Prof. Dr. Christian Stinner

Analysis

Arbeitsgebiet(e)

Analysis

Kontakt

work +49 6151 16-21498
fax +49 6151 16-21483

Work S2|15 424
Schlossgartenstraße 7
64289 Darmstadt

Links

Office hour

Office hour:

  • from 14.10.: Monday, 15:30-16:30 (big blue button or in presence in room S2|15 – 424)

If you would like to come to my office hour via the online meeting, you should either contact me in advance by email so that I can send you the link or you will find the link in the moodle courses of my current lectures. Please notice that from 16.10.23 the online meeting will be via big blue button and not via zoom any more. You find the new link in my current moodle courses.

Teaching

WiSe 2024/25

previous teaching:

SoSe 2024

WiSe 2023/24

SoSe 2023

WiSe 2022/23

SoSe 2022

WiSe 2021/22

SoSe 2021

WiSe 2020/21

SoSe 2020

WiSe 2019/20

SoSe 2019

WiSe 2018/19

SoSe 2018

WiSe 2017/18

SoSe 2017

WiSe 2016/17

WiSe 2015/16 (Ludwig-Maximilians-Universität München)

  • Vorlesung Partielle Differentialgleichungen
  • Vorlesung Dynamische Systeme

WiSe 2014/15 (TU Kaiserslautern)

  • Vorlesung Dynamical Systems

SoSe 2014 (TU Kaiserslautern)

  • Vorlesung Reaction-Diffusion Equations with Applications to Biology and Medicine
  • Seminar Cancer Modeling
  • Übungen zur Vorlesung Vektoranalysis

WiSe 2013/14 (TU Kaiserslautern)

  • Vorlesung Traveling Waves
  • Seminar Mathematical Modelling of Tumor Propagation
  • Übungen zur Vorlesung Nonlinear Partial Differential Equations

SoSe 2013 (TU Kaiserslautern)

  • Seminar Mathematische Modellierung von Tumorausbreitung
  • Übungen zur Vorlesung Biomathematics
  • Übungen zur Vorlesung Stochastic Models for Biomathematics

WiSe 2012/13 (TU Kaiserslautern)

  • Seminar Mathematische Modelle in der Biologie
  • Vortragsübung zur Vorlesung Höhere Mathematik II für Ingenieure

SoSe 2012 (Universität Paderborn)

  • Übungen zur Vorlesung Funktionentheorie

WiSe 2011/12 (Universität Duisburg-Essen)

  • Repetitorium zur Vorlesung Analysis I
  • Repetitorium zur Vorlesung Wahrscheinlichkeitstheorie für Lehramtsstudierende

HS 2011 (Universität Zürich)

  • Übungen zur Vorlesung Mathematik I für Chemiker

FS 2011 (Universität Zürich)

  • Übungen zur Vorlesung Numerik I

WiSe 2008/09 – SoSe 2010 (Universität Duisburg-Essen)

  • Übungen zur Vorlesung Wahrscheinlichkeitstheorie für Lehramtsstudierende (WiSe)
  • Übungen zur Vorlesung Mathematisches Modellieren für Lehramtsstudierende (SoSe)

WiSe 2004/05 – SoSe 2008 (RWTH Aachen)

  • Vortragsübungen zu den Vorlesungen Höhere Mathematik I-IV für Elektrotechniker und Physiker (außer WiSe 2007/08)
  • Vortragsübung zur Vorlesung Höhere Mathematik I für Physiker (WiSe 2007/08)
  • Übungen zur Vorlesung Gewöhnliche Differentialgleichungen (WiSe 2006/07)

Research

Research interests

  • Mathematical modeling of biological and medical problems along with analysis of the models, in particular
    • multiscale models for migration of cancer cells through tissue networks
    • cell movement via chemotaxis and haptotaxis
  • Analysis of partial differential equations, in particular of parabolic type
  • Effects of nonlinear and degenerate diffusion
  • Hamilton-Jacobi equations with degenerate or singular diffusion

Research project

„Mehrskalige Modellierung der Migration von Tumorzellen“ (Multiscale modeling of tumor cell migration) funded by the Carl-Zeiss-Stiftung (TU Kaiserslautern, January 2015 – September 2016; with break from October 2015 to March 2016)

Publications

Journal articles

(Links to the pdfs of the journal articles are e.g. available here (MathSciNet) where you can click on the link „Article“ in the description of each publication)

