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Abstract

In this paper we analyze, based on an interplay between ideas and techniques from logic and
geometric analysis, a pursuit-evasion game. More precisely, we focus on a uniform betweenness
property and use it in the study of a discrete lion and man game with an ε-capture criterion. In
particular, we prove that in uniformly convex bounded domains the lion always wins and, using
ideas stemming from proof mining, we extract a uniform rate of convergence for the successive
distances between the lion and the man. As a byproduct of our analysis, we study the relation
among different convexity properties in the setting of geodesic spaces.
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1 Introduction

The lion and man problem, which goes back to R. Rado, is one of the most challenging pursuit-
evasion games. In the inspiring book Littlewood’s Miscellany [31] it is described as follows:

A lion and a man in a closed circular arena have equal maximum speeds. What
tactics should the lion employ to be sure of his meal?

A detailed discussion of the solution to this problem can be found in [14, 31, 33]. Very similar
problems have appeared under different names in the literature (e.g. the robot and the rabbit [22]
or the cop and the robber [1]).

The analysis of the lion and man game is closely tied to the geometric structure of the domain
where the game is played. This fact, as well as the potential applications in different fields such as
robotics [7], biology [9], and random processes [10, 11], have given rise to several variants of this
game, both continuous [8] and discrete (the discrete version is attributed to D. Gales, see [37] for
more details). Such games involve one or more evaders in a fixed domain being hunted by one or
more pursuers who win the game if certain appropriate capture criteria are satisfied. Such criteria
may be physical capture (the pursuers move to the location of the evaders) or ε-capture [4] (the
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pursuers get within a distance less than ε to the evaders). Another very important feature in the
game is the possibility of assuming different degrees of freedom in the movement of the lion.

Here we focus on a discrete-time equal-speed game with an ε-capture criterion. The domain X
of our game is a geodesic space. Initially, the lion and the man are located at two points in X, L0

and M0, respectively. One fixes a positive upper bound D on the distance the lion and the man
may jump. After n steps, the lion moves from the point Ln to the point Ln+1 along a geodesic
from Ln to Mn, that is d(Ln,Mn) = d(Ln, Ln+1)+d(Ln+1,Mn), such that its distance to Ln equals
min{D, d(Ln,Mn)}. The man moves from the point Mn to any point Mn+1 ∈ X which is within
distance D. Given a metric space, we say that the lion wins if limn→∞ d(Ln+1,Mn) = 0 for any
pair of sequences (Ln), (Mn) that satisfy the previous metric conditions for any D > 0. Otherwise
the man wins. When we refer in the sequel to the Lion-Man game, we will always mean the game
we have just described.

In [2, 3], a similar game is introduced for the particular case of uniquely geodesic spaces, so that
the movement of the lion is completely determined by the movement of the man. The authors prove
that in the setting of nonpositively curved bounded domains the lion always wins. Further advances
in this problem were made in [30] (see also [6, 39]), where a characterization of compactness of the
domain in terms of the success of the lion was obtained in complete, locally compact, strongly convex
geodesic spaces. The main ingredient in the proof of this result is the fact that strongly convex
spaces satisfy the betweenness property. However, none of these results provides any information
on the speed of convergence towards 0 of the sequence (d(Ln+1,Mn)).

Our aim in this paper is to introduce and study a quantitative uniform version of the aforemen-
tioned betweenness property and to use it in the analysis of the Lion-Man game. This allows us to
weaken the topological and geometric hypotheses that ensure the success of the lion and to give a
rate of convergence for the sequence (d(Ln+1,Mn)) that only depends on a modulus quantifying the
uniform betweenness property. The ideas that led to our results have their roots in proof mining.
By ‘proof mining’ we mean the logical analysis, using proof-theoretic tools, of mathematical proofs
with the aim of extracting relevant information hidden in the proofs. This new information can
be both of quantitative nature, such as algorithms and effective bounds, as well as of qualitative
nature, such as uniformities in the bounds or weakening of the premises. A comprehensive reference
for proof mining is the book [25] (see also [26] for a recent survey).

The organization of the paper is as follows. In Section 2 we prove the main result which
relies on the betweenness property. This property (see Definition 2.1) holds e.g. in all strictly
convex normed spaces, but also in a wide class of geodesic spaces as we will show in Sections 3
and 4. Betweenness relations have already been considered in very early works such as [23, 15].
We introduce a quantitative uniform variant of the betweenness property (see Definition 2.2), and
associate to this definition a modulus of uniform betweenness. All these definitions are purely
metric, what led to state our main result, Theorem 2.7, in a purely metric setting. More precisely,
we prove that under the assumption of boundedness and uniform betweenness for the domain, the
lion always wins. The result applies in particular for all uniformly convex normed spaces, CAT(κ)
spaces (of sufficiently small diameter for κ > 0), or compact uniquely geodesic spaces satisfying
the betweenness property. Consequently, we notably weaken and unify previously known geometric
conditions that were imposed on the domain in order to guarantee the success of the lion. Moreover,
Corollary 2.8 provides a rate of convergence for the sequence d(Ln+1,Mn) towards 0, and hence
gives an explicit bound on the number of steps to be taken for an ε-capture.

In Sections 3 and 4 we analyze the connection of the betweenness property with other convexity
properties. In Section 3 we consider the case of uniquely geodesic spaces. Although the exis-
tence of unique geodesics between any two given points in a geodesic space is a widely known and
well-understood condition, here we consider a quantitative uniform version thereof (see Definition
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3.3) and study its connection with other convexity properties. In Theorem 3.6 we prove that uni-
formly convex geodesic spaces admitting a monotone modulus of uniform convexity η are uniformly
uniquely geodesic and one can define a modulus of uniform uniqueness in terms of η. Actually,
in normed vector spaces, uniform convexity is equivalent to uniform uniqueness of geodesics, but
in general these two concepts are different. This distinction in nonlinear settings is an interesting
feature of uniform uniqueness which could motivate the further study of its relevance. In Theorem
3.9 we show that the uniform betweenness property holds in uniformly uniquely geodesic spaces
whose distance function satisfies a convexity condition, and that a modulus of uniform uniqueness
generates a modulus of uniform betweenness. Section 4 is devoted to provide two particular in-
stances of nonuniquely geodesic spaces where the uniform betweenness property holds: geodesic
Ptolemy spaces (which can be nonuniquely geodesic) and a certain nonstrictly convex normed space
of dimension 3 considered in [15]. In both cases a modulus of uniform betweenness is computed.
The last section contains a general discussion on the proof mining techniques used to develop our
quantitative analysis.

2 A rate of convergence for the Lion-Man game

The main goal of this section is to introduce and study a new uniform concept of betweenness for
metric spaces and to establish its crucial role for the Lion-Man game. In particular, the concept of
a ‘modulus of uniform betweenness’ will be used for a quantitative analysis of the Lion-Man game.
This uniform betweenness property will be further studied in Sections 3 and 4.

2.1 Betweenness and uniform betweenness

We start by introducing two important geometric concepts.

Definition 2.1 (Condition 1 in [15]). A metric space (X, d) satisfies the betweenness property (BW)
if for any pairwise distinct points x, y, z, w ∈ X the following holds

d(x, y) + d(y, z) ≤ d(x, z)
d(y, z) + d(z, w) ≤ d(y, w)

}
⇒ d(x, z) + d(z, w) ≤ d(x,w).

Postulates for betweenness relations and their relevance with other convexity conditions already
appeared in very early works such as [23, 15]. The property given in Definition 2.1 was studied in
connection to the geometry of geodesic metric spaces in [36, 34, 30] (we refer to Section 3 for some
basic definitions on geodesic metric spaces). Proposition 3.4 in [34] shows in particular that (BW)
holds in every uniquely geodesic space X satisfying the following convexity condition

d(z, (1− t)x+ ty) ≤ (1− t)d(z, x) + td(z, y), (2.1)

for all x, y, z ∈ X and all t ∈ [0, 1]. In other words, given any z ∈ X, the function d(z, ·) is
convex. This condition holds e.g. in any strictly convex normed space, any geodesic space that is
nonpositively curved in the sense of Busemann or in any CAT(κ) space (of diameter smaller than
π/(2
√
κ) if κ > 0).

The (BW) condition is also satisfied by some nonstrictly convex Banach spaces (see [15]) but
e.g. not by (R2, ‖ · ‖∞) or (R2, ‖ · ‖1).

We next present a stronger uniform version of (BW) which is equivalent to the ordinary one
when X is compact but which, as we will see in the next sections, also holds in many noncompact
situations e.g. in uniformly convex Banach spaces.
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Let (X, d) be a metric space. If A is a nonempty and bounded subset of X, the diameter of A is

diam(A) = sup{d(a, a′) : a, a′ ∈ A},

and the separation of A is

sep(A) = inf{d(a, a′) : a, a′ ∈ A, a 6= a′}.

Definition 2.2. A metric space (X, d) satisfies the uniform betweenness property (UBW) if for all
a, b, ε > 0 there exists θ > 0 such that for all x, y, z, w ∈ X we have

sep{x, y, z, w} ≥ a
diam{x, y, z, w} ≤ b
d(x, y) + d(y, z) ≤ d(x, z) + θ
d(y, z) + d(z, w) ≤ d(y, w) + θ

 ⇒ d(x, z) + d(z, w) ≤ d(x,w) + ε.

Any function Θ : (0,∞)3 → (0,∞) which provides for given ε, a, b > 0 such a θ = Θ(ε, a, b) is called
a modulus of uniform betweenness.

It is easy to see that every metric space satisfying (UBW) also satisfies (BW). We include the
proof of the converse relation in the presence of compactness.

Proposition 2.3. Compact metric spaces with (BW) satisfy (UBW) as well.

Proof. Although this fact is almost straightforward, we include its proof because (UBW) plays an
essential role in this work. We argue by contradiction. Suppose that (X, d) is a compact metric
space with (BW), but without (UBW). Then there exist ε, a > 0 such that for all n ∈ N we can
find points xn, yn, zn, wn ∈ X with sep{xn, yn, zn, wn} ≥ a satisfying

d(xn, yn) + d(yn, zn) ≤ d(xn, zn) +
1

n+ 1
, d(yn, zn) + d(zn, wn) ≤ d(yn, wn) +

1

n+ 1

and
d(xn, zn) + d(zn, wn) > d(xn, wn) + ε. (2.2)

By compactness, we may assume that there exist x, y, z, w ∈ X such that xn → x, yn → y, zn → z
and wn → w. Then x, y, z, w are pairwise distinct and

d(x, y) + d(y, z) ≤ d(x, z), d(y, z) + d(z, w) ≤ d(y, w).

