
Rates of convergence for iterative solutions of

equations involving set-valued accretive operators

Ulrich Kohlenbach and Thomas Powell

Department of Mathematics
Technische Universität Darmstadt

Schlossgartenstraße 7
64289 Darmstadt, Germany

Email: {kohlenbach,powell}@mathematik.tu-darmstadt.de

April 22, 2020

Abstract

This paper studies proofs of strong convergence of various iterative
algorithms for computing the unique zeros of set-valued accretive oper-
ators that also satisfy some weak form of uniform accretivity at zero.
More precisely, we extract explicit rates of convergence from these proofs
which depend on a modulus of uniform accretivity at zero, a concept
first introduced by A. Koutsoukou-Argyraki and the first author in 2015.
Our highly modular approach, which is inspired by the logic-based proof
mining paradigm, also establishes that a number of seemingly unrelated
convergence proofs in the literature are actually instances of a common
pattern.
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1 Introduction

The problem of approximating zeros of accretive set-valued operators A : X →
2X has been widely studied since the 70’s. This is primarily due to the impor-
tance of these operators in modelling abstract Cauchy problems such as evolu-
tion equations (see e.g. [2, 3, 29]), as well as - for Hilbert spaces H = X (and
under the name monotone operators) - their relevance in convex optimization
for the computation of minima of lower semi-continuous functions f , where then
A = ∂f is the subdifferential of f (see e.g. [4]) and the zero set of A coincides
with the set of minimizers of f.

In the context of Hilbert spaces, a standard tool for approximating a zero
of A is the famous Proximal Point Algorithm (PPA) (due to [25, 30]) which
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iterates, for varying coefficients λn > 0 satisfying appropriate conditions, the
(single-valued and firmly nonexpansive) resolvent JλA = (I + λA)−1 of A :

xn+1 = JλnAxn.

The PPA is studied in the context of uniformly convex Banach spaces in [7] but
has only recently been investigated quantitatively in this setting ([15] and - for
λn := λ > 0 - [21]).

For arbitrary Banach spaces, various different types of iterations from metric
fixed point theory have been used to compute zeros, such as the Krasnoselski-
Mann or Ishikawa-type iterations. Just as for the PPA, in general these iter-
ations converge only weakly (see e.g. [5]), and even when strong convergence
holds (e.g. in the finite dimensional case, for ‘Halpern-type’ or ‘Bruck-type’
modifications, or the operator being odd, see e.g. [28, 5]), there is usually -
already for X = R - no computable (in the sense of Church-Turing) rate of
convergence (see e.g. [26]).

This situation changes when A satisfies some form of strong accretivity, which
ensures that A has at most one zero 0 ∈ Aq. General theorems from logic
guarantee, for a broad range of situations, that in the presence of uniqueness one
can use quantitative data from the uniqueness proofs (e.g. so-called moduli of
uniform uniqueness) to give rates of convergence for procedures which compute
approximate solutions to problems (such as finding zeros or fixed points). For
all this see e.g. [13] (a generalization of the concept of ‘modulus of uniqueness’
to the non-unique case, a so-called modulus of regularity, also gives a rate of
convergence of Fejér monotone sequences which has been used in different forms
many times in the literature, see [18] and note that e.g. the ‘uniform convergence
condition’ on A formulated in [27] states the existence of a special Lipschitz-
Hölder type form of a modulus of regularity for zer A).

Most forms of strong (quasi-)accretivity are stronger and more restricted
instances of what is called uniform accretivity at zero in [16, Definition 10],
which is given a quantitative form via a modulus Θ of accretivity at zero.

The purpose of this paper is two-fold:

1. to show that in typical cases of known strongly convergent algorithms
computing the unique zero of a strongly accretive operator A, one can
extract from the convergence proof an explicit rate of convergence in terms
of a modulus Θ of accretivity at zero;

2. to provide, using the concept of uniform accretivity at zero together with
the logical analysis of the convergence proofs, a modular and unified ac-
count of strong convergence results in the literature which at first glance
appear unrelated.

This is exemplified by selecting as test cases the implicit iteration schema from
[1] together with the explicit Ishikawa-type schemes used in [24] and in [8] (the
latter paper being further generalized e.g. in [23]). In particular, we recover as
special cases the quantitative results in [1].
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In the case of the Ishikawa-type schemes the conditions on the scalars are
so liberal that the case of Krasnoselski-Mann iterations is included as a spe-
cial case. This is possible since our pseudocontractive operators I − A arrive
from uniformly accretive operators A (see Lemma 2.6 and the comment before
the lemma). For general pseudocontractions the Krasnoselski-Mann schema is
known to fail to converge already for Lipschitzian pseudocontractive selfmap-
pings of compact subsets of a Hilbert space while the Ishikawa schema does
converge strongly in this situation under suitable conditions on the scalars (see
[10]).

Whereas the main convergence theorems in [1, Theorems 2.1 and 4.1] hold in
arbitrary Banach spaces and without any continuity assumption on A, the con-
vergence results in [8, Theorem 4.1] and [24, Theorem 2.2] use the uniform
continuity of A (w.r.t. the Hausdorff metric) while [8, Theorem 4.2] and [23,
Theorem 2.1] instead use that X is uniformly smooth. Although the assump-
tions on A being uniformly continuous and, respectively, on X being uniformly
smooth are very different, it turns out they can both be seen as instances of
the same technical lemma. The rates of convergence we extract in these cases
then also depend (in addition to Θ) on moduli of uniform continuity for A and,
respectively, for the duality mapping of X, where in the latter case such a mod-
ulus can be computed in terms of a modulus of uniform smoothness for X (see
[17]).

The various forms of strong (quasi-)accretivity used in the aforementioned
results are all covered by mostly more restrictive versions of our concept of
uniform accretivity at zero (note that [1] uses uniform accretivity to denote a
concept which is much more restrictive than our notion of uniform accretivity
at zero even when we drop the restriction ‘at zero’ as it corresponds to ψ-
strong accretivity as defined in Definition 2.3.(a) with ψ additionally assumed
to be strictly increasing). Therefore our results strengthen various convergence
theorems not just quantitatively but also qualitatively.

Since the convergence proofs we study all apply to situations where A can
be shown to have a unique zero, in our quantitative results we always assume
both the existence of a zero and well-definedness of the approximating sequence
at hand, which typically allows us to omit certain extra assumptions made in
the original papers.

Although no concepts or methods from logic are mentioned explicitly in this
paper, our approach has been motivated by the tools of the proof mining pro-
gram which uses logic-based proof transformations for the extraction of effective
bounds from prima facie noneffective proofs (see [13]). In the case of the prox-
imal point algorithm, this approach - again based on the concept of uniform
accretivity (specialized to the monotone case in Hilbert spaces) - has been used
in [22] and in the context of uniformly convex Banach spaces in [15]. For a
recent survey on proof mining in general see [14].
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2 Preliminaries

N := {0, 1, 2, 3, . . .} denotes the set of nonnegative integers.
Throughout this paper, X will be a real Banach space with dual space X∗. The
normalized duality mapping J : X → 2X

∗
is defined by

J(x) := {j ∈ X∗ : 〈x, j〉 = ‖x‖2 = ‖j‖2}.

We will make frequent use of the following well-known geometric inequality.

Lemma 2.1. For all x, y ∈ X and j ∈ J(x+ y) we have

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j〉.