  • Ph. Laurençot and C. Stinner: Singular limit of a chemotaxis model with indirect signal production and phenotype switching. Nonlinearity 37, No. 10, article 105007, 25 pp. (2024).
  • C. Stinner and M. Winkler: A critical exponent in a quasilinear Keller-Segel system with arbitrarily fast decaying diffusivities accounting for volume-filling effects. Journal of Evolution Equations 24, article 26, 33 pp. (2024).
  • Ph. Laurençot and C. Stinner: Mass threshold for infinite-time blowup in a chemotaxis model with split population. SIAM Journal on Mathematical Analysis 53, No. 3, 3385-3419 (2021).
  • M. Hieber, K. Kress, and C. Stinner: The Keller-Segel system on bounded convex domains in critical spaces. Partial Differential Equations and Applications 2, article 38, 14 pp. (2021).
  • N. Kolbe, N. Sfakianakis, C. Stinner, C. Surulescu, and J. Lenz: Modeling multiple taxis: tumor invasion with phenotypic heterogeneity, haptotaxis, and unilateral interspecies repellence. Discrete and Continuous Dynamical Systems – Series B 26, No. 1, 443-481 (2021).
  • M. Hieber and C. Stinner: Strong time periodic solutions to Keller-Segel systems: an approach by the quasilinear Arendt-Bu theorem. Journal of Differential Equations 269, No. 2, 1636-1655 (2020).
  • M. Winkler and C. Stinner: Refined regularity and stabilization properties in a degenerate haptotaxis system. Discrete and Continuous Dynamical Systems – Series A 40, No. 6, 4039-4058 (2020).
  • J.M. Kroos, C. Stinner, C. Surulescu, and N. Surulescu: SDE-driven modeling of phenotypically heterogeneous tumors: the influence of cancer cell stemness. Discrete and Continuous Dynamical Systems – Series B 24, No. 8, 4629-4663 (2019).
  • C. Engwer, C. Stinner, and C. Surulescu: On a structured multiscale model for acid-mediated tumor invasion: the effects of adhesion and proliferation. Mathematical Models and Methods in Applied Sciences 27, No. 7, 1355-1390 (2017).
  • R.G. Iagar, Ph. Laurençot, and C. Stinner: Instantaneous shrinking and single point extinction for viscous Hamilton-Jacobi equations with fast diffusion. Mathematische Annalen 368, No. 1-2, 65-109 (2017).
  • C. Stinner, C. Surulescu, and A. Uatay: Global existence for a go-or-grow multiscale model for tumor invasion with therapy. Mathematical Models and Methods in Applied Sciences 26, No. 11, 2163-2201 (2016).
  • G. Meral, C. Stinner, and C. Surulescu: A multiscale model for acid-mediated tumor invasion: therapy approaches. Journal of Coupled Systems and Multiscale Dynamics 3, No. 2, 135-142 (2015).
  • C. Stinner, C. Surulescu, and G. Meral: A multiscale model for pH-tactic invasion with time-varying carrying capacities. IMA Journal of Applied Mathematics 80, No. 5, 1300-1321 (2015).
  • T. Cieslak and C. Stinner: New critical exponents in a fully parabolic quasilinear Keller-Segel system and applications to volume filling models. Journal of Differential Equations 258, No. 6, 2080-2113 (2015).
  • G. Meral, C. Stinner, and C. Surulescu: On a multiscale model involving cell contractivity and its effects on tumor invasion. Discrete and Continuous Dynamical Systems – Series B 20, No. 1, 189-213 (2015).
  • C. Stinner, C. Surulescu, and M. Winkler: Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion. SIAM Journal on Mathematical Analysis 46, No. 3, 1969-2007 (2014).
  • C. Stinner, J.I. Tello, and M. Winkler: Competitive exclusion in a two-species chemotaxis model. Journal of Mathematical Biology 68, No. 7, 1607-1626 (2014).
  • T. Cieslak and C. Stinner: Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2. Acta Applicandae Mathematicae 129, No. 1, 135-146 (2014).
  • T. Cieslak and C. Stinner: Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions. Journal of Differential Equations 252, No. 10, 5832-5851 (2012).
  • Ph. Laurençot and C. Stinner: Convergence to separate variables solutions for a degenerate parabolic equation with gradient source. Journal of Dynamics and Differential Equations 24, No. 1, 29-49 (2012).
  • C. Stinner, J.I. Tello, and M. Winkler: Mathematical analysis of a model of chemotaxis arising from morphogenesis. Mathematical Methods in the Applied Sciences 35, No. 4, 445-465 (2012).
  • C. Stinner and M. Winkler: Global weak solutions in a chemotaxis system with large singular sensitivity. Nonlinear Analysis: Real World Applications 12, No. 6, 3727-3740 (2011).
  • C. Stinner: Rates of convergence to zero for a semilinear parabolic equation with a critical exponent. Nonlinear Analysis: Theory, Methods & Applications 74, No. 5, 1945-1959 (2011).
  • C. Stinner: The convergence rate for a semilinear parabolic equation with a critical exponent. Applied Mathematics Letters 24, No. 4, 454-459 (2011).
  • Ph. Laurençot and C. Stinner: Refined asymptotics for the infinite heat equation with homogeneous Dirichlet boundary conditions. Communications in Partial Differential Equations 36, No. 3, 532-546 (2011).
  • G. Barles, Ph. Laurençot, and C. Stinner: Convergence to steady states for radially symmetric solutions to a quasilinear degenerate diffusive Hamilton-Jacobi equation. Asymptotic Analysis 67, No. 3-4, 229-250 (2010).
  • C. Stinner: Very slow convergence rates in a semilinear parabolic equation. Nonlinear Differential Equations and Applications 17, No. 2, 213-227 (2010).
  • C. Stinner: Convergence to steady states in a viscous Hamilton-Jacobi equation with degenerate diffusion. Journal of Differential Equations 248, No. 2, 209-228 (2010).
  • C. Stinner: Very slow convergence to zero for a supercritical semilinear parabolic equation. Advances in Differential Equations 14, No. 11-12, 1085-1106 (2009).
  • C. Stinner and M. Winkler: Finite time vs. infinite time gradient blow-up in a degenerate diffusion equation. Indiana University Mathematics Journal 57, No. 5, 2321-2354 (2008).
  • C. Stinner and M. Winkler: Boundedness vs. blow-up in a degenerate diffusion equation with gradient nonlinearity. Indiana University Mathematics Journal 56, No. 5, 2233-2264 (2007).

