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Zusammenfassung

Die vorliegende Arbeit befasst sich mit der optimalen Steuerung hyperbolischer
Bilanzgleichungen mit schaltenden Steuerungen und Zustandsschranken. Diese
Thematik kann am Beispiel des Gastransports in Netzwerken motiviert werden.
Die mathematische Beschreibung des Gasflusses erfolgt durch die kompressiblen
Eulergleichungen, die ein gekoppeltes System hyperbolischer Bilanzgleichungen
bilden. Netzwerkkomponenten wie Verzweigungen, Ventile, Schieber und Verdichter
werden durch geeignete Knoten- bzw. Randbedingungen modelliert. Schaltende
Steuerungen, welche abrupte Änderungen der Steuerungsparameter beschreiben,
treten hier beispielsweise durch das Öffnen und Schließen von Ventilen auf. Ziel
ist die Optimierung der Druck- und Geschwindigkeitsverteilung des transportierten
Gases durch die zeitabhängige Steuerung der Netzwerkkomponenten, wobei als weit-
ere Anforderung der resultierende Druck im gesamten Netzwerk innerhalb eines
gewissen Toleranzbereichs liegen muss. Dieser Bereich wird mathematisch durch
Zustandsschranken modelliert. Als weiteres Beispiel sei an dieser Stelle die Op-
timierung des Verkehrsflusses in Netzwerken genannt, der im LWR-Modell durch
eine skalare hyperbolische Bilanzgleichung beschrieben wird. Schaltende Steuerun-
gen treten hier in Form der Schaltzeitpunkte von Ampeln auf, durch deren Wahl
der Verkehrsfluss optimiert werden soll. Zustandsschranken treten in Form der
Forderung auf, dass in gewissen Bereichen die Verkehrdichte unterhalb eines fest-
gelegten Wertes liegen soll.
Die hier aufgezählten Beispiele führen jeweils zu einem Optimalsteuerungsproblem

mit hyperbolischen Bilanzgleichungen als Nebenbedingungen.
Die Frage nach der Existenz und Eindeutigkeit von Lösungen hyperbolischer Bi-

lanzgleichungen auf unbeschränkten Gebieten mit Anfangsbedingungen wurde berei-
ts in einer Vielzahl von Veröffentlichungen diskutiert. Die Schwierigkeit dieser
Fragestellung beruht darauf, dass selbst bei glatten Daten die Lösungen nach
endlicher Zeit Unstetigkeiten ausbilden können, sodass nur die Existenz schwacher
Lösungen erwartet werden kann. Da diese jedoch aufgrund der auftretenden Un-
stetigkeiten nicht eindeutig sind, wird unter dieser Vielzahl schwacher Lösungen
die physikalisch sinnvolle Lösung, welche durch den eindeutigen Grenzwert der
parabolischen Regularisierung gegeben ist, mittels geeigneter Entropiebedingungen
charakterisiert. Die Existenz und Eindeutigkeit solcher Entropielösungen wurde im
Fall skalarer Bilanzgleichungen weitreichend beantwortet. Betrachtet man Systeme,
so gibt es im Fall einer Ortsdimension entsprechende Resultate bezüglich der Ex-
istenz und Eindeutigkeit von Lösungen, wobei der Fall mehrerer Ortsdimensionen
nach wie vor ein offenes Problem darstellt. Betrachtet man hyperbolische Bilanz-
gleichungen auf beschränkten Gebieten, so stellt sich zusätzlich die Frage nach einer
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geeigneten Formulierung der Randbedingungen, die zu einem wohlgestellten Prob-
lem führt. Eine passende Formulierung wurde mittels Grenzwertbetrachtung der
parabolischen Regularisierung gewonnen, in welcher die Spur der Lösung nur am
Einströmrand mit den vorgegebenen Randdaten übereinstimmen muss.
Die einführenden Beispiele zeigen, dass neben der Frage der Existenz und

Eindeutigkeit von Lösungen in vielen Anwendungen insbesondere die optimale
Steuerung der hyperbolischen Bilanzgleichungen eine wichtige Rolle spielt. Das
Auftreten von Unstetigkeiten in Entropielösungen führt dazu, dass die Steuerungs-
Zustandsabbildung nur in sehr schwachen Räumen differenzierbar ist, sodass die Dif-
ferenzierbarkeit des reduzierten Zielfunktionals nicht durch Verwendung von Stan-
dardargumenten hergeleitet werden kann. Es wurden bereits einige Konzepte zur
Lösung dieser Problematik entwickelt. Die bisherigen Ansätze für den Systemfall
setzen jedoch entweder starke Annahmen an die Lösungsstruktur voraus oder sind
auf hyperbolische Erhaltungsgleichungen beschränkt und nicht auf Bilanzgleichun-
gen erweiterbar. Daher beschränken wir uns in der vorliegenden Arbeit auf skalare
Bilanzgleichungen in 1D.
Für diesen Fall wurde innerhalb der letzten Jahre in [69, 81] ein Sensitivitäts-

und Adjungiertenkalkül entwickelt, wobei keine speziellen Forderungen an die
Lösungsstruktur gestellt werden. Hauptwerkzeug ist dabei das in [81] einge-
führte Konzept der Shift-Differenzierbarkeit . Es wurde gezeigt, dass die Kom-
position einer Reihe von Zielfunktionalen mit einer shift-differenzierbaren Funk-
tion Fréchet-differenzierbar ist. Auf Grundlage des von Dafermos entwickelten
Konzepts der verallgemeinerten Charakteristiken wurde in [81] die Lösungsstruk-
tur von Entropielösungen mit beschränkter Variation analysiert. Unter Ver-
wendung dieser Struktur wurde im Anschluss die Shift-Differenzierbarkeit der
Steuerungs-Zustandsabbildung und somit die Fréchet-Differenzierbarkeit des re-
duzierten Zielfunktionals nachgewiesen. Diese Ergebnisse wurden in [69] auf
Anfangs-Randwertprobleme erweitert.
Unter Verwendung des in [69, 81] entwickelten Sensitivitäts- und Ad-

jungiertenkalküls sollen in der vorliegenden Arbeit notwendige Optimalitätsbedin-
gungen für Probleme mit skalaren hyperbolischen Bilanzgleichungen und punk-
tweisen Zustandsschranken hergeleitet werden. Hierbei stellen die punktweisen
Zustandsschranken eine besondere Herausforderung dar. Der Grund hierfür liegt
unter anderem darin, dass die benötigte Constraint-Qualification Stetigkeit der
Steuerungs-Zustandsabbildung nach L∞ voraussetzt. Aufgrund der Unstetigkeiten
in der Entropielösung ist dies jedoch nicht gegeben. Mithilfe der besonderen
Struktur von BV-Entropielösungen, welche bereits zur Herleitung der Shift-
Differenzierbarkeit eine Schlüsselrolle spielte, werden in der vorliegenden Arbeit
neue Zustandsvariablen eingeführt. Unter Verwendung dieser neuen Variablen wer-
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den in einem ersten Schritt notwendige Optimalitätsbedingungen hergeleitet. Da
es sich bei den Lagrange-Multiplikatoren um Maße handelt, ist die Berechnung
einer Lösung des Optimalitätssystems sehr kompliziert. Daher soll in einem zweiten
Schritt der Moreau-Yosida-Regularisierungsansatz zur Behandlung der Zustandss-
chranken diskutiert werden. Aufbauend auf einer Reihe von Vorarbeiten zu dem
elliptischen und parabolischen Fall soll für das in dieser Arbeit betrachtete Opti-
malsteuerungsproblem eine Konvergenzanalyse der Moreau-Yosida-Regularisierung
durchgeführt werden.
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CHA PTER 1
Introduction