By (BW), we obtain d(x, z) + d(z, w) ≤ d(x,w). This contradicts (2.2).

In the case of normed spaces (X, ‖·‖), it was proved in [15] that the betweenness property (BW)
is equivalent to the following property: for all x, y, z ∈ X,

(BW)′ : ‖x‖ = ‖y‖ = ‖z‖ =

∥∥∥∥x+ y

2

∥∥∥∥ =

∥∥∥∥y + z

2

∥∥∥∥ = 1 ⇒ ‖x+ y + z‖ = 3.

(BW)′ also has an obvious uniformization: for all ε > 0 there exists δ > 0 such that for all
x, y, z ∈ X,

(UBW)′ :

‖x‖ = ‖y‖ = ‖z‖ = 1

min

{∥∥∥∥x+ y

2

∥∥∥∥ ,∥∥∥∥y + z

2

∥∥∥∥} ≥ 1− δ

 ⇒ ‖x+ y + z‖ ≥ 3− ε

together with the corresponding concept of a modulus δ : (0,∞) → (0,∞) such that δ(ε) satisfies
(UBW)′.

We provide below a uniform quantitative analysis of the proof of the equivalence of (BW) and
(BW)′ given in [15]. Before stating this result, we include the following simple property.
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Lemma 2.4. Let (X, ‖·‖) be a normed space, ε, µ, λ ≥ 0, and x, y ∈ X with ‖x+y‖ ≥ ‖x‖+‖y‖−ε.
Then ‖λx+ µy‖ ≥ λ‖x‖+ µ‖y‖ −max{λ, µ}ε.

Proposition 2.5. Let (X, ‖·‖) be a normed space. Then X satisfies (UBW) if and only if it satisfies
(UBW)′. Moreover, respective moduli can be transformed into each other by the transformations

Θ(ε, a, b) := 2a · δ
( ε

2b

)
and δ(ε) :=

1

2
min

{
Θ

(
ε

2
,
1

2
, 3

)
,
1

2
,
ε

2

}
.

Proof. Let first δ be a modulus for X satisfying (UBW)′. Suppose x, y, z, w ∈ X such that
sep{x, y, z, w} ≥ a > 0. Take b ≥ diam{x, y, z, w} and assume that for Θ as defined in the
statement we have

‖x− y‖+ ‖y − z‖ ≤ ‖x− z‖+ Θ, ‖y − z‖+ ‖z − w‖ ≤ ‖y − w‖+ Θ.

Then taking ũ := y − x, ṽ := z − y, w̃ := w − z,

‖ũ‖+ ‖ṽ‖ ≤ ‖ũ+ ṽ‖+ Θ, ‖ṽ‖+ ‖w̃‖ ≤ ‖ṽ + w̃‖+ Θ.

Hence, using Lemma 2.4 and the fact that ‖ũ‖, ‖ṽ‖, ‖w̃‖ ≥ a, we get

‖u‖+ ‖v‖ ≤ ‖u+ v‖+ 2δ(ε̃), ‖v‖+ ‖w‖ ≤ ‖v + w‖+ 2δ(ε̃),

where
u :=

ũ

‖ũ‖
, v :=

ṽ

‖ṽ‖
, w :=

w̃

‖w̃‖
and ε̃ :=

ε

2b
.

Thus,

min

{∥∥∥∥u+ v

2

∥∥∥∥ ,∥∥∥∥v + w

2

∥∥∥∥} ≥ 1− δ(ε̃)

and so, by (UBW)′, ‖u+ v + w‖ ≥ ‖u‖+ ‖v‖+ ‖w‖ − ε̃. In particular,

‖u‖+ ‖v‖ ≤ ‖u+ v‖+ ε̃ and ‖u+ v + w‖ ≥ ‖u+ v‖+ ‖w‖ − ε̃. (2.3)

Hence for α := ‖y − x‖, β := ‖z − y‖, γ := ‖w − z‖ we have α, β, γ ≤ b and (w.l.o.g. β ≥ α)

‖x− w‖ = ‖ũ+ ṽ + w̃‖ = ‖αu+ βv + γw‖ ≥ ‖β(u+ v) + γw‖ − (β − α)‖u‖
≥ β‖u+ v‖+ γ‖w‖ − (β − α)‖u‖ − b · ε̃ by (2.3) and Lemma 2.4
≥ β(‖u‖+ ‖v‖ − ε̃) + γ‖w‖ − β‖u‖+ α‖u‖ − b · ε̃ by (2.3)
≥ α‖u‖+ β‖v‖+ γ‖w‖ − 2bε̃ = ‖ũ‖+ ‖ṽ‖+ ‖w̃‖ − ε ≥ ‖x− z‖+ ‖z − w‖ − ε.

In the other direction, let Θ be a modulus for (UBW) (which by switching to Θ′(ε, a, b) :=
min{ε, 1/2,Θ(ε, a, b)} we may assume to satisfy Θ(ε, a, b) ≤ min{ε, 1/2}). Define

δ(ε) :=
1

2
Θ

(
ε

2
,
1

2
, 3

)
and assume that, given ε > 0, the points u, v, w ∈ X satisfy the assumption of (UBW)′, i.e.

‖u‖ = ‖v‖ = ‖w‖ = 1, ‖u+v‖ ≥ ‖u‖+‖v‖−Θ

(
ε

2
,
1

2
, 3

)
, ‖v+w‖ ≥ ‖v‖+‖w‖−Θ

(
ε

2
,
1

2
, 3

)
.
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Denoting x := 0, y := u, z := u+ v, t := u+ v + w, the previous two inequalities become

‖z − x‖ ≥ ‖y − x‖+ ‖z − y‖ −Θ

(
ε

2
,
1

2
, 3

)
, ‖t− y‖ ≥ ‖z − y‖+ ‖t− z‖ −Θ

(
ε

2
,
1

2
, 3

)
.

As sep{x, y, z, t} ≥ 1/2 and diam{x, y, z, t} ≤ 3, by (UBW),

‖u+ v‖+ ‖w‖ = ‖z − x‖+ ‖t− z‖ ≤ ‖t− x‖+
ε

2
= ‖u+ v + w‖+

ε

2

and so

3 = ‖u‖+‖v‖+‖w‖ ≤ ‖u+v‖+‖w‖+Θ

(
ε

2
,
1

2
, 3

)
≤ ‖u+v+w‖+Θ

(
ε

2
,
1

2
, 3

)
+
ε

2
≤ ‖u+v+w‖+ε.

2.2 A rate of convergence for the Lion-Man game

We analyze in the sequel the Lion-Man game in the context of general metric spaces which satisfy
(UBW). We recall first the exact definition of the game in this abstract setting. Let (X, d) be a
metric space. By a Lion-Man game with speed D > 0 we mean a pair 〈(Mn), (Ln)〉 of sequences in
X such that for all n ∈ N{

d(Mn,Mn+1) ≤ D, d(Ln+1, Ln) + d(Ln+1,Mn) = d(Ln,Mn) and

d(Ln, Ln+1) = min{D, d(Ln,Mn)}.

We say that the lion wins if the sequence (d(Ln+1,Mn)) converges to 0. Otherwise the man wins.
The main result of this paper shows that the lion always wins if X is bounded and satisfies

(UBW). Moreover, we provide an explicit rate of convergence for the sequence (d(Ln+1,Mn))
towards 0 which only depends on D, ε, an upper bound b ≥ diam(X) and a modulus of uniform
betweenness Θ for X.

Before giving our main result, we recall the following property of bounded nonincreasing real
sequences which follows from Proposition 2.27 and Remark 2.29 in [25].

Lemma 2.6 (Kohlenbach [25]). Let K > 0 and (an) be a nonincreasing sequence in [0,K]. Then

∀τ > 0 ∀g : N→ N ∃I ≤ g̃(dKτ e)(0) ∀n,m ∈ [0, g(I)] (|aI+n − aI+m| ≤ τ) ,

where g̃ := Id + g and g̃n+1(0) := g̃(g̃n(0)), g̃0(0) := 0.

Denote Dn = d(Ln,Mn), n ∈ N. Note first that if Dn ≥ D, then

Dn+1 ≤ d(Ln+1,Mn) + d(Mn,Mn+1) = Dn −D + d(Mn,Mn+1) ≤ Dn. (2.4)

Thus, if Dn ≥ D for all n ∈ N, then (Dn) is nonincreasing.
We can distinguish two mutually exclusive situations when the lion wins:

(1) there exists n0 ∈ N such that Dn0 < D.

(2) Dn ≥ D for all n ∈ N and limn→∞Dn = D.
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In the following, let (X, d) be a metric space which satisfies (UBW) with a modulus of uniform
betweenness Θ : (0,∞)3 → (0,∞). We define Θ(ε) := Θ(ε, ε, b) and assume w.l.o.g. that Θ(ε) ≤ ε
for all ε > 0 (otherwise take Θ′(ε, a, b) := min{ε,Θ(ε, a, b)}). Let b ≥ diam(X) > 0 and D > 0.
Take N ∈ N such that

b+ 1 < ND, (2.5)

e.g. N :=
⌈
b+1
D

⌉
+ 1.

Theorem 2.7. Let 〈(Mn), (Ln)〉 be a Lion-Man game in X with speed D. Then

∀ε > 0∀n ≥ ΩD,b,Θ(ε) (d(Ln,Mn) < D + ε) ,

where
ΩD,b,Θ(ε) := N +N

⌈
b

ΘN (α)

⌉
with

0 < α ≤ min

{
1

N
,
ε

2
,
D

2

}
. (2.6)

Corollary 2.8. Under the same assumptions:

∀ε > 0 ∀n ≥ ΩD,b,Θ(ε) (d(Ln+1,Mn) < ε) .

Proof. The claim follows from the theorem since d(Ln+1,Mn) = max{0, d(Ln,Mn)−D}.

Remark 2.9. Using Proposition 2.3, we obtain as an immediate consequence one of the implications
proved in [30, Theorem 4.2], namely that the lion always wins the Lion-Man game played in a
compact geodesic space that satisfies (BW). Even more, the condition that the space is uniquely
geodesic imposed in [30, Theorem 4.2] is no longer assumed (see also [39]).