Proof. Let j ∈ J(x+ y). Then

‖x+ y‖2 = 〈x+ y, j〉 ≤ ‖x‖ · ‖x+ y‖+ 〈y, j〉 ≤ 1
2 (‖x‖2 + ‖x+ y‖2) + 〈y, j〉

and the result follows.

A mapping A : X → 2X will be called an operator on X. The domain of A
is defined by D(A) := {x ∈ X : Ax 6= ∅}. We sometimes write (x, u) ∈ A for
u ∈ Ax. The range R(A) of A is defined as R(A) := {y ∈ X : ∃x ∈ X(y ∈ Ax)}.

2.1 Accretive operators

For a detailed survey of the various notions of accretivity, including quantitative
forms which come equipped with moduli, the reader is encouraged to consult
[16, Section 2.1]. Here, we simply outline the key definitions which play a role
in the present paper.

Definition 2.2. An operator A is said to be accretive if for all u ∈ Ax and v ∈ Ay
there exists some j ∈ J(x− y) such that 〈u− v, j〉 ≥ 0.

The notion of accretivity was independently introduced (in a slightly differ-
ent but equivalent form) by Browder [6], Kato [11] and Komura [20]. However,
convergence proofs of the kind we study here typically appeal to various stronger,
uniform forms of accretivity:

Definition 2.3. (a) Let ψ : [0,∞) → [0,∞) be a continuous function with
ψ(0) = 0 and ψ(x) > 0 for x > 0. Then an operator A : D(A) → 2X

is said to be ψ-strongly accretive if

∀(x, u), (y, v) ∈ A ∃j ∈ J(x− y) (〈u− v, j〉 ≥ ψ(‖x− y‖)‖x− y‖).

(b) Let φ : [0,∞)→ [0,∞) be a continuous function with φ(0) = 0 and φ(x) > 0
for x > 0. Then an operator A : D(A) → 2X is said to be uniformly φ-
accretive if

∀(x, u), (y, v) ∈ A ∃j ∈ J(x− y) (〈u− v, j〉 ≥ φ(‖x− y‖)).
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In the case of ψ-strongly accretive operators, ψ is often assumed to be strictly
increasing in addition (see e.g. [1]).

It turns out that for all of the results we study in this paper, the above no-
tions can be replaced by the following more general property of being uniformly
accretive at zero, introduced by Garćıa-Falset in [9] and given a quantitative
form by the first author in [16].

Definition 2.4. An accretive operator A : D(A)→ 2X with 0 ∈ Aq is said to be
uniformly accretive at zero if

(∗)
∀ε,K > 0 ∃δ > 0 ∀(x, u) ∈ A
(‖x− q‖ ∈ [ε,K]→ ∃j ∈ J(x− q) (〈u, j〉 ≥ δ)).

Moreover, any function Θ(·)(·) : (0,∞)× (0,∞)→ (0,∞) such that δ := ΘK(ε)
satisfies (∗) for all ε,K > 0 is called a modulus of uniform accretivity at zero
for A.

In particular, we observe that if A is uniformly φ-accretive, a modulus of
uniform accretivity at zero for A is given by

ΘK(ε) := inf{φ(x) : x ∈ [ε,max{ε,K}]}.

In the case where φ is also strictly increasing, we can simply let ΦK(ε) := φ(ε).

Remark 2.5. Though technically speaking, moduli of uniform accretivity at
zero are defined relative to some given q ∈ D(A) with 0 ∈ Aq, one can actually
show that such a q, if it exists, is necessarily unique. Moreover, a modulus of
uniqueness for q can be constructed in terms of a modulus of uniform accretivity
at zero, as is made precise in [16, Remark 2].

Accretivity of an operator A is typically associated with a corresponding
notion of pseudocontractivity for the operator (I −A). In the case of uniformly
accretive operators at zero, the correspondence is given as follows:

Lemma 2.6. Suppose that A : D(A) → 2X with 0 ∈ Aq is uniformly accretive
at zero with modulus Θ(·)(·). Then

∀ε,K > 0 ∀(x, u) ∈ (I −A)

(‖x− q‖ ∈ [ε,K]→ ∃j ∈ J(x− q) (〈u− q, j〉 ≤ ‖x− q‖2 −ΘK(ε))).

Proof. If u ∈ (I − A)x then u = x− ū for ū ∈ Ax, and thus if ‖x− q‖ ∈ [ε,K]
there exists some j ∈ J(x− q) such that 〈ū, j〉 ≥ ΘK(ε). Therefore

〈u− q, j〉 = 〈x− q, j〉 − 〈ū, j〉 = ‖x− q‖2 − 〈ū, j〉 ≤ ‖x− q‖2 −ΘK(ε).
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3 An abstract technical lemma

We begin by presenting an abstract quantitative lemma, which forms the main
unifying scheme of the paper. This technical lemma captures a key combina-
torial idea which is shared by numerous proofs of strong convergence theorems
involving accretive operators, and as we will see, quantitative versions of those
theorems can be obtained in an entirely modular fashion by instantiating the
parameters of our lemma in a suitable way. What is particularly interesting is
that in each case we study, those instantiations are obtained by appealing to
quantitative versions of assumptions which are seemingly unrelated, which here
include properties imposed on the operator A (Sections 5 and 6) or alternatively
attributes of the underlying space X (Section 7). Moreover, our abstract result
applies to different approximating schemes, including implicit schemes (Sections
4 and 5) in addition to Ishikawa-type methods (Sections 6 and 7).

3.1 Rates of convergence and divergence

We begin by specifying quantitative versions of a couple of fundamental notions.

Definition 3.1. Let (αn) be a sequence of nonnegative reals such that αn → 0.
A rate of convergence for (αn) is a function φ : (0,∞)→ N such that

∀ε > 0 ∀n ≥ φ(ε) (αn ≤ ε).

Definition 3.2. Let (αn) be a sequence of nonnegative reals such that
∑∞
i=0 αi =

∞. A rate of divergence for
∑∞
i=0 αi is a function r : N× (0,∞)→ N such that

∀N ∈ N ∀x > 0 (

r(N,x)∑
i=N

αi ≥ x).

We use the convention that
∑m
i=N αi = 0 if m < N and so we always have that

r(N, x) ≥ N.
Remark 3.3. The quantitative formulation of divergence above is also used by
the first author in [12]. Note that a more traditional rate of divergence would
be a function f : (0,∞)→ N satisfying

∀x > 0 (

f(x)∑
i=0

αi ≥ x),

which can be converted into a rate of divergence in our sense by setting r(N, x) :=

f(x+ S(N)) where S : N→ (0,∞) is any function satisfying
∑n−1
i=0 αi ≤ S(n),

since then we have

f(x+S(N))∑
i=N

αi =

f(x+S(N))∑
i=0

αi −
n−1∑
i=0

αi ≥ (x+ S(N))− S(N) = x.

In particular, if the αi are bounded above by some K, we can simply set
r(N, x) := f(x+K ·N).
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3.2 The technical lemma

We now present our unifying lemma, which generalises similar abstract results
in the literature, such as Lemma 2.2 of [1] and Lemma 2.1 of [24], the latter
having been given a quantitative form as Lemma 1 of [19].

