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Motivation and contents

Many laws of nature are encoded by differential equations. For example, the position x(t) ∈ R
of a moving particle as a function of time can be described by

∂2t x(t) = −a(x(t))∂tx(t) + F (t, x(t)), (0.1)

where a(y) is the friction coefficient at the location y ∈ R, and F (y) is the external force at
position y ∈ R. Other laws of nature (like e.g. fluid dynamics or electrodynamics) are encoded
by partial differential equations.

In many cases, it is useful to model the external force F as a random quantity. For example,
the particle might be travelling through a gas of other particles and get frequent pushes from
these other particles. Of course, one could try to model all of the particles at the same time,
but there are typically many millions of them, and this would give millions of coupled ordinary
differential equations, impossible to solve in practice. So in this cases, it is better to focus on
the one particle that we are interested in, and model the pushes by other particles by a random
external force. There are two questions:

(1) What type of random force can we use? Is it suitable for the given physical situation?
Cn we prove that the randomly forced system somehow approximates the relevant
aspects (e.g. the movement of the single particle) of the full, non-random system?

(2) How can we mathematically describe the most relevant random forces?
(3) Given a certain random force, can we actually solve the resulting differential equation?

This means: does a solution exist? Is it unique? Can we calculate it in good cases, or
at least find properties of it?

Point 1) is usually quite difficult and either part of physics, or sometimes can be solved via
statistical mechanics. We will not discuss it in this lecture. Instead, we will start with item 2)
and present a very important case of random force (called

”
noise“ in the following), leading

us to the study of Brownian motion. Brownian motion is easily the most important, and also
among the most beautiful objects of probability theory, and we will study many aspects of it.
Then, we will turn to item 3) and talk about stochastic differential equations. Here we will take
a modern point of view, and use the theory of rough paths that has been established since the
early 2000’s.
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We will be content with a simpler version of (0.1), namely the first order differential equation

∂tXt = b(t,Xt) + σ(t,Xt) · ξt, (0.2)

where Xt ∈ R is the quantity of interest (e.g. our particle), b ∈ R is a deterministic force that
may depend on the time t and on the current state Xt of the system, ξt ∈ Rd is the random
noise (more about this just below), and σ(t, x) is another factor that modulates how strongly
this noise influences the dynamics of the particle when the particle is at position x at time t.

So how should the random function t 7→ ξt look like? If we think of the particle getting random
and very chaotic pushes from other particles, we want to make t 7→ ξt ”

as random as possible“.
An interesting idea for this is the following: let us restrict our attention to 0 ⩽ t ⩽ 1. Then a
large class of functions on this interval can be represented by a Fourier series:

ξt :=
∞∑
k=0

Yk cos(2πkt) +
∞∑
k=1

Zk sin(2πkt),

with coefficients Yk, Zk.

If we already know the function ξ that we want to approximate, then Fourier theory tells
us that we can compute the coefficients by the usual Fourier inversion formula, for example
Zk = 2

∫ 1

0
ξt sin(2πkt) dt for k ⩾ 1. But since we do not know the function ξ but instead want

to produce a random function, it is reasonable to just use random Fourier coefficients. Our aim
to be

”
as random as possible“ is achieved by choosing Yk, Zk ∼ N (0, 1) and iid, i.e. standard

normally distributed and independent. A more physical justification for this choice is that the
energy spectrum is iid, i.e. if ξt were a wave composed of elementary waves (the sin and cos
functions), then all elementary waves occur with the same strength on average, and do not
influence each other.

The problem with this definition is that the limit N → ∞ of the functions

ξ
(N)
t :=

N∑
k=1

Yk cos(2πkt) +
N∑
k=1

Zk sin(2πkt),

with Yk, Zk iid N (0, 1), does not exist for any t ∈ [0, 1] almost surely. This can be seen easily

for t = 0, because ξ
(N)
t (0) =

∑N
k=0 Yk, and the variance of this expression is equal to N − 1/2.

It is also true for all other t. Nevertheless, the limit ξt = limN→∞ ξ
(N)
t is very important and is

called white noise. This might sound strange, but what happens is that while the limit does not
exist as a random function, it does exist as a random distribution. We will however not follow
this route, but rather use a trick to improve convergence, namely we integrate. This means that
we consider

B
(N)
t :=

∫ t

0

ξ(N)
s ds = tY0 +

N∑
k=1

1

2πk

(
Yk sin(2πkt) + Zk(cos(2πkt)− 1)

)
.

You will soon prove as an exercise that this limit does exist as a random function. An easy

special case is the case t = 1, when B
(N)
1 = Y0. The random function t 7→ Bt = limN→∞B

(N)
t is

Brownian motion (in our case: on the unit interval), which will be the main topic for the first
half of the lecture. We will give a quite different definition of it in the next chapter.
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Coming back to the equation (0.2), we see that it still has the problematic quantity ξt in
it, instead of the (allegedly) unproblematic Bt. At least of σ(t, x) = σ0 = constant, we can
integrate this equation on both sides, and get

Xt −X0 =

∫ t

0

∂sXs ds =

∫ t

0

b(s,Xs) ds+ σ0Bt.

This equation now makes sense provided we can prove that the function t 7→ Bt makes sense. A
different question is how to find a solution to it, this is not clear at the moment. In the second
half of the lecture we will learn how to find solutions to this equation, and also how to deal
with non-constant σ(t, x). We will introduce the famous Itô-integral, but also the more modern
theory of rough paths to deal with these problems.

Some literature

There are many books about Brownian motion and stoachstic differential equations, and not
very many about rough paths. Here I give a few books that I have read (at least in part) and
used for this lecture, along with some comments on them.

Books on Brownian Motion and SDE

[SP] R. Schilling and L. Partzsch: Brownian Motion: An Introduction to Stochastic Processes.
Berlin, Boston: De Gruyter, 2012. https://doi.org/10.1515/9783110278989.

The strength of this book is that it does all the proofs very carefully and in great detail. The
price to pay for this is that in some places, things appear more complicated than necessary.
Overall a great reference.

[MP] P. Mörters and Y. Peres: Brownian Motion. Cambridge University Press, 2016.

A very beautiful book concentrating on the geometric and sample path properties of Brownian
motion, less on SDE. It is written in

”
american style“ which means it is engaging and fun

to read, but can skip over some details that may be a bit hard to fill in in some places. In this
respect it is quite the opposite of the book of Schilling and Partzsch.

[Li] T. Liggett: Continuous Time Markov Processes: An Introduction. AMS publishing, 2010.

Another fantastic book. It has the best treatment of the theory of Markov processes that I
am aware of, has a very nice chapter on Brownian motion and several other things that are
not done in this lecture. Very clear and careful presentation, great choice of notation and
terminology.

[RY] D. Revuz and M. Yor: Continuous martingales and Brownian Motion. Springer 1999

Still
”
the bible“ on the topic of Brownian motion and SDE. Contains everything you want to

know about continuous martingales and Brownian motion, and probably much more. Written
in a concise, exact style, that can be a bit demanding, but very thorough and complete.

Book on Rough paths

[FH] P. Friz and M. Hairer: a course on rough paths, Springer Universitext, 2014

The only textbook on the subject that I am familiar with. Its advantage is that it treats the
topics in a very concise way and does not try to achieve maximal generality. The proofs,
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however, are often so concise that I find it very hard to follow them. Several proofs in these
lecture notes are mine, in part because they were so short in the book that I had to fill 90
percent of the steps, in part because I simply did not understand them and had to do my
own ones. So please check them very carefully! If you work hard enough, the book can be very
inspiring, but it can also be a bit frustrating at times. Of note, there is a chapter on regularity
structures (which I do not cover). The only other book I am aware of is a monograph by Friz
and Victoir, which is a few years older, seems very thorough, and has almost 600 pages.

Other sources

[Kl] A. Klenke: Probability Theory, Springer Universitext, 2014

Typical german style text book: does not try very hard to entertain you, but does a very good
job in laying out and explaining the basic building blocks in probability, and it does have some
very nice examples. Very solid reference volume to have around.

[Ka] O. Kallenberg: Foundations of modern probability, Third edition, 2021

In my opinion, the best reference on probability theory in general, although not completely
easy to read. The notation may be a bit hard to follow at first, because it is rather minimali-
stic, but the proofs are highly elegant (and often very short). The whole book has a very

”
pure

mathematics“ feeling to it. Highly recommended.

[Be] V. Betz: Probability theory lecture notes, 2020; available on the moodle page.

I refer to these notes in several places, mostly because I know them rather well. I do like
them, but anything els would be quite sad I suppose. Whether you like them too is up to you
- but do try some of the other literature as well in any case!

1. Brownian Motion

(1.1) Definition

Let (E, E) be a measurable space, T a set. A collection (which is another word for
”
a set“)

of (E, E)-valued random variables X = (Xt)t∈T is called E-valued stochastic process with
index set T . For each ω ∈ Ω, the function T → E, t 7→ Xt(ω) is called the sample path (or
simply: path) of the stochastic process X belonging to ω ∈ Ω if T is a subset of R, otherwise
it is sometimes called the configuration corresponding to ω.

(1.2) Examples

The definition of stochastic process is very broad - for example, for any random variable one
can take T = {1} and X1 = Y , so every random variable is a (trivial) stochastic process. Like
some other definitions in probability theory, the value of the concept of a stochastic process
lies less in the mathematical structure that it implies (because it is too broad to have much
structure) and more in the intuition it tries to evoke. See also next item. For now, here are
some examples:

a) If (E, E) = (Rd,B(Rd)) and T = R, then (Xt) is called d-dimensional, real time stochastic
process.
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b) If (E, E) = ({−1, 1},P({−1, 1}) and T = Zd, then (Xt) is called spin system with lattice Zd
and binary spins.

c) If T = N0, then (Xt) is called a discrete time stochastic process; for example, a simple
random walk would have E = Z.

(1.3) Remark

There are two fundamental points of view on a stochastic process, both of them are useful in
some ways and less useful in others. The first is the dynamical point of view: (Xt) is thought
of as a random quantity and t as a time, and the random quantity changes with time. This is
natural for examples a) and c) above.

The other point of view is the global point of view: a stochastic process can also be viewed as
one single random variable that takes values in the space

Ω = ET ≡ {f : T 7→ E}

of sample paths. This amounts to considering the
”
random quantity“ (Xt) at all times at once!

In other words, instead of looking at each Xt separately as t evolves, one looks at the whole
path t 7→ Xt as one single random object. This is natural e.g. for example b) above, where T
anyway does not look like a time, and (Xt)t∈T can be visualized as an infinitely large pattern
of −1’s and 1’s located at the vertices of Zd. But it is also useful in example c). When we apply
it, we imagine that instead of discovering (Xn)n∈N separately for each n, each ω ∈ Ω = EN

represents one possible evolution of the random events into the infinite future, i.e. for all n at
once.

An important question is what σ-algebra should be used on Ω, but we will come to that.

(1.4) Definition

Let X = (Xt)t∈T be a stochastic process, and assume that the state space E is a group (the
most important examples are E = R and E = Rn), and that T ⊂ R. The set of random
variables (Xs,t)s,t∈T with

Xs,t := Xt −Xs

is called the set of increments of the process X.

A stochastic process is said to have independent increments if for all n ∈ N and for all
s1 < t1 ⩽ s2 < t2 ⩽ . . . ⩽ sn < tn with si, ti ∈ T , the random variables (Xsi,ti)1 ⩽ i ⩽ n are
independent.

In the same situation as above, the stochastic process is said to have stationary increments if
for all r ∈ R so that si+r ∈ T and ti+r ∈ T for all i, we have (Xsi,ti)i=1,...,n ∼ (Xsi+r,ti+r)i=1,...,n.

Remark: a)(Xs,t)s,t∈T is a stochastic process with index set {(s, t) ∈ T × T : s < t} and state
space E, called the increment process.

b) Importantly, independence of increments is only required when the intervals [si, ti) do not
overlap for different i. This is important because otherwise we could take s1 = s2, t1 = t2, and
then there would be only very boring stochastic processes with independent increments.
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c) For shorter presentation, the disjointness property is also required in the definition of statio-
nary increments. But here it is not necessary, and it actually implies the stationary increment
property for all sets of increments. It is a useful exercise to convince yourself that this is so.

(1.5) Definition

A Rd-valued stochastic process B = (Bt)t∈R+
0

is called a Brownian motion if it has the

following five properties:

(B0): B0(ω) = 0 for almost all ω, i.e. B0 = 0 almost surely.

(B1): B has independent increments.

(B2): B has stationary increments.

(B3): Bt − Bs ∼ Bt−s ∼ N (0, (t− s)idRd), where N is the d-dimensional normal distribution1)

and idRd is the d-dimensional identity matrix.

(B4): The map t 7→ Bt(ω) is continuous for all (note: not only almost all) ω ∈ Ω.

(1.6) Remark

Let us interpret the properties (B0)-(B4) in the light of the formula Bt =
∫ t
0
ξs ds, where ξs is

the white noise from the introduction. We ignore the fact that ξ does not exist as a function,
and just work heuristically. We have:

(B0) is necessary since
∫ 0

0
ξs ds = 0 whatever ξ might be.

(B1) represents the complete lack of memory (
”
whiteness“) in the white noise: We have Bs,t =∫ t

s
ξr dr for all s, t, and for s1 < t1 ⩽ s2 < t2 the sets (ξr)s1 ⩽ r<t and (ξr)s2 ⩽ s<t are sets of

independent random variables. So also the integrals Bs1,t1 and Bs1,t2 are independent.

(B2) just means that white noise is not changing with time: the integral
∫ t1
s1
ξs ds only depends

on the length t1 − s1 of the integration interval.

(B3) comes from the central limit theorem: if we believe that all the ξs are independent of each

other, then Bt−s =
∫ t−2

0
ξr dr is a sum of (infinitely many!) iid random variables, and must

therefore be a Gaussian.

(B4) is again very reasonable since t 7→
∫ t
0
f(s) ds should be continuous for any function f ,

even a non-existent one like ξ. More seriously, and only for those who might have already heard
about these things or are interested in them: ξ as a distribution is regular enough to guarantee
the continuity of the map t 7→ (1l[0,t], ξ), where the bracket is the dual pairing via the ordinary
L2-scalar product.

Since Gaussian measures play a central role in most of what follows, we next give a short but
complete (for our purposes) and systematic account of their most important properties.

(1.7) Definition

The Gaussian measure (or: normal distribution) with mean m ∈ R and variance σ2 ⩾ 0 is the

1)We will recall (of learn about) the most important facts about multi-dimensional Gaussians (or normal
distributions) just below, see in particular (1.13)
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probability measure on (R,B(R) with Lebesgue density

gm,σ2(x) =
1√
2πσ2

exp
(
− (x−m)2

2σ2

)
.

(1.8) Proposition

Let X ∼ N (m,σ2). Then

a) E(X) = m, V(X) = σ2.

b) For σ > 0 and all C > 0, we have

1√
2π

C

C2 + 1
e−C

2/2 ⩽ P(X −m ⩾ Cσ) ⩽
1√
2π

1

C
e−C

2/2 .

c) For real sequences (mk)k∈N and (σk)k∈N and m,σ ∈ R we have(
lim
k→∞

mk = m and lim
k→∞

σk = σ
)

⇔ N (mk, σ
2
k)

k→∞−→ N (m,σ2) in distribution.

Proof: exercise.

(1.9) Definition

A Rd-valued random variable X is called d-dimensional Gaussian if for all linear maps
L : Rd → R, there exist m,σ ∈ R with LX ∼ N (m,σ2).

Remark: In words: a random variable is d-dimensional Gaussian if and only if the image
measure of its distribution under all linear maps L : Rd → R is one-dimensional Gaussian.
Explicitly, this means that with X = (X1, . . . , Xd), we need that for any choice a1, . . . , ad ∈ R,
the real random variable

∑d
i=1 aiX

i is Gaussian.

(1.10) Example and warning

If X1, . . . , Xd are independent one-dimensional Gaussians, then (X1, . . . , Xd) is a d-dimensional
Gaussian. But without independence, this is not necessarily true. As an example, let

X1 ∼ N (0, 1), X2(ω) =

{
X1(ω) for those ω that give |X1(ω)| ⩽ 1,

−X1(ω) for those ω that give |X1(ω)| > 1.

Then X2 ∼ N (0, 1) (to see this calculate P(X2 < c) for all c ∈ R), but the pair (X1, X2)
is not a Gaussian random variable. One can see this by noticing that |X2(ω) + X1(ω)| ⩽ 2
for all ω ∈ Ω, and P(X1 + X2 ̸= 0) > 0. So with L(x, y) = x + y the image measure of the
distribution of (X1, X2) under L is a nonzero distribution with compact support, and thus can
not be Gaussian.

From a systematic point of view, requiring that X i is Gaussian for all i means that the image
measures under all coordinate projections are Gaussian, or in the phrasing of the remark above,
that all ai except one are zero. But since there are many more linear maps from Rd to R than
there are coordinate projections (for example the map L above), this is not sufficient to fulfil
Definition (1.9). For independent Gaussians, on the other hand, it is enough, since we know
(e.g. by studying the characteristic function, see below) that the sum of independent Gaussian
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random variables is Gaussian, and so again in the language of the remark above, it is clear that∑d
i=1 aiX

i is Gaussian if all the X i are independent Gaussians.

(1.11) Proposition

Let X be a real random variable. X ∼ N (m,σ2) if and only if its characteristic function is
given by

φX(u) = eium e−
1
2
u2σ2

(∗)

Proof: Recall that φX(u) := E( eiuX ) uniquely determines the distribution of X. Therefore we
only need to show that (∗) holds when X ∼ N (m,σ2). Since φX+m(u) = eimu φX(u), we can
restrict to the case m = 0. For this case, we calculate

d

du
φX(u) =

1√
2πσ2

∫
ix eiux e−

x2

2σ2 dx ==
1√
2πσ2

∫
i eiux

(
x e−

x2

2σ2

)
dx

=
1√
2πσ2

∫
i
(
iu eiux

)
σ2 e−

x2

2σ2 dx = −uσ2φX(u).

For the first equality, integration under the integral is justified by the integrability of x 7→
|x| e−

x2

2σ2 , and in the third equality we integrated by part using the fact that ∂x e
− x2

2σ2 = x
σ2 e

− x2

2σ2 .
Since we have φX(0) = 1, for the function h(u) = lnφX(u) we get

h′(u) =
φ′
X(u)

φX(u)
= −uσ2, h(0) = 0.

Integrating gives h(u) = −1
2
u2σ2, and this shows the claim. □

(1.12) Corollary

For X ∼ N (0, σ2) and ζ ∈ C we have

E( eζX ) = e+σ
2ζ2/2 .

Proof: The function ζ 7→ E( eζX ) is analytic on C (e.g. estimate its Taylor coefficients using

the integral with Gaussian density). It is given by e+σ
2ζ2/2 for ζ = iu, u ∈ R. Therefore by the

uniqueness of analytic continuation, the claim follows. □

(1.13) Theorem and Definition

Let X = (X i)1 ⩽ i ⩽ d be a d-dimensional Gaussian.

a) The distribution of X is uniquely determined by its mean vector

m := E(X) = (E(X i))1 ⩽ i ⩽ d ∈ Rd,

and its covariance matrix

C = (Ci,j)1 ⩽ i,k ⩽ d ∈ Rd×d with Ci,j := Cov(X i, Xj) = E(X iXj)− E(X i)E(Xj).

We write N (X, C) for such a Gaussian.
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b) X has a Lenesgue-density on Rd if and only if C is invertible. In this case,

P(X ∈ dx) =
1

(2π)d/2(detC)1/2
exp

(
− 1

2

(
x−m, C−1(x−m)

))
︸ ︷︷ ︸

=:ψ(x)

dx,

where (., .) is the scalar product in Rd, and the above formula is a useful and suggestive way
to write that ψ(x) is the Lebesgue density of the distribution of X.

Proof: Assume that X and Y are d-dimensional Gaussians, both with mean m and covariance
matrix C. Then for all a ∈ Rd, the random variables Z =

∑d
i=1 aiX

i and W =
∑d

i=1 aiY
i are

one-dimensional Gaussians with E(Z) = E(W ) = (a,m), and

V(Z) = V(W ) = (a, Ca). (∗)
Therefore,

φX(a) = E( ei(a,X) )
(1.11)
= ei(a,m) e−

1
2
(a,Ca) = φY (a)

for all a ∈ Rd, and thus the characteristic functions of X and Y are equal. This implies that
the distributions of X and Y are equal, which shows the claim.

b) Assume first that C is not invertible. Then there exists 0 ̸= y ∈ Rd with Cy = 0, and so

V
(
(y,X)2

)
= (y, Cy) = 0.

This means that (y,X) = (y,m) almost surely, and so the distribution of X is concentrated
on the hyperplane. Therefore it can note have a Lebesgue-denisty.

Assume now that C is invertible. This ensures that ψ as defined in the claimed equation is well-
defined and nonnegative. What remains is to compute the characteristic function of ψ(x)dx
and verify that it matches the function φX given in the first part of the proof. This is left as
an exercise. □

(1.14) Proposition

Let X be a d-dimensional Gaussian, X ∼ N (m, C) and A ∈ Rn×d. Then

AX ∼ N (Am, ACA∗),

where A is the Hermitian conjugate of A.

Proof: exercise.

(1.15) Proposition

Let X ∼ N (m, C). Then X1, . . . , Xd are uncorrelated if and only if they are independent.

Proof: Independent random variables are always uncorrelated, wo the one implication is trivial.
For the other implication, note that uncorrelatedness of the X i implies that C is a diagonal ma-
trix, with diagonal elements Ci,i. Let Y

1, . . . , Y d be independent Gaussians with E(Yi) = E(Xi)
and with V(Xi) = Ci,i for all i. Then φY (a) = φX(a) can be easily verified for all a ∈ Rd, and
thus by Theorem (1.13) the distributions of Y and X are equal. □
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Remark: Be careful: it is not true that uncorrelated Gaussians are always independent. They
need to be jointly Gaussian in the sense of Definition (1.9). The reason is similar to the one
given in (1.10).

It is time to come back to the topic of stochastic processes and Brownian motion!

(1.16) Definition

Let (Xt) be a stochastic processes with state space (E, E), defined on some probability space
(Ω,F ,P). The set of finite dimensional distributions (short: fidis) of X is the family of
probability measures

{pt1,...,tn : t1, . . . , tn ∈ T, ti ̸= tj if i ̸= j, n ∈ N}, where pt1,...,tn = P ◦ (Xt1 , . . . Xtn)
−1

is the image measure of P under the measurable map Ω → E,ω 7→ (Xt1(ω), . . . , Xtn(ω)).
Put differently, pt1,...,tn is the unique probability measure on (En, E⊗n) with pt1,...,tn(A) =
P((Xt1 , . . . , Xtn) ∈ A) for all A ∈ E⊗n.

(1.17) Example

Let T = N, (Xn)n∈N be a simple random walk, i.e. Xn =
∑n

i=1Xi where (Xi) are iid random
variables it P(Xi = 1) = P(X = −1) = 1/2. Then, for example, for A,B,C ⊂ Z,

p1,4,9(A×B × C) = P(X1 ∈ A,X4 ∈ B,X9 ∈ C).

So, the pt1,...,tn are used to measure what the process does at the precise times t1, . . . , tn, but
are blind to everything that it does at any other times. Each finite dimensional distributions
thus only controls a finite number of points in time of the process, hence the name.

(1.18) Proposition

Let X be as in (1.16). Then the finite dimensional distributions fulfil the consistency conditi-
ons: for all t1, . . . , tn ∈ T , all C1, . . . , Cn ∈ E , and all permutations σ : {1, . . . , n} → {1, . . . , n},
we have

(C1) pt1,...,tn(C1, . . . , Cn) = ptσ(1),...,tσ(n)
(Cσ(1) × · · · × Cσ(n)),

(C2) pt1,...,tn(C1 × · · · × Cn−1 × E) = pt1,...,tn−1(C1 × · · · × Cn−1).

Proof: easy exercise.

Remark: By (C1), we may always assume that t1 < t2 < · · · < tn when talking about fidis.

(1.19) Definition

A Rd-valued stochastic process is called Gaussian process if all its fidis are Gaussian measu-
res.
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(1.20) Remark

a) Explicitly, this means that each pt1,...,tn is the distribution of a Rdn-dimensional (jointly)
Gaussian random variable. In fact, the relevant random variable is simply given by ω 7→
(Xt1(ω), . . . , Xtn(ω)).

b) Example (1.10) shows that there are stochastic processes that are not Gaussian processes,
but where the one-dimensional distributions pt are Gaussian vor all t. In fact, the example
given in (1.10) is such a process if we take T = {1, 2}, E = R and X1 = X1, X2 = X2.

c) If X is a Gaussian process, then its fidis are fully determined by the two functions

T → Rd, t 7→ E(Xt) (the mean),

T 2 → Rd×d, (s, t) 7→ Cov(Xs, Xt) (the covariance function).

This follows from Theorem (1.13).

(1.21) Theorem

a) A Rd-valued Brownian Motion (short: BMd) is a Gaussian process B with mean E(Bt) = 0
for all t and (matrix-valued!) covariance function

Cov(Bs, Bt) := E(B∗
sBt) = min{s, t}idRd ≡ (s ∧ t)idRd .

Here B∗
s is the column vector (B1

s , . . . , B
d
s )

t, i.e. B∗
sBt is the rank one matrix A with entries

Ai,j = Bi
sB

j
t .

b) Conversely, a Gaussian process with the above mean and covariance is a BMd if it also fulfils
the continuous paths condition (B4).

Proof: Let 0 < t1 < t2 < . . . < tn. Define the matrix

A =



1 0 0 0 · · · 0
1 1 0 0 · · · 0
1 1 1 0 · · · 0

1 1 1 1
. . .

...
...

...
...

...
. . . 0

1 1 1 1 · · · 1


.

Then

(Bt1(ω), . . . , Btn(ω)) = A
(
Bt1 −B0, Bt2(ω)−Bt1(ω), . . . , Btn(ω)−Btn−1(ω)

)t
.

By (B1), (B3) and (1.10), we have (Bti −Bti−1
)1 ⩽ i ⩽ n ∼ N (0, C) with Ci,j = δi,j(ti− ti−1). By

(1.14), this implies pt1,...,tn ∼ N (0, ACA∗), so B is a Gaussian process. Clearly its mean is zero,
and for the covariance we compute

Cov(Bs, Bt) = E((Bs − 0)(Bt − 0)) = E((Bt −Bs)Bs)︸ ︷︷ ︸
=0,independent increments

+E(B2
s ) = s = s ∧ t.

b) We need to check (B0)-(B4). (B4) is explicitly assumed to hold, and (B0) follows from
E(B0) = V(B0) = E(B2

0) = 0∧ 0 = 0. For (B1), (B2) and (B3), we note that the assumed form
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of the covariance function implies that for t1 < · · · < tn, the covariance matrix of (Bt1 , . . . , Btn)
is given my

M =



t1 t1 t1 t1 · · · t1
t1 t2 t2 t2 · · · t2
t1 t2 t3 t3 · · · t3
t1 t2 t3 t4 · · · t4
...

...
...

...
. . .

...
t1 t2 t3 t4 · · · tn


The matrix A from the first part of the proof has inverse

A−1 =


1 0 0 · · · 0
−1 1 0 · · · 0

0 −1 1
. . . 0

...
. . . . . . . . . 0

0 · · · 0 −1 1

 .

Therefore, (Bt1 −B0, Bt2 −Bt1 , . . . , Btn −Btn−1) has covariance matrix

M ′ = A−1M(A−1)∗ =


t1 0 · · · 0

0 t2 − t1
. . .

...
...

. . . . . . 0
0 · · · 0 tn − tn−1

 .

This implies (B1)-(B3). □

(1.22) Proposition

Let B1, . . . , Bd be independent 1-dimensional Brownian motions. Then B := (B1
t , . . . , B

d
t )t ⩾ 0

is a d-dimensional BM. Conversely, if we are given a d-dimensional BM B̃, then the coordinate
processes (B̃i

s)s ⩾ 0 are one-dimensional Brownian Motions for all i ⩽ d.

Proof: exercise.

(1.23) Proposition

Let B be a one-dimensional Brownian motion. Then its fidis have the following Lebesgue-
density: for all 0 = t0 < t1 < . . . < tn, we have

pt1,...,tn(dx) ≡ P(Bt1 ∈ dx1, . . . , Btn ∈ dxn) = ϕt1,...,tn(x)dx, (∗)

with

ϕt1,...,tn(x1, . . . xn) =
n∏
i=1

exp
(

−(xj−xj−1)
2

tj−tj−1

)
2π(tj − tj−1)

1/2
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with the convention x0 = 0. An equivalent way to write this fact is to state that for all
A1, . . . , An ∈ B(R), we have

P(Bt1 ∈ A1, . . . , Btn ∈ An) =
1

(2π)n/2
(∏n

i=1(tj − tj−1)
)1/2

∫
A1×···×An

e
− 1

2

∑n
j=1

(xj−xj−1)
2

tj−tj−1 dx.

Proof: exercise - use Theorem (1.21).

We have now defined Brownian Motion axiomatically and connected it with the theory of
Gaussian processes, but we do not yet know that there even exists a stochastic process fulfilling
(B0)-(B4). Our next task is to see that this is the case. This will take a while. We start by
making sure that the fidis we found in (1.23) have the chance of belonging to a bona fide
stochastic process, i.e. that they fulfil the consistency conditions from (1.18).

(1.24) Proposition

Consider the family of time-ordered fidis {pt1,...,tn : 0 < t1 < t2 . . . < tn}, where the pt1,...tn are
given by the right hand side of equation (∗) in (1.23). Extend this family in the unique way
that satisfies condition (C1) of (1.18) to a family of non-time-ordered fidis. Then this family is
consistent, i.e. it also fulfils condition (C2) of (1.18).

Proof: a direct, but somewhat tedious calculation that involves some integration arithmetics.
Left as an exercise.

(1.25) Definition

Let (E, E) be a measurable space and T a set.

a) The maps πt : E
T → E, (es)s∈T → et are called the coordinate projections to the t-th

coordinate. When we identify ET with the set {f : T → E} of all functions from T to E, then
πt(e) = e(t) = et is the point evaluation of the function e at the point t.

b) The σ-algebra E⊗T is the smallest σ-algebra on ET so that all the maps πt : E
T → E are

E⊗T -E-measurable.

c) The measurable space (ET , E⊗T ) is called the canonical measurable space for E-valued
stochastic processes with index space T .

d) If Ω0 ⊂ ET is any (not necessarily measurable) subset of ET , then the σ-algebra (!)

E⊗T ∩ Ω0 := {A ∩ Ω0 : A ∈ E⊗T}
is called the trace of E⊗T on Ω0. The measurable space (Ω0, E⊗T ∩Ω0) is the canonical measu-
rable space for E-valued stochastic processes with index set T and sample paths in Ω0.

(1.26) Example

(i): For E = Rd, T = R+
0 and Ω = ET = {ω : R+

0 → Rd}, πt(ω) = ω(t), we see that Ω is the
space of all paths t 7→ ω(t) of the process X with Xt(ω) = ω(t).

(ii): With
Ωc = C0(R+

0 ,Rd),
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the measurable space (Ωc,B(Rd)⊗R+
0 ∩ Ωc) is the canonical space for stochastic processes with

continuous paths.

(iii):
Ω0 = C0(R+

0 ,Rd) = {ω ∈ C(R+
0 ,Rd) : ω(0) = 0},

the measurable space (Ω0,B(Rd)⊗R+
0 ∩ Ω0) is the canonical space for stochastic processes with

continuous paths starting in 0.

(1.27) Remark

The metric of local uniform convergence on C0 ≡ C0(R+
0 ,Rd) is given by

ρ : C0 × C0 → R+
0 , ρ(f, g) =

∞∑
n=1

(
1 ∧ sup

0 ⩽ t ⩽ n
|f(t)− g(t)|

)
2−n.

The Borel-σ-algebra B(C0) on C0 is the smallest σ-algebra on C0 such that all ρ-open subsets
of C0 are B(C0)-measurable. We have

B(C0) = B(R)⊗R+
0 ∩ C0.

Proof: exercise.

(1.28) Lemma

Let (E, E) be a measurable space and T a set. Then for A ⊂ ET , we have

A ∈ E⊗T ⇐⇒ ∃I ⊂ T, I countable, with A ∈ σ(πt : t ∈ I).

Proof: exercise.

We recall a theorem from the probability theory course. For the purpose of this lecture, we
add a Definition that is a bit more general than what we had before. In my lecture notes on
probability theory, part c) below is proved as Theorem 3.29.

(1.29) Definition and Theorem

a) Let (S,S) and (T, T ) be measurable spaces. A map µ : S×T → [0, 1] is called a probability
kernel from S to T if

(i): s 7→ µ(s, A) is S-measurable for all A ∈ T ,
(ii): A 7→ µ(s, A) is a probability measure on (T, T ) for all s ∈ S.

b) Let (Ω,F) be a measurable space, G ⊂ F be a sub-σ-algebra. A probability kernel2) µ :
Ω × F → [0, 1] is called a regular conditional probability with respect to the σ-algebra G
if for almost all ω ∈ Ω, we have

µ(ω,A) = P(A | G)(ω).
c) If (Ω,F) is a Borel-space, then for each G ⊂ F a regular conditional probability exists.

2)in the notation of a) we have (S,S) = (Ω,G) and (T, T ) = (Ω,F)
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We will also need the following technical but useful fact:

(1.30) Lemma

Let (S,S) be a measurable space, (T, T ) a Borel space, µ a probability kernel from S to T ,
and Y a U([0, 1])-distributed3) random variable. Then there exists a S ⊗ B([0, 1])-measurable
function f : S × [0, 1] → T such that

µ(s, A) = P(f(s, Y ) ∈ A) =

∫ 1

0

1l{f(s,.)∈A}(u) du

for all s ∈ S, A ∈ T .

Proof: A Borel space is by definition isomorphic to a Borel subset of [0, 1] as a measurable
space, i.e. there exists a Borel subset U ⊂ [0, 1] and a bijective map h : U → T so that h and
h−1 are measurable. We first show the claim for the case T = U and T = B([0, 1]) ∩ U . In this
case, we define the function f : S × U → [0, 1] by

f(s, t) := sup{x ∈ [0, 1] : µ(s, U ∩ [0, x]) < t}, for all s ∈ S, t ∈ U.

We claim that for all c ∈ [0, 1] we have

f(s, t) ⩽ c ⇔ sup{x ∈ [0, 1] : µ(s, U ∩ [0, x]) < t} ⩽ c ⇔ µ(s, U ∩ [0, c]) ⩾ t.

Indeed, the first equivalence is by definition, and for the second we look at the two possibilities
for the right hand side:

if µ(s, U∩[0, c]) ⩾ t is true, then c /∈ At := {x ∈ [0, 1] : µ(s, U∩[0, x]) < t}. By the monotonicity
of the map x 7→ µ(s, U ∩ [0, x]), At is an interval starting from 0. Therefore, its rightmost point
f(s, t) can be at most equal to c, in other words f(s, t) ⩽ c.

If, on the other hand, µ(s, U ∩ [0, c]) ⩾ t is not true, then by the continuity from above of the
measure µ(s, .) we have limn→∞ µ(s, U ∩ [0, c+1/n]) < t, which means that there must be c̃ > c
with µ(s, U ∩ [0, c̃]) < t. So c̃ ∈ At, which means that f(s, t) ⩾ c̃ > c. This shows the claimed
equivalences.

Next we show that the function f is S ⊗ B([0, 1])-measurable. For this we first note that the
function Fc : S ×U → R∪ {∞}, (s, t) 7→ µ(s, U ∩ [0, x])/t is jointly measurable as the quotient
of two (trivially) jointly measurable functions. Then the measurability of f follows from the
equality

f−1([0, c]) = F−1
c ([1,∞]) ∈ S × (B([0, 1]) ∩ U)

for all c.

Since Y ∼ U([0, 1]), for all x ∈ [0, 1] we have

P(f(s, Y ) ⩽ c) = P(µ(s, [0, c]) ⩾ Y ) = µ(s, [0, c]),

and since probability measures on [0, 1] are determined by their values on intervals, this shows
the claim for the case T = U .

For the case of a general Borel space T , let U and h : T → U be as indicated in the beginning
of the proof. We define the probability kernel µ̃(s, B) = µ(s, h−1(B)) for all B ∈ B([0, 1]) ∩ U ,
and find a function f̃ and a U([0, 1]) random variable Y with µ̃(s, B) = P(f̃(s, Y ) ∈ B) by

3)this means: uniformly distributed on [0, 1]
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the first part of our proof. Now define f(s, t) = h−1 ◦ f(s, t), check measurability (easy), and
compute

µ(s, A) = µ̃(s, h(A)) = P(f̃(s, Y ) ∈ h(A)) = P(f(s, Y ) ∈ A),

which shows the claim. □

The following theorem is the central step in the proof of existence os stochastic processes.

(1.31) Theorem

Let (E, E) be a Borel space. For each n ∈ N, let Pn be a probability measure on (En, E⊗n), and
assume that the consistency equations

Pn+1(A× E) = Pn(A)

hold for all A ∈ E⊗n and all n ∈ N. Then on the probability space

(Ω,F ,P) = ([0, 1]N,B([0, 1])⊗N,U([0, 1])⊗N),

there exists a family (Xi)i∈N of E-valued random variables so that for all n ∈ N and all A ∈ E⊗n

we have

Pn(A) = P((X1, . . . , Xn) ∈ A). (∗)

In other words, a stochastic process with the fidis given by the Pn exists.

Proof: We construct the Xi recursively. For this purpose, we write ω ∈ Ω as ω = (ω1, ω2, . . .)
and define Yi(ω) = ωi. Then the (Yi) are iid, U([0, 1])-distributed random variables.

For the first step we are looking for a random variable X1 so that P1(A) = P(X1 ∈ A). We
did this in Theorem (2.22) of the course

”
Einführung in die Stochastik“, where we constructed

X1 as the generalized inverse of the distribution function of P1. Alternatively, we can use the
trivial probability kernel µ0(x, A) = P1(A) from {0} to E in the context of Lemma (1.30), and
find a function f with P1(A) = E(f(Y1) ∈ A), so X1 = f(Y1).

Assume now that we have already constructed X1, . . . , Xn so that (∗) holds up to n, and that
in addition each Xi is σ(Y1, . . . , Yi)-measurable. Let

Gn := σ({A1 × · · · × An × E : Ai ∈ E ∀i}),

be the sub-σ-algebra of E⊗(n+1) that only depends on the information contained in the first n
coordinates. The regular conditional probability

µn : En+1 × E⊗(n+1) → [0, 1] with µn(x, A) = Pn+1(A | Gn)(x) almost surely

exists by (1.29). Since x 7→ µn(x, A) is Gn-measurable, it depends only on x1, . . . , xn but not
on xn+1. In other words, there exists a function µ̃ : En × E⊗(n+1) → [0, 1] with µ(x, A) =
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µ̃((x1, . . . , xn), A). We then have

Pn+1(A1 × · · · × An+1) = En+1

(
Pn+1(A1 × · · · × An+1 | Gn)

)
= En+1

(
Pn+1(An+1 | Gn)

n∏
i=1

1lAi

)
=

=

∫
µ̃((x1, . . . , xn), An+1)

n∏
i=1

1lAi
(xi)Pn+1(dx)

=

∫
µ̃((x1, . . . , xn), An+1)

n∏
i=1

1lAi
(xi)Pn(dx) = E

(
µ̃((X1, . . . , Xn), An+1)

n∏
i=1

1lAi
(Xi)

)
=: (∗∗).

In the penultimate step, we used the assumed projectivity property, and in the last we used
the induction hypothesis.

By Lemma (1.30) there exists4) f : En × [0, 1] → E so that

µ̃((x1, . . . , xn), An+1) = P(f(x1, . . . , xn, Yn+1) ∈ An+1)

for all x1, . . . , xn ∈ E. Let Fn = σ(Y1, . . . , Yn) ⊂ F . Since Yn+1 is independent of X1, . . . , Xn

by our induction hypothesis, Proposition (3.23) of the probability theory lecture notes applies
and states that

P(f(X1, . . . , Xn, Yn+1) ∈ An+1 | Fn)(ω̄) = P(f(X1(ω̄), . . . , Xn(ω̄), Yn+1) ∈ An+1).

Taking these facts together, we obtain

(∗∗) =
∫

P
(
f(X1(ω̄), . . . , Xn(ω̄), Yn+1

)
∈ An+1)

n∏
i=1

1lAi
(Xi(ω̄))P(dω̄)

= E
(
P(f(X1, . . . , Xn, Yn+1) ∈ An+1 | Fn)

n∏
i=1

1lAi
(Xi)

)
= P

(
f(X1, . . . , Xn, Yn+1) ∈ An+1, X1 ∈ A1, . . . , Xn ∈ An).

Setting Xn+1(ω) = f(X1(ω), . . . , Xn(ω), Yn+1(ω)), we have constructed Xn+1 that fulfils (∗) and
is measurable with respect to Yi, i ⩽ n+ 1. This concludes the proof. □

(1.32) Theorem (Kolmogorov 1932)

Let (E, E) be a Borel space, T a set. Let {pt1,...,tn : t1, . . . , tn ∈ T, n ∈ N} be a family of
probability measures that fulfil the consistency conditions (1.18), (C1) and (C2). Then there
exists a probabiltiy measure P on (ET , E⊗T ) with

pt1,...,tn(A) = P((πt1 , . . . , πtn) ∈ A) ∀A ∈ E⊗n, n ∈ N, t1, . . . , tn ∈ T.

(Recall Definition (1.25)).

Proof: Let A ∈ E⊗T . By Lemma (1.28),

∃I ⊂ T, I countable with A ∈ σ(πt : t ∈ I).

4)here we need that products of Borel spaces are Borel spaces, which is left as an exercise
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We can therefore write A = B × ET\I for some B ∈ E⊗I . By Theorem (1.31), there exists a
(unique (!)) probability measure PI on E⊗I with

pt1,...,tn(A1 × · · · × An) = PI(πti ∈ Ai ∀i ⩽ n), ∀n ∈ N, A1, . . . , An ∈ E , t1, . . . , tn ∈ I.

Now for each A ∈ E⊗T , pick I and B with A = B × ET\I , define PI as above, and set
P(A) = PI(B). The choice of I is not unique, but consistency guarantees that the value of P(A)
does not depend on the choice of I, thus P is a well-defined map from E⊗T to [0, 1]. It remains to
show its σ-additivity. So let (Aj)j∈N be disjoint elements of E⊗T , choose Ij, Bj for each of them

so that Aj = BIj × ET\Ij , and put I =
⋃∞
i=1 Ij. Then Aj = B̃j × ET\I with B̃j = BIj × EI\Ij .

Then the B̃j form a disjoint family of elements from E⊗I , I is still countable, and thus the
σ-additivity of PI gives

P(
⋃
j∈N

Aj) = PI(
⋃
j∈N

B̃j) =
∑
j∈N

PI(B̃j) =
∑
j∈N

P(Aj).

□

(1.33) Corollary and Definition

A Rd-valued stochastic process fulfilling (B0)-(B3) from (1.5) exists. Explicitly, there exists

a (unique) probability measure W0 on (Ω,F) = ((Rd)R
+
0 , (B(Rd))R

+
0 ) such that the random

variables

Bt : Ω → Rd, ω 7→ Bt(ω) = πt(ω) = ωt

have the properties (B0)-(B3). W is called the pre-Wiener measure.

It remains to show that property (B4) also holds. The slight difficulty here is that the statement

”
W0(C(R+

0 ,Rd)) = 1“ makes no sense, because C(R+
0 ,Rd) is not an element of F (exercise).

Therefore we need to be slightly more careful.

(1.34) Definition

Let D ⊂ R+
0 , α > 0. A function f : R+

0 → Rd is called α-Hölder continuous on D if

∥f∥D,α := sup{|f(t)− f(s)|
|t− s|α

: s, t ∈ D, s ̸= t} <∞.

In this case we write f ∈ Cα(D).

f is locally α-Hölder continuous on D if ∥f∥D∩[0,n],α < ∞ for all n ∈ N. We then write
f ∈ Cα

loc(D).

(1.35) Remarks

a) If D has no cluster points, then f ∈ Cα(D) for all functions f .

b) Usually we will take D to be a dense subset of some interval [a, b] ⊂ R+
0 .

c) In the case described in b), f ∈ Cα(D) can be uniquely extended to a function f ∈ Cα([a, b]):
for x ∈ [a, b], we define f(x) = limn→∞ f(xn) for any sequence (xn) ⊂ D with xn → x. You
should check that ∥f∥D,α < ∞ guarantees the independence of this limit from the chosen
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sequence.

d) If D is dense and f ∈ Cα
loc(D) for some α > 1, then f is constant

e) f ∈ C1
loc means that f is locally Lipschitz continuous.

f) ∥.∥D,α is only a semi-norm: we have ∥f∥D,α = 0 for all constant f .

g) The map ∥.∥D,α : C(R+
0 ,Rd) → [0,∞] is (B(Rd))⊗R+

0 -B([0,∞])-measurable if D is countable
(exercise!).

(1.36) Theorem

Let (Xt)t∈[0,T ] be a Rd valued stochastic process. Assume that there exist q ⩾ 2, β > 1
q
and

C <∞ such that

∀s, t ∈ [0, T ] with |t− s| < 1
2
: E(|Xs,t|q) ⩽ C|t− s|βq (∗)

(or, equivalently, |Xs,t|Lq ≡ E(|Xs,t|q)1/q ⩽ C|t− s|β). Then for the choice

D = {2−nk : k ∈ N, n ∈ N} ∩ [0, T ] (the dyadic rational numbers)

we have

E(∥X∥qD,α) <∞ ∀α ∈
[
0, β − 1

q

)
.