Proof of Theorem 2.7. Let ε > 0 and 0 < α ≤ min {1/N, ε/2, D/2} .We use the notation introduced
above. For simplicity, denote

ω = ΩD,b,Θ(ε).

Suppose first that there exists n0 ∈ N such that Dn0 < D. If n0 ≤ ω, then for all n ≥ n0,
Dn ≤ D < D + ε and the conclusion holds.

So we only need to consider the following two cases:

(i) there exists n0 > ω with Dn0 < D and Dn ≥ D for all n ≤ n0 − 1.

(ii) Dn ≥ D for all n ∈ N.

Observe that in case (i), applying (2.4), Dn+1 ≤ Dn for all n ≤ n0−1. Then it is enough to show
that there exists n ≤ ω such that Dn < D + ε. Indeed, if k ∈ [n, n0 − 1], then Dk ≤ Dn < D + ε.
Otherwise, if k ≥ n0, Dk ≤ D < D + ε.

For case (ii), as (Dn) is nonincreasing, again we only need to show that there exists n ≤ ω such
that Dn < D + ε. Consequently, in the following we treat both cases at once.

Consider the sequence (En) defined by

En =

{
Dn, if n ≤ ω,
D, otherwise.

This is a nonincreasing sequence in [0, b] and we can apply Lemma 2.6 taking τ = ΘN (α) and the
function g constantly equal to N . Thus, there exists I ≤ N

⌈
b

ΘN (α)

⌉
such that D ≤ DI+n+1 ≤ DI+n

for all n < N and
|DI+n −DI+m| ≤ ΘN (α), (2.7)
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for all n,m ∈ [0, N ]. Here we use the fact that if n ∈ [0, N ], then I + n ≤ ω, so EI+n = DI+n.
Assume that for all n ∈ [0, N ], DI+n ≥ D + ε. Denoting γ = DI+N −D ≥ ε, we have

D + γ = DI+N ≤ DI+n

≤ DI+N + ΘN (α) by (2.7)

= D + γ + ΘN (α),

hence
D + γ ≤ DI+n ≤ D + γ + ΘN (α), (2.8)

for all n ∈ [0, N ].
Denote now ln = LI+n and mn = MI+n for n ∈ [0, N ]. Then d(ln,mn) = DI+n.

Claim. For all n ∈ [0, N ],

(i) d(l0, ln) + d(ln,mn) ≤ d(l0,mn) + ΘN−n(α),

(ii) d(l0, ln) ≥ n(D − α).

Proof of Claim. We use induction. For n = 0, the two inequalities are obviously true. As our
induction hypothesis (I.H.), suppose that (i) and (ii) hold for n = k ≤ N − 1. We prove that they
also hold for n = k + 1. We have

d(l0, lk+1) + d(lk+1,mk) ≥ d(l0,mk)

≥ d(l0, lk) + d(lk,mk)−ΘN−k(α) by (i)-I.H.

= d(l0, lk) + d(lk, lk+1) + d(lk+1,mk)−ΘN−k(α).

Hence,

d(l0, lk+1) ≥ d(l0, lk) + d(lk, lk+1)−ΘN−k(α)

≥ k(D − α) +D −ΘN−k(α) by (ii)-I.H.
≥ (k + 1)(D − α),

which proves (ii) for k + 1. Also,

d(l0,mk) ≥ d(l0, lk+1) + d(lk+1,mk)−ΘN−k(α). (2.9)

Next we obtain

d(lk+1,mk) + d(mk,mk+1) ≤ d(lk,mk)−D +D = DI+k ≤ DI+N + ΘN (α) by (2.7)

≤ d(lk+1,mk+1) + ΘN (α) ≤ d(lk+1,mk+1) + ΘN−k(α),

i.e.
d(lk+1,mk) + d(mk,mk+1) ≤ d(lk+1,mk+1) + ΘN−k(α). (2.10)

Under the assumption that sep{l0, lk+1,mk,mk+1} ≥ α, relations (2.9) and (2.10) imply, using that
Θ is a modulus of uniform betweenness (applied to x := mk+1, y := mk, z := lk+1, w := l0), that

d(l0,mk+1) ≥ d(l0, lk+1) + d(lk+1,mk+1)−ΘN−k−1(α),

which is (i) for k + 1.
So in order to finish the proof of the claim, it remains to verify that sep{l0, lk+1,mk,mk+1} ≥ α :
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1. d(l0, lk+1) ≥ (k + 1)(D − α) ≥ (k + 1)α ≥ α using that we have already proved (ii) for k + 1
and (2.6).

2. d(l0,mk) ≥ d(l0, lk) + d(lk,mk)−ΘN−k(α) by (i)-I.H.

≥ d(l0, lk) + d(lk,mk)− α
≥ k(D − α) + d(lk,mk)− α by (ii)-I.H.

≥ k(D − α) +D + γ − α
= (k + 1)(D − α) + γ ≥ 3α since, by (2.6), D ≥ 2α and γ ≥ ε ≥ 2α.

3. d(l0,mk+1) ≥ d(l0,mk)− d(mk,mk+1) ≥ (k + 1)(D − α) + γ −D
≥ k(D − α)− α+ γ ≥ α.

4. d(lk+1,mk) = DI+k −D ≥ γ ≥ 2α.

5. d(lk+1,mk+1) = DI+k+1 ≥ D + γ ≥ 4α.

6. d(mk,mk+1) ≥ d(lk+1,mk+1)− d(lk+1,mk)

≥ D + γ − (DI+k −D) ≥ D + γ − γ −ΘN (α) by (2.8)

≥ D − α ≥ α.

This ends the proof of the claim.

Consequently,

d(l0, lN ) ≥ N(D − α)

> b+ 1−Nα by (2.5)
≥ b by (2.6),

a contradiction to the fact that b ≥ diam(X). This shows that there exists n ≤ I + N ≤ ω such
that Dn < D + ε.

Remark 2.10. Instead of assuming X to be bounded it suffices to assume that (Mn) is bounded.
Indeed, let B ≥ d(M0,Mn) for all n ∈ N. Then

d(M0, Ln) ≤ d(M0,Mn) + d(Ln,Mn) ≤ B + max{d(L0,M0), D}

and so for all m,n ∈ N

d(Ln,Mm) ≤ d(Ln,M0) + d(M0,Mm) ≤ 2B + max{d(L0,M0), D} =: b.

Hence we can take this b throughout the proof of the main theorem. In fact, it suffices to have
d(M0,Mn) ≤ B for all n ≤

⌈
b+1
D

⌉
+ 1.

3 Uniform betweenness in uniquely geodesic spaces

The goal of this section is to study the relation of the uniform betweenness property with other
convexity properties in uniquely geodesic spaces. The main tool will be the concept of uniform
uniqueness of geodesics which we define in Subsection 3.2. We start with an introductory part.
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3.1 Basic notions and concepts

This section discusses several geometric properties of geodesic metric spaces with emphasis on
convexity notions that play an essential role in the study of the uniform betweenness property. We
start with a brief account of some basic definitions on geodesic spaces and refer to [12] for a more
detailed treatment.

Let (X, d) be a metric space and x, y ∈ X. A geodesic joining x to y is a mapping γ : [0, l] ⊆
R→ X such that γ(0) = x, γ(l) = y and

d(γ(s), γ(s′)) = |s− s′| for all s, s′ ∈ [0, l].

It follows that l = d(x, y). We say that a geodesic γ starts at x if γ(0) = x. If every two points in X
are joined by a (unique) geodesic, then X is called a (uniquely) geodesic space. The image γ([0, l])
of a geodesic γ is called a geodesic segment with endpoints x and y. Suppose X is a geodesic space.
A point z ∈ X belongs to a geodesic segment with endpoints x and y if and only if there exists
t ∈ [0, 1] such that

d(z, x) = td(x, y) and d(z, y) = (1− t)d(x, y).

In this case, if γ is the geodesic in question, then z = γ(tl). When t = 1/2, we call such a point
z a midpoint of x and y and also denote it by m(x, y). Two given points x and y in X may be
joined by more than one geodesic and thus may have more than one midpoint. If there is a unique
geodesic segment with endpoints x and y, we denote it by [x, y] and in this case for all t ∈ [0, 1]
there exists only one point z ∈ X, denoted by (1 − t)x + ty, satisfying d(z, x) = td(x, y) and
d(z, y) = (1− t)d(x, y). In particular, x and y have a unique midpoint m(x, y) = (1/2)x+ (1/2)y.

Definition 3.1. Let (X, d) be a geodesic space. We say that X is strictly convex if for all z, x, y ∈ X
with x 6= y and all midpoints m(x, y) of x and y we have

d(z,m(x, y)) < max{d(z, x), d(z, y)}.

Strictly convex geodesic spaces are uniquely geodesic. Indeed, let γ1 and γ2 be two geodesics
joining x to y. Denote us = γ1(s) and vs = γ2(s), where s ∈ [0, d(x, y)]. If us 6= vs, then taking any
midpoint m(us, vs) it follows that

d(x, y) ≤ d(x,m(us, vs)) + d(y,m(us, vs))

< max{d(x, us), d(x, vs)}+ max{d(y, us), d(y, vs)} = d(x, y),

a contradiction. Hence us = vs for any s ∈ [0, d(x, y)], which shows that γ1 = γ2. This also
shows that in Definition 3.1 one can equivalently consider some midpoint of x and y instead of all
midpoints as this is enough to prove the uniqueness of geodesics.

Any normed vector space is a geodesic space. For this class of spaces, strict convexity is actually
equivalent to the existence of unique geodesics between any two points. However, in general this
equivalence fails to hold as the following example shows.

Example 3.2. The 2-dimensional sphere S2 is the set
{
u ∈ R3 : (u | u) = 1

}
, where (· | ·) is the

Euclidean scalar product. Endowed with the distance d : S2 × S2 → R that assigns to each
(x, y) ∈ S2 × S2 the unique number d(x, y) ∈ [0, π] such that cos d(x, y) = (x | y), S2 is a geodesic
space called the spherical space. Any octant of S2 is a uniquely geodesic space that is not strictly
convex.

Uniform convexity is a strengthening of strict convexity and was first introduced in the linear
case in [13] and in a nonlinear setting in [20, 19, 29]. Since then it was used in various forms in
metric spaces and we consider here the following variant from [29].

