschinenbau | Kiehl, 2+2+2 |
Einführung in das wiss.-techn. Programmieren | Gerisch, 2+1, Sem 2 |
Numerische lineare Algebra | Domschke, 2+1, ab Sem 4 |
Bachelor Seminar „Numerik steifer Differentialgleichungen“ | Egger, Gerisch, 0+2, ab Sem 6 |
Discontinuous-Galerkin Methoden | Erath, 2+1, ab Sem 7 |
Numerik von Erhaltungsgleichungen | Lang, 2+1, ab Sem 7 |
Master Seminar Numerik | Egger, Erath, ab Sem 9 |
Numerische Methoden für Maschinenbau | Egger, 2+2+2 |
Einführung in die Numerik | Lang, 3+2+1, Sem 3 |
Numerik Gewöhnlicher Differentialgleichungen | Kiehl, 4+2, Sem 5 |
Numerik Partieller Differentialgleichungen | Egger, 4+2, ab Sem 7 |
Numerik von Integralgleichungen | Erath, 2+1, ab Sem 7 |
Master Seminar Numerik (A-posteriori Fehlerschätzung) | Egger, Sem 9 |
Master Seminar Numerik | Kiehl, Sem 9 |
Mathe III für Maschinenbau | Egger, 2+2 |
Einführung in das Wiss.-Techn. Programmieren | Gerisch, 0+2, Sem 2 |
Numerische Lineare Algebra | Gerisch, 2+1, C, ab Sem 4 |
Einführung in die Mathematische Modellierung | Kiehl, 2+1, C, ab Sem 4 |
Computational Inverse Problems | Pietschmann/Schlottbom, 2+1, ab Sem 6 |
Bachelor Seminar Numerik | Egger, Lang, Kiehl, Gerisch, 0+2 |
Simulation und Optimierung Dynamischer Systeme | Kiehl, 4+2, ab Sem 7 |
Computational Fluid Dynamics | Egger, 4+2, ab Sem 7 |
Master Seminar: Runge-Kutta Discontinuous Galerkin Methoden | Lang, Sem 9 |
Master Seminar Numerik | Egger, Sem 9 |
Numerische Mathematik für Maschinenbau | Lang, 2+2+2 |
Einführung in die Numerische Mathematik | Kiehl, 3+2+1, Sem 3 |
Proseminar | Lang, 0+2, Sem 3 |
Numerik Gewöhnlicher Differentialgleichungen | Egger, 2+1, Sem 5 |
Bachelor Seminar Numerik | Egger, Gerisch, Lang, 0+2, Sem 5 |
Seminar: Mathematische Modellierung mit Schülern | Kiehl, 0+2 |
Numerik von Evolutionsgleichungen | Lang, 4+2, ab Sem 7 |
Master Seminar Numerik | Egger, Gerisch, Kiehl, Lang, 0+2, Sem 9 |
Mathe III für Maschinenbau | Egger, 2+2 |
Einführung in das wiss.-techn. Programmieren | Gerisch, 0+2, Sem 2, P |
Numerische Lineare Algebra | Gerisch, 2+1, ab Sem 4 |
Bachelor Seminar Numerik | Egger, Gerisch, Kiehl, 0+2, Sem 6 |
Proseminar: Populationsmodelle | Kiehl, 0+2 |
Numerik Elliptischer Differentialgleichungen | Egger, 4+2, ab Sem 7 |
Master Seminar Numerik | Egger, Gerisch, Kiehl, 0+2, ab Sem 8 |
Numerik für Maschinenbau | Kiehl, 2+2+2 |
Einführung in die Numerische Mathematik | Egger, 3+2+1, Sem 3 |
Proseminar | Egger, 0+2, Sem 3 |
Seminar: Mathematische Modellierung mit Schülern | Kiehl, 0+2 |
Numerik Gewöhnlicher Differentialgleichungen | Lang, 2+1, Sem 5 |
Bachelor Seminar Numerik | Egger, Gerisch, Kiehl, Lang, 0+2, ab Sem 5 |
Differentialalgebraische Gleichungen und Anwendungen | Kiehl, 2+1, ab Sem 7 |
Modellierung und Effiziente Simulation Dynamischer Systeme | Kiehl, 2+1,ab Sem 7 |
Master Seminar Numerik | Egger, Gerisch, Kiehl, Lang, 0+2, ab Sem 9 |
Mathe III für Maschinenbau | Lang, 2+2 |
Einführung in das wiss.-techn. Programmieren | Gerisch, 0+2, Sem 2 |
Einführung in die Mathematische Modellierung | Kiehl, 2+1, ab Sem 4 |
Bachelor Seminar Numerik | Kiehl, Lang, 0+2, Sem 6 |
Numerik Großer Steifer Differentialgleichungssysteme | Lang, 4+2, ab Sem 7 |
Numerik Hyperbolischer Differentialgleichungen | Lang, 2+1, ab Sem 7 |
Numerik für Maschinenbau | Kiehl, 2+2+2 |
Mathe IV für E-Technik | Kiehl, 4+2 |
Einführung in die Numerische Mathematik | Lang, 3+2+1, Sem 3 |
Seminar: Mathematische Modellierung mit Schülern | Kiehl, 0+2 |
Numerik Gewöhnlicher Differentialgleichungen | Kiehl, 2+1, Sem 5 |
Numerik Parabolischer Differentialgleichungen | ang, 2+1, ab Sem 7 |
Master Seminar Numerik | Kiehl, Lang, 0+2, Sem 9 |
Mathe III für Maschinenbau | Kiehl, 2+2 |