Prof. Dr. Dieter Bothe

Arbeitsgebiet(e)

Analysis

Kontakt

work +49 6151 16-21463
fax +49 6151 16-21472

Work L2|06 400
Peter-Grünberg-Straße 10
64287 Darmstadt

Dieter Bothe ist ordentlicher Professor an der TU Darmstadt und Leiter von MMA, dem Fachgebiet für Mathematische Modellierung und Analysis. Er studierte Mathematik/Informatik/Physik an der Universität Paderborn, wo er 1993 promovierte und sich 2000 in Mathematik habilitierte. Von 1999 bis 2005 war er Leiter der Gruppe Modellierung, Analyse und Simulation von Mehrphasenströmungen am Institut für Chemieingenieurwesen der Universität Paderborn. Von 2005 bis 2009 war er Inhaber des Lehrstuhls für Mathematik/CCES an der RWTH Aachen. Ab 2006 war er dort Co-Direktor des Center for Computational Engineering Science, bis er 2009 einen Ruf an die TU Darmstadt am Center of Smart Interfaces annahm. Er ist Mitherausgeber der internationalen Zeitschrift „Nonlinear Analysis: Real World Applications“ und ist Mitglied im Editorial Advisory Board des „International Journal of Multiphase Flow“. Von 2010 bis 2017 war er Koordinator des DFG-Schwerpunktprogramms SPP 1506 „Transportprozesse an fluiden Grenzflächen“ und ist derzeit stellvertretender Sprecher des DFG-Sonderforschungsbereichs 1194 „Wechselwirkung zwischen Transport- und Benetzungsprozessen“. Seit 2017 ist er Mitglied des wissenschaftlichen Rats der TU Darmstadt. Seit 2021 ist er Koordinator des Research Profile Topics „Thermo-Fluids & Interfacial Phenomena“.

Forschungsinteressen

Mathematical modeling, numerical simulation and analysis of

  • transport processes at fluidic interfaces
  • mass transfer influenced by surfactants
  • reaction-diffusion-advection bulk-surface systems
  • dynamic contact lines
  • multicomponent diffusion
  • non-Newtonian flows