Lemma 3.4. Let (θn) and (αn) be sequences of nonnegative reals such that∑∞
i=0 αi diverges, and suppose that for any ε > 0 there exists some δ > 0 and

N ∈ N such that

(∗) ∀n ≥ N(ε < θn+1 → θn+1 ≤ θn − αn · δ).

Then θn → 0 as n→∞. Moreover, if:

(i) K ∈ (0,∞) satisfies θn < K for all n ∈ N,

(ii) r : N× (0,∞)→ N is a rate of divergence for
∑∞
i=0 αi,

(iii) N : (0,∞)→ N and ϕ : (0,∞)→ (0,∞) witness property (∗) in the sense
that for all ε > 0 we have

∀n ≥ N(ε)(ε < θn+1 → θn+1 ≤ θn − αn · ϕ(ε)),

then ΨK,r,N,ϕ(ε) := r(N(ε),K/ϕ(ε)) + 1 is a rate of convergence for (θn).

Proof. We first observe that for any ε > 0 and n ≥ N(ε) we have

θn ≤ ε→ θn+1 ≤ ε.

Otherwise, if there were some n ≥ N(ε) with θn ≤ ε and ε < θn+1 we would
have

ε < θn+1 ≤ θn − αn · ϕ(ε) ≤ θn ≤ ε.
Therefore to establish θn → 0 it suffices to find, for each ε > 0, a single n ∈ N
with θn ≤ ε. Fixing some ε > 0 and j ≥ N(ε), suppose that θn+1 > ε for all
n ∈ N with N(ε) ≤ n ≤ j. Then in particular we would have

αn · ϕ(ε) ≤ θn − θn+1

for all n in this range, and thus

ϕ(ε)

j∑
n=N(ε)

αn ≤
j∑

n=N(ε)

(θn − θn+1) = θN(ε) − θj+1 ≤ θN(ε) < K.

But this is a contradiction for j := r(N(ε),K/ϕ(ε)), and thus θn ≤ ε for some
n ≤ j + 1, which means that for m ≥ j + 1 ≥ n we also have θm ≤ ε.

Remark 3.5. Condition (i) of Lemma 3.4 is not strictly necessary, as bound-
edness of (θn) is not necessary to establish θn → 0. However, as a rate of
convergence we would then obtain e.g. Ψ(θn),r,N,ϕ := r(N(ε), (θN(ε) + 1)/ϕ(ε))
which is dependent on the (θn) (or more generally, some sequence (Kn) of upper
bounds Kn ≥ θn). In each subsequent application of this result, we are able
to supply a uniform bound K for our sequence (θn), in which case our lemma
results in a rate of convergence which is independent of the (θn).
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Remark 3.6 (Linear convergence). A finer analysis of Lemma 3.4 in special cases
can yield more precise convergence speeds for (θn). For example, suppose that
αn ≥ α > 0 for all n ∈ N and some α, so that a rate of divergence for

∑∞
i=0 αi

is given by r(N, x) = d xαe + N , and suppose in addition that N(ε) = 0 and
ϕ(ε) = cε for some c > 0 and for all ε > 0, so that condition (iii) can be reduced
to

∀n(θn+1 ≤ θn − αcθn+1).

Then it follows directly that

θn ≤ K
(

1

1 + αc

)n
and so θn → 0 with linear convergence speed, where a rate of convergence in
our sense would be given by φ(ε) = log1+αc(K/ε). This is a strict improvement
of the rate of convergence suggested by Lemma 3.4 i.e. Ψ(ε) = dK/αcεe+ 1.

We conclude this section by observing that we can reformulate Lemma 3.4 so
that it no longer makes direct reference to a rate of divergence for

∑∞
i=0 αi, but

rather uses the divergence of
∑∞
i=0 αi implicitly. This will later allow us to con-

nect our quantitative convergence theorems to the numerical results presented
in [1].

Lemma 3.7. Let (θn), (αn), K, N and ϕ be as in Lemma 3.4, and assume in
addition that αn > 0 for all n ∈ N. Suppose that f : (0,∞)→ (0,∞) is strictly
decreasing and continuous with f(ε)→∞ as ε→ 0, and

f(ε) ≥
N(ε)−1∑
i=0

αi +
K

ϕ(ε)

for all ε > 0. Then for sufficiently large n ∈ N we have

θn ≤ f−1

(
n−1∑
i=0

αi

)
.

Proof. First note that f must have an inverse f−1 : (a,∞) → (0,∞) for a :=
inf{f(x) : x ∈ (0,∞)}. Define n0 ∈ N to be the least natural number such
that

∑n0

i=0 αi ∈ (a,∞), and for n ≥ n0 + 1 define

εn := f−1

(
n−1∑
i=0

αi

)
.

Applying Lemma 3.4 for r(N, x) defined to be the least j ≥ N such that∑j
i=N αi ≥ x, we have θm ≤ εn for all m ≥ j + 1, where j ≥ N(εn) is the

least natural number such that

j∑
i=N(εn)

αi ≥
K

ϕ(εn)
.
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Now observing that

n−1∑
i=0

αi = f(εn) ≥
N(εn)−1∑
i=0

αi +
K

ϕ(εn)
and thus

n−1∑
i=N(εn)

αi ≥
K

ϕ(εn)

it follows that n − 1 ≥ j and therefore n ≥ j + 1, which means that θn ≤ εn.
Thus the lemma holds for all n ≥ n0 + 1.

3.3 Outline of the remainder of the paper

We now turn our attention towards concrete convergence theorems involving
strongly accretive operators A. We focus on a series of examples, where in each
case we utilise Lemma 3.4 together with a modulus of uniform accretivity at
zero for A to carry out a quantitative analysis of the proof in question, resulting
in a series of new, quantitative convergence results which each fall underneath
the same unifying scheme.

4 A simple implicit scheme

Our first result will be a quantitative analysis of the following theorem of Alber
et al. [1], which is based on a straightforward implicit approximation method
generated by a uniformly accretive operator.

Theorem 4.1 (Theorem 2.1 of [1]). Let D be a closed subset of X and A :
D → 2X a ψ-strongly accretive operator for some strictly increasing ψ, which
satisfies the range condition (RC):

D ⊂ (I + rA)(D), ∀r > 0.

Then the following assertions hold:

(a) There exists a unique q ∈ D such that 0 ∈ Aq.

(b) If (αi) is a sequence of positive reals with
∑∞
i=0 αi =∞, then if the sequence

(xn) starting from some x0 ∈ D satisfies

xn+1 = xn − αnun, un ∈ Axn+1

we have ‖xn − q‖ → 0.

Our quantitative analysis in this case and in all those that follow will focus
on the extraction of an explicit rate of convergence for ‖xn − q‖ → 0 from the
corresponding proof of this fact. In doing so, we adopt the following pattern:

We assume from the outset the existence of some q satisfying 0 ∈
Aq, and take some arbitrary sequence (xn) satisfying the relevant
approximation scheme.

9



By focusing exclusively on the proof that ‖xn− q‖ → 0, we are typically able to
weaken certain conditions of the original theorem, which are often needed only
to establish the existence of a zero 0 ∈ Aq or to ensure that the sequence of
approximations (xn) is well-defined. As such, we obtain a rate of convergence
for ‖xn − q‖ → 0 which is valid in a much more general setting. At the same
time, the original results guarantee us that there is always a natural context in
which a zero and a corresponding approximation sequence do indeed exist!

