Prof. Dr. Christian Stinner
Analysis
Arbeitsgebiet(e)
Kontakt
stinner@mathematik.tu-...
work +49 6151 16-21498
fax +49 6151 16-21483
Work
S2|15 424
Schlossgartenstraße 7
64289
Darmstadt
Links
Office hour
Office hour:
- from 14.10.: Monday, 15:30-16:30 (big blue button or in presence in room S2|15 – 424)
If you would like to come to my office hour via the online meeting, you should either contact me in advance by email so that I can send you the link or you will find the link in the moodle courses of my current lectures. Please notice that from 16.10.23 the online meeting will be via big blue button and not via zoom any more. You find the new link in my current moodle courses.
Teaching
WiSe 2024/25
- Vorlesung Mathematik I für Bauingenieure
- Vorlesung Mathematik III für Maschinenbau
- Vorlesung Parabolic PDEs
previous teaching:
SoSe 2024
- Vorlesung Mathematik II für Maschinenbau
- Vorlesung Lineare Algebra II für Physik und Lehramt
- Vorlesung Sobolev Spaces
WiSe 2023/24
- Vorlesung Mathematik I für Maschinenbau
- Vorlesung Mathematik III für Bauingenieure
- Vorlesung Lineare Algebra I für Physik und Lehramt
- Vorlesung Parabolische PDEs
SoSe 2023
WiSe 2022/23
- Vorlesung Complex Analysis
- Vorlesung Gewöhnliche Differentialgleichungen
- Vorlesung Mathematik I für Bauingenieure
- Vorlesung Mathematik III für Maschinenbau
SoSe 2022
WiSe 2021/22
SoSe 2021
- Vorlesung Lineare Algebra II für Physik und Lehramt
- Vorlesung Sobolev Spaces
- Vorlesung Partial Differential Equations II
- Seminar Analysis (Bachelor und Master)
WiSe 2020/21
- Vorlesung Mathematik III für Maschinenbau
- Vorlesung Lineare Algebra I für Physik und Lehramt
- Vorlesung Partial Differential Equations I
- Seminar Analysis (Bachelor und Master)
SoSe 2020
- Vorlesung Mathematik II für Maschinenbau
- Vorlesung Lineare Algebra II für Physik und Lehramt
- Vorlesung Sobolev Spaces
WiSe 2019/20
- Vorlesung Mathematik I für Maschinenbau
- Vorlesung Mathematik III für Bauingenieure
- Vorlesung Lineare Algebra I für Physik und Lehramt
- Vorlesung Parabolic PDEs
SoSe 2019
WiSe 2018/19
- Vorlesung Mathematik I für Bauingenieure
- Vorlesung Mathematik III für Bauingenieure
- Vorlesung Parabolische Differentialgleichungen
SoSe 2018
- Vorlesung Mathematik II für Bauingenieure
- Vorlesung Sobolev Spaces
- Vorlesung Evolutionsgleichungen
- Proseminar Ordinary Differential Equations
WiSe 2017/18
- Vorlesung Mathematik I für Bauingenieure
- Vorlesung Mathematik III für Maschinenbau
- Vorlesung Partielle Differentialgleichungen I
SoSe 2017
- Vorlesung Mathematik II für Maschinenbau
- Vorlesung Sobolev Spaces
- Vorlesung Parabolische Differentialgleichungen
WiSe 2016/17
- Vorlesung Mathematik I für Maschinenbau
- Vorlesung Mathematik III für Bauingenieure
- Proseminar Ordinary Differential Equations
WiSe 2015/16 (Ludwig-Maximilians-Universität München)
- Vorlesung Partielle Differentialgleichungen
- Vorlesung Dynamische Systeme
WiSe 2014/15 (TU Kaiserslautern)
- Vorlesung Dynamical Systems
SoSe 2014 (TU Kaiserslautern)
- Vorlesung Reaction-Diffusion Equations with Applications to Biology and Medicine
- Seminar Cancer Modeling
- Übungen zur Vorlesung Vektoranalysis
WiSe 2013/14 (TU Kaiserslautern)
- Vorlesung Traveling Waves
- Seminar Mathematical Modelling of Tumor Propagation
- Übungen zur Vorlesung Nonlinear Partial Differential Equations
SoSe 2013 (TU Kaiserslautern)
- Seminar Mathematische Modellierung von Tumorausbreitung
- Übungen zur Vorlesung Biomathematics
- Übungen zur Vorlesung Stochastic Models for Biomathematics
WiSe 2012/13 (TU Kaiserslautern)
- Seminar Mathematische Modelle in der Biologie
- Vortragsübung zur Vorlesung Höhere Mathematik II für Ingenieure
SoSe 2012 (Universität Paderborn)
- Übungen zur Vorlesung Funktionentheorie
WiSe 2011/12 (Universität Duisburg-Essen)
- Repetitorium zur Vorlesung Analysis I
- Repetitorium zur Vorlesung Wahrscheinlichkeitstheorie für Lehramtsstudierende
HS 2011 (Universität Zürich)
- Übungen zur Vorlesung Mathematik I für Chemiker
FS 2011 (Universität Zürich)
- Übungen zur Vorlesung Numerik I
WiSe 2008/09 – SoSe 2010 (Universität Duisburg-Essen)
- Übungen zur Vorlesung Wahrscheinlichkeitstheorie für Lehramtsstudierende (WiSe)
- Übungen zur Vorlesung Mathematisches Modellieren für Lehramtsstudierende (SoSe)
WiSe 2004/05 – SoSe 2008 (RWTH Aachen)