The present thesis deals with the optimal control of hyperbolic balance laws with
switching controls and state constraints. This is motivated by the example of gas
transport in networks, where the gas flow is described by the solution of the com-
pressible Euler equations which form a coupled system of hyperbolic balance laws.
Network components like junctions, valves, compressor stations are modeled by
appropriate node and boundary conditions, see, e.g., [6, 25]. Fast changes of param-
eters between different modes, e.g., the opening and closing of valves, are charac-
terized by the term switching controls. The goal is to optimize the gas flow in the
network through the time-dependent control of the network components such that
in addition the pressure and velocity lies within lower and upper bounds. These
bounds are mathematically described by state constraints.
Another motivation for the problem considered in this thesis is the optimal control

of traffic flow, see, e.g., [36, 69]. The traffic flow is mathematically described by the
so-called LWR-model which is named after Lighthill, Whitham and Richards who
developed this model in [56] and [74]. The optimal control problem in [69] consists of
choosing the switching times of a traffic light such that the resulting traffic density
distribution is optimal with respect to the considered cost functional, see also [71].
The switching of the traffic light corresponds to the opening and closing of a valve
in a gas network and can be considered as a switching control. If the traffic density
is required to stay below a certain value on some parts of the road, we again have
to deal with state constraints.
As we can see, both examples lead to an optimal control problem involving switch-

ing controls, state constraints and hyperbolic balance laws. In general, a balance law

1
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is a partial differential equations of the form

yt +

d∑
i=1

((fi(y))xi = g(t, x, y) on ΩT :=]0, T [×Ω, (1.0.1)

where Ω ⊂ Rd, f1, . . . , fd : Rp → Rp and g : [0,∞[×Rd×Rp → Rp. In the following,
we say that (1.0.1) is hyperbolic if for all v = (v1, . . . , vd) ∈ Rd with ‖v‖2 = 1 and
all u ∈ Rp the matrix

A(v, u) :=

d∑
i=1

viDfi(u)

has p real eigenvalues and is diagonalizable. If in addition the eigenvalues all have
distinct values, then we call (1.0.1) strictly hyperbolic, cf. [51].
If g ≡ 0, then we say that (1.0.1) is a conservation law . For the case that p = 1,

(1.0.1) is called scalar balance law , for p > 1, (1.0.1) is a system of balance laws,
respectively. One can easily see that scalar balance laws are always strictly hyper-
bolic.
Solutions to partial differential equations of type (1.0.1) can develop discontinu-

ities, so-called shock-curves, even if one considers smooth data, see, e.g., [47, 51].
Therefore, classical solutions fail to exist on the whole time interval such that one
has to consider weak solutions, which are due to the shock-curves in general not
unique, see for example [49]. In order to solve the problem of this nonuniqueness,
Lax, Kružkov and Oleinik introduce in [49, 47, 67] admissible conditions that sin-
gle out the physically relevant entropy solution, which is obtained by the so-called
vanishing viscosity method , see [42]. The authors consider initial value problems,
i.e., Ω = Rd and (1.0.1) is endowed with initial conditions. In [50], Lax derives an
explicit formula for the solution of scalar hyperbolic conservation laws. Considering
scalar balance laws, Kružkov proves existence and uniqueness of entropy solutions.
In [7], Bardos, LeRoux and Nédélec examine scalar hyperbolic balance laws on

bounded domains. Using the vanishing viscosity method, the authors derive a proper
formulation of Dirichlet boundary conditions, which are firstly only well-defined for
functions with bounded variation. The theory of Bardos, LeRoux and Nédélec is
extended to the L∞-setting in [68, 59]. Moreover, Otto proves in [68] that this
formulation is equivalent to the one derived in [7] as long as the solution admits
boundary traces. In [23], Coclite, Karlsen and Kwon show the existence of such
boundary traces under additional assumptions, see also [84].
For the case of systems of one dimensional hyperbolic balance laws on unbounded

domains, there are several publications on the existence and uniqueness of entropy
solutions, see, e.g., [1, 12, 13, 14, 28, 29]. The case of systems with d > 1 in (1.0.1)
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is still an open problem. In order to compute entropy solutions, there are a variety
of numerical schemes for hyperbolic balance laws, see, e.g., [44, 54, 66, 85].
As we have seen, there is a high number of contribution to the question of existence

and uniqueness of solutions to (1.0.1). Nonetheless, the motivating example of gas
networks shows that beyond the question of existence and uniqueness, the optimal
control of hyperbolic balance laws is an important issue which has been discussed by
many authors in the recent years, see e.g., [3, 8, 10, 15, 18, 21, 22, 26, 27, 36, 52, 70,
81, 78]. For problems without state constraints, the existence of optimal solutions
is proved for example in [3, 4, 27].
In order to compute such an optimal solution with e.g., some descent method, one

needs the gradient of the reduced cost functional. However, due to the shock-curves
appearing in the solutions to hyperbolic balance laws, the corresponding control-to-
state mapping is not differentiable to L1, see for example [16, 15, 10], such that one
cannot use standard methods to deduce the Fréchet-differentiability of the reduced
cost functional.
There are several authors who developed different methods to cope with

this problem. In the following, we list some of these methods and examine
the underlying assumptions. Bressan and Marson introduce in [17] so-called
generalized tangent vectors yielding an approximation in L1 of the control-to-state
mapping, see also [16, 18]. These generalized tangent vectors consists of the sensitiv-
ities of the smooth parts and of the shock-curves. The authors require the solution
of the hyperbolic balance law to be piecewise smooth and only allow variations of
the control which preserve the structure. In [55], it is proved that these requirements
on the structure hold locally if one considers generalized Riemann problems. The
variational calculus which is developed in [10] does not require piecewise smooth
solutions, but is only valid for the case of conservation laws and seems not to be
extendable to balance laws.
Since we want to examine hyperbolic balance laws with g 6≡ 0, the analysis in the

present thesis builds up on the notion of shift-differentiability which is developed
by Ulbrich in [81] and implies the Fréchet-differentiability for the considered cost
functional, see also [82]. These results are based on the structure of solutions with
bounded variation. This structure is analyzed in [81] by using the concept of gen-
eralized characteristics of Dafermos in [31]. Moreover, Ulbrich derives an adjoint
representation of the gradient of the reduced cost functional. In [69], Pfaff extends
these results to scalar hyperbolic balance laws on bounded domains, see also [70, 71].
Apart from the difficult issue concerning the differentiability of the control-to-state