Habilitation thesis

C. Stinner: Qualitative behavior of solutions to parabolic equations with different types of diffusion. TU Kaiserslautern (2015). (pdf (wird in neuem Tab geöffnet))

PhD thesis

C. Stinner: Blow-up in a degenerate parabolic equation with gradient nonlinearity. RWTH Aachen (2008). (pdf (wird in neuem Tab geöffnet))

Diploma thesis

C. Stinner: Degenerate diffusion equations with gradient terms. RWTH Aachen (2004). (pdf (wird in neuem Tab geöffnet))

Vita

Personal data

Name: Christian Stinner

Citizenship: German

Education

10/2000 – 09/2004: Studies of Mathematics, RWTH Aachen

09/2004: Diploma in Mathematics, RWTH Aachen (supervisor of the thesis: M. Wiegner)

02/2008: PhD (Dr. rer. nat.) in Mathematics, RWTH Aachen (supervisor: M. Wiegner)

07/2015: Habilitation in Mathematics, TU Kaiserslautern

Positions

10/2004 – 09/2008: Scientific associate („wissenschaftlicher Mitarbeiter“), RWTH Aachen (with M. Wiegner)

10/2008 – 03/2012: Scientific associate, Universität Duisburg-Essen (with M. Winkler)

02/2011 – 01/2012: Postdoc, Universität Zürich (with M. Chipot)

04/2012 – 09/2012: Scientific associate, Universität Paderborn (with M. Winkler)

10/2012 – 09/2016: Scientific associate, TU Kaiserslautern (with C. Surulescu)

10/2015 – 03/2016: Substitute professorship (W3) for Applied Mathematics, Ludwig-Maximilians-Universität München

since 10/2016: Scientific associate, TU Darmstadt

since 11/2019: außerplanmäßiger Professor (apl. Prof.), TU Darmstadt

Visiting positions

03/2010: Université Paul Sabatier – Toulouse III, invited by Ph. Laurençot (1 month)

10/2010 – 12/2010: Universidad Complutense de Madrid, invited by J.I. Díaz (3 months)