10



Definition 3.3. A geodesic space (X, d) is uniformly convex if for all ε ∈ (0, 2] and r > 0 there
exists δ ∈ (0, 1] such that for all z, x, y ∈ X and all midpoints m(x, y) we have

d(z, x) ≤ r
d(z, y) ≤ r
d(x, y) ≥ εr

 ⇒ d(z,m(x, y)) ≤ (1− δ)r.

A mapping η : (0, 2]× (0,∞) → (0, 1] providing for given r > 0 and ε ∈ (0, 2] such a δ = η(ε, r) is
called a modulus of uniform convexity. A modulus of uniform convexity is said to be monotone if it
is nonincreasing in the second argument.

Every uniformly convex geodesic space is strictly convex, hence uniquely geodesic. Again, uni-
form convexity is in fact equivalent to the condition obtained by considering the above implication
for some midpoint of x and y instead of all midpoints. Besides, one can show that every compact
strictly convex geodesic space is uniformly convex.

In normed vector spaces that are uniformly convex in the sense of Definition 3.3, by rescaling
balls, one can always find moduli of uniform convexity that do not depend on the second argument,
namely on the radii r. In fact, one usually considers the notion of the modulus of convexity of a
normed vector space X defined as the function δ : [0, 2]→ [0, 1] given by

δ(ε) = inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε
}
,

or - if dim(X) ≥ 2 - equivalently,

δ(ε) = inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : ‖x‖ = 1, ‖y‖ = 1, ‖x− y‖ ≥ ε
}
.

Note that δ is nondecreasing on [0, 2] and continuous on [0, 2). The normed vector space X is
uniformly convex (in the sense of Definition 3.3 and equivalently in the sense of [13]) if and only if
δ(ε) > 0 for all ε > 0. In this case δ is the largest possible modulus of uniform convexity one can
define for X.

For 1 < p <∞, an Lp space over a measurable space is uniformly convex and, if δ is its modulus
of convexity and η : (0, 2]→ (0, 1] is defined by

η(ε) =


p− 1

8
ε2, if 1 < p ≤ 2,

1

p2p
εp, if 2 < p <∞,

(3.11)

then δ(ε) ≥ η(ε) for all ε ∈ (0, 2]. Hence, η is a modulus of uniform convexity for Lp.
A related notion is the characteristic of convexity of a normed vector space defined as the number

ε0 = sup{ε ∈ [0, 2] : δ(ε) = 0}.

Then X is uniformly convex if and only if ε0 = 0. In addition, δ is strictly increasing on [ε0, 2].
These concepts and proofs of the properties mentioned above can be found e.g. in [18, Chapter 5].

A particular notion of uniform convexity, called p-uniformly convexity, was introduced by Ball,
Carlen and Lieb [5] in the linear case and, more recently, in the setting of geodesic spaces by Naor
and Silberman [32] in the following way: given 1 < p < ∞, a geodesic space (X, d) is p-uniformly
convex if there exists a parameter c > 0 such that for all x, y, z ∈ X, all t ∈ [0, 1] and all geodesics
γ joining x to y,

d(z, γ(td(x, y)))p ≤ (1− t) d(z, x)p + t d(z, y)p − c

2
t(1− t) d(x, y)p. (3.12)

11



Thus, a geodesic space that is p-uniformly convex with parameter c > 0 is uniformly convex (in the
sense of Definition 3.3) and admits a modulus of uniform convexity that does not depend on the
second argument

η(ε) =
c

8p
εp. (3.13)

Estimations on c depending on the value of p were given in [28]. Namely, c ≤ 2(p− 1) if p ∈ (1, 2)
and c ≤ 8/2p if p ∈ [2,∞).

Every Lp space over a measurable space is p-uniformly convex if p > 2 and 2-uniformly convex if
p ∈ (1, 2]. As for geodesic spaces, every CAT(0) space is 2-uniformly convex with parameter c = 2
and, in this case, (3.12) provides a characterization of CAT(0) spaces. For κ > 0, any CAT(κ) space
X with diam(X) < π/(2

√
κ) is 2-uniformly convex with parameter c = (π − 2

√
κ ε) tan(

√
κ ε) for

any 0 < ε ≤ π/(2
√
κ)−diam(X), see [35]. We remark at this point that CAT(κ) spaces are defined

in terms of comparisons with the model planes i.e. the complete simply connected 2-dimensional
Riemannian manifolds of constant sectional curvature κ. More precisely, in CAT(κ) spaces, geodesic
triangles (which consist of three points and three geodesic segments joining them) are ‘thin’ when
compared to triangles with the same side lengths in the model planes. Note also that a normed
real vector space which is CAT(κ) for some κ ∈ R is pre-Hilbert. A comprehensive exposition of
CAT(κ) spaces can be found in [12].

3.2 Uniform uniquely geodesic spaces

Let (X, d) be a geodesic space. As we pointed out in the introduction, we need a quantitative
uniform version of the property that there exists exactly one geodesic joining two points in X, and
we define it next. Note that every geodesic space that satisfies the condition from below is uniquely
geodesic.

Definition 3.4. We say that X is uniformly uniquely geodesic if for all ε, b > 0 there exists ϕ > 0
such that for all x, y, z, w ∈ X with d(x, y) ≤ b and all t ∈ [0, 1] we have

max{d(z, x), d(w, x)} ≤ td(x, y)
max{d(z, y), d(w, y)} ≤ (1− t)d(x, y) + ϕ

}
⇒ d(z, w) ≤ ε.

A mapping Φ : (0,∞)2 → (0,∞) providing for given ε, b > 0 such a ϕ = Φ(ε, b) is called a modulus
of uniform uniqueness.

A somehow related property for CAT(0) spaces can be found in [25, Lemma 17.20] and [12,
Chapter II, Lemma 9.15].

Proposition 3.5. Compact uniquely geodesic spaces are uniformly uniquely geodesic.

Proof. We argue by contradiction. Suppose that (X, d) is compact and uniquely geodesic, but not
uniformly uniquely geodesic. Then there exists ε > 0 such that for all n ∈ N we can find points
xn, yn, zn, wn ∈ X and numbers tn ∈ [0, 1] satisfying

max{d(zn, xn), d(wn, xn)} ≤ tnd(xn, yn), max{d(zn, yn), d(wn, yn)} ≤ (1− tn)d(xn, yn) +
1

n+ 1

and
d(zn, wn) > ε. (3.14)

By compactness, we may assume that there exist x, y, z, w ∈ X and t ∈ [0, 1] such that xn → x,
yn → y, zn → z, wn → w and tn → t. Then

d(x, y) ≤ d(z, x) + d(z, y) ≤ td(x, y) + (1− t)d(x, y) = d(x, y),
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from where z ∈ [x, y] with d(z, x) = td(x, y). In the same way, w ∈ [x, y] with d(w, x) = td(x, y),
which shows that z = w. This contradicts (3.14).

In normed vector spaces that are uniformly uniquely geodesic, by rescaling balls, it is enough to
define Φ(·, 1) in order to obtain a modulus of uniform uniqueness: one can take Φ(ε, b) = bΦ(ε/b, 1)
for all ε, b > 0.

We show next that uniform convexity with a monotone modulus of uniform convexity η implies
uniform uniqueness of geodesics and one can define a modulus of uniform uniqueness in terms of η.

Theorem 3.6. Let (X, d) be a uniformly convex geodesic space that admits a monotone modulus of
uniform convexity η. Then X is uniformly uniquely geodesic and Φ : (0,∞)2 → (0,∞) defined by

Φ(ε, b) =
ε

2
η

(
ε

b+ ε/2
, b+ ε/2

)
is a modulus of uniform uniqueness for X.

In addition, if η can be written as η(ε, r) = εη̃(ε, r), where η̃ : (0, 2] × (0,∞) → (0, 1] is
nondecreasing in ε, then one can take

Φ(ε, b) = εη̃

(
ε

b+ ε
, b+ ε

)
.

Proof. Let ε, b > 0 and denote

ϕ =
ε

2
η

(
ε

b+ ε/2
, b+ ε/2

)
≤ ε

2
.

Take x, y, z, w ∈ X with d(x, y) ≤ b and t ∈ [0, 1] satisfying

max{d(z, x), d(w, x)} ≤ td(x, y) and max{d(z, y), d(w, y)} ≤ (1− t)d(x, y) + ϕ.

We need to show that d(z, w) ≤ ε. Suppose, on the contrary, that d(z, w) > ε. In this case, denoting
r1 = td(x, y) and r2 = (1− t)d(x, y), we have

ε < d(z, w) ≤ d(z, y) + d(w, y) ≤ 2(r2 + ϕ),

so
r2 + ϕ ≥ ε

2
. (3.15)

As max{d(z, x), d(w, x)} ≤ r1 (and so r1 > ε/2 > 0) and

d(z, w) > ε =
ε

r1
r1,

by uniform convexity,

d (x,m(z, w)) ≤
(

1− η
(
ε

r1
, r1

))
r1. (3.16)

At the same time, since max{d(z, y), d(w, y)} ≤ r2 + ϕ and

d(z, w) > ε ≥ ε

b+ ε/2
(r2 + ϕ),

by uniform convexity,

d (y,m(z, w)) ≤
(

1− η
(

ε

b+ ε/2
, r2 + ϕ

))
(r2 + ϕ). (3.17)
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Hence,

r1 + r2 = d(x, y) ≤ d(x,m(z, w)) + d(y,m(z, w))

≤
(

1− η
(
ε

r1
, r1

))
r1 +

(
1− η

(
ε

b+ ε/2
, r2 + ϕ

))
(r2 + ϕ) by (3.16) and (3.17)

≤ r1 + r2 − r1η

(
ε

r1
, r1

)
+ ϕ− ε

2
η

(
ε

b+ ε/2
, r2 + ϕ

)
by (3.15).

Using the monotonicity of η we obtain

0 < r1η

(
ε

r1
, r1

)
≤ ϕ− ε

2
η

(
ε

b+ ε/2
, b+ ε/2

)
,

a contradiction.
Suppose now η(ε, r) = εη̃(ε, r) with η̃ nondecreasing in ε. For ε, b > 0, let

ϕ = εη̃

(
ε

b+ ε
, b+ ε

)
≤ ε.