mapping, also the treatment of the pointwise state constraints poses some challenges.
The goal of the present thesis is to combine the concepts of [69, 81] with those that
were developed for the analysis and approximation of optimal control problems with
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pointwise state constraints. The latter concepts are based on [19], where Casas con-
siders a quadratic problem for elliptic equations and pointwise state constraints.
He derives optimality conditions where the Lagrange multipliers turn out to be
measures. In [20], the authors consider an elliptic problem where in addition to
the pointwise state constraints also gradient constraints are included. In [72, 73],
optimal control problems for parabolic equations with pointwise constraints are dis-
cussed and necessary optimality conditions are derived. One method to approximate
a solution of this optimality system is the so-called Moreau-Yosida regularization,
which is first introduced by Ito and Kunisch in [43], see also [9]. This approach is
applied to elliptic problems, e.g., in [62, 63], to parabolic problems in [64] and to
the Navier-Stokes equations in [32]. Moreover, primal-dual path following concepts
in connection with the Moreau-Yosida regularization are discussed in [37, 38, 39].
This approach can in addition be used for the treatment of problems with gradient
constraints, see, e.g., [38] or [86]. In the present thesis we apply this regularization
method to optimal control problems with hyperbolic balance laws and pointwise
state constraints. Besides the Moreau-Yosida regularization there are also alterna-
tive approaches like for example the virtual control concept which is proposed in [46]
for the regularization of a linear elliptic problem with pointwise state constraints.
Moreover, the authors in [61] propose a Lavrentiev type regularization. This con-
cept is discussed in [40] for elliptic optimal control problems and in [65] for parabolic
problems.
The first aim of this thesis is to derive necessary optimality conditions for optimal

control problems with hyperbolic balance laws and state constraints. In a further
step, we approximate the corresponding optimality system by using Moreau-Yosida
type regularizations. This leads to the second aim of this thesis, namely finding
the answer to the question in which sense the optimality systems of the regularized
problems converge to the one of the original optimal control problem with pointwise
state constraints. This is very challenging since the shock-curves appearing in solu-
tions of hyperbolic balance laws prohibit the use of standard methods to derive the
Fréchet-differentiability of the underlying cost functional. Furthermore, since we
consider state constraints, the solution of the hyperbolic balance law must at least
have L∞-regularity in order to assure that a Robinson type constraint qualification
is possible to be satisfied. However, due to the shock-curves, the control-to-state
mapping to L∞ is not even continuous. To cope with these problems, we use the
concepts developed by Pfaff and Ulbrich in [69, 81].
This thesis is organized as follows: In Chapter 2, we introduce the notation as well

as some basic definitions and results which are used in this thesis. In Chapter 3, we
first recall some results on the existence, uniqueness and stability of entropy solutions
on bounded domains. Moreover, we introduce the optimal control problem and use
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the concepts of [69, 81] to derive the Fréchet-differentiability of the reduced cost
functional. Following the ideas of [71], the sensitivity and adjoint calculus developed
in [69, 81] will be extended to the case that the shifting of rarefaction centers in
the initial and boundary data is allowed. Building up on these results, we derive
necessary optimality conditions for the state-constrained problem in Chapter 4.
Although there are various contributions discussing optimal control problems with
pointwise state constraints, to the best of our knowledge the present work is the
first attempt to derive optimality conditions for problems governed by hyperbolic
balance laws and pointwise state constraints.
In Chapter 5, we will apply the Moreau-Yosida regularization approach to the

state-constrained optimal control problem and prove that the regularized problems
converge to the optimal control problem with state constraints. As already men-
tioned, this approach has already been discussed by several authors. But to the best
of our knowledge, this is the first work analyzing Moreau-Yosida regularization for
problems governed by hyperbolic balance laws.
In the last chapter, we will give a summary of the main results in this thesis and

give a brief outlook to possible extensions.
We note that a paper dealing with the results of this thesis is in preparation and

will appear soon as a joint work with Stefan Ulbrich.





CHA PTER 2
Notation, definitions and basic

results

The basic notation, definitions and results that are used in the present thesis are
introduced in this chapter. Most of the definitions and notations are also used in
[69] and [81]. The current chapter is organized as follows: In §2.1, we introduce
the basic notation. The definitions of Banach spaces and Hilbert spaces as well
as some basic results are provided in §2.2. In §2.3, we give an overview of some
classical function spaces that are used in this thesis. In §2.4, the basic definition
of distributions and the concept of distributional derivatives are introduced. The
definitions of Borel and Radon measures are collected in §2.5 and the last section of
this chapter is concerned with the concept of functions with bounded variation.

2.1 Notation

Let d ∈ N. Then we define:

• ‖x‖1 :=
d∑
k=1

|xk| for all x ∈ Rd

• ‖x‖2 :=

√
d∑
k=1

x2
k for all x ∈ Rd

• x · y :=
d∑
k=1

xkyk for all x, y ∈ Rd

Considering a set Ω ⊂ Rd, we introduce the following notation:

7
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• int Ω: Interior of Ω

• Ωcl: Closure of Ω

• The indicator function:

1Ω : Rd → {1, 0} , x 7→ 1Ω(x) :=

{
1 if x ∈ Ω,

0 else.

Let ϕ : Rd → R denote a function and A ⊂ Rd some subset of Rd.
• ϕ|A: Restriction of the function ϕ to the set A

• suppϕ :=
{
x ∈ Rd : ϕ(x) 6= 0

}cl

We consider a function ϕ : R → R. Provided that the following limits exist, which
holds for example if ϕ ∈ BV (I), where the space BV (I) will be introduced later,
we use the following notation:

• ϕ(x̄−) := lim
x↗x̄

ϕ(x), ϕ(x̄+) := lim
x↘x̄

ϕ(x)

• [ϕ(x)] := ϕ(x−)− ϕ(x+)

• I (α, β) := [min(α, β),max(α, β)]

(cf. [69, §2])

2.2 Normed spaces, Banach-spaces and Hilbert
spaces

The definitons and results that are stated in this section can be found for example
in [41, Ch.1]. See also [88], [75] and [76].

Definition 2.2.1 (Banach spaces). Consider a real vector space X and a mapping
‖·‖ : X → [0,∞[ such that the following is true:
(i) ‖x‖X = 0 ⇐⇒ x = 0,
(ii) ‖λx‖X = λ ‖x‖X ∀x ∈ X,λ ∈ R,
(iii) ‖x+ y‖X ≤ ‖x‖X + ‖y‖X .
Then we call (X, ‖·‖X) a normed space.
If (X, ‖·‖X) is in addition complete, i.e., every Cauchy sequence (xk)k∈N ⊂ X

has a limit x ∈ X, then we say that (X, ‖·‖X) is a Banach space.
For normed spaces X and Y , the canonical norm on the cartesian product X ×Y
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is given by

‖(x, y)‖X×Y := ‖x‖X + ‖y‖Y .