In the case of Theorem 4.1 above, for the purpose of our quantitative con-
vergence result, we are able to dispense with the range condition together with
the assumption that D is closed, and can take A to be an arbitrary operator
which is uniformly accretive at zero.

Theorem 4.2. Let A : D(A) → 2X with 0 ∈ Aq be uniformly accretive at
zero with modulus Θ. Let (αi) be a sequence of nonnegative reals such that∑∞
i=0 αi =∞ with modulus of divergence r, and suppose that (xn) and (un) are

sequences satisfying xn ∈ D(A) and

xn+1 = xn − αnun, un ∈ Axn+1

for all n ∈ N. Finally, let K > 0 be such that ‖x0−q‖ < K. Then ‖xn−q‖ → 0
with rate of convergence

ΦΘ,r,K(ε) := r(0,K2/ΘK(ε)) + 1.

Proof. We first observe that for any j ∈ J(xn+1 − q) we have

‖xn+1 − q‖2 =〈xn+1 − q, j〉
=〈xn − q, j〉 − αn〈un, j〉
≤‖xn − q‖ · ‖xn+1 − q‖ − αn〈un, j〉.

(1)

We argue by induction that ‖xn − q‖ < K for all n ∈ N: For n = 0 this holds
by assumption, while the induction step follows directly from (1) together with
the accretivity of A, which ensures that 〈un, j〉 ≥ 0 for some j ∈ J(xn+1 − q).

Now, fixing some n ∈ N and ε > 0, suppose that ε < ‖xn+1− q‖. Then since
in particular we would have ‖xn+1 − q‖ ∈ [ε,K], by uniform accretivity of A at
zero it follows that there exists some j ∈ J(xn+1−q) such that 〈un, j〉 ≥ ΘK(ε).
Substituting this into (1) and dividing by ‖xn+1 − q‖ we obtain

‖xn+1 − q‖ ≤ ‖xn − q‖ −
αnΘK(ε)

‖xn+1 − q‖
< ‖xn − q‖ −

αnΘK(ε)

K
. (2)

We are now able to apply Lemma 3.4 for θn := ‖xn − q‖. Conditions (i) and
(ii) of the lemma are clearly satisfied by K and r, while for condition (iii) we
set N(ε) := 0 and ϕ(ε) := ΘK(ε)/K, and our rate of convergence is obtained
directly.

Remark 4.3. In [1], the operator A is assumed to be ψ-strongly accretive for
some strictly increasing ψ. Under the additional assumption that 0 ∈ Aq, A
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must then also be uniformly accretive at zero with modulus ΘK(ε) = ψ(ε) · ε,
since for u ∈ Ax with ‖x − q‖ ∈ [ε,K] there is, by ψ-strong accretivity, some
j ∈ J(x− q) such that

〈u, j〉 ≥ ψ(‖x− q‖)‖x− q‖ ≥ ψ(ε) · ε = ΘK(ε).

However, in the case of ψ-strong accretivity, we can reformulate (2) as

‖xn+1 − q‖ ≤ ‖xn − q‖ −
αnψ(‖xn+1 − q‖)‖xn+1 − q‖

‖xn+1 − q‖
≤ ‖xn − q‖ − αnψ(ε)

and thus an improved rate of convergence for ‖xn − q‖ → 0 is given by

Φψ,r,K := r(0,K/ψ(ε)) + 1.

Moreover, following Remark 3.6, for the particular case that αn ≥ α > 0 for
some α and ψ(ε) = cε for some c > 0 and for all ε > 0, we would have

‖xn − q‖ ≤ K
(

1

1 + αc

)n
and thus ‖xn − q‖ → 0 linearly. This observation is analogous to the Example
(1) sketched on p. 97 of [1].

By appealing to Lemma 3.7, we obtain an implicit rate of convergence closely
related to Theorem 3.1 of [1].

Corollary 4.4. Let A : D(A) → 2X with 0 ∈ Aq be a ψ-strongly accretive
operator for some strictly increasing ψ, and otherwise let (αi), r, (xn), (un) and
K be as in Theorem 4.2. Then ‖xn − q‖ → 0 with

‖xn − q‖ < ψ−1

(
K∑n−1
i=0 αi

)

sufficiently large n ∈ N.

Proof. We apply Lemma 3.7 with parameters instantiated as in Remark 4.3 i.e.
N(ε) = 0 and ϕ(ε) = ψ(ε). Then in particular, we can define our bounding
function f : (0,∞) → (0,∞) by f(ε) := K/ψ(ε), observing that as ε → 0 then
ψ(ε) → 0 and hence f(ε) → ∞. The result then follows by observing that
f−1(x) = ψ−1(K/x).

Remark 4.5. Note that Corollary 4.4 is broadly analogous but not identical to
the corresponding Theorem 3.1 of [1], which is to be expected, since the latter
uses an integral comparison rather than a rate of divergence for

∑∞
i=0 αi.
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5 An implicit scheme using approximating operators

Our second case study is also taken from [1]. Here, the implicit scheme studied
in the previous section is modified to one of the form

xn+1 = xn − αnun, un ∈ Anxn+1

for some sequence of operators (An), where in order to maintain convergence of
the (xn) to some zero q when it exists, a convergence property for the (An) is
required. In [1] this takes the form of approximation relative to the Hausdorff
distance.

Definition 5.1. Let A and An : D → 2X be operators defined on some subset D
of X for n ∈ N. We say that the sequence (An) approximates the operator A if
there exists a sequence of positive reals (hn) with hn → 0 as n→∞ such that

∀x ∈ D ∀n ∈ N (H(Anx,Ax) ≤ hnξ(‖x‖))

where ξ : [0,∞) → [0,∞) is some given function and H denotes the Hausdorff
distance between sets, defined as usual by

H(P,Q) = max{sup
x∈X

inf
y∈Y
‖x− y‖, sup

y∈Y
inf
x∈X
‖x− y‖}.

We analyse the following generalisation of Theorem 2.1 of [1].

Theorem 5.2 (Theorem 4.1 of [1]). Let D be a closed subset of X and A : D →
2X a ψ-strongly accretive operator for some strictly increasing ψ which satisfies
the range condition (RC). Suppose that the sequence of operators An : D → 2X

approximates A and each An satisfies the strong range condition that for any
r > 0 and u ∈ D there exists a unique x ∈ D with

u ∈ (I + rAn)x.

If (αi) is a sequence of positive reals with
∑∞
i=0 αi = ∞, (xn) is the sequence

starting from some x0 ∈ D and defined by

xn+1 = xn − αnun, un ∈ Anxn+1,

and (xn) is bounded, then ‖xn−q‖ → 0 for the unique zero 0 ∈ Aq (which exists
by Theorem 4.1 of this paper i.e. Theorem 2.1 of [1]).

As in the previous section, we simply assume the existence of some 0 ∈
Aq, and as such, omit all range conditions from our quantitative version of
this result. However, that (An) approximates the operator A is essential for
convergence of the (xn). Just as various notions of strong accretivity are replaced
by uniform accretivity at zero, we define below a general, uniform variant of the
approximation property which reflects the more restricted way in which that
property is actually used in the proof of Theorem 5.2.

12



Definition 5.3. We define the predicate H∗ ⊆ 2X × 2X × (0,∞) by

H∗[P,Q, a] :≡ ∀u ∈ P ∃v ∈ Q (‖u− v‖ ≤ a).