Proof: Let Dn := {2−nk : k ∈ N} ∩ [0, T ]. Then D =
⋃
n∈NDn. We define

Kn(ω) := max{|Xt,t+2−n(ω)| : t ∈ Dn} = max{|Xs,t(ω)| : s, t are neighbous in Dn}.

We begin by estimating the q-th moment of this random variable, something we will need later.
We have

E(Kq
n) ⩽ E

( ∑
t∈Dn

|Xt,t+2−n|q
) (∗)

⩽ |Dn|C(2−n)βq ⩽ T2nC(2−n)βq = CT2−n(βq−1). (∗∗)

The next task is to find a way to estimate sups,t∈D
|Xs,t(ω)|
|t−s|α in terms of the Kn(ω), for all ω.

First we note that we may restrict to the supremum to |t − s| < 1
2
, because if |t − s| > 1

2
, we

can choose m ⩽ 2T and t0, . . . tm ∈ D with t0 = s, tm = t, and |ti − ti−1| < 1/2 for all i. Since
|Xs,t| ⩽

∑m
i=1 |Xti−1,ti |, we have

|Xs,t|
|t− s|α

⩽
m∑
i=1

|Xti−1,ti |
|ti − ti−1|α

⩽ 2T sup
{ Xs,t

|t− s|α
: s, t ∈ D, |t− s| < 1

2

}
.

Now we can take the supremum over s, t ∈ D on the left hand side and indeed find that there is
only a constant factor 2T difference between it and the supremum over s, t with |t− s| < 1/2,
for which we have made assumption (∗).
Under this assumption, for each s < t ∈ D there exists j ∈ N with

2−j < t− s ⩽ 2−j+1.

Below, we will connect s and t by a chain (s = t0, t1, . . . , tn−1, tn = t) of points from D with
the properties that two consecutive points always have distance 2−m from each other for some
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m ⩾ j, and that each of the possible distances occurs at most twice in the chain. Let us assume
that we have already constructed such a chain, then we can estimate

|Xs,t(ω)| ⩽
n∑
i=1

|Xti−1,ti(ω)| ⩽ 2
∞∑
ℓ=j

Kℓ(ω).

Since |t− s| > 2−j, we then have

|Xs,t(ω)|
|t− s|α

⩽ 2jα · 2
∞∑
ℓ=j

Kℓ(ω) ⩽ 2
∞∑
ℓ=j

2ℓαKℓ(ω) ⩽ 2
∞∑
ℓ=0

2ℓαKℓ(ω).

Since the right hand side now no longer depends on s and t, we obtain

E
(
∥X∥qD,α

)1/q
= E

(
sup

{ |Xs,t|
|t− s|α

: s, t ∈ D
}q)1/q

⩽ E
(
(2T )q

( ∞∑
ℓ=0

2ℓαKℓ

)q)1/q

⩽

⩽ 4T
∣∣ ∞∑
ℓ=0

2ℓαKℓ

∣∣
Lq ⩽ 4T

∞∑
ℓ=0

2ℓα|Kℓ|Lq

(∗∗)
⩽ 4CT 2

∞∑
ℓ=0

2ℓα2−ℓ(βq−1)/q.

The sum on the right hand side is finite when α < β − 1/q, showing the claim.

It remains to construct the chain t0, . . . , tn. To follow the construction, it is very useful to
generate a drawing as you read the steps. We start by observing that since 2−j < t−s ⩽ 2−j+1,
the set (s, t)∩Dj contains either one or two points. We call them T±

j , with t
−
j ⩽ t+j . Now from

t−j , we look to the left: the interval [s, tj−) contains at most one point from Dj+1. If it does,

we define this point to be t−j+1, if not we take t−j+1 = t−j . Now we look left again from t−j+1, the

interval [a, t−j+1) again contains at most one point from Dj+2. As before, we define this point

to be t−j+2 if it exists, otherwise we take t−j+2 = t−j+1. This now continues until we hit s, which

will happen at the latest when j = N . The same procedure is then repeated with t+j , this time
looking the the right. It is easy to see that we obtain a chain of ordered points, each distance
occurs at most twice, and that there are at most n = 2(N − j) such points. This finishes the
construction of the t0, . . . , tn and thus the proof. □

(1.37) Definition

Let X = (Xt)t∈R+
0
be a stochastic process with values in Rd. A stochastic process X̃ = (X̃t)t∈R+

0

on the same probability space (Ω,F ,P) as X is called a continuous version of X if

(i): X̃ has continuous paths for all ω, i.e. for all ω ∈ Ω the map t 7→ X̃t(ω) is continuous.

(ii): For each t ∈ R+
0 , we have P(Xt = X̃t) = 1.

This definition circumvents the problem that the set of continuous functions might not be
measurable by simply requiring continuity for all paths of X̃. The second requirement ensures
that we cannot distinguish X and X̃ for all practical purposes, in particular their fidis are the
same.

(1.38) Theorem

Assume that a stochastic process X satisfies condition (∗) of (1.36).
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a) Kolmogorov-Chentsov-Theorem: Then there exists a continuous version X̃ of X.

b) X̃ can be realized as a random variable on the canonical probability space Ωc described in
Example (1.26), i.e. there exists a probability measure Pc on this space so that when Yt(ω) :=
πt(ω) = ω(t) for all ω ∈ Ωc, then the process (Yt) has the same fidis as (X̃t) (and also the same
as (Xt)).

Proof: a) By Theorem (1.36), E(∥X∥qDT,α
) <∞ for some α > 0, q > 0 and for all T , and so

P(∥X∥DT ,α <∞) = 1 =⇒ P(X ∈ Cα
loc(D)) = 1.

Note in particular that the set Ω0 := {ω ∈ Ω : ∥X(ω)∥DT ,α < ∞} depends only on the values
of Xt(ω) for t in a countable set and is therefore measurable. We define

X̃t(ω) :=

{
limtn→tXtn(ω) for some (tn) ⊂ D, tn → t if ω ∈ Ω0,

0 otherwise,

and note that X̃t(ω) is independent of the approximating sequence for all ω ∈ Ω0 and all t ∈ R+
0 .

Also, t 7→ 1X̃t(ω) is continuous for all ω ∈ Ω. So requirement (i) of Definition (1.37) is fulfilled.
To verify requirement (ii), we fix t ∈ R+

0 and define

Zt(ω) := Xt(ω)− X̃t(ω), Ztn(ω) := Xt(ω)−Xtn(ω)

for (tn) ⊂ D, tn → t. Then Ztn → Zt on Ω0, i.e. almost surely, and Chebyshevs inequality gives

P(|Ztn| > ε) ⩽
1

εq
E(|Xtn −Xt|q)

(∗) in (1.36)

⩽ C|tn − t|βq n→∞−→ 0.

Thus Ztn converges to zero in probability, and thus its almost sure limit Zt is equal to zero
almost surely. This concludes the proof of a).

b) The map F : Ω → Ωc, ω 7→ (X̃t(ω))t∈R+
0
is measurable - you can easily check this for sets

generated by the inverse images under coordinate projections, and then it extends to the full
σ-algebra. Now simply take Pc = P ◦ F−1. □

(1.39) Theorem

a) There exists a stochastic process satisfying (B0)-(B4) from Definition (1.5), i.e. a Brownian
motion.

b) There exists a probability measureW0 on (C0,F) so that underW , the coordinate projections
Bt : C0 → Rd, ω 7→ ω(t) form a BMd. The space (C0,F ,W) is called Wiener space and W ist
called the Wiener measure.

Proof: By (1.22), we only need to prove the theorem for d = 1. By (1.33), a process (B̃t)
fulfilling (B0)-(B3) exists. (B3) implies

E(|B̃s,t|q) = EN (0,t−s)(|X|q) exercise H3
= cq|t− s|q/2.

Thus (1.36(∗)) holds for all β < 1/2, all q > 1 and all |t − s| < 1. By Theorem (1.38), the
claims follow. □

Remark: By taking q → ∞ in the proof above, we see that Brownian paths are α-Hölder
continuous almost surely for all α < 1/2 (remember that we need α < β − 1/q). α = 1/2 is
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where the proof fails to provide information, and we will see below that this is for good reason:
it will turn out that Brownian paths are not α-Hölder-continuous for α = 1/2 (and thus not
for any larger α.).

2. Properties of Brownian Motion

A: Invariance properties

(2.1) Orthogonal invariance

Let B be a BMd and U an orthogonal matrix. Then (UBt)t∈T is a BMd. In particular, −B is a
BMd.

Proof: UU∗ = idRd , so Proposition (1.14) shows that (UB)s,t ∼ N (0, (t − s)idRd), and that
E(UBt) = 0 for all t. Since the map U is continuous from Rd to itself, the paths t 7→ UBt(ω)
are continuous for all ω. Then Theorem (1.21) shows the claim. □

(2.2) Time shift invariance

Let (Bt)t ⩾ 0 be a BMd, a ∈ R+
0 . Then the stochastic process (Bt+a −Ba)t ⩾ 0 is a BMd.

Proof: exercise.

(2.3) Elementary Markov property (aka memorylessness)

Let (Bt)t ⩾ 0 be a BMd, a ∈ R+
0 . Then the stochastic processes (Bt)0 ⩽ t ⩽ a and (Wt)t ⩾ 0 =

(Bt+a−Ba)t ⩾ 0 are independent (this means: σ(Bt : 0 ⩽ t ⩽ a) ⊥⊥ σ(Wt : t ⩾ 0)). In particular,

E
(
F
(
(Wt)t ⩾ 0

) ∣∣∣σ(Bs : s ⩽ a
))

= E
(
F
(
(Bt)t ⩾ 0

))
for all bounded, measurable F : C0 → R.
Proof: The sets{ n⋂

i=1

{Bti ∈ Ai} : n ∈ N, t1 < · · · < tn ∈ [0, a], A1, . . . , An ∈ B(Rd)
}

are a ∩-stable generator of σ((Bt)0 ⩽ t ⩽ a), and since the matrix A from the proof of Theorem
(1.21) is invertible, the same is true for the family

A1 :=
{ n⋂
i=1

{Bti −Bti−1
∈ Ci} : n ∈ N, 0 = t0 < t1 · · · < tn ∈ [0, a], C1, . . . , Cn ∈ B(Rd)

}
.

Similarly,

A2 :=
{ n⋂
i=1

{Wti −Wti−1
∈ Ci} : n ∈ N, 0 = t0 < t1 · · · < tn ∈ [0, a], C1, . . . , Cn ∈ B(Rd)

}
generates σ((Wt)t ⩾ 0) = σ((Ba,t)t ⩾ a). By (B1), A1 ⊥⊥ A2 whenever A1 ∈ A1 and A2 ∈ A2,
which (by definition) means that A1 ⊥⊥ A2. Since σ-algebras are independent if they have
independent ∩-stable generators, this proves the claim. □
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(2.4) Invariance under diffusive rescaling

Let (Bt)t ⩾ 0 be a BMd. Then for all c > 0, the process ( 1√
c
Bct)t ⩾ 0 is a BMd.

Proof: exercise.

(2.5) Time reversal invariance

Let (Bt)0 ⩽ t ⩽ T be a BMdon [0, T ]. Then (BT−t −BT )0 ⩽ t ⩽ T is a BMdon [0, T ].

Proof: exercise.

(2.6) Time involution invariance

Let (Bt)t ⩾ 0 be a BMd. Define

Wt(ω) =

{
tB1/t(ω) if t > 0

0 if t = 0.

Then (Wt)t ⩾ 0 is a BMd.

Proof: Clearly, W is a Gaussian process and W0 = 0 almost surely and E(Wt) = 0 for all t. Its
covariance is, fr s < t,

Cov(Ws,Wt) = Cov(sB1/s, tB1/t) = stCov(B1/s, B1/t) = st(1
s
∧ 1

t
) = st1

t
= s = s ∧ t.

By Theorem (1.21) (B0) - (B3) are now guaranteed, and it remains to check (B4). The map
t 7→ 1/t is continuous for all t > 0, and so the map t 7→ tB1/t is continuous on (0,∞). What
remains to be seen is the continuity at t = 0. We have

Ω0 := {ω ∈ Ω : lim
t→0

|Wt(ω)| = 0} = {ω ∈ Ω : ∀n ⩾ 1 ∃m ⩾ 1 ∀r ∈ Q ∩ (0, 1/m] : |Wr(ω)| ⩽ 1/n}

=
⋂
n ⩾ 1

⋃
m ⩾ 1

⋂
r∈Q∩(0,1/m]

{ω ∈ Ω : |Wr(ω)| ⩽ 1/n}.

The restriction to Q∩ (0, 1/m] is possible because we already know that W is continuous away
from t = 0. We also know that B and W have the same fidis, and thus

P
( ⋂
r∈A

{|Wr| ⩽ 1
n
}
)
= P

( ⋂
r∈A

{|Br| ⩽ 1
n
}
)

for all finite subsets A ⊂ Q ∩ (0, 1/m]. Since measures are continuous from above, we can take
A ↗ Q and get the same equality for A = Q ∩ (0, 1/m], all n and all m. Now by first using
continuity from above and then from below, we find

P(Ω0) = lim
n→∞

P
( ⋃
m ⩾ 1

⋂
r∈Q∩(0,1/m]

{|Wr| ⩽ 1/n}
)
= lim

n→∞
lim
m→∞

P
( ⋂
r∈Q∩(0,1/m]

{|Wr| ⩽ 1/n}
)

= lim
n→∞

lim
m→∞

P
( ⋂
r∈Q∩(0,1/m]

{|Br| ⩽ 1/n}
)
= P(lim

t→0
Bt(ω) = 0) = 1.

This means that (Wt) is a BMdon the restricted probability space (Ω0,F ∩ Ω0,P|F∩Ω0). □
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Time involution invariance can be used to give a very quick proof of one of the more intriguing
properties of Brownian motion: although its paths are all continuous, they are still quite irregu-
lar. More precisely, we have seen in the remark after Theorem (1.39) that Brownian paths are
α-Hölder continuous for all α < 1/2. We will now show that they are not 1/2-Hölder continuous,
and thus in particular not differentiable at t = 0. By the time shift invariance (2.2), this then
immediately implies the same statement for any t ⩾ 0.

(2.7) Proposition

Let B be one-dimensional Brownian motion. Then all of the four statements below happen with
probability 1:

lim sup
t→∞

1√
t
Bt = ∞, lim inf

t→∞

1√
t
Bt = −∞, lim sup

t→0

1√
t
Bt = ∞, lim inf

t→0

1√
t
Bt = −∞.

In particular, for any t0 ⩾ 0, t 7→ Bt is almost surely not differentiable at t0.

Proof: We have

lim sup
t→∞

1√
t
Bt(ω) ⩾ lim sup

n∈N

1√
n
Bn(ω) = lim sup

n→∞

1√
n

n∑
k=1

Bk,k−1(ω).

The (Bk,k−1) are iid random variables with V(Bk,k−1) = 1 for all k. By remark (2.50 a) of the
Probability Theory course, we have P(lim supn→∞

1√
n
Bn) = 1, which gives the first two claims.

For the other two claims, note that

P(lim sup
t→0

1√
t
Bt = ∞) = P(lim sup

t→∞

√
tB1/t = ∞) = P(lim sup

t→∞

1√
t
tB1/t︸ ︷︷ ︸
=Wt

= ∞) = 1.

The last equality follows from the first two claims because by (2.6), (Wt) is a Brownian motion.
This shows the third and fourth claim. Now non-differentiablilty at 0 is clear, and (2.2) easily
transfers this to any point t0 ⩾ 0. □

Remark:

By taking unions of countably many sets of measure zero, it now follows immediately that

P(t 7→ Bt is differentiable for some t ∈ Q+
0 ) = 0.

With some more work, we can show

P
(
λ
(
{t ∈ R+

0 : B is differentiable at t}
)
= 0

)
= 1,

where λ is the Lebesgue measure on R+
0 . We will do this in an exercise. With significantly more

work, one can even show

P(∃t ⩾ 0 : B is differentiable at t) = 0.

We refer to the literature (e.g. the book by Mörters and Peres) for the proof of this statement.
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(2.8) Remark: invariances of the Wiener measure

An important reason for the significance of the Lebesgue-measure on Rd are its many invarian-
ces: it remains unchanged under translations and rotations. For exactly the same reason, the
Wiener measure W on C0 (i.e. the probability measure for Brownian motion on its canonical
probability space) is so important. We have seen in the previous few items that W is invariant
under the following maps C0 → C0:

a) f1 : C0 → C0, (ωt)t ⩾ 0 7→ (Uωt)t ⩾ t0 ,

i.e. orthogonal transformations in the
”
target space“ of the function ω, see (2.1).

b) f2 : C0 → C0, (ωt)t ⩾ 0 7→ (ωt+a − ωt)t ⩾ 0,

i.e. the operation of cutting off the first bit of the path ω and starting with time 0 at
the cut point, see (2.2).

c) f3 : C0 → C0, (ωt)t ⩾ 0 7→ ( 1√
c
ωct)t ⩾ 0,

i.e. speeding up the flow of time by a factor c, but at the same time squeezing the
values of ωt by a factor 1/

√
c, see (2.4).

d) f4 : C0([0, T ]) → C0([0, T ]), (ωt)t ⩽ T 7→ (ωT−t − ωT )t ⩽ T ,

i.e. running time backwards and re-shifting the values so they all start at zero.

e) f5 : C0 → C0, (ωt)t ⩾ 0 7→ (tω1/t)t ⩾ 0,
i.e. reversing time in a strange way (in fact, applying what is called an involution to
it), and correcting by a factor of t.

B: Martingale properties of Brownian Motion

(2.9) Definition

Let (Ω,F ,P) be a probability space.

a) A filtration (Ft)t ⩾ 0 is a family of σ-algebras such that for all s < t, we have Fs ⊂ Ft ⊂ F .

b) A stochastic process (Xt)t ⩾ 0 is adapted to the filtration (Ft) if Xt ∈ mFt for all t.

c) A Rd-valued or C-valued stochastic process (Xt)t ⩾ 0 is a (Ft)-martingale if

(i): (Xt) adapted to (Ft).
(ii): E(Xt) <∞ for all t.
(iii): E(Xt | Fs) = Xs P-almost surely for all s ⩽ t.

d) An R-valued stochastic process fulfilling points (i) and (ii) is called a

submartingale if E(Xt | Fs) ⩾ Xs for all s ⩽ t,

and is called a

supermartingale if E(Xt | Fs) ⩽ Xs for all s ⩽ t.
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(2.10) Remark

For a stochastic process X, let FX
t := σ(Xs : s ⩽ t). Then (F t

X)t ⩾ 0 is the smallest filtration so
that X is adapted.

(2.11) Proposition

BMdis an (FB
t )-martingale.

Proof:

E(Bt | FB
s ) = E(Bt −Bs | FB

s ) + E(Bs | FB
s )︸ ︷︷ ︸

=Bs

(2.3)
= E(Bt−s) +Bs = Bs

□

Remark: As we will see soon, sometimes the filtration (FB
t ) is too small, and we want to

replace it with a larger one. This is not completely harmless, however, as it can destroy the
martingale property. The reason is that a (Fs) martingale needs to fulfil, for all A ∈ Fs and all
t ⩾ s, the equality

E(Bt1lA) = E(E(Bt | Fs)1lA)
(!)
= E(Bs1lA),

where the first equality always holds by the properties of conditional expectation, but where
the second one is required to be true for B to be a martingale. Making the filtration larger
means that this equality needs to hold for a larger class of sets A, and making it too large
may lead to the inclusion of some A where the equality no longer holds. Then B is no longer a
(Ft)-martingale. This motivates the next definition.

(2.12) Definition

A filtration (Ft) is admissible for BMd if

a) FB
t ⊂ Ft for all t.

b) (Bs,t) ⊥⊥ Fs for all s ⩽ t.

(2.13) Proposition

Let (Bt) be a BMd, (Ft) admissible. Then (Bt) is a (Ft)-martingale.

Proof: the same as for (2.11). □

There are many ways to get other martingales from Brownian motion. Here are some of them.

(2.14) Proposition

Let (Bt) be a BM
d, (Ft) admissible. Then the following stochastic processes are (Ft)-martingales:

a) Mt := |Bt|2 − dt,

b) M v
t := e(v,Bt)− t

2

∑d
j=1 v

2
j for all v ∈ Cd

In particular M iξ
t := ei(ξ,Bt)+

t
2
|ξ|2 and M ξ

t := e(ξ,Bt)− t
2
|ξ|2 are martingales for ξ ∈ Rd.



STOCHASTIC PROCESSES 27

c) Mn
t := tn/2Hn(t

−1/2Bt), in case d = 1,

where Hn(x) = (−1)n exp(x2/2)∂nx e
−x2

2 is the n-th Hermite polynomial.

Proof: a) d = 1 is enough since |Bt|2 − dt =
∑d

j=1((B
j
t )

2 − t). Then

E(B2
t | Fs) = E

(
(Bt −Bs)

2 + 2BtBs −B2
s | Fs

) (Bt−Bs)⊥⊥Fs
=

= E(B2
t−s) + 2BsE(Bs | Fs)−B2

s = t− s+B2
s .

b) E(|M v
t |) <∞ by Corollary (1.12). Then,

E(M v
t | Fs) = e−

t
2

∑d
j=1 v

2
j e(v,Bs) E( e(v,Bt−s) )

(1.12)
= e−

t
2

∑d
j=1 v

2
j e(v,Bs) e

t−s
2

∑d
j=1 v

2
j =M v

s .

c) Exercise. You should expand Mα
t = eαBt− t

2
α2

=
∑∞

n=0 α
nB

n
t

n!

∑∞
n=0 α

2k
(
− t

2

)k 1
k!
, and sort by

powers of α. □

All martingales that we built from Brownian motion in the previous point had the form Mt =
f(t, Bt) for some function f . In order to construct different ones, we need the following result.

(2.15) Lemma

The transition density

pt(x) =
1

(2πt)d/2
e−

|x|2
2t

of BMd solves the heat equation

∂tpt(x) =
1

2
∆pt(x) :=

1

2

d∑
i=1

∂2xipt(x) ∀t > 0, x ∈ Rd.

Proof: p̂t(k) :=
∫

ei(k,x) pt(x) dx
(1.11)
= e−

1
2
|k|2t . Clearly, ∂tp̂t(k) = −1

2
|k|2p̂t(k), and so by Lebes-

gue’s differentiation theorem,∫
ei(k,x) ∂tpt(x) dx = ∂tp̂t(k) = −1

2

∫
ei(k,x) |k|2pt(x) dx = +

1

2

∫ d∑
j=1

(∂2xj e
i(k,x) )pt(x) dx = (∗)

Now integration by parts (twice) in each coordinate gives

(∗) = 1

2

∫
ei(k,x) (∆pt)(x) dx,

for all k. Now an inverse Fourier transform yields ∂tpt(x) = 1
2
∆pt(x) for λ-almost all x, and

since pt and its derivatives are continuous, the claim follows. □

(2.16) Theorem

Let (Bt) be a BMd, (Ft) admissible. Let f ∈ C([0,∞)×Rd,R)∩C1,2((0,∞)×Rd,R) with the
property that there exists C <∞, and a locally bounded function c : [0,∞) → R+

0 with

max{∂tf(t, x), ∂jxif(t, x), f(t, x) : 1 ⩽ i ⩽ d, j = 1, 2} ⩽ c(t) eC|x| ∀x, t.
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For t ⩾ 0 define Lf(t, x) := ∂tf(t, x) +
1
2
∆xf(t, x), and

M f
t := f(t, Bt)− f(0, B0)−

∫ t

0

(Lf)(r, Br) dr.

Then (M f
t )t ⩾ 0 is an (Ft)-martingale. It is called the fundamental martingale associated to

the function f .

For the proof, we first need the following lemma, which we already know for martingales with
discrete time parameter:

(2.17) Doobs maximal inequality

Let (Mt) be a submartingale with continuous paths. Then

∀t ⩾ 0,∀p > 1 : E
(
sup
s ⩽ t

|Ms|p
)
⩽

( p

p− 1

)p
E
(
|Mt|p

)
.

Proof: in case of discrete time this is (4.39) from the probability theory lecture. The transfer
to continuous time is left as an exercise. □

Proof of (2.16): We have

E(Mt | Fs)(ω̄) =f(s, Bs(0))− f(0, 0)−
∫ s

0

(Lf)(r, Br(ω̄)) dr+

+ E
(
f(t, Bt)− f(s, Bs)−

∫ t

s

(Lf)(r, Br) dr
∣∣∣Fs

)
(ω̄) = (∗).

Proposition (3.23) from the probability theory lecture tells us that when X ⊥⊥ Y for two random
variables, then

E(h(X, Y ) |σ(Y ))(ω̄) = E(h(X, Y (ω̄))),

if the integrability condition is fulfilled. We will use this fact below for the case X = (Bs,r)r ⩾ 0

and Y = (Br)r ⩽ s, and for the function

h(X, Y ) = f(t, Bs,t︸︷︷︸
=πt(X)

+ Bs︸︷︷︸
πs(Y )

)− f(s, Bs) =

∫ t

s

(Lf)(r, Br,s︸︷︷︸
=πr(X)

+ Bs︸︷︷︸
=πs(Y )

) dr.

We then get

(∗) =M f
s (ω̄) + E

(
f
(
t, Bs,t +Bs(ω̄)

)
− f

(
s, Bs(ω̄)

)
−
∫ t

s

(Lf)(r, Br,s +Bs(ω̄)) dr
)

(2.2)
= M f

s (ω̄) + E
(
f̃ω̄(t− s, Bt−s)− f̃ω̄(0, 0)−

∫ t−s

0

(Lf̃ω̄)(r, Br−s) dr
)
,

with f̃ω̄(u, x) := f(u+s, x+Bs(ω̄)). Here we used that L commutes with shifts of variables. For

all ω̄, the function f̃ω̄ fulfils the conditions of Theorem (2.16) if the function f does. Therefore

the proof will be finished if we can show E(M f
t ) = 0 for all t and all suitable f . To do this, let
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ε > 0 consider the following computation, where in the first equality we used Fubinis theorem,
and this is where the conditions on f enter in the proof:

E
(∫ t

ε

(Lf)(s, Bs) ds
)
=

∫ t

ε

E(Lf(s, Bs)) ds =

∫ t

ε

(∫
Rd

ps(x)(Lf)(s, x) dx
)
ds =

=

∫
Rd

dx

∫ t

ε

dt ps(x)(∂sf)(s, x) +

∫ t

ε

ds

∫
Rd

dx ps(x)(
1
2
∆xf)(s, x)

IBP
=

=

∫
Rd

dx
(
pt(x)f(t, x)− pε(x)f(ε, x)−

∫ t

ε

ds ∂sps(x)f(s, x)
)
+

∫ t

ε

ds
(
0 +

∫
Rd

dx (1
2
∆xps)(x)f(s, x)

)
=

= E(f(t, Bt))− E(f(ε, Bε))−
∫ t

ε

ds

∫
Rd

dx
(
∂sps(x)−∆xps(x)

)︸ ︷︷ ︸
=0 since s ⩾ ε>0

f(s, x).

We have shown that

E(M f
t ) = E

(
f(ε, Bε)− f(0, 0)

)
− E

(∫ ε

0

(Lf)(s, Bs) ds
)

∀ε > 0

and need to control this expression as ε→ 0. On the one hand, Lf(s, Bs) ⩽ c(s) eC|Bs| for some
c, C by our assumptions, and therefore∣∣∣E(∫ ε

0

(Lf)(s, Bs) ds
)∣∣∣ ⩽ ∫ ε

0

c(s)E
(
eC|Bs|

)
ds ⩽

∫ ε

0

c(s)E( eC|Bε| ) ds
ε→0−→ 0.

In the second inequality we used that ( eC|Bs| )s ⩾ 0 is a submartingale since e|.| is convex. This
fact will also be useful when we control the other part of the expression above: we get

E(sup
s ⩽ 1

|f(s, Bs)|) ⩽ sup
s ⩽ 1

c(s)E
(
sup
s ⩽ 1

(
e

1
2
C|Bs|

)2) (2.17)

⩽ sup
s ⩽ 1

c(s)4E
(
eC|B1|

)
<∞.

This means that the function ω 7→ sups ⩽ 1 |f(s, Bs(ω))| is an integrable majorant for the family
of functions (ω 7→ g(ε, ω) := f(ε, Bε(ω)))0 ⩽ ε ⩽ 1. Since for all ω we have limε→0 f(ε, Bε(ω)) −
f(0, 0) = 0 by the continuity of f and of s 7→ Bs(ω), dominated convergence now shows that

indeed E(M f
t ) = 0. □

(2.18) Example

a) f(x) = |x|2, then Lf(x) = 1
2

∑d
i=1 2 = d, and so M f

t = |Bt|2 −
∫ t
0
d ds = |Bt|2 − dt is a

martingale, see (2.14 a).

b) f(x) = x3, d = 1, then Lf(x) = 1
2
· 3 · 2x, so M f

t = B3
t − 3

∫ t
0
Bs ds is a martingale. This one

we haven’t seen before!

c) Let f : Rd → R be harmonic, i.e. let ∆f(x) = 0 for all x. Then Lf = 0, and thus
(f(Bt) − f(B0))t ⩾ 0 is a martingale. As a concrete example, we can take d = 2, f(x, y) =
ex sin(y), then ∆f(x, y) = 0 and the integrability conditions of Theorem (2.16) are fulfilled.

Thus the strange stochastic process ( eB
1
t sin(B2

t ))t ⩾ 0 is a martingale if (B1
t , B

2
t )t ⩾ 0 is a two-

dimensional Brownian motion. Note that neither ( eB
1
t )t ⩾ 0 nor (sin(B2

t ))t ⩾ 0 are martingales
by themselves - only their product is one!
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d) Let Bt = B1
t + iB2

t be complex Brownian motion, i.e. B1 and B2 are independent one-

dimensional Brownian motions. Then ( eBt )t ⩾ 0 is a martingale: indeed, Re ( eBt ) = eB
1
t cos(B2

t )

and Im ( eBt ) = eB
1
t sin(B2

t ), and both are martingales by (resp. in analogy to) c). We stress
again that for real-valued Brownian motion, ( eBt ) is not a martingale, but eBt−t/2 is one thanks
to (2.14 b).

(2.19) Defintion

Let (Ω,F ,P) be a probability space and (Ft) a filtration. A random time is a R+
0 ∪ {∞}-

valued random variable. A stopping time for the filtration (Ft) (or: an (Ft)-stopping time) is
a random time τ that fulfils

{τ ⩽ t} ∈ Ft for all t ∈ R+
0 .

(2.20) Example

Let (Xt) be an (Ft)-adapted process with continuous paths, and let F ⊂ Rd be a closed set.
Then the first entry time of X into F given by

τF := inf{s ⩾ 0 : Xs ∈ F}
is a stopping time.

Proof: Let d(x, F ) := inf{|x − y| : y ∈ F}. You should convince yourself that the map
x 7→ d(x, F ) is continuous. We have the following chain of equivalences, where two of them
need further justification that will be given below:

τF (ω) ⩽ t
Def⇐⇒ inf{s ⩾ 0 : Xs(ω) ∈ F} ⩽ t

(1)⇐⇒ ∃x ∈ F, s ⩽ t : Xs(ω) = x

(2)⇐⇒ inf{d(Xs(ω), F ) : s ∈ [0, t]} = 0

s 7→d(Xs(ω),F ) cts.⇐⇒ inf{d(Xs(ω), F ) : s ∈ [0, t] ∩Q} = 0.

Since {ω ∈ Ω : inf{d(Xs(ω), F ) : s ∈ [0, t] ∩ Q} = 0} ∈ Ft, the claim follows once we have
justified equivalences (1) and (2).

For (1), the direction ⇐ is trivial. For the direction ⇒, we use that F is closed and s 7→ Xs is
continuous, therefore the set X−1(F ) = {s ⩾ 0 : Xs ∈ F} is a closed subset of [0,∞). So the
infimum in the first line is in fact a minimum, and it is attained for some s ⩽ t.

For (2), the direction ⇒ is trivial, and for ⇐ we use that by the continuity of s 7→ d(Xs(ω), F ),
the image of [0, t] under this map is compact. So the infimum in the third line above is attained
somewhere, leading back to the second line. □

The proof of the above example does not work for open sets; however, we really want to the
first entry into an open set to be a stopping time too. This leads to the necessity to enlarge the
filtration FB

t for Brownian motion, as already announced above.
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(2.21) Definition

Let X be a stochastic process. The filtration (!)

FX
t+ :=

⋂
u>t

FX
u =

⋂
n ⩾ 1

FX
t+1/n

is called the right continuous completion of FX . Any filtration (Ft) with the property that
Ft =

⋂
n ⩾ 1Ft+1/n is called right-continuous.

Of course, the right continuous completion of (FX
t ) is right continuous. With this definition we

now have what we want:

(2.22) Lemma

Let X be a stochastic process with continuous paths, U ⊂ Rd an open subset. Then

τU := inf{s ⩾ 0 : Xs ∈ U}

is an (Ft+)-stopping time.

Proof: We have

{τU ⩽ t} =
⋂
n∈N

{τU < t+ 1
n
} =

⋂
n∈N

⋃
s<t+1/n

{Xs ∈ U} =
⋂
n∈N

⋃
s∈[0,t+1/n)∩Q

{Xs ∈ U} ∈ Ft+.

In the last step we used the continuity of the paths of X. □

We now see that for Brownian motion (and in general for continuous martingales) the comple-
tion of the minimal filtration does not destroy the martingale property:

(2.23) Lemma

Let (Xt) be a (FX
t )-martingale such that t 7→ Xt(ω) is right-continuous almost surely, and

such that E(|Xt|p) < ∞ for some p > 1 and all t. Then (Xt) is also an (FX
t+)-martingale. In

particular, (FB
t+) is admissible for Brownian motion B.

Proof: We have

E(Xt | FX
s+) = E(Xs,t | FX

s+) + E(Xs | FX
s+)

as before. Since FX
s+ ⊃ FX

s , the second term is equal to Xs almost surely. We need to show that
the first term vanishes; since it is FX

s+-measurable, it is enough to show that for all A ∈ FX
s+,

we have

E
(
E(Xs,t | FX

s+)1lA

)
= E(Xs,t1lA)

!
= 0.

To show the last equality, we first note that for A ∈ FX
s+, we have A ∈ FX

s+ε for all ε > 0 by
the definition of FX

s+. Since X is an (FX
t )-martingale,

E(1lAXs+ε,t+ε) = E(1lAE(Xs+ε,t+ε | FX
s+ε)) = 0

for all ε > 0. We have sup0<ε<1 |Xs+ε,t+ε| ⩽ 2(supr ⩽ t+1 |Xr|p + 1) for all p > 1, and the latter
expression is integrable by Doobs maximal inequality (2.17) and our integrability assumption.
So we have found an intergable function dominating ω 7→ sup0<ε<1 |Xs+ε,t+ε(ω)|, and since
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limε→0Xs+ε,t+ε(ω) = Xs,t(ω) for almost all ω by right-continuity of paths, the claim now follows
by dominated convergence. □

Many statements below will be stated for martingales with right-continuous paths and admis-
sible filtrations. Of course the most important example is Brownian motion, but the added
generality is useful in many places, and the proofs are not made more difficult by the greater
generality. First however, we need a few more properties of stopping times.

(2.24) Proposition

Let (Ft) be a filtration, and let τ, σ and (τn)n∈N be (Ft)-stopping times. Then

a) {τ < t} ∈ Ft for all t.

b) If (Ft) is right-continuous and ρ is a random time with {ρ < t} ∈ Ft for all t, then ρ is a
stopping time.

c) τ + σ, τ ∧ σ, τ ∨ σ, and supn τn are (Ft)-stopping times.

d) If (Ft) is right-continuous, then infn τn, lim infn τn and lim supn τn are (Ft)-stopping times.

Proof: exercise.

(2.25) Lemma: Approximation of stopping times

Let τ be an (Ft)-stopping time. If we define

τn(ω) =

{
(m+ 1)2−n if m2−n ⩽ τ(ω) < (m+ 1)2−n,

∞ if τ(ω) = ∞,

then τn is a stopping time for all n, each τn only takes countably many values, and

τn(ω) ↘n→∞ τ(ω) ∀ω ∈ Ω.

Proof: exercise.

(2.26) Definition

Let (Ft) be a filtration, τ an (Ft)-stopping time. The σ-algebra (!)

Fτ := {A ∈ F : A ∩ {τ ⩽ t} ∈ Ft ∀t ⩾ 0}

is called the σ-algebra of the τ -past.
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(2.27) Example

Let Ω = C0(R,Rd), Ft = σ(πs : s ⩽ t), F =
⋃
t ⩾ 0Ft. Then for A ∈ F , we have

A ∈ Ft iff

{
∀ω ∈ Ω, knowledge of the values (πs(ω))s ⩽ t

is enough to determine whether ω ∈ A or not.

A ∈ Fτ iff


∀ω ∈ Ω with τ(ω) ⩽ t, knowledge of the values (πs(ω))s ⩽ t

is enough to determine whether ω ∈ A or not, but . . .

∀ω ∈ Ω with τ(ω) > t, knowledge of all the values (πs(ω))s ⩾ 0

might be necessary to determine whether ω ∈ A or not.

For example, let F,G,H be closed subsets of Rd and τF , τG and τH the respective hitting times.
You should check for the sets

A := {ω ∈ Ω : t 7→ πt(ω) first hits F , then G, then H},
B := {ω ∈ Ω : t 7→ πt(ω) hits F before possibly entering G or H}

whether they are in Fσ for σ = τF , τG and τH . Try to first decide this by the semi-heuristic
explanation above, and then by checking the definition.

(2.28) Proposition

Let (Ft) be a filtration, τ and τn, n ∈ N be stopping times.

a) τ ∈ mFτ .

b) If (Ft) is right-continuous, then Fτ = {A ∈ F : A ∩ {τ < t} ∈ Ft ∀t}.
c) If τ1 ⩽ τ2, then Fτ1 ⊂ Fτ2 .

d) If (Ft) is right-continuous and τn ↘n→∞ τ , then Fτ =
⋂
n∈N Fτn .

e) If (Xt) is (Ft)-adapted, (Ft) is right-continuous, and t 7→ Xt(ω) is right-continuous for all
ω ∈ Ω, then (

ω 7→ Xτ(ω)(ω)1l{τ(ω)<∞}

)
∈ mFτ .

Proof: a,b,c) exercise.

d) By c), Fτ ⊂
⋂
n∈N Fτn . Conversely, if A ∈ Fτn for all n, then

A ∩ {τ < t} =
⋃
n∈N

A ∩ {τn < t}︸ ︷︷ ︸
∈Ft ∀t

∈ Ft for all t.

e) Assume first that τ(Ω) is countable, i.e. τ(Ω) = {ti : i ∈ N} for some numbers ti. Then

{Xτ ∈ B} ∩ {τ ⩽ t} =
⋃

k:tk ⩽ t

{τ = tk, Ztk ∈ B} ∈ Ft

for all B ∈ B(Rd), because τ is a stopping time. For general τ , we approximate as in (2.25) by
a sequence of stopping times (τn) with τn(ω) ↘ τ(ω) for all ω. Since X is right-continuous, we
have limn→∞Xτn(ω)(ω) = Xτ(ω)(ω) for all ω. Thus for n ⩾ m, we have

Xτn

τn(Ω)countable
∈ mFτn

τn ⩽ τm,c)
⊂ Fτm .
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Since lim supn→∞Xτn = Xτ , this implies that Xτ ∈ Fτm for all m, and thus

Xτ ∈ m
⋂
m∈N

Fτm

d)
= Fτ .

□

(2.29) Theorem: Doobs optional stopping theorem

Let (Xt) be an (Ft)-submartingale with continuous paths, and let σ, τ be (Ft)-stopping times.

a) For all k ⩾ 0, (Xτ∧k)k∈N is an (Fk)-submartingale, and also an (Fτ∧k)-submartingale.

b) If there exists T <∞ with σ(ω) ⩽ τ(ω) < T for all ω, then

E(Xτ | Fσ)(ω̄) ⩾ Xσ(ω̄)(ω̄)

for P-almost all ω̄.

Proof: for discrete martingales, this was done in the probability theory lecture. The extension
to continuous martingales (by approximation!) is left as an exercise. □

(2.30) Remark

The restriction τ(ω) < T for all ω is rather strong. But, for example, the condition P(τ <∞) =
1 would not be enough. A counterexample occurs when X = B is one-dimensional Brownian
motion, and τ = τ{1} is the hitting time of the value 1, and σ = 0. Then (e.g. by (2.7)),
P(τ <∞) = 1, but Bτ(ω)(ω) = 1 for all ω ∈ {τ <∞}, and thus 1 = E(Bτ ) ̸= E(B0) = 0.

It is possible to prove the statement of Theorem (2.29) under various weaker conditions though,
see e.g. Theorem 1.93 in [Liggett: continuous time Markov processes]. For our purposes, a version
of (2.29 b) that works for L2-martingales is particularly interesting. We start by introducing a
very important quantity in the theory of L2-martingales.

(2.31) Definition

Let (Xt) be a continuous, real-valued martingale with E(X2
t ) <∞ for all t. A stochastic process

(At) is called quadratic variation process (qvp) of X if

(i): A0 = 0 almost surely,

(ii): t 7→ At(ω) is increasing for almost all ω,

(iii): (X2
t − At)t ⩾ 0 is a martingale.

Remark:

a) Proposition (2.14 a) shows that At(ω) := t is a qvp for Brownian motion.

b) For a discrete time martingale (Xn)n∈N, in Theorem (4.49) of the probability theory lecture
we showed that

An :=
n∑
k=1

E(X2
k−1,k | Fk−1)

fulfils the conditions of Definition (2.31) and is thus a quadratic variation. We also showed that
An is the unique predictable quadratic variation, i.e. the only quadratic variation such that An
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is Fn−1-measurable for all n. Since in continuous time, there is no
”
previous time step“, the

condition of previsibility does not make sense in this setting. However, condition (2.31 (iii))
implies that a qvp (At) must be (Ft)-adapted.

In general, the existence of a qvp is ensured by the following theorem:

(2.32) Theorem

Let X ∈ M2
T .

a) There exists a unique qvp A of X, with continuous paths.

b) If X is uniformly bounded, i.e. |Xt(ω)| ⩽ K for some K ∈ R and all ω ∈ Ω, t ⩽ T , then A
is given by the limit

At := lim
n→∞

⌊2nt⌋∑
j=1

(Xk2−n −X(k−1)2−n)2,

which exists in L2, and thus almost surely along a subsequence.

Proof:
(i): We start by showing uniqueness. Let A and Ã be two continuous qvp for the same martingale
X, then (Dt) with Dt := At − Ãt is a martingale. Since t 7→ Dt(ω) is the difference of two
increasing functions, it has finite total variation; a continuous martingale with finite total
variation must be identical to zero. We will do both statements in an exercise. Thus D = 0 and
A = Ã.

(ii): To show existence, we start with the situation in b) where X is uniformly bounded. Let
Dn(t) = {k2−n : k ∈ Z} ∩ [0, t] denote the dyadic rationals, and let Pn(t) be the partition with
separating points Dn(t) ∪ {t}. For each t, we put

A
(n)
t (ω) :=

∑
[u,v)∈Pn(t)

X2
u,v(ω).

Then

(∗) X2
t − A

(n)
t =

( ∑
[u,v)∈Pn(t)

Xu,v

)2

−
∑

[u,v)∈Pn(t)

X2
u,v(ω) = 2

∑
[u,v),[u′,v′)∈Pn(t)

u<u′

Xu,vXu′,v′ .

Now let s < t, and [u, v), [u′, v′) ∈ Pn(t) with u < u′. If v′ ⩽ s, then E(Xu,vXu′,v′ |Fs) =
Xu,vXu′,v′ since X is adapted. If s < u′, then

E(Xu,vXu′,v′ |Fs) = E(Xu,v E(Xu′,v′ | Fu′)︸ ︷︷ ︸
=0 since X martingale

| Fs) = 0,

and if u′ ⩽ s < v′, then

E(Xu,vXu′,v′ |Fs) = E(Xu,v E(Xu′,v′ | Fs)︸ ︷︷ ︸
=E(Xu′,s+Xs,v′ | Fs)=Xu′,s

| Fs) = E(Xu,vXu′,s |Fs).

Using these equalities in the representation (∗), we find that X2
t − A

(n)
t is a martingale for

each n. Clearly, it is also continuous, but it is not a qvp because it is not monotone increasing:
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making t larger changes the last term X2
u,t in the sum, and this term can decrease. On the other

hand, on the subset Dn(T ) of [0, T ], the process X2
t − A

(n)
t is increasing, and so it is plausible

that the non-monotonicity goes away in the limit n → ∞. But first, we have to control that
limit.

(iii): Let n,m ∈ N with n > m. In the same way that let to (∗), we see that

A
(m)
t − A

(n)
t = 2

∑
[u,v)∈Pm(t)

∑
[w,z),[w′z′)∈Pn(t)∩[u,v)

w<w′

Xw,zXw′,z′ =:
∑

[u,v)∈Pm(t)

J[u,v)(X).

We now want to square this expression, take expectation, and see that this becomes small as
n,m → ∞ to establish an L2-Cauchy sequence. Squaring gives many terms, but most of them
are zero. We go through all the terms that can appear systematically, then the calculation is
rather manageable. By the same conditioning trick as above, we find that for [ui, vi) ∈ Pn(t),

i = 1, . . . k, and ui ⩽ ui+1 for all i we have E(
∏k

i=1Xui,vi) = 0 except when the rightmost
interval appears at least twice, i.e except when uk = uk−1. This means that E(J[u,v)J[u′,v′)) = 0
when u ̸= u′, and

E(J2
[u,v)) =

∑
[w,z),[w′,z′),[w′′,z′′)

∈Pn(t)∩[u,v):w,w′<w′′

E(Xw,zXw′,z′X
2
w′′,z′′) = E(

∑
[w′′,z′′)∈Pn(t)∩[u,v)

X2
u,w′′X2

w′′,z′′).