Definition 2.2.2 (Hilbert space). Suppose that for a real vector space H and a
mapping (·, ·)H : H ×H → R it holds that
(i) (u, v)H = (v, u)H ∀u, v ∈ H,
(ii) for all u ∈ H the mapping H 3 v 7→ (u, v)H is linear,
(iii) (u, u)H = 0 ⇐⇒ u = 0 and (u, u)H ≥ 0 ∀u ∈ H.
Then we call (·, ·)H an inner product and the vector space (H, ‖·‖H), where

‖·‖H :=
√

(·, ·)H ,

a Pre-Hilbert space. If (H, ‖·‖H) is in addition complete, then we say that (H, ‖·‖H)

is a Hilbert space.

Definition 2.2.3 (Dual space). Consider a Banach space (X, ‖·‖X) and define

X∗ = {f : X → R : f is linear and bounded} .

We call the elements of X∗ the linear functionals on X and the Banach space
(X∗, ‖·‖X∗) the dual space of (X, ‖·‖X), where

‖x∗‖X∗ = sup
‖x‖X=1

|x∗(x)| .

For x∗ ∈ X∗, we finally introduce the so-called dual pairing

〈x∗, x〉X∗,X = x∗(x) ∀x ∈ X.

We say that a sequence (xk)k∈N ⊂ X converges weakly to some x̄ ∈ X, i.e., xk ⇀ x̄,
if

lim
k→∞

〈x∗, xk〉X∗,X = 〈x∗, x̄〉X∗,X ∀x∗ ∈ X∗.

Finally, we say that a sequence (x∗k)k∈N ⊂ X
∗ converges weakly-∗ to some x̄∗ ∈ X∗,

i.e., x∗k
∗−⇀ x̄∗, if

lim
k→∞

〈x∗k, x〉X∗,X = 〈x̄∗, x〉X∗,X ∀x ∈ X.

Theorem 2.2.4 (Riesz representation theorem). Let (H, ‖·‖H) be a Hilbert space.
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Then for all f ∈ H∗ there exists a unique u ∈ H such that

f(v) = (u, v)H

holds for all v ∈ H and ‖f‖H∗ = ‖u‖H . Moreover, for all u ∈ H the mapping

H 3 v 7→ (u, v)H ∈ R

is an element of H∗.

Definition 2.2.5. We call a normed space (X, ‖·‖X) separable if it contains a count-
able dense subset.

A proof of the following result can be found in [58, Theorem 5.10.1].

Theorem 2.2.6 (Sequential Banach-Alaoglu theorem). Consider a separable
normed vector space (X, ‖·‖X) and denote by (X∗, ‖·‖X∗) the corresponding dual
space. Then every bounded sequence (x∗k)k∈N ⊂ X∗ contains a subsequence that
converges weakly-∗ to some x̄∗ ∈ X∗.

2.3 Classical function spaces

In this section, we will introduce some classical function spaces that will be used in
this thesis, cf. [41, §1]. See also [79], [75], [76] and [88].

2.3.1 Lebesgue spaces

Considering a set Ω ⊂ Rd with 1 ≤ p <∞, we introduce the function spaces

Lp(Ω) :=

{
f : Ω→ R measurable : ‖f‖p,Ω :=

(∫
Ω

|f(x)|p dx

) 1
p

<∞

}
.

Furthermore, we define the space

L∞(Ω) :=

{
f : Ω→ R measurable : ‖f‖∞,Ω := ess sup

x∈Ω
|f(x)| <∞

}
.

Remark 2.3.1. The spaces above are, strictly speaking, no normed spaces since
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there are measurable functions u ∈ Lp(Ω) with ‖u‖p,Ω = 0 but u(x) 6= 0 for some
x ∈ Ω. Therefore, the Lebesgues spaces are defined by the equivalence classes

Lp(Ω) := Lp(Ω)/ ∼,

where the equivalence relation is given by

u ∼ v ⇐⇒ ‖u− v‖p,Ω = 0 ⇐⇒ u = v a.e. on Ω. (2.3.1)

We note that the last equivalence in (2.3.1) is well-known, see, e.g., [41]. For p ∈
[1,∞], the norm of the Lebesgue spaces can alternatively be denoted by

‖·‖Lp(Ω) := ‖·‖p,Ω .

Furthermore, we define the function spaces

Lploc(Ω) := {f : Ω→ R measurable : f ∈ Lp(K) for all compact K ⊂ Ω} .

Next, we will collect some basic properties of Lebesgue spaces, see, e.g., [41]:

Theorem 2.3.2 (Fischer-Riesz). Let Ω ⊂ Rd, then for all p ∈ [1,∞] the spaces
Lp(Ω) are Banach-spaces and L2(Ω) is a Hilbert space with inner product

(f, g)2,Ω = (f, g)L2(Ω) :=

∫
Ω

f(x)g(x) dx.

Theorem 2.3.3. For 1 ≤ p <∞ the Banach-spaces Lp(Ω) are separable.

Theorem 2.3.4. Let Ω ⊂ Rd and p, q ∈ [1,∞] be chosen such that

1

p
+

1

q
= 1 (2.3.2)

is valid. Then for all u ∈ Lp(Ω) and v ∈ Lq(Ω) Hölder’s Inequality holds

uv ∈ L1(Ω) and ‖uv‖1,Ω ≤ ‖u‖p,Ω ‖v‖q,Ω .

In addition, for p ∈ [1,∞[ the dual space
(
Lp(Ω)∗, ‖·‖Lp(Ω)∗

)
can be identified with
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(
Lq(Ω), ‖·‖Lq(Ω)

)
via the isometric isomorphism

Lq(Ω) 3 v 7→ u∗ ∈ Lp(Ω)∗, where 〈u∗, u〉Lp(Ω)∗,Lp(Ω) :=

∫
Ω

u(x)v(x) dx

and q ∈]1,∞] is chosen such that (2.3.2) is satisfied.

2.3.2 Spaces of continuous and continuously differentiable
functions

For Ω ⊂ Rd, we introduce the function space

C (Ω) := {f : Ω→ R : f is continuous} .

We note that for bounded sets Ω the space
(
C (Ωcl), ‖·‖C (Ωcl)

)
is a Banach space

with

‖f‖C (Ωcl) := sup
x∈Ωcl

|f(x)| .

Furthermore, for an open set Ω ⊂ Rd we introduce the function spaces

Ck(Ω) :=
{
f : Ω→ R : Dβf ∈ C (Ω) for |β| ≤ k

}
,

where β := (β1, . . . , βd) ∈ Nd0 denotes a multi-index with |β| :=
d∑
k=1

βk and

Dβf(x) :=
∂|β|f

∂xβ1

1 . . . ∂xβd1

(x).

For an open and bounded set Ω ⊂ Rd and some k ∈ N0 we introduce

Ck(Ωcl) :=
{
f ∈ Ck(Ω) : Dβf has a continuous extension to Ωcl for |β| ≤ k

}
.

We observe that the spaces
(
Ck(Ωcl), ‖·‖Ck(Ωcl)

)
are Banach-spaces with

‖f‖Ck(Ωcl) :=
∑
|β|≤k

∥∥Dβf
∥∥
C (Ωcl)

.
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Considering the function spaces Ck(Ω), we further introduce the function spaces

Ckc (Ω) :=
{
f ∈ Ck(Ω) : f has a compact support in Ω

}
.