As max{d(z, y), d(w, y)} ≤ r2 + ϕ and

d(z, w) > ε =
ε

r2 + ϕ
(r2 + ϕ),

by uniform convexity and the monotonicity of η we have

d (y,m(z, w)) ≤
(

1− η
(

ε

r2 + ϕ
, r2 + ϕ

))
(r2 + ϕ)

≤
(

1− η
(

ε

r2 + ϕ
, b+ ε

))
(r2 + ϕ)

=

(
1− ε

r2 + ϕ
η̃

(
ε

r2 + ϕ
, b+ ε

))
(r2 + ϕ).

Using the monotonicity of η̃ we obtain

d (y,m(z, w)) ≤
(

1− ε

r2 + ϕ
η̃

(
ε

b+ ε
, b+ ε

))
(r2 + ϕ). (3.18)

The same reasoning as before applying now (3.18) instead of (3.17) finishes the proof.

In particular, using (3.11), for 1 < p < ∞, Lp spaces over measurable spaces admit a modulus
of uniform uniqueness Φ : (0,∞)2 → (0,∞) defined by

Φ(ε, b) =


p− 1

8

ε2

(b+ ε)
, if 1 < p ≤ 2,

1

p2p
εp

(b+ ε)p−1
, if 2 < p <∞.

(3.19)

If X is p-uniformly convex with parameter c, then, according to (3.13),

Φ(ε, b) =
c

8p

εp

(b+ ε)p−1
, (3.20)
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acts as a modulus of uniform uniqueness for X.
Revisiting Example 3.2 we can immediately notice that there exist uniformly uniquely geodesic

spaces that are not uniformly convex. Indeed, any octant of S2 is a compact uniquely geodesic
space, thus, by Proposition 3.5, it is uniformly uniquely geodesic. However, it is not strictly convex,
and hence not uniformly convex.

On the other hand, recall that in normed vector spaces, strict convexity is equivalent to unique-
ness of geodesics. This equivalence still holds when passing to the uniform versions of these prop-
erties. Namely, Theorem 3.6 and Theorem 3.8 below show that in normed vector spaces uniform
uniqueness of geodesics is equivalent to uniform convexity, and respective moduli can be expressed
in terms of each other. Before proving Theorem 3.8, we recall the following property of the modulus
of convexity. Its proof can be found e.g. in [18, p. 56], but since it is short, for completeness we
include it below.

Lemma 3.7 (Goebel and Kirk [18]). Let (X, ‖ · ‖) be a normed vector space of dimension ≥ 2 with
modulus of convexity δ and characteristic of convexity ε0. If ε0 < 2, then

δ(2(1− δ(ε))) ≤ 1− ε

2
,

for all ε ∈ (ε0, 2].

Proof. Let ε ∈ (ε0, 2]. Clearly, if δ(ε) = 1 (which can only happen for ε = 2), then the inequality
holds. Moreover, δ(ε) > 0 and so we can assume that δ(ε) ∈ (0, 1). Let τ ∈ (0, 1 − δ(ε)) and take
x, y ∈ X with

‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ ε, and
∥∥∥∥x+ y

2

∥∥∥∥ ≥ 1− δ(ε)− τ.

As δ is nondecreasing, we get δ(‖x+ y‖) ≥ δ(2(1− δ(ε)− τ)). Furthermore,

ε

2
≤ ‖x− y‖

2
=
‖x+ (−y)‖

2
≤ 1− δ(‖x− (−y)‖) = 1− δ(‖x+ y‖).

Hence,
δ(2(1− δ(ε)− τ)) ≤ 1− ε

2

and we only need to let τ ↘ 0 to obtain the desired inequality.

Theorem 3.8. Let (X, ‖ · ‖) be a normed vector space of dimension ≥ 2 that is uniformly uniquely
geodesic with a modulus of uniform uniqueness Φ satisfying Φ < 1. Then X is uniformly convex
and its modulus of convexity δ can be estimated by

δ(ε) ≥ 1

2
Φ
(ε

3
, 1
)
,

for all ε ∈ (0, 2]. In particular, η : (0, 2]→ (0, 1] defined by

η(ε) =
1

2
Φ
(ε

3
, 1
)

is a modulus of uniform convexity for X.
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Proof. Let ε0 be the characteristic of convexity of X and denote for simplicity ϕ : (0,∞)→ (0, 1),
ϕ(ε) = Φ(ε, 1).

We show first that ε0 < 2. If ε0 = 2, then δ(2− ϕ(1/2)) = 0, so there exist x, y ∈ X with

‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ 2− ϕ(1/2), and
∥∥∥∥x+ y

2

∥∥∥∥ > 1

2
.

Denote t = (2− ϕ(1/2))−1. Then 1− t = (1− ϕ(1/2)) (2− ϕ(1/2))−1,

‖x‖ = 1 ≤ t‖x− y‖ and ‖y‖ = 1 ≤ (1− t)‖x− y‖+ ϕ(1/2).

Letting w = (1− t)x+ ty, by uniform uniqueness, ‖w‖ ≤ 1/2. Similarly, letting w′ = tx+ (1− t)y,
we get ‖w′‖ ≤ 1/2 and so ∥∥∥∥x+ y

2

∥∥∥∥ =

∥∥∥∥w + w′

2

∥∥∥∥ ≤ 1

2
,

a contradiction.
Since δ is continuous on [0, 2), we have δ(ε0) = 0. Suppose that ε0 > 0. Then we can take

ε ∈ (ε0, 2) such that δ(ε) < ϕ(ε0/2)/2. Applying Lemma 3.7, there exist x, y ∈ X such that

‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ 2(1− δ(ε)), and
∥∥∥∥x+ y

2

∥∥∥∥ > ε0

2
.

Let now t = (2− ϕ(ε0/2))−1. Then 1− t = (1− ϕ(ε0/2)) (2− ϕ(ε0/2))−1,

‖x‖ ≤ t‖x− y‖ and ‖y‖ ≤ (1− t)‖x− y‖+ ϕ(ε0/2).

As before one can show that ∥∥∥∥x+ y

2

∥∥∥∥ ≤ ε0

2
,

another contradiction. Therefore, ε0 = 0, so X is uniformly convex.
Assume now that δ(ε) < ϕ(ε/3)/2 for some ε ∈ (0, 2]. By Lemma 3.7, there exist x, y ∈ X

satisfying

‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ 2(1− δ(ε)), and
∥∥∥∥x+ y

2

∥∥∥∥ > ε

3
.

Arguing as before one shows that the assumption is false, hence the desired estimate holds.

3.3 Uniform uniquely geodesic spaces and uniform betweenness

In a uniquely geodesic space X, the betweenness property (BW) given in Definition 2.1 can be
reformulated in the following equivalent way: for every four pairwise distinct points x, y, z, w ∈ X,

y ∈ [x, z]
z ∈ [y, w]

}
⇒ y, z ∈ [x,w].

Moreover, (BW) is equivalent to strong convexity and there exist uniquely geodesic spaces that do
not satisfy (BW) (see [30] and [24]). Recall however that condition 2.1 implies (BW). We now
show that uniformly uniquely geodesic spaces where (2.1) holds satisfy (UBW) (see Definition 2.2).
In addition, given a modulus of uniform uniqueness, one can convert it into a modulus of uniform
betweenness.
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Theorem 3.9. Let (X, d) be a uniformly uniquely geodesic space with a modulus of uniform unique-
ness Φ. Additionally, suppose that (2.1) holds for all x, y, z ∈ X and all t ∈ [0, 1]. Then X satisfies
(UBW) and the mapping Θ : (0,∞)3 → (0,∞) defined by

Θ(ε, a, b) = min
{
a,Φ

(
min

{aε
8b
,
a

2

}
, b
)}

is a modulus of uniform betweenness for X.

Proof. Let ε, a, b > 0 and θ = Θ(ε, a, b). Take x, y, z, w ∈ X such that sep{x, y, z, w} ≥ a,
diam{x, y, z, w} ≤ b,

d(x, y) + d(y, z) ≤ d(x, z) + θ and d(y, z) + d(z, w) ≤ d(y, w) + θ.

As θ ≤ a and d(y, z) ≥ a, there exists t ∈ [0, 1] such that d(x, y) = td(x, z). Similarly, one can find
s ∈ [0, 1] such that d(y, z) = sd(y, w). Then

d(y, z) ≤ (1− t)d(x, z) + θ and d(z, w) ≤ (1− s)d(y, w) + θ.

Denoting y′ = (1− t)x+ tz and z′ = (1− s)y + sw, by uniform uniqueness, we obtain

max
{
d(y, y′), d(z, z′)

}
≤ min

{aε
8b
,
a

2

}
.

Using (2.1) we get
d(w, y′) ≤ (1− t)d(w, x) + td(w, z),

from where

(1− t)d(w, x) ≥ d(w, y′)− d(w, z) + (1− t)d(w, z)

≥ d(w, y)− d(y, y′)− d(w, z′)− d(z, z′) + (1− t)d(w, z)

= d(y, z′)−
(
d(y, y′) + d(z, z′)

)
+ (1− t)d(w, z)

≥ d(y′, z)− 2
(
d(y, y′) + d(z, z′)

)
+ (1− t)d(w, z)

= (1− t)d(x, z)− 2
(
d(y, y′) + d(z, z′)

)
+ (1− t)d(w, z)

≥ (1− t)d(x, z) + (1− t)d(w, z)− aε

2b
.

Note that 0 < a/(2b) ≤ 1− t because

a ≤ d(y, z) ≤ d(y, y′) + d(y′, z) ≤ a

2
+ (1− t)d(x, z) ≤ a

2
+ (1− t)b.

Therefore, d(x, z) + d(w, z) ≤ d(x,w) + ε.

Remark 3.10. As a corollary to Theorem 3.9 and the transformation formulas in Proposition 2.5
we can replace the Θ above in the linear case by

Θ′(ε, a, b) := a ·min

{
1

2
,
ε

4b
,Φ

(
min

{
ε

192b
,
1

4

}
, 3

)}
,

which has - for the Φ’s as constructed in (3.19) and (3.20) - a better dependence w.r.t. a than Θ
resulting in a better dependence of Θ′(ε, ε, b) (used in Theorem 3.6) w.r.t ε.