Let ρδ(X(ω)) = sup{|Xs(ω)−Xr(ω)| : |s− r| ⩽ δ, 0 ⩽ s, t ⩽ T be the modulus of continuity of
a given path t 7→ Xt(ω). Then

E((A(m)
t − A

(n)
t )2) = 4E

( ∑
[u,v)∈Pm(t)

∑
[w,z)∈Pn(t)∩[u,v)

X2
u,wX

2
w,z

)
⩽

⩽ 4E
((
ρ2−m(X)

)2 ∑
[u,v)∈Pm(t)

∑
[w,z)∈Pn(t)∩[u,v)

X2
w,z

)
=

= 4E
((
ρ2−m(X)

)2 ∑
[w,z)∈Pn(t)

X2
w,z

)
⩽ 4E

((
ρ2−m(X)

)4)1/2

E
(( ∑

[w,z)∈Pn(t)

X2
w,z

)2)1/2

.

In the last step, we used Cauchy-Schwarz. Now the random variable ρδ(X(ω)) converges to zero
by path continuity for all ω as m→ ∞, and it is bounded by 2K by the uniform boundedness5).
Therefore the first factor above converges to zero as m → ∞, and we will have our Cauchy
sequence once we show that the second factor is bounded uniformly in n > m. We will actually
bound it independently of m,n.

In the following calculations, all intervals will be from Pn(t) and we leave this out of the
notation. The conditioning trick gives

E
( ∑

[u,v),[w,z):u<w

X2
u,vX

2
w,z

)
= E

(∑
[u,v)

X2
u,v

( ∑
[w,z):u<w

Xw,z

)2)
= E

(∑
[u,v)

X2
u,vX

2
v,t

)
,

5)Only here we really need this - up to now, fourth moments would still be enough.
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and we have

E
((∑

[u,v)

X2
u,v

)2)
= E

(∑
[u,v)

X4
u,v + 2

∑
[u,v),[w,z):u<w

X2
u,vX

2
w,z

)
=

= E
(∑

[u,v)

X2
u,v X

2
u,v︸︷︷︸

⩽ 4K2

+2
∑
[u,v)

X2
u,v X

2
v,t︸︷︷︸

⩽ 4K2

)
⩽ 12K2E

(∑
[u,v)

X2
u,v

)
=

= 12K2E
((∑

[u,v)

Xu,v

)2)
⩽ 48K4.

In the final equality, we used the conditioning trick one last time. We have thus shown that

E((A(m)
t − A

(n)
t )2) ⩽ 28K2E

((
ρ2−m(X)

)4)1/2

for all n ⩾ m. Since both M2 − A(n) and M2 − A(m) are martingales, also A(m) − A(n) is a
martingale, and so Doobs inequality even gives

E
(
∥A(m) − A(n)∥L∞(0,t)

)
= E

(
sup{|A(m)

s − A(n)
s |2 : 0 ⩽ s ⩽ t}

)
⩽ 4E

(
(A(m) − A(n))2

)
,

and so even (A
(n)
· )n∈N is a L2-Cauchy sequence in the Banach space L2(P, L∞([0, t)). This means

that an almost sure pointwise limit (which exists) converges uniformly in [0, t) for each ω, and
since all A(n) are continuous, this defines a continuous function. This function is monotone on
all dyadic rationals, and so it is monotone on [0, t).

(iV): We have just shown b). To show a), we need to remove the condition that X is uniformly
bounded. Here one uses the technique of loclization, which we will see later in more detail. The
basic idea is to first replace (Xt) by (Xt∧τM ), wehre τM = M ∧ inf{s ⩾ 0 : |Xs| ⩾ M}. This is
a bounded martingale (why?) and so the previous reasoning applies, giving (unique) quadratic

variations A
(M)
t for each M . One then checks that A

(M)
t (ω) = A

(M ′)
t (ω) for all M ′ ⩾M and all

ω such that τM(ω) > t, and defines At(ω) := A
(M)
t (ω) for such ω, and checks that this is the

desired qvp. The details can be found in the Proof of Theorem 5.3 in [Liggett], which is also
the model for the proof given here. □

(2.33) Theorem

Let (Xt) be a continuous, square integrable martingale, (At) its qvp, and σ, τ stopping times.
Assume that σ ⩽ τ , P(τ < ∞) = 1, and E(Aτ ) < ∞. Then (with the convention X∞ := 0) we
have

a) E(Xτ | Fσ) = Xσ almost surely, and

b) E(X2
τ − Aτ | Fσ) = X2

σ − Aσ almost surely.

In particular, E(Xτ ) = E(X0) and E(X2
τ ) = E(X2

0 ) + E(Aτ ).
Proof: Let n ⩾ k. Since Fτ∧n ⊃ Fτ∧k ⊃ Fσ∧k, for any continuous martingale M we have

E(Mτ∧n | Fσ∧k) = E
(
E(Mτ∧n | Fτ∧k)

∣∣∣Fσ∧k

)
(2.29a)
= E(Mτ∧k | Fσ∧k)

(2.29b)
= Mσ∧k (∗)
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Since P(σ < ∞) = 1 and the paths of M are continuous, the right hand side above always
converges to Mσ∧k1l{σ<∞} almost surely. What remains is to show

(∗∗) lim
k→∞

lim
n→∞

E(Mτ∧n | Fσ∧k) = E(Mτ | Fσ) almost surely,

for the choices M = X (giving (a)) and M = X2 − A (giving (b)).

For this, we set σ = τ in (∗) to see that (Mτ∧n)n∈N is a discrete time martingale. In particular,

E
((
Xτ∧n −Xτ∧k

)2)
= E(X2

τ∧n −X2
τ∧k) = E(Aτ∧n − Aτ∧k) = E

(
(Aτ∧n − Aτ∧k)1l{τ ⩾ k}

)
.

The first equality above holds for all square integrable martingales, the second is obtained by
applying (∗) to τ = σ and Mt = X2

t − At, taking expectations and rearranging, and the third
holds because on {τ < k} both terms in the difference are equal to Ak.

Since t 7→ At is increasing, we have supn ⩾ k |Aτ∧n − Aτ∧k| ⩽ Aτ ∈ L1, and since 1l{τ ⩾ k} → 0
almost surely as k → ∞, and thus

lim
k→∞

sup
n ⩾ k

E
(
(Aτ∧n − Aτ∧k)1l{τ ⩾ k}

)
= 0

by dominated convergence. This implies that the sequence (Xτ∧n)n∈N is an L2-Cauchy sequence
(and thus an L1-Cauchy sequence), and since Aτ∧n − Aτ∧k = |Aτ∧n − Aτ∧k|, the sequence
(Aτ∧n)n∈N is an L1-Cauchy sequence. Finally, since for any L2-Cauchy sequence (fn) the se-
quence (f 2

n) is an L
1-Cauchy sequence, also (X2

τ∧n)n∈N is an L1-Cauchy sequence.

Since we already know that Mτ∧n → Mτ almost surely, we now have limn→∞Mτ∧n = Mτ in
L1 for both choices of M , and in particular Mτ ∈ L1. We know from Theorem (4.66) of the
probability theory (PT) lecture that a discrete time martingale (like (Mτ∧n)n∈N) converging in
L1 to an integrable limit is uniformly integrable. By Theorem (4.68 a) of [PT], this implies

E(Mτ |Fτ∧n) =Mτ∧n almost surely for all n ∈ N,
and thus for k ⩽ n,

E
(
Mτ∧n

∣∣Fσ∧k
)
= E

(
E(Mτ | Fτ∧n)

∣∣Fσ∧k
)
= E(Mτ | Fσ∧k),

which allows us to take the n→ ∞ limit in (∗∗). By Theorem (4.68 b) of [PT], we have

lim
k→∞

E(Y | Gk) = E(Y | G∞) in L1 and almost surely

for any integrable random variable Y and any filtration (Gk), where G∞ = σ(Gk : k ∈ N). We
put Y = Mτ and Gk = Fτ∧k to justify the k → ∞ limit in (∗) (you should check that indeed
Fσ = σ(Fσ∧k : k ∈ N)), finishing the proof of a) and b). The additional statement is obtained
by taking σ = 0 and by taking expectations. □

(2.34) Corollary: Wald’s identities

Let B be a BM1, τ a stopping time. If E(τ) <∞, then

E(Bτ = 0) and E(B2
τ ) = E(τ).

Proof: Bt is a continuous martingale with qvp At = t. The claim follows from (2.33) and the
fact that Aτ(ω)(ω) = τ(ω) so that E(Aτ ) = E(τ). □
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(2.35) Proposition

Let (Xt) be a continuous, real-valued martingale with P(X0 = x) = 1 for some x ∈ R. For
a < x < b, let τ := inf{t > 0 : Xt /∈ (a, b)}, and assume P(τ <∞) = 1. Then we have

P(Xτ = a) = P(X hits a before it hits b) =
b− x

b− a
,

and

P(Xτ = b) =
x− a

b− a
.

Proof: Let (At) be the qvp of X. Since τ ∧ n ⩽ n, Theorem (2.29 b) gives E(X2
τ∧n − Aτ∧n) =

E(X2
0 ) = x2, thus E(X2

τ∧n) = E(Aτ∧n) + x2. Monotone convergence now gives

E(Aτ ) = lim
n→∞

E(Aτ∧n) = lim
n→∞

E(X2
τ∧n) + x2 ⩽ max{a2, b2}+ x2.

So, Theorem (2.33) applies, and we get

x = E(X0) = E(Xτ ) = aP(Xτ = a) + bP(Xτ = b).

Together with the equality P(Xτ = a) + P(Xτ = b) = 1, we obtain the claim. □

Combined with Example (2.18 c), the previous proposition gives very interesting results about
the long time behaviour of Brownian motion paths. To state them, we make the following

(2.36) Definition

Let B be a BMd, x ∈ Rd. The stochastic process (Bt + x)t ⩾ 0 is called the d-dimensional
Brownian motion started in x. Its path measure is denoted by Px.

(2.37) Theorem

Let x ∈ Rd, B a BMd started in x. For r ∈ R+, let K(0, r) := {y ∈ Rd : |y| ⩽ r}. For
r < |x| < R, we have

Px(τK(0,r) < τK(0,R)c) =


R−|x|
R−r if d = 1,

lnR−ln |x|
lnR−ln r

if d = 2,

R2−d−|x|2−d

R2−d−r2−d if d ⩾ 3.

Proof: The case d = 1 was done in (2.35). For d = 2, note that the function f : R2 \ {0} →
R, x 7→ ln |x| is harmonic, as can be seen by computing

∂xif(x) =
1

|x|
∂xi |x| =

xi
|x|2

and ∂2xif(x) =
1

|x|2
− 2

x1
|x|3

∂xi |x| =
1

|x|2
− 2

x2i
|x|4

,

and adding for i = 1, 2. Now let f̃ be a bounded C2-function with f̃(x) = f(x) when |x| > r.
One example would be the choice f(x) = h(|x|) with

h(u) =

{
lnu if u > r,

au3 + bu2 + c if u ⩽ r,
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where a, b, c hare chosen such that h is C2 at r. One can calculate that a = −2
3
r−3, b = 3

2
r−2 and

c = ln r − 5
6
, but this is not so important. What matters is that now f̃ fulfils the assumptions

of Theorem 2.16, so (M f̃
t ) with M

f̃
t = f̃(Bt)−

∫ t
0
Lf̃(Bs) ds is a martingale. Let

τ = inf{t ⩾ 0 : |Bt| ⩽ r or |Bt| ⩾ R}.
be the hitting time of the complement of the annulus with radii r and R. By the optional

stopping theorem, also the process M f̃
t∧τ is a martingale. On the other hand,

M f̃
t∧τ = f̃(Bt∧τ )−

∫ t∧τ

0

(Lf̃)(Bs) ds = f(Bt∧τ ),

where the last inequality holds because |Bt∧τ (ω)| ⩾ r for all ω, and thus in particular

(Lf̃)(Bs) = (Lf̃)(Bs∧τ ) = (Lf)(Bs∧τ ) = 0

for all s ⩽ t ∧ τ(ω) and all ω. It follows that (f(Bt∧τ )) is a (bounded) martingale starting in
x ∈ (r, R), and now (2.35) gives

Px(τK(0,r) < τK(0,R)) = P(f(Bτ ) = ln r) =
lnR− ln |x|
lnR− ln r

,

as claimed. For d ⩾ 3, check that f : Rd \ {0} → R, x 7→ |x|2−d is harmonic, and the proceed
as above. □

(2.38) Corollary

For BMd starting in x with |x| > r > 0, we have

a) Px(τ{0} <∞) =

{
1 if d = 1,

0 if d ⩾ 2.
.

b) Px(τK(0,r) <∞) =

1 if d ⩽ 2,(
|x|
r

)2−d
if d ⩾ 3.

Proof: a) By continuity from above,

Px(τ{0} ⩽ τK(0,R)c) = lim
r→0

Px(τK(0,r) ⩽ τK(0,R)c) = 0

for d ⩾ 2. By continuity from below, we can now take R → ∞ and obtain the result, since
τK(0,R)c → ∞ almost surely as R → ∞, e.g. by Doobs maximal inequality. The same reasoning
works for d = 1 and is left as an exercise. For b), just use Theorem (2.37) and let R → ∞ as
above. □

(2.39) Remark

The interpretation of (2.38) is:
a) says that BMd never

”
finds“ pre-determined points in d ⩾ 2; this is maybe not too surprising,

it is a little bit like the fact that P(X = q) = 0 if X ∼ U([0, 1]) for all x ∈ [0, 1]. Note however
that for d = 1, things are different!

b) says that BMd finds arbitrarily small balls from arbitrarily far away with probability 1 for
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d = 2 (this is surprising), but has a (good) chance to never find them when d ⩾ 3.

It is tempting to claim that BM2 finds all balls not only once, but infinitely often. The reason is
that after the Brownian motion has visited a ball and left it again, we can

”
restart“ it by using

the invariances (2.2) and (2.3). In the same spirit, it looks like we should have P(limt→∞ |Bt| =
∞) for d = 3 (but not for d ⩽ 2). The reason is that any compact set is only visited finitely
many times by part b) above: each time a Brownian motion leaves a compact set, we restart
it, and then it has a positive probability of never finding it again. So eventually, it will succeed
in never finding it again.

Both considerations are correct in principle, but suffer from the fact that the
”
restarting“ of

Brownian motion is a bit vague - we should specify where and when we restart, and investigate
what happens then. For the correct way to handle such things, we need the Markov property
of Brownian motion, which we treat next.

C) Markov Properties of Brownian Motion

(2.40) Definition

Let E be a metric space. For s ⩾ 0, the map

θs : C(R+
0 , E) → C(R+

0 , E), (Xt)t ⩾ 0 7→ (Xt+s)t ⩾ 0

is called the shift to the left by s.

(2.41) Definition

Let

• (Ω,F) be a measurable space with a filtration (Ft),
• E be a metric space and E its Borel-σ-algebra,
• (Xt)t ⩾ 0 be a family of functions from Ω to E, such that each Xt is Ft-E-measurable,
• (Px)x∈E be a family of probability measures on (Ω,F) such that Px(X0 = x) = 1 for
all x ∈ E.

Note that for each Px, the measurable maps (Xt) form a stochastic process on (Ω,F ,Px) with
values in E, and for all x these stochastic processes may be different even though the maps Xt

are always the same. The collection ((Xt)t ⩾ 0, (Px)x∈E) of all such pairs is called

a) a weak Markov process if for all f ∈ Cb(E,R), all x ∈ E and all s ⩾ 0, we have

Ex(f(Xt+s) | Fs)(ω̄) = EXs(ω̄)(f(Xt)) for Px-almost all ω̄ ∈ Ω.

b) a Markov process if for all measurable, bounded F : (ER+
0 , E⊗R+

0 ) → (R,B(R)), all x ∈ E
and all s ⩾ 0, we have

Ex
(
F ◦ θs

(
(Xt)t ⩾ 0

) ∣∣∣Fs

)
(ω̄) ≡ Ex

(
F
(
(Xt+s)t ⩾ 0

) ∣∣∣Fs

)
(ω̄) = EXs(ω̄)(F ((Xt)t ⩾ 0)),

for Px-almost all ω̄ ∈ Ω.

c) a strong Markov process if for all B(R) ⊗ E⊗R+
0 − B(R)-measurable, bounded functions
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F : R+
0 × ER+

0 → R, all x ∈ E and all (Ft)-stopping times τ , we have

Ex
(
F
(
τ, (θτX)t

) ∣∣∣Fτ

)
(ω̄) = EXτ(ω̄)(ω̄)

(
F
(
τ(ω̄), (Xt)t ⩾ 0

))
,

for Px-almost all ω̄ ∈ {τ <∞}.

(2.42) Remark

Observe how the definition gives an intricate connection between the (usually uncountably ma-
ny) probability measures Px in terms of how the stochastic processes ((Xt),Px) behave under

conditioning. The best way to understand this definition is to take (Ω,F) = (ER+0+ , E⊗R+
0 ),

Xt(ω) = πt(ω) and Ft = σ(Xs : s ⩽ t). Then the different probability measures Px describe the
random behaviour of the process when started at x. Note however that the maps ω 7→ Xt(ω)
are always the same, it is the Px that change!

a) (2.41 a) means that if we know what (Xt) did up to time s and want to know the probability
of if (e.g.) being in a set A at time t+ s, then all we need to know is the point Xs(ω̄) to which
it arrived at time s; the information about things that the process did before time s has no
influence on the answer. Moreover, the answer can be computed by asking what the probability
of a process started (at time 0) in the point Xs(ω̄) is to be in the set A, i.e. we switch probability
measures depending on where we find the process (and decrease the run-time from t+ s to t).
Compare also with Proposition (2.3).

b) (2.41 b) is an improved version of a): instead of just answering questions about the (con-
ditional) behaviour of X at one time point in the future by switching probability measures
and shifting time, we can do the same for questions about the whole path after time s. Ex-
amples for the function F might be integrals, e.g. F (X) =

∫ 7

0
sin(Xr) dr. Then F ◦ θs(X) =∫ 7

0
sin(Xr+3) dr =

∫ 10

3
sin(Xr) dr. Another example would be F (X) = maxr ⩽ 5 |X(r)|.

c) (2.41 c) means that we can even replace s by a stopping time in the context of b), i.e.
the time when we stop may depend on (usually) what the process has done in the past. An
example of what we can achieve with this is the following calculation, for E = R, r < R and
under the assumption that X is a strong Markov process with continuous paths, and that with
τR = inf{s ⩾ 0 : Xs ⩾ R} we have P0(τR <∞) = 1:

P0(Xt returns to K(0, r) after having been larger than R) = E0(1l{Xt+τR
:t ⩾ 0}∩K(0,r)̸=∅}) =

= E0
(
E0(1l{Xt+τR

:t ⩾ 0}∩K(0,r)̸=∅} | FτR)
)

(2.41c)
= E0

(
EXτR(.)(.)(1l{Xt:t ⩾ 0}∩K(0,r)̸=∅})

)
=

= ER(1l{Xt:t ⩾ 0}∩K(0,r) ̸=∅}) = PR(X ever hits K(0, r)).

The equality in the last line is because by path continuity, we have XτR(ω)(ω) = R for all
ω ∈ {τR <∞}. This is precisely what we were aiming for in the last part of Remark (2.39).

d) In many textbooks, the strong Markov property is written in the
”
classical probability

theory“ way, i.e. without writing the arguments ω̄ in the conditional expectation. Here is one
of the places where this classical way is really inadequate and creates a lot of confusion: there
is then simply no way to write that in the first slot of the function F on the right hand side,
the τ must be given the (fixed) ω̄, while the (Xt)t ⩾ 0 is integrated over. In integral notation,
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the right hand side actually reads∫
F (τ(ω̄), (Xt(ω))t ⩾ 0)PXτ(ω̄)(ω̄)(ω),

while the integrand (inside the conditional expectation) on the left hand side ist given by
F (τ(ω), (Xt+τ(ω)(ω))t ⩾ 0). Notice the precise places where ω̄ and ω are used, respectively!

In many important cases, all three notions of Markov processes coincide. We prepare this
statement by an important variant of the π-λ-Theorem from probability theory.

(2.43) Monotone Class Theorem

Let F be a σ-algebra on a set Ω, A ⊂ F be a π-system (i.e.: A,B ∈ A implies A ∩ B ∈ A),
and let H be a collection of F -measurable functions with the following properties:

(i): Ω ∈ A, and 1A ∈ H for all A ∈ A.

(ii): H is a vector space, i.e. αf + g ∈ H whenever f, g ∈ H and α ∈ R.
(iii): H is closed under monotone limits, i.e. if fn ∈ H for all n, fn(ω) ⩽ fn+1(ω) for all ω ∈ Ω
and all n ∈ N, and limn→∞ fn = f for some bounded function f , then f ∈ H follows.

Under these conditions, H contains all bounded, σ(A)-measurable functions.

Proof: exercise using the π-λ-Theorem. □

(2.44) Theorem

Consider the situation as in Definition (2.41), and assume in addition that (Ft) is the right-
continuous filtration generated by the maps Xt, i.e. Ft =

⋂
n∈N σ(Xs : s ⩽ t + 1/n), and that

F = σ(Ft : t ⩾ 0). Let ((Xt), (Px)) be a weak Markov process.

a) Assume in addition that for all 0 < t1 < t2 · · · < tn and all f1, . . . fn ∈ Cb(E,R), the map

x 7→ Ex(f1(Xt1) · · · fn(Xtn)) is continuous. (i)

Then ((Xt), (Px)) is a Markov process.

b) Assume that (i) holds, and in addition assume that

∀ω ∈ Ω : t 7→ Xt(ω) is right-continuous. (ii)

Then ((Xt), (Px)) is a strong Markov process.

Proof:

a) We first show by induction that (i) implies that for all n ∈ N, all f1, . . . , fn ∈ Cb(E,R) and
all 0 < t1 < . . . tn, we have

Ex(f1(Xt1+s) · · · fn(Xtn+s) | Fs)(ω̄) = EXs(ω̄)(f1(Xt1) · · · fn(Xtn)) (∗).
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For n = 1, this is just the weak Markov property. Assuming it holds up to n− 1, we have

Ex
( n∏
i=1

fi(Xti+s)
∣∣∣Fs

)
(ω̄)

Tower
= Ex

(
Ex

( n∏
i=1

fi(Xti+s)
∣∣Ft1+s

) ∣∣∣Fs

)
(ω̄) =

= Ex
(
f1(Xt1+s)Ex

( n∏
i=2

fi(Xti+s)
∣∣Ft1+s

) ∣∣∣Fs

)
(ω̄) = (induction hypothesis)

= Ex
(
f1(Xt1+s)EXt1+s

( n∏
i=2

fi(Xti−t1)
) ∣∣∣Fs

)
(ω̄) = (weak Markov, continuity of x 7→ Ex(· · · ))

= EXs(ω̄)
(
f1(Xt1)EXt1

( n∏
i=2

fi(Xti−t1)
))

(ω̄) = (∗∗)

By the induction hypothesis, for almost all ω ∈ Ω and for the (fixed) ω̄ from above, we have

EXs(ω̄)
( n∏
i=2

fi(Xti)
∣∣∣Ft1

)
(ω) = EXt1 (ω)

( n∏
i=2

fi(Xti−t1)
)
,

We read this from right to left, plug it into (∗∗) and use the tower property (with respect to
the measure EXs(ω̄)) in order to prove (∗).
The next step is to extend (∗) to the case when the fi are indicators of open subsets of E.
This is done by the monotone convergence theorem on both sides, by approximating indicators
of open sets U by continuous functions from below: fn(x) = min{1, nd(x, U c)}, where d is the
metric. We then have shown the validity of the defining equation

Ex
(
F ◦ θs(X)

∣∣∣Fs

)
(ω̄) = EXs(ω̄)(F (X)) (∗ ∗ ∗)

for a Markov process in the case where F (X) =
∏n

i=1 1lAi
(Xti) for open setsAi ⊂ E, t1, . . . tn ⩾ 0,

and n ∈ N. Thus letting

H = {F : Ω → R bounded, measurable, such that (∗ ∗ ∗) holds},

we first see that H is closed under monotone limits (this follows from monotone convergence for
conditional expectations and ordinary monotone convergence), is a vector space by the linearity
of (conditional) expectation, and contains the indicator functions for the set system

A = {X−1
t1

(A1) ∩ · · · ∩X−1
tn (An) : ti ⩾ 0, Ai ⊂ E open ∀i ⩽ n, n ∈ N}.

Since σ(A) = F by assumption, the monotone class theorem now shows that (∗ ∗ ∗) holds for
all bounded, measurable F , which is the Markov property.

b) Consider first functions of the type

F (t,X) = f1(t,Xt1) · · · fn(t,Xtn) for fi ∈ Cb(R+
0 × E,R), 0 < t1 < . . . < tn, n ∈ N.

For such F , the map Z : ω̄ 7→ EXτ(ω̄)(ω̄)(F (τ(ω̄), X)) is Fτ -measurable by ((2.28) a,e) and by the
continuity of the map x 7→ Ex

(∏n
i=1 fi(τ(ω̄), Xti)

)
. So Z already has the right measruability for

being the conditional expectation Ex(F (τ, θτX) | Fτ ). To prove that it really is the conditional
expectation we still need to check the defining equality for conditional expectation, which in
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general reads E(E(Y | G)1lG) = E(Y 1lG) for all G ∈ G, and in our particular case is best written
as

∀A ∈ Fτ , A ⊂ {τ <∞} :

∫
EXτ(ω̄)(ω̄)

(
F (τ(ω̄), X)

)
1lA(ω̄)Px(dω̄) = Ex(F (τ, θτX)1lA) (∗4)

Let us first assume that τ only takes countably many values, i.e. τ(Ω) = {si : i ∈ N} ∪ {∞}
with si ∈ R+

0 . Then for A ∈ Fτ with A ⊂ {τ <∞},

Ex(F (τ, θτX)1lA) =
∑
i∈N

Ex
(
F (si, θsiX) 1lA∩{τ=si}︸ ︷︷ ︸

∈mFsi

) a)
=

∑
i∈N

Ex
(
EXsi (F (si, X))1lA∩{τ=si}

)
=

=
∑
i∈N

∫
EXτ(ω̄)(ω̄)

(
F (τ(ω̄), X)

)
1lA∩{τ=si}(ω̄)P

x(dω̄) =

=

∫
EXτ(ω̄)(ω̄)

(
F (τ(ω̄), X)

)
1lA(ω̄)Px(dω̄),

so (∗4) holds for discrete τ . For general τ , use Lemma (2.25) to approximate τ from above by
discrete (τk)k∈N. By the right-continuity of paths of X and the continuity of the fi, we have

lim
k→∞

F (τk(ω̄), θτk(ω)X(ω)) = lim
k→∞

n∏
i=1

fi(τk(ω̄), Xti+τk(ω)) =

=
n∏
i=1

fi(τ(ω̄), Xti+τ(ω)) = F (τ(ω̄), θτ(ω)X(ω)).

If we take ω̄ = ω and use dominated convergence, we find

lim
k→∞

Ex(F (τk, θτkX)1lA) = Ex(F (τ, θτX)1lA).

By keeping ω̄ and ω different, using of the triangle inequality (to separate the k-dependence
of the upper index below from the k-dependence of the function that is integrated), recalling
assumption (i) and using dominated convergence we get

lim
k→∞

EXτk(ω̄)(ω̄)(
(
F (τk(ω̄), X)) = lim

k→∞
EXτk(ω̄)(ω̄)

( n∏
i=1

fi(τk(ω̄), Xti+τk)
))

=

= EXτ(ω̄)(ω̄)
( n∏
i=1

fi(τ(ω̄), Xti+τ )
))

= EXτ(ω̄)(ω̄)
(
F (τ(ω̄), X)

)
for all ω̄. We multiply this by 1lA(ω̄), integrate using to Px and employ dominated convergence
once again to see that (∗4) holds for general stopping times, too.

The final step is to allow general bounded, B(R+
0 )⊗F -measurable functions F : R+

0 ×ER+
0 → R.

Here we use again the monotone class theorem: fist of all, just like in a) we use monotone
convergence to get (∗4) for the case where F (t,X) =

∏n
i=1 1lAi

(t,Xti) with Ai ⊂ R+
0 × E open

in the product topology, and t1, . . . , tn ⩾ 0. The set system

A = {(t, ω) ∈ R+
0 ×Ω : (t,Xt1(ω)) ∈ A1, . . . , (t,Xtn(ω)) ∈ An, ti ⩾ 0, Ai ⊂ R+

0 ×E open ∀i ⩽ n, n ∈ N}
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generates B(R+
0 )⊗F , and the set of functions

H = {F : R+
0 ×Ω → R bounded, measurable such that (∗4) holds for all A ∈ Fτ , A ⊂ {τ <∞}}

is closed under monotone limits (again monotone convergence!), a vector space, and contains
the indicators for all sets in A as we have proved above. This shows the claim. □

(2.45) Corollary

Define Px, x ∈ Rd, as in (2.36), and let (Bt) be a BMd with its right-continuous filtration. Then
((Bt), (Px)) is a strong Markov process.

Proof: By (2.2) and (2.3), the maps (Wt) = (Bs,t)t ⩾ s and (Br)r ⩽ s are independent Brownian
motions under P0. Moreover, (Wt) has the same distribution under all Px, i.e. is a Brownian
motion starting in zero under all of these measures. Therefore

Ex
(
F ((Bt−s)t ⩾ 0)

∣∣Fs)(ω̄) = Ex
(
F ((Wt)t ⩾ s +Bs)

∣∣Fs)(ω̄)

(∗)
= Ex

(
F ((Wt)t ⩾ s +Bs(ω̄))

)
= E0

(
F ((Wt)t ⩾ s +Bs(ω̄))

)
= E0

(
F ((Bt)t ⩾ 0 +Bs(ω̄))

)
= EBs(ω̄)

(
F ((Bt)t ⩾ 0)

)
,

which is the regular Markov property. The equality (∗) is a special case of the fact that
E(f(X, Y ) | F)(ω̄) = E(f(X, Y (ω̄))) in the case when X ⊥⊥ F and Y ∈ mF . The strong
Markov property now follows from path continuity and Theorem (2.44). □

The strong Markov property is very powerful. In the remainder of this chapter, we give se-
veral examples where it (or the regular Markov property) is used to extract very interesting
information about Brownian motion. We start by completing what we began in Remark (2.39):

(2.46) Theorem: transience and recurrence of Brownian Motion

a) BM1 is point recurrent, i.e. Px(Bt = 0 infinitely often) = 1 for all x ∈ R.
b) BM2 is neighbourhood recurrent. i.e.

∀r > 0, x ∈ R2 : Px(Bt returns to K(0, r) infinitely often) = 1.

Here,
”
returns to“ means that there are two time t1 < s2 < t2 so that Bt1 , Bt2 ∈ K(0, r), but

Bs2 /∈ K(0, r).

c) BMd is transient for d ⩾ 3, i.e.

∀x ∈ Rd : Px( lim
t→∞

|Bt| = ∞) = 1.

Proof:
a) holds by (2.8) and path continuity.

b) Let R > r and define σr = inf{s > 0 : |Bs| ⩽ r}, τR,0 := inf{s > 0 : Bs ⩾ R}, and

τR,n := inf{t > 0 : ∃s1 < t1 < s2 < t2 < · · · < sn < tn < t : |Bsi| < r, |Bti | > R ∀i ⩽ n}.

By (2.38 b), Py(σr < ∞) = 1 for all y ∈ R2, and by (2.8) (e.g. for the first component),
Py(τR,0 < ∞) = 1 for all y ∈ R. The claim will be shown once we prove the same for τR,k for
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all k. Assume we have it for some k, i.e. we know that Py(τR,k <∞) = 1 for all x. Then by the
strong Markov property (twice), we get

Px(τR,k+1 <∞) = Ex
(
Ex

(
1l{∃0<s<t:|XτR,k+s|<r,|XτR,k+t|>R}

∣∣FτR,k

))
=

= Ex
(
EXτR,k

(
1l{σr<∞}︸ ︷︷ ︸

=1 almost surely

1l{supt ⩾ 0 |Bσr+t|>R}
))

=

= Ex
(
EXτR,k

(
EXτR,k (1l{supt ⩾ 0 |Bσr+t|>R} | Fσr)

))
=

= Ex
(
EXτR,k

(
PXσr (sup

t ⩾ 0
|Bt| > R)︸ ︷︷ ︸

=1

))
= 1,

which completes the induction.

c) exercise, similar to b). □

The most famous application of the strong Markov property is

(2.47) Theorem: the reflection principle

Let B be a BM1, and Mt(ω) := max{Bs(ω) : s ⩽ t}. For all 0 < b < a, t > 0, we have

P0(Mt > a,Bt < b) = P0(Bt > 2a− b).

Proof: Let us first give an informal proof. Pick ω ∈ Ω with Mt(ω) > a and Bt(ω) < b, i.e.
an ω that contributes to the first probability. Now we take the part of the path s 7→ Bs(ω)
that comes after the time τa(ω) when the path first hits of a (which must have happened since
Mt(ω) > a), and

”
reflect“ it. This means we now consider the path

B̃s(ω) =

{
Bs(ω) = a+ (Bs(ω)− a) if s ⩽ τa(ω)

2a−Bs(ω) = a− (Bs(ω)− a) if τa(ω) ⩽ s ⩽ t.

Then B̃t(ω) > 2a − b because Bt(ω) < b. Therefore, the set of paths making up the second
probability emerges from those that make up the first probability by reflection, and there as a
bijective map between the two sets. By the strong Markov property, each reflected path has the
same (

”
infinitesimal“) probability as the original path: there is the (infinitesimal) probability

p1 of getting to a in time τa in the first place, at which time the path is
”
restarted“ at a, and the

difference between B̃ and B is just that in one case the negative of the reflected path is taken,
but this has the same probability p2 by orthogonal invariance (2.1). Since the part after τa is
independent of how we got there by the strong Markov property, the infinitesimal probability
of both B(ω) and B̃(ω) is just p1p2. Of course, the problem with this proof is the use of the
suggestive but ill-defined notion of

”
infinitesimal probability“, which is why we will now give

the formal proof.

For this, let

τa(ω) :=

{
inf{s ⩾ 0 : Bs ⩾ a} if Mt ⩾ a,

∞ if Mt < a.
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This is a stopping time. We also define

F (s, ω) := 1l{s<t}
(
1l{Bt−s(ω)>2a−b} − 1l{Bt−s(ω)<b}

)
,

and observe that for fixed s < t, we have

Ea(F (s, ·)) = Pa(Bt−s > 2a− b)− Pa(Bt−s < b) = P0(Bt−s > a− b)− P0(Bt−s < b− a) = 0,

by symmetry (i.e. by (2.1)), while for s ⩾ t we have F (s, .) = 0 by definition. Therefore

EXτa(ω̄)(ω̄)(F (τa(ω̄), .))1l{τa(ω̄)<∞} = 0 ∀ω̄ ∈ Ω.

Together with the fact that {τa <∞} = {Mt ⩾ a}, we get

0 =

∫
EXτa(ω̄)(ω̄)(F (τa(ω̄), .))1l{τa(ω̄)<∞} P0(dω̄)

(2.41c)
=

=

∫
E0

(
F (τa, θτaB)

∣∣Fτa

)
(ω̄)1l{τa(ω̄)<∞} P0(dω̄)

tower
=

= E0
(
F (τa, θτaB)1l{τa<∞}

)
= E0

(
1l{Mt ⩾ a}(1l{Bt−τa+τa>2a−b} − 1l{Bt−τa+τa><b})

)
=

= P0(Mt > a,Bt > 2a− b)− P0(Mt > a,Bt < b) = P0(Bt > 2a− b)− P0(Mt > a,Bt < b).

□

The important point about Theorem 2.47 is that for many stochastic processes, we have some
idea what the distribution of the process Xt at some time t is (for BM it is Gaussian), but
the maximum Mt up to time t is often a complicated object, where we know little about the
distribution. For Brownian motion, however, the theorem shows thatMt is also not too difficult.
For example:

(2.48) Corollary

Let B be one-dimensional Brownian motion, a > 0 and t > 0, and define τa = inf{s ⩾ 0 :
Bs ⩾ a}. Then
a) P0(τa < t) = P0(Mt > a) = P(|Bt| > a), i.e. Mt ∼ |Bt| for all t.
b) P0(Mt −Bt > a) = P0(|Bt| > a) for all t.

Proof: a) The first equality holds by definition of τa and Mt. For the second, take b ↗ a in
Theorem (2.47), and use that

P0(Mt > a) = P0(Bt > a) + P0(Mt > a,Bt < a)
(2.47)
= 2P0(Bt > a)

(2.1)
= P0(|Bt| > a).

b) We have

Mt −Bt = sup
s ⩽ t

(Bs −Bt) = sup
s ⩽ t

(Bt−s −Bt)
(2.5)∼ sup

s ⩽ t
Bs =Mt

a)∼ |Bt|.

□

Remark: The equality b) in (2.48) actually holds for the full distribution of the processes: we
have (Mt−Bt)t ⩾ 0 ∼ (|Bt|t ⩾ 0). For the proof, see Remark 1.75 and after in the book of Liggett.
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(2.49) The arcsine law

Let B be a one-dimensional Brownian motion, and define ξt := sup{s < t : Bs = 0} (note that
this is not a stopping time!). Then we have

P0(ξt < s) =
2

π
arcsin

√
s/t ∀0 ⩽ s ⩽ t.

Proof: For s < t, let h(s) = P0(ξt < s). Then we have

h(s) = P0(B0 ̸= 0 ∀u ∈ [s, t]) = E0
(
P0(B0 ̸= 0 ∀u ∈ [s, t] | Fs)

) (2.41b)
=

= E0
(
PBs(.)(Bu ̸= 0 ∀u ∈ [0, t− s])

)
=

= E0
(
1l{Bs ⩾ 0}PBs(.)(Bu > 0 ∀u ⩽ t− s)

)
+ E0

(
1l{Bs<0}PBs(.)(Bu < 0 ∀u ⩽ t− s)

) (2.1)
=

= 2E0(1l{Bs ⩾ 0}PBs(.)(Bu > 0 ∀u ⩽ t− s)
)
= 2

∫ ∞

0

dx
1√
2πs

e−
x2

2s Px(Bu > 0 ∀u ⩽ t− s).

Now

Px(Bu > 0 ∀u ⩽ t− s) = P0(−Mt−s > −x) = P0(Mt−s < x)
(2.48a)
=

= P0(|Bt−s| < x) = 2P0(0 < Bt−s < x),

and thus

h(s) = 2

∫ ∞

0

dx
1√
2πs

e−
x2

2s

∫ x

0

dy
2√

2π(t− s)
e−

y2

2(t−s) =
2

π

∫
dx̃ e−

x̃2

2

∫ x̃
√

s
t−s

0

dỹ e−
ỹ2

2 ,

where we used the substitution x̃ = x/
√
s and ỹ = y/

√
t− s in the integrals. It is easiest to

compute the value of this final integral by first differentiating with respect to s: since

∂s

√
s

t− s
=

1

2

√
t− s

s

t

(t− s)2
=

1

2
√
s(t− s)

t

t− s
,

we find

∂sh(s) =
2

π

∫ ∞

0

dx̃ e−
x̃2

2 e−(x̃
√

s
t−s)

2
/2 ∂s

(
x̃

√
s

t− s

)
=

1

π
√
s(t− s)

t

t− s

∫ ∞

0

dx̃ x̃ e−
x̃2

2
t

t−s︸ ︷︷ ︸
=1

.

Since h(0) = 0, integrating this gives h(s) = 2
π
arcsin(

√
s/t). □

(2.50) Proposition: zeroes of Brownian motion

Let B be a one-dimensional Brownian motion, and let Z(ω) := {t ⩾ 0 : Bt(ω) = 0} be the
(random) subset of zeroes of Brownian motion.

a) Z(ω) is Lebesgue-measurable for all ω, and we have Ex(λ(Z)) = 0 for all x ∈ R, where λ is
the Lebesgue measure.

b) Almost surely, Z is a perfect subset of R+
0 , which means that

(i): Z is closed, and
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(ii): Z has no isolated points, i.e. for every z ∈ Z and every open U ⊂ R+
0 with z ∈ U , we

have U ∩ (Z \ {z}) ̸= ∅.

Proof: a) Z(ω) = (B·(ω))
−1({0}) is closed (and thus Lebesgue-measurable) as the inverse image

of a closed set under a continuous function. The claimed equality is simply an application of
Fubini: Ex(λ(Z)) =

∫∞
0

Px(Bt = 0) dt =
∫∞
0

0 dt = 0.

b) We have already seen that Z(ω) is closed. To show that Z is perfect, let us define

τ0,a(ω) := inf{s ⩾ a : Bs = 0},
and

Ω1 := {ω ∈ Ω : ∀a ∈ Q,∃(sn) ⊂ R+
0 such that sn > τa(ω), Bsn(ω) = 0 ∀n, lim

n→∞
sn = τa(ω)}.

In words, for all ω ∈ Ω1, the next Brownian zero after each rational number can be approximated
from the right by a sequence of other Brownian zeroes, and is therefore not isolated in Z. In
particular, this means that if ω ∈ Ω1 and s ∈ Z(ω), then

• either s = τ0,a(ω) for some a ∈ Q, in which case it is approximated from the right by
other Brownian zeroes, by the definition of Ω1,

• or it is not of this form, in which case for all a ∈ Q ∩ [0, s), there must be another
Brownian zero in the interval (a, s). Then it easily follows that s is approximated from
the left by Brownian zeroes.

In both cases, s is not isolated. This means that we can finish the proof by showing that
Px(Ω1) = 1. Let

A = {ω ∈ Ω : ∃(sn) ⊂ R+
0 such that sn > 0, Bsn(ω) = 0 ∀n, lim

n→∞
an = 0}.

By (2.7), we have P0(A) = 1, and the strong Markov property gives

Ex(1lA ◦ θτ0,a | Fτ0,a)(ω̄) = Eτ0,a(ω̄)(1lA) = P0(A) = 1

for Px-almost all ω̄, and taking Ex-expectation shows Ex(1lA ◦ θτ0,a) = 1 for all a ∈ R, and thus
1lA ◦ θτ0,a = 1 almost surely. Since Ω1 =

⋂
a∈Q{ω ∈ Ω : 1lA ◦ θτ0,a = 1}, we have Px(Ω1) = 1. □

Remarks: a) Perfect sets are always uncountable (exercise!). On the other hand, the zeroes of
Brownian motion have Lebesgue measure zero almost surely, and therefore are not a

”
boring“

perfect set like a closed interval. Indeed, they look very much like a (random) Cantor set, with
lots of holes but no isolated points.

b) It is also known that complements of perfect sets are countable unions of open intervals.
Thus when Brownian motion leaves the value zero, it stays away from zero during an open time
interval - but on the other hand, many of these open time intervals are so small that when we
follow a Brownian path and find we have just hit zero, we know that we will hit zero again
infinitely many times in any arbitrarily small future interval.

c) On the other hand, if we just came from somewhere else and have hit zero for the first time,
then of course we have not hit zero at all in a sufficiently small time interval in the past. Thus
when we

”
sit“ on a typical zero of Brownian motion, the view into the future is very different

from the view into the past. Again on the other hand, we have the time reversal symmetry
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(2.5) which tells us that we can invert the flow of time - how does this combine with what we
just said?

d) The resolution is that while it is very easy to find the first zero of Brownian motion that
has been started from x ̸= 0, it is very hard to nail down the last zero before it goes onto an
excursion. Of course, fore each Brownian path, such

”
last zeroes“ exist, but we cannot predict

them by looking at our past, while we can tell when we are sitting on a
”
first zero“. In other

words, while the distribution of Brownian motion is invariant under time reversal, the Markov
property strongly needs the time direction because it separates past from future. Put differently,
Brownian paths indeed

”
look the same“ when time-reversed, but only if we look globally on

them as a whole - if we try to follow them as time goes on, we will find some features of them
(first entry points) while others (last entry points) will be hidden from us.

e) Brownian paths are extremely intriguing mathematical objects, but in this lecture we will
not have further time to investigate their geometry. I highly recommend looking into the Book

”
Brownian motion“ by Peter Mörters and Yuval Peres, which is available for free from the
author’s home pages. It contains many very beautiful further facts about geometry, fractal
dimension, and many other aspects of Brownian paths.

D) Brownian Motion and partial differential equations

(2.51) The Brownian semigroup

Let B be a d-dimensional Brownian motion, and f : Rd → R be a bounded function. For all
t ⩾ 0 let

Ptf(x) := Ex(f(Bt)).

Then (Pt)t ⩾ 0 is a semigroup of operators mapping L∞(Rd) into C∞
b (Rd,R) for all t > 0, i.e.

x 7→ Ptf(x) is smooth for all t > 0, and [Pt+sf ](x) = [Pt(Psf)](x) for all x.

Proof: Since

Ptf(x) =
1

(2πt)d/2

∫
e−

|x−y|2
2t f(y) dy,

smoothness of Ptf is clear e.g. by differentiating under the integral and invoking dominated
convergence. The semigroup property follows from the Markov property of Brownian motion:

Ptf(x) = Ex(f(Bs+t)) = Ex
(
Ex(f(Bt+s) | Ft)

)
= Ex

(
EBt(f(Bs))

)
= Ex([Psf ](Bt)) = [Pt(Psf)](x).