Finally, we define the function spaces

C∞(Ω) :=
⋂
k∈N

Ck(Ω)

and

C∞c (Ω) := {f ∈ C∞(Ω) : f has a compact support in Ω} .

Considering a closed interval [a, b] ⊂ R, k ∈ N and some points a = x0 < x1 <

. . . < xnx < xnx+1 = b, we introduce the set of piecewise k- times continuously
differentiable functions:

PCk(I;x1, . . . , xnx) :=
{
f : I → R : f |[xi−1,xi] ∈ C

k([xi−1, xi]) ∀i = 1, . . . , nx + 1
}
.

2.3.3 Hölder spaces

Let α ∈]0, 1] and k ∈ N. Then we introduce the so-called Hölder spaces by

Ck,α(Ωcl) :=
{
f ∈ Ck(Ωcl) : ‖f‖Ck,α(Ω) <∞

}
,

where

‖f‖Ck,α(Ωcl) := ‖f‖Ck(Ωcl) +
∑
|β|=k

sup
x,y∈Ω,x 6=y

∣∣Dβf(x)−Dβf(y)
∣∣

‖x− y‖α2
.

We note that for bounded Ω ⊂ Rd the spaces
(
Ck,α(Ωcl), ‖·‖Ck,α(Ωcl)

)
are Banach-

spaces.

2.3.4 Sobolev spaces

Next, we introduce the so-called Sobolev spaces. To this end, we firstly introduce
the concept of weak derivatives:

Definition 2.3.5. Let Ω ⊂ Rd be an open set and consider some f ∈ L1
loc(Ω). If
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there exists a function g ∈ L1
loc(Ω) such that∫

Ω

gϕdx = (−1)|β|
∫

Ω

fDβϕdx ∀ϕ ∈ C∞c (Ω)

holds true, then Dβf := g is called the β-weak partial derivative of f .

Using this definition, we can introduce the Sobolev spaces as follows:

Definition 2.3.6. Consider an open set Ω ⊂ Rd, k ∈ N0, p ∈ [0,∞] and k ∈ N.
Then we define the space

W k,p(Ω) :=
{
f ∈ Lp(Ω) : f has weak derivatives Dβf ∈ Lp(Ω) for all |β| ≤ k

}
.

Introducing the norms

‖f‖Wk,p(Ω) :=

∑
|β|≤k

∥∥Dβf
∥∥p
Lp(Ω)

 1
p

, p ∈ [1,∞[

and ‖f‖W∞,p(Ω) :=
∑
|β|≤k

∥∥Dβf
∥∥
L∞(Ω)

,

we note that the spaces
(
W k,p(Ω), ‖·‖Wk,p(Ω)

)
are Banach-spaces for p ∈ [0,∞].

Moreover, Hk(Ω) := W k,2(Ω) is a Hilbert space with inner product

(f, g)Hk(Ω) :=
∑
|β|≤k

(
Dβf,Dβg

)
L2(Ω)

.

2.3.5 Fractional Sobolev spaces

Now we want to generalize the Sobolev spaces introduced in the last subsection and
obtain the so-called fractional Sobolev spaces, see for example [79] or [33] :

Definition 2.3.7. Consider an open set Ω ⊂ Rd and fix some fractional exponent
s ∈]0, 1[. Then for any p ∈ [1,∞[ we define the fractional Sobolev space

W s,p(Ω) :=

f ∈ Lp(Ω) :
|f(x)− f(y)|

‖x− y‖
d
p+s

2

∈ Lp(Ω× Ω)
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which is endowed with the norm

‖f‖W s,p(Ω) :=

(∫
Ω

|f(x)|p dx+

∫
Ω

∫
Ω

|f(x)− f(y)|p

‖x− y‖d+sp
2

dxdy

) 1
p

.

For m ∈ N, we finally define the space

W s+m,p(Ω) :=
{
f ∈Wm,p : Dβf ∈W s,p(Ω) for any β with |β| = m

}
which is endowed with the norm

‖f‖W s+m,p(Ω) :=

‖f‖pWm,p(Ω) +
∑
|β|=m

∥∥Dβf
∥∥p
W s,p(Ω)

 1
p

.

Remark 2.3.8. The function spaces that are introduced in this section are spaces
of real-valued functions. These spaces can be generalized to Banach space-valued
functions f : Ω → X, where (X, ‖·‖X) is a Banach space. Then we denote for
example the space of continuous functions f : Ω→ X by C (Ω;X).

2.4 Distributions

The definitions that we introduce in this section can be found for example in [77,
Ch.7].

Definition 2.4.1. Let Ω ⊂ Rd be an open set. A linear functional T on C∞c (Ω) is
called a distribution on Ω, if for every sequence (fk)k∈N ⊂ C∞c (Ω)satisfying
(i) supp fk ⊂ K ⊂ Ω, where K is compact and does not depend on k,
(ii)

∥∥Dβfk
∥∥
∞,Ω → 0 for k →∞ is valid for all β with |β| ≥ 0,

it holds true that T (fk)→ 0.
In addition, we define the space of distributions on Ω by

D′(Ω) := {T is a distribution on Ω} .

Finally, we introduce the concept of distributional derivatives:

Definition 2.4.2. Let Ω ⊂ Rd be an open set. In addition, consider a distribution
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T ∈ D′(Ω) and a multi-index β ∈ Nd0. Then the derivative DβT is defined by

DβT · ϕ = (−1)|β|T ·Dβϕ, ϕ ∈ C∞c (Ω).

2.5 Borel and Radon measures

The following definitions and results can be found for example in [87, Ch. 4]. See
also [48] and [34].

Definition 2.5.1. Let K ⊂ Rd be a compact set and denote by BK the Borel σ-
algebra on K.
(i) A measure µ : BK → [0,∞] on (K,BK) is called a Borel measure on K. We

call µ regular, if for all A ∈ BK it holds true that

µ(A) = inf {µ(O) : A ⊂ O,O open}
and µ(A) = sup {µ(C) : C ⊂ A,C compact} .

(ii) A regular Borel measure µ on K satisfying µ(K) < ∞ is called a
Radon measure.

(iii) A signed measure

µ : BK →]−∞,∞[

on (K,BK) is called a signed Radon measure if its positive part µ+ and its
negative part µ− are both Radon measures on (K,BK). We finally define the
space

M(K) := {µ : BK → R : µ is a signed Radon measure}

and the total variation of µ by

|µ| : BK → [0,∞[, A 7→ |µ| (A) := µ+(A) + µ−(A). (2.5.1)

The following result is known as Riesz representation theorem:

Theorem 2.5.2 ([87], Ch.4, §19, Thm. 19.54. and Thm. 19.55.). Consider the
Banach space

(
C (K), ‖·‖C (K)

)
, where K ⊂ Rd is a compact set. Then for every

linear functional λ ∈ C (K)∗ there exists a unique signed Radon measure µ ∈M(K)
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such that

〈λ, f〉C (K)∗,C (K) =

∫
K

f(x) dµ(x) for every f ∈ C (K) (2.5.2)

holds true and ‖λ‖C (K)∗ = |µ| (K). Finally, the dual space
(
C (K)∗, ‖·‖C (K)∗

)
can

be identified with
(
M(K), ‖·‖M(K)

)
via (2.5.2).