Definition 5.4. Let A and An : D → 2X be operators with D(A) = D(An) = D.
We say that (An) uniformly approximates A with the rate µ(·)(·) : (0,∞) ×
(0,∞)→ N of uniform approximation if

∀K, ε > 0 ∀n ≥ µK(ε)∀x ∈ D (‖x‖ ≤ K → H∗[Anx,Ax, ε]) .

Lemma 5.5. Suppose that (An) approximates A (in the sense of Definition
5.1) with respect to (hn) and some ξ : [0,∞)→ [0,∞), and moreover there is a
function ξ∗ : (0,∞)→ (0,∞) satisfying

∀x, y ∈ [0,∞)(x ≤ y ∧ y > 0→ ξ(x) ≤ ξ∗(y)).

Then (An) uniformly approximates A. Moreover, if φ : (0,∞)→ N is a rate of
convergence for hn → 0 then

µL(ε) := φ(2ε/3ξ∗(L))

is a rate of uniform approximation for (An) and A.

Proof. We first observe that for P,Q ∈ 2X , whenever H(P,Q) < a for some
a ∈ (0,∞) it follows that H∗[P,Q, a]. To see this, note that H(P,Q) < a
implies in particular that for all u ∈ P we have

inf
v∈V
‖u− v‖ < a

and thus there must exist some v ∈ V with ‖u− v‖ < a. Now, fixing some n,K
(with K > 0) and x ∈ D with ‖x‖ ≤ K, we have

H(Anx,Ax) ≤ hnξ(‖x‖) ≤ hnξ∗(K) < 3
2hnξ

∗(K)

where for the last step we use ξ∗(K) > 0. Now let n ≥ φ(2ε/3ξ∗(K)), then
3
2hnξ

∗(K) ≤ ε and so H∗(Anx,Ax, ε).

We are now ready to state and prove our quantitative formulation of Theo-
rem 5.2.

Theorem 5.6. Let A : D → 2X with 0 ∈ Aq be uniformly accretive at zero
with modulus Θ, and An : D → 2X be a sequence of operators which uniformly
approximates A with rate µ. Let (αi) be a sequence of nonnegative reals such
that

∑∞
i=0 αi =∞ with modulus of divergence r, and suppose that (xn) and (un)

are sequences satisfying xn ∈ D and

xn+1 = xn − αnun, un ∈ Anxn+1

for all n ∈ N. Finally, suppose K,K ′ ∈ (0,∞) satisfy ‖xn − q‖ < K for all
n ∈ N and ‖q‖ < K ′. Then ‖xn − q‖ → 0 with rate of convergence

ΦΘ,µ,r,K,K′(ε) := r

(
µK+K′

(
ΘK(ε)

2K

)
,
K2

ΘK(ε)

)
+ 1.
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Proof. Using the assumption that (An) uniformly approximates A, together
with the assumption that xn+1 ∈ D and ‖xn+1‖ ≤ ‖xn+1 − q‖+ ‖q‖ < K +K ′

for each n ∈ N, we have H∗[Anxn+1, Axn+1,ΘK(
√
ε)/2K] for all n ≥ N(ε) :=

µK+K′ (ΘK(
√
ε)/2K) . In particular, this means that for all n ≥ N(ε) there

exists some vn ∈ Axn+1 such that

‖un − vn‖ ≤ ΘK(
√
ε)

2K . (3)

Now, for any j ∈ J(xn+1 − q) we have

‖xn+1 − q‖2 =‖xn − αnun − q‖2

L.2.1
≤ ‖xn − q‖2 − 2αn〈un, j〉

=‖xn − q‖2 + 2αn〈vn − un, j〉 − 2αn〈vn, j〉

≤‖xn − q‖2 + 2αn‖vn − un‖ · ‖xn+1 − q‖ − 2αn〈vn, j〉

≤‖xn − q‖2 − 2αn(〈vn, j〉 − ΘK(
√
ε)

2 ),

(4)

where for the last step we use (3) by which

‖vn − un‖ · ‖xn+1 − q‖ < K · ΘK(
√
ε)

2K .

Now suppose that ε < ‖xn+1 − q‖2, and thus ‖xn+1 − q‖ ∈ [
√
ε,K]. Then by

uniform accretivity of A at zero there exists some j ∈ J(xn+1 − q) such that
〈vn, j〉 ≥ ΘK(

√
ε) and hence

〈vn, j〉 − ΘK(
√
ε)

2 ≥ ΘK(
√
ε)− ΘK(

√
ε)

2

= ΘK(
√
ε)

2 .
(5)

Substituting (5) into (4), for n ≥ N(ε) and ε < ‖xn+1 − q‖2 we have

‖xn+1 − q‖2 ≤ ‖xn − q‖2 − αn · ϕ(ε)

for ϕ(ε) := ΘK(
√
ε). Therefore applying Lemma 3.4 for θn := ‖xn − q‖2 ≤ K2,

where condition (i) is witnessed by K2, (ii) by r and (iii) by N and ϕ as defined

above, we obtain a rate of convergence for ‖xn−q‖2 → 0, which can be modified
to a rate of convergence for ‖xn − q‖ → 0 by substituting ε2 for ε.

We conclude our study of [1] with a final quantitative result that forms a
more direct counterpart of Theorem 4.1 in [1], which brings together Lemma 5.5
and Theorem 5.6 above, and in addition incorporates the discussion on pp.100-
101 of [1], in which boundedness of the ‖xn‖ is replaced by the a priori condition
that the An are each accretive and

∑∞
n=0 αnhn <∞.

Theorem 5.7. Let A : D → 2X with 0 ∈ Aq be uniformly accretive at zero
with modulus Θ, and An : D → 2X be a sequence of accretive operators each
satisfying the range condition (RC) which approximates A with respect to (hn)
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and some ξ : [0,∞) → [0,∞). Let φ : (0,∞) → N be a rate of convergence for
hn → 0 and ξ∗ : (0,∞)→ (0,∞) a function satisfying

∀x, y ∈ [0,∞)(x ≤ y ∧ y > 0→ ξ(x) ≤ ξ∗(y)).

In addition, let (αi) be a sequence of nonnegative reals such that
∑∞
i=0 αi =∞

with modulus of divergence r and
∑∞
i=0 αihi < ∞, and suppose that (xn) and

(un) are sequences satisfying xn ∈ D and

xn+1 = xn − αnun, un ∈ Anxn+1

for all n ∈ N. Finally, suppose that K0,K1,K2 ∈ (0,∞) satisfy ‖x0 − q‖ < K0,
‖q‖ < K1 and

∑n
i=0 αihi < K2 for all n ∈ N. Then ‖xn − q‖ → 0 with rate of

convergence

ΦΘ,φ,ξ∗,r,K0,K1,K2
(ε) := r

(
φ

(
ΘK(ε)

3K · ξ∗(K +K1)

)
,
K2

ΘK(ε)

)
+ 1

for K := K0 +K2 · ξ∗(K1).