The next remark is based on the discussion from this section and allows us to obtain a large
number of spaces where our main results can be applied.
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Remark 3.11. It is immediate that Theorem 2.7 and Corollary 2.8 apply in particular for Lp
spaces over measurable spaces with 1 < p < ∞ and CAT(κ) spaces with diameter smaller than
π/(2
√
κ) if κ > 0. For these classes of spaces, using (3.19), (3.20) and Theorem 3.9, we have an

explicit modulus of uniform betweenness Θ and therefore we can compute the exact expression of
the rate of convergence provided by Corollary 2.8. Disregarding the quantitative aspect, in the
setting of CAT(κ) spaces, this recovers corresponding results from [3]. Observe also that Theorem
2.7 guarantees the success of the lion when the Lion-Man game is played in a bounded convex subset
of a uniformly convex normed space.

4 Uniform betweenness without unique geodesics

In this section we consider two particular instances of geodesic metric spaces where geodesics joining
two points are not necessarily unique, but which still satisfy (UBW): Ptolemy spaces and a certain
nonstrictly convex normed space of dimension 3. In each case we compute a modulus of uniform
betweenness.

4.1 Ptolemy spaces

Definition 4.1. A metric space (X, d) is called a Ptolemy space if

d(x, z)d(y, w) ≤ d(x, y)d(z, w) + d(x,w)d(y, z),

for all x, y, z, w ∈ X.

In normed spaces, the above inequality (with the natural metric d(x, y) = ‖x− y‖ for x, y ∈ X)
provides a characterization of inner product spaces. In the geodesic setting, Ptolemy spaces proved
to be significant in the study of the boundary at infinity of CAT(−1) spaces (see [17]). Every
CAT(0) space is a Ptolemy space, but there exist complete bounded geodesic Ptolemy spaces that
are not uniquely geodesic. However, in the presence of Busemann convexity, Ptolemy spaces satisfy
the CAT(0) condition (see [16]).

In [34], it was shown that Ptolemy metric spaces have (BW). The proof can easily be seen to
establish even (UBW) and the following modulus can be extracted.

Proposition 4.2. Let (X, d) be a Ptolemy space. Then Θ(ε, a, b) :=
√
b2 + aε− b is a modulus of

uniform betweenness.

Proof. Let ε, a, b > 0 and θ = Θ(ε, a, b). Take x, y, z, w ∈ X with sep{x, y, z, w} ≥ a > 0 and
diam{x, y, z, w} ≤ b. Let

d(x, y) + d(y, z) ≤ d(x, z) + θ and d(y, z) + d(z, w) ≤ d(y, w) + θ.

Then

d(x, y)d(y, z) + d(y, z)2 + d(x, y)d(z, w) + d(y, z)d(z, w) = (d(x, y) + d(y, z)) (d(y, z) + d(z, w))

≤ (d(x, z) + θ)(d(y, w) + θ) ≤ d(x, z)d(y, w) + 2θb+ θ2

≤ d(x, y)d(z, w) + d(x,w)d(y, z) + 2θb+ θ2.

Hence
d(x, y)d(y, z) + d(y, z)2 + d(y, z)d(z, w) ≤ d(x,w)d(y, z) + 2θb+ θ2

and so dividing by d(y, z) ≥ a gives

d(x, z) + d(z, w) ≤ d(x, y) + d(y, z) + d(z, w) ≤ d(x,w) +
2θb+ θ2

a
= d(x,w) + ε.
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4.2 A renorming of R3

In [15], the authors considered the normed space (R3, ‖ · ‖), where for (x, y, z) ∈ R3,

‖(x, y, z)‖ :=
√
|z2 − (x2 + y2)|+ 3z2 + x2 + y2,

and showed that it is not strictly convex, but satisfies (BW). Here we extract a modulus of uniform
betweenness by analyzing the proof from [15] quantitatively. In the rest of this section ‖ · ‖ refers to
the above norm, while ‖ · ‖2 denotes the Euclidean norm on R3. We need several lemmas, the first
two of which are easy to check.

Lemma 4.3. The function
√
· is 1-Lipschitz on [1/4,∞) and 2-Lipschitz on [1/16,∞).

Lemma 4.4. For all u ∈ R3, ‖u‖2 ≤ ‖u‖ ≤ 2‖u‖2.

Define X1 := {(x, y, z) ∈ R3 : z2 ≤ x2 + y2}, X2 := {(x, y, z) ∈ R3 : z2 ≥ x2 + y2}, and given
ε > 0, Xε

2 := {(x, y, z) ∈ R3 : z2 + ε ≥ x2 + y2}. Clearly, for u ∈ R3,

‖u‖ =

{ √
2‖u‖2, if u ∈ X1,

2|z|, if u ∈ X2.

Lemma 4.5. If 0 < ε ≤ 1/4, u = (x, y, z) ∈ Xε/4
2 and 1 ≥ ‖u‖ ≥ 1− ε, then 1− 2ε ≤ 2|z| ≤ 1 + ε.

Proof. Using Lemma 4.4 and the assumptions we have

x2 + y2 + z2 = ‖u‖22 ≥
1

4
‖u‖2 ≥ 9

64
≥ 1

16
. (4.21)

Applying now Lemma 4.3 and using that u ∈ Xε/4
2 we get∣∣∣∣‖u‖ −√4z2 +

ε

4

∣∣∣∣ =

∣∣∣∣‖u‖ −√∣∣∣z2 +
ε

4
− (x2 + y2)

∣∣∣+ 3z2 + x2 + y2

∣∣∣∣ ≤ 2 · ε
4

=
ε

2
.

By (4.21), we can deduce that 2z2 + ε/4 ≥ 9/64, hence, 4z2 ≥ 1/16. Using again Lemma 4.3,

|‖u‖ − 2|z|| ≤
∣∣∣∣√4z2 +

ε

4
−
√

4z2

∣∣∣∣+
ε

2
≤ ε.

Since 1 ≥ ‖u‖ ≥ 1− ε, this implies 1 + ε ≥ 2|z| ≥ 1− 2ε.

Lemma 4.6. If 0 < ε ≤ 1/8, ‖u‖ = ‖v‖ = 1, u, v ∈ Xε/4
2 and

∥∥u+v
2

∥∥ ≥ 1− 1/25, then u+v
2 ∈ Xε

2 .

Proof. Suppose u = (x1, y1, z1), v = (x2, y2, z2) and denote (x, y, z) = u+ v. By Lemma 4.5,

3

8
≤ 1

2
− ε ≤ |zi| ≤

1

2
+
ε

2
≤ 9

16
for i ∈ {1, 2}.

Case 1: z1 · z2 < 0, say z1 > 0 > z2. Then z2 = (|z1| − |z2|)2 ≤ (3ε/2)2 ≤ 9/256. From Lemma
4.4 and ‖(u + v)/2‖ ≥ 1 − 1/25, it easily follows that x2 + y2 ≥ 1/4 and so Lemma 4.3 applied to
|(|z2 − (x2 + y2)|+ 3z2 + x2 + y2)− 2(x2 + y2)| ≤ 4 · 9

256 gives∣∣∣‖u+ v‖ −
√

2(x2 + y2)
∣∣∣ =

∣∣∣√|z2 − (x2 + y2)|+ 3z2 + x2 + y2 −
√

2(x2 + y2)
∣∣∣ ≤ 9

64
,
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so ∥∥∥∥u+ v

2

∥∥∥∥ ≤ 1√
2

√
x2 + y2 +

9

128
. (4.22)

Using that u, v ∈ Xε/4
2 and Lemma 4.3 we have

√
x2 + y2 ≤

√
x2

1 + y2
1 +

√
x2

2 + y2
2 ≤

√
z2

1 +
ε

4
+

√
z2

2 +
ε

4
≤ |z1|+

ε

2
+ |z2|+

ε

2
≤ 1 + ε+ ε ≤ 5

4
.

Using this inequality in (4.22) we obtain ‖(u+ v)/2‖ < 1− 1/25 and so this case cannot occur.
Case 2: z1 · z2 > 0. Then z2 = (|z1|+ |z2|)2. As before,

x2 + y2 ≤
(
|z1|+

ε

2
+ |z2|+

ε

2

)2
≤ (|z1|+ |z2|)2 + 4ε = z2 + 4ε,

where the last inequality follows since 2(|z1|+ |z2|) + ε ≤ 4. This ends the proof.

Lemma 4.7. Let u, v ∈ X1 with ‖u‖ = ‖v‖ = 1 and η be a modulus of uniform convexity for
(R3, ‖ · ‖2), e.g. η(ε) = ε2/8. Let 0 < ε ≤ 1.

1. If u+v
2 ∈ X1 and

∥∥u+v
2

∥∥ ≥ 1− η(
√

2 · ε), then ‖u− v‖2 ≤ ε.

2. If u+v
2 ∈ X2 and

∥∥u+v
2

∥∥ ≥ 1− ε
2 , then u, v ∈ X

ε
2 .

Proof. 1. Let u+v
2 ∈ X1 and

∥∥u+v
2

∥∥ ≥ 1 − η(
√

2 · ε) and define ũ :=
√

2u, ṽ :=
√

2v. Since
(u+ v)/2 ∈ X1 we have∥∥∥∥ ũ+ ṽ

2

∥∥∥∥
2

=
√

2

∥∥∥∥u+ v

2

∥∥∥∥
2

=

∥∥∥∥u+ v

2

∥∥∥∥ ≥ 1− η(
√

2 · ε).

Thus
√

2‖u− v‖2 = ‖ũ− ṽ‖2 ≤
√

2 · ε since 1 = ‖u‖ = ‖ũ‖2 and analogously for v.
2. Suppose u = (x1, y1, z1) and v = (x2, y2, z2). Since u+v

2 ∈ X2 and |z1 + z2| =
∥∥u+v

2

∥∥ ≥ 1− ε/2, it
follows that |z1|+ |z2| ≥ |z1 + z2| ≥ 1− ε/2. As u ∈ X1, ‖u‖ = 1 we have 1/2 = x2

1 + y2
1 + z2

1 ≥ 2z2
1

and so |z1| ≤ 1/2. Likewise, |z2| ≤ 1/2. Consequently, (1− ε)/2 ≤ |zi| ≤ 1/2 for i ∈ {1, 2} and so

x2
1 + y2

1 =
1

2
− z2

1 ≤
1

2
− (1− ε)2

4
≤ 1

2
− 1− 2ε

4
=

1 + 2ε

4
.