In the next theorem, we will provide a transformation formula which can be found
in [34, Ch.V, §3, (3.1)].

Theorem 2.5.3. Consider a measure space (X,BX , µ) and a measurable space
(Y,BY ). For a measurable mapping t : X → Y , we define the pushforward mea-
sure

t(µ)(B) := µ(t−1(B)) for all B ∈ BY . (2.5.3)

Then a BY -measurable function f : Y → R is t(µ)-integrable on Y if and only if
f ◦ t is µ-integrable on X. In this case, it additionally holds true that∫

Y

f dt(µ) =

∫
X

f ◦ tdµ.

2.6 Functions of bounded variation

Definition 2.6.1. Considering an open set Ω ⊂ Rd and a function f : Ω → R, we
say that f has bounded variation if f ∈ L1(Ω) and ‖f‖TV,Ω <∞ with

‖f‖TV,Ω := sup

{∫
Ω

f(x)divϕ(x) dx : ϕ ∈ C1
c(Ω;Rd), ‖ϕ‖∞,Ω ≤ 1

}
.

In addition, we define the norm ‖·‖BV,Ω := ‖·‖1,Ω + ‖·‖TV,Ω and introduce the set

BV (Ω) :=
{
f : Ω→ R : ‖f‖BV,Ω <∞

}
.

Theorem 2.6.2 ([5], Thm.10.1.1.). The space BV (Ω) equipped with the norm
‖·‖BV,Ω is a Banach space.

Theorem 2.6.3 ([5], Thm.10.1.4.). Let Ω ⊂ Rd be an open and bounded set with
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Lipschitz boundary. For all p satisfying 1 ≤ p < d
d−1 the embedding

BV (Ω) ↪→ Lp(Ω)

is compact.

Theorem 2.6.4 ([5], Thm. 10.2.1.). Let Ω ⊂ Rd be an open and bounded set
with a Lipschitz boundary Γ and denote by Hd−1 the (n− 1)-dimensional Hausdorff
measure. Then there exists a linear continuous mapping

γ0 : BV (Ω)→ L1
Hd−1(Γ)

satisfying

γ0(u) = u|Γ for all u ∈ C (Ωcl) ∩BV (Ω).

Furthermore, Green’s formula holds

∀ϕ ∈ C1(Ωcl;Rn) :

∫
Ω

ϕ · ∇udx = −
∫

Ω

udivϕdx +

∫
Γ

γ0(u)ϕ · ν dHd−1,

where ν(x) denotes the outer unit normal at Hd−1-almost all x ∈ Γ.

The following result is a corollary of Theorem 2.6.4 and can be found in [69]:

Corollary 2.6.5 ([69], Cor. 2.2.10). Consider some functions f ∈ C1(R), y ∈
BV (Q) and p ∈ C0,1(Qcl) for some open and bounded set Q ⊂]0, T [×R with a
Lipschitz boundary Γ. Then it holds true that∫

Q

p(t, x) (yt + f(y)x) dxdt =

∫
Q

ypt + f(y)px dxdt

+

∫
Γ

p (y · ν1 + f(y) · ν2) dH1.



CHA PTER 3
Optimal boundary control of

hyperbolic balance laws

Chapter 3 is concerned with the analysis of optimal control problems governed by
hyperbolic balance laws with initial and boundary conditions and state constraints.
The main goal of this chapter is to prove continuous Fréchet-differentiability of the
reduced cost functional and to derive an adjoint representation of the corresponding
gradient.
In §3.1, we introduce a suitable notion of solutions to hyperbolic balance laws with

initial and boundary conditions. Furthermore, we discuss the existence, uniqueness
and L1

loc-stability of solutions. We note that the definitions and results of §3.1 can
be found in [69, §3.1.1], see also [70] and [81]. We first show existence, uniqueness
and stability of solutions in the L∞-setting. Then we consider BV -solutions whose
existence can be ensured under stricter assumptions. The setting of functions with
bounded variations allows us to apply Dafermos’ theory of generalized characteristics
in §3.2.
The goal of §3.2 is to analyze the structure of BV -solutions to hyperbolic bal-

ance laws with initial and boundary conditions. Using the concept of general-
ized characteristics also the behavior of the solution near the boundary of the
space-time cylinder can be examined. The results of this section can be found
in [69, §3.1.3] where the results of [81] are extended from initial value problems to
initial-boundary value problems. For further reading, see also [70] and [71].
In §3.3, we introduce the underlying optimal control problem and state the ba-

sic assumptions. Due to the shock-curves appearing in solutions of hyperbolic
balance laws, the derivation of the continuous Fréchet-differentiability of the re-
duced cost functional is nontrivial. Therefore, we introduce in §3.4 the concept of

19
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shift-differentiability of the control-to-state mapping which is developed in [81], see
also [82]. A useful feature of this concept is the fact that it implies the Fréchet-
differentiability of the reduced cost functional.
The main results of Chapter 3 are presented in §3.5. One of them is the continuous

Fréchet-differentiability of the reduced cost functional, which can be derived by using
the concept of shift-differentiability. The second important result is the derivation
of an adjoint representation for the gradient of the reduced cost functional. To this
end, we analyze in §3.6 the corresponding adjoint equation, introduce a suitable
notion of a solution and show existence, uniqueness and stability. These results can
be found in [81, §4.2], see also [11].
In §3.7, we prove the main results stated in §3.5. These proofs are based on

the concepts that are introduced for initial value problems in [81] and extended to
initial-boundary value problems in [69]. The results in this thesis are an extension
of those in [69] to the case that the shifting of rarefaction centers is allowed.

3.1 Notion, existence and uniqueness of solutions of
hyperbolic balance laws

Let Ω :=]a, b[⊂ R with −∞ ≤ a < b ≤ ∞ denote a spatial subset of R and ]0, T [⊂
[0,∞) with 0 < T < ∞ a bounded time interval. Defining the space-time cylinder
ΩT :=]0, T [×Ω, we consider hyperbolic balance laws of the form

yt + f(y)x = g(·, y, u1) on ΩT , (3.1.1)

where f : R→ R denotes the so-called flux function and g : [0,∞[×R×R×Rm → R

the source term. The aim is to find a unique solution of (3.1.1) which satisfies a
given initial condition

y(0, ·) = u0(·) on Ω

and boundary conditions

′′y(·, a+) = uB,a(·)′′ on ]0, T [ (if a > −∞),
′′y(·, b−) = uB,b(·)′′ on ]0, T [ (if b <∞).



3.1. Notion, existence and uniqueness of solutions of hyperbolic balance laws 21

If a = −∞ and b =∞, then the boundary conditions are omitted and we only have
to deal with the initial value problem (IVP)

yt + f(y)x = g(·, y, u1), on ΩT ,

y(0, ·) = u0(·) on Ω.

