Christian Stinner

PD Dr. Christian Stinner

Analysis

Schlossgartenstraße 7
64289 Darmstadt

Raum: S2|15 424

+49 6151 16-21498
+49 6151 16-21483


Arbeitsgebiet(e)

zurück

Office hour

Tuesday, 12:30 – 13:30

Teaching

WiSe 2019/20

previous teaching:

SoSe 2019

WiSe 2018/19

SoSe 2018

WiSe 2017/18

SoSe 2017

WiSe 2016/17

WiSe 2015/16 (Ludwig-Maximilians-Universität München)

  • Vorlesung Partielle Differentialgleichungen
  • Vorlesung Dynamische Systeme

WiSe 2014/15 (TU Kaiserslautern)

  • Vorlesung Dynamical Systems

SoSe 2014 (TU Kaiserslautern)

  • Vorlesung Reaction-Diffusion Equations with Applications to Biology and Medicine
  • Seminar Cancer Modeling
  • Übungen zur Vorlesung Vektoranalysis

WiSe 2013/14 (TU Kaiserslautern)

  • Vorlesung Traveling Waves
  • Seminar Mathematical Modelling of Tumor Propagation
  • Übungen zur Vorlesung Nonlinear Partial Differential Equations

SoSe 2013 (TU Kaiserslautern)

  • Seminar Mathematische Modellierung von Tumorausbreitung
  • Übungen zur Vorlesung Biomathematics
  • Übungen zur Vorlesung Stochastic Models for Biomathematics

WiSe 2012/13 (TU Kaiserslautern)

  • Seminar Mathematische Modelle in der Biologie
  • Vortragsübung zur Vorlesung Höhere Mathematik II für Ingenieure

SoSe 2012 (Universität Paderborn)

  • Übungen zur Vorlesung Funktionentheorie

WiSe 2011/12 (Universität Duisburg-Essen)

  • Repetitorium zur Vorlesung Analysis I
  • Repetitorium zur Vorlesung Wahrscheinlichkeitstheorie für Lehramtsstudierende

HS 2011 (Universität Zürich)

  • Übungen zur Vorlesung Mathematik I für Chemiker

FS 2011 (Universität Zürich)

  • Übungen zur Vorlesung Numerik I

WiSe 2008/09 – SoSe 2010 (Universität Duisburg-Essen)

  • Übungen zur Vorlesung Wahrscheinlichkeitstheorie für Lehramtsstudierende (WiSe)
  • Übungen zur Vorlesung Mathematisches Modellieren für Lehramtsstudierende (SoSe)

WiSe 2004/05 – SoSe 2008 (RWTH Aachen)

  • Vortragsübungen zu den Vorlesungen Höhere Mathematik I-IV für Elektrotechniker und Physiker (außer WiSe 2007/08)
  • Vortragsübung zur Vorlesung Höhere Mathematik I für Physiker (WiSe 2007/08)
  • Übungen zur Vorlesung Gewöhnliche Differentialgleichungen (WiSe 2006/07)

Research

Research interests

  • Mathematical modeling of biological and medical problems along with analysis of the models, in particular
    • multiscale models for migration of cancer cells through tissue networks
    • cell movement via chemotaxis and haptotaxis
  • Analysis of partial differential equations, in particular of parabolic type
  • Effects of nonlinear and degenerate diffusion
  • Hamilton-Jacobi equations with degenerate or singular diffusion

Research project

„Mehrskalige Modellierung der Migration von Tumorzellen“ (Multiscale modeling of tumor cell migration) funded by the Carl-Zeiss-Stiftung (TU Kaiserslautern, January 2015 – September 2016; with break from October 2015 to March 2016)

