Forschungsthemen
- Mehrphasenströmungen
- komplexe Benetzung (Surfactants, poröse Medien)
- Stofftransport inkl. chemischer Reaktionen und Phasenübergang
- Mehrkomponenten-Transport (mischbare Systeme, elektrochemische Systeme)
Methoden
- Sharp & diffuse interface capturing methods
- Moving mesh interface tracking methods
- Fluid-Structure-Interaction
- Adaptive and hybrid approaches
Projekte in Forschungsverbünden
BMBF - Prometh2eus
Projektverbund zur optimierten Materialentwicklung für die technische H2-Erzeugung durch verbesserte Sauerstoffelektroden

Direct Numerical Simulation of the penetration of Taylor bubbles into the porous foam with bubble capture in front of the porous structure. Joint work with Dr.-Ing. Martin Wörner (Karlsruhe Institute of Technology). Simulations performed with phaseFieldFoam solver and OpenFOAM (FOAM-extend 4.0).

Direct Numerical Simulations (DNS) of droplet rebound. We have been able to accurately reproduce the bubble entrapment behavior. The upper row of subfigures (white scale bar = 1 mm) shows an experiment by Lin et al. (J. Colloid Interf. Sci., 516 (2018) 86-97) while the lower row shows present simulation results using our solver phaseFieldFoam (FOAM-extend). Joint work with Dr. Martin Wörner and Dr. Nima Samkhaniani (KIT, Germany).

Direct Numerical Simulation of a liquid droplet bouncing at a micro-grooved wall. Joint work with Prof. Dr.-Ing. Bettina Frohnapfel and Dr.-Ing. Martin Wörner (Karlsruhe Institute of Technology). Simulations performed with phaseFieldFoam solver and OpenFOAM. Refer to https://doi.org/10.1016/j.ijheatfluidflow.2018.02.014 for more details.

Direct Numerical Simulation of a single rising air bubble with oxygen transfer across the interface. Simulations have been performed with an enhanced algebraic Volume-Of-Fluid method (based on interFoam) in OpenFOAM, dynamic load balancing (LB) and local dynamic adaptive mesh refinement (AMR) including a multi-criteria refinement strategy. Joint work with Daniel Deising, now with Engys Ltd., and Prof. Dr. rer. nat. Dieter Bothe, Mathematical Modeling and Analysis group at Technische Universität Darmstadt. Refer to https://doi.org/10.1016/j.ces.2015.06.021 and https://doi.org/10.1016/j.compfluid.2018.03.041 for more details.

Direct Numerical Simulation (DNS) of a droplet spreading on a chemically patterned substrate (dark stripes with 40°, light stripes: with 110° equilibrium contact angle). Simulations have been performed with phaseFieldFoam in OpenFOAM (Foam-extend 4.0). Joint work with Dr. Martin Wörner (Karlsruhe Institute of Technology) and Dr. Xuan Cai (now with BOSCH). More details under https://doi.org/10.1002/ceat.201500089.

Direct Numerical Simulation of fluid dynamics and interfacial mass transfer in structured packings. Vertical section through three packing elements. Distribution of the volume fraction of the liquid phase (left). Representation of the mixture molar fraction in gas and liquid phase (right). Simulations have been performed in OpenFOAM using an enhanced algebraic Volume-Of-Fluid method (based on interFoam) and the Generalised Continuous-Species-Transfer (GCST) method. Joint work with Daniel Deising, now with Engys Ltd., Simon Hill, Sebastian Rehfeldt, Prof. Harald Klein (TU Munich) and Thomas Acher, Rainer Hoffmann, Johann Ferstl (Linde). Refer to https://doi.org/10.1002/cite.201900041 and https://doi.org/10.1016/j.ces.2015.06.021 for more details.