Proof. Since An satisfies the range condition, we have q ∈ (I+αnAn)(D), which
means there exist a pair of sequences (yn) and (vn) with

q = yn + αnvn, vn ∈ Anyn

for all n ∈ N. We now observe that since ‖q‖ < K1 we have H(Anq, Aq) <
hnξ

∗(K1), and thus since 0 ∈ Aq there exists some wn ∈ Anq satisfying ‖wn‖ <
hnξ

∗(K1). Now for any j ∈ J(yn − q) we have

‖yn − q‖2 = 〈yn − q, j〉 = −αn〈vn, j〉 = −αn〈wn, j〉 − αn〈vn − wn, j〉. (6)

Since An is accretive there exists some j ∈ J(yn− q) such that 〈vn − wn, j〉 ≥ 0
and substituting this into (6) we get

‖yn − q‖2 ≤ −αn〈wn, j〉 ≤ αn‖wn‖‖yn − q‖

and therefore
‖yn − q‖ ≤ αn‖wn‖ ≤ αnhnξ∗(K1). (7)

By a similar calculation we see that for j ∈ J(xn+1 − yn) we have

‖xn+1 − yn‖2 = 〈xn+1 − yn, j〉 = 〈xn − q, j〉 − αn〈un − vn, j〉

and again by accretivity of An on un ∈ Anxn+1 and vn ∈ Anyn we see that

‖xn+1 − yn‖ ≤ ‖xn − q‖. (8)

Putting (7) and (8) together we obtain

‖xn+1 − q‖ ≤ ‖xn+1 − yn‖+ ‖yn − q‖ ≤ ‖xn − q‖+ αnhnξ
∗(K1)
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and therefore

‖xn − q‖ ≤ ‖x0 − q‖+

n−1∑
i=0

αihiξ
∗(K1) < K0 + ξ∗(K1) ·K2.

This establishes boundedness of ‖xn−q‖ for n ∈ N. We can now apply Theorem
5.6 for K := K0 + ξ∗(K1) · K2, K ′ := K1 and (by Lemma 5.5) µL(ε) :=
φ(2ε/3ξ∗(L)) to obtain the given rate of convergence.

6 An Ishikawa-type scheme for uniformly continuous op-
erators

Our next result is a quantitative analysis of a theorem due to Moore and Nnoli,
which rather than the implicit schemes studied in the previous section deals with
an explicit Ishikawa-type method for approximating zeros of accretive operators
A. Here, convergence is made possible by demanding that the operator A be
uniformly continuous in the following sense.

Definition 6.1. Let CB(X) denote the family of all nonempty subsets of X
which are closed and bounded. An operator A : D(A) → CB(X) ⊂ 2X is said
to be uniformly continuous if it satisfies

∀ε > 0 ∃δ > 0 ∀x, y ∈ X(‖x− y‖ ≤ δ → H(Ax,Ay) ≤ ε),

where we recall that H denotes the Hausdorff distance.

Theorem 6.2 (Theorem 2.2 of [24]). Let A : D(A) → CB(X) be a uniformly
continuous and uniformly quasi-accretive operator with nonempty closed values
such that the range of (I − A) is bounded and 0 ∈ Aq for some q ∈ X. Let
(αn), (βn) be sequences in [0, 1

2 ) such that αn → 0, βn → 0 and
∑∞
i=0 αi = ∞.

Finally, let (xn) be the sequences generated from some x0 ∈ X satisfying the
Ishikawa-type scheme

xn+1 = (1− αn)xn + αnun, un ∈ (I −A)yn

yn = (1− βn)xn + βnvn, vn ∈ (I −A)xn

Then (xn) converges strongly to q.

Remark 6.3. The notion of uniform quasi-accretivity (cf. [24, Definition 1.3]) is
essentially a formulation of uniform φ-accretivity for zeros, and will in any case
be replaced by our notion of uniform accretivity at zero.

We now present our computational interpretation of the above theorem,
which in particular replaces uniform continuity of A with the following quantita-
tive condition involving the Hausdorff-like predicate H∗ introduced in Definition
5.3.

Definition 6.4. Let A : D(A) → 2X be an operator. A function $ : (0,∞) →
(0,∞) is called a modulus of uniform continuity for A if it satisfies

∀ε > 0 ∀x, y ∈ D(A)(‖x− y‖ ≤ $(ε)→ H∗[Ax,Ay, ε]).
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Remark 6.5. Note that given some A : D(A)→ CB(X), if ω : (0,∞)→ (0,∞)
is a traditional modulus of uniform continuity with respect to the Hausdorff
metric, in that it satisfies

∀ε > 0 ∀x, y ∈ D(A)(‖x− y‖ ≤ ω(ε)→ H(Ax,Ay) ≤ ε), (9)

then $(ε) := ω(ε/2) is a modulus of uniform continuity for A in the sense of
Definition 6.4. To see this, note that if ‖x − y‖ ≤ ω(ε/2) then H(Ax,Ay) ≤
ε/2 < ε, which implies that for any u ∈ Ax there must exist some v ∈ Ay
with ‖u − v‖ < ε, which is just H∗[Ax,Ay, ε]. However, possessing a modulus
of uniform continuity $ is more general than possessing some ω satisfying (9),
since in particular the latter only makes sense when H(Ax,Ay) always exists,
whereas our formulation allows us to drop assumptions about the range of A,
and so in particular we do not require A to always return nonempty closed
values.

Theorem 6.6. Let A : D(A)→ 2X with 0 ∈ Aq be uniformly accretive at zero
with modulus Θ, and in addition suppose that A has a modulus of uniform con-
tinuity $ : (0,∞) → (0,∞). Assume that R(I − A) is bounded. Let (αn), (βn)
be sequences in [0, 1

2 ) such that αn, βn → 0 with joint rate of convergence φ and∑∞
i=0 αi = ∞ with rate of divergence r. Suppose that (xn), (yn), (un) and (vn)

are sequences satisfying xn, yn ∈ D(A) and

xn+1 = (1− αn)xn + αnun, un ∈ (I −A)yn

yn = (1− βn)xn + βnvn, vn ∈ (I −A)xn

Finally, suppose that K0,K1 ∈ (0,∞) satisfy ‖w‖ < K0 for all w ∈ R(I − A)
and ‖x0 − q‖ < K1. Then ‖xn − q‖ → 0 as n→∞ with rate of convergence

ΦΘ,$,φ,r,K0,K1
(ε)

:= r

(
φ

(
min

{
1

4
,

1

6K
min

{
ΘK(ε)

16K
,$

(
ΘK(ε)

16K

)}})
,
K2

ΘK(ε)

)
+ 1

for K := 2K0 +K1.

Proof. We first show by induction that ‖xn−q‖ < K for K = 2K0+K1. For the
base case we have ‖x0 − q‖ < K1 < K, and for the induction step we calculate:

‖xn+1 − q‖ = ‖(1− αn)(xn − q) + αn(un − q)‖
≤ (1− αn)‖xn − q‖+ αn‖un − q‖
< (1− αn)K + αnK

= K

where to establish ‖un − q‖ < K we use that q ∈ (I − A)q and hence q ∈
R(I − A), and - by assumption - un ∈ R(I − A), from which we see that
‖un − q‖ ≤ ‖un‖+ ‖q‖ < 2K0 < K. We are now also able to show that

‖yn − xn+1‖ = ‖αnxn − βnxn + βnvn − αnun‖
≤ αn‖xn‖+ βn‖xn‖+ βn‖vn‖+ αn‖un‖
≤ 3(αn + βn)K,

(10)
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where for the last step we use that ‖un‖, ‖vn‖ < K0 < K and ‖xn‖ ≤ ‖xn −
q‖ + ‖q‖ < K + K0 < 2K. Appealing to the joint rate of convergence φ for
αn, βn → 0 we see that for δ̃ ≤ δ/6K

∀n ≥ φ(δ̃)(‖yn − xn+1‖ ≤ δ). (11)

For the remainder of the proof we fix some ε > 0 and suppose that ε < ‖xn+1−
q‖2 and thus ‖xn+1 − q‖ ∈ [

√
ε,K]. We now suppose that

(∗) n ≥ N(ε) := φ
(

min
{

1
4 ,

ΘK(
√
ε)

96K2 , $(ΘK(
√
ε)/16K)

6K

})
.