□

(2.52) Theorem

Let f : Rd → R be bounded and continuous on an open subset A ⊂ Rd with λ(Ac) = 0. Then
the Brownian semigroup (Ptf)t ⩾ 0 solves the heat equation with initial condition f , i.e. for
all t > 0, we have

∂tPtf(x) =
1

2
∆x[Ptf ](x) :=

1

2

d∑
j=1

∂2xi [Ptf ](x), and lim
t→0

Ptf(x) = f(x) for almost all x.
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Proof: For all x ∈ A, a change of variables in the integral gives

Ex(f(Bt)) =
1

(2πt)d/2

∫
e−

|x−y|2
2t f(y) dy =

1

(2π)d/2

∫
e−

|z|2
2 f(x−

√
tz) dz

t→0−→ f(x)

by dominated convergence. For the differential equation, we recall that by Lemma (2.16), the
transition density pt(x) of Brownian motion satisfies the heat equation, and so for f ∈ C2

b and
0 < ε < t we have

Ptf(x)− f(x) =

∫
pt(x− y)f(y) dy − f(x) =

=

∫
dy

∫ t

ε

ds∂sps(x− y)f(y) +

∫
dygε(x− y)f(y)− f(x) =

=

∫ t

ε

ds

∫
dy

1

2
[∆ps](x− y)f(y) + [Pεf ](x)− f(x).

We have just proved that the last two terms cancel as ε → 0. For the first term, note that
[∆p](x− y) = ∆yp(x− y) in the sense that in the first expression, the Laplace operator acts on
the function p and only then the argument x − y is inserted, and in the second expression it
acts on the function y 7→ pt(x− y). Then we can perform two integrations by part in the first
expression and find

Ptf(x)− f(x) = lim
ε→0

∫ t

ε

ds

∫
dyps(x− y)[1

2
∆f ](y) =

∫ t

0

ds

∫
dyps(x− y)[1

2
∆f ](y)

So,

∂tPtf(x)|t=0 = lim
t→0

1

t
(Ptf(x)− f(x)) = lim

t→0

1

t

∫ t

0

ds
(∫

dyps(x− y)[1
2
∆f ](y)

)
.

Since f ∈ C2, we have

sup
{∣∣∣ ∫ ps(x− y)[1

2
∆f ](y) dy − 1

2
∆f(x)

∣∣∣ : s ⩽ t
}
→ 0 as t→ 0,

and thus ∂tPtf(x)|t=0 = 1
2
∆f(x). For t > 0, apply this result to Pt+hf − Ptf = Ph[Ptf ] − Ptf

with C2 (even smooth) function Ptf instead of f . □

Remark: Theorem (2.52) is also called Kolmogorov’s backward equation for Brownian
motion. The term

”
backward“ comes from the fact that the

”
last“ point in time t of where

f(Bt) is evaluated becomes the starting point for the heat equation, and the starting point x
of Brownian motion has to be inserted into the solution of the heat equation at its final time t.
The backward equation is much more general than this, and holds for many continuous Markov
processes. When we study solutions of stochastic differential equations, we will meet a few more
processes for which it holds, only that then of course a different partial differential equation
needs to be solved.

(2.53) The mean value property

Let ∂Kr(x) := {y ∈ Rd : |y−x| = r} be the sphere of radius r around x. Let σx,r denote rotation
invariant probability measure concentrated on ∂Kr(x), i.e. the unique probability measure on
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Rd with σx,r(∂Kr(x)) = σx,r(Rd) = 1, and σx,r(UA) = σx,r(A) for all A ∈ B(Rd), where U is a
rotation around the point x.

Let D ⊂ Rd be open. A function h : D → R is said to have the mean value property if for
all x ∈ D and all r > 0 so that Sr(x) ⊂ D, we have

h(x) =

∫
∂Kr(x)

h(y)σx,r(dy).

Theorem: A function u ∈ C2(D) has the mean value property on D if and only it is harmonic
on D, i.e. if ∆u(x) = 0 for all x ∈ D.

Proof: Let u ∈ C2. A change of variables and dominated convergence give

ϕx(r) :=

∫
∂Kr(x)

u(y)σx,r(dy) =

∫
S1(0)

u(x+ ry)σ0,1(dy)
r→0−→ u(x).

We investigate ϕ′
x(r). We have

ϕ′
x(r) =

∫
∂K1(0)

∂ru(x+ ry)σ0,1(dy) =

∫
∂K1(0)

[∇u](x+ ry) · y σ0,1(dy) =

=

∫
∂K1(0)

1

r
∇yu(x+ ry) · y σ0,1(dy) =

1

r

∫
K1(0)

∆yu(x+ ry)dy,

where in the last step we used the Gauss divergence formula, since the vector y is just the
normal vector of unit length at the point y of the unit sphere. Kr(x) denotes the ball of radius
r around x. Since ∆yu(x+ ry) = r2[∆u](x+ ry), we change variables back and get

ϕ′
x(r) = r−d+1

∫
Kr(x)

[∆u](y) dy

for all x ∈ D and all r > 0. The function u has the mean value property if and only if ϕ′
x(r) = 0

for all x and r. On the one hand, for harmonic u, this is true. On the other hand, if ∆u(x) ̸= 0
for some x ∈ D, then by continuity and because D is open, we find r > 0 so thatKr(x) ⊂ D and
∆u(x) ̸= 0 on Kr(x), showing that u does not have the mean value property in this case. □

(2.54) The harmonic measure

Let D ⊂ Rd, D ̸= Rd be open, x ∈ D. Let ∂D denote the boundary of D, B a d-dimensional
Brownian motion, and let τ∂D := inf{t ⩾ 0 : Bt ∈ ∂D} be the hitting time of the boundary of
D. The probability measure νD,x on B(Rd) ∩ ∂D defined through

νD,x(A) = Px(Bτ∂D ∈ A | τ∂D <∞)

is called the harmonic measure on ∂D of Brownian motion started in x ∈ D. For bounded
D, the condition τ∂D < ∞ can be dropped (why?). Rotational invariance of Brownian motion
shows that when D = Kr(x), then νKr(x),x = σx,r.

(2.55) Proposition

Let D ⊂ Rd be open, h : R → R be continuous with Ex(|h(Bt)|) < ∞ for all t and all x. Let
τ∂D be the hitting time of ∂D of Brownian motion as above (and τ∂D := ∞ if D = Rd).
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(i): If h is C2 on Rd and h is harmonic on D, then (h(Bt∧τ∂D))t ⩾ 0 is a martingale.

(ii): If (h(Bt∧τ∂D))t ⩾ 0 is a (Ft∧τ∂D)t ⩾ 0-martingale under all Px, then h is harmonic on D.

Proof: (i): By Theorem (2.17), the process (Mh
t ) with

Mh
t = h(Bt)−

∫ t

0

1

2
∆h(Bs) ds

is a martingale. The same holds for (Mh
t∧τδD) by optional stopping. Since Bs ∈ D for all s ⩽ τ∂D,

the integral is zero when h is harmonic in D.

(ii): Let x ∈ D, r > 0 with ∂Kx(r) ⊂ D. By optional stopping, also the process (h(Bt∧τ∂Kx(r)
))t ⩾ 0

is a martingale. This implies h(x) = Ex(h(Bt∧τ∂Kx(r)
)) for all t, and since τ∂Kx(r) < ∞ almost

surely, we can take t→ ∞ to obtain

h(x) = Ex(h(BτSx(r)
)) =

∫
∂Kr(x)

h(y)P(Bτ∂Kx(r)
∈ dy) =

∫
∂Kr(x)

h(y)νKr(x)(dy).

This shows that h has the mean value property and is therefore harmonic. □

The reason for including the case D ̸= Rd (and thus inducing additional notation and comple-
xity) is that for D = Rd, one can show that all bounded harmonic functions are constant (the
so-called maximum principle). While Proposition (2.55) can then still be interesting for non-
bounded (but locally bounded) harmonic functions, it is good to have it for bounded domains
too, because there we can have many harmonic functions that are bounded. In fact, we can have
a (unique) harmonic function for every boundary condition on domains D whose boundary is
not too irregular. We will show this after a technical Lemma that is

”
obvious“ but somewhat

unpleasant to prove.

(2.56) Lemma

Let B be a d-dimensional Brownian motion, κ > 0, and let A = {x ∈ Rd : x1 ⩾ κ
∑d

i=2 x
2
i }.

Let τA be the hitting time of A, and τr := τ∂Kr(0) be the hitting time of the boundary of the
ball with radius r around 0. Then

lim
y→0

Py(τA < τ√|y|) = 1.

Proof: We note two general facts:

1) For z ∈ Rd and δ > 0, z1 > δ and |z| ⩽
√
δ/κ implies z ∈ A.

2) For t > 0, c > 0, and a one-dimensional Brownian motion B, we have P0(|Bt| ⩽ c) =
P0(|B1| ⩽ c/

√
t) by Brownian scaling, i.e. by (2.4). Then (2.48 b) implies

P0(sup
s ⩽ t

|Bs| ⩾ c) ⩽ P0(sup
s ⩽ t

Bs ⩾ c) + P0( inf
s ⩽ t

Bs ⩽ − c) = 2P0(|Bt| ⩾ c) = 2P0(|B1| ⩾ c/
√
t).
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Let now t > 0 be arbitrary for the moment. Then

Py(τA < τ√|y|) ⩾ Py(τA < t < τ√|y|)
1),δ=|y|
⩾ Py(sup

s ⩽ t
X(1)
s > |y|, sup

s ⩽ t
|X(i)

s | ⩽
√

|y|
κd2

∀i ⩾ 1)

⩾ Py1
(
sup
s ⩽ t

X(1)
s > |y|, sup

s ⩽ t
|X(1)

s | ⩽
√

|y|
κd2

) n∏
i=2

Pyi
(
sup
s ⩽ t

|X(i)
s | ⩽ d

√
|y|
κd2

)
= (∗)

Now let us choose t =M2|y|2 for M > 0. Then for all i, fact 2) gives

Pyi
(
sup
s ⩽ t

|X(i)
s | ⩽

√
|y|
κd2

)
⩾ 1− P0

(
sup
s ⩽ t

|X(i)
s | >

√
|y|
κd2

− |y|
)
⩾ 1− 2P0

(
|B1| >

1

Md
√
κ|y|

− 1

M

)
So the product on the right hand side of (∗) converges to 1 as y → 0 for all fixed M . For the
first factor of (∗), we have

Py1
(
sup
s ⩽ t

X(1)
s > |y|, sup

s ⩽ t
|X(1)

s | ⩽
√

|y|
κd2

)
⩾ Py1

(
sup
s ⩽ t

X(1)
s > |y|

)
− Py1

(
sup
s ⩽ t

|X(1)
s | >

√
|y|
κd2

)
We have

Py1
(
sup
s ⩽ t

X(1)
s > |y|

)
= P0

(
sup
s ⩽ t

X(1)
s > |y| − y1

)
= P0

(
|X(1)

t | > |y| − y1
)
⩾

⩾ P0(|Xt|(1) > 2|y|) = P0(|X(1)
1 | > 2

M
) ⩾ 1− 4

M
,

and limy→0 Py1
(
sups ⩽ t |X

(1)
s | >

√
|y|
κd2

)
= 0, as above. This shows limy→0 Py(τA < τ√|y|) ⩾ 1−

4/M for all M > 0, proving the claim. □

(2.57) The solution of the Dirichlet problem

The Dirichlet problem: Let D ⊂ Rd be open, f : ∂D → R any locally bounded function. A
function h : D → R is said to solve the Dirichlet problem with boundary condition f on D
if
(i): h is harmonic on D.

(ii): limx→y h(x) = f(y) for all point y where f is continuous.

A solution formula for the Dirichlet problem: Let D ⊂ Rd be bounded and open, and
assume that ∂D can be locally described by a C2-manifold. Let f : ∂D → R be bounded. Then
the function

h : D → R, x 7→ Ex
(
f(Bτ∂D)

)
solves the Dirichlet problem with boundary condition f on D.

Proof:We first prove that h is harominc on D. We write τ = τ∂D for brevity. By (2.55), we need
to confirm that (h(Bτ∧t))t ⩾ 0 is a (Fτ∧t)t ⩾ 0-martingale. We use the strong Markov property on
the function F (B) = f(Bτ ). The strange thing about that function is that F ◦ θs(B) = F (B)
for all s, namely

F ◦ θs(B) = f(Bs+inf{u:Bs+u /∈D}) = f(Bs+inf{u−s:Bu /∈D}) = f(Binf{u:Bu /∈D}) = F (B).
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Thus for s < t, we have

Ex(h(Bτ∧t) | Fτ∧s) = Ex
(
EBτ∧t(f(Bτ ))

∣∣∣Fτ∧s

)
= Ex

(
EBτ∧t(F (B))

∣∣∣Fτ∧s

)
=

= Ex
(
Ex

(
θτF (B)

∣∣Fτ∧t
) ∣∣∣Fτ∧s

)
= Ex

(
Ex

(
F (B)

∣∣Fτ∧t
) ∣∣∣Fτ∧s

)
= Ex

(
F (B)

∣∣Fτ∧s
)
= Ex

(
f(Bτ )

∣∣Fτ∧s
)
= h(Bτ∧s).

Therefore h is harmonic in D.

The second task is to prove that limx→y h(x) = f(y) when x→ y and f is continuous at y. For
this, let (yn) ⊂ D with yn → y as n → ∞. For each n ∈ N, let zn be the point in ∂D that is
closest to yn. We change to a coordinate system so that in the new coordinates, zn is the origin
and yn lies on the negative x1-axis. For large enough n (and thus small enough zn− yn), we can
then find κn > 0 so that, in the new coordinate system,

{x ∈ Rd : x1 > κn

n∑
i=2

x2i } ∩K√
|yn|

(yn) ⊂ Dc.

By the assumed curvature of the surface ∂D and the fact that zn → y, the sequence (κn)
can be chosen to be bounded by some κ > 1. Now we apply Lemma (2.56) to show that
limn→∞ Pyn(τDc ⩽ τK√

|zn−yn|(zn)
) = 0. Since |zn − yn| ⩽ |y − yn| and thus |zn − y| ⩽ 2|y − yn|,

we have K√
|zn−yn|

(zn) ⊂ K
3
√

|zn−yn|
(y) if |y − yn| ⩽ 1. This shows that limn→∞ Pyn(Bτ ∈

K
3
√

|yn−y|
(y) = 1. If f is continuous at y, we conclude

|h(yn)− f(y)| ⩽ sup{|f(z)− f(y)| : z ∈ ∂D, |z − y| ⩽ 3
√

|yn − y|)}

+ ∥f∥∞Pyn(Bτ /∈ K
3
√

|yn−y|
(y))

n→∞−→ 0.

This finishes the proof. □

Remark: The condition on the boundary of D is not optimal. With additional effort, one can
show that the exterior cone condition (or Poincaré cone condition) is sufficient: at each point z
of ∂D, it must be possible to find a cone with tip z such that the intersection of that cone with
a sufficiently small ball around z is fully inside Dc. See the book of Mörters and Peres (chapter
3) for details.

3. Stochastic integrals

(3.1) Motivation

In the introduction, we considered (informally) stochastic differential equations (SDE) of the
type

∂tXt = b(t,X) + σ(t,Xt)ξt,

where ξt is white noise; white noise is (again, for us only formally) the derivative of Brownian
motion, and so we can integrate both sides above and arrive to the integral formulation of the
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SDE

X0.t =

∫ t

0

b(s,Xs) ds+

∫ t

0

σ(s,Xs) Ḃs ds︸ ︷︷ ︸
=:dBs

Here, Ḃs denotes the derivative of B at time s. We still don’t know what the last integral should
be, but we can try to interpret is as a Riemann-Stieltjes integral, i.e. we define∫ t

0

f(s)dg(s) := lim
n→∞

⌊nt⌋∑
k=1

f
(
k
n

)(
g
(
k+1
n

)
− g

(
k
n

))
. (∗)

Notice that when g ∈ C1
b and f ∈ Cb, then as n→ ∞, k → ∞ and k/n→ s, we have

lim
n→∞

n
(
g
(
k+1
n

)
− g

(
k
n

))
= ġ(s),

and so by multiplying and dividing the n-th element in the sequence on the right hand side of
(∗) by n, using the n for the limit just described, and the other one for the Riemann sum, and
after being a bit careful with justifying swapping the order of limits, we arrive at the equality∫ t

0

f(s) dg(s) =

∫ t

0

f(s)ġ(s) ds.

In cases where g is not differentiable but where the right hand side of (∗) still converges, we

can interpret the limit as a generalization of the integral
∫ t
0
f(s)ġ(s) ds, which is what we want.

There is one caveat: just like for Riemann integrals, we would like the convergence in (∗) to
hold not only for the regular partition of [0, t] into intervals of length 1/n, but for any sequence
of partitions where the length of the shortest interval converges to zero. Our next few items
will investigate when this is possible.

(3.2) Definition

Let I = [a, b) with 0 ⩽ a < b ⩽ ∞, T ⊂ I finite. The set of intervals

P (T ) :=
{{
x ∈ I : s ⩽ x < inf{t ∈ T ∪ {b} : t > s}

}
: s ∈ T

}
is the partition generated by T . It T ⊂ T ′, we say that P (T ′) refines P (T ), and write
P (T ) ⊂ P (T ′). The number

|P (T )| := max{|t− s| : [s, t) ∈ P (T )}
is the fineness of P (T ). For a function F from the set of partitions of [a.b) into a metric space,
we say that lim|P |→0 F (P ) exists if for all sequences (Pn) of partitions with Pn ⊂ Pn+1 for all
n and limn→∞ |Pn| = 0, the limit limn→∞ F (Pn) exists and is independent from the chosen
sequence.

(3.3) Example

a) Let f : [0, T ] → R be Riemann-integrable. Then

lim
|P |→0

∑
[s,t)∈P

f(s)(t− s) =

∫ T

0

f(s) ds.
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b) If g ∈ C2 and f is continuous, then for s < t the expansion g(t) = g(s) + g′(s)(t − s) +
g′′(ξ)(t− s)2 with s ⩽ ξ(s) ⩽ t gives∑

[s,t)∈P

f(s)(g(t)− g(s)) =
∑

[s,t)∈P

f(s)g′(s)(t− s) +
∑

[s,t)∈P

f(s)g′′(ξ) (t− s)2︸ ︷︷ ︸
⩽ |P |(t−s)

.

The last term above is bounded by ∥g′′∥∞|P |
∑

[s,t)∈P f(s)(t− s) which by a) converges to zero

as |P | → 0. Thus

lim
|P |→0

∑
[s,t)∈P

f(s)(g(t)− g(s)) =

∫ T

0

f(s)g′(s) ds =:

∫ T

0

f dg.

This is the Riemann-Stieltjes integral.

The following relaxes the conditions of Example (3.3 b) significantly. Recall that Cα is the
space of α-Hölder continuous functions.

(3.4) Theorem: Young integral, Young (1936)

Let f ∈ Cα([a, b],R), X ∈ Cβ([a, b],R) and assume γ := α + β > 1. Then6)∫ b

a

fr dXr := lim
|P |→0

∑
[u,v)∈P∩[a,b)

fuXu,v

exists and is called the Young integral with integrand f and integrator integrator X.

Proof: For a ⩽ u < v < b, let

Ξu,v := fuXu,v

denote the
”
approximation of order zero to the integral

∫ v
u
fr dXr“. The quantity Ξu,v clearly

does not enjoy the additivity property that a proper integral should have, i.e. in general we
have Ξu,r + Ξr,v ̸= Ξu,v when u < r < v. Let

(δΞ)u,r,v := Ξu,v − (Ξu,r + Ξr,v) = fu (Xu,v −Xu,r)︸ ︷︷ ︸
=Xr,v

−frXr,v = −fu,rXr,v

be the
”
extent of non-additivity“ that one gets for the points u < r < v. We have the estimate

|(δΞ)u,r,v|
|v − u|γ

⩽
|fu,r|

|v − u|α
|Xr,v|

|v − u|β
⩽

|fu,r|
|r − u|α

|Xr,v|
|v − r|β

⩽ ∥f∥α∥X∥β.

Here and below, we write ∥f∥α instead of ∥f∥[s,t],α etc. for brevity. Our assumption γ > 1 now
guarantees that

sup
r∈[u,v)

|(δΞ)u,r,v| ⩽ ∥f∥α∥X∥β|v − u|γ (A)

vanishes faster than linearly when |v − u| → 0. This is already the key estimate for the proof.

6)recall the increment notation Xu,v = Xv −Xu
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Now consider a ⩽ s = u0 < u1 < · · · < um = t < b, and the partition P = P ({u0, . . . , um}) of
[s, t). We have

t− s =
m∑
j=1

(uj − uj−1) ⩾
1

2

(m−1∑
j=1

(uj − uj−1) +
m∑
j=2

(uj − uj−1)
)
=

=
1

2

m−1∑
j=1

(uj+1 − uj−1) ⩾
1

2
(m− 1) min

1 ⩽ j ⩽ m−1
(uj+1 − uj−1),

which means that there must be (at least) one i ⩽ m− 1 with ui+1 − ui−1 ⩽
2|t−s|
m−1

. This means
that ∣∣∣ ∑

[v,w)∈P ({uj :j ̸=i})

Ξv,w −
∑

[v,w)∈P

Ξv,w

∣∣∣ = |(δΞ)ui−1,ui,ui+1
| ⩽ ∥f∥α∥X∥β

(2|t− s|
m− 1

)γ
We now repeat this argument with the partition P ({u0, . . . , ui−1, ui+1, . . . , um}), and continue
recursively until we reach the trivial partition P0 = [s, t]. A telescopic sum together with the
triangle inequality then yields

∣∣Ξs,t − ∑
[v,w)∈P

Ξv,w
∣∣ ⩽ ∥f∥α∥X∥β

m−1∑
j=1

(2|t− s|
m− j

)γ
⩽ ∥f∥α∥X∥β(2|t− s|)γζ(γ), (∗)

and ζ(γ) =
∑∞

j=1 j
−γ <∞ thanks to γ > 1.

Now let P ′ and P two partitions of [a, b) such that P ′ refines P . We apply the estimate (∗) to
each element [u, v) of the partition P and obtain∣∣∣ ∑

[u,v)∈P

Ξu,v −
∑

[u′,v′)∈P ′

Ξu′,v′
∣∣∣ = ∣∣∣ ∑

[u,v)∈P

(
Ξu,v −

∑
[w,z)∈P ′∩[u,v)

Ξw,z
)∣∣∣

⩽
∑

[u,v)∈P

∥f∥α∥X∥β(2|v − u|)γζ(γ)

⩽ 2γ∥f∥α∥X∥βζ(γ) max
[u,v)∈P

|v − u|γ−1
∑

[u,v)∈P

(v − u)︸ ︷︷ ︸
=b−a

= 2γ∥f∥α∥X∥βζ(γ)(b− a)|P |γ−1.

So if we have two partitions Pn and Pm (not necessarily refining each other), the difference
between their approximating sum is (by the triangle inequality) bounded by the sum of the
difference of each partition to their common refinement. Each of these distances is bounded
by a constant (not depending on the partitions) times the mesh (fine-ness) of the partition.
This shows that for a sequence (Pn) with |Pn| → 0, the sequence of approximating integrals is
Cauchy. Thus the limit exists and is independent of the sequence of approximating partitions.
The details of this argument are left as an exercise. □

Remark: The same proof shows the following extension of the Young integral: Let V,W,Z
be Banach spaces, f ∈ Cα([a, b], V ), X ∈ Cβ([a, b],W ) and H : V ×W → Z continuous and
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bilinear. Then α + β > 1 again guarantees the existence of the limit∫ b

a

H(fr, dXr) := lim
|P |→0

∑
[u,v)∈P

H(fu, Xu,v).

Indeed, bilinearity of H guarantees the validity of the important formula for (δΞ)u,r,v (with
Ξu,v := H(fu, Xu,v) in this case), while continuity guarantees the validity of the estimates
that come later. This extension will become important in the next chapter, when we apply
it to V = Rn, W = Rm, and H(v, w) = v ⊗ w is the matrix n × m-matrix with elements
(v ⊗ w)i,j = viwj.

(3.5) Remark

We can not take f = X = B (with B a one-dimensional Brownian motion) in the previous
Theorem, because t 7→ Bt is α-Hölder-continuous for all α < 1/2 but not for α ⩾ 1/2. So∫ t
0
Bs dBs is not a Young integral. It is not very difficult to see that if g is differentiable and

h ∈ Cα, then also the composition t 7→ g(h(t)) is in Cα for the same α, but that on the other
hand if h /∈ Cα, then also g ◦ h /∈ Cα, at least at all places where g′ ̸= 0. Thus the integral∫ t
0
g(Bs) dBs is not a Young integral either in this case. We will see, however, that this is the

type of integral that we need to understand if we want to solve stochastic differential equations.
We therefore need a further extension of the Young integral. Unfortunately, the key estimate
(A) in the proof of Theorem (3.4) is simply not true (with γ > 1) if f = X = B, and the

sequence of approximating integrals does then not converge; more precisely,
∫ t
0
Bs(ω) dBs(ω)

can not be approximated as a Young integral for almost all ω.

a) The first is the classical Itô integral, and the idea is that while e.g. the expression

lim
|P |→0

∑
[u,v)∈P

g(Bu(ω))Bu,v(ω)

from the statement of Theorem (3.4) might not exist for almost all ω, it could still exist in
L2(dP)-sense, where P is the path measure of Brownian motion. The Itô theory establishes that

this is indeed the case, and defines
∫ t
0
g(Bs) dBs (and more general integrals) as the L2-limit of

its approximations.

Maybe this is already a good place to reflect about how it is possible that a sequence con-
verges in L2, but that there is no way to make sense of its pointwise limit. Note that the
L2(dP)-convergence does imply almost sure convergence along a subsequence, so for each fixed
sequence of partitions (Pn) with |Pn| → 0, the limit limk→∞

∑
[u,v)∈Pnk

g(Bu(ω))Bu,v(ω) exists

almost surely for some subsequence (nk). We could be tempted to take that as the definition
of the pointwise limit. But for different sequences of partitions we will have to take different
subsequences, and get different subsequential limits; all of these limits agree with the L2-limit
L2-limit for almost all ω, but there are uncountably many sequences of partitions, and therefore
uncountably many exceptional sets Ω0 of measure zero where this subsequential limit does not
agree with the L2-limit. Therefore, there is no sensible way to go much beyond the L2-limit in
Itô theory.
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b) The relatively new theory of rough paths provides such a way. The main idea is that the
expression Ξu,v = fuXu,v, which is just the zero-order approximation of the integral

∫ v
u
fr dXr,

is not good enough, and one has to add to it a correction term that
(i): vanishes faster than Ξu,v itself as |u− v| → 0, i.e. it is indeed a correction term,
(ii): makes equation (A) (with the corrected Ξu,v) in the proof of (3.4) true for some γ > 1.

This choice is far from unique, but once we make it, we can actually prove convergence along
all sequences of partitions, and independence of the limit from the chosen sequence. We will do
this in the last chapter of the lecture and for now focus on the Itô integral.

(3.6) Definition

Let T = {s0, s1 . . . , sn} be a finite subset of R+
0 with 0 = s0 < s1 < · · · < sn. Let (Ω,F) be

a measurable space and (Ft) a filtration of F . A family (Yt)t∈R+
0
of measurable maps is called

T -elementary if for each i ⩽ n there exists a bounded, Fsi-measurable random variable ϕsi
such that

Yt(ω) =
∑

[u,v)∈P (T )

ϕu(ω)1l[u,v)(t) =



ϕ0(ω) if 0 ⩽ t < s1
ϕs1(ω) if s1 ⩽ t < s2
. . .

ϕsn−1(ω) if sn−1 ⩽ t < sn
ϕsn(ω) if sn ⩽ t <∞.

We write

ET := {(Yt)t∈R+
0
: (Yt) is T -elementary for some finite T ⊂ [0, T ]}.

Renark: Note that the integral is well-defined in the sense that its value does not depend on
adding artificial points to the partition. If s /∈ T , we may add it without changing the value of
Yt: indeed, let T̃ = T ∪ {s}, and define ϕ̃s(ω) = ϕmax{u∈T :u<s}(ω), and ϕ̃u = ϕu for all u ∈ T .

Then the elementary process Ỹ with Ỹt(ω) =
∑

[u,v)∈P (T̃ ) ϕu(ω)1l[u, v)(t) is equal to Y , and also

[Ỹ •X]t(ω) = [Y •X]t(ω) for all t and all ω.

(3.7) Proposition and Definition

Let (Yt) be a T -elementary stochastic process as in (3.6) for some T , (Xt) an (Ft)-martingale.
Then with

[Y •X]t ≡
∫ t

0

Ys dXs :=
∑

[u,v)∈P (T )

ϕu

∫ t

0

1l[u,v)(s) dXs :=
∑

[u,v)∈P (T )

ϕu(Xv∧t −Xu∧t),

the process ([Y •X]t)t ⩾ 0 is a martingale. It is called the (elementary) stochastic integral
with integrand Y and integrator X.

Proof of the martingale property: Let s > 0. By the remark after (3.7), we may assume that
s ∈ T . We then get

E([Y •X]t | Fs) = E
( ∑

[u,v)∈P:
[u,v)⊂[0,s)

ϕuXu,v

∣∣∣Fs

)
+ E

( ∑
[u,v)∈P:

[u,v)⊂[s,∞)

E(ϕuXu,v | Fu)
∣∣∣Fs

)
,
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where in the last sum we used the tower property on each term. The sum in the first term above
is acutally Fs-measurable and thus gives [Y • X]s. In the second term, the Fu-measurable
quantity ϕu can be pulled in front of the inner conditional expectation, and E(Xu,v | Fu) =
0 since X is a martingale. Thus the second term vanishes, and the martingale property is
proved. □

To make more progress, we will need to impose more integrability than just the L1 minimum
requirement for a martingale.

(3.8) Definition

Let 0 < T <∞. We define

M2
T :=

{
(Mt)0 ⩽ t ⩽ T :M is a continuous martingale with E(M2

t ) <∞ ∀t ⩽ T},

and

∥M∥M2
T
= E(sup

s∈T
|Ms|2)1/2.

for M ∈ M2
T . Note that ∥M∥M2

T
<∞ follows from Doobs L2-maximal inequality.

(3.9) Proposition

Let X ∈ M2
T , and let A be the qvp of X. Let Y ∈ ET . Then M := Y •X ∈ M2

T , and its qvp

Ã is given by

Ãt(ω) =

∫ t

0

Y 2
t (ω) dAt(ω) :=

∑
[u,v)∈P (T )

ϕ2
u(ω)(Av∧t(ω)− Au∧t(ω)).

Moreover, ∥Y •X∥2M2
T
⩽ 4E(ÃT ).

Proof: Let Y be given in the notation of Definition (3.6). Y •X is a martingale by (3.7), and
Doobs L2-inequality gives us

E( sup
s ⩽ T

|Ms|2) ⩽ 4E(M2
T ) ⩽ 4max

u∈T
∥ϕu∥2∞E(X2

T ) <∞.

Also, t 7→ Ãt is continuous and increasing. Let us check that (M2
t − Ãt) is a martingale: let

s < t < T . We may assume that s, t ∈ T , because if they are not, we re-define Y by putting
T ′ = T ∪{s, t}, ϕr(ω) := ϕmax{u∈T :u ⩽ r}(ω) for r ∈ {s, t}, and observing that this changes none

of the values Yu(ω), Mu(ω) or Ãu(ω) for any ω and any u.

Now let [u, v), [ũ, ṽ) ∈ P (T ) with s ⩽ u and ũ < u (or equivalently with ṽ ⩽ u). Then

(∗) E(ϕuϕũXu,vXũ,ṽ | Fs) = E
(
ϕũXũ,ṽϕu E(Xu,v | Fu)︸ ︷︷ ︸

=0

∣∣∣Fs

)
= 0,

and

(∗∗) E(ϕ2
uX

2
u,v − ϕ2

uAu,v | Fs) = E
(
ϕ2
u E(X2

u,v − Au,v | Fu)︸ ︷︷ ︸
=0

∣∣∣Fs

)
= 0.
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Therefore

E(M2
t − Ãt | Fs) =M2

s − Ãs + E(Ms,t(Mt +Ms)− Ãs,t | Fs) =

=M2
s − Ãs + E

( ∑
[u,v):

s ⩽ u,v ⩽ t

ϕuXu,v

(
2

∑
[ũ,ṽ):ṽ ⩽ s

ϕũXũ,ṽ +
∑
[ũ,ṽ):

s ⩽ ũ,ṽ ⩽ t

ϕũXũ,ṽ

)
−

∑
[u,v):

s ⩽ u,v ⩽ t

ϕ2
uAu,v

∣∣∣Fs

)
(∗)
= M2

s − Ãs + E
( ∑

[u,v):
s ⩽ u,v ⩽ t

ϕ2
uX

2
u,v −

∑
[u,v):

s ⩽ u,v ⩽ t

ϕ2
uAu,v

∣∣∣Fs

)
(∗∗)
= M2

s − Ã2
s,

which is the martingale property. The claimed inequality just follows from Doobs L2-inequality:
∥M∥2M2

T
⩽ 4E(M2

T ) = 4E(ÃT ). □

(3.10) Remark and Definition

Since t 7→ At(ω) is increasing and continuous for all ω, a finite measure µω on [0, T ] is uniquely
defined by the equations µA,ω([s, t]) := At(ω)− As(ω) for all 0 ⩽ s < t ⩽ T . We write∫ T

0

Yt(ω) dAt(ω) :=

∫ T

0

Yt(ω)µA,ω(dt)

whenever
∫ T
0
|Yt(ω)|µω(dt) <∞ for a stochastic process Y .

(3.11) Definition

The measure µA on Ω× [0, T ] (with product σ-algebra) is uniquely defined by the equations

µA(C × [s, t]) =

∫
1lC(ω)µA,ω([s, t])P(dω) for all C ∈ F , 0 ⩽ s < t ⩽ T.

We define L2(µA) in the usual way. Note that for Y = (Yt)0 ⩽ t ⩽ T ∈ L2(µA), we have∫ T

0

Y 2
t (ω) dAt(ω) <∞ P-almost surely,

and that

∥Y ∥L2(µA) = E
(∫ T

0

Y 2
t (ω) dAt(ω)

)
=

∫
P(dω)

∫ T

0

dAt(ω)Y
2
t (ω).

(3.12) Lemma

Let X ∈ M2
T with qvp A. For t ⩽ T , the map

Et → L2(dP), Y 7→
∫ t

0

Ys dXs

(see Definition (3.7)) is a linear isometry between the spaces (Et, ∥.∥L2(µA)) and L2(dP). In
particular,

E
(( ∫ t

0

Ys dXs

)2)
= E

(∫ t

0

Y 2
s dAs

)
for all Y ∈ ET and all t ⩽ T .
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Proof: We use the equality E(M2
t ) = E(At), valid for any square integrable martingale M and

its qvp A, in the case where Mt =
∫ t
0
Ys dXs. By (3.9), the qvp is given by Ãt =

∫ t
0
Y 2
s dAs,

which shows the claimed equality, and thus the isometry property. Linearity is clear. □

(3.13) Definition

Let X ∈ M2
T . L2

T (M) denotes the closure of Et with respect to the norm ∥.∥L2(µA), i.e.

f ∈ L2
T (M)

Def⇐⇒ ∃(fn) ⊂ ET with ∥fn − f∥L2(µA)
n→∞−→ 0.

(3.14) The Itô-integral

Let 0 ⩽ t ⩽ T , X ∈ M2
T , Y ∈ L2

T (X). Then M = (Xs)s ⩽ t ∈ M2
t and (Ys)s ⩽ t ∈ L2

t (M). We
define

(∗)
∫ t

0

Ys dXs := lim
n→∞

∫ t

0

Y (n)
s dXs, (limit in L2(dP)),

where (Y (n))0 ⩽ s ⩽ t is any sequence in Et that fulfills limn→∞ ∥Y (n)−Y ∥L2(µA) = 0. The random

variable
∫ t
0
Ys dXs is independent of the approximating sequence in the sense of L2(dP), i.e. we

have

lim
n→∞

E
(( ∫ t

0

Y (n)
s dXs −

∫ t

0

Ỹ (n)
s dXs

)2)
= 0 whenever lim

n→∞
∥Y (n) − Ỹ (n)∥L2(µA) = 0.

∫ t
0
Ys dXs is called the Itô-integral with integrand Y and integrator X.

Proof:M ∈ M2
t is clear, and (Ys)s ⩽ t ∈ L2(M) can be seen by cutting off the an approximating

sequence of elementary functions from ET at time t, it then remains elementary. A sequence

(Y
(n)
s )s ⩽ t with ∥Y (n) − Y ∥L2(µA) → 0 is in particular a Cauchy sequence in L2(µA). By the

isometry proved in (3.12), then (
∫ t
0
Y

(n)
s dXs)n∈N is a Cauchy sequence in L2(dP). Since this

space is complete, the limit exists and defines
∫ t
0
Ys dXs. Independence of this limit from the

approximating sequence is proved exactly in the same way, using the isometry. □

(3.15) Proposition

Let X ∈ M2
t , Y ∈ L2

t (M). Then

a) The map Y 7→
∫
Ys dXs is a linear ismoetry from L2(µA) to L

2(dP).
b) The Itô-isometry holds:

E
(( ∫ t

0

Ys dXs

)2)
= E

(∫ t

0

Y 2
s dAs

)
.

Proof: this follows directly from the corresponding properties of the approximating sequences.
□
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(3.16) Proposition

a) Let (Ft) be a filtration, X ∈ M2
T with qvp A, and Y a stochastic process such that

(i): Y is (Ft)-adapted.

(ii): t 7→ Yt is almost surely continuous.

(iii): Y ∈ L2(µA).

Then Y ∈ L2
T .

b) If in the situation of a), either Y is bounded, or if for

ρ(δ) := sup
{ 1

v − u
E
(∫ v

u

(Yu,s)
2 dAs

)
: 0 ⩽ u < v ⩽ T, |u− v| ⩽ δ

}
we have limδ→0 ρ(δ) = 0, then

∫ t
0
Ys dXs can be approximated (in L2(dP)) by arbitrary partiti-

ons, with the limit independent of the partition, i.e.

(∗) lim
|P |→0

∑
[u,v)∈P

YuXu,v =

∫ T

0

Ys dXs in L2(dP).

Proof: We first consider the case where Y is bounded and fulfils conditions (i)-(iii), and prove
the statements of a) and b) in this case. For a partition P (with set of separating points T ),
we define for all t ⩽ T

Y P
t (ω) :=

∑
[u,v)∈P

Yu(ω)1l[u,v)(t).

Then Y P ∈ ET by (i) and our boundedness assumption. By (ii), we have

Y P
t (ω) = Ymax{r∈T :r ⩽ t}(ω)

|P |→0−→ Yt(ω)

for almost all ω. We have ∥∥Y ∥∞∥2L2(µA) = ∥Y ∥2∞E(AT ) < ∞, and so we can use ∥Y ∥∞ as

an integrable, dominating function for Y P for all partitions P and find Y P → Y in L2(µA)

as |P | → 0. This shows that Y ∈ L2
T , and so

∫ t
0
Ys dXs exists and is independent of the

approximating sequence of elements from ET . Since the sequence of partitions P above was
arbitrary, this shows (∗) for the case of bounded functions.

To complete the proof of a) without assuming boundedness of Y (and instead using (iii)),
consider Y (n) = (Yt1l{|Yt| ⩽ n})t ⩽ T . By the first part of the proof, Y (n) ∈ L2

T for all n. On the

other hand, ∥Y − Y (n)∥L2(µA) → 0 as n → ∞ by dominated convergence. Since L2
T is a closed

subspace of L2(µA), this implies Y ∈ L2
T .

Turning to equality (∗), note that the dominated convergence argument in the final step can
(and in general will) destroy its validity for general unbounded Y . The reason is that for (∗)
to hold, we would need to exchange the limit where Y (n) approximates Y with the limits of
partitions, and this is in general not possible. However, the second conditions guarantees that
for any sequence of partitions,

E
(∫ T

0

(
Y P
s −Ys

)2
dAs

)
=

∑
[u,v)∈P

E
(
(v−u) 1

v − u

∫ v

u

(Yu,s)
2 dAs

)
⩽ ρ(|P |)

∑
[u,v)∈P

(v − u)︸ ︷︷ ︸
=T

|P |→0−→ 0,
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which shows (∗) in this case. □

(3.17) Remark

a) In assumption (ii) above, left-continuity of the paths of Y is enough, as can be seen from
the proof.

b) The condition limδ→0 ρ(δ) = 0 is a bit hard to understand intuitively, but is actually not
very strong. Let us assume for simplicity that At = t, i.e. the case of Brownian motion. Then

E
(∫ v

u

(Yu,s)
2 dAs

)
=

∫ v

u

E((Yu,s)2) ds = (∗),

and if we now assume any kind of Kolmogorov-Chentsov-type control over the second moment
of the increments, we are done. More precisely, assume that E((Yt − Ys)

2) ⩽ |t − s|α for some
α > 0, then (∗) ⩽ (v − u)1+α as |u − v| → 0, which shows that (ii) is valid. This is a much
weaker condition than the one in Theorem 1.36, so in particular we can include some (Yt) with
discontinuous paths, as long as the second moment of increments remains a Hölder-continuous
function, i.e. Y 2 is not discontinuous

”
on average“.

It is a bit strange that for uniformly bounded Y , we need no restriction at all on the regularity
of increments, while for possibly unbounded Y , we need (ii), but that’s just what we get at the
moment. Also, when At itself is a nontrivial stochastic process, we have to take the behaviour
of its paths into account, and the simple picture above becomes more complicated.

(3.18) Important example

Let B be a BM1, then ∫ t

0

Bs dBs =
1

2
B2
t −

1

2
t.

Proof: By (3.16), B ∈ L2
T , and condition (ii) holds since ρ(δ) = 1

2
δ2 by an easy calculation. So

the Itô integral can be approximated by partitions. For a partition P of [0, t), we have∑
[u,v)∈P

BuBu,v =
∑

[u,v)∈P

1
2
B2
v − 1

2
B2
u −

(
1
2
B2
u +

1
2
B2
v −BuBv

)
= 1

2
B2
t − 1

2

∑
[u,v)∈P

B2
u,v.

You can prove as an exercise that the second term in the final expression converges to 1
2
t in

L2(dP) as |P | → 0. □

(3.19) Remark

a) The same calculation shows
∫ t
0
Xs dXs =

1
2
X2
t − 1

2
At for X ∈ M2

t with qvp A.

b) For f ∈ C1 with f0 = 0, we can define
∫ t
0
fs dfs as a Young integral, and∫ t

0

fs dfs =

∫ t

0

fsf
′
s ds =

∫ t

0

(
1
2
f 2
)′
ds =

1

2
f 2
t .

So for functions where the function s 7→ f 2
s can be differentiated using the chain rule, the extra

term 1
2
t or 1

2
At is absent. So, the Itô-integral for Brownian motion (or non-trivial continuous
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martingales) does not fulfill the integral version of the chain rule. This is an important point
that will come up again many times in this lecture.

c) There actually is a way to define an integral of Brownian motion against itself that does
fulfill the chain rule: note that the limit in (∗) in (3.16) is actually the limit of a Riemann sum
where the function Y is always evaluated at the left endpoint of the intervals in the Riemann
approximation. Of course, we could also try to evaluate at the right end point, or use the
trapezoid rule of numerics, i.e. take the average of left and right end point. This then leads to∫ t

0

Bs ◦ dBs := lim
|P |→0

∑
[u,v)∈P

Bu +Bv

2
Bu,v = lim

|P |→0

1

2

∑
[u,v)∈P

(B2
v −B2

u) =
1

2
B2
t .

This looks very nice, so why don’t we always do it like this? There are two reasons: first of all,
it only works so nicely for the case where Yt = Bt, but e.g. for Yt = sin(Bt) it is not so clear
what to do! The second reason is that when we do not use the left endpoint approximation,
then the process t 7→

∫ t
0
f(Bs) dBs is no longer a martingale, and this is a big advantage to

lose. Nevertheless, the integral
∫ t
0
Bs ◦ dBs is very useful in many instances, and the general

strategy of using the trapezoid rule leads to the so-called Stratonovich integral.

d) You should verify the following important equality as an exercise: if B = (B(1), B(2)) is a
two-dimensional Brownian motion, then∫ t

0

B(1)
s dB(2)

s +

∫ t

0

B(2)
s dB(1)

s = B
(1)
t B

(2)
t .

Notice that this means that independent Brownian motions behave like differentiable functions
when integrated against each other: To see what this means, let f, g be differentiable, and
integrate the equality (fg)′ = f ′g + g′f from 0 to t, and use

∫
fsg

′
s ds =

∫
fs dgs. To prove the

equality for Brownian motion, you should first try to show that
∑

[u,v)B
(1)
u B

(2)
u,v−

∑
[u,v)B

(1)
v B

(2)
u,v

converges to zero in L2 as |P | → 0.

e) The choice of trapezoid rule that we made in d) is not the only alternative to the left
endpoint rule that leads to the Itô-integral. As an example of what else is possible, let f ∈ C2

and Y = f(X). Then for all λ ∈ [0, 1] we can define∑
[u,v)∈P

f(Xu+λXu,v)Xu,v =
∑

[u,v)∈P

f(Xu)Xu,v+
∑

[u,v)∈P

f ′(Xu)λXu,vXu,v+
1

2

∑
[u,v)∈P

f ′′(Xξu)λ
2X3

u,v,

with u ⩽ ξu ⩽ v. You should use this expansion to show as an exercise that

lim
|P |→0

∑
[u,v)∈P

f(Xu + λXu,v)Xu,v =

∫ t

0

f(Xs) dXs + λ

∫ t

0

f ′(Xs) dAs,

in particular the third term in the expansion vanishes. So in general, this gives a different
integral for each choice of λ. For some λ, the resulting integrals have names: λ = 0 is the
Itô-integral, λ = 1/2 is the Stratonovich-integral (written as

∫ t
0
f(Xs) ◦ dXs), and λ = 1 is the

backwards-Itô-integral. The most important cases are λ = 0 and λ = 1/2. The relation∫ t

0

f(Xs) ◦ dXs =

∫ t

0

f(Xs) dXs +
1

2

∫ t

0

f ′(Xs) dAs
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is called the Itô-Stratonovich-correction.