- Vortragsübungen zu den Vorlesungen Höhere Mathematik I-IV für Elektrotechniker und Physiker (außer WiSe 2007/08)
- Vortragsübung zur Vorlesung Höhere Mathematik I für Physiker (WiSe 2007/08)
- Übungen zur Vorlesung Gewöhnliche Differentialgleichungen (WiSe 2006/07)
Research
Research interests
- Mathematical modeling of biological and medical problems along with analysis of the models, in particular
- multiscale models for migration of cancer cells through tissue networks
- cell movement via chemotaxis and haptotaxis
- Analysis of partial differential equations, in particular of parabolic type
- Effects of nonlinear and degenerate diffusion
- Hamilton-Jacobi equations with degenerate or singular diffusion
Research project
„Mehrskalige Modellierung der Migration von Tumorzellen“ (Multiscale modeling of tumor cell migration) funded by the (TU Kaiserslautern, January 2015 – September 2016; with break from October 2015 to March 2016) Carl-Zeiss-Stiftung
Publications
Journal articles
(Links to the pdfs of the journal articles are e.g. available (MathSciNet) where you can click on the link „Article“ in the description of each publication) here
- Ph. Laurençot and C. Stinner: Singular limit of a chemotaxis model with indirect signal production and phenotype switching. Nonlinearity 37, No. 10, article 105007, 25 pp. (2024).
- C. Stinner and M. Winkler: A critical exponent in a quasilinear Keller-Segel system with arbitrarily fast decaying diffusivities accounting for volume-filling effects. Journal of Evolution Equations 24, article 26, 33 pp. (2024).
- Ph. Laurençot and C. Stinner: Mass threshold for infinite-time blowup in a chemotaxis model with split population. SIAM Journal on Mathematical Analysis 53, No. 3, 3385-3419 (2021).
- M. Hieber, K. Kress, and C. Stinner: The Keller-Segel system on bounded convex domains in critical spaces. Partial Differential Equations and Applications 2, article 38, 14 pp. (2021).
- N. Kolbe, N. Sfakianakis, C. Stinner, C. Surulescu, and J. Lenz: Modeling multiple taxis: tumor invasion with phenotypic heterogeneity, haptotaxis, and unilateral interspecies repellence. Discrete and Continuous Dynamical Systems – Series B 26, No. 1, 443-481 (2021).
- M. Hieber and C. Stinner: Strong time periodic solutions to Keller-Segel systems: an approach by the quasilinear Arendt-Bu theorem. Journal of Differential Equations 269, No. 2, 1636-1655 (2020).
- M. Winkler and C. Stinner: Refined regularity and stabilization properties in a degenerate haptotaxis system. Discrete and Continuous Dynamical Systems – Series A 40, No. 6, 4039-4058 (2020).
- J.M. Kroos, C. Stinner, C. Surulescu, and N. Surulescu: SDE-driven modeling of phenotypically heterogeneous tumors: the influence of cancer cell stemness. Discrete and Continuous Dynamical Systems – Series B 24, No. 8, 4629-4663 (2019).
- C. Engwer, C. Stinner, and C. Surulescu: On a structured multiscale model for acid-mediated tumor invasion: the effects of adhesion and proliferation. Mathematical Models and Methods in Applied Sciences 27, No. 7, 1355-1390 (2017).
- R.G. Iagar, Ph. Laurençot, and C. Stinner: Instantaneous shrinking and single point extinction for viscous Hamilton-Jacobi equations with fast diffusion. Mathematische Annalen 368, No. 1-2, 65-109 (2017).
- C. Stinner, C. Surulescu, and A. Uatay: Global existence for a go-or-grow multiscale model for tumor invasion with therapy. Mathematical Models and Methods in Applied Sciences 26, No. 11, 2163-2201 (2016).
- G. Meral, C. Stinner, and C. Surulescu: A multiscale model for acid-mediated tumor invasion: therapy approaches. Journal of Coupled Systems and Multiscale Dynamics 3, No. 2, 135-142 (2015).
- C. Stinner, C. Surulescu, and G. Meral: A multiscale model for pH-tactic invasion with time-varying carrying capacities. IMA Journal of Applied Mathematics 80, No. 5, 1300-1321 (2015).
- T. Cieslak and C. Stinner: New critical exponents in a fully parabolic quasilinear Keller-Segel system and applications to volume filling models. Journal of Differential Equations 258, No. 6, 2080-2113 (2015).
- G. Meral, C. Stinner, and C. Surulescu: On a multiscale model involving cell contractivity and its effects on tumor invasion. Discrete and Continuous Dynamical Systems – Series B 20, No. 1, 189-213 (2015).