Publikationen

  • A two-field formulation for surfactant transport within the algebraic Volume of Fluid method. Antritter, T.; Josyulaa, T.; Marić, Tomislav; Bothe, Dieter; Hachmann, P.; Buck, B.; Gambaryan-Roismana, T.; Stephan, Peter (preprint).
    https://arxiv.org/abs/2311.08591
  • Mathematical analysis of modified level-set equations. Bothe, Dieter; Fricke, Mathis; Soga, Kohei (preprint).
    https://arxiv.org/abs/2310.05111
  • A locally signed-distance preserving level set method (SDPLS) for moving interfaces. Fricke, Mathis; Marić, Tomislav; Vučković, Aleksandar & Bothe, Dieter (preprint).
    https://arxiv.org/pdf/2208.01269
  • A pragmatic workflow for research software engineering in computational science. Marić, Tomislav; Gläser, D.; Lehr, J.-P.; Papagiannidis, I., Lambie, Benjamin; Bischof, Christoph (preprint).
    https://arxiv.org/abs/2310.00960
  • Analysis of a bulk-surface reaction-sorption-diffusion system with Langmuir-type adsorption. Augner, Björn; Bothe, Dieter (preprint)
    https://arxiv.org/2303.08479
  • Numerical wetting benchmarks--advancing the plicRDF-isoAdvector unstructured Volume-of-Fluid (VOF) method. Asghar, M. Hassan; Fricke, Mathis; Bothe, Dieter; Marić, Tomislav (preprint).
    https://arxiv.org/pdf/2302.02629
  • Efficient three-material PLIC interface positioning for enhanced performance of the three-phase VoF Method. Kromer, Johannes; Potyka, Johanna; Schulte, Kathrin & Bothe, Dieter (2023), Computers & Fluids 266, 106051.
    https://doi.org/10.1016/j.compfluid.2023.106051
  • An analytical study of capillary rise dynamics: Critical conditions and hidden oscillations. Fricke, Mathis; Ouro-Koura, El Assad; Raju, Suraj; von Klitzing, Regine; Joel De Coninck; Bothe, Dieter (2023), Physica D: Nonlinear Phenomena 455, 133895.
    https://doi.org/10.1016/j.physd.2023.133895
  • A collocated unstructured finite volume Level Set / Front Tracking method for two-phase flows with large density-ratios. Liu, Jun; Tolle, Tobias; Bothe, Dieter & Marić, Tomislav (2023), J. Comp. Phys. 493, 112426.
    https://doi.org/10.1016/j.jcp.2023.112426
  • Asymmetry during fast stretching of a liquid bridge. Asghar, Muhammad Hassan; Brockmann, Ph.; Dong, Xulan; Niethammer, Matthias; Marić, Tomislav; Roisman, Ilia; Bothe, Dieter (2023), Chemical Engineering & Technology 35, 1800-1807.
    https://doi.org/10.1002/ceat.202300240
  • Second-order accurate normal reconstruction from volume fractions on unstructured meshes with arbitrary polyhedral cells. Kromer, Johannes; Leotta, Fabio & Bothe, Dieter (2023), J. Comp. Phys. 491, 112363.
    https://doi.org/10.1016/j.jcp.2023.112363
  • On the structure of continuum thermodynamical diffusion fluxes -- A novel closure scheme and its relation to the Maxwell-Stefan and the Fick-Onsager approach. Bothe, Dieter & Druet, Pierre-Etienne (2023), Int. Journal of Engineering Science 184, 103818.
    https://doi.org/10.1016/j.ijengsci.2023.103818
  • Multicomponent incompressible fluids – an asymptotic study. Bothe, Dieter; Dreyer, Wolfgang; Druet, Pierre-Etienne (2023). ZAMM 103 (7):e202100174.
    https://doi.org/10.1002/zamm.202100174
  • Third-order accurate initialization of VOF volume fractions on unstructured meshes with arbitrary polyhedral cells. Kromer, Johannes & Bothe, Dieter (2023), J. Comp. Phys. 475, 111840.
    https://doi.org/10.1016/j.jcp.2022.111840
  • Computing hydrodynamic eigenmodes of channel flow with slip – A highly accurate algorithm. Raju, Suraj; Gründing, Dirk; Maric, Tomislav; Bothe, Dieter & Fricke, Mathis (2022), The Canadian Journal of Chemical Engineering 100 (12), 3531-3547.
    https://doi.org/10.1002/cjce.24598
  • Computation of interfacial flows using Continuous Surface Stress method with adaptive mesh refinement in a Quad/Octree grid structure. Liu, Muyuan; Bothe, Dieter; Yang, Yiren & Chen, Hao (2022), Computers & Fluids 245, 105610.
    https://doi.org/10.1016/j.compfluid.2022.105610
  • On the molecular mechanism behind the bubble rise velocity jump discontinuity in viscoelastic liquids. Bothe, Dieter; Niethammer, Matthias; Pilz, Christian & Brenn, Günter (2022), J. Non-Newtonian Fluid Mech. 302, 104748.
    https://doi.org/10.1109/ojuffc.2022.3141333