Publications

Journal articles

  • M. Winkler and C. Stinner: Refined regularity and stabilization properties in a degenerate haptotaxis system. Discrete and Continuous Dynamical Systems – Series A, doi 10.3934/dcds.2020030.
  • J.M. Kroos, C. Stinner, C. Surulescu, and N. Surulescu: SDE-driven modeling of phenotypically heterogeneous tumors: the influence of cancer cell stemness. Discrete and Continuous Dynamical Systems – Series B 24, No. 8, 4629-4663 (2019).
  • C. Engwer, C. Stinner, and C. Surulescu: On a structured multiscale model for acid-mediated tumor invasion: the effects of adhesion and proliferation. Mathematical Models and Methods in Applied Sciences 27, No. 7, 1355-1390 (2017).
  • R.G. Iagar, Ph. Laurençot, and C. Stinner: Instantaneous shrinking and single point extinction for viscous Hamilton-Jacobi equations with fast diffusion. Mathematische Annalen 368, No. 1-2, 65-109 (2017).
  • C. Stinner, C. Surulescu, and A. Uatay: Global existence for a go-or-grow multiscale model for tumor invasion with therapy. Mathematical Models and Methods in Applied Sciences 26, No. 11, 2163-2201 (2016).
  • G. Meral, C. Stinner, and C. Surulescu: A multiscale model for acid-mediated tumor invasion: therapy approaches. Journal of Coupled Systems and Multiscale Dynamics 3, No. 2, 135-142 (2015).
  • C. Stinner, C. Surulescu, and G. Meral: A multiscale model for pH-tactic invasion with time-varying carrying capacities. IMA Journal of Applied Mathematics 80, No. 5, 1300-1321 (2015).
  • T. Cieslak and C. Stinner: New critical exponents in a fully parabolic quasilinear Keller-Segel system and applications to volume filling models. Journal of Differential Equations 258, No. 6, 2080-2113 (2015).
  • G. Meral, C. Stinner, and C. Surulescu: On a multiscale model involving cell contractivity and its effects on tumor invasion. Discrete and Continuous Dynamical Systems – Series B 20, No. 1, 189-213 (2015).
  • C. Stinner, C. Surulescu, and M. Winkler: Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion. SIAM Journal on Mathematical Analysis 46, No. 3, 1969-2007 (2014).
  • C. Stinner, J.I. Tello, and M. Winkler: Competitive exclusion in a two-species chemotaxis model. Journal of Mathematical Biology 68, No. 7, 1607-1626 (2014).
  • T. Cieslak and C. Stinner: Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2. Acta Applicandae Mathematicae 129, No. 1, 135-146 (2014).
  • T. Cieslak and C. Stinner: Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions. Journal of Differential Equations 252, No. 10, 5832-5851 (2012).
  • Ph. Laurençot and C. Stinner: Convergence to separate variables solutions for a degenerate parabolic equation with gradient source. Journal of Dynamics and Differential Equations 24, No. 1, 29-49 (2012).
  • C. Stinner, J.I. Tello, and M. Winkler: Mathematical analysis of a model of chemotaxis arising from morphogenesis. Mathematical Methods in the Applied Sciences 35, No. 4, 445-465 (2012).
  • C. Stinner and M. Winkler: Global weak solutions in a chemotaxis system with large singular sensitivity. Nonlinear Analysis: Real World Applications 12, No. 6, 3727-3740 (2011).
  • C. Stinner: Rates of convergence to zero for a semilinear parabolic equation with a critical exponent. Nonlinear Analysis: Theory, Methods & Applications 74, No. 5, 1945-1959 (2011).
  • C. Stinner: The convergence rate for a semilinear parabolic equation with a critical exponent. Applied Mathematics Letters 24, No. 4, 454-459 (2011).
  • Ph. Laurençot and C. Stinner: Refined asymptotics for the infinite heat equation with homogeneous Dirichlet boundary conditions. Communications in Partial Differential Equations 36, No. 3, 532-546 (2011).
  • G. Barles, Ph. Laurençot, and C. Stinner: Convergence to steady states for radially symmetric solutions to a quasilinear degenerate diffusive Hamilton-Jacobi equation. Asymptotic Analysis 67, No. 3-4, 229-250 (2010).
  • C. Stinner: Very slow convergence rates in a semilinear parabolic equation. Nonlinear Differential Equations and Applications 17, No. 2, 213-227 (2010).
  • C. Stinner: Convergence to steady states in a viscous Hamilton-Jacobi equation with degenerate diffusion. Journal of Differential Equations 248, No. 2, 209-228 (2010).
  • C. Stinner: Very slow convergence to zero for a supercritical semilinear parabolic equation. Advances in Differential Equations 14, No. 11-12, 1085-1106 (2009).
  • C. Stinner and M. Winkler: Finite time vs. infinite time gradient blow-up in a degenerate diffusion equation. Indiana University Mathematics Journal 57, No. 5, 2321-2354 (2008).
  • C. Stinner and M. Winkler: Boundedness vs. blow-up in a degenerate diffusion equation with gradient nonlinearity. Indiana University Mathematics Journal 56, No. 5, 2233-2264 (2007).

Habilitation thesis

C. Stinner: Qualitative behavior of solutions to parabolic equations with different types of diffusion. TU Kaiserslautern (2015). (pdf)

PhD thesis

C. Stinner: Blow-up in a degenerate parabolic equation with gradient nonlinearity. RWTH Aachen (2008). (pdf)

Diploma thesis

C. Stinner: Degenerate diffusion equations with gradient terms. RWTH Aachen (2004). (pdf)

Vita

Personal data

Name: Christian Stinner

Citizenship: German

Education

10/2000 – 09/2004: Studies of Mathematics, RWTH Aachen

09/2004: Diploma in Mathematics, RWTH Aachen (supervisor of the thesis: M. Wiegner)

02/2008: PhD (Dr. rer. nat.) in Mathematics, RWTH Aachen (supervisor: M. Wiegner)

07/2015: Habilitation in Mathematics, TU Kaiserslautern

Positions

10/2004 – 09/2008: Scientific associate („wissenschaftlicher Mitarbeiter“), RWTH Aachen (with M. Wiegner)

10/2008 – 03/2012: Scientific associate, Universität Duisburg-Essen (with M. Winkler)

02/2011 – 01/2012: Postdoc, Universität Zürich (with M. Chipot)

04/2012 – 09/2012: Scientific associate, Universität Paderborn (with M. Winkler)

10/2012 – 09/2016: Scientific associate, TU Kaiserslautern (with C. Surulescu)

10/2015 – 03/2016: Substitute professorship (W3) for Applied Mathematics, Ludwig-Maximilians-Universität München

since 10/2016: Scientific associate, TU Darmstadt

since 11/2019: außerplanmäßiger Professor (apl. Prof.), TU Darmstadt

Visiting positions

03/2010: Université Paul Sabatier – Toulouse III, invited by Ph. Laurençot (1 month)

10/2010 – 12/2010: Universidad Complutense de Madrid, invited by J.I. Díaz (3 months)