- C. Stinner, C. Surulescu, and M. Winkler: Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion. SIAM Journal on Mathematical Analysis 46, No. 3, 1969-2007 (2014).
- C. Stinner, J.I. Tello, and M. Winkler: Competitive exclusion in a two-species chemotaxis model. Journal of Mathematical Biology 68, No. 7, 1607-1626 (2014).
- T. Cieslak and C. Stinner: Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2. Acta Applicandae Mathematicae 129, No. 1, 135-146 (2014).
- T. Cieslak and C. Stinner: Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions. Journal of Differential Equations 252, No. 10, 5832-5851 (2012).
- Ph. Laurençot and C. Stinner: Convergence to separate variables solutions for a degenerate parabolic equation with gradient source. Journal of Dynamics and Differential Equations 24, No. 1, 29-49 (2012).
- C. Stinner, J.I. Tello, and M. Winkler: Mathematical analysis of a model of chemotaxis arising from morphogenesis. Mathematical Methods in the Applied Sciences 35, No. 4, 445-465 (2012).
- C. Stinner and M. Winkler: Global weak solutions in a chemotaxis system with large singular sensitivity. Nonlinear Analysis: Real World Applications 12, No. 6, 3727-3740 (2011).
- C. Stinner: Rates of convergence to zero for a semilinear parabolic equation with a critical exponent. Nonlinear Analysis: Theory, Methods & Applications 74, No. 5, 1945-1959 (2011).
- C. Stinner: The convergence rate for a semilinear parabolic equation with a critical exponent. Applied Mathematics Letters 24, No. 4, 454-459 (2011).
- Ph. Laurençot and C. Stinner: Refined asymptotics for the infinite heat equation with homogeneous Dirichlet boundary conditions. Communications in Partial Differential Equations 36, No. 3, 532-546 (2011).
- G. Barles, Ph. Laurençot, and C. Stinner: Convergence to steady states for radially symmetric solutions to a quasilinear degenerate diffusive Hamilton-Jacobi equation. Asymptotic Analysis 67, No. 3-4, 229-250 (2010).
- C. Stinner: Very slow convergence rates in a semilinear parabolic equation. Nonlinear Differential Equations and Applications 17, No. 2, 213-227 (2010).
- C. Stinner: Convergence to steady states in a viscous Hamilton-Jacobi equation with degenerate diffusion. Journal of Differential Equations 248, No. 2, 209-228 (2010).
- C. Stinner: Very slow convergence to zero for a supercritical semilinear parabolic equation. Advances in Differential Equations 14, No. 11-12, 1085-1106 (2009).
- C. Stinner and M. Winkler: Finite time vs. infinite time gradient blow-up in a degenerate diffusion equation. Indiana University Mathematics Journal 57, No. 5, 2321-2354 (2008).
- C. Stinner and M. Winkler: Boundedness vs. blow-up in a degenerate diffusion equation with gradient nonlinearity. Indiana University Mathematics Journal 56, No. 5, 2233-2264 (2007).
Habilitation thesis
C. Stinner: Qualitative behavior of solutions to parabolic equations with different types of diffusion. TU Kaiserslautern (2015). ( (wird in neuem Tab geöffnet)) pdf
PhD thesis
C. Stinner: Blow-up in a degenerate parabolic equation with gradient nonlinearity. RWTH Aachen (2008). ( (wird in neuem Tab geöffnet)) pdf
Diploma thesis
C. Stinner: Degenerate diffusion equations with gradient terms. RWTH Aachen (2004). ( (wird in neuem Tab geöffnet)) pdf
Vita
Personal data
Name: Christian Stinner
Citizenship: German
Education
10/2000 – 09/2004: Studies of Mathematics, RWTH Aachen
09/2004: Diploma in Mathematics, RWTH Aachen (supervisor of the thesis: M. Wiegner)
02/2008: PhD (Dr. rer. nat.) in Mathematics, RWTH Aachen (supervisor: M. Wiegner)
07/2015: Habilitation in Mathematics, TU Kaiserslautern
Positions
10/2004 – 09/2008: Scientific associate („wissenschaftlicher Mitarbeiter“), RWTH Aachen (with M. Wiegner)
10/2008 – 03/2012: Scientific associate, Universität Duisburg-Essen (with M. Winkler)
02/2011 – 01/2012: Postdoc, Universität Zürich (with M. Chipot)
04/2012 – 09/2012: Scientific associate, Universität Paderborn (with M. Winkler)
10/2012 – 09/2016: Scientific associate, TU Kaiserslautern (with C. Surulescu)
10/2015 – 03/2016: Substitute professorship (W3) for Applied Mathematics, Ludwig-Maximilians-Universität München
since 10/2016: Scientific associate, TU Darmstadt
since 11/2019: außerplanmäßiger Professor (apl. Prof.), TU Darmstadt
Visiting positions
03/2010: Université Paul Sabatier – Toulouse III, invited by Ph. Laurençot (1 month)
10/2010 – 12/2010: Universidad Complutense de Madrid, invited by J.I. Díaz (3 months)