  • Multipath Flow Metering of High-Velocity Gas using Ultrasonic Phased-Arrays. Haugwitz, Christoph; Hartmann, Claas; Allevato, Gianni; Rutsch, Matthias; Hinrichs, Jan; Brötz, Johannes; Bothe, Dieter; Pelz, Peter F. & Kupnik, Mario (2022), IEEE Open Journal of Ultrasonics, Ferroelectrics, and Frequency Control 2, 30-39.
    https://doi.org/10.1109/ojuffc.2022.3141333
  • triSurfaceImmersion: Computing volume fractions and signed distances from triangulated surfaces immersed in unstructured meshes. Tolle, Tobias; Gründing, Dirk; Bothe, Dieter & Maric, Tomislav (2022), Computer Physics Communications 273, 108249.
    https://doi.org/10.1016/j.cpc.2021.108249
  • Sharp-Interface Continuum Thermodynamics of multicomponent fluid systems with interfacial mass. Bothe, Dieter (2022), Int. Journal of Engineering Science 179, 103731.
    https://doi.org/10.1016/j.ijengsci.2022.103731
  • Face-based Volume-of-Fluid interface positioning in arbitrary polyhedra. Kromer, Johannes & Bothe, Dieter (2022), J. Comp. Phys. 449, 110776.
    https://doi.org/10.1016/j.jcp.2021.110776
  • Multicomponent incompressible fluids – an asymptotic study. Bothe, Dieter; Dreyer, Wolfgang & Druet, Pierre-Etienne (2021), ZAMM e202100174, WIAS Preprint 2825.
    https://doi.org/10.1002/zamm.202100174
  • Analysis of some heterogeneous catalysis models with fast sorption and fast surface chemistry. Augner, Björn & Bothe, Dieter (2021), J. Evol. Eqs. 21, 3521-3552.
    https://doi.org/10.1007/s00028-021-00692-4
  • Well-posedness analysis of multicomponent incompressible flow models. Bothe, Dieter & Druet, Pierre-Etienne (2021), J. Evol. Eqs. 21, 4039-4093, WIAS Preprint 2720.
    https://arxiv.org/pdf/2005.12052.
  • Mass transport in multicomponent compressible fluids: Local and global well-posedness in classes of strong solutions for general class-one models. Bothe, Dieter & Druet, Pierre-Etienne (2021), Nonlinear Analysis: Theory, Methods & Applications 210, 112389, WIAS Prepring 2658. https://arxiv.org/pdf/2001.08970
  • Small-scale phenomena in reactive bubbly flows: experiments, numerical modeling, and applications. Schlüter, Michael; Herres-Pawlis, Sonja; Nieken, Ulrich; Tuttlies, Ute & Bothe, Dieter (2021), Annual Review of Chemical and Biomolecular Engineering 12, 625-643. https://doi.org/10.1146/annurev-chembioeng-092220-100517
  • Breakup dynamics of capillary bridges on hypophobic stripes. Hartmann, Maximilian; Fricke, Mathis; Weimar, Lukas; Gründing, Dirk; Maric, Tomislav; Bothe, Dieter & Hardt, Steffen (2021), Int. J. Multiphase Flow 138.
    https://doi.org/10.1016/j.ijmultiphaseflow.2021.103582
  • Computing Mass Transfer at Deformable Bubbles for High Schmidt Numbers. Weiner, Andre; Gründing, Dirk & Bothe, Dieter (2021), Chemie Ingenieur Technik.
    https://doi.org/10.1002/cite.202000214
  • The fast-sorption and fast-surface-reaction limit of a heterogeneous catalysis model. Augner, Björn & Bothe, Dieter (2021), Discrete Continuous Dynamical Systems – Series S 14 (2), 533-574.
    https://doi.org/10.3934/dcdss.2020406
  • Numerical simulation of non-isothermal viscoelastic flows at high Weissenberg numbers using a finite volume method on general unstructured meshes. Meburger, Stefanie; Niethammer, Matthias; Bothe, Dieter & Schäfer, Michael (2021), Journal of Non-Newtonian Fluid Mechanics, 287, 104451. https://oi.org/10.1016/j.jnnfm.2020.104451
  • On moving hypersurfaces and the discontinuous ODE-system associated with two-phase flows. Bothe, Dieter (2020), Nonlinearity, 33 (10), 5425–56. https://doi.org/10.1088/1361-6544/ab987d
  • Reflections on the article “Moving contact lines and dynamic contact angles: a ‘litmus test’ for mathematical models and some new challenges” by Yulii D. Shikhmurzaev. Bothe, Dieter (2020), The European Physical Journal Special Topics, 229 (10), 1979–87. https://doi.org/10.1140/epjst/e2020-000149-6
  • Boundary conditions for dynamic wetting – A mathematical analysis. Fricke, Mathis & Bothe, Dieter (2020), The European Physical Journal Special Topics, 229 (10), 1849–65.
    https://doi.org/10.1140/epjst/e2020-900249-7
  • Contact line advection using the geometrical Volume-of-Fluid method. Fricke, Mathis; Marić, Tomislav & Bothe, Dieter (2020), Journal of Computational Physics, 407, 109221.
    https://doi.org/10.1016/j.jcp.2019.109221