Since z2
1 ≥ (1 − ε)2/4 ≥ (1 − 2ε)/4, we have that z2

1 + ε ≥ x2
1 + y2

1, i.e. u ∈ Xε
2 and, likewise,

v ∈ Xε
2 .

Lemma 4.8. Let η be as in Lemma 4.7, u ∈ X1, v ∈ X2, ‖u‖ = ‖v‖ = 1, 0 < ε ≤ 1 and

∥∥∥∥u+ v

2

∥∥∥∥ ≥ 1−min

η
(√

2·ε
4

)
√

2
,
ε

2

 .

1. If u+v
2 ∈ X1, then ‖u− v‖ ≤ ε.

2. If u+v
2 ∈ X2, then u ∈ Xε

2 .
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Proof. 1. Suppose v = (x2, y2, z2). By the assumptions on u and v and Lemma 4.4 we know that

‖u‖2 = 1/
√

2 =
√

2z2
2 ≥ ‖v‖2 ≥ 1/2.

Let ε̃ :=
√

2 · ε/4. Using the assumptions on u+v
2 we then have

√
2

(
1− η(ε̃)√

2

)
≤ 1√

2
‖u+ v‖ = ‖u+ v‖2 ≤ ‖u‖2 + ‖v‖2 ≤

√
2

and so ‖u‖2 + ‖v‖2 ≤ ‖u+ v‖2 + η(ε̃). One can now show that∥∥∥∥∥
u
‖u‖2 + v

‖v‖2
2

∥∥∥∥∥
2

≥ 1− η(ε̃),

which yields, by uniform convexity,
∥∥∥ u
‖u‖2 −

v
‖v‖2

∥∥∥
2
≤ ε̃. Then,∥∥∥∥u‖v‖2‖u‖2

− v
∥∥∥∥ ≤ 2

∥∥∥∥u‖v‖2‖u‖2
− v
∥∥∥∥

2

≤ 2ε̃‖v‖2 ≤
ε

2
.

As ‖u‖ = ‖v‖ = 1 we obtain∣∣∣∣‖v‖2‖u‖2
− 1

∣∣∣∣ =

∣∣∣∣∥∥∥∥u‖v‖2‖u‖2

∥∥∥∥− ‖v‖∣∣∣∣ ≤ ∥∥∥∥u‖v‖2‖u‖2
− v
∥∥∥∥ ≤ ε

2
.

Put together

‖u− v‖ ≤
∥∥∥∥u‖v‖2‖u‖2

− v
∥∥∥∥+

∥∥∥∥u‖v‖2‖u‖2
− u
∥∥∥∥ ≤ ε

2
+

∣∣∣∣‖v‖2‖u‖2
− 1

∣∣∣∣ · ‖u‖ ≤ ε.
2. Here the reasoning is exactly as in the proof of Lemma 4.7.2 except that to show that |z2| ≤ 1/2
we this time use 1 = ‖v‖ = 2|z2| since v ∈ X2.

Proposition 4.9. δ(ε) := min

{
η
(√

2·ε
256

)
√

2
, ε

128

}
is a modulus for the property (UBW)′ for (R3, ‖ · ‖)

when 0 < ε ≤ 1.

Proof. Let u, v, w ∈ R3 with ‖u‖ = ‖v‖ = ‖w‖ = 1 and min
{∥∥u+v

2

∥∥ ,∥∥v+w
2

∥∥} ≥ 1 − δ(ε). By
Lemmas 4.7 and 4.8 we have either

(i) ‖u− v‖ ≤ ε/64 or ‖v − w‖ ≤ ε/64 or

(ii) u, v, w ∈ Xε/64
2 .

(i) W.l.o.g. we can consider the case ‖u− v‖ ≤ ε/64. By assumption ‖v +w‖ ≥ ‖v‖+ ‖w‖ − ε/64.
Applying Lemma 2.4, ‖2v + w‖ ≥ 2‖v‖+ ‖w‖ − 2ε/64 = 3− ε/32. Hence

‖u+ v + w‖ ≥ ‖2v + w‖ − ‖u− v‖ ≥ 3− ε

32
− ε

64
> 3− ε.

(ii) Suppose u = (x1, y1, z1), v = (x2, y2, z2), w = (x3, y3, z3) and denote (x, y, z) = u + v + w.
Lemma 4.6 gives u+v

2 , v+w
2 ∈ Xε/16

2 . Applying Lemma 4.5 first to u, v, w ∈ Xε/64
2 we have

1

2
+

ε

32
≥ |zi| ≥

1

2
− ε

16
≥ 1

4
for i ∈ {1, 2, 3}
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and then to u+v
2 , v+w

2 ∈ Xε/16
2 ,

1 +
ε

4
≥ |z1 + z2|, |z2 + z3| ≥ 1− ε

2
.

Hence z1, z2, z3 have the same sign, say z1, z2, z3 > 0. Using that u, v, w ∈ X
ε/64
2 , z2

i ≥ 1/16 for
i ∈ {1, 2, 3}, Lemma 4.3 and 2z + 3ε/32 ≤ 4 we obtain

x2 + y2 ≤
(√

x2
1 + y2

1 +
√
x2

2 + y2
2 +

√
x2

3 + y2
3

)2

≤
(√

z2
1 +

ε

64
+

√
z2

2 +
ε

64
+

√
z2

3 +
ε

64

)2

≤
(
z1 +

ε

32
+ z2 +

ε

32
+ z3 +

ε

32

)2
=

(
z +

3

32
ε

)2

≤ z2 + 4
3

32
ε = z2 +

3

8
ε.

Observe that z ≥ 3/2− 3ε/16 ≥ 1/2, so z2 ≥ 1/4, and so, appealing again to Lemma 4.3,∣∣∣∣∣‖u+ v + w‖ −
√

4z2 +
3

8
ε

∣∣∣∣∣ =

∣∣∣∣∣‖u+ v + w‖ −

√∣∣∣∣z2 +
3

8
ε− (x2 + y2)

∣∣∣∣+ 3z2 + x2 + y2

∣∣∣∣∣ ≤ 3

8
ε.

Hence

‖u+ v + w‖ ≥
√

4z2 +
3

8
ε− 3

8
ε ≥ 2z − 3

8
ε ≥ 2

(
3

2
− 3

16
ε

)
− 3

8
ε > 3− ε.

Remark 4.10. Propositions 4.2, 4.9 and 2.5 provide an explicit modulus of uniform betweenness
for the classes of spaces discussed in this section. Thus, we can apply Theorem 2.7 and Corollary
2.8 for the Lion-Man game played in bounded convex subsets of these spaces.

5 Comments on the use of logic in arriving at the quantitative
analysis (‘proof mining’)

The point of departure for the investigation in this paper has been the noneffective proof for the
convergence lim

n→∞
d(Ln+1,Mn) = 0 for compact uniquely geodesic spaces satisfying the betweenness

property as given in [30] (Theorem 4.2). Since the sequence (d(Ln+1,Mn)) decreases to 0 this
statement is of the logical form

∀k ∈ N ∃n ∈ N
(
d(Ln+1,Mn) < 2−k

)
∈ ∀∃.

General logical metatheorems due to the first author (see, e.g., [25]) guarantee in such situations the
extractability of an explicit and effective rate of convergence which only depends on general metric
bounds, a modulus of total boundedness (as a quantitative form of the compactness assumption),
and moduli providing quantitative forms of ‘uniformized’ versions of being ‘uniquely geodesic’ and
satisfying the ‘betweenness property’. Technically speaking, these moduli serve to produce a solution
for the monotone Gödel functional interpretation (see [25]) of the respective properties which in this
uniformized form become (essentially) purely universal assumptions in these moduli which can be
taken as number-theoretic functions (although, for convenience, we used their ε/δ-variants). Hence,
the moduli can w.l.o.g. be assumed to be self-majorizing (in the technical sense of [25]) which would
not be the case if these moduli would not be uniform by depending on points in X.

Subsequently it turned out that the uniqueness of geodesics (and hence the use of a modulus of
uniform uniqueness in the quantitative analysis) could be avoided.
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The actual extraction of the rate of convergence, given a modulus of uniform betweenness, from
(the aforementioned generalization to the non-uniquely geodesic case of) the convergence proof of
[30, Theorem 4.2] makes this proof completely constructive by avoiding altogether the (in fact it-
erated and nested) sequential compactness argument used in the original proof and even the need
to assume compactness in the first place (but only boundedness) once the betweenness property
is written in its uniform variant (to which it is equivalent in the presence of compactness). As a
consequence, the actual rate of convergence extracted only uses a modulus of uniform betweenness,
but no modulus of total boundedness and holds for any bounded metric space satisfying the uniform
betweenness property with the given modulus. Moreover, avoiding sequential compactness explains
the very low complexity of the rate of convergence. By contrast, the use of sequential compactness,
being equivalent to the principle of so-called arithmetic comprehension, see [38], is known to in
general require the very complex computational schema of so-called bar recursion for its functional
interpretation (see [25], chapter 11). The phenomenon that any need to assume compactness alto-
gether disappears from the proof in the process of its logical analysis is a feature of this particular
proof being analyzed (see [27] for situations where this is not the case).

Let us explain the nature of our uniformization of the betweenness property and the reason why
the various moduli Θ of uniform betweenness could be produced in all the cases considered in this
paper from a logical point of view: the betweenness property can be logically re-written as

∀x, y, z, w ∈ X ∀k,m ∈ N ∃n ∈ N sep{x, y, z, w} ≥ 2−k

d(x, y) + d(y, z) ≤ d(x, z) + 2−n

d(y, z) + d(z, w) ≤ d(y, w) + 2−n

→ d(x, z) + d(z, w) < d(x,w) + 2−m

 ,

where
(
. . .
)
is equivalent to a purely existential formula A∃ (since ≤, < between reals are purely

universal resp. existential relations; see [25]).
Logical bound extraction theorems (see e.g. in [25] Theorem 17.52 for the metric and Theorem

17.69 for the normed case) allow one to extract from (suitable) proofs ofX satisfying the betweenness
property, bounds (and hence realizers) Θ(m, b, k) for ∃n ∈ N which only depend on k,m and
majorants for x, y, z, w relative to some reference point a ∈ X one can choose. For a := x this
amounts to having a bound b ∈ N with b ≥ d(x, y), d(x, z), d(x,w) which (up to a factor 2) is
equivalent to having a b with b ≥ diam{x, y, z, w}. Θ(n, k, b) is - when written more conveniently
in ε/δ-notation - nothing else but our concept of a modulus for uniform betweenness.

