Dr. Arnab Roy

Mathematik
Arbeitsgruppe Analysis

Arbeitsgebiet(e)

AG Analysis

Kontakt

work +49 6151 16-21481

Work S2|15 421
Schlossgartenstraße 7
64289 Darmstadt

Research interests

  • Control of PDE: Controllability, Stabilizability and Optimal control problem for Fluids and
    Fluid-Structure interaction models.
  • Fluid-Structure Interaction: Modelling and mathematical analysis of FSI problems, Existence, uniqueness, singular limits and long time behaviour of the solutions.
  • Fluid Mechanics: Incompressible, Compressible Navier-Stokes, Hard sphere pressure model.


Publications

Articles
  • Boundary feedback stabilization of the Boussinesq system with mixed boundary conditions, M. Ramaswamy, J.-P. Raymond and A.Roy, J. Differential Equations 266 (2019), no. 7, 4268–4304. DOI
  • Local null controllability of a rigid body moving into a Boussinesq flow, A. Roy and T. Takahashi,
    Math. Control Relat. Fields, December 2019, Volume 9, Issue 4, 793–836.
  • Remark on the global null controllability for a viscous Burgers-particle system with particle supported control, M. Ramaswamy, A. Roy and T. Takahashi, Applied Mathematics Letters, September 2020, Volume 107.
  • Maximal-in-time existence and uniqueness of strong solution of a 3d fluid-structure interaction model, D. Maity, J. -P. Raymond and A. Roy, SIAM J. Math. Anal., 52(6), 6338–6378.
  • Stabilization of a rigid body moving in a compressible viscous fluid, A. Roy and T. Takahashi, J. Evol. Equ. 21 (2021), 167–200.
  • Self-propelled motion of a rigid body inside a density dependent incompressible fluid, Š. Nečasová, M. Ramaswamy, A. Roy and A. Schlömerkemper, Math. Model. Nat. Phenom., 16 (2021) 9.
  • Existence of strong solutions for a system of interaction between a compressible viscous fluid and a wave equation, D. Maity, A. Roy and T. Takahashi, Nonlinearity 34 (4), 2021, 2659-2687.
  • Measure-valued solutions and weak-strong uniqueness for the incompressible inviscid fluid-rigid
    body interaction, M. Caggio, O. Kreml, Š. Nečasová, A. Roy and T. Tang, Journal of Mathematical
    Fluid Mechanics 23 (3), 2021.
  • Approximate controllability and stabilizability of a linearized system for the interaction between a viscoelastic fluid and a rigid body, D. Mitra, A. Roy and T. Takahashi, Mathematics of Control, Signals and Systems, 2021.
  • Existence and uniqueness of maximal strong solution of a 1D Blood flow in a network of vessels, D. Maity, J. -P. Raymond and A. Roy, Nonlinear Analysis: Real World Applications, Volume 63, February 2022, 103405.
  • Existence of a weak solution to a nonlinear fluid-structure interaction problem with heat exchange, V. Mácha, B. Muha, Š. Nečasová, A. Roy and S. Trifunović, Communications in Partial Differential Equations, Volume 47, Issue 8, 2022.
  • Compressible Navier-Stokes system with the hard sphere pressure law in an exterior domain, Š. Nečasová, A. Novotný and A. Roy, Z. Angew. Math. Phys. (ZAMP), Volume 73, Article No. 197, 2022.
  • Motion of a Rigid body in a Compressible Fluid with Navier-slip boundary condition, Š. Nečasová, M. Ramaswamy, A. Roy and A. Schlömerkemper, J. Differential Equations, Volume 338, Pages 256-320, 2022.
  • On the motion of a large number of small rigid bodies in a viscous incompressible fluid, E. Feireisl,A. Roy and A. Zarnescu, accepted in Journal de Mathématiques Pures et Appliquées (JMPA).
Book chapters
  • Motion of several rigid bodies in a Compressible Fluid: mixed case, Š. Nečasová, M. Ramaswamy, A. Roy and A. Schlömerkemper, accepted in EMS Series of Congress Reports (ECR), 2022.
  • Global Stabilization of a rigid body moving in a compressible viscous fluid, D. Maity, A. Roy and T. Takahashi, accepted in Lecture Notes in Mathematical Fluid Mechanics – Springer, 2022.

Submitted
  • On the motion of a nearly incompressible viscous fluid containing a small rigid body, E. Feireisl,A. Roy and A. Zarnescu.
  • On the motion of a small rigid body in a viscous compressible fluid, E. Feireisl, A. Roy and A.Zarnescu.
  • Collision of a solid body with its container in a 3D compressible viscous fluid, B. J. Jin, Š.Nečasová, F. Oschmann and A. Roy.

Invited Talks

  • Oberseminar Mathematik, University of Würzburg, 2nd August, 2022.