Then by (11) we have for δ0 := ΘK(
√
ε)/16K

‖yn − xn+1‖ ≤ δ0 and H∗[Ayn, Axn+1, δ0],

where the second property follows from the fact that $ is a modulus of uniform
continuity for A and in addition ‖yn−xn+1‖ ≤ $(δ0). Now, since un ∈ (I−A)yn
we have un = yn − λn for some λn ∈ Ayn, and similarly vn = xn − σn for some
σn ∈ Axn. But since H∗[Ayn, Axn+1, δ0] there must also be some σ̄n+1 ∈ Axn+1

with ‖λn − σ̄n+1‖ ≤ δ0, and thus setting v̄n+1 := xn+1 − σ̄n+1 ∈ (I − A)xn+1

we have

‖un−v̄n+1‖ = ‖yn−λn−xn+1+σ̄n+1‖ ≤ ‖yn−xn+1‖+‖λn−σ̄n+1‖ ≤ 2δ0. (12)

Now, using Lemma 2.1 on xn+1 − q = x + y for x := (1 − αn)(xn − q) and
y := αn(un − q) we see that for any j ∈ J(xn+1 − q) we have

‖xn+1 − q‖2

≤ (1− αn)2‖xn − q‖2 + 2αn〈un − q, j〉

= (1− 2αn)‖xn − q‖2 + α2
n‖xn − q‖

2
+ 2αn〈un − q, j〉

≤ (1− 2αn)‖xn − q‖2 + αn(αnK
2 + 2〈un − q, j〉)

= (1− 2αn)‖xn − q‖2 + αn(αnK
2 + 2〈v̄n+1 − q, j〉+ 2〈un − v̄n+1, j〉)

≤ (1− 2αn)‖xn − q‖2 + αn(αnK
2 + 2〈v̄n+1 − q, j〉+ 4δ0K)

(13)

where for the last step we use (12) to establish

〈un − v̄n+1, j〉 ≤ ‖un − v̄n+1‖ · ‖xn+1 − q‖ ≤ 2δ0 ·K.

Now, since ‖xn+1 − q‖ ∈ [
√
ε,K], by Lemma 2.6 there is some j ∈ J(xn+1 − q)

such that
〈v̄n+1 − q, j〉 ≤ ‖xn+1 − q‖2 −ΘK(

√
ε)

and substituting this into (13) we obtain

(1− 2αn)‖xn+1 − q‖2 ≤ (1− 2αn)‖xn − q‖2 + αn(αnK
2 − 2ΘK(

√
ε) + 4δ0K).
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Dividing both sides by (1− 2αn) > 0 we get

‖xn+1 − q‖2 ≤ ‖xn − q‖2 −
(

2αn
1− 2αn

)
ΘK(
√
ε) +

(
αnK

1− 2αn

)
(αnK + 4δ0)

≤ ‖xn − q‖2 − 2αnΘK(
√
ε) +

(
αnK

1− 2αn

)
(αnK + 4δ0)

and therefore

‖xn+1 − q‖2 ≤ ‖xn − q‖2 − αn(2ΘK(
√
ε)− δ1) (14)

for

δ1 :=

(
K

1− 2αn

)
(αnK + 4δ0).

Now (∗) also implies that (using that αn ≤ 1/4 implies 1/(1− 2αn) ≤ 2)

δ1 ≤ 2K

((
ΘK(
√
ε)

96K2

)
K + 4

(
ΘK(
√
ε)

16K

))
< ΘK(

√
ε)

and thus by (14), under the assumption that ε ≤ ‖xn+1 − q‖2 we have shown
that

‖xn+1 − q‖2 ≤ ‖xn − q‖2 − αn · ϕ(ε)

for ϕ(ε) := ΘK(
√
ε) and for all n ≥ N(ε), where N(ε) is defined in (∗).

We can now apply Lemma 3.4 for θn := ‖xn− q‖2 and (αn). Conditions (i) and
(ii) are satisfied for K2 and r respectively, and we have established condition (iii)
for ϕ and N as defined above. The stated rate of convergence is then obtained
directly from the rate of convergence for ‖xn − q‖2 given by the lemma, which
as before is converted to one for ‖xn − q‖ by substituting ε2 for ε.

7 An Ishikawa-type scheme for uniformly smooth spaces

Our final application concerns another Ishikawa-type scheme, but in contrast
to the previous section, uniform continuity of A is now exchanged for uniform
smoothness of the underlying space. This results in a somewhat different ap-
proach for establishing strong convergence, but is nevertheless still subsumed
under our general framework. Convergence results pertaining to Ishikawa-type
schemes based on accretive operators in uniformly smooth spaces can be found
in several places in the literature. The quantitative result presented here is
based on an extension of [8, Theorem 4.2] due to Lin [23, Theorem 2.1], the
latter involving an Ishikawa-type scheme based on two accretive operators. We
first establish a quantitative version of the notion of uniform smoothness.

Definition 7.1. A Banach space X is uniformly smooth if for all ε > 0 there
exists some δ > 0 such that

(∗) ∀x, y ∈ X(‖x‖ = 1 ∧ ‖y‖ ≤ δ → ‖x+ y‖+ ‖x− y‖ ≤ 2 + ε‖y‖).

Any function τ : (0,∞) → (0,∞) such that δ = τ(ε) satisfies (∗) is called a
modulus of uniform smoothness for X.
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It is well-known that in uniformly smooth spaces, the normalized duality
mapping J is single-valued and uniformly continuous. A quantitative formu-
lation of this fact follows directly from Proposition 2.5 of [17] (note that we
use here the notion of ‘modulus of continuity’ from computable analysis which
differs from the modulus α defined in the current context at the beginning of
section 2 of [28] which does not provide a rate of convergence for lim

t→0+
α(t) = 0):

Lemma 7.2 ([17]). Let X be uniformly smooth with modulus τ . Define ωτ :
(0,∞)× (0,∞)→ (0,∞) by

ωτ (d, ε) :=
ε2

12d
· τ
( ε

2d

)
, ε ∈ (0, 2], d ≥ 1

with ωτ (d, ε) := ωτ (1, ε) for d < 1 and ωτ (d, ε) := ωτ (d, 2) for ε > 2. Then the
single-valued duality map J : X → X∗ is norm-to-norm uniformly continuous
on bounded subsets with modulus ωτ , that is, for all d, ε > 0 and x, y ∈ X with
‖x‖, ‖y‖ ≤ d we have

‖x− y‖ ≤ ωτ (d, ε)→ ‖Jx− Jy‖ ≤ ε.

