Mirjam Walloth

Dr. Mirjam Walloth

Dolivostraße 15
64293 Darmstadt

Office: S4|10 103

+49 6151 16-23162
+49 6151 16-23164


go to list

Research interests

  • Efficient and reliable residual-type a posteriori estimators for variational inequalities
  • Adaptive numerical simulation with FEM and DG with application in continuum mechanics
    • elastic contact problems
    • visco-elastic contact problems
    • dynamic contact problems
    • frictional contact problems
    • fracture phase-field models
  • Time discretization schemes for dynamic (frictional) contact problems

Cuurent projects

Temporary position for principal investigators in the DFG priority program 1748:

Project: Structure Preserving Adaptive Enriched Galerkin Methods for Pressure-Driven 3D Fracture Phase-Field Models

in cooperation with Prof. Dr. Winnifried Wollner und Prof. Dr. Thomas Wick.

Preprints

Katrin Mang, Mirjam Walloth, Thomas Wick, Winnifried Wollner
Mesh adaptivity for quasi-static phase-field fractures based on a residual-type a posteriori error estimator.
Preprint, 2019, arXiv:1906.04657
Mirjam Walloth
Residual-type A Posteriori Estimators for a Singularly Perturbed Reaction-Diffusion Variational Inequality -- Reliability, Efficiency and Robustness.
Preprint, Fachbereich Mathematik, TU Darmstadt, 2018, arXiv:1812.01957

Peer-reviewed articles

Mirjam Walloth
Residual-type a posteriori error estimator for a quasi-static Signorini contact problem
IMA Journal of Numerical Analysis, published online 2019.
Mirjam Walloth
A reliable, efficient and localized error estimator for a discontinuous Galerkin method for the Signorini problem.
Applied Numerical Mathematics, 135:276-296, 2019. (Preprint)
Rolf Krause, Andreas Veeser, Mirjam Walloth.
An efficient and reliable residual-type a posteriori error estimator for the Signorini problem.
Numerische Mathematik, 130:151-197, 2015.
Rolf Krause, Mirjam Walloth.
Presentation and comparison of selected algorithms for dynamic contact based on the Newmark scheme.
Applied Numerical Mathematics, 62:1393--1410, 2012.
Rolf Krause, Mirjam Walloth.
A family of space-time connecting discretization schemes for dynamic contact based on the Newmark scheme.
Computer Methods in Applied Mechanics and Engineering, 200 (47-48):3425--3438, 2011.
Rolf Krause, Mirjam Walloth.
A time discretization scheme based on Rothe's method for dynamical contact problems.
Computer Methods in Applied Mechanics and Engineering, 199 (1--4):1--19, 2009.

Peer-reviewed contributions to conference proceedings

PhD thesis

Organization of workshops and seminar series

Current Trends and Open Problems in Computational Solid Mechanics
Leibniz Universität Hannover, Oct 8-9, 2018
“Heute Mathe, morgen?”
berufspraktisches Kolloquium am Fachbereich Mathematik der TU Darmstadt

Teaching

Talks