  • A comparative study of transient capillary rise using direct numerical simulations. Gründing, D.; Smuda, M.; Antritter, T.; Fricke, M.; Rettenmaier, D.; Kummer, F.; Stephan, P.; Marschall, H. & Bothe, D. (2020), Applied Mathematical Modelling, 86, 142–65.
    https://doi.org/10.1016/j.apm.2020.04.020
  • Mass transfer from single carbon-dioxide bubbles in surfactant-electrolyte mixed aqueous solutions in vertical pipes. Hori, Yohei; Bothe, Dieter; Hayashi, Kosuke; Hosokawa, Shigeo & Tomiyama, Akio (2020), International Journal of Multiphase Flow, 124, 103207. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103207
  • Unstructured un-split geometrical Volume-of-Fluid methods – A review. Marić, Tomislav; Kothe, Douglas B. & Bothe, Dieter (2020), Journal of Computational Physics, 420, 109695.
    https://doi.org/10.1016/j.jcp.2020.109695
  • SAAMPLE: A Segregated Accuracy-driven Algorithm for Multiphase Pressure-Linked Equations. Tolle, Tobias; Bothe, Dieter & Marić, Tomislav (2020), Computers & Fluids, 200, 104450.
    https://doi.org/10.1016/j.compfluid.2020.104450
  • Breakup Dynamics of Capillary Bridges on Hydrophobic Stripes. Hartmann, Maximilian; Fricke, Mathis; Weimar, Lukas; Gründing, Dirk; Marić, Tomislav; Bothe, Dieter & Hardt, Steffen (04.10.2019).
    https://arxiv.org/pdf/1910.01887
  • A kinematic evolution equation for the dynamic contact angle and some consequences. Fricke, Mathis; Köhne, Matthias & Bothe, Dieter (2019), Physica D: Nonlinear Phenomena, 394, 26–43.
    https://doi.org/10.1016/j.physd.2019.01.008
  • Highly accurate computation of volume fractions using differential geometry. Kromer, Johannes & Bothe, Dieter (2019), Journal of Computational Physics, 396, 761–84.
    https://doi.org/10.1016/j.jcp.2019.07.005
  • Toward the predictive simulation of bouncing versus coalescence in binary droplet collisions. Liu, M. & Bothe, D. (2019), Acta Mechanica, 230 (2), 623–44.
    https://doi.org/10.1007/s00707-018-2290-4
  • An extended volume of fluid method and its application to single bubbles rising in a viscoelastic liquid. Niethammer, Matthias; Brenn, Günter; Marschall, Holger & Bothe, Dieter (2019), Journal of Computational Physics, 387, 326–55.
    https://doi.org/10.1016/j.jcp.2019.02.021
  • Robust Direct Numerical Simulation of Viscoelastic Flows. Niethammer, Matthias; Marschall, Holger & Bothe, Dieter (2019), Chemie Ingenieur Technik, 91 (4), 522–28.
    https://doi.org/10.1002/cite.201800108
  • Load balanced 2D and 3D adaptive mesh refinement in OpenFOAM. Rettenmaier, Daniel; Deising, Daniel; Ouedraogo, Yun; Gjonaj, Erion; Gersem, Herbert de; Bothe, Dieter; Tropea, Cameron & Marschall, Holger (2019), SoftwareX, 10, 100317.
    https://doi.org/10.1016/j.softx.2019.100317
  • A continuum model of heterogeneous catalysis: Thermodynamic framework for multicomponent bulk and surface phenomena coupled by sorption. Souček, Ondřej; Orava, Vít; Málek, Josef & Bothe, Dieter (2019), International Journal of Engineering Science, 138, 82–117. https://doi.org/10.1016/j.ijengsci.2019.01.001
  • Data‐Driven Subgrid‐Scale Modeling for Convection‐Dominated Concentration Boundary Layers. Weiner, Andre; Hillenbrand, Dennis; Marschall, Holger & Bothe, Dieter (2019), Chemical Engineering & Technology, 42 (7), 1349–56.
    https://doi.org/10.1002/ceat.201900044
  • Experimental and numerical investigation of reactive species transport around a small rising bubble. Weiner, Andre; Timmermann, Jens; Pesci, Chiara; Grewe, Jana; Hoffmann, Marko; Schlüter, Michael & Bothe, Dieter (2019), Chemical Engineering Science: X, 1, 100007. https://doi.org/10.1016/j.cesx.2019.100007
  • The fast-sorption and fast-surface-reaction limit of a heterogeneous catalysis model. Augner, Björn & Bothe, Dieter (2018), Discrete & Continuous Dynamical Systems – S, 0 (0), 0.
    https://doi.org/10.3934/dcdss.2020406
  • Direct numerical simulation of mass transfer in bubbly flows. Deising, D.; Bothe, D. & Marschall, H. (2018), Computers & Fluids, 172, 524–37. https://doi.org/10.1016/j.compfluid.2018.03.041
  • 3D direct numerical simulations of reactive mass transfer from deformable single bubbles: An analysis of mass transfer coefficients and reaction selectivities. Falcone, Manuel; Bothe, Dieter & Marschall, Holger (2018), Chemical Engineering Science, 177, 523–36. https://doi.org/10.1016/j.ces.2017.11.02