In a similar way, one can extract a modulus of uniform uniqueness from suitable proofs of
ordinary uniqueness.

By ‘suitable’ proofs we mainly mean that the space X in question either is a concretely definable
boundedly compact space (such as (R3, ‖ · ‖DW) from the previous section) or - more importantly -
the proof only uses that X belongs to a general class of ‘abstract’ spaces. In the case of our paper,
the relevant classes of spaces are metric spaces, uniformly convex geodesic and normed spaces (with
given modulus), geodesic spaces, uniformly uniquely geodesic spaces (with given modulus) satisfying
the convexity condition (2.1) and Ptolemy spaces which all are permitted in (suitable adaptations)
of the aforementioned metatheorems. For metric spaces, uniformly convex geodesic as well as
uniformly convex normed spaces such metatheorems are explicitly formulated in the literature. For
Ptolemy spaces one only has to observe that the defining axiom is purely universal (and any such
assumption is permitted). This also applies to the case of uniformly uniquely geodesic spaces (with
given modulus) with a convex metric which can be axiomatized as in [25] by a triple (X, d,W )
where now, however, W is only required to satisfy the axioms (i), (ii) in Definition 17.9 in [25] plus
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another universal axiom stating that the given modulus satisfies the uniform uniqueness condition
for the geodesics. Note that it is only due to the presence of this uniqueness axiom that the axiom
(i) expresses the convexity of the metric (which speaks about arbitrary geodesics and not just the
one selected by W ).

All this explains on general logical grounds why the moduli of uniform uniqueness (for geodesics)
and uniform betweenness produced in this paper could be extracted from the resp. proofs of ordinary
uniqueness and betweenness (provided that assumptions such as ‘strict convexity’ had been properly
uniformized to uniform convexity).

Such uniformizations (and extractions of the resp. moduli) are systematically performed by
the logical proof-interpretations (see [25]) used to establish the bound extraction theorems, namely
modern monotone versions of Gödel’s so-called functional (‘Dialectica’) interpretation. In fact, the
monotone functional interpretation allows one to eliminate (and hence to use freely) a nonstandard
uniform boundedness principle ∃-UBX (see [25], section 17.7 and, in particular, Theorem 17.101)
which can easily be seen to imply the equivalence of ordinary uniqueness (of geodesics) and uniform
uniqueness (with modulus) and of betweenness and uniform betweenness (with modulus) for any
bounded geodesic resp. metric space (see section 17.8 in [25] for many similar results). Model-
theoretically speaking this roughly corresponds (noneffectively) to going to an ultrapower of the
structures in question (see e.g. [21]).

As usual with case studies in proof mining, when the actual extraction of the data in question
is carried out it also comes with an ordinary analytic proof of their correctness which does not refer
to any results from logic which, however, were instrumental for finding these data.

6 Acknowledgements

Part of this work was carried out while the authors visited the Mathematical Research Institute
of Oberwolfach (Research in Pair stay 1911p) and the Institute of Mathematics of the University
of Seville - IMUS. They would like to thank these institutions for the support. This work was
also partially supported by DGES (Grant MTM2015-65242-C2-1P), DFG (Project KO 1737/6-1),
and by a grant of the Romanian Ministry of Education and Research, CNCS - UEFISCDI, project
number PN-III-P1-1.1-TE-2019-1306, within PNCDI III.

References

[1] M. Aigner, M. Fromme, A game of cops and robbers, Discrete Appl. Math. 8 (1984), 1–12.

[2] S. Alexander, R. Bishop, R. Ghrist, Pursuit and evasion in non-convex domains of arbitrary
dimension, in: Proc. of Robotics: Science & Systems (2006).

[3] S. Alexander, R. Bishop, R. Ghrist, Total curvature and simple pursuit on domains of curvature
bounded above, Geom. Dedicata 149 (2010), 275–290.

[4] L. Alonso, A.S. Goldstein, E. Reingold, “Lion and Man”: upper and lower bounds, ORSA J.
Comput. 4 (1992), 447–452.

[5] K. Ball, E.A. Carlen, E.H. Lieb, Sharp uniform convexity and smoothness inequalities for trace
norms, Invent. Math. 115 (1994), 463–482.

[6] M. Bačák, Note on a compactness characterization via a pursuit game, Geom. Dedicata 160
(2012), 195–197.

24



[7] S. Bhattacharya, S. Hutchinson, On the existence of Nash equilibrium for a two-player pursuit-
evasion game with visibility constraints, Int. J. Rob. Res. 29 (2010), 831–839.

[8] B. Bollobás, I. Leader, M. Walters, Lion and man–can both win? Israel J. Math. 189 (2012),
267–286.

[9] S.D. Bopardikar, F. Bullo, J.P. Hespanha, On discrete-time pursuit-evasion games with sensing
limitations, IEEE Trans. Robot. 24 (2008), 1429–1439.

[10] M. Bramson, K. Burdzy, W. Kendall, Shy couplings, CAT(0) spaces and the Lion and Man,
Ann. Probab. 41 (2013), 744–784.

[11] M. Bramson, K. Burdzy, W. Kendall, Rubber bands, pursuit games and shy couplings, Proc.
Lond. Math. Soc. 109 (2014), 121–160.

[12] M.R. Bridson, A. Haefliger, Metric spaces of non-positive curvature, Springer-Verlag, Berlin,
1999.

[13] J.A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396–414.

[14] H.T. Croft, “Lion and man”: A postscript, J. London Math. Soc. 39 (1964), 385–390.

[15] C.R. Diminnie, A.G. White, Remarks on strict convexity and betweenness postulates, Demon-
stratio Math. 14 (1981), 209–220.

[16] T. Foertsch, A. Lytchak, V. Schroeder, Nonpositive curvature and the Ptolemy inequality, Int.
Math. Res. Not. IMRN 2007 (2007), rnm100, 15 pp.

[17] T. Foertsch, V. Schroeder, Hyperbolicity, CAT(−1)-spaces and the Ptolemy inequality, Math.
Ann. 350 (2011), 339–356.

[18] K. Goebel, W.A. Kirk, Topics in metric fixed point theory, Cambridge University Press, Cam-
bridge, 1990.

[19] K. Goebel, S. Reich, Uniform convexity, hyperbolic geometry, and nonexpansive mappings,
Marcel Dekker, Inc., 1984.

[20] K. Goebel, T. Sekowski, A. Stachura, Uniform convexity of the hyperbolic metric and fixed
points of holomorphic mappings in the Hilbert ball, Nonlinear Anal. 4 (1980), 1011–1021.

[21] D. Günzel, U. Kohlenbach, Logical metatheorems for abstract spaces axiomatized in positive
bounded logic, Adv. Math. 290 (2016), 503–551.

[22] B. Halpern, The robot and the rabbit–a pursuit problem, Amer. Math. Monthly 76 (1969),
140–145.

[23] E.V. Huntington, J.R. Kline, Sets of independent postulates for betweenness, Trans. Amer.
Math. Soc. 18 (1917), 301–325.

[24] M. Katz (https://mathoverflow.net/users/28128/mikhail-katz), Local geodesics in
uniquely geodesic spaces. MathOverflow, URL (version: 2014-08-12): https://mathoverflow.
net/q/178345.

[25] U. Kohlenbach, Applied Proof Theory: Proof Interpretations and their Use in Mathematics,
Springer Monographs in Mathematics, Springer, Berlin-Heidelberg, 2008.

[26] U. Kohlenbach, Proof-theoretic Methods in Nonlinear Analysis. In: Proc. ICM 2018, B. Sirakov,
P. Ney de Souza, M. Viana (eds.), Vol. 2, pp. 61-82. World Scientific 2019.

25

https://mathoverflow.net/users/28128/mikhail-katz
https://mathoverflow.net/q/178345
https://mathoverflow.net/q/178345


[27] U. Kohlenbach, L. Leuştean, A. Nicolae, Quantitative results on Fejer monotone sequences,
Comm. Contemp. Math. 20 (2018), 1750015, 42pp.

[28] K. Kuwae, Jensen’s inequality on convex spaces, Calc. Var. 49 (2014), 1359–1378.

[29] L. Leuştean, A quadratic rate of asymptotic regularity for CAT(0) spaces, J. Math. Anal. Appl.
325 (2007), 386–399.

[30] G. López-Acedo, A. Nicolae, B. Piątek, “Lion-Man” and the fixed point property, Geom. Ded-
icata 202 (2019), 69–80.

[31] J.E. Littlewood, Littlewood’s Miscellany (ed: B. Bollobás), Cambridge University Press, Cam-
bridge, 1986.

[32] A. Naor, L. Silberman, Poincaré inequalities, embeddings, and wild groups, Compos. Math.
147 (2011), 1546–1572.

[33] P.J. Nahin, Chases and escapes. The mathematics of pursuit and evasion, Princenton University
Press, Princenton, NJ, 2007.

[34] A. Nicolae, Asymptotic behavior of averaged and firmly nonexpansive mapping in geodesic
spaces, Nonlinear Anal. 87 (2013), 102–115.

[35] S.-I. Ohta, Convexities of metric spaces, Geom. Dedicata 125 (2007), 225–250.

[36] A. Papadopoulos, Metric Spaces, Convexity and Nonpositive Curvature, European Math. Soc.,
Zürich, 2005.

[37] J. Sgall, Solution of David Gale’s lion and man problem, Theoret. Comput. Sci. 259 (2001),
663–670.

[38] S.G. Simpson, Subsystems of Second Order Arithmetic, 2nd edition, ASL Perspectives in Math-
ematical Logic, Cambridge University Press, Cambridge, 2009.

[39] O. Yufereva, Lion and Man Game in Compact Spaces. Dyn. Games Appl. 9 (2019), 281–292.

26


	Introduction
	A rate of convergence for the Lion-Man game
	Betweenness and uniform betweenness
	A rate of convergence for the Lion-Man game

	Uniform betweenness in uniquely geodesic spaces
	Basic notions and concepts
	Uniform uniquely geodesic spaces
	Uniform uniquely geodesic spaces and uniform betweenness

	Uniform betweenness without unique geodesics
	Ptolemy spaces
	A renorming of R3

	Comments on the use of logic in arriving at the quantitative analysis (`proof mining')
	Acknowledgements