In the next items, we will investigate the stochastic process (
∫ t
0
Ys dXs)t ⩾ 0 made from stochastic

integrals.

(3.20) Proposition

M2
T is a Banach space under the norm M 7→ ∥M∥M2

T
:= E

(
sups ⩽ T |Ms|2

)1/2
.

Proof: L2-spaces where the target space is itself a Banach space are Banach spaces. Consider
the space C([0, T ]) of continuous functions with the sup norm and the σ-algebra generated by
the point evaluations, and define

L2(dP, C([0, T ])) :=
{
f : Ω → C([0, T ]) : f measurable,

∫
∥f(ω)∥2∞ P(dω) <∞

}
Since C([0, T ]) with the sup norm is a Banach space, we only need to show that M2

T is a
closed subspace of L2(dP, C([0, T ])). So let (M (n)) ⊂ M2

T and M ∈ L2(dP,C([0, T ])) with
∥M (n) −M∥M2

T
→ 0 as n → ∞. We need to show that M is also a continuous martingale.

First of all, we can choose a subsequence, also denoted by (M (n)), so that ∥M (n) −M∥∞ → 0
P-almost surely. This shows that M has continuous paths almost surely. To show that M is a
martingale, let s < t, and note that for all r ⩽ T ,

lim
n→∞

E(|M (n)
r −Mr|) ⩽ lim

n→∞
E(∥M (n) −M∥∞) ⩽ lim

n→∞
E(∥M (n) −M∥2∞)1/2 = 0

by assumption. Thus for all A ∈ Fs, we have

E(1lAMt) = lim
n→∞

E(1lAM (n)
t )

(∗)
= lim

n→∞
E(1lAM (n)

s ) = E(1lAMs),

where the equality (∗) holds because each M (n) is a martingale. Since

Ms(ω) = lim sup
n→∞

M (n)
s (ω) ∈ mFs,

we see that M is a martingale. □

(3.21) Theorem

Let X ∈ M2
T with qvp A. The map

L2
T → M2

T , Y 7→
(∫ t

0

Ys dXs

)
t ⩽ T

is a bounded linear operator from L2
T to M2

T , and the qvp of the martingale (Mt)t ⩽ T :=

(
∫ t
0
Ys dXs)t ⩽ T is given by

(Ãt)t ⩽ T = (

∫ t

0

Y 2
s dAs)t ⩽ T .

Proof: let Y (n) be a sequence of elementary stochastic processes approximating Y , then for all

n, M (n) =
∫ ·
0
Y

(n)
s dXs is in M2

T with qvp Ã(n) =
∫ ·
0
(Y

(n)
s )2 dAs by (3.9). Since M (n) −M (m) is
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a martingale for all m,n, we have

∥M (n) −M (m)∥M2
T

Doob

⩽ 2∥M (n)
T −M

(m)
T ∥L2(dP)

(3.12)
= ∥Y (n) − Y (m)∥L2(µA)

n,m→∞−→ 0.

So the sequence (M (n)) is M2
T -Cauchy, and by (3.20) it thus converges to an element of M2

T .
This shows that M is a continuous martingale. We have

∥M∥M2
T

Doob

⩽ 2∥MT∥L2(dP)
Itô
= 2∥Y ∥L2(µA),

so the map Y →M is bounded. Its linearity is trivial.

To show that Ã is the qvp, first note that for all t,

∥Ã(n)
t −Ãt∥L1 ⩽ E

(∫ t

0

∣∣(Y (n)
s )2 − Y 2

s

∣∣︸ ︷︷ ︸
=|Y (n)

s −Ys||Y (n)
s +Ys|

dAs

)
⩽ E

(∫ t

0

|Y (n)
s −Ys|2 dAs

) 1
2E

(∫ t

0

|Y (n)
s +Ys|2 dAs

) 1
2

by the Cauchy-Schwarz inequality applied in L2(µA). The first term on the right above goes to

zero, the second is bounded, showing that Ã
(n)
t → Ãt in L

1. A similar argument shows

∥(M (n)
t )2 −M2

t ∥L1
n→∞−→ 0.

Finally, for each n, all s < t, and all C ∈ Fs,

E
((

(M (n))2t − Ã
(n)
t

)
1lC

)
= E

((
(M (n))2s − Ã(n)

s

)
1lC

)
,

because (M (n))2− Ã(n) is a martingale, and the L1-convergence that we just proved shows that
this equality survives the limit n → ∞. Therefore also M2 − Ã is a martingale, which shows
that Ã is the qvp of M . □

So far, we have only defined the stochastic integral for Y ∈ L2
T . On the other hand, it is quite

reasonable to want integrals also for stochastic processes Y with locally bounded paths, but
with Y /∈ L2

T . One example is Yt = exp(B2
t ), which is a bounded function on [0, T ] for every

Brownian path, but where

E(Y 2
t ) =

1√
2πt

∫
e2x

2

e−
x2

2t dx = ∞

for t ⩾ 1/4. So, the reason why we can not define
∫
Yt dBt in this case is because there are

”
too many“ paths where Yt gets large, while for each individual path, the integral should be
harmless! The problem is that our Itô-integral needs all paths to work together to achieve its
L2-convergence, and if too many of them are bad, they spoil the convergence also for the well-
behaved ones. The solution is to hit the bad paths on the head, more precisely when Yt(ω)
exceeds a certain level D, we just freeze the path belonging to ω for all future points in time.
We then define the integral in this case, and in the end take the freezing threshold D to infinity
in the integral itself. This technique, which we will elaborate now, is known as localization.
We start with a technical result on stopped stochastic integrals.
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(3.22) Lemma

Let X ∈ M2
T , Y ∈ L2

T and τ a stopping time. Then∫ t∧τ

0

YsdXs =

∫ t

0

YsdXs∧τ =

∫ t

0

Ys1l[0,τ)(s) dXs

almost surely.

Remark: it is useful to think about what the difference between the three expressions above
is. The first is the Martingale (

∫ t
0
Ys dXs)s ⩽ T stopped with the stopping time τ . The second is

the (un-stopped) stochastic integral if Y with the stopped martingale Xs∧τ as integrator - this
works since stopped martingales are martingales. The final expression is the normal stochastic
integral with integrator X, but with an integrand that is zero for all pairs (s, ω) where s ⩾ τ(ω).
The Lemma says that these three ways of stopping lead to the same result.

Proof of Lemma (3.22):

a) We start with the first equality. It is true for elementary Y ∈ ET , since then for the partition
P belonging to Y , we have∫ t∧τ(ω)

0

YsdXs(ω) =
∑

[u,v)∈P

Yu(ω)
(
Xv∧(t∧τ(ω))(ω)−Xu∧(t∧τ(ω))(ω)

)
=

=
∑

[u,v)∈P

Yu(ω)
(
X(v∧τ(ω))∧t(ω)−X(u∧τ(ω))∧t(ω)

)
=

∫ t

0

Ys dXs∧τ(ω)(ω),

for all ω. For Y ∈ L2
T , let (Y

(n)) be a sequence approximating Y in L2(µA). Since the claimed
equality holds for all n, it remains to show that both sides converge to the claimed expressions

in L2(dP). For the left expression, let Mt =
∫ t
0
Ys dXs and M

(n)
t =

∫ t
0
Y

(n)
s dXs, and observe

that for each ω,

sup
{∣∣∣Mt∧τ(ω)(ω)−M

(n)
t∧τ(ω)(ω)

∣∣∣ : t ⩽ T
}
⩽ sup

{∣∣∣Mt(ω)−M
(n)
t (ω)

∣∣∣ : t ⩽ T
}

simply because the supremum on the right hand side is over a larger set of numbers when
τ(ω) < T . This implies that

∥(Mτ∧t)t ⩽ T − (M
(n)
τ∧t)t ⩽ T∥M2

T
⩽ ∥M −M (n)∥M2

T

n→∞−→ 0,

showing convergence of the approximations for the leftmost expression in the claim. For the
middle expression, we first find that (At∧τ )t ⩽ T is the qvp of the stopped martingale (Xt∧τ )t ⩽ T .
This is true because t 7→ At∧τ(ω)(ω) is increasing and continuous for all ω, and (X2

t∧τ−At∧τ )t ⩽ T

is a martingale due to the optional stopping theorem. Moreover, we have

E
(∫ t

0

(
Ys − Y (n)

s

)2
dAs∧τ

)
⩽ E

(∫ t

0

(
Ys − Y (n)

s

)2
dAs

)
n→∞−→ 0,

which means that A(n) also converges in L2(dAτ∧t⊗P). By definition of the stochastic integral
(with respect to the martingale (Xt∧τ )t ⩾ 0), this means that∫ t

0

Y (n)
s dXs∧τ →

∫ t

0

Ys dXs∧τ
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in L2(dP) as n→ ∞, and the first equality is shown.

b) For the second equality, assume first that τ is discrete, i.e. τ(Ω) = {t1, . . . , tn}, and that
Y ∈ ET . Then also (Ys1l[0,τ)(s))s ⩽ T ∈ ET , and the claim holds in the same way as in a) by writing

both sides with a suitable partition P . Let now Y ∈ L2
T , but still τ discrete, and let Y (n) → Y

in L2
T . We already know that the middle expression converges under this approximation. For

the right expression, it is enough to show (Y
(n)
s 1l[0,τ)(s))s ⩽ T converges to (Ys1l[0,τ)(s))s ⩽ T in

L2(µA), which is quite obvious. Let now τ be a stopping time and let τn ↘ τ as n → ∞ be
a sequence of approximating discrete stopping times. The middle expression converges almost
surely by path continuity of the stochastic integral (it is in M2

T ). For the rightmost expression,
the Itô-isometry gives∥∥∥∫ t

0

Ys1l[0,τ (n))(s) dXs −
∫ t

0

Ys1l[0,τ)(s) dXs

∥∥∥
L2

= E
(∫ t

0

Y 2
s (1l[0,τ (n))(s)− 1l[0,τ)(s))

2︸ ︷︷ ︸
→0 a.s.

dAs

)
,

which converges to zero by dominated convergence. This shows the second claimed equality. □

(3.23) Definition

A stochastic process Y is called progressively measurable with respect to a filtration (Ft) if

∀A ∈ B(Rd),∀t ⩽ T : {(s, ω) ∈ [0, t]× Ω : Ys(ω) ∈ A} ∈ B([0, t])⊗Ft.

(3.24) Proposition

a) Every Y ∈ ET is progressively measurable.

b) Let X ∈ M2
T with qvp A. Then

L2
T = {Y ∈ L2(µA) : Y has a representative that is progressively measurable}

Proof: a) is left as an exercise. b) is a bit more technical, but we will not do it here. See
Theorem 14.23 of Schilling/Partzsch. □

(3.25) Definition

Let X ∈ M2
T with qvp A.

a) We define

L0
T (X) := {Y : Y progressively measurable,

∫ T

0

Y 2
s (ω) dAs(ω) <∞ for P-almost all ω}.

b) Let (Ft) be a filtration and Y be an (Ft)-adapted process. A localizing sequence (wrt. the
filtration) is a is a sequence (σn) of (Ft)-stopping times that fulfil σn+1 ⩾ σn almost surely, and
limn→∞ σn = ∞ almost surely. Recall that

Yt(ω)1l[0,σn(ω))(t) =

{
Yt(ω) if t ⩽ σn(ω)

0 otherwise.
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We define

L2
T,loc(X) := {Y : there exists a localizing sequence such that (Y 1l[0,σn)) is in L2

T for all n.}

(3.26) Example

With Yt = exp(B2
t ), we have (Yt) ∈ L2

T,loc. We see this by choosing σn(ω) := min{t ⩾ 0 :
|Bt(ω)| ⩾ n} and checking that this is a localizing sequence.

(3.27) Proposition

We have L2
T (X) ⊂ L0

T (X) ⊂ L2
T,loc(X).

Proof: exercise. Use the stopping times σn := inf{t ⩾ 0 :
∫ t
0
Y 2
s (ω) dAs(ω) ⩾ n} for the second

implication. □

(3.28) The stochastic integral for integrands from L2
T,loc

Let X ∈ M2
T and Y ∈ L2

T,loc(X), with localizing sequence (σn). We define Y (n) = Y 1l[0,σn)(.).

The Itô-integral J
(n)
t :=

∫ t
0
Y

(n)
s dXs then exists in L2(P) for all n. Now for each t ⩽ T and all

n, k ∈ N, we have the following equalities (valid in L2(P)):

1l{σn>T}J
(n+k)
t = 1l{σn>T}

∫ t

0

Y (n+k)
s dXs = 1l{σn>T}

∫ t∧σn

0

Ys1l[0,σn+k)(s) dXs
(3.22)
=

= 1l{σn>T}

∫ t

0

Ys1l[0,σn+k)(s)1l[0,σn)(s) dXs = 1l{σn>T}

∫ t

0

Ys1l[0,σn)(s) dXs

= 1l{σn>T}J
(n)
t .

This means that on {σn > T}, the sequence (J (n+k)) becomes constant after the n-th term. We
pick a representative ω 7→ J (n)(ω) for each n and define

Jt(ω) :=

{
J
(n)
t (ω) for ω ∈ {σn−1 ⩽ T < σn},

0 for ω ∈ {limn→∞ σn <∞}.

Since P(limσn <∞) = 0, we have

lim
n→∞

(J
(n)
t )t ⩽ T = (Jt)t ⩽ T P-almost surely

This defines the generalized stochastic integral for fixed t ⩽ T . You should check that Jt is
independent of the localizing sequence in the sense that for two different localizing sequences,
the results differ at most on a set of measure zero.

Note that the generalized stochastic integral (Jt) is not a martingale, in general, because we

cannot guarantee E(|Jt|) <∞. However, (J
(n)
t ) = (Jt∧σn) is a martingale for all n by Theorem

(3.21). Such objects are of independent interest, and we define



STOCHASTIC PROCESSES 73

(3.29) Definition

An (Ft)-adapted, right-continuous stochastic process (Mt)t ⩾ 0 is called a local martingale
if there exists a localizing sequence such that (Mt∧σn1l{σn<∞})t ⩾ 0 is a martingale for each n.
We write Mloc for the set of local martingales, and M2

T,loc for those local martingales where

(Mt∧σn1l{σn<∞})t ⩽ T is in M2
T for all n.

(3.30) Properties of generalized stochastic integrals

Let X ∈ M2
T and Y ∈ L2

T,loc.

a) The map Y 7→
∫ t
0
Ys dXs is linear from L2

T,loc to M2
T,loc.

b) The process
(
(
∫ t
0
Ys dXs)

2 −
∫ t
0
Y 2
s dAs

)
t ⩽ T

is a local martingale.

c) P
(∣∣ ∫ t

0
Ys dXs

∣∣ > ε
)
⩽ C

ε2
+ P

( ∫ t
0
|Ys|2dAs > C

)
for all ε > 0, C > 0.

d) For a stopping time τ , the equality
∫ t∧τ
0

Ys dXs =
∫ t
0
Ys1l[0,τ)(s)dXs holds P-almost surely.

Warning: There is no equivalent to the Itô-isometry for generalized stochastic integrals.

Proof: a), b) and d) are just chasing of definitions and are left as exercises. For c), consider
the stopping time

τ = inf
{
t ⩽ T :

∫ t

0

Y 2
s dAs > C

}
,

then E
( ∫ T

0
(Y 1l[0,τ)(s))

2 dAs
)
⩽ C and thus Y 1l[0,τ) ∈ L2

T . We have

P
(∣∣ ∫ t

0

Ys dXs

∣∣ > ε
)
⩽ P

(∣∣ ∫ t

0

Ys dXs

∣∣ > ε, τ > t
)
+ P(τ ⩽ t).

The second term is equal to P
( ∫ t

0
|Ys|2dAs > C

)
and thus corresponds to the second term in

the claim. The first term is equal to P
(∣∣ ∫ t∧τ

0
Ys dXs

∣∣ > ε, τ > t
)
⩽ P

(∣∣ ∫ t∧τ
0

Ys dXs

∣∣ > ε), and
by d), the Chebyshev intequality and the Itô-isometry applied to Y 1l[0,τ), we get

P
(∣∣ ∫ t

0

Ys1l[0,τ)(s) dXs

∣∣ > ε
)
⩽

1

ε2
E
(( ∫ t

0

Ys1l[0,τ)(s) dXs

)2)
=

1

ε2
E
(∫ t

0

(Ys1l[0,τ)(s))
2 dAs

)
.

We have already seen that the expected value on the right hand side is bounded by C, so the
claim follows. □

(3.31) Abbreviation

A right-continuous function f such that limt↗t0 f(t) exists for all t0 is called càdlàg, short for
the French expression

”
continue à droite, limites à gauche“.

(3.32) Theorem

Let Y be an adapted stochastic process with càdlàg paths, let X ∈ M2
T for all T , and assume

that for almost all ω, the measure µA,ω : f 7→
∫ T
0
f(s) dAs(ω) is absolutely continuous with

respect to the Lebesgue measure. Then Y ∈ L2
T,loc(X) for all T < ∞, and approximations to
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the generalized stochastic integral by arbitrary partitions converge uniformly in probability to
the generalized stochastic integrals; this means that for all ε > 0,

lim
|P |→0

P
(

sup
0 ⩽ t ⩽ T

∣∣ ∑
[u,v)∈P∩[0,t)

YuXu,v −
∫ t

0

Ys dXs

∣∣ > ε
)
= 0.

Proof: Càdlàg functions are locally bounded and AT <∞ almost surely, thus
∫ T
0
Y 2
s dAs <∞

almost surely. This means that Y ∈ L0
T and thus Y ∈ L2

T,loc by (3.25). We define the localizing
sequence

σn(ω) := inf
{
s ⩾ 0 : |Ys(ω)|2 > n} ∧ n,

and Y
(n)
s (ω) = Ys(ω)1l[0,σn(ω))(s). As in the proof of (3.30 c), we find that

P
(

sup
0 ⩽ t ⩽ T

∣∣ ∑
[u,v)∈P∩[0,t)

YuXu,v −
∫ t

0

Ys dXs

∣∣ > ε
)
⩽

⩽
1

ε2
E
(

sup
0 ⩽ t ⩽ T

∣∣ ∑
[u,v)∈P∩[0,t)

Y (n)
u Xu,v −

∫ t

0

Y (n)
s dXs

∣∣2)+ P(σn < T ).

Since σn is a localizing sequence, it converges to infinity almost surely, and thus for each δ > 0
there exists n ∈ N with P(σn < T ) ⩽ δ. The proof will thus be finished once we show that the
first term converges to zero for each n when |P | → 0.

To show this, note that Y (n) ∈ L2
T because it is bounded, and so

∫ t
0
Y

(n)
s dXs exists as a classical

Itô-integral for all t ⩽ T and all n ∈ N. For a partition P of [0, T ], let us write

Y (n),P
s (ω) :=

∑
[u,v)∈P

Y (n)
u (ω)1l[u,v)(s),

for the
”
Riemann approximation“ of Y (n) with respect to P , then∑

[u,v)∈P∩[0,t)

Y (n)
u Xu,v =

∫ t

0

Y (n),P
s dXs,

and we have

E
(

sup
0 ⩽ t ⩽ T

∣∣ ∑
[u,v)∈P∩[0,t)

Y (n)
u Xu,v −

∫ t

0

Y (n)
s dXs

∣∣2) = E
(

sup
0 ⩽ t ⩽ T

∣∣ ∫ t

0

(Y (n),P
s − Y (n)

s ) dXs

∣∣2) Doob

⩽

⩽ 4E
(( ∫ T

0

(Y (n),P
s − Y (n)

s ) dXs

)2) Itô
= 4E

(∫ T

0

(
Y (n),P
s − Y (n)

s

)2
dAs

)
.

The integrand in the final expression is bounded by 4n2. For a sequence of partitions (Pm) with

Pm ⊂ Pm+1, we have Y
(n),Pm
s (ω) → Y

(n)
s (ω) for all s ∈ [0, T ] and all ω as m → ∞. To see this

note that for points of continuity of s 7→ Y
(n)
s (ω), the convergence obviously holds. Now one can

show that a càdlàg function can only have countably many discontinuities, and by assumption,
the measure dAt(ω) is absolutely continuous with respect to Lebesgue measure almost surely.
Thus, almost surely,

∫
1lBω dAs(ω) = 0, where Bω is the set of s ∈ [0, T ] where the convergence

fails. Now Fubinis theorem shows the claimed almost sure pointwise convergence. Dominated
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convergence now shows that the final expression in the last display converges to zero as |P | → 0,
and finishes the proof. □

(3.33) Remark

Up to now, we have mostly considered the existence (and approximability) of stochastic inte-
grals. This is necesseary, but is only interesting if we can do something useful with the objects
we obtain. A useful theory should enable us to actually calculate something of interest, for
example:

a) We have already seen that
∫ t
0
Bs dBs = 1

2
B2
t − 1

2
t. But what about

∫ t
0
Bk
s dBs for k > 1?

Is the solution also given by the classical term 1
k+1

Bk+1
t +

”
a correction“? If so, what is this

correction? Is there closed formula for all k?

b) Eventually, we want to solve stochastic differential equations. In classical ODE theory, a
very nice way to solve an ODE is just to guess the solution and then check that it actually is
the solution. Let us assume we have a process Yt and we guess that it fulfils the equation

Yt − Y0 =

∫ t

0

f(Ys) dBs

for some smooth function f . How can we check this?

In classical analysis, the answer to both questions is the chain rule. If we replace t 7→ Bt

by a differentiable function t 7→ h(t) with h(0) = 0, then in problem a), the chain rule give
∂th

k+1(t) = (k+1)hk(t)h′(t), and by the fundamental theorem of calculus this gives the answer∫ t

0

hk(s) dh(s) =

∫ t

0

hk(s)h′(s) ds =
1

k + 1
hk+1(t).

The differential equation from problem b) in classical analysis reads u′(t) = f(u(t))h′(t), where
we replaced the process Y by the classical function u and ignored the initial condition. The
solution by separation of variables, in the most general form, again relies on the chain rule:
assume that we are able to find a primitive (antiderivative) t 7→ K(t) of t 7→ 1/f(t), and let us
assume that for the (given) function h we can find the solution u to the equation h(t) = K(u(t))
for all t, and that it is a differentiable function. Then by the chain rule, this solution u satisfies

h′(t) = ∂tK(u(t)) =
1

f(u(t))
u′(t),

which gives a solution of the ODE by rearranging. Of course, many things can go wrong here,
but for example the solution to the equation u′(t) = 1

u(t)2
h′(t) can then be computed to be

u(t) = (3h(t))1/3, and one easiy checks (again by the chain rule) that this is indeed a solution
(of course h should be nonnegative here).

The problem is that for stochastic integrals, as we have seen the chain rule is not valid. But
the good news is that there is a replacement, which is the Itô-formula. It is the most important
formula for stochastic integrals, and we will discuss it now.

(3.34) The Itô-formula (elementary version)

Let X ∈ M2
T with qvp A, f ∈ C2(R). Then the map (s, ω) 7→ f ′(Xs(ω)) is an element of
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L2
T,loc(X), and for all t, the Itô-formula

f(Xt)− f(X0) =

∫ t

0

f ′(Xs) dXs +
1

2

∫ t

0

f ′′(Xs) dAs

holds almost surely. For the case X = B, the Itô-formula specializes to

f(Bt)− f(B0) =

∫ t

0

f ′(Bs) dBs +
1

2

∫ t

0

f ′′(Bs) ds.

Proof: Clearly f ′(X) ∈ L2
T,loc since it is adapted, continuous in s, and locally bounded. The

idea of the proof of the Itô formula is not difficult: first, we write the left hand side of Itôs
formula as a telescopic sum along a partition P of [0, t):

f(Xt)− f(X0) =
∑

[u,v)∈P

(f(Xv)− f(Xu)).

Since X is continuous, Xv will be close to Xu for each interval [u, v) once we send |P | → 0.
Therefore the next natural step is to approximate each term (f(Xv)−f(Xu)) on the right hand
side by a Taylor approximation. The only thing we have to be careful about is that we actually
expand the function f around the point Xu and not the function u 7→ f(Xu) around the point
u, because the latter will usually not even be differentiable. Also, it will turn out that we have
to expand to second order. The result is

f(Xv)− f(Xu) = f(Xu) + f ′(Xu)Xu,v +
1

2
f ′′(Xu)X

2
u,v +∆u,v − f(Xu),

where

∆u,v =

∫ 1

0

dρ

∫ ρ

0

dν
(
f ′′(Xu + νXu,v)− f ′′(Xu)

)
X2
u,v

is the Taylor remainder term in a slightly unusual integral form. The explicit
”
raw form“ that

does not need any extra differentiability beyond C2. Consequently,

(∗) f(Xt)− f(X0) =
∑

[u,v)∈P

f ′(Xu)Xu,v +
1

2

∑
[u,v)∈P

f ′′(Xu)X
2
u,v +

∑
[u,v)∈P

∆u,v.

The first term on the right hand side converges to
∫ t
0
f ′(Xs) dXs in probability as |P | → 0 by

Theorem (3.32), yielding the first term of the Itô formula. For the other terms, we first assume,
as we did in the proof of Theorem (2.32) that X is uniformly bounded, i.e. |Xs(ω)| ⩽ K for
some K, all s and all ω. Note that this also implies that ∥f ′′ ◦ X∥∞ = {sup{|f ′′(Xs(ω))| :
s ⩽ t, ω ∈ Ω} < ∞. Also like in Theorem (2.32), let Pn(t) be the partition generated by the
dyadic rationals of spacing 2−n and the point t. We know that

lim
n→∞

∑
[u,v)∈Pn(t)

f ′′(Xu(ω))Au,v(ω) =

∫ t

0

f ′′(Xs(ω)) dAs(ω)



STOCHASTIC PROCESSES 77

for all ω, and are thus interested in the L2-distance between this expression and the second
term of (∗). We have

E
(( ∑

[u,v)∈Pn(t)

f ′′(Xu)(X
2
u,v − Au,v)

)2)
⩽ ∥f ′′ ◦X∥2∞E

(( ∑
[u,v)∈Pn(t)

(X2
u,v − Au,v)

)2)
= ∥f ′′ ◦X∥2∞E

(
(A

(n)
t − At)

2
)
,

where A
(n)
t =

∑
[u,v)∈Pn(t)

X2
u,v is precisely the approximation from Theorem (2.32 b). The state-

ment of that Theorem says that this converges to zero as n→ ∞, and so
∑

[u,v)∈Pn
f ′′(Xu)X

2
u,v →∫ t

0
X2
s dAs almost surely along a subsequence. Picking this subesquence gives us the second term

in Itôs formula.

For the third term, we set

D(ω, u, v, ν) := |f ′′(Xu(ω) + νXu,v(ω))− f ′′(Xu(ω))|

and estimate (again with the partition from above, more precisely with the subsequence from
the last step)∣∣ ∑

[u,v)∈Pn(t)

∆u,v(ω)
∣∣ ⩽ sup{D(ω, u, v, ν) : |u− v| ⩽ 2−n, 0 ⩽ ν ⩽ 1}︸ ︷︷ ︸

=:δn(ω)

∑
[u,v)∈Pn(t)

X2
u,v,

and applying the Cauchy-Schwarz-inequality gives us

E
(∣∣ ∑

[u,v)∈Pn(t)

∆u,v(ω)
∣∣)2

⩽ E(δ2n)E
(( ∑

[u,v)∈Pn(t)

X2
u,v

)2)
.

We have seen in the proof of Theorem (2.32) that the second factor on the right hand side above
is bounded independent of n. The integrand in the first factor is bounded by 4| sup|x| ⩽ 3K f

′′(x)|2
for all n and converges to zero pointwise by uniform continuity of s 7→ Xs(ω) and of f on
compact subsets of R. It therefore converges to zero by dominated convergence. It follows
that

∣∣∑
[u,v)∈Pn(t)

∆u,v(ω)
∣∣ converges to zero in L1, and thus almost surely along a (further)

subsequence. Running through this final subsequence in the expression (∗) now gives Itô’s
formula for bounded X.

For unbounded X, we have to localize again. Let τn = inf{s ⩾ 0 : |Xs| ⩾ n}. Since Doobs
inequality gives E(sups ⩽ tX

2
s ) ⩽ 4E(X2

t ) <∞, we have P(τn ⩽ t) → 0 as n→ ∞ for all t, and

so τn → ∞ almost surely. Now for the bounded martingale (X
(n)
s )s ⩽ t := (Xτ∧s)s ⩽ t with qvp

A(n) = (As∧τn)s ⩽ t, we find by the first part of the proof

f(X
(n)
t )− f(X

(n)
0 ) =

∫ t

0

f ′(X(n)
s ) dX(n)

s +
1

2

∫ t

0

f ′′(X(n)
s ) dA(n)

s =

=

∫ t∧τn

0

f ′(Xs) dXs +
1

2

∫ t∧τn

0

f ′′(Xs) dAs

So Itôs formula holds for all ω ∈ {τn > t} and all n, and thus for all ω ∈
⋃
n∈N{τn > t} ⊃

{limn→∞ τn = ∞}. This shows the claim. □
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(3.35) Examples

a) For f(x) = x2/2, we get

1

2
B2
t = f(Bt)− f(B0) =

∫ t

0

f ′(Bs) dBs +
1

2

∫ t

0

f ′′(Bs) ds =

∫ t

0

Bs dBs +
1

2
t.

Rearranging shows the known formula
∫ t
0
Bs dBs =

1
2
B2
t − 1

2
t.

b) The geometric Brownian motion Yt = eαBt (with α > 0) is an important stochastic
process in financial mathematics. It solves the SDE

Yt − Y0 = α

∫ t

0

Ys dBs +
α2

2

∫ t

0

Ys ds.

(Exercise using Itôs formula). Formally writing dBs = B′
s ds and differentiating this SDE gives

Y ′
t = αYtB

′
t +

α2

2
Yt =

α2

2
Yt(1 +

2

α”
noise“),

compare this to the ODE f ′(t) = α2

2
f(t), which models the exponential growth of the price of

an asset e.g. under constant inflation or with constant value gain. So Yt is the analogue when
there is in addition some market movement (noise) that changes the rate of price growth either
up or down.

Note that we can only get growing solutions with eαBt , it does not help to put e−αBt since (by
symmetry of Brownian motion, or by calculation) the result will be the same. So what about

the very important ODE f ′ = −α2

2
f when we perturb it by some noise? We will see the answer

later.

(3.36) The elementary Itô formula in d dimensions

Let B be a d-dimensional Brownian motion, and f ∈ C1,2(R+
0 × Rd,R), i.e. once continuously

differentiable in the first variable and twice in the second. Then

f(t, Bt)− f(0, B0) =

∫ t

0

[∂sf ](s, Bs) ds+

∫ t

0

[∇xf ](s, Bs) · dBs +
1

2

∫ t

0

[∆xf ](s, Bs) ds,

where ∇xf = (∂x1f, . . . , ∂xdf), and ∆x =
∑d

i=1 ∂
2
x.

Proof: Analogous to the proof of (3.34), but somewhat more notation-intense... □

(3.37) Remark

Compare Theorem (3.36) to Theorem (2.16): the latter tells us that

Mt = f(t, Bt)− f(t, B0)−
∫ t

0

(
[1
2
∆xf ](s, Bs) + [∂sf ](s, Bs)

)
ds

is a martingale; Theorem (3.36) actually tells us what martingale it is!
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(3.38) Differential Notation

a) SDE are often written in differential notation:

dYt = b(t, Yt) dt+ σ(t, Yt) dBt (∗)
Integrating (∗) from 0 to T then gives the familiar form

YT − Y0 =

∫ T

0

dYt =

∫ T

0

b(Yt, t) dBt +

∫ T

0

σ(t, Bt) dBt.

Stochastic processes of the form (∗) are called Itô processes, for the precise definition see
below.

b) Itô’s formula in differential form reads: for Yt = f(t, Bt), B Brownian motion,

dYt = [∂tf ](t, Bt) dt+
1

2
[∆xf ](t, Bt) dt+ [∇f ](t, Bt) · dBt.

If X ∈ M2 with qvp A, Yt = f(t,Xt), in one dimension we get

dYt = [∂tf ](t,Xt) dt+
1

2
[∂2xf ](t,Xt) dAt + [∂xf ](t,Xt) dXt.

A multi-dimensional analogue exists, but needs the concept of quadratic covariation which we
will not cover in this lecture.

(3.39) Itô-processes

Let B be a d-dimensional Brownian motion with its filtration (Ft). Let (σt)t ⩾ 0 be an Rm×d-
valued stochastic process, and let (bt)t ⩾ 0 be an Rm-valued stochastic process. Assume that
both processes are progressively measurable and have locally bounded paths. The Rm-valued
stochastic process Y with

dYt = σt dBt + bt dt ≡
( d∑
j=1

(σt)i,j dB
(j)
t + (bt)i dt

)
i=1,...,m

is called the Itô process with drift b and diffusion coefficient σ.

(3.40) Theorem: general Itô formula

Let Y be an Rm-valued Itô process with m-dimensional drift b and m×d-dimensional diffusion
coefficient σ, and let f ∈ C1,2(R+

0 × Rm,R). For Zs(ω) := f(Ys(ω)) we get

dZt = ∂tf(t, Yt) dt+
1

2
tr
[
σ∗
t [D

2f ](t, Yt)σt
]
dt+ [∇xf ](t, Yt) · dYt,

where σ∗ is the transpose of σ, D2f is the m×m-matrix with entries ∂i∂jf (i.e. the Hessian of
f), and

[∇xf ](t, Yt) dYt = [∇xf ](t, Yt)︸ ︷︷ ︸
∈Rm

· [σtdBt]︸ ︷︷ ︸
∈Rm

+[∇xf ](t, Yt) · bt dt.

For m = 1, this simplifies to

dZt = [∂tf ](t, Yt) dt+ [∂xf ](t, Yt) dYt +
1

2
tr(σ∗

t σt)[∂
2
xf ](t, Yt) dt,
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where tr(σ∗
t σt) is just a fancy way of writing the squared norm

∑d
i=1(σt)

2
i of the d-dimensional

vector σt.

Proof (very short sketch): The proof is not so different from the one of the elementary Itô
formula: one has to do a Taylor expansion of f around the points Yu of a partition, and collect
terms of first and second order.

a) Terms containing (dB
(i)
t )2 converge to terms with dt.

b) Terms containing dB
(i)
t dB

(j)
t vanish when i ̸= j.

c) Terms containing dB
(i)
t dt or (dt)2 also vanish.

For purposes of calcualation, the following table summarizes these facts in a useful way:

dB
(i)
t dt

dB
(j)
t dtδi,j 0

dt 0 0

(3.41) Exercise

Consider the linear SDE

dYt = b(t)Yt dt+ σ(t)Yt dBt

(note that b and σ do not depend on ω). Use the Itô formula with the Ansatz

Yt = exp
(∫ t

0

q(s) ds+

∫ t

0

r(s) dBs

)
(∗)

to show that (∗) is a solution to the SDE when r(t) = σ(t) and q(t) = b(t)− σ(t)2.

(3.42) The Ornstein-Uhlenbeck porcess

Consider the linear SDE

dYt = −αYt dt+ σ dBt, (α, σ > 0).

(Why is this not a special case of the previous example?) The corresponding ODE is

∂tf(t) = −αf(t) + σ∂th(t)

with a smooth function h, and by the variation of constants formula it has the solution

f(t) = σ

∫ t

0

e−α(t−s) (∂sh)(s) ds+ e−αt f(0) = σ

∫ t

0

e−α(t−s) dh(s) + e−αt f(0).

Observe that in the final integral, it is no problem to replace dh(s) by dBs, since the integrand is
smooth and thus the Young integral exists. Therefore, it is a safe bet to guess that the solution
to the SDE is

Yt = σ

∫ t

0

e−α(t−s) dBs + e−αt Y0.
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Of course, we have to verify that this indeed gives a solution to the SDE, and we do this by using
the Itô formula: we define Zt :=

∫ t
0
eαs dBs and g(t, x) = e−αt (σx + Y0). Then Yt = g(t, Zt),

and

dYt = ∂tg(t, Zt) dt+ ∂xg(t, Zt) dZt + ∂2xg(t, Zt)︸ ︷︷ ︸
=0

(dZt)
2

= −αg(t, Zt) dt+ σ e−αt dZt = −αYt dt+ σ e−αt eαt dBt.

So Y indeed solves the SDE.

(3.43) Levy’s characterisation of Brownian motion

Let X be an (Ft)-adapted, real-valued stochastic process with continuous paths, and with
X0 = 0 almost surely. Then the following two statements are equivalent:

(i): (Xt)t ⩾ 0 is a Brownian motion.

(ii): (Xt)t ⩾ 0 and (X2
t − t)t ⩾ 0 are martingales.

Proof: We already know that (i) implies (ii). To show the converse, we check the axioms (B0)-
(B4) of Brownian motion. (B0) (which is X0 = 0 a.s) and (B4) (which is continuous paths)
hold by assumption. (B1)-(B3) say that X has stationary, independent, Gaussian increments,
and all of this will be shown once we prove that (ii) implies

(∗) E( eiξXs,t 1lA) = e−
1
2
(t−s)2ξ2 P(A) ∀ξ ∈ R, A ∈ Fs.

Why is (∗) enough? Because the choice A = Ω gives the Gaussian distribution (B3) of the
increment and its stationarity (B2), and for the independent increment property (B1), we

replace e−
1
2
(t−s)2ξ2 by E( eiξXs,t ) (which is true by (∗)) and obtain

E( eiξXs,t 1lA) = E( eiξXs,t )P(A) ∀ξ ∈ R, A ∈ Fs.

Since any bounded measurable function can be approximated by linear combinations of complex
exponentials (this is the reason why characteristic functions determine the distribution!), we
conclude that E(g(Xs,t)1lA) = E(g(Xs,t))P(A) for all A ∈ Fs and all bounded measurable
functions. This means that Xs,t ⊥⊥ Fs, which shows the claimed independence.

To show (∗), first note that (ii) implies that the qvp of X is At = t. Itô’s formula applied to
f(x) = eiξx (with f ′(x) = iξ eiξx and f ′′(x) = −ξ2f(x)) then gives

f(Xt)− f(Xs) = iξ

∫ t

s

eiξXr dXr −
ξ2

2

∫ t

s

eiξXr dAr︸︷︷︸
=dr

.

We multiply this with eiξXs 1lA with A ∈ Fs and take expectations on both sides, leading to

E( eiξXs,t 1lA)︸ ︷︷ ︸
=:φ(t)

−P(A) = E
(
eiξXs 1lA︸ ︷︷ ︸
∈mFs

E
(
iξ

∫ t

s

eiξXr dXr

∣∣Fs

)
︸ ︷︷ ︸

=0, martingale

)
− ξ2

2

∫ t

s

E( eiξXs,r 1lA)︸ ︷︷ ︸
=φ(r)

dr.

We conclude that the function φ solves the ODE φ′(t) = − ξ2

2
φ(t) with initial condition φ(s) =

P(A). This ODE has the unique solution φ(t) = e−ξ
2(t−s)/2 P(A), which shows that (∗) holds. □
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(3.44) Remark

Question: What is the difference between a one-dimensional Brownian motion and a general
(local) martingale M?

Answer: The speed at which it runs through its paths.

Explanation: For each path, the quantity At(ω) = lim|P |→0

∑
[u,v)∈P M

2
u,v(ω) (the limit actually

might not exist pathwise, but does exist in L2) can be thought of the
”
distance“ that the path

has covered up to time t. For smooth functions, that distance would be given by the total
variation lim|P |→0

∑
[u,v)∈P |f(v)− f(u)|, but for continuous martingales this quantity is always

infinite (unless M is constant), and so the quadratic variation is the next best quantity. More
precisely, it measures the total variance (in the sense of the central limit theorem) that the
martingale has picked up by time t.

For Brownian motion, we have At(ω) = t for all ω, so all paths run
”
at the same speed“, which

is given by A′(t) = 1.

For a general martingale M , At(ω) usually depends on the path belonging to ω. So we can try
to individually slow down each path when A′

t(ω) > 1, and to speed it up when A′(t) < 1. When
we do this path by path, we should get back Brownian motion. The next theorem shows that
this strategy works, at least when the variance of Mt diverges when t goes to infinity.

(3.45) Theorem (Döblin 1940, Dambis, Dubins, Schwartz 1965)

LetM be a continuous square integrable martingale for the right-continuous filtration (Ft). Let
A be the qvp of M . Assume that limt→∞At = ∞ P-almost surely. Let τs(ω) be the generalized
inverse of At(ω), i.e.

τs(ω) := inf{t ⩾ 0 : At(ω) > s}

Then

a) τs is an (Ft)-stopping time for all s, and τs ⩾ τr when s ⩾ r.

b) Let Fτs := {B ∈ F : B ∩ {τs < t} ∈ Ft ∀t} be the stopped sigma-algebra for the stopping
time τs, and Gs := σ(Fτr : r ⩽ s). Then the stochastic process (Mτs)s ⩾ 0 is a (Gs)-martingale,
and its qvp is given by Aτs = s.

c) The stochastic process B̃s :=Mτs is a Brownian motion for the filtration (Gs)s ⩾ 0.

d) For all ω ∈ Ω and all r ⩾ 0, we have Mt(ω) = B̃At(ω)(ω).

Proof: a) The stopping time property follows from Lemma 2.22 since At ∈ mFt and Ft = Ft+.
The inequality is clear from the definition.

b) We have P(τt < ∞) = P(limr→∞Ar = ∞) = 1. For those ω with τt(ω) < ∞, the equality
Aτt(ω)(ω) = t by path continuity of A. Since E(Aτt) = t <∞, Theorem 2.33 gives E(Mτt | Fτs) =
Mτs and E(M2

τt −Aτt | Fτs) =M2
τs −Aτs , so (Mτs)s ⩾ 0 and (M2

τs −Aτs)s ⩾ 0 = (M2
τs − s)s ⩾ 0 are

(Gs)-martingales. The uniqueness of the qvp completes the claim.

c) This follows from b) and Theorem 3.43 if we can show that B̃ has continuous paths. The
map s 7→ τs(ω) is not necessarily continuous; if s 7→ As(ω) is constant on some interval [a, b],
then τ·(ω) has a jump of size b − a at s = Aa(ω). However, in this case also s 7→ Ms(ω) is
constant on [a, b] (why?), and so s 7→ B̃s(ω) =Mτs(ω)(ω) is still continuous.
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d) We have B̃At(ω)(ω) = MτAt(ω)(ω)(ω) and τAt(ω)(ω) = inf{r ⩾ 0 : Ar(ω) > At(ω)}. If A·(ω) is

strictly increasing on an interval [t, b], then τAt(ω)(ω) = t, showing the claim. If A·(ω) is constant
on an interval [t, b] and strictly increasing after that, then τAt(ω)(ω) = b. However, then M·(ω)
is also constant on [t, b], and thus MτAt(ω)(ω)(ω) = Mb(ω) = Mt(ω), showing the claim also in
this case. □

Remark: The theorem even holds for the case where M is only a local martingale. We did not
develop enough theory of local martingales to give an effortless proof, so we skip it.

(3.46) Preparations

A function f : C → C is complex differentiable (analytic) in z = x + iy ∈ C if (with f(z) =
u(x, y)+iv(x, y) for functions u, v : R2 → R) theCauchy-Riemmann differential equations
(CRE)

∂xu(x, y) = ∂yv(x, y), ∂yu(x, y) = −∂xv(x, y)
hold. The function

f ′ : C → C, x+ iy 7→ ∂x[u+ iv](x, y) = −i∂y[u+ iv](x, y)

is the derivative of f . As a consequence of the CRE, we have ∂2xu+ ∂2yu = ∂2xv + ∂2yv = 0.

Complex Brownian motion is the stochastic process Bt = B
(1)
t + iB

(2)
t , where B(1) and B(2)

are independent one-dimensional Brownian motions. Let f be complex differentiable. Writing
f(z) = u(x, y) + iv(x, y), we apply the two-dimensional Itô formula separately to the real and

imaginary part of f and obtain for Ut + iVt = Yt = f(Bt) = u(B
(1)
t , B

(2)
t ) + iv(B

(1)
t , B

(2)
t ) the

equality

dYt = dUt + idVt =
(
∇[u+ iv](B

(1)
t , B

(2)
t )

)
· (B(1)

t , B
(2)
t )t +

1

2

(
∆[u+ iv](B

(1)
t , B

(2)
t )

)
dt.

By the CRE, the second term above vanishes, and the first is equal to f ′(Bt)dBt. So we obtain
the Itô formula without Itô term,

dYt = f ′(Bt)dBt.

In other words for complex Brownian motion, stochastic integrals behave just like classical ones!
This is an important ingredient in the next theorem.

(3.47) Theorem

Let D ⊂ C be a domain (open, connected subset) in C, f : D → C analytic. Let B be a complex
Brownian motion, starting in x ∈ D. Define

τD := inf{t ⩾ 0 : Bt /∈ D}, and ξt(ω) :=

∫ t

0

∣∣f ′(Bs(ω))
∣∣2 ds.

There exists a complex Brownian motion B̃, starting in f(x) ∈ C, such that

f(Bt)1l{t<τD} = B̃ξt1l{t<τD}.