This chapter is concerned with finding a notion of a solution such that the
initial-boundary value problem (IBVP), which is given by

yt + f(y)x = g(·, y, u1) on ΩT , (3.1.2a)

y(0, ·) = u0(·) on Ω, (3.1.2b)
′′y(·, a+) = uB,a(·)′′ on ]0, T [ (if a > −∞), (3.1.2c)
′′y(·, b−) = uB,b(·)′′ on ]0, T [ (if b <∞), (3.1.2d)

is well-defined under suitable assumptions. In particular, we have to make clear in
which sense the initial condition (3.1.2b) and the boundary conditions (3.1.2c) and
(3.1.2d) are supposed to hold. To this end, we first need some basic assumptions,
which are similar to those in [69]:
(A1) Let the flux function satisfy f ∈ C2

loc(R) and be uniformly convex, i.e. there
exists a positive constantmf ′′ > 0 such that f ′′ ≥ mf ′′ . Concerning the source
term, we assume that g ∈ L∞(]0, T [×R;C0,1

loc (R×Rm)) and that for allM > 0

there exist positive constants C1 and C2 such that

g(t, x, y, u1)sgn(y) ≤ C1 + C2|y|

is valid for all (t, x, y, u1) ∈ [0, T ]×R×R× [−M,M ]m.
The results and definitions that will be presented in this chapter are basically a brief
collection of the results in [69, §3.1.1]. It is well-known that solutions of hyperbolic
balance laws develop discontinuities after finite time even for smooth data, as we
can see in the following example that can be found in [12, Example 1.4]:

Example 3.1.1. We consider a pure initial value problem, i.e., the case that a =

−∞ and b =∞. Furthermore, let the flux function be given by f(z) = z2

2 and the
source term be equal to zero. Then the corresponding IVP reads

yt +

(
y2

2

)
x

= 0 on ΩT ,

y(0, x) = u0(x) :=
1

1 + x2
on Ω.

(3.1.3)
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Supposing that there exist a classical solution of (3.1.3), the author in [12] shows
by using the method of characteristics that this solution is implicitly given by

y

(
t, z +

t

1 + z2

)
= u0(z) =

1

1 + z2
. (3.1.4)

From (3.1.4) we can deduce that y is constant along the curves

(t, ξ(t, z)) :=

(
t, z +

t

1 + z2

)
(3.1.5)

and hence y(t, x) is given by

y(t, x) = u0(z(t, x)) =
1

1 + z(t, x)2
,

where z(t, x) denotes the solution of the equation

x = z +
t

1 + z2
(3.1.6)

in terms of z. This equation is uniquely solvable for all (t, x) ∈ [0, t̃[×Ω with
t̃ = 8/

√
27, but when t ≥ t̃, the curves defined in (3.1.5) start to intersect and hence

(3.1.6) does not admit a unique solution anymore. Thus, a classical solution can
only exist on [0, t̃[×Ω.

Example 3.1.1 shows that we have to consider weak solutions. This means that
we are interested in solutions y satisfying (3.1.1) in the sense that

yt + f(y)x = g(·, y, u1) in D′ (ΩT ) . (3.1.7)

However, since weak solutions of hyperbolic balance laws are in general not unique
due to the existence of shocks (see, e.g., [12]), we have to single out the physically
meaningful solution. This solution can be characterized by the limit yε → y for
ε→ 0, where yε is given by the solution of

yt + f(y)x = g(·, y, u1) + εyxx, on ΩT , (3.1.8a)

y(0, ·) = u0(·) on Ω, (3.1.8b)

y(·, a+) = uB,a(·) on ]0, T [ (if a > −∞), (3.1.8c)

y(·, b−) = uB,b(·) on ]0, T [ (if b <∞), (3.1.8d)
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cf. [12, 7]. This method is called the vanishing viscosity method and (3.1.8) is
the so-called parabolic regularization of (3.1.2). There are several ways to char-
acterize this limit solution. In order to find a characterization being convenient
for our setting, we will first have a look at the IVP, i.e., it holds that a = −∞
and b = ∞. In this case, one can characterize the limit solution by using the
so-called (Kružkov-) entropy pair (ηc, qc), where ηc(λ) := |λ− c| and the associated
entropy flux qc given by qc(λ) := sgn(λ− c)(f(λ)− f(c)) for c ∈ R. Kružkov shows
in [47, Theorem 4] that the limit solution of (3.1.8) for a pure IVP satisfies

(ηc(y))t + (qc(y))x − η
′
c(y)g(·, y, u1) ≤ 0 in D′(ΩT ),

ess lim
t→0+

‖y(t, ·)− u0‖1,Ω∩(−R,R) = 0 for all R > 0
(3.1.9)

for all c ∈ R. In [47], Kružkov further proves under different assumptions than (A1)
that (3.1.9) admits a unique solution, which is called entropy solution. Nevertheless,
one can find a proof for an existence and uniqueness result of an entropy solution
y ∈ L∞(ΩT ) for the setting in (A1) in [81]. Choosing c = ‖y‖∞,ΩT yields that a
solution of (3.1.9) also satisfies (3.1.7).
Considering a genuine IBVP, i.e., a > −∞ and/or b <∞ hold true, one interest-

ing issue arises in the question in which sense the limit solution of (3.1.8) satisfies
the boundary conditions (3.1.2c) and (3.1.2d). Under stronger assumptions than
(A1), Bardos, LeRoux and Nédélec have proved in [7] that this limit solution has
BV-regularity and satisfies the so-called BLN-conditions

min
k∈I(y(·,a+),uB,a)

sgn(uB,a − y(·, a+))(f(y(·, a+))− f(k)) = 0 a.e. on [0, T ],

(3.1.10a)

min
k∈I(y(·,b−),uB,b)

sgn(y(·, b−)− uB,b)(f(y(·, b−))− f(k)) = 0 a.e. on [0, T ].

(3.1.10b)

The BV-regularity of y guarantees the existence of the boundary traces of y in
(3.1.10), but since we will work in the L∞-setting the BV-regularity of y cannot
be guaranteed any more. In this thesis, we use the same notion of a solution to
(3.1.2) as in [69], which was introduced in [60]. An entropy solution of (3.1.2) is
characterized by using the so-called semi-Kružkov entropy flux pairs (η±c , q

±
c ) for

some c ∈ R, where

(η±c (·), q±c (·)) := 1R±(· − c)(ηc(·), qc(·)) on R. (3.1.11)

Definition 3.1.2. We call y ∈ L∞(ΩT ) an entropy solution of the IBVP (3.1.2) if
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for all c ∈ R and all φ ∈ D(]−∞, T [×R) with φ ≥ 0 it holds true that∫
ΩT

η±c (y)φt + q±c (y)φx ± 1R±(y − c)g(·, y, u1)φ dxdt+

∫
Ω

η±c (u0)φ(0, ·) dx

+ Lf,[−‖y‖∞,‖y‖∞]

∫ T

0

η±c (uB,b)φ(0, b) + η±c (uB,a)φ(0, a) dt ≥ 0.