Theorem 7.3 (Theorem 2.1 of [23] (cf. Remark 2.2)). Let X be uniformly
smooth, and A1, A2 : D → 2D be two uniformly φ-accretive operators for D a
nonempty, closed and convex subset of X, such that the ranges of (I −A1) and
(I −A2) are bounded. Let (αn), (βn) be sequences in [0, 1) such that αn, βn → 0
and

∑∞
i=0 αi =∞. For any f, x0 ∈ D let (xn) be generated via the Ishikawa-type

scheme
xn+1 = (1− αn)xn + αn(f + un), un ∈ (I −A1)yn

yn = (1− βn)xn + βn(f + vn), vn ∈ (I −A2)xn.

Then whenever the system of operator equations

{
f ∈ A1q

f ∈ A2q
has some solution

q ∈ D, then (xn) converges strongly to q.

We now present a quantitative analysis of the above result, where for sim-
plicity we set f = 0.

Theorem 7.4. Let X be uniformly smooth with modulus τ , and A1, A2 : D →
2X with 0 ∈ Aiq for i = 1, 2 be uniformly accretive at zero, with Θ a modulus
of uniform accretivity for A1. Let (αn), (βn) be sequences in [0, 1) such that
αn, βn → 0 with joint rate of convergence φ and

∑∞
i=0 αi = ∞ with rate of

divergence r. Suppose that (xn), (yn), (un) and (vn) are sequences satisfying
xn, yn ∈ D(A) and

xn+1 = (1− αn)xn + αnun, un ∈ (I −A1)yn

yn = (1− βn)xn + βnvn, vn ∈ (I −A2)xn.

Finally, suppose that K0,K1 ∈ (0,∞) satisfy ‖w‖ < K0 for all w ∈ R(I − Ai)
for i = 1, 2 and ‖x0 − q‖ < K1. Then ‖xn − q‖ → 0 as n → ∞ with rate of
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convergence

ΦΘ,τ,φ,r,K0,K1
(ε)

:= r

(
φ

(
1

6K
min

{
ε

2
,

3ΘK(ε/2)

32K
,ωτ

(
K,

ΘK(ε/2)

16K

)})
,

K2

ΘK(ε/2)

)
+ 1

for K := 2K0 +K1 and ωτ as defined in Lemma 7.2.

Proof. To begin with, we claim that ‖xn − q‖, ‖yn − q‖, ‖un − q‖, ‖vn − q‖ <
K := 2K0 +K1 for all n ∈ N and moreover ‖yn − xn+1‖ ≤ 3(αn + βn)K < 6K,
and therefore ‖yn − xn+1‖ ≤ δ for any n ≥ φ(δ̃) with δ̃ ≤ δ/6K. All of this is
established entirely analogously to the beginning of the proof of Theorem 6.6,
which uses just the Ishikawa equations together with basic properties of normed
spaces: Note our generalisation of the Ishikawa-type scheme to two maps is
dealt with by the assumption that K0 is a joint bound for the ranges of (I−A1)
and (I −A2).

Let us now define jn := J(xn − q) and j′n := J(yn − q) for each n ∈ N. By
an application of Lemma 2.1 we have

‖xn+1 − q‖2 ≤ (1− αn)2‖xn − q‖2 + 2αn〈un − q, jn+1〉

≤ (1− αn)2‖xn − q‖2 + 2αn〈un − q, j′n〉+ 2αn〈un − q, jn+1 − j′n〉

≤ (1− αn)2‖xn − q‖2 + 2αn〈un − q, j′n〉+ 2αnKcn
(15)

for cn := ‖jn+1 − j′n‖, where for the last step we use 〈un − q, jn+1 − j′n〉 ≤
‖un − q‖ · ‖jn+1 − j′n‖ ≤ Kcn. An analogous calculation yields

‖yn − q‖2 ≤ (1− βn)2‖xn − q‖2 + 2βn〈vn − q, j′n〉

≤ (1− βn)2‖xn − q‖2 + 2βn〈vn − q, jn〉+ 2βnKdn
(16)

for dn := ‖j′n − jn‖. Now, by accretivity of A2 at zero we have 〈vn − q, jn〉 ≤
‖xn − q‖2 and substituting this into (16) we get

‖yn − q‖2 ≤ (1 + β2
n)‖xn − q‖2 + 2βnKdn. (17)

For the remainder of the proof we fix some ε > 0 and suppose that ε < ‖xn+1−
q‖2. We now suppose that

(∗) n ≥ N(ε) := φ
(

min
{ √

ε
12K ,

ΘK(
√
ε/2)

64K2 , ωτ

(
K, ΘK(

√
ε/2)

16K

)
/6K

})
.

Then, in particular, ‖yn − xn+1‖ ≤
√
ε/2. This then implies that

√
ε < ‖xn+1 − q‖ ≤ ‖xn+1 − yn‖+ ‖yn − q‖ ≤

√
ε/2 + ‖yn − q‖

and so ‖yn − q‖ ∈ [
√
ε/2,K]. By Lemma 2.6 we then have 〈un − q, j′n〉 ≤

‖yn − q‖2 −ΘK(
√
ε/2), and thus using (17):

〈un − q, j′n〉 ≤ (1 + β2
n)‖xn − q‖2 + 2βnKdn −ΘK(

√
ε/2).
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Finally, substituting this into (15) we obtain

‖xn+1 − q‖2

≤ (1 + α2
n)‖xn − q‖2 + 2αnβ

2
n‖xn − q‖

2
+ 4αnβnKdn − 2αnΘK(

√
ε/2) + 2αnKcn

< ‖xn − q‖2 + α2
nK

2 + 2αnβ
2
nK

2 + 4αnβnKdn − 2αnΘK(
√
ε/2) + 2αnKcn

= ‖xn − q‖2 − αn · δ
(18)

for
δ := 2ΘK(

√
ε/2)− (αnK

2 + 2β2
nK

2 + 4βnKdn + 2Kcn).

Define δ0 := ΘK(
√
ε/2)/8. Then (∗) implies αn, βn ≤ δ0/8K

2 and so in turn
αnK

2 < δ0, 2β2
nK

2 < δ0 (using βn < 1), and 4βnKdn < δ0. For the latter note
that

dn = ‖j′n − jn‖ ≤ ‖jn‖+ ‖j′n‖ = ‖xn − q‖+ ‖yn − q‖ < 2K.

Finally, let ωτ be defined as in Lemma 7.2. Then again by (∗) we have ‖(xn+1−
q)− (yn− q)‖ = ‖xn+1− yn‖ ≤ ωτ (K, δ0/2K) and thus by Lemma 7.2 it follows
that cn = ‖jn+1 − j′n‖ ≤ δ0/2K and thus 2Kcn ≤ δ0.

Putting all this together we conclude that if ε < ‖xn+1 − q‖2 and n ≥ N(ε)
we have δ ≥ ΘK(

√
ε/2) and thus by (18):

‖xn+1 − q‖2 ≤ ‖xn − q‖2 − αn · ϕ(ε)

for ϕ(ε) := ΘK(
√
ε/2).

We can now apply Lemma 3.4 as in the proof of Theorem 6.6 for θn := ‖xn−q‖2
on parameters K2, r, ϕ and N to obtain the stated rate of convergence.

Remark 7.5. The precise statement of Theorem 7.4 is consistent with Remark
2.2 of [23], in that we only require a modulus of uniform accretivity for one of
the operators (though we require both to be accretive).
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