If in addition f is bijective from D onto D̃ = f(D), then we have

f(Bt∧τD) = B̃ξt∧τ̃D̃ with τ̃D̃ := inf{t ⩾ 0 : B̃t /∈ D̃}.
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Proof: Let Bt = B
(1)
t + i dB

(2)
t , and B̂t = (B

(1)
t , B

(2)
t ). We have seen above that with Yt =

Ut + iVt = f(Bt), we have

dUt+idVt = dYt = f ′(Bt)dBt = ∂xu(B̂t)dB
(1)
t +∂yu(B̂t)dB

(2)
t +i

(
∂xv(B̂t)dB

(1)
t +∂yv(B̂t)dB

(2)
t

)
.

Therefore, U and V are martingales. We will now show that they have the same quadratic
variation process. U is the Itô process with dUt = σ(B̂t)dB̂t, i.e. with with drift 0 and 2 × 1

diffusion matrix σ(B̂t) = (∂xu(B̂t), ∂yu(B̂t))
t. We apply the general Itô formula (3.40) (for the

simple case m = 1) with the function f(x) = x2 and obtain

d(U2)t = 2UtdUt +
(
(∂xu(B̂t))

2 + (∂yu(B̂t))
2
)
dt.

Since
∫ t
0
UsdUs is a martingale, this shows that the qvp of the process U is given by the process

ω 7→
(∫ t

0

|f ′(Bs(ω))|2 ds
)
t ⩾ 0

=
(∫ t

0

(
[(∂xu)

2](B̂s(ω)) + [(∂yu)
2](B̂s(ω))

)
ds

)
t ⩾ 0

.

The same calculation for the process V shows

d(V 2)t = 2VtdVt +
(
(∂xv(B̂t))

2 + (∂yv(B̂t))
2
)
dt.∫ t

0
VsdVs is a martingale, and by the CRE, (∂xu)

2 + (∂yu)
2 = (∂xv)

2 + (∂yv)
2. So the qvp of V

is exactly the same process (not just equal in distribution). This means that we can make U
and V into Brownian motions by the same time change in the spirit of Theorem (3.45)!

To do this, let us first clarify that we only need to consider the case where D is compact and
where f is analytic on an open subset containing D. Namely, otherwise we define

Dn := B(0, n) ∩
{
z ∈ D : inf{|z − z̃| : z̃ ∈ ∂D} > 1/n

}
.

Then each Dn has the required properties, and once we have proved the claim for Dn we let
n→ ∞. Path continuity of Brownian motion then gives the general claim.

Assume therefore that D is compact and where f is analytic on an open subset containing D.
Then f ′ is uniformly bounded on D, and thus (Ut∧τD)t ⩾ 0 and (Vt∧τD)t ⩾ 0 are L

2-martingales by

the Itô isometry. They share the qvp Ãt =
∫ t∧τD
0

|f ′(Bs)|2 ds. We can not directly apply (3.45)

because limt→∞ Ãt < ∞ almost surely. We repair this as follows: Let B′
t be another complex

Brownian motion, independent of B, and let (F̃t+) be the completed σ-algebra generated by
both Brownian motions. Then B and B′ are (F̃t+)-martingales. We define

Mt(ω) := f(Bt∧τD(ω)(ω)) +B′
t(ω)−B′

t∧τD(ω)(ω);

in words, we follow (f(Bt)) until the time τD when B exits D, and after that time we follow
the Brownian motion B′ which is however first

”
glued“ to the value of f(BτD). The glueing is

achieved by adjusting the current position of B′ by the term f(BτD)−B′
τD
.

The real and imaginary parts of all terms are martingales by the optional stopping theorem, and
they still have the same quadratic variation process Ā with Āt(ω) = Ãt∧τD(ω)(ω)+t−ÃτD(ω)(ω).

Now we can apply (3.45) and find Brownian motions B̃(1) and B̃(2) such that with Mt(ω) =

(B̃
(1)

Āt(ω)
(ω), B̃

(2)

Āt(ω)
(ω)). Since Āt1l{t<τD} = At = ξt and since M = Y on {t < τD}, we have

f(Bt)1l{t<τD} =
(
B̃

(1)
ξ + iB̃

(2)
ξ

)
1l{t<τD},
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which is almost the first claimed equality. What is still missing is that B̃(1) and B̃(2) are
independent Brownian motions. In order to see this, we apply the general Itô formula for the
function f(x, y) = xy and the R2-valued Itô-process

d

(
Ut
Vt

)
=

(
∂xu(B̂t) ∂yu(B̂t)

∂xv(B̂t) ∂yv(B̂t)

)
dB̂t =: σ(B̂t)dB̂t.

We have

Df =

(
0 1
1 0

)
=⇒ tr

(
σ∗(B̂t)Df(B̂t)σ(B̂t)

)
= tr

(
2uxvx ∗
∗ 2uyvy

)
= 0,

since uxvx = −uyvy by the CRE (we wrote ux = ∂xu here to cut down on notation). This means
that d(UV )t = UtdVt+ VtdUt, in other words the process UV is a martingale. This means that

E(Us,tVs,t) = 0, and then by optional stopping also E(B̃(1)
s,t B̃

(2)
s,t ) = 0. So the increments of the

two Brownian motions are uncorrelated, and since they are Gaussian, they are independent.
The independence of the full processes follows from the general fact that for two Brownian

motions that are adapted to the same σ-algebra, the independence of the increments (B̃
(1)
s,t , B̃

(2)
s,t )

for all s < t is sufficient for the independence of the full processes. The proof is a standard

exercise: consider the characteristic function of the type E(exp(
∑n

i=1 aiB̃
(1)
si,ti

∑m
j=1 aiB̃

(2)
sj ,tj)) and

use successive conditioning and the assumed inedependence to show that this is equal to the
product of the corresponding characteristic functions for B(1) and B(2).

Let us now show the second statement. If f is bijective from D to D̃, then z /∈ D if and only if
f(z) /∈ D̃ for all z ∈ C. Consequently,

t < τD ⇔ Bs ∈ D ∀s ⩽ t ⇔ B̃ξs = f(Bs∧τD) ∈ D̃ ∀s ⩽ t ⇔ ξs < τ̃D̃.

So the claim follows. □

(3.48) Remark

Theorem (3.47) implies that two-dimensional (or complex) Brownian paths are conformally
covariant, in the following sense: For a Brownian motion B starting in x ∈ D, the map
ω 7→ {Bs(ω) : s ⩽ τD(ω)} defines a random subset of D, namely the

”
trace“ of the path of

B. Conformal covariance means that when f is bijective from D onto V = f(D), then the
distribution of the random set defined by ω 7→ {f(Bs(ω)) : s ⩽ τD(ω)} is the same as the
distribution of the map ω 7→ {B̃s(ω) : s ⩽ τD̃(ω)}, where B̃ is a Brownian motion started
in f(x) ∈ V . This is a similar statement as the ones we gave at the beginning of Chapter 2,
but more complicated because it involves a time change. A special case occurs when D = D̃,
then the distribution of the random set is invariant under the map f : D 7→ D̃. The conformal
covariance of Brownian motion is a corner stone of the theory of Schramm-Löwner-evoultions,
which produced the first two fields medals for probability theory in 2006 and 2010.

(3.49) Definition

Let B be a d-dimensional (Ft)-Brownian motion, b : [0,∞)× Rn → Rn and σ : [0,∞)× Rn →
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Rn×d be measurable. We say that a stochastic process X is a strong solution of the SDE

dXt = b(t,Xt) dt+ σ(t,Xt) dBt, X0 = x ∈ Rn, t < T <∞
if X is (Ft)-progressively measurable, and

Xt = x+

∫ t

0

b(s,Xs) ds+

∫ t

0

σ(s,Xs) dBs ∀t ⩽ T,

P-almost surely.

(3.50) Remark

a) If b and σ are Lipschitz-continuous, then a solution to the SDE exists and is unique (up to
sets of measure zero). We will prove this fact in the context of rough paths in the next chapter.
There, we will need a bit mor regularity of b, σ (they need to be in C2), but the benefit is that
we get a much better concept of a solution (see c) below). For the classical proof of existence
of solutions to SDE see e.g. Schilling/Partzsch.

b) It is possible to show that for two solutions Xx and Xy with different (possibly random)
starting points Xx

0 = x, Xy
0 = y of the SDE, there exists C, k > 0 such that

E(∥Xx −Xy∥2∞,T ) ⩽ C ekT E(|x− y|2)
holds. Here, ∥X∥∞,T = sup{|Xt| : t ⩽ T}. This means that the solution of the SDE is continuous
in the initial condition (in the stated norm): small changes of initial condition mean small
changes of the solution.

c) Strong solutions of SDE are, however, not continuous in the
”
noise that drives them“. This

means that if for two Brownian motion paths B(ω) and B(ω′) we have ∥B·(ω)−B·(ω
′)∥∞,T < ε,

we have no guarantee that the solutions of the SDE for the same pair ω, ω′ are close to each
other. This is not convenient, since in many cases the noise is supposed to be a

”
perturbation“

of the ODE without noise, and it means e.g. that the solution with no noise at all may look
very different from the solution with a very tiny bit of noise. But it is unavoidable: one can
show that there exists no norm on the space of continuous functions such that the map that
maps a Brownian motion path to the solution of the SDE for this path is continuous in this
norm.

In the chapter about rough paths, on the other hand, we will meet another type of solution (not
the strong solution above!) that has this continuity property. This is one of the big advantages
of using rough paths.

Our last item in this chapter is about the Markov property for solutions of SDE. In Definition
(2.41) we only introduced time-homogenous Markov processes in order not to introduce too
many difficulties at once. Since SDE are quite often time-inhomogenous, we now extend this
definition. It is a useful exercise to go through all our earlier statements on Markov processes
and check that they still hold (with the hopefully obvious modifications) for time-inhomogenous
Markov processes. The intuition of the Definition below is that Px,t is the probability measure
for the process X started in x at time t, but that from the point of view of the process itself,
time starts at 0. In other words, Px,t(f(Xs)) means that the process (in a global point of view)
has run for time s after being started at time t in x and is then plugged into f and integrated.
Of course, the definition reduces to Definition (2.41) if the Px,t are the same for all t.
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(3.51) Definition

Let

• (Ω,F) be a measurable space with a filtration (Ft),
• E be a metric space and E its Borel-σ-algebra,
• (Xt)t ⩾ 0 be a family of functions from Ω to E, such that each Xt is Ft-E-measurable,
• (Px,t)x∈E,t ⩾ 0 be a family of probability measures on (Ω,F) such that Px,t(X0 = x) = 1
for all x ∈ E.

The pair ((Xs)s ⩾ 0, (Px,t)x∈E,t ⩾ 0) is called

a) a weak Markov process if for all f ∈ Cb(E,R), all x ∈ E and all s, r ⩾ 0, we have

Ex,s(f(Xt+r) | Fr)(ω̄) = EXr(ω̄),s+r(f(Xt)) for Px,s-almost all ω̄ ∈ Ω.

b) a Markov process if for all measurable, bounded F : (ER+
0 , E⊗R+

0 ) → (R,B(R)), all x ∈ E
and all s, r ⩾ 0, we have

Ex,s
(
F ◦ θr

(
(Xt)t ⩾ 0

) ∣∣∣Fr

)
(ω̄) ≡ Ex,s

(
F
(
(Xt+r)t ⩾ 0

) ∣∣∣Fr

)
(ω̄) = EXr(ω̄),s+r(F ((Xt)t ⩾ 0)),

for Px,s-almost all ω̄ ∈ Ω.

c) a strong Markov process if for all B(R) ⊗ E⊗R+
0 − B(R)-measurable, bounded functions

F : R+
0 × ER+

0 → R, all x ∈ E and all (Ft)-stopping times τ , and all s ⩾ 0, we have

Ex+s
(
F
(
τ, (θτX)t

) ∣∣∣Fτ

)
(ω̄) = EXτ(ω̄)(ω̄),s+τ(ω̄)

(
F
(
τ(ω̄), (Xt)t ⩾ 0

))
,

for Px-almost all ω̄ ∈ {τ <∞}.

(3.52) Theorem

Let b, σ be as in (3.49), and assume they are Lipschitz continuous. Then the solution of the
SDE

dZt = b(t, Zt) dt+ σ(t, Zt) dBt (∗)
is a weak Markov process.

More precisely: For x ∈ Rn and s ⩾ 0, let (Zx
t;s)t ⩾ 0 be the strong solution of the SDE

dZx
t;s = b(t+ s, Zx

t;s) dt+ σ(t+ s, Zx
t;s) dBt, Zx

0;s = x.

Let Px,s be the distribution of (Zx
t;s)t ⩾ 0, i.e. the probability measure on C(R,Rn) such that for

all t1, . . . , tm ⩾ 0, and all A1, . . . , Am ∈ B(Rn),

Px,s(πti ∈ Ai ∀i ⩽ n) = P(Zx
ti;s

∈ Ai ∀i ⩽ n),

with πt(ω) = ω(t) the point evaluation. Then the family (Px,s)x∈Rn,s ⩾ 0 together with the maps
(πt)t ⩾ 0, the complete filtration (Ft)t ⩾ 0 with Ft =

⋂
u>t σ(πr : r ⩽ u) and the target space

E = Rn is a weak Markov process in the sense of Definition (3.51).

Proof: We have to show that for all s, t and all bounded continuous f ,

Ex,s(f(πt+r) | Fr)(ω̄) = Eπr(ω̄),s+r(f(πt)) Px,s-almost surely. (∗)
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The central formula is the identity

Zx
t+r;s(ω̄) = Zx

r;s(ω̄) +

∫ t+r

r

b(u+ s, Zu;s(ω̄)) du+
[ ∫ t+r

r

σ(u+ s, Zu;s) dBu

]
(ω̄),

which follows from the additivity of integrals. Let Z̃y
t+r;s be the solution of the SDE

Z̃y
t;s+r = y +

∫ t

0

b(u+ s+ r, Z̃y
u;s+r) du+

∫ t

0

σ(u+ s+ r, Z̃y
u;s+r) dB̃u,

where the Brownian motion B̃u = Br+u has increments that are independent of (Bv)v ⩽ r. Then
by the above identity and the uniqeness of SDE solutions, the distribution of Zx

t+r;s is the

same as the distribution of ω 7→ Z̃
Zx
r;s(ω)

t;s+r (ω). Writing ϕ(y, r, t, (Br,u(ω))u ⩾ r) := Z̃y
t;s+r(ω) for the

solution map, we then get

Ex,s(f(πt+r) | Fr)(ω̄) = E(f(Zx
t+r;s) | Fr)(ω̄) = E(f ◦ ϕ(Zx

r;s, r, t, (Br,u)u ⩾ r) | Fr)(ω̄)

= E(f ◦ ϕ(Zx
r;s(ω̄), r, t, (Br,u)u ⩾ r)) = E(f(Z̃Zx

r;s(ω̄)

t;s+r )) = EZx
r;s(ω̄),s+r(f(πt)). (∗∗)

The equality of first and second line holds because the map ω̄ 7→ Zx
s (ω̄) is Fr-measurable and

ω 7→ (Br,u(ω))u ⩾ r is independent of Fr; see Proposition (3.23) of the Probability Theory lecture
notes. Since πr has distribution Z

x
r;s under Px,s, we have for all (Fr)-measurable A that

Ex,s(Ex,s(f(πt+r) | Fr)1lA)
(∗∗)
= Ex,s(Eπr,s+r(f(πt))1lA).

Since ω 7→ Eπr(ω),s+r(f(πt)) is clearly Fr-measurable, this implies (∗). □

4. Rough Paths

(4.1) Another look at Young integrals

For X ∈ Cα, Y ∈ Cβ with γ := α + β > 1, Theorem (3.4) states that the limit∫ T

0

Ys dXs := lim
|P |→0

∑
[u,v)∈P

YuXu,v︸ ︷︷ ︸
=:Ξu,v

exists. Let us recall the central estimate that makes this true: the quantity

∥δΞ∥γ := sup
r:u<r<v

1

|v − u|γ
|Ξu,v − Ξu,r − Ξr,v|

is finite. Here is another point of view on the situation: if Ξu,v would be a proper integral, then
it would be additive, i.e. Ξu,v − Ξu,r − Ξr,v would be equal to zero. But it is not an integral,
only an approximation. The condition on δΞ just means that the

”
deviation from additivity“

(δΞ)u,v = supr:u<r<v Ξu,v − Ξu,r − Ξr,v vanishes faster than linearly as |u− v| → 0.

(4.2) Beyond Young integrals

For X ∈ Cα and Y ∈ Cβ with α + β < 1, the supremum over r ∈ (u, v) of the quantity

(δΞ)u,r,v = Ξu,v − Ξu,r − Ξr,v = YuXu,v − YuXu,r − YrXr,v = −Yu,rXr,v
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is only guaranteed to vanish like |u − v|α+β, which is not fast enough. To see this, take r =
u+ (v − u)/2. This breaks the proof of Theorem (3.4). To see how this can be repaired, let us
first consider the special case when Yu = f(Xu) for a C

2-function f . Then Y ∈ Cα, and so we
are looking at the cases α ⩽ 1/2. The approximation Ξu,v = f(Xu)Xu,v to the (not yet well-
defined!) integral

∫ v
u
f(Xr) dXr is then not good enough, since its

”
deviation from additivity“

does not shrink fast enough as |u− v| → 0. The key idea is to improve this by adding a further
term: by expanding f around the point Xu, we find∫ v

u

f(Xr) dXr ≈
∫ v

u

(
f(Xu) + f ′(Xu)Xu,r

)
dXr = f(Xu)Xu,v + f ′(Xu)

∫ v

u

Xu,r dXr︸ ︷︷ ︸
=:Xu,v

.

The improvement of approximation is comparable to a
”
one sided trapezoid rule“ in numerical

analysis. The first term on the right hand side is the Riemann sum term, the next one is the
next order improvement. Of course, still all the integrals do not make any sense - but we remark
already now that if we somehow succeed in making sense of the single quantity Xu,v then we
have a (hopefully) improved approximation of

∫ v
u
f(Xr) dXr for all f ∈ C2. Before we worry

about what Xu,v might be, let us convince ourselves that finding it is worth the effort.

For this purpose, let us go back to the case α > 1/2 for the moment. Then all integrals above
make sense as Young integrals, and we can easily calculate (exercise!)∫ v

u

Xr dXr =
1

2
(X2

v −X2
u).

This means that

Xu,v =

∫ v

u

(Xr −Xu) dXr =

∫ v

u

Xr dXr −XuXu,v =
1

2
(X2)u,v −XuXu,v.

This quantity is again not additive, but we can specify precisely the defect to additivity:

Xu,v + Xv,w =
1

2
(X2)u,w −XuXu,v −XvXv,w =

=
1

2
(X2)u,w −XuXu,w +XuXv,w −XvXv,w = Xu,w −Xu,vXv,w.

This means that

Xu,w = Xu,v + Xv,w +Xu,vXv,w (A)

and important identity that we will meet again later. On the other hand, we have

Xu,v =
1

2
(Xv +Xu)Xu,v −XuXu,v =

1

2
(Xu,v)

2, (B)

which means that supu,v∈[0,T ]
1

|v−u|2αXu,v < ∞, i.e. X is twice as regular as X. Of course, what

we really want is that if we re-define Ξ as

Ξu,v = f(Xu)Xu,v + f ′(Xu)Xu,v,
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then the deviation from additivity of the improved approximation Ξu,v vanishes faster than for
the original approximation f(Xu)Xu,v. This is indeed the case:

Ξu,v + Ξv,w = f(Xu)Xu,w + (f(Xv)− f(Xu))Xv,w + f ′(Xu)Xu,v + f ′(Xv)Xv,w =

= f(Xu)Xu,w + (f(X))u,vXv,w + f ′(Xu) (Xu,v + Xv,w)︸ ︷︷ ︸
(A)
= Xu,w−Xu,vXv,w

+(f ′(X))u,vXv,w =

= f(Xu)Xu,v + f ′(Xu)Xu,w︸ ︷︷ ︸
=Ξu,w

+(f(Xv)− f(Xu)− f ′(Xu)Xu,v)Xv,w + (f ′(X))u,vXv,w.

By Taylors theorem and the mean value theorem, there exist r̃, s̃ ∈ [u, v] with

Rf(X)
u,v := f(Xv)− f(Xu)− f ′(Xu)Xu,v =

1

2
f ′′(r̃)(Xu,v)

2, (f ′(X))u,v = f ′′(s̃)Xu,v,

which means that

sup
v:u<v<w

|Ξu,w − Ξu,v − Ξv,w| ⩽ ∥f ′′∥∞ sup
v:u<v<w

∣∣1
2
(Xu,v)

2Xv,w +Xu,vXv,w

∣∣ ∼ |u− w|3α,

where for the second term above we used equality (B). Therefore, the new Ξu,v deviates from
additivity only by oder 3α, compared to the previous order 2α. Using it to approximate the
integral as in (4.1) then repairs the proof of Theorem (3.4) and restores convergence if α > 1/3.
This is good enough for Brownian motion! The task that remains is to make sense of the
expression Xu,v =

∫ v
u
Xu,r dXr.

(4.3) Example

Let B be a one-dimensional Brownian motion. Then we can define

Xu,v(ω) :=
[ ∫ v

u

Bu,s dBs

]
(ω),

where on the right hand side we use the Itô integral. Itô’s formula then gives

Xu,v =

∫
u,v

Bs dBs −BuBu,v =
1

2
(B2

v −B2
u)−

1

2
(v − u)−BuBu,v =

1

2
(Bu,v)

2 − 1

2
(v − u),

which means that Xu,v(ω) ∈ C2α almost surely for any α < 1/2. This regularity is what is
needed from equation (B) of (4.2). On the other hand,

Xu,w − Xu,v − Xv,w =
1

2

(
(Bu,w)

2 − (Bu,v)
2 − (Bv,w)

2
)
= −BuBw +BuBv +BvBw −B2

v =

= Bu,vBv,w,

so equality (A) from (4.2) holds. In other words, the Itô-integral seems like a valid choice for
the quantity X. There are some hidden pitfalls in this reasoning, though (can you spot them),
which we will discuss and remove below. The Stratonovich integral, on the other hand, is also
a valid choice, as is any other of the classical stochastic integrals (why?). For general square
integrable martingales X with qvp A, the correct choice is

Xu,v(ω) =
[ ∫ v

u

Xu,s dXs

]
(ω)

Itô
=

1

2
(Xu,v(ω))

2 − 1

2
Au,v(ω).
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Since Au,v is additive, the same calculation as above gives that (4.2) (A) holds. For (B), one
needs to use Theorem (3.45) and change in order to obtain a Brownain motion again - we omit
the details.

Instead of trying to find Xu,v, we will take an axiomatic approach in the following: the philosophy
is to just postulate the existence of some X with the property (B) and the 2α-regularity that
comes from (A) in the context of (4.2). We will then call the pair

(
(Xu)0 ⩽ u ⩽ T , (Xu,v)0 ⩽ u,v ⩽ T

)
a rough path, and show that then all integrals, differential equations etc. make sense. We will
want to do this in higher dimensions and therfore we will need some preparations.

(4.4) Tensor products

In the following, U, V,W will always denote Hilbert spaces - in fact we will need only finite
dimensional Hilbert spaces (aka Rn), but the theory actually works even for Banach spaces
(but is less clean there). Let (ei) be an orthonormal basis (ONB) of U and (fi) be an ONB of
V . The tensor product U ⊗ V of U and V is the Hilbert space with ONB (ei⊗ fj)i,j (which, as
a set, can be identified with the set of ordered pairs {(ei, fj) : i, j}) and scalar product

⟨ei ⊗ fj, ek ⊗ f ′
ℓ⟩U⊗V = ⟨ei, ek⟩U⟨fj, fℓ⟩V .

For two vectors u =
∑

i αiei ∈ U , v =
∑

j βjfj ∈ V , the vector
∑

i,j αiβjei ⊗ fj ∈ U ⊗ V is the
tensor product u⊗ v of u and v.

Two special cases are instructive: if U, V are vector spaces of functions f : x 7→ f(x), g : y 7→
g(y), then f ⊗ g is (can be identified with) the function f ⊗ g : (x, y) 7→ f(x)g(y). In the even
more special case where x ∈ {1, . . . , n} and y ∈ {1, . . . ,m}, U ≃ Rn and V ≃ Rm. Then we
write u(i) = ui, v(j) = vj, and identify u⊗ v with an n×m-matrix:

u⊗ v = (uivj)1 ⩽ i ⩽ n,1 ⩽ j ⩽ m ∈ Rn×m.

This formula gets a separate line because this identification will be used in all that follows. It
also shows that for finite dimensional U ≃ Rn, V ≃ Rm, we have U ⊗ V ≃ Rn×m.

We will use another identification of two vector spaces frequently: the map U × V → U ⊗ V ,
(u, v) 7→ u⊗ v is bilinear, and therefore

{bilinear maps U × V → W} ≡ L(U × V,W ) ≃ L(U ⊗ V,W ) ≡ {linear maps U ⊗ V → W}

(4.5) Definition

Recall Definition (1.34): for f : R+
0 → Rd, D ⊂ R+

0 and α > 0 we defined ∥f∥D,α =
sups,t∈D,s ̸=t |t − s|−α|fs,t| and Cα(D,Rd) = {f : ∥f∥D,α < ∞}. We will now abuse this no-
tation and define

∥f∥T,α := ∥f∥[0,T ],α for T > 0.

Also, if f : U → V where U is a subset of U ⊂ Rn, V a Hilbert space, and D ⊂ U , then the
definition ∥f∥D,α still makes sense by replacing |t − s| by ∥u − u′∥ for u, u′ ∈ D, and |fs,t| by
∥fs,t∥V . We will continue writing |f | instead of ∥f∥V in this case.

For F : [0, T ]2 → V , we define

∥F∥T,α,diag := sup{|t− s|−αF (s, t) : s < t, s, t ∈ [0, T ]},
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and Cα
2 ([0, T ], V ) = {F : [0, T ]2 → V : ∥F∥α,T,diag <∞}. Note that Cα

2 ([0, T ], V ) ̸= Cα([0, T ]2, V ),
actually the two are very different. Functions from Cα

2 ([0, T ], V ) are necessarily zero on the dia-
gonal s = t, which is not the case for functions from Cα([0, T ]2, V ); on the other hand, they
have no restrictions for any points away from the diagonal.

(4.6) Definition

Let X : [0, T ] → V , X : [0, T ]2 → V ⊗ V , and consider the pair X = (X,X).
a) X satisfies Chen’s relation if for all 0 ⩽ u ⩽ v ⩽ w ⩽ T , we have

Xu,w = Xu,v + Xv,w +Xu,v ⊗Xv,w.

b) Let α ∈ (1/3, 1/2]. X = (X,X) is called a α-Hölder rough path (or α-rough path) if

(i): X ∈ Cα([0, T ], V ),

(ii): X ∈ C2α
2 ([0, T ], V ⊗ V ),

(iii): Chen’s relation holds.

We write Cα([0, T ], V ) ⊂ Cα([0, T ], V )× C2α
2 ([0, T ], V ⊗ V ) for the set of α-rough paths.

(4.7) Remark

a) Chen’s relation is the axiomatization of equality (A) from (4.2), and Xu,v is the abstract
replacement of the quantity

∫ v
u
Xu,s dXs. It is far from unique: for any pair (X,X) that fulfils

the reqiurements of Definition (4.6) and any function f ∈ C2α([0, T ], V ⊗V ), the pair (X, (Xu,v+
fu,v)u,v∈[0,T ]) also fulfils them (exercise!). This in particular covers all Itô-, Stratonovich-, and
other stochastic integrals, but is actually much more flexible than that.

b) While Cα([0, T ], V ) is a subset of the vector space Cα([0, T ], V )×C2α
2 ([0, T ], V ⊗V ), it not a

subspace. Since Chen’s relation is not linear (not conserved under addition), Cα is not a vector
space!

c) The case α > 1/2 is possible but uninteresting, since then we can do Young integrals. The
case α ⩽ 1/3 is interesting, but not necessary for the case of Brownian motion. If one wants
to treat α ⩽ 1/3, one has to add higher order correction terms (in the spirit of (4.2)) to the
approximations of the integral. Basically, one assumes more regularity of f there and does
further Taylor expansions. The details are a bit messy, and we will not cover this case.

d) Chen’s relation means that the values of (XtX0,t)t ⩽ T determine all values of Xs,t for s, t ⩽ T
(exercise!). Therefore even though it seems as if X is a function of two variables, X = (X,X)
is indeed a

”
path“, i.e. a function of a one-dimensional variable with values in V × (V ⊗ V ).

Our next aim is to define
∫ t
0
f(Xs)dXs := lim|P |→0

∑
[u,v)∈P (f(Xu)Xu,v + f ′(Xu)Xu,v) in the

spirit of (4.2). Before we do this, we need to clarify what the expression f ′(Xu)Xu,v is in higher
dimensions.

(4.8) Derivatives in higher dimensions

For f ∈ C2(V,L(V,W )) and X ∈ V , we have f(Xu)Xu,v ∈ W . The total derivative of f is the
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map
Df : V → L(V,L(V,W )) ≃ L(V ⊗ V,W ).

that satisfies
[Df(v)]︸ ︷︷ ︸

∈L(V⊗V,W )

(ei ⊗ ej) = [∂if(v)]︸ ︷︷ ︸
∈L(V,W )

(ej) ∈ W

for all basis vectors ei, ej of V . Since Df ∈ C1(V,L(V,L(V,W ))), we can define

D2f : V → L(V,L(V,L(V,W ))) ≃ L(V ⊗ V ⊗ V,W )

as D2f = D(Df) in the same way as above, with W replaced by L(V,W ). This means that

[Df(v)](ei ⊗ ej ⊗ ek) = [∂i∂jf(v)](ek) ∈ W.

The case V = Rd reduces the familiar case where ei and ej are used to pick the matrix element
of the Hesse matrix. Since the target space of f is L(V,W ), the additional basis vector ek is
needed to produce an element of W .

For X = (X,X) ∈ Cα([0, T ], V ) and f ∈ C2(V,L(V,W )), we will frequently use the following
abbreviations:

Ys := f(Xs) ∈ L(V,W ),

Y ′
s := Df(Xs) ∈ L(V ⊗ V,W ) ≃ L(V,L(V,W )),

RY
s,t := Ys,t − Y ′

sXs,t ∈ L(V,W ),

Ξs,t := YsXs,t + Y ′
sXs,t ∈ W.

Here, RY
s,t should be viewed as the

”
second order Taylor term“, and Ξs,t as the approximation

to an integral over the intervall [s, t] when |t− s| is small.

(4.9) Lemma

Let f ∈ C2
b , T > 0. Writing ∥ · ∥α instead of ∥ · ∥T,α for brevity, we have

a) Y ∈ Cα([0, T ],L(V,W )) with ∥Y ∥α ⩽ ∥Df∥∞∥X∥α,
b) Y ′ ∈ Cα([0, T ],L(V ⊗ V,W )) with ∥Y ′∥α ⩽ ∥D2f∥∞∥X∥α,
c) RY ∈ C2α

2 ([0, T ],L(V,W )) with ∥RY ∥2α,diag ⩽ 1
2
∥D2f∥∞∥X∥2α,

d) We have
Ξu,w − Ξu,v − Ξv,w = −RY

u,vXv,w − Y ′
u,vXv,w, (∗)

and

∥δΞ∥3α := sup
0 ⩽ u<v<w ⩽ T

|Ξu,w − Ξu,v − Ξv,w|
|u− w|3α

⩽ ∥RY ∥2α,diag∥X∥α + ∥Y ′∥α∥X∥2α,diag.

Proof: a) we have

Yv − Yu =

∫ 1

0

d

dh
f(Xu + hXu,v) dh =

∫ 1

0

[
Df

]
(Xu + hXu,v)︸ ︷︷ ︸
|.| ⩽ ∥Df∥∞

Xu,v dh.

Dividing by |v − u|α and taking the supremum shows the claim.

b) The same as above for Y ′
v − Y ′

u.
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c) We have

RY
u,v = Yu,v − Y ′

uXu,v
a)
=

∫ 1

0

(
Df(Xu + hXu,v)−Df(Xu)

)
dh Xu,v

=

∫ 1

0

dh

∫ h

0

ds
[ d

ds

[
Df(Xu + sXu,v)

]]
Xu,v =

=

∫ 1

0

dh

∫ h

0

ds
[
D2f(Xu + sXu,v)

]
(Xu,v ⊗Xu,v).

Since Xu,v ⊗Xu,v ∈ C2α
2 and the integral is bounded by 1

2
∥D2f∥∞, the claim follows.

d) The calculations we did at the end of (4.2) lead (in the same notation!) the equality (∗),
and the claimed estimate then follows from a), b) and c). □

(4.10) Notation

Let T, α, β > 0. We write

∆T := {(s, t) ∈ [0, T ]2 : 0 ⩽ s ⩽ t ⩽ T}.

For Ξ : ∆T → W we define

∥δΞ∥β := sup
{ |Ξu,w − Ξu,v − Ξv,w|

|u− w|β
: 0 ⩽ u < v < w ⩽ T

}
, ∥Ξ∥α,β := ∥Ξ∥α + ∥δΞ∥β,

and

Cα,β
2 ([0, T ],W ) := {Ξ : ∆T → W : ∥Ξ∥α,β <∞,Ξ(t, t) = 0 ∀t ∈ [0, T ]}.

(4.11) Sewing Lemma

Let 0 < α < 1 < β, and T > 0.

a) For all Ξ ∈ Cα,β
2 ([0, T ],W ) and all s < t ∈ ∆T , the limit

(IΞ)s,t := lim
|P |→0

∑
[u,v)∈P∩[s,t)

Ξu,v

exists, and fulfills ∣∣(IΞ)s,t − Ξs,t
∣∣ ⩽ C|t− s|β (∗)

with the constant C = ∥δΞ∥β2βζ(β), where ζ is the Riemann zeta function.

b) The map t 7→ (IΞ)0,t is in Cα([0, T ],W ), and

∥IΞ∥α ⩽ max
{
2βT β−αζ(β), 1

}
∥Ξ∥α,β.

c) The map Ξ 7→
(
(IΞ)0,t

)
t ⩽ T

is the unique linear map Cα,β
2 → Cα sucht that (∗) holds for

some C <∞.

Proof: Recall that δΞu,r,v := Ξu,v −Ξu,r −Ξr,v for u < r < v. By the assumption Ξ ∈ Cα,β
2 , the

inequality

sup
r∈[u,v)

|δΞu,r,v| ⩽ ∥δΞ∥β|u− v|β
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holds for all u < v. This means that the inequality (A) from the proof of Theorem (3.4) holds.
Following the proof of that theorem from that point on (word by word!), we obtain a).

For b), we estimate∣∣(IΞ)s,t∣∣ ⩽ ∣∣(IΞ)s,t − Ξs,t
∣∣+ ∣∣Ξs,t∣∣ (∗)

⩽ ∥δΞ∥β2βζ(β)|t− s|β + ∥Ξ∥α|t− s|α.

Since α < β, we have |t− s|β ⩽ T β−α|t− s|α, and b) follows.

c) is left as an exercise. □

(4.12) Definition

Let X ∈ Cα([0, T ], V ). The rough path norm pf X is

|||X|||α := ∥X∥α +
√

∥X∥2α,diag.

For X,Y ∈ Cα([0, T ], V ), the rough path distance of X and Y is given by

ϱα(X,Y ) := ∥X − Y ∥α + ∥X− Y∥2α,diag,
where ∥X− Y∥2α,diag := sup0 ⩽ s<t ⩽ T

1
|t−s|2α |Xs,t − Ys,t|.

(4.13) Remark

a) The square root in the definition of |||·|||α makes the expression homogenous in the following
sense: the only way to

”
multiply“ a rough path by a constant c so that Chen’s relation still holds

is to define cX = (cX, c2X). Then the definition of our norm guarantees |||cX|||α = c |||X|||α.
Note that no square root appears in the definition of ϱα, which seems odd at first - would we not
like an equality like ϱα(X,Y ) = |||X − Y |||α to hold? The answer is that this is not relevant,
because X−Y is in general not a rough path: Chen’s relation is not linear! On the other hand,
cX is a rough path for c ∈ R, which is why we want to keep the homogeniety of the norm
intact.

b) Note on the other hand that for two rough paths X and Y , the expression ∥X − Y ∥α +√
∥X − Y ∥2α,diag does make sense exactly as given in Definition (4.12 b). X − Y is then

viewed as a function of two variables, as in Definition (4.5). So ϱα is the
”
distance“ that is

derived from the
”
norm“ (X,F ) 7→ ∥X∥α + ∥F∥2α,diag on the vector space Cα ⊕ C2α

2 , and in
this sense the omission of the square root in this expression is the sensible choice. Note however
the quotation marks: the rough path norm is not actually a norm on Cα ⊕ C2α

2 because it is
equal to zero on all constant functions. The same problem exists for ρα. It is not hard to see
that the mapX 7→ |||X|||α+|X0| is a norm, and that (X,Y ) 7→ ρα(X,Y )+|Y0−X0| is a metric.

d) Below and in the remainder of the lecture notes, we will use the notation ∥F∥Ck
b
=

∑k
j=0 ∥DjF∥∞.

(4.14) Theorem

Let X = (X,X) ∈ Cα([0, T ], V ), α ∈ (1/3, 1/2] and F ∈ C2
b (V,L(V,W )). We define

Ξu,v := F (Xu)Xu,v + [DF ](Xu)Xu,v.
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a) The limit ∫ t

s

F (Xr) dXr := lim
|P |→0

∑
[u,v)∈P∩[s,t)

Ξu,v

exists for all s < t, and∣∣∣ ∫ t

s

F (Xr) dXr − Ξs,t

∣∣∣ ⩽ C(α)∥F∥C2
b

(
∥X∥3α + ∥X∥α∥X∥2α,diag

)
|t− s|3α,

with C(α) = 2max{23αT 2αζ(3α), 1}.
b) The map t 7→

∫ t
0
F (Xr)dXr is in C

α, and∥∥∥∫ ·

0

F (Xr) dXr

∥∥∥
α
⩽ 12C(α)∥F∥C2

b

(
|||X|||α ∨ (|||X|||1/αα max{T 1−α, 1})

)
.

Proof: a) will follow from the Sewing Lemma (4.11) once we show that Ξ ∈ Cα,3α
2 . We have

|Ξu,v| ⩽ ∥F∥∞|Xu,v|+ ∥DF∥∞|Xu,v| ⩽ ∥F∥C2
b

(
∥X∥α|v − u|α + ∥X∥2α,diag|v − u|2α

)
,

and

∥δΞ∥3α
(4.9d)

⩽ ∥RY ∥2α,diag∥X∥α + ∥Y ′∥α∥X∥2α,diag
(4.9b,c)

⩽ ∥D2F∥∞
(1
2
∥X∥3α + ∥X∥α∥X∥2α,diag

)
.

The sewing lemma now yields the claim.

b) We estimate |
∫ t
s
F (Xr) dXr| ⩽ |

∫ t
s
F (Xr) dXr − Ξs,t|+ |Ξs,t|. For the first term, we use a)

and bound it by C(α)∥F∥C2
b
(∥X∥3α + ∥X∥α∥X∥2α,diag)|t− s|3α. The second term is bounded by

∥F∥∞∥X∥α|t − s|α + ∥DF∥∞∥X∥2α,diag|t − s|2α. Since C(α) ⩾ 1 and ∥X∥2α,diag ⩽ |||X|||2α, we
obtain the intequality∣∣∣ ∫ t

s

F (Xr) dXr

∣∣∣ ⩽ 2C(α)∥F∥C2
b

3∑
i=1

|||X|||iα |t− s|iα.

If |t− s|α ⩽ |||X|||−1
α , then we can divide the above inequality by |t− s|α and obtain

1

|t− s|α
∣∣∣ ∫ t

s

F (Xr) dXr

∣∣∣ ⩽ 6C(α)∥F∥C2
b
|||X|||α . (∗)

If |t − s|α > |||X|||−1
α , then h := |||X|||−1/α

α fulfils 1 < |t−s|
h

. We set tj = (s + jh) ∧ t, have

|tj − tj−1| ⩽ |||X|||−1/α
α = h, and thus get∣∣∣ ∫ t

0

F (Xr) dXr

∣∣∣ ⩽ ∑
0 ⩽ j<(t−s)/h

∣∣∣ ∫ tj+1

tj

F (Xr) dXr

∣∣∣ (∗)
⩽

⩽
(
(t− s)/h+ 1

)︸ ︷︷ ︸
⩽ 2(t−s)/h

·6C(α)∥F∥C2
b
|||X|||α h

α︸ ︷︷ ︸
=1

⩽ 12C(α)∥F∥C2
b
|||X|||1/αα |t− s|.

When we divide this by |t− s|α, together with the case (∗) we obtain

1

|t− s|α
∣∣∣ ∫ t

0

F (Xr) dXr

∣∣∣ ⩽ 6C(α)∥F∥C2
b
(|||X|||α ∨ |||X|||1/αα max{T 1−α, 1}),
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which shows the claim. □

We have just shown the existence of the rough integral for every given rough path. In order to
make the connection to the theory of Brownian motion, we need to show that almost surely, a
Brownian motion path B can be enhanced to a rough path. This means that we need to define
what B should be, check that (B,B) fulfils Chen’s relation, and that the rough path norm of
(B,B) is finite for α ∈ (1/3, 1/2]. We start by defining B.

(4.15) Definition

Let B be a d-dimensional Brownian motion. For every ω ∈ Ω and all 0 ⩽ s < t ⩽ T , we define

BItô
s,t (ω) :=

(∫ t

0

Br ⊗ dBr

)
(ω)−

(∫ s

0

Br ⊗ dBr

)
(ω)−Bs(ω)⊗Bs,t(ω).

(4.16) Lemma

a) BItô fulfils Chen’s relation for all s, t, ω.

b) For all s < t we have BItô
s,t =

∫ t
s
Bs,r ⊗ dBr almost surely.

Proof: Let us write B instead of BItô for simplicity. Define Jv =
∫ v
0
Br⊗dBr. By the definition

of B, we have

Bu,v + Bv,w +Bu,v ⊗Bv,w = Jv − Ju −Bu ⊗Bu,v + Jw − Jv −Bv ⊗Bv,w +Bu,v ⊗Bv,w =

= Jw − Ju − (Bu ⊗Bu,w −Bu ⊗Bv,w)−Bv ⊗Bv,w +Bu,v ⊗Bv,w = Bu,w.

This proves a). For b), we use that Itô-integrals are additive almost surely, and get(∫ t

s

Bs,r ⊗ dBr

)
i,j

≡
∫ t

s

Bi
s,r dB

j
r =

∫ t

0

Bi
r dB

j
r −

∫ s

0

Bi
r dB

j
r −Bi

s

∫ t

s

dBj
r = Bi,js,t

almost surely. □

(4.17) Remark

Definition (4.15) is made so that Chen’s relation holds for all s, t and ω. The equality in (4.16
b), on the other hand, extends to all s, t simultaneously by path continuity of Brownian motion

and its integrals. So, we could equally well define BItô
s,t :=

∫ t
s
Bs,r ⊗ dBr, in this case Chen’s

relation would only hold on a set of probability one, but would hold on that set for all s, t
simultaneously.

We have made sure that Chens relation holds for BItô; we also know that the first component
of the pair (B,BItô) is in Cα for all α ∈ (1/3, 1/2). What we still need is that BItô is in C2α

2 for
the same range of α. This will be our next task.

(4.18) Kolmogorov-Chentsov-Theorem, rough path version

Let (Xt)0 ⩽ t ⩽ T be a V -valued stochastic process, and let (Xs,t)0 ⩽ s<t ⩽ T be a family of V ⊗ V -
valued random variables on the same probability space as X. Assume that

(i): The pair (X(ω),X(ω)) fulfils Chen’s relation for all ω.
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(ii): There exists q ⩾ 2, β > 1/q and C <∞ with

E(|Xs,t|q) ⩽ C|t− s|βq and E(|Xs,t|q/2) ⩽ C|t− s|βq

for all s < t. Then

a) with D = {k2−n : k ∈ N, n ∈ N} ∩ [0, T ], for all α ∈ [0, β − 1
q
) we have

E
(
∥X∥qD,α

)
<∞, and E

(
∥X∥q/2D,2α,diag

)
<∞.

b) there exists a version of (X,X) that fulfils (X(ω),X(ω)) ∈ Cα([0, T ]) for all ω.
Proof: The statement E(∥X∥qD,α) < ∞ was already proved in Theorem (1.36). The other
statement is proved in a similar manner. We write

Dn := {2−nk : k ∈ N} ∩ [0, T ],

Kn(ω) := max{|Xt,t+2−n(ω)| : t ∈ Dn},
Kn(ω) := max{|Xt,t+2−n(ω)| : t ∈ Dn}.

Then

E(Kq/2
n ) ⩽

∑
t∈Dn

E
(
|Xt,t+2−n|q/2

) (ii)

⩽ 2nTC2−nβq = CT (2−n)βq−1, (∗)

E(Kq
n) ⩽ CT (2−n)βq−1.

As in the proof of Theorem (1.36) we have that for given s < t with |t− s| < 1/2 , there exists
j ∈ N with 2−j < t−s ⩽ 2−j+1 and a chain s = t0, t1, . . . , tn = t of points from D such that two
consecutive points have distance 2−m for some m ⩾ j and each distance appears at most twice
in the chain. For arbitrary s < t ∈ [0, T ] we can then find a similar chain (by concatenation)
such that each distance

The trick in the proof of (1.36) was to write Xs,t =
∑n

i=1Xti−1,ti as a telescopic sum and then
use the triangle inequality. This does not work here directly because Xs,t is not additive, but
Chen’s relation helps us again. We have

Xs,t =
n∑
i=1

Xti−1,ti +
n∑
i=1

Xti−1,ti ⊗Xti,t,

which is proved by iterative application of Chen’s relation (exercise!). WritingXti,t =
∑n

k=i+1Xtk−1,tk ,
we then obtain (with Kℓ(ω) = max{|Xt,t+2−n(ω)| : t ∈ Dn})

|Xs,t| ⩽
n∑
i=1

|Xti−1,ti |+
n∑
i=1

|Xti−1,ti | max
0 ⩽ k ⩽ n

|Xtk,t| ⩽
n∑
i=1

|Xti−1,ti |+
( n∑
i=1

|Xti−1,ti |
)2

⩽ 2
∞∑
ℓ=j

Kℓ +
(
2

∞∑
ℓ=j

Kℓ

)2 |t−s|>2−j

⩽ 2|t− s|2α
∞∑
ℓ=j

22ℓαKℓ + 4|t− s|2α
( ∞∑
ℓ=j

2ℓαKℓ

)2
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for all s, t with |t − s| < 1/2. For general s, t ∈ [0, T ], we can choose at most 2T + 1 points
s = s0 < s1 . . . < sn = t with si+1 − si < 1/2 for all i. Then, as above,

|Xs,t| ⩽
n∑
i=1

|Xsi−1,si|+
( n∑
i=1

|Xsi−1,si |
)2

⩽ |t− s|2α
(
(4T + 2)

∞∑
ℓ=j

22ℓαKℓ + (8T + 4)
( ∞∑
ℓ=j

2ℓαKℓ

)2

+ (4T + 2)2
( ∞∑
ℓ=j

2ℓαKℓ

)2)
.

Dividing by |t − s|2α and taking the supremum over {(s, t) : s, t ∈ D ∩ [0, T ] : |s − t| < 1/2},
we get

E
(
∥X∥q/2D,2α,diag

)2/q
⩽ C̃

∥∥∥ ∞∑
ℓ=0

22ℓαKℓ +
( ∞∑
ℓ=0

2ℓαKℓ

)2∥∥∥
Lq/2

⩽ C̃
( ∞∑
ℓ=0

22ℓα∥Kℓ∥Lq/2 +
∥∥∥( ∞∑

ℓ=0

2ℓαKℓ

)2∥∥∥
Lq/2

)
,

where the constant C̃ depends on T as a quadratic polynomial. The first term above is equal
to

C̃
∞∑
ℓ=0

22ℓαE(Kq/2
ℓ )2/q

(∗)
⩽ C̃T

2
qC2/q

∞∑
ℓ=0

22ℓα2−ℓ(βq−1) 2
q = C̃T

2
qC2/q

∞∑
ℓ=0

2−2ℓ(β−1/q−α),

and thus finite for α < β − 1/q. The second term is equal to
∥∥∑∞

ℓ=0 2
ℓαKℓ

∥∥2

Lq which is finite
under the same condition by the first part of the proof, see the proof of Theorem (1.36) for
reference. This finishes the proof of a). The proof of b) is literally the same as the one for
Theorem (1.38). □

What remains is to show that BItô fulfils assumption (4.18 (ii)).

(4.19) Proposition

For all T > 0, q = 4k with k ∈ N, there exists Cq <∞ with

E(|Bs,t|q/2) ⩽ Cq|t− s|q/2 ∀s, t ∈ [0, T ].

As a consequence, the second inequality of (4.18 (ii)) holds for all β < 1/2.

Proof: We start with some preparations. First of all, we use that

Bs,t =
∫ t

s

Bs,r ⊗ dBr ∼
∫ t−s

0

Br ⊗ dBr,

where the first equality holds almost surely. Second, we use the sum norm for the matrix
Bs,t ∈ Rd×d, and then the triangle inequality gives

∥Bs,t∥Lq/2 ⩽
d∑

i,j=1

∥∥∥∫ t−s

0

B(i)
r dB(j)

r

∥∥∥
Lq/2

.
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So we only need to see that each term of that sum is bounded by a constant times (|t−s|q/2)2/q =
|t − s|. For i = j, this follows from the Itô formula and the fact that for a centered Gaussian
random variable Y with variance σ2, we have E(Y 2k) = (σ2)k(2k)!!. We have for q/2 = 2k∥∥∥∫ t−s

0

B(i)
r dB(i)

r ∥Lq/2 =
1

2
∥(B(i)

t−s)
2 − (t− s)∥L2k ⩽

1

2
∥(B(i)

t−s)
2∥L2k + ∥(t− s)∥L2k =

=
[
(4k)!!|t− s|2k

] 1
2k + |t− s|.

For i ̸= j (wlog let i = 1,j = 2), let F (1) be the σ-algebra generated by (B
(1)
t )t ⩾ 0. We claim

that for all α > 0 and all t > 0, the equality

E
(
eiα

∫ t
0 B

(1)
s dB

(2)
s

∣∣∣F (1)
)
(ω̄) = exp

(
− α2

2

∫ t

0

(B(1)
s (ω̄))2 ds

)
(∗)

holds for almost all ω̄. (In other words, the distribution of
∫ t
0
B

(1)
s dB

(2)
s conditional on F (1) is

Gaussian with mean zero and variance
∫ t
0
(B

(1)
s (ω̄))2 ds.) To see the claimed equality, we recall

that
∑

[u,v)∈P B
(1)
u B

(2)
u,v converges in L2 to

∫ t
0
B

(1)
s dB

(2)
s when |P | → 0, and thus almost surely

along a subsequence. Along this subsequence, then also exp(iα
∑

[u,v)∈P B
(1)
u B

(2)
u,v) converges to

exp(iα
∫ t
0
B

(1)
s dB

(2)
s ) almost surely, and since the complex exponential function is bounded, do-

minated convergence implies the convergence in L2. Since conditional expectation is continuous
(it is a projection), we conclude that for the subsequence (Pn) of partitions

lim
n→∞

E
(
eiα

∑
[u,v)∈Pn

B
(1)
u B

(2)
u,v

∣∣∣F (1)
)
= E

(
eiα

∫ t
0 B

(1)
s dB

(2)
s

∣∣∣F (1)
)

in L2, and thus almost surely along a further subsequence (also called (Pn)). For each n, the
fact that B(1) is F (1)-measurable and B(2) is independent from F (1) implies that, almost surely,

E
(
eiα

∑
[u,v)∈Pn

B
(1)
u B

(2)
u,v

∣∣∣F (1)
)
(ω̄) = E

(
eiα

∑
[u,v)∈Pn

B
(1)
u (ω̄)B

(2)
u,v

)
= e−

α2

2

∑
[u,v)∈Pn

(B
(1)
u (ω̄))2(v−u) ,

where the last inequality comes from the Gaussian and independent increments of B(2). The

sum in the exponent on the right hand side is a Riemann sum and converges to
∫ t
0
[B

(1)
s (ω̄)]2 ds,

which shows the claimed equality (∗).
What remains to do is to take expectaion in (∗), then differentiate both sides 2k = q/2 times
with respect to α, and finally to evaluate at α = 0. On the left, this gives E((B0,t−s)

q/2). On the
right, the fact that we evaluate at α = 0 means that what we get is the term where precisely

k derivatives hit the exponential (each producing a prefactor of
∫ t
0
(B

(1)
s (ω̄))2 ds under the

integral), while the other k derivatives act on the existing prefactor from earlier differentiations.
This means that

E
(( ∫ t−s

0

B(1)
r dB(2)

r

∣∣∣F (1)
)2k)

= C2kE
(( ∫ t−s

0

[B(1)
r ]2 dr

)k)
⩽

⩽ C2k|t− s|kE
(
sup{|Br|2 : r ⩽ |t− s|}k

)
= C2k|t− s|kE

(
max

r ⩽ |t−s|
(Br)

2k
)
=

(2.48a)
= C2k|t− s|kE

(
|Bt−s|2k) = C2k|t− s|k(2k)!!|t− s|k.

This proves the claim. □
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(4.20) Corollary

For all α ∈ (1/2, 1/2] and all T > 0, we have

BItô := (B,BItô) ∈ Cα([0, T ],Rd).

Proof: just combine (4.16), (4.18) and (4.19). □

(4.21) Remark

a) We have now succeeded to give a pathwise interpretation of the Itô integral
∫ t
0
f(Bs) dBs,

at least for f ∈ C2. In the past, we were very careful to always write
[ ∫ t

0
f(Bs) dBs

]
(ω) to

emphasize that for the Itô integral is an L2 limit, and all paths need to work together to make
sense of it. For rough integrals, we can pick (P-almost) any Brownian path, compute its second
rough path component BItô as in (4.15) (not that this is still an Itô integral, i.e. no pathwise

integration here!), and then compute all integrals
∫ t
0
f(Bs(ω)) dB

Itô
s (ω) as rough integrals, i.e.

pathwise.

b) But what have we actually achieved by this? First of all, instead of having
∫ t
0
f(Bs) dBs as

a different L2-limit for each f , we have a single L2 limit which is then used to make pathwise
sense of stochastic integrals for all f ∈ L2. Moreover, we will soon see that with this single L2

limit, we can even define pathwise integrands for much more general inegrands than those of the
form f(Bs) - in particular, we will not need the integrands to be adapted. This is an important
advantage, since the need to have adapted integrands has always been a serious limitation of
stochastic integration; there have been some ad hoc ways around this, but no systematic one.

c) The only ambiguity left in the stochastic integral is thus the choice of the second rough
path component B. Here, BItô is not the most natural choice for many applications in rough
paths; the reason is that the theory of rough paths does not rely on martingale properties as
heavily as the classical theory does, and it is therefore attractive to make another choice for B,
namely the one that obeys the chain rule. Rough paths that obey the chain rule are important
in general, and we now study them.

(4.22) Definition

For X ∈ V ⊗ V , the symmetric part of X is the element of V ⊗ V with components

Sym(X)i,j :=
1

2
(Xi,j + Xj,i),

where Xi,j is the component of X.

(4.23) Definition

A rough path X is called geometric if Sym(Xs,t) =
1
2
Xs,t ⊗Xs,t for all s < t. We write

Cαg := {X ∈ Cα : X is geometric}.
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(4.24) Remarks

a) Consider a differentiable functionX with its natural second component Xs,t =
∫ t
s
Xs,r⊗X ′

r dr.
Then (X,X) is a geometric rough path for all α ⩽ 1 (proof: exercise). This explain why the
equation Sym(Xs,t) =

1
2
Xs,t ⊗Xs,t is also sometimes called the chain rule.

b) Geometric rough paths are
”
almost“ the closure of

”
smooth“ paths under the rough path

distance. More precisely, let

ϱ̄α :
(
Cα([0, T ], V )× C2α

2 ([0, T ], V ⊗ V )
)2 → R+

0 ,(
(X,X), (Y,Y)

)
7→ ∥Y −X∥α + ∥Y− X∥2α,diag + |Y0 −X0|

be the metric on Cα([0, T ], V )×C2α
2 ([0, T ], V ⊗V ) that corresponds to the rough path distance

ϱα; see also remark (4.13 b). Let C0,α
g ([0, T ]) be the closure of the subset{(

X,
( ∫ t

s

Xs,r ⊗X ′
r dr

)
0 ⩽ s<t ⩽ T

)
: X ∈ C1

}
⊂ Cα([0, T ], V )× C2α

2 ([0, T ], V ⊗ V )

with respect to this metric, i.e. the rough paths that can be approximated by smooth functions
and their natural second components. Then we have for all 0 < α < β < 1

Cβg ⊂ C0,α
g ⫋ Cαg = Cαg

ϱ̄α
.

In words: the set of α-geometric rough paths complete under ϱ̄α, but is strictly larger than the
set of approximable α rough paths. It is however smaller than the set of approximable rough
paths when we are allowed to approximate Cβ

g in the slighty weaker ϱ̄α metric.

The proof of these important relations will be given in a series of exercises on the problem
sheets. Only the strict inclusion is too difficult, here we refer to the literature.

(4.25) Example

By Lemma (4.16 b) and the Itô formula, we have

[Sym(BItô
s,t )]

i,j =
1

2

(∫ t

s

B(i)
s,rdB

(j)
r +

∫ t

s

B(j)
s,rdB

(i)
r

)
=

1

2

(
B

(i)
s,tB

(j)
s,t − δi,j|t− s|

)
=

1

2
(Bs,t ⊗Bs,t − I|t− s|)i,j.

Therefore, BItô /∈ Cαg .

(4.26) Definition

The geometric rough path

B(ω) ≡ BStrat(ω) :=
(
B(ω),BItô(ω) + (1

2
(t− s)I)s,t

)
is called Stratonovich-Brownian motion, or simply Brownian rough path.

(4.27) Remark

The calculation in Example (4.25) shows that Stratonovich-BM B is indeed a geometric rough
path. Therefore, by Remark (4.24 b), it can be approximated (in α-rough path distance for
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any α < 1/2) by sequences of the form (B(n), (
∫ t
s
B

(n)
s,r ⊗ dB

(n)
r ), where B(n) is a mollification

of B. In the remark, this mollification is chosen to be in C1; in practice, a different and very
concrete sequence of B(n) is quite useful, and it can be checked by hand that this converges to
Stratonovich BM. We do this next.

(4.28) Definition

Let Pn be the partition of [0, T ] generated by the dyadic rationals with nearest neighbour
distance 2−n. For f ∈ C([0, T ], V ), the dyadic piecewise linear approximation of f at level
n is the function f (n) with

f
(n)
t :=

∑
[u,v)∈Pn∩[0,t)

1

|v − u|
(
(v − t)fu + (t− u)fv

)
1l[u,v)(t).

The following proposition serves as a preparation for Theorem (4.31) below, but is quite inte-
resting on its own.

(4.29) Proposition

Let B be a d-dimensional Brownian motion, Dn be the set of dyadic rationals with spacing 2−n,
and F (n) = σ(Bt : t ∈ Dn). Then for all t ⩾ 0, we have

B
(n)
t = E(Bt | F (n)) almost surely.

Moreover, for i, j ⩽ d with i ̸= j and all t ⩾ 0, we have∫ t

0

(Bi
s)

(n) d(Bj
s)

(n) = E
(∫ t

0

Bi
s dB

j
s

∣∣∣F (n)
)

almost surely.

Proof: To see the first claimed equality, first note that B
(n)
t is F (n)-measurable. Let [u, v) ∈ Pn

with u ⩽ t < v. Then with

Y := Bt −B
(n)
t = Bt −

v − t

v − u
Bu −

t− u

v − u
Bv,

what remains to be checked is the orthogonality condition E(Y Z) = 0 for all F (n)-measurable
bounded Z. By a monotone class argument, we can restrict our attention to Z of the form
Z =

∏
w∈Dn∩[0,T ) fw(Bw) for bounded functions fw and fixed T . We can also assume t > u since

otherwise Y = 0 and the claim is trivial. Finally, by treating each component separately, we
need only investigate one-dimensional Brownian motion. By the explicit formula (1.23) for the
fidis of Brownian motion, we then find bounded functions F and G with

E(Y Z) =
∫
R
dxF (x)

∫
R
dyG(y)

∫
R
dz

e−
(x−z)2

2(t−u)√
2π(t− u)

e−
(y−z)2

2(v−t)√
2π(v − t)︸ ︷︷ ︸

=:Φ(z)

(
z − v − t

v − u
x− t− u

v − u
y
)
.

The functions F and G appear by integrating out all variables in the formula from (1.23) except
the ones corresponding to Bu, Bt and Bv. We thus need to show that the dz-integral in the
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above expression is equal to zero for all choices of u, v, t, x and y. This can be checked directly
(e.g. by completing the square), but this is extremely painful. A little trick helps: we have

∂zΦ(z) =
(x− z

t− u
+
y − z

v − t

)
Φ(z) =

( x

t− u
+

y

v − t
− z

v − u

(t− u)(v − t)

)
Φ(z) =

=
v − u

(t− u)(v − t)

( v − t

v − u
x+

t− u

v − u
y − z

)
Φ(z).

The right hand side is (up to a z-independent factor) our integrand of interest, and the integral
over

∫
dz∂zΦ(z) is equal to zero by the fundamental theorem of calculus. This shows the claim.

For the second equality, first note that for arbitrary functions f, g, f (n) and g(n) are Lipschitz

(and piecewise differentiable), and thus the Young integral
∫ t
0
f
(n)
s ⊗dg

(n)
s exists and is given by∫ t

0

f (n)
s ⊗ dg(n)s =

∑
[u,v)∈Pn∩[0,t)

∫ v

u

((v − t)fu + (t− u)fv
v − u

)
⊗ gv − gu

v − u
dt =

=
∑

[u,v)∈Pn∩[0,t)

1

2
(fv + fu)⊗ (gv − gu).

Note that this means that∫ t

0

B(n)
s ⊗ dB(n)

s =
∑

[u,v)∈Pn∩[0,t)

1

2
(Bv +Bu)⊗Bu,v

is precisely the Stratonovich approximation to the stochastic integral. We also have

E
(∫ t

0

(Bi
s)

(n)d(Bj
s)

(n)
∣∣∣F (n−1)

)
= E

( ∑
[u,v)∈Pn∩[0,t)

1

2
(Bi

v +Bi
u)(B

j
v −Bj

u)
∣∣∣F (n−1)

)
= E

( ∑
[u,v)∈Pn∩[0,t)

1

2
((B(n)

v )i + (B(n)
u )i)((B(n)

v )j − (B(n)
u )j)

∣∣∣F (n−1)
)

=
∑

[u,v)∈Pn∩[0,t)

1

2
((B(n−1)

v )i + (B(n−1)
u )i)((B(n−1)

v )j − (B(n−1)
u )j) = (∗).

The final equality holds because we already know that ((B
(n)
t )i)n is a martingale for all t, and

because of the following fact: if (Mn) is an (Fn)-martingale and Nn is a (Gn)-martingale, and
if Fn and Gn are independent for all n, then (MnNn) is a (Fn ⊗ Gn)-martingale (check that
this is precisely the situation we have above!). To see this, check that that E(MnNn1lA1lB) =
E(MkNk1lA1lB) for all A ∈ Fk and B ∈ Gk. By the usual approximation argument this then
holds with 1lC for C ∈ Fk⊗Gk instead of 1lA1lB. This shows E(MnNn | Fk⊗Gk) =MkNk, hence
the claim.

Now again for general functions f, g, for [u,w) ∈ Dn−1 and for (the unique) v ∈ (u,w) ∩ Dn,
we have

f (n−1)
v =

1

w − u
((w − v)fu + (v − u)fw),
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and therefore

g(n−1)
v − g(n−1)

u =
v − u

w − u
gu,w, g(n−1)

w − g(n−1)
v =

w − v

w − u
gu,w,

and

f (n−1)
u + f (n−1)

v =
(
1 +

w − v

w − u

)
fu +

v − u

w − u
fw, f (n−1)

v + f (n−1)
w =

w − v

w − u
fu +

(
1 +

v − u

w − u

)
fw.

Now an elementary but tedious calculation gives

(f (n−1)
u +f (n−1)

v )⊗ (g(n−1)
v −g(n−1)

u )+(f (n−1)
v +f (n−1)

w )⊗ (g(n−1)
w −g(n−1)

v ) = (fw+fu)⊗ (gw−gu).

Applying this to (∗), we see that the contribution of each pair of intervals [u, v) and [v, w) with
u, v ∈ Pn−1 and v ∈ Pn combines to give precisely the term that belongs to the interval [u,w)

in the formula for
∫ t
0
(Bi

s)
(n−1)d(Bj

s)
(n−1). We thus have

E
(∫ t

0

(Bi
s)

(n)d(Bj
s)

(n)
∣∣∣F (n−1)

)
=

∫ t

0

(Bi
s)

(n−1)d(Bj
s)

(n−1).

Iterating this using the tower property, we find that for all n and all m ⩾ n,

E
(∫ t

0

(Bi
s)

(m)d(Bj
s)

(m)
∣∣∣F (n−1)

)
=

∫ t

0

(Bi
s)

(n−1)d(Bj
s)

(n−1).

The random variable
∫ t
0
(Bi

s)
(m)d(Bj

s)
(m) converges to the Stratonovich integral

∫ t
0
Bi
sdB

j
s in L

2,
which coincides with the Itô integral since we are only looking at off-diagonal terms. Since
conditional expectation is a projection, and thus continuous in L2, the left hand side converges
to E(

∫ t
0
Bi
sdB

j
s | F (n−1)). This shows the claim. □

Remark: Note that we have not claimed the second identity for the diagonal terms i = j.

It is wrong there, because for a one-dimensional Brownian motion,
∫ t
0
B

(n)
s dB

(n)
s = 1

2
(B

(n)
t )2

by the telescopic sum. Since (B
(n)
t )n∈N is a non-trivial martingale, ((B

(n)
t )2)n∈N can not be a

martingale. But (E(X | F (n)))n∈N is always a martingale, so
∫ t
0
B

(n)
s dB

(n)
s cannot be of that form.

Another ingredient for the theorem below is

(4.30) Lemma

For rough paths (X(n))n∈N and X assume that X
(n)
t → Xt and X0,t → X0,t for all t. Assume

further that for some β < 1,

sup
n∈N

∥X(n)∥β <∞ and sup
n∈N

∥X(n)∥2β <∞ (∗∗).

Then X ∈ Cβ, and ρα(X(n),X) → 0 for all α < β.

Proof: will be given in the exercises.
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(4.31) Theorem

Let B be a d-dimensional Brownian motion. Then for all α < 1/2, we have

P
(
ϱα

((
B(n),

∫ ·

0

B(n)
s ⊗ dB(n)

s

)
,
(
B,BStrat

)) n→∞−→ 0
)
= 1.

Proof: Recall Theorem (4.68) from Probability Theory: for an integrable random variable X
and a filtration (Fn), the sequence (E(X | Fn))n∈N is a uniformly integrable martingale and

converges almost surely to E(X | F∞), with F∞ = σ(
⋃
n∈N Fn). Write B(n)

t =
∫ t
0
B

(n)
s ⊗ dB

(n)
s .

Proposition (4.29) then shows that (B
(n)
t )n∈N and ((B(n)

t )i,j)n∈N (for i ̸= j) are uniformly inte-

grable martingales and converge almost surely to Bt and Bi,jt :=
∫ t
0
Bi
sdB

j
s , respectively. Since

(B(n)
t )i,i = 1

2
((B

(n)
t )i)2, it converges almost surely as well. Note that the limit is not the Itô

integral 1
2
(Bi

t)
2 + 1

2
t, however, but the Stratonovich integral 1

2
(Bi

t)
2. By the usual argument

of continuous paths, we can then find a set of measure one such that the convergence holds
simultaneously on all t for each ω from that set.

For arbitrary β < 1/2. we will now find a (possibly different) set of measure one such that on
that set, supn∈N ∥B(n)∥β < ∞ and supn∈N ∥B(n)∥2β < ∞. Then on the intersection of the two

sets of measure one, Lemma (4.30) will show ρα(B
(n),B) → 0 for all α < β (and thus for all

α < 1/2), and therefore show the claim.

We will show the claims separately for each component of (B(n)) and of (B(n)). We will start with
(B(n))i,j and use ideas from the proof of the Kolmogorov-Chentsov theorem. Let q = 4k with

k ∈ N. Since ((B(n)
t )i,j)n∈N is a martingale, the process ((B(n)

u,v)i,j)n∈N is also a martingale, and

the process
(

1
|v−u|2β

∣∣(B(n)
u,v)i,j)

∣∣q/2)
n∈N is a submartingale as a convex function of a martingale.

Since suprema of several submartingales are also submartingales, the process (Sn)n∈N with

Sn := sup
u,v∈D,u̸=v

( 1

|v − u|2β
∣∣(B(n)

u,v)
i,j)

∣∣)q/2
is a submartingale. Then Doobs maximal inequality gives for all N ∈ N

P
(

sup
n ⩽ N

sup
u,v∈D,u ̸=v

1

|v − u|2β
∣∣(B(n)

u,v)
i,j)

∣∣ > C
)
= P( sup

n ⩽ N
Sn > Cq/2) ⩽

1

Cq/2
E(|SN |). (∗)

For each N and all u, v, Proposition (4.29) and the conditional Jensen inequality yield∣∣∣ 1

|v − u|2β
(B(N)

u,v )
i,j
∣∣∣q/2 ⩽ E

(∣∣∣ 1

|v − u|2β
Bi,ju,v

∣∣∣q/2 ∣∣∣F (N)
)
⩽ E

(
sup
u̸=v

∣∣∣ 1

|v − u|2β
Bi,ju,v

∣∣∣q/2 ∣∣∣F (N)
)
,

which in turn gives

E(|SN |) ⩽ E
(
sup
u̸=v

E
(∣∣∣ sup

u̸=v

1

|v − u|2β
Bi,ju,v

∣∣∣q/2 ∣∣∣F (N)
))

= E
(∣∣∣ sup

u̸=v

1

|v − u|2β
|Bi,ju,v

∣∣∣q/2).
We know from Theorem (4.18) and Proposition (4.19) that the last quantity is finite for all
β < 1/2. We can thus take the limit N → ∞ in (∗), use continuity from below of measures on
the left hand side, and obtain

P(sup
n∈N

∥(B(n))i,j∥2β > C) ⩽
K

Cq/2
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for some constant K. This shows that supn∈N ∥(B(n))i,j∥2β is finite almost surely.

The same argument works for the components of supn∈N ∥(B(n))i∥β, using Theorem (1.36)
this time. The details are left as an exercise. Once this is shown, the remaining claim for

supn∈N ∥(B(n))i,i∥2β follows immediately because (B(n)
s,t )

i,i = (Bi
s,t)

2. □

Our next aim is to integrate more general functions than s 7→ f(Xs) against a rough path X.
This will be necessary e.g. for treating rough differential equations: they have the form

Yt =

∫ t

0

F (Ys) dXs

so Ys does not only depend on the value Xs but also on all Xr with r ⩽ s. The idea is to replace
the objects Ys = F (Xs), Y

′
s = DF (Xs) and R

Y
s,t = Ys,t − Y ′

sXs,t by more general expressions so
that the proof of Lemma (4.11) still works, and see where this gets us.

(4.32) Definition

For X ∈ Cα([0, T ], V ), we say that Y ∈ Cα([0, T ],L(V,W )) is controlled by X if there exists
Y ′ ∈ Cα([0, T ],L(V,L(V,W )) such that with

RY
s,t = Ys,t − Y ′

sXs,t ∈ L(V,W ),

RY is an element of C2α
2 ([0, T ],L(V,W )). Any Y ′ with this property is called Gubinelli deri-

vative of Y with respect to X.

(4.33) Remark

a) For X ∈ Cα and f ∈ C2
b ([0, T ],L(V,W )), Lemma (4.9) shows that with Y ′

s := Df(Xs), Y
′

is a Gubinelli derivative of X.

b) Set Ys = Xs for all s, then Y is controlled by X. More precisely, set W = R and then
identify V with L(V,R) via the scalar product, then Y ∈ L(V,W ) as required. With Y ′

s =
idV ∈ L(V,L(V,R)) ≃ L(V, V ), we then find RY

s,t = Xs− idVXs = 0, which shows the claim. In
other words, X is controlled by itself.

c) In more generality, we can define when some Y ∈ Cα([0, T ], U) for an arbitrary Hilbert space
U is controlled by C ∈ Cα([0, T ], V ) by just replacing L(V,W ) with U everywhere. Since we
will not need this for rough integration and since there are already too many vector spaces
floating around, we do not do it.

d) The requirement RY ∈ C2α
2 ([0, T ],L(V,W )) means that Y ′

s is the correct factor that is needed
at point s so that Y ′

sXs,t cancels some of the irregularity of Ys,t for t very close to s. In the
classical case Y ′ = Df(X), this cancellation is provided by the Taylor expansion, in general we
just have to assume it axiomatically.

e) Gubinelli derivatives are possibly not unique. If X and Y are already in C2α ⊂ Cα, then any
smooth Y ′ will do the job. On the other hand, if

lim sup
t→s

1

|t− s|2α
|ϕ(Xs,t)| = ∞ for all ϕ ∈ L(X,R),
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then one can show that Y ′ is uniquely determined by Y for all Y ∈ Cα, even smooth ones. Such
functions X are sometimes called truly α-rough. One can also show that Brownian motion
is truly α-rough for any α > 1/4. We will not discuss this topic further, see the book of Friz
and Hairer, Sections 6.2 and 6.3. Also, a possible non-uniqueness of Y has no consequences for
anything we will be doing.

(4.34) Definition

For X ∈ Cα([0, T ], V ) define

YX := {Y ∈ Cα([0, T ],L(V,W )) : Y is controlled by X}
We will choose a specific Gubinelli derivative Y ′ for each Y ∈ YX , using the axiom of choice if
X is not truly rough, and with this choice define

D2α
X := {(Y, Y ′) : Y ∈ YX}, YX := (Y, Y ′),

and
∥YX∥X,2α := ∥Y ′∥α + ∥RY ∥2α,diag.

(4.35) Proposition

a) ∥.∥X,2α is a seminorm. The map YX 7→ |Y0| + |Y ′
0 | + ∥YX∥X,2α =: ∥YX∥X,2α,0 is a norm. D2α

X

is complete under this norm.

b) There exists C <∞ with

∥Y ∥α ⩽ C(1 + ∥X∥α)
(
|Y ′

0 |+ Tα∥YX∥X,2α
)

for all Y ∈ D2α
X .

In particular, this means that the inclusion of the term ∥Y ∥α into the seminorm ∥YX∥X,2α is
not necessary, since the norms ∥ · ∥X,2α,0 would be equvalent with or without this inculsion.

Proof: Exercise.

(4.36) Theorem

Let T > 0, α ∈ (1/3, 1/2], X = (X,X) ∈ Cα([0, t], V ), YX = (Y, Y ′) ∈ D2α
X ([0, T ],L(V,W )).

Then:

a) The rough integral ∫ t

s

Yr dXr := lim
|P |→0

∑
[u,v)∈P

(YuXu,v + Y ′
uXu,v)

exists for all 0 < s < t < T and is independent of the approximation partitions (it does depend
on the choice of Y ′ if there is one). We have∣∣∣ ∫ t

s

Yr dXr − (YsXs,t + Y ′
sXs,t)

∣∣∣ ⩽ 23αζ(3α)
(
∥X∥α∥RY ∥2α,diag + ∥Y ′∥α∥X∥2α,diag

)
|t− s|3α.

b) Set Zt =
∫ t
0
Yr dXr. The map Z is an element of Cα, and

∥Z∥α ⩽ 2max{23αT 2αζ(3α), 1}
(
∥X∥α∥RY ∥2α,diag + ∥Y ′∥α∥X∥2α,diag

)
.
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c) Fundamental Theorem of Calculus for Rough Paths: The map t 7→
∫ t
0
Yr dXr is an

element of YX , and Y is a Gubinelli derivative for it. We write

ZX := (Z,Z ′) :=
(∫ ·

0

Ys dXs, Y
)
∈ D2α

X ([0, T ],W ).

We have

∥ZX∥X,2α,0 ⩽ |Y0|+ ∥Y ∥α + ∥Y ′∥∞∥X∥2α + C̃(α)(Tα ∨ 1)
(
∥X∥α∥RY ∥2α,diag + ∥Y ′∥α∥X∥2α,diag

)
,

with C̃(α) = 3ζ(3α)23αmax{T 2α, 1}. In particular, the linear map

D2α
X ([0, T ],L(V,W )) → D2α

X ([0, T ],W ), (Y, Y ′) 7→ (Z,Z ′)

is continuous with respect to the norm ∥.∥X,2α,0.
Proof: With Ξs,t = YsXs,t + Y ′

sXs,t, we find exactly as in (4.9 d) (or (4.2)) that Ξu,w − Ξu,v −
Ξv,w = −RY

u,vXv,w−Y ′
u,vXv,w. Thus ∥δΞ∥3α ⩽ ∥RY ∥2α,diag∥X∥α+∥Y ′∥α∥X∥2α,diag, which is finite

by assumption. Thus the Sewing Lemma (4.11) applies and its part a) gives claims a), and its
part b) gives claim b).

For c), we prove the claimed inequality, all other statements follow from it. By definition of
∥.∥X,2α, we have ∥ZX∥X,2α,0 = |Z0|+ |Z ′

0|+∥Z∥α+∥RZ∥2α. We investigate the terms separately.
We have Z ′ = Y , and

RZ
s,t = Zs,t − Z ′

sXs,t =

∫ t

s

Yr dXr − YsXs,t =

∫ t

s

Yr dXr − Ξs,t + Y ′
sXs,t,

and thus part a) gives

∥RZ∥2α ⩽ 23αζ(3α)max{1, Tα}
(
∥X∥α∥RY ∥2α,diag + ∥Y ′∥α∥X∥2α,diag

)
+ ∥Y ′∥∞∥X∥2α,diag.

By part b) we have

∥Z∥α ⩽ 2ζ(3α)23αmax{T 2α, 1}
(
∥X∥α∥RY ∥2α,diag + ∥Y ′∥α∥X∥2α,diag

)
.

Together with Z0 = 0 and Z ′
0 = Y0, we obtain the desired inequality. □

(4.37) Definition

For X, X̃ ∈ Cα, YX ∈ D2α
X and ỸX̃ ∈ D2α

X̃
, the controlled rough path distance is defined by

dX,X̃,2α(YX , ỸX̃) := ∥Y ′ − Ỹ ′∥α + ∥RY −RỸ ∥2α,diag.

Warning: it is possible that D2α
X ∩D2α

X̃
= {0} ∈ Cα([0, T ], V )×Cα([0, T ],L(V,W )). The reason

is that we need RY and RỸ to be 2α-Hölder continuous on the diagonal, which means that the
small scale structures of Y ′

sXs,t and Ys,t have to cancel some of each other’s roughness. If the

two paths X and X̃ are too different, this will not be possible. Therefore, it is again not a good
idea to try and define dX,X̃,2α just as the norm on the intersection of the two spaces.

Also, note that again, dX,X̃,2α is only a semi-distance.

Remark: As is the case for ∥ · ∥X,2α, the inclusion of a term ∥Y − Ỹ ∥α into the semidistance
dX,X̃,2α is not necessary, as the next lemma shows.
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(4.38) Lemma

In the situation of (4.37), we have

∥Y − Ỹ ∥α ⩽ ∥Y ′∥∞∥X − X̃∥α + ∥X̃∥α|Ỹ ′
0 − Y ′

0 |+ Tα(1 + ∥X∥α)dX,X̃,2α(YX , ỸX̃).

Proof: exercise.

Next, we link the general rough integral back to general classical Itô and Stratonovich integrals.

(4.39) Proposition

Let B be a d-dimensional Brownian motion, (Ft) its filtration, and letB ≡ BItô be the Itô rough
path. Let (Y, Y ′) be a pair of stochastic processes on the same probability space Ω as B, and

assume that (Y (ω), Y ′(ω)) ∈ D2α
B(ω) for all ω ∈ Ω, so that the rough integral

∫ t
0
Ys(ω) dXs(ω)

exists for all ω and all t.

a) If we assume that Y is (Ft)-adapted, then the Itô integral
∫ t
0
YsdBs exists almost surely.

b) If we assume that both Y and Y ′ are (Ft)-adapted, then almost surely and simultaneously
for all t, ∫ t

0

Ys dBs =

∫ t

0

Ys dBs.

Proof: a) Since Y ∈ Cα and is adapted by assumption, Theorem (3.32) gives the existence of
the generalized Itô-integral.

b) The same theorem also gives the convergence of the approximating expressions
∑

[u,v)∈P∩[0,t) YuBu,v

in probability, and so the convergence is almost sure along a subsequence of partitions. On the
other hand, we have

lim
|P |→0

∑
[u,v)∈P∩[0,t)

(
Yu(ω)Bu,v(ω) + Y ′

u(ω)Bu,v(ω)
)
=

∫ t

0

Ys(ω) dBs(ω)

for all ω ∈ Ω and all t. On the subsequence of partitions and the set of measure one where the
Itô-integral is the pointwise limit of its approximations, we thus find

∆t(ω) :=
(∫ t

0

Ys dBs

)
(ω)−

∫ t

0

Ys(ω) dBs(ω) = lim
|P |→0

∑
[u,v)∈P∩[0,t)

Y ′
u(ω)Bu,v(ω) =: lim

|P |→0
∆P
t (ω),

where the limit exists as the difference of two existing limits. We want to show that it is equal
to zero.

For this, assume first that there exists K <∞ such that |Y ′(ω)| ⩽ K all ω, and fix a partition
P generated by the points 0 = t0 < t1 < . . . < tn = t. Then for i < n, we have

E(∆P
ti+1

| Fti) =
∑

[u,v)∈P∩[0,ti)

Y ′
uBu,v + Y ′

ti
E(Bti,ti+1

| Fti)︸ ︷︷ ︸
=0

almost surely. Here we used that Y ′ is adapted by assumption, and that Bu,v =
∫ v
u
Bu,r ⊗

dBr almost surely, and thus is Fv-measurable. The equality above implies that (∆P
ti
)i ⩽ n is a
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martingale, which in turn implies

E
(
(∆P

t )
2
)
= E

(( ∑
[u,v)∈P∩[0,t)

Y ′
uBu,v

)2)
=

∑
[u,v)∈P∩[0,t)

E
((
Y ′
uBu,v

)2)
⩽ K2

∑
[u,v)∈P∩[0,t)

E(B2
u,v).

By Brownian scaling (2.4), we have

E(B2
u,v) = E

((∫ v−u

0

Bs ⊗ dBs

)2)
= E

((
(v − u)

∫ 1

0

Bs ⊗ dBs

)2)
= c(v − u)2

for some c > 0, which implies that

E
(
(∆P

t )
2
)
⩽ cK2

∑
[u,v)∈P

(v − u)2 ⩽ cK2T |P | |P |→0−→ 0.

This shows that ∆P
t converges to zero almost surely along a subsequence, hence ∆t(ω) = 0

almost surely. Since it is continuous as the difference of two continuous expressions, this holds
simultaneously of all t, almost surely. This shows the claim for uniformly bounded Y ′.

For general Y we use localization. We define σn(ω) = inf{t ⩾ 0 : |Y ′
t (ω)| ⩾ n}, and define

(Y ′
t )

(n)(ω) = Y ′
t (ω)1l[0,σn(ω))(t). Since we did not change (Yt), the Itô-integral

∫ t
0
Ys dBs still

exists as the limit along the same subsequence of partitions and on the same set of probability
one as before. Also, the same calculation as above gives lim|P |→0∆

P,n
t (ω) = 0 on a set of

probability one, where ∆P,n
t is defined like ∆P

t with Y ′ replaced by (Y ′)(n). On the intersection
of those two sets of probability one, the limit

Jn(ω) := lim
|P |→0

( ∑
[u,v)∈P

Yu(ω)Bu,v(ω) + ∆P,n
t (ω)

)
exists and equals the Itô integral - note that the right hand side is not a rough integral as we de-
fined it, since (Y ′)(n) is possibly discontinuous and thus (Y, Y ′(n)) /∈ D2α

X . More precisely, we have
convergence for the particular sequence of partitions generated by choosing the subsequence
to get from convergence in probability to almost sure convergence, but have no guarantee for
other sequences of partitions. However, for all ω with σn(ω) > T , we have (Y ′

t )
(n)(ω) = Y ′

t (ω),

and so Jn(ω) =
∫ t
0
Ys(ω) dBs(ω). So the equality holds on the set

⋃
n∈N{σn ⩾ T}, which is a

set of probability one as ∥Y ′(ω)∥∞ <∞ for all ω due to path continuity. □

(4.40) Stratonovich integrals

For Y ∈ L2
T,loc, we say that the Stratonovich integral exists if the limit∫ t

0

Ys ◦ dBs :=

∫ t

0

Ys dBs +
1

2
lim
|P |→0

∑
[u,v)∈P

Yu,vBu,v

exists with respect to convergence in probability, where the first term on the right ist the
generalized Itô integral. Similar arguments as above show that for adapted processes (Ys)s ⩽ T ,
(Y ′

s )s ⩽ T with (Y (ω), Y ′(ω)) ∈ D2α
B(ω) for all ω, the Stratonovich integral exists and equals the

rough integral with respect to Stratonovich Brownian motion:∫ t

0

Ys ◦ dBs =

∫ t

0

Ys dB
Strat
s almost surely.
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Our next aim is an Itô-formula for rough integrals. For this, we introduce the following notion:

(4.41) Definition

Let X = (X,X) ∈ Cα. The map

[X] : [0, T ]2 → V ⊗ V, (s, t) 7→ [X]s,t := Xs,t ⊗Xs,t − 2SymXs,t

is called the bracket of X.

(4.42) Lemma

a) For u < v < w, [X]u,w = [X]u,v + [X]v,w, i.e. the bracket is the increment of a function
r 7→ [X]r = [X]0,r. This function is an element of C2α.

b) For two rough patss X = (X,X) and X̃ = (X, X̃) with the same first component, the

map (s, t) 7→ Sym(Xs,t − X̃s,t) is additive (i.e. the increment of a function). It is given by
1
2
([X̃]s,t − [X]s,t).

c) X is a geometric rough path if and only of [X] = 0.

Proof: a) By Chen’s relation

Sym(Xu,v) + Sym(Xv,w) = Sym(Xu,v + Xv,w) = Sym(Xu,w −Xu,v ⊗Xv,w)

= Sym(Xu,w)−
1

2
(Xu,v ⊗Xv,w +Xv,w ⊗Xu,v).

This gives

[X]u,v+[X]v,w = Xu,v⊗Xu,v+Xv,w⊗Xv,w+Xu,v⊗Xv,w+Xv,w⊗Xu,v−2Sym(Xu,w) = [X]u,w.

The regularity of the bracket is clear from its definition.

b) is immediate from a), and c) is by definition of geometric rough paths. □

(4.43) Itô’s formula for rough integrals

Let X ∈ Cα, f ∈ C3
b ([0, T ],L(V,W )) and α > 1/3. Then for all s < t,

f(Xt)− f(Xs) =

∫ t

s

Df(Xr) dXr +
1

2

∫ t

s

D2f(Xr)d[X]r,

where the last expression is a Young integral.

Proof: As usual, we consider the telescopic sum

f(Xt)− f(Xs) =
∑

[u,v)∈P∩[s,t)

(f(Xv)− f(Xu)). (∗)

Taylor expansion gives∣∣f(Xv)− f(Xu)−Df(Xu)Xu,v −
1

2
D2f(Xu)(Xu,v ⊗Xu,v)

∣∣ ⩽ ∥D3f∥∞|Xu,v|3.

Since |Xu,v|3 ⩽ (v − u)3α vanishes faster than linearly, the correction term disappears when
taking the limit |P | → 0 in (∗).
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On the other hand, the rough integral
∫ t
s
Df(Xs) dXs is the limit

lim
|P |→0

∑
[u,v)∈P∩[s,t)

(
Df(Xu)Xu,v +D2f(Xu)Xu,v

)
,

and

D2f(Xu)Xu,v = D2f(Xu)Sym(Xu,v).

The last equality is true because (D2f(Xu))
i,j = [∂i∂jf ](Xu) = (D2f(Xu))

j,i is a symmetric
matrix, while Anti(Xu,v) = Xu,v − Sym(Xu,v) is an antisymmetric one. For a symmetric matrix
A and antisymmetric matrix B, the contraction

∑n
i,j=1Ai,jBi,j = 0. Each component of the

vector D2f(Xu)Anti(Xu,v) is just such a contraction.

Therefore,

f(Xt)− f(Xs)−
∫ t

s

Df(Xr) dXr = lim
|P |→0

∑
[u,v)∈P∩[s,t)

1

2
D2f(Xu)

(
Xu,v ⊗Xu,v − 2SymXu,v

)︸ ︷︷ ︸
=[X]u,v

.

Since [Xu,v] is the increment of a C2α-function and s 7→ D2f(Xs) is in Cα, the claim now
follows from α > 1/3 and Youngs theorem (3.4). □

(4.44) Examples

a) Since BStrat is geometric, we have [BStrat]s,t = 0 for all s, t. Therefore

f(Bt)− f(Bs) =

∫ t

s

Df(Br) dB
Strat
r ,

i.e. the classical fundamental theorem of calculus holds. By (formally!) differentiating this with

respect to t, one obtains the
”
chain rule“ ∂tf(Bt) = Df(Bt)Ḃt, where of course the time

derivative Ḃ of B does not really make sense.

b) Since [BItô]s,t =
1
2
(t− s)id, Itô’s formula yields the classical Itô-Stratonovich-correction also

for rough integrals.

Our next aim is to define rough differential equations and prove existence of their solutions.
We prepare this by two technical estimates that tell us what happens when we plug controlled
rough paths into a smooth function φ.

(4.45) Proposition

Let X ∈ Cα([0, T ], V ), Y ∈ D2α
X ([0, T ],W ) and φ ∈ C2

b (W, W̄ ). Define Zt := φ(Yt) and Z ′
t =

([Dφ](Yt))Y
′
t ∈ L(V,W ′). Then

ZX := (Z,Z ′) ∈ D2α
X ([0, T ], W̄ ),

and

∥ZX∥X,2α ⩽ ∥Dφ∥∞∥YX∥X,2α + ∥D2φ∥∞
(
∥Y ∥2α + ∥Y ∥α∥Y ′∥∞

)
.
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Proof: Since
RZ
s,t = Zs,t − Z ′

sXs,t = φ(Yt)− φ(Ys)−Dφ(Ys) Y ′
sXs,t︸ ︷︷ ︸

=Ys,t+RY
s,t

,

and

φ(Yt)− φ(Ys)−Dφ(Ys)Ys,t =

∫ 1

0

dr

∫ r

0

duD2φ(Ys + uYs,t)Ys,t ⊗ Ys,t,

we obtain
∥RZ

s,t∥2α,diag ⩽ ∥D2φ∥∞∥Y ∥2α + ∥Dφ∥∞∥RY ∥2α,diag.
Since

Z ′
s,t =

(
Dφ(Yt)−Dφ(Ys)

)
Y ′
t+Dφ(Ys)(Y

′
t−Y ′

s ) =

∫ 1

0

D2φ(Ys+rYs,t)Ys,t⊗Y ′
t dr+Dφ(Ys)(Y

′
t−Y ′

s ),

we get
∥Z ′∥α ⩽ ∥D2φ∥∞∥Y ∥α∥Y ′∥∞ + ∥Dφ∥∞∥Y ′∥α.

Combining the two estimates yields the claim. □

(4.46) Proposition

LetX, X̃ ∈ Cα([0, T ], V ), YX ∈ D2α
X ([0, T ],W ), ỸX̃ ∈ D2α

X̃
([0, T ],W ), and φ ∈ C3

b (W, W̄ ). Define

ZX and Z̃X̃ as in (4.45). Then there exist constants C and C ′ that depend on the quantities

∥X∥α, ∥X̃∥α, ∥YX∥X,2α, |Y ′
0 |, ∥ỸX̃∥X̃,2α and |Ỹ ′

0 |, such that

dX,X̃,2α(ZX , Z̃X̃) ⩽ C∥φ∥C3
b

(
T 3α ∨ 1

)(
ρα(X, X̃) + |Y0 − Ỹ0|+ |Y ′

0 − Ỹ ′
0 |+ dX,X̃,2α(YX , ỸX̃)

)
,

and

∥ZX − Z̃X̃∥α ⩽ C ′∥φ∥C3
b

(
T 3α ∨ 1

)(
ρα(X, X̃) + |Y0 − Ỹ0|+ |Y ′

0 − Ỹ ′
0 |+ dX,X̃,2α(YX , ỸX̃)

)
.

This means that ZX and Z̃X are similar (s controlled rough paths) if X and X̃ are similar as
rough paths, and at the same time YX and ỸX̃ are similar as controlled rough paths.

Proof: The proof is not very difficult, but long and tedious. To not lose track of what we want
to do, let us start with some preparations. We define

∆ = ρα(X, X̃) + |Y0 − Ỹ0|+ |Y ′
0 − Ỹ ′

0 |+ ∥Y ′ − Ỹ ′∥α + ∥RY −RỸ ∥2α
and note that all estimates below must produce a factor of ∆; the prefactor is less important
as long as it is finite.

The proof will consist of splitting

dX,X̃,2α(ZX , Z̃X̃) = ∥Z ′ − Z̃ ′∥α + ∥RZ −RZ̃∥2α
into many pieces and proving for each part separately that it is bounded by a constant times
∆. For this, we will frequently use a few inequalities that we now collect. The first one is

∥Y ∥∞ ⩽ |Y0|+ Tα∥Y ∥α (I1).

For the second one, we invoke Lemma (4.38) and obtain

∥Y − Ỹ ∥α ⩽ C0(1 ∨ Tα)∆, (I2)
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where C1 only depends on the norms that C depends on. We will also need

∥Y ∥α ⩽ C(1 + ∥X∥α)
(
|Y ′

0 |+ Tα∥YX∥X,2α
)
⩽ C1(T

α ∨ 1)∥X∥α∥YX∥X,2α,0, (I3)

see Proposition (4.35). Finally, since we need to estimate Hölder norms, we will always try to
add and subtract terms so that we retain differences of the same quantity at different time
points. For this, the identity (for suitable f)

f(y)− f(x) =

∫ 1

0

∂uf(x+ u(y − x)) du =

∫ 1

0

[Df ](x+ u(y − x))du(y − x) (∗)

will be needed. A direct consequence of it is the Taylor estimate

f(x)− f(y) ⩽ ∥Df∥∞|x− y| (I4)

a) We start by investigating ∥Z ′ − Z̃ ′∥α = ∥Dφ(Y )Y ′ −Dφ(Ỹ )Ỹ ′∥α. For two functions f, g, we
have

(fg)s,t = ftgt − fsgs = fs,tgt + fsgs,t.

This means that

(fg)s,t − (f̃ g̃)s,t = fs,tgt + fsgs,t − f̃s,tg̃t − f̃sg̃s,t

= fs,t(gt − g̃t) + (fs,t − f̃s,t)g̃t + fs(gs,t − g̃s,t) + (fs − f̃s)g̃s,t.

We apply this to f = Dφ(Y ), g = Y ′, f̃ = Dφ(Ỹ ) and g̃ = Ỹ ′ and estimate the four terms on
the right hand side above.

(i) The first term is bounded by

|fs,t(gt − g̃t)| = |Dφ(Yt)−Dφ(Ys)||Y ′
t − Ỹ ′

t |
(I4)

⩽ ∥D2φ∥∞|Ys,t|∥Y ′ − Ỹ ′∥∞
(I1)

⩽ ∥D2φ∥∞|t− s|α∥Y ∥α
(
|Y ′

0 − Ỹ ′
0 |+ Tα∥Y ′ − Ỹ ′∥α

)
(I3)

⩽ |t− s|α∥φ∥C3
b
C1(T

α ∨ 1)∥X∥α∥YX∥X,2α,0(Tα ∨ 1)∆.

Dividing by |t− s|α and taking the supremum over s ̸= t, we obtain an estimate of the correct
form for the first term.

(ii): The second term is the most tricky one. It is given by

(fs,t − f̃s,t)g̃t = (Dφ(Y )−Dφ(Ỹ ))s,tỸ
′
t = (Dφ(Yt)−Dφ(Ys)−Dφ(Ỹt) +Dφ(Ỹs))Ỹ

′
t ,

and the problem is that we want a product of a term that is a difference of evaluations of the
same quantity at different times t, s, and another term that is the difference of a quantity with
a tilde and one without, at the same time. The most elegant way seems to use (∗) and obtain(

[Dφ](Y )− [Dφ](Ỹ )
)
s,t

=

∫ 1

0

dr
(
[D2φ](Ys + rYs,t)− [D2φ](Ỹs + rỸs,t)

)︸ ︷︷ ︸
=:δ(r,s,t)

Ys,t

+

∫ 1

0

dr [D2φ](Ỹs + rỸs,t)(Ys,t − Ỹs,t).
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We have

|δ(r, s, t)|
(I4)

⩽ ∥D3φ∥∞
∣∣Ys + rYs,t − Ỹs − rỸs,t

∣∣ ⩽ ∥D3φ∥∞
(
∥Ys − Ỹs∥∞ + r|Ys,t − Ỹs,t|

)
(I1)

⩽ ∥φ∥C3
b

(
|Y0 − Ỹ0|+ Tα∥Y − Ỹ ∥α + r|t− s|α∥Y − Ỹ ∥α

)
(I2)

⩽ ∥φ∥C3
b

(
|Y0 − Ỹ0|+ (1 + r)TαC0(1 ∨ Tα)∆

)
⩽ ∥φ∥C3

b

(
1 + (1 + r)C0(T

α ∨ T 2α)
)
∆.

Similarly,∣∣∣ ∫ 1

0

dr [D2φ](Ỹs+ rỸs,t)(Ys,t− Ỹs,t)
∣∣∣ ⩽ ∥D2φ∥∞|t− s|α∥Y − Ỹ ∥α

(I2)

⩽ ∥φ∥C3
b
|t− s|αC0(1∨Tα)∆.

Together, this gives

∥[Dφ](Y )− [Dφ](Ỹ )∥α ⩽ ∥φ∥C3
b
∆
((

1 +
3

2
C0(T

α ∨ T 2α)
)
∥Y ∥α + C0(1 ∨ Tα)

)
By using (I3) on the expression ∥Y ∥α (which produces another factor of Tα), we see that this
too is of the desired form.

(iii): The third term is

|fs(gs,t − g̃st)| ⩽ |Dφ(Ys)||Y ′
s,t − Ỹ ′

s,t| ⩽ ∥φ∥C3
b
∥Y ′ − Ỹ ′∥α|t− s|α,

which immediately leads to a bound of the correct form.

(iv): The fourth term is

|(fs − f̃s)g̃s,t| ⩽ |Dφ(Ys)−Dφ(Ỹs)||Ỹ ′
s,t| ⩽ ∥φ∥C3

b
∥Y − Ỹ ∥∞∥Ỹ ′∥α|t− s|α,

and now we apply inequalities (I1), (I2) and (I3) to obtain a suitable bound.

b) Next we investigate the term ∥RZ −RZ̃∥2α. We have

RZ
s,t = Zs,t −Dφ(Ys)Y

′
sXs,t = Zs,t −Dφ(Ys)Ys,t +Dφ(Ys)R

Y
s,t,

and so

RZ
s,t −RZ̃

s,t = Zs,t −Dφ(Ys)Ys,t − Z̃s,t −Dφ(Ỹs)Ỹs,t︸ ︷︷ ︸
=:As,t

+Dφ(Ys)R
Y
s,t −Dφ(Ỹs)R

Ỹ
s,t︸ ︷︷ ︸

=:Bs,t

.

As above, we get

Zs,t =

∫ 1

0

Dφ(Ys + rYs,t) drYs,t =

∫ 1

0

dr
(
Dφ(Ys)Ys,t +

∫ r

0

duD2φ(Ys + uYs,t)Ys,t ⊗ Ys,t

)
,

we rearrange this and obtain

As,t =

∫ 1

0

dr

∫ r

0

du
((
D2φ(Ys + uYs,t)−D2φ(Ỹs + uỸs,t)

)
Ys,t ⊗ Ys,t+

+D2φ(Ỹs + uỸs,t)
(
Ys,t ⊗ Ys,t − Ỹs,t ⊗ Ỹs,t

))
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We use inequalities (I4) and (I1) on the first term under the integral, and use the equality

f ⊗ f − f̃ ⊗ f̃ = (f − f̃)⊗ f + f̃ ⊗ (f − f̃) in the second term, and obtain

∥A∥2α ⩽ ∥D3φ∥∞
(
∥Y − Ỹ ∥∞ + Tα∥Y − Ỹ ∥α

)
∥Yα∥2 + ∥D2φ∥∞∥Y − Ỹ ∥α(∥Y ∥α + ∥Ỹ ∥α).

With the same considerations as in the first part, we get a bound of the form C3∥φ∥C3
b
(T 3α ∨

1)∆, with C3 depending on the suitable norms only. The final term is again easier, we have

∥B∥2α ⩽ ∥D2φ∥∞∥Y − Ỹ ∥∞∥RY ∥2α + ∥Dφ∥∞∥RY −RỸ ∥2α,

which again gives the correct bound with the same estimates we used above. We have now
shown the first claimed inequality. The second one follows from Lemma (4.38). □

(4.47) Definition

Let X ∈ Cα([0, T ], V ) and f ∈ C2
b (W,L(V,W )). We say that Y ∈ Cα([0, T ],W ) solves the

rough differential equation (RDE)

Ẏs = f(Ys)Ẋs, Y0 = ξ ∈ W

if

(i): with Y ′
s := f(Ys) we have YX := (Y, Y ′) ∈ D2α

X ([0, T ],W ),

(ii): Yt = ξ +
∫ t
0
f(Ys) dXs for all t ∈ [0, T ].

(4.48) Remark

Stochastic differential equations are often of the form

dYt = f(Yt) dt+ σ(Yt)dBt.

For RDE, this corresponds to

Ẏt = g(Yt) + h(Yt)Ẋt.

This case is actually already included in the above definition by adding a
”
smooth component“

to the original rough path: we choose

X̃t =

(
Xt

t

)
∈ Cα([0, T ], V × R)

and

X̃s,t =

(
Xs,t

∫ t
s
Xs,rdr∫ t

s
(r − s)dXs

1
2
(t− s)2

)
.

The integrals on the off-diagonal are simply Young integrals. Then X̃ is an α-rough path if X
is one, and the above RDE takes the form

Ẏt = F (Yt)
˙̃Xt with F (Yt) = (h(Yt), g(Yt)).

For the proof of the main result of this chapter, we need one more technical lemma.
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(4.49) Lemma: stability of rough integration

Let X = (X,X) ∈ Cα([0, T ], V ), YX ∈ D2α
X ([0, T ],L(V,W )),

ZX :=

∫ ·

0

Ys dXs, Z ′
X = Y.

Assume the same for the quantities X̃, ỸX̃ and Z̃X̃ . Then, with c(α) = 23αζ(α), we have

dX,X̃,2α(ZX , Z̃X̃) ⩽ ρα(X, X̃)
(
3c(α)Tα∥YX∥X,2α + 2|Y ′

0 |
)

+ ρα(0, X̃)
(
Tα∥Y ′ − Ỹ ′∥α + |Y ′

0 − Ỹ ′
0 |+ Tα(1 + ∥X∥α + c(α))dX,X̃,2α(YX , ỸX̃)

)
For the case X = X̃ and Y ′

0 = Ỹ ′
0 , the right hand side is thus bounded by a multiple of Tα.

Proof: We define

Ξs,t = YsXs,t + Y ′
sXs,t, Ξ̃s,t = ỸsX̃s,t + Ỹ ′

s X̃s,t, ∆s,t = Ξs,t − Ξ̃s,t.

Then as in (4.9 d) we obtain

∆u,w −∆u,v −∆v,w = −RY
u,vXv,w − Y ′

u,vXv,w +RỸ
u,vX̃v,w + Ỹ ′

u,vX̃v,w.

By the usual trick of writing fg − f̃ g̃ = f(g − g̃)− (f̃ − f)g̃, we obtain

∥δ∆∥3α := sup
u<v<w

1

|w − u|3α
|∆u,w −∆u,v −∆v,v|

⩽ ∥RY ∥2α∥X − X̃∥α + ∥X̃∥α∥RY −RỸ ∥2α + ∥Y ′∥α∥X− X̃∥2α + ∥X̃∥2α∥Y ′ − Ỹ ′∥α
⩽ ρα(X, X̃)∥YX∥X,2α + ρα(X̃,0)dX,X̃,2α(YX , ỸX̃).

By the Sewing Lemma (4.11), the intergal I∆ exists, and then it must equal IΞ− IΞ̃. Since

RZ
s,t =

∫ t

s

YrdXr − YsXs,t = (IΞ)s,t − Ξs,t + Y ′Xs,t,

and analogously for RZ̃
s,t, Lemma (4.11) gives

|RZ
s,t −RZ̃

s,t| ⩽ |(I∆)s,t −∆s,t|+ |Y ′
s ||Xs,t − X̃s,t|+ |X̃s,t||Y ′

s − Ỹ ′
s |

⩽ c(α)∥δ∆∥3α|t− s|3α + ∥Y ′∥∞ρα(X, X̃)|t− s|2α + ∥X̃∥2α∥Y ′ − Ỹ ′∥∞|t− s|2α

⩽ |t− s|2α
(
c(α)Tα

(
ρα(X, X̃)∥YX∥X,2α + ρα(X̃,0)dX,X̃,2α(YX , ỸX̃)

)
+

+ ρα(X, X̃)
(
|Y ′

0 |+ Tα∥Y ′∥α
)
+ ∥X̃∥2α

(
|Y ′

0 − Ỹ ′
0 |+ Tα∥Y ′ − Ỹ ′∥α

))
.

This gives the estimate on the ∥RZ − RZ̃∥2α-part of the reqiured distance. The estimate on
the part ∥Z ′ − Z̃ ′∥α follows from the fact that Z ′ = Y and Z̃ ′ = Ỹ , and from Lemma (4.38).
Combining all the terms and doing some cosmetic estimates give the claim. □

(4.50) Theorem: existence of solutions to RDE

Let ξ ∈ W , f ∈ C3
b (W,L(V,W )), X ∈ Cβ([0, T ],W ) for some β ∈ (1/3, 1/2]. Then the RDE

Ẏs = f(Ys)Ẋs, Y0 = ξ
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has a unique solution Y ∈ Cβ([0, T ],W ).

Proof: We will first prove that there exists a solution of slightly lower regularity, namely a
solution Y ∈ Cα([0, T ],W ) for some α ∈ (1/3, β). In a second step we will then show that this
solution must even be in Cβ([0, T ],W ). The reason for this step is that for X ∈ Cβ and small
enough δ > 0, we have

|||X|||δ,α := ∥X∥δ,α +
√
∥X∥δ,2α,diag ⩽ δβ−α |||X|||δ,β .

This means that for any given β-rough path X, we can make its α-rough norm as small as we
want by choosing δ small enough.

The strategy is then the same as for the existence proof for classical ordinary differential
equations. Let

Mδ : D2α
X ([0, δ],W ) → D2α

X ([0, δ],W ), (Y, Y ′) 7→
((
ξ +

∫ u

0

f(Ys) dXs

)
0 ⩽ u ⩽ δ

, f(Y )
)

be the
”
right hand side operator“ of the rough differential equation on the time interval [0, δ].

Mδ really mapsD2α
X ([0, δ],W ) to itself: for Y ∈ Cα([0, T ],W ), we have f(Y ) ∈ Cα([0, δ],L(V,W ))

by Proposition (4.45), and thus Mδ(Y, Y
′) ∈ D2α

X ([0, δ],W ) by Theorem (4.36 c).

Y ∈ D2α
X ([0, δ],W ) is a solution of the RDE (written in integral notation) if and only if for all

t ⩽ δ,

Yt = ξ +

∫ t

0

f(Ys) dXs, Y ′
t = f(Yt).

In other words, a solution to the RDE is a fixed point of the map Mδ. To prove the existence
of such a fixed point, we want to use Banach’s fixed point theorem. To do this, we will find a
closed subset

Uδ ⊂ D2α
X ([0, δ],W ) ⊂ Cα([0, δ],W )× C2α

2 ([0, δ],W ⊗W )

of the Banach space Cα([0, δ],W )× C2α
2 ([0, δ],W ⊗W ) and show that this subset is invariant

under the map Mδ. We will then show that Mδ is a contraction on Uδ with respect to the
metric dX,2α,0, where

dX,2α,0(YX , ỸX) := |Y0 − Ỹ0|+ |Y ′
0 − Ỹ ′

0 |+ ∥Y ′ − Ỹ ′∥α + ∥RY −RỸ ∥2α.
These are the ingredients needed to apply Banach’s fixed point theorem, which will then give
the existence of a unique fixed point, hence a unique solution.

Step 1: Definition and invariance of Uδ:

A subset of D2α
X ([0, δ],W ) that could contain a solution must certainly contain at least (at least

some) elements with the correct initial condition. Define therefore

D̃2α
X ≡ D̃2α

X ([0, δ],W ) := {YX ∈ D2α
X ([0, δ],W ) : Y0 = ξ, Y ′

0 = f(ξ)}.
Clearly Mδ(D̃2α

X ) = D̃2α
X , so this subset is already left invariant. But it is too large. What we

need is a small ball (in the dX,2α,0-metric) around a simple element from D̃2α
X . For (first order)

ordinary differential equations the right choice for the center of the ball would simply be the
constant function with the correct initial condition. This does not work here, since Y ∈ D2α

X

means that RY ∈ C2α
2 , but with Rs,t = Ys,t−Y ′

sXs,t the necessary cancellation of roughness does
not take place if we choose (Ys, Y

′
s ) = (ξ, f(ξ)); in this case Rs,t will usually be only in Cα

2 . This
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is why we choose as midpoint the controlled rough path ȲX = (Ȳ , Ȳ ′) with Ȳs = ξ + f(ξ)Xs

and Ȳ ′
s = f(ξ) for all s. Then RȲ ≡ 0, and thus for any YX ∈ D̃2α

X , we have

dX,2α,0(YX , ȲX) = ∥Y ′ − f(ξ)∥α + ∥RY ∥2α = ∥Y ′∥α + ∥RY ∥2α = ∥YX∥X,2α,
and we define

Uδ := {YX ∈ D̃2α
X : dX,2α,0(YX , ȲX) ⩽ 1} = {YX ∈ D̃2α

X : ∥YX∥X,2α ⩽ 1}.

Since we already know that D̃2α
X is invariant under Mδ, what remains to show is that there

exists δ0 > 0 so that for all δ < δ0 and all YY ∈ Uδ, we have ∥MδYX∥X,2α ⩽ 1. Let δ > 0. We
write

(Z,Z ′) := (f(Y ), f(Y )′) = (f(Y ), Df(Y )Y ′)

and estimate

∥Mδ(YX)∥X,2α =
∥∥∥(∫ ·

0

Z ′
r dXr, Z

)∥∥∥
X,2α

(4.36c)

⩽ ∥Z∥α + ∥Z ′∥∞∥X∥2α + C̃(α)(δα ∨ 1)
(
∥X∥α∥RZ∥2α + ∥X∥2α∥Z ′∥α

)
= (∗)

Since Zs,t = Z ′
sXs,t + RZ

s,t, we have ∥Z∥α ⩽ ∥Z ′∥∞∥X∥α + δα∥RZ∥2α, and we also have
∥Z ′∥∞ ⩽ |Z ′

0|+ δα∥Z ′∥α = |Df(ξ)f(ξ)|+ δα∥Z ′∥α. This gives

(∗) ⩽ (|Z ′
0|+ δα∥Z ′∥α) |||X|||α + δα∥RZ∥2α + (|Z ′

0|+ δα∥Z ′∥α) |||X|||2α
+ C̃(α)(δα ∨ 1)(∥RZ∥2α + ∥Z ′∥α)(|||X|||α + |||X|||2α),

and assuming δ ⩽ 1 we have

(∗) ⩽ C0(α)(|Z ′
0|+ ∥ZX∥X,2α)(|||X|||α + |||X|||2α + δα),

with the constant C0(α) only depending on α. By Proposition (4.45), we have

∥ZX∥X,2α ⩽ ∥Dφ∥∞ ∥YX∥X,2α︸ ︷︷ ︸
⩽ 1

+∥D2φ∥∞
(
∥Y ∥2α + ∥Y ∥α∥Y ′∥∞

)
.

As above (and keeping in mind that δ ⩽ 1), we find

∥Y ∥α ⩽ ∥Y ′∥∞∥X∥α + δα∥RY ∥2α ⩽ (|Y ′
0 |+ δα∥Y ′∥α)∥X∥α + δα∥RY ∥2α

⩽ (|f(ξ)|+ ∥YX∥X,2α)(1 + ∥X∥α) ⩽ (|f(ξ)|+ 1)(1 + ∥X∥α),
with a similar estimate for ∥Y ′∥∞. We find that there is a constant C(α, f) only depending on
α and ∥f∥C2

b
such that

∥Mδ(YX)∥X,2α ⩽ C(α, f)(|||X|||α + |||X|||2α + δα)

Since actually X ∈ Cβ, we can use the remark at the beginning of the proof to choose δ0 > 0 so
that for all δ < δ0, the right hand side is bounded by 1. This shows the invariance. Note that
δ0 does not depend on the starting point ξ, only on f(ξ), which is controlled by ∥f∥C2

b
.

Step 2: Contraction property.

We will show that there exists δ0 > 0 so that for all δ < δ0, and all YX , ỸX ∈ Uδ, we have

dX,2α,0(Mδ(YX),Mδ(ỸX)) ⩽
1

2
dX,2α,0(YX , ỸX). (∗∗)
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As above, we set (Z,Z ′) = (f(Y ), Df(Y )Y ′), use Lemma (4.49) in the special case X = X̃,
assume in addition that δ ⩽ 1, and obtain

dX,2α,0(Mδ(YX),Mδ(ỸX)) ⩽ δαρα(0,X)
(
∥Z ′ − Z̃ ′∥α + δ−α|Z ′

0 − Z̃ ′
0|︸ ︷︷ ︸

=0

)
+ (1 + ∥X∥α + c(α))dX,2α(ZX , Z̃X)

)
⩽ δα

(
2 + ∥X∥α + c(α)

)
ρα(0,X)dX,2α(ZX , Z̃X).

By Proposition (4.46), we have

dX,2α(ZX , Z̃X) ⩽ CdX,2α(YX , ỸX),

where the constant C only depends on ∥X∥α, ∥YX∥X,2α and ∥ỸX∥X,2α which are both bounded

by one, and |Y ′
0 | and |Ỹ ′

0 |, which are both equal to f(ξ). This means that

dX,2α,0(Mδ(YX),Mδ(ỸX)) ⩽ δαC1dX,2α(YX , ỸX)

with a constant that does not depend on ξ. Making δ small enough we obtain (∗∗).
Step 3: Wrapping up and going from Cα to Cβ.

By the previous two steps, we can now apply Banach’s fixed point theorem and conclude that
there exists a solution (Y, Y ′) ∈ D2α

X ([0, δ],W ) to the RDE for sufficiently small δ > 0. We can
then extend this solution to the whole time interval [0, T ] by iteration: having obtained the
solution in the interval [0, δ], we start at time δ with the initial condition ξδ = Yδ ∈ W , and
repeat the procedure. We have been careful to make sure that none of our estimates depends
on the initial condition of the RDE, so we find an interval of the same length δ for this starting
point. Now we have a solution on [0, 2δ] by just putting the two together (check that the
required equality still holds). Continuing in this way we can cover [0, T ].

What remains to show is that our solution is actually in D2β
X ([0, δ],W ) for the original β, i.e.

we need to show that ∥Y ′∥β <∞ and ∥RY ∥2β <∞. We know that

1

|t− s|β
|Ys,t| =

1

|t− s|β
∣∣∣Y ′
sXs,t +RY

s,t

∣∣∣ ⩽ ∥Y ′∥∞
1

|t− s|β
|Xs,t|+

1

|t− s|β
|RY

s,t|.

We assumed X ∈ Cβ, and we proved above that RY ∈ C2α
2 . Since 2α > 2/3 > 1/2 ⩾ β,

RY ∈ Cβ
2 , and taking suprema shows ∥Y ∥β <∞. Since Y ′ = f(Y ), this implies ∥Y ′∥β <∞. To

estimate RY , we use that Y solves the RDE: we have

RY
s,t = Ys,t − Y ′

sXs,t =

∫ t

s

f(Yr) dXr − f(Ys)Xs,t.

With Z = f(Y ), Z ′ = Df(Y )Y ′ as above we find

|RY
s,t| ⩽

∣∣∣ ∫ t

s

Zr dXr − ZsXs,t − Z ′
sXs,t

∣∣∣+ |Z ′
sXs,t|

(4.36a)

⩽ c(α)(∥X∥α∥RZ∥2α,diag + ∥Y ′∥α∥X∥2α,diag)|t− s|3α + ∥Z ′∥∞∥X∥2β|t− s|2β.

Since 3α > 1 ⩾ 2β, this shows ∥RY ∥2β,diag <∞. The proof is finished. □
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(4.51) Remark

If we only have f ∈ C3 instead of C3
b , the proof of the previous theorem can still be done. In

several places we were using that

f(Yt)− f(Ỹt) =

∫ 1

0

Df(Yt + r(Yt − Ỹt)) dr(Yt − Ỹt)

and similar expressions, and were then just estimating the integral by ∥Df∥∞. If instead we
estimate it by sup{|f(Yt + rỸt)| : YX ∈ Uδ(ξ)}, we get away with local boundedness of Df
instead of uniform boundedness, because Uδ is a bounded set. However, now all the estimates
will depend on ξ via the supremum above. We can still prove existence of the solution for some
interval δ and then iterate, but the next interval δ2 might be considerably shorter, and the sum
of all the δ that we can get in this way might be finite. This is not unexpected, because it
also happens with regular ODE: if f grows too quickly, there is explosion, i.e. solutions go to
infinity (ore become otherwise ill-defined) in finite time. In this case, one can obtain only local
solutions.

Our next big result will be about the continuity of the solution map to RDE: for two RDE

Ẏt = f(Y )Ẋ t and
˙̃Yt = f(Ỹ ) ˙̃X t where only the rough path

”
driving“ the RDE is different, the

distance of the solutions can be bounded by the distance of the rough paths plus the distance
of starting points. To make this theorem sufficiently powerful, we first need an a priori estimate
that tells us how large a solution to a RDE can at most get.

(4.52) A priori estimates

Let f ∈ C3
b , and let Y be a solution of the RDE Ẏt = f(Yt)Ẋ t, Y0 = ξ. Then

a) |f(Y )′s,t| ⩽ 2∥f∥2
C2

b
|Ys,t|.

b) |Rf(Y )
s,t | ⩽ ∥f∥C2

b
(1
2
|Ys,t|2 + |RY

s,t|).
c) Set ∥X∥α,h := sup{ 1

|t−s|α |Xs,t| : |t − s| ⩽ h}. Then there exists h0 > 0, depending only on

|||X|||α and ∥f∥C2
b
, such that for all h ⩽ h0, we have

∥RY ∥2α,h ⩽ 2
(
1
2
∥Y ∥α,h + ∥f∥C2

b
∥X∥1/22α,h,diag

)2
.

d) With c(α) = 23αζ(3α),

∥Y ∥α ⩽ (2c(α))
1−α
α T 1−α(∥f∥C2

b
|||X|||α)

1/α + ∥f∥C2
b
|||X|||α .

e) There exists a constant C ′ depending only on ∥f∥C2
b
, |||X|||α, α and T such that ∥YX∥X,2α ⩽ C ′.

Proof:

a) We have

f(Y )′s,t = Df(Yt)Y
′
t −Df(Ys)Y

′
s = Df(Yt)Y

′
s,t + (Df(Yt)−Df(Ys))Y

′
s

= Df(Yt)f(Y )s,t +Df(Y )s,tf(Ys),

and so
|f(Y )′s,t| ⩽ ∥Df∥2∞|Ys,t|+ ∥D2f∥∞|Ys,t|∥f∥∞,
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which implies the claim.

b) We have

R
f(Y )
s,t = f(Y )s,t −Df(Ys)Y

′
sXs,t = f(Y )s,t −Df(Ys)Ys,t +Df(Ys)R

Y
s,t.

The first two terms on the right hand side are bounded by 1
2
∥D2f∥∞|Ys,t|2, and the last one is

bounded by ∥Df∥∞|RY
s,t|. This proves the claim.

c) We have

RY
s,t = Ys,t − Y ′

sXs,t =

∫ t

s

f(Yr) dXr − f(Ys)Xs,t − f(Y )′sXs,t︸ ︷︷ ︸
=Ξs,t

+f(Y )′sXs,t.

By (4.36 a), we find that for s, t with |t− s| ⩽ h, and with c(α) = 23αζ(3α),

|RY
s,t| ⩽ c(α)

(
∥X∥α,h∥Rf(Y )∥2α,h,diag+∥f(Y )′∥α,h∥X∥2α,h,diag

)
|t−s|3α+∥f∥2C2

b
∥X∥2α,h,diag|t−s|2α.

By parts a) and b), we find

∥RY ∥2α,h,diag ⩽ c(α)hα
(
∥X∥α,h∥f∥C2

b
(1
2
∥Y ∥2α,h + ∥RY ∥2α,h,diag) + 2∥f∥2C2

b
∥X∥2α,h,diag∥Y ∥α,h

)
+ ∥f∥2C2

b
∥X∥2α,h,diag.

Now set h0 = (2c(α)∥f∥C2
b
|||X|||α)−1/α, then for all h ⩽ h0 we have

c(α)hα∥X∥α,h∥f∥C2
b
⩽

∥X∥α,h
2 |||X|||α

⩽
1

2
, and c(α)hα∥f∥C2

b
∥X∥1/22α,h,diag ⩽

√
∥X∥α,h

2 |||X|||α
⩽

1

2
.

Thus,

∥RY ∥2α,h,diag ⩽
1

4
∥Y ∥2α,h +

1

2
∥RY ∥2α,h,diag + ∥f∥C2

b
∥X∥1/22α,h,diag∥Y ∥α,h + ∥f∥2C2

b
∥X∥2α,h,diag.

Subtracting 1
2
∥RY ∥2α,h,diag on both sides and recognizing the perfect square gives the result.

d) Set D = ∥f∥C2
b
|||X|||α. We have Ys,t = f(Ys)Xs,t +RY

s,t, and thus

∥Y ∥α,h ⩽ ∥f∥∞∥X∥α,h + ∥RY ∥2α,h,diaghα
c)

⩽ D + 2hα
(
1
2
∥Y ∥α,h +D

)2
, (∗)

for h ⩽ h0 with h0 from c). We define J := {h ∈ (0, h0] : ∥Y ∥α,h ⩽ 2D} and note that by (∗),
J ̸= ∅. We claim that h1 := sup J = h0. To see this, first note that h 7→ g(h) := ∥Y ∥α,h is
continuous on (0, T ]. Indeed, g is clearly monotone increasing, and for all δ > 0,

g(h+ δ) ⩽ max
{
g(h), sup

{ |Ys,t|
|t− s|α

: h ⩽ |s− t| ⩽ h+ δ
}}

⩽ max
{
g(h),

1

hα
sup{|Ys,s+h| : 0 ⩽ s ⩽ T − h− δ}

+
1

hα
sup{|Ys+h,t| : 0 ⩽ s < t ⩽ T : 0 ⩽ t− (s+ h) ⩽ δ}

}
⩽ g(h) +

( δ
h

)α
g(δ).
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This shows continuity. Assume now that h1 < h0. Then ∥Y ∥α,h1 = g(h1) = 2D. Inserting this
into (∗), we obtain the inequality

2D ⩽ D + 8hα1D
2 =⇒ hα1 ⩾

1

8D
.

This means that h1 ⩾ (8D)−1/α. On the other hand, we have h0 = (2c(α)D)−1/α. It is not
hard to check (e.g. on the computer) that c(α) = 23αζ3/α ⩾ 8 for all α (we only would need
1 < α < 3/2), which means that h0 < (8D)−1/α. This shows that h1 = h0.

Let now 0 ⩽ s < t ⩽ T . We set s0 = s and choose n =
⌊
t−s
h0

⌋
⩾ 0 points s1, . . . , sn so that

si − si−1 = h0 for all i ⩾ 1. By the triangle inequality, we then have

|Ys,t| ⩽
n∑
j=1

|Ysi,si−1
|+ |Ysn,t| ⩽ n∥Y ∥α,h0hα0 + ∥Y ∥α,h0|t− s|α

⩽ 2D
(t− s

h0
hα0 + |t− s|α

)
⩽ 2D(t− s)α

((
T
h0

)1−α
+ 1

)
.

Since hα−1
0 = (2c(α)D)−1+1/α, we arrive at

|Ys,t|
|t− s|α

⩽ (2c(α))(1−α)/αT 1−αD1/α +D

The claim follows by taking the supremum over s ̸= t.

e) For h0 as in d), we have

∥RY ∥2α,diag ⩽ ∥RY ∥2α,h0,diag + sup
{ RY

s,t

|t− s|2α
: |t− s| ⩾ h0

}
⩽ ∥RY ∥2α,h,diag + h−2α

0 ∥RY ∥∞

⩽ ∥RY ∥2α,h,diag +
Tα

h2α0
(∥Y ∥α + ∥f∥∞∥X∥α).

We now use part c) to estimate ∥RY ∥2α,h,diag, producing a term ∥Y ∥α,h which we estimate by
∥Y ∥α. Now we apply part d) to both occurrances of ∥Y ∥α and obtain the result. □

(4.53) Theorem

Let f ∈ C3
b (W,L(V,W )), 1/3 < α ⩽ 1/2, and set

BαM := {X ∈ Cα([0, T ], V ) : |||X|||α ⩽M}.

Then there is a constant C depending only on α, ∥f∥C3
b
,M and T such that for all X, X̃ ∈ BαM ,

the solutions Y , Ỹ of the RDEs

Ẏt = f(Yt)Ẋ t, Y0 = ξ.

and
˙̃Yt = f(Ỹt)

˙̃X t, Ỹ0 = ξ̃,

satisfy the following two estimates:

a) dX,X̃,2α(YX , ỸX̃) ⩽ C
(
|ξ − ξ̃|+ ρα(X, X̃)

)
,

b) ∥Y − Ỹ ∥α ⩽ C
(
|ξ − ξ̃|+ ρα(X, X̃)

)
.
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Proof: We set

Zt = f(Yt), Z ′
t = Df(Yt)Y

′
t , and Wt =

∫ t

0

Zs dXs.

Since Y solves the RDE, we have Wt = Yt− ξ, and Y ′
t = f(Yt). We choose f(Yt) as a Gubinelli

derivative for Y − ξ as well. Then RY−ξ
s,t = RY

s,t.

We do the same for the quantities with the tilde. Then

dX,X̃,2α(YX , ỸX̃) = dX,X̃,2α(YX − ξ, ỸX̃ − ξ̃).

then follows from the definition of rough path distance and from the equality RY−ξ
s,t = RY

s,t.

Let δ > 0, we will later choose it small enough. Lemma (4.49) with T = δ now gives

dX,X̃,2α(YX , ỸX̃) = dX,X̃,2α(WX , W̃X̃) ⩽ ρα(X, X̃)
(
3c(α)δα∥ZX∥X,2α + 2|Z ′

0|
)

+ ρα(0,X)
(
δα∥Z ′ − Z̃ ′∥α + |Z ′

0 − Z̃ ′
0|+ δα(1 + ∥X∥α + c(α))dX,X̃,2α(ZX , Z̃X̃)

)
By Proposition (4.45), ∥ZX∥X,2α is bounded by a constant only depending on ∥f∥C2

b
and

∥YX∥X,2α, and |Z ′
0| ⩽ |Df(Y0)||Y ′

0 | ⩽ ∥f∥C2
b
|f(Y0)| ⩽ ∥f∥2

C2
b
. By Theorem (4.52), ∥YX∥X,2α

is itself bounded by a constant only depending on ∥f∥C2
b
, |||X|||α, α and T , and thus the factor

multiplying ρα(X, X̃) only depends on these quantities. Turning to the quantities in the second
line, we have

Z ′
0 − Z̃ ′

0 = Df(Y0)Y
′
0 −Df(Ỹ0)Ỹ

′
0 = Df(ξ)f(ξ)−Df(ξ̃)f(ξ̃),

and by the usual gh− g̃h̃ = g(h− h̃) + (g − g̃)h trick, we find that

|Z ′
0 − Z̃ ′

0| ⩽ ∥Df∥∞|f(ξ)− f(ξ̃)|+ ∥f∥∞|Df(ξ)−Df(ξ̃)| ⩽ ∥f∥2C2
b
|ξ − ξ̃|.

By definition, ∥Z ′ − Z̃ ′∥α ⩽ dX,X̃,2α(ZX , Z̃X̃), and by Proposition (4.46),

dX,X̃,2α(ZX , Z̃X̃) ⩽ C∥f∥C3
b

(
δ3α ∨ 1

)(
ρα(X, X̃) + |Y0 − Ỹ0|+ |Y ′

0 − Ỹ ′
0 |+ dX,X̃,2α(YX , ỸX̃)

)
.

We have |Y0− Ỹ0| = |ξ− ξ̃|, and estimate |Y ′
0 − Ỹ ′

0 | = |f(ξ)− f(ξ̃)| ⩽ ∥f∥C1
b
|ξ− ξ̃|. In summary,

we find two constants C̄1, C̄2 and C̄3 only depending on ∥f∥C2
b
, |||X|||α, α and T such that

dX,X̃,2α(YX , ỸX̃) ⩽ C̄1ρα(X, X̃) + C̄2|ξ − ξ̃|+ C̄3δ
αdX,X̃,2α(YX , ỸX̃).

It remains to choose δ such that C̄3δ
α = 1/2 and rearrange, to find that on [0, δ] we have

dX,X̃,2α(YX , ỸX̃) ⩽ 2(C̄1ρα(X, X̃) + C̄2|ξ − ξ̃|). (∗)
It remains to cover the whole interval [0, T ] instead of just [0, δ]. For this, first note that the size
of δ only depends on C̄3 and thus only on the

”
allowed“ quantities. We have |Yδ− Ỹδ| ⩽ δα∥Y −

Ỹ ∥α,δ, and by Lemma (4.38) and similar estimates as above, we have

∥Y − Ỹ ∥α,δ ⩽ ∥f∥∞ρα(X, X̃) +M∥Df∥∞|ξ − ξ̃|+ δα(1 +M)dX,X̃,2α(YX , ỸX̃),

where the controlled rough path distance is over the interval [0, δ] and we therefore can bound
it by (∗). We thus find that

|Yδ − Ỹδ| ⩽ C̄4ρα(X, X̃) + C̄5|ξ − ξ̃|,
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with constants C̄4 and C̄5 only depending on allowed constants. This enables us to choose Yδ
and Ỹδ as initial conditions for the RDEs on the interval [δ, 2δ], repeat the above estimates
(with the same constants as in the previous interval), and find that on [0, 2δ], we have

dX,X̃,2α(YX , ỸX̃) ⩽ 2(C̄1ρα(X, X̃) + C̄2|ξ − ξ̃|) + 2(C̄1ρα(X, X̃) + C̄4ρα(X, X̃) + C̄5|ξ − ξ̃|).

We only need to repeat this procedure a number of times that only depends on the allowed
constants, and thus obtain the desired estimate.

For part b), we use Lemma (4.38) and once more the estimate |Ỹ ′
0 − Y ′

0 | ⩽ ∥Df∥∞|ξ̃ − ξ|. □

(4.54) Remark

Theorem (4.53) is probably the most important result in the theory of rough differential equa-
tions (and needs almost all of the theory we have developed so far). Why is it so important?

In many applications, a RDE of the type

Ẏt = f(Yt) + g(Yt)Ẋ t

is interpreted as a physical system that is perturbed by
”
random“ noise: the idealized, noiseless

system would fulfil the ODE Ẏt = f(Yt), but the presence of the noise (X t) changes the
behaviour of the system - the factor g(Yt) just tells us how important the noise is at different
values of Yt.

The statement of Theorem (4.53) now says that two realizations of the
”
random noise“ (really:

two rough paths, that need not be and usually are not random at all) lead to very similar
solutions if the are similar in rough path distance. The last bit is really crucial: if we would not
introduce the second rough path component, there is no chance to obtain such a result e.g. for
Brownian rough paths. A corresponding negative result is cited in Friz/Hairer as Proposition
1.1. Apart from the intuitive appeal of the statement that

”
similar perturbations lead to similar

solutions“, Theorem (4.53) will also be useful for rather quick proofs of important results - see
below.

It seems that all of the above results are limited by the requirement that f is uniformly bounded.
However, in many cases this can be circumvented: Assume that (as will be the case below) we

have a sequence X(n) of rough paths that converges to X in rough path distance. Consider the
RDE Ẏt = f(Yt)Ẋ t, similar for Ẏ (n). Assume that f ∈ C3, but not bounded. Then the solution
Y will exist, possibly only on a (small) interval [0, T ]. Since the solution is continuous, M :=

supt ⩽ T |Yt| is finite. We can thus replace f by a bounded C3-function f̃ so that f(ξ) = f̃(ξ)

for all |ξ| ⩽ 2M . For this function, now all our theorems hold. In particular, the solution Ỹ (n)

of the RDE with f̃ will be close to Y when n is large, and thus for all large enough n will fulfil

supt ⩽ T |Y
(n)
t | ⩽ 3/2M . This means that it is equal to the solution for the original f , and we

have extended our approximation result to f .

(4.55) Theorem

Let f ∈ C3
b (V,L(V,W )), B a Brownian motion, BItô as in (4.20). a) For all ω ∈ Ω, let Y (ω) be
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the solution to the RDE
Ẏt(ω) = f(Yt(ω))Ḃ

Itô

t (ω).

Then the random variable ω 7→ (Yt(ω))t∈[0,T ] is a strong solution of the SDE

dYt = f(Yt) dBt

in the sense of Definition (3.49). b) If BItô is replaced by BStrat above, then the solution Y of
the RDE is a solution of the stochastic Stratonovich differential equation

Yt = Y0 +

∫ t

0

f(Ys) ◦ dBs.

Proof: The only thing we need to show is that Y is progressively measurable. Then (4.39) and

(4.40) will ensure that the SDE hold in integral sense. We start with BStrat. Let B(n) be the
piecewise dyadic approximations of Brownian motion as given in (4.30), then Theorem (4.31)

guarantees that ρ(B(n),BStrat) → 0 as n → ∞, P-almost surely. We immediately restrict our
probability space to the case where the convergence holds. By Theorem (4.53), the map

Cαg ([0, T ], V ) → Cα([0, T ],L(V,W )), X 7→ the solution of the RDE Ẏt = f(Yt)Ẋ t

is locally Lipschitz, in particular continuous. Therefore the solutions Y (n)(ω) of the approximate

RDE Ẏ
(n)
t = f(Y

(n)
t )Ẋ

(n)

t converge to Y in Cα. It is not hard to check that each Y (n) (which
is really the solution of an ordinary differential equation) is progressively measurable, and thus
the limit is progressively measurable too. The claim thus follows in the case of BStrat. For BItô,
just use the formula BItô = BStrat + 1

2
(t− s)I and proceed as above. □

(4.56) Theorem (Wong-Zakai; Clark; Stroock-Varadhan)

Let B be a Brownian motion, f ∈ C3
b , Y the solution of the Stratonovich SDE

dYt = g(Yt) dt+ f(Yt) ◦ dBt.

For each n ∈ N and each ω ∈ Ω, let Y (n) be the solution of the random ODE

∂tY
(n)
t (ω) = g(Y

(n)
t (ω)) + f(Y

(n)
t (ω))∂tB

(n)
t (ω),

where B(n) is the dyadic linear approximation of B, and we set ∂tB
(n)
t = 0 on the separating

points of the dyadic partition. Then for all α < 1/2,

lim
n→∞

∥Y (ω)− Y (n)(ω)∥α,0 = 0 P-almost surely.

Proof: By Theorem (4.31), ρα(B
(n),BStrat) → 0 as n → ∞, P-almost surely. By Theorem

(4.53), ∥Y − Y (n)∥α ⩽ Cρα(B
(n),BStrat); the initial condition is the same for all n. This shows

the claim. □