(3.1.12)

Here, Lf,[−‖y‖∞,‖y‖∞] denotes a Lipschitz constant of f |[−‖y‖∞,‖y‖∞].

We observe that for the choice c = ‖y‖∞,ΩT , a solution of (3.1.12) also satisfies
(3.1.7).
The following existence and uniqueness result can be found in [69], see also [47],

[66] and [85].

Proposition 3.1.3 (Prop. 3.1.2, [69]). Let (A1) be satisfied and define the set

U := L∞(Ω)× L∞(]0, T [)2 × L∞(]0, T [×R)m.

Then for every u = (u0, uB,a, uB,b, u1) ∈ U the IBVP (3.1.2) admits a unique en-
tropy solution y(·;u) ∈ L∞(ΩT ) according to Definition 3.1.2. Moreover, after a
modification on a set of measure zero, y is an element of C([0, T ];L1

loc(Ω)). Fur-
thermore, for all Mu > 0 there exist constants My > 0 and Ly > 0 such that for all
u, û ∈ U with ‖u‖U , ‖û‖U ≤ Mu, all t̄ ∈]0, T [ and all a, b ∈ Ω with a < a < b < b,
the following estimates are valid:

‖y(t̄, ·;u)‖∞,Ω ≤My,

‖y(t̄, ·;u)− y(t̄, ·; û)‖1,]a,b[ ≤ Ly
(
‖u0 − û0‖1,K0

t̄
(a,b) + ‖uB,a − ûB,a‖1,Ka

t̄
(a,b)

+ ‖uB,b − ûB,b‖1,Kb
t̄

(a,b) + ‖u1 − û1‖1,KΩ
t̄

(a,b) ,

where

Kt̄ (a, b) := {(t, x) ∈ [0, t̄]×R : a−Mf ′(t̄− t) ≤ x ≤ b+Mf ′(t̄− t)} ,
KΩ
t̄ (a, b) := Kt̄ (a, b) ∩ ΩT ,

K0
t̄ (a, b) := {x ∈ Ω : (0, x) ∈ Kt̄ (a, b)} ,
Ka
t̄ (a, b) := {t ∈]0, T [: (t, a) ∈ Kt̄ (a, b)} ,
Kb
t̄ (a, b) := {t ∈]0, T [: (t, b) ∈ Kt̄ (a, b)} .

As explained in [69], from the results in [68] and [60] one obtains that if a solution
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according to Definition 3.1.2 has bounded variation, then the BLN-conditions in
(3.1.10) hold true. The next proposition can also be found in [69].

Proposition 3.1.4 (Prop. 3.1.4, [69]). Let (A1) hold true and assume that g
is locally Lipschitz continuous w.r.t. x. Then for all u ∈ U with additionally
u0 ∈ BVloc(Ω), uB,a, uB,b ∈ BV (]0, T [) and u1 ∈ L1(]0, T [;BVloc(Ω))m, the unique
entropy solution of (3.1.2) satisfies y ∈ (BVloc ∩ L∞) (ΩT ) and y(t, ·) ∈ BVloc(Ω)

for all t ∈ [0, T ]. Finally, the BLN-conditions in (3.1.10) hold true.

Remark 3.1.5. In [84] and [24], the authors have proved that the entropy solution
y ∈ L∞(ΩT ) admits also for the L∞-setting a boundary trace that is reached by
L1-convergence.

As last result of this chapter, we recall a result which can be found in [69].

Lemma 3.1.6 (Lem. 3.1.11, [69]). Let the assumptions of Proposition 3.1.4 hold
and consider the case that a > −∞ and/or b < ∞. For some u ∈ U satisfy-
ing u0 ∈ BVloc(Ω), uB,a, uB,b ∈ BV (]0, T [) and u1 ∈ L1(]0, T [;BVloc(Ω))m, let
y ∈ (BVloc ∩ L∞) (ΩT ) denote the corresponding entropy solution of the IBVP
(3.1.2). Then the BLN-conditions in (3.1.10) can be rewritten as follows: The con-
dition (3.1.10a) is satisfied if and only if for almost all t ∈]0, T [ one of the following
conditions is satisfied:

f ′(uB,a(t)) ≤ 0, f ′(y(t, a+)) ≤ 0 (3.1.13a)

or f ′(uB,a(t)) ≥ 0, uB,a(t) ≥ y(t, a+), f(uB,a(t)) ≤ f(y(t, a+)) (3.1.13b)

Analogously, (3.1.10b) holds if and only if for almost all t ∈]0, T [ one of the following
conditions is valid:

f ′(uB,b(t)) ≥ 0, f ′(y(t, b−)) ≥ 0 (3.1.14a)

or f ′(uB,b(t)) ≤ 0, uB,b(t) ≤ y(t, b−), f(uB,b(t)) ≤ f(y(t, b−)) (3.1.14b)

The characterization of the BLN-conditions in Lemma 3.1.6, which is used
in [53], stay the same if we replace uB,a by max

{
uB,a, f

′−1(0)
}

and uB,b by
min

{
uB,b, f

′−1(0)
}
, see [69]. Therefore, we can w.l.o.g. assume that

f ′(uB,a) ≥ 0 and f ′(uB,b) ≤ 0 (3.1.15)

are satisfied. In the subsequent analysis we will assume that (3.1.15) holds true.
Due to (3.1.15), the cases (3.1.13a) and (3.1.14a) are impossible. Therefore, the
BLN-conditions in (3.1.10a) and (3.1.10b) are equivalent to (3.1.13b) and (3.1.14b).



26 Chapter 3. Optimal boundary control of hyperbolic balance laws

3.2 The structure of solutions to hyperbolic balance
laws

In this chapter we will collect some results of [69] and [81] concerning the struc-
ture of entropy solutions to the IBVP (3.1.2). Those results are mainly based
on Dafermos’ theory of generalized characteristics that is introduced in [31] for
pure initial value problems. The concept of generalized characteristics that is
applied in [81] for the analysis of the pure IVP is adapted in [69] to treat
initial-boundary value problems. We will recall some results of [69, §3.1.3.2] and
work under assumptions which are equal to the assumptions (A1) and (A1′BV ) in
[69].
(A2) Let (A1) hold true and assume in addition that g ∈ C([0, T ];C1

loc(R×R×Rm)).
Moreover, assume that there exists a constant εg > 0 such that

g(t, ·, y, u1) ≥ 0 on [a− εg, a + εg],

g(t, ·, y, u1) ≤ 0 on [b− εg, b + εg]

hold for all (t, y, u1) ∈ [0, T ]×R×Rm.
In order to apply Dafermos’ theory of generalized characteristics, we need to assure

that the entropy solution y ∈ L∞(ΩT ) of the IBVP (3.1.2) satisfies the following
conditions for almost all t ∈ [0, T ], cf. [31]:

y(t, x−) and y(t, x+) exist for all x ∈ Ω,

y(t, x−) ≥ y(t, x+) for all x ∈ Ω
(3.2.1)

From the following result, which can be found in [69], one can deduce that the
conditions in (3.2.1) are satisfied.

Proposition