  • Boundedness-preserving implicit correction of mesh-induced errors for VOF based heat and mass transfer. Hill, S.; Deising, D.; Acher, T.; Klein, H.; Bothe, D. & Marschall, H. (2018), Journal of Computational Physics, 352, 285–300.
    https://doi.org/10.1016/j.jcp.2017.09.027
  • An enhanced un-split face-vertex flux-based VoF method. Marić, Tomislav; Marschall, Holger & Bothe, Dieter (2018), Journal of Computational Physics, 371, 967–93.
    https://doi.org/10.1016/j.jcp.2018.03.048
  • A numerical stabilization framework for viscoelastic fluid flow using the finite volume method on general unstructured meshes. Niethammer, M.; Marschall, H.; Kunkelmann, C. & Bothe, D. (2018), International Journal for Numerical Methods in Fluids, 86 (2), 131–66.
    https://doi.org/10.1002/fld.4411
  • Computational analysis of single rising bubbles influenced by soluble surfactant. Pesci, Chiara; Weiner, Andre; Marschall, Holger & Bothe, Dieter (2018), Journal of Fluid Mechanics, 856, 709–63.
    https://doi.org/10.1017/jfm.2018.723
  • Global wellposedness for a class of reaction–advection–anisotropic-diffusion systems. Bothe, Dieter; Fischer, André; Pierre, Michel & Rolland, Guillaume (2017), Journal of Evolution Equations, 17 (1), 101–30.
    https://doi.org/10.1007/s00028-016-0348-0
  • Strong well-posedness for a class of dynamic outflow boundary conditions for incompressible Newtonian flows. Bothe, Dieter; Kashiwabara, Takahito & Köhne, Matthias (2017), Journal of Evolution Equations, 17 (1), 131–71.
    https://doi.org/10.1007/s00028-016-0352-4
  • Global strong solutions for a class of heterogeneous catalysis models. Bothe, Dieter; Köhne, Matthias; Maier, Siegfried & Saal, Jürgen (2017), Journal of Mathematical Analysis and Applications, 445 (1), 677–709.
    https://doi.org/10.1016/j.jmaa.2016.08.016
  • Modeling and analysis of reactive multi-component two-phase flows with mass transfer and phase transition the isothermal incompressible case. Bothe, Dieter & Prüss, Jan (2017), Discrete & Continuous Dynamical Systems – S, 10 (4), 673–96.
    https://doi.org/10.3934/dcdss.2017034
  • Colliding drops as coalescing and fragmenting liquid springs. Planchette, C.; Hinterbichler, H.; Liu, M.; Bothe, D. & Brenn, G. (2017), Journal of Fluid Mechanics, 814, 277–300.
    https://doi.org/10.1017/jfm.2016.852
  • Highly accurate two-phase species transfer based on ALE Interface Tracking. Weber, Paul S.; Marschall, Holger & Bothe, Dieter (2017), International Journal of Heat and Mass Transfer, 104, 759–73.
    https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.072
  • Advanced subgrid-scale modeling for convection-dominated species transport at fluid interfaces with application to mass transfer from rising bubbles. Weiner, Andre & Bothe, Dieter (2017), Journal of Computational Physics, 347, 261–89.
    https://doi.org/10.1016/j.jcp.2017.06.040
  • A unified single-field model framework for Volume-Of-Fluid simulations of interfacial species transfer applied to bubbly flows. Deising, Daniel; Marschall, Holger & Bothe, Dieter (2016), Chemical Engineering Science, 139, 173–95.
    https://doi.org/10.1016/j.ces.2015.06.021
  • Numerical and experimental analysis of local flow phenomena in laminar Taylor flow in a square mini-channel. Falconi, C. J.; Lehrenfeld, C.; Marschall, H.; Meyer, C.; Abiev, R.; Bothe, D.; Reusken, A.; Schlüter, M. & Wörner, M. (2016), Physics of Fluids, 28 (1), 12109. https://doi.org/10.1063/1.4939498
  • A subgrid-scale model for reactive concentration boundary layers for 3D mass transfer simulations with deformable fluid interfaces. Gründing, Dirk; Fleckenstein, Stefan & Bothe, Dieter (2016), International Journal of Heat and Mass Transfer, 101, 476–87. https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.119
  • Numerical study of head-on droplet collisions at high Weber numbers. Liu, M. & Bothe, D. (2016), Journal of Fluid Mechanics, 789, 785–805. https://doi.org/10.1017/jfm.2015.725
  • Applicability of the linearized theory of the Maxwell-Stefan equations. Weber, Paul S. & Bothe, Dieter (2016), AIChE Journal, 62 (8), 2929–46.
    https://doi.org/10.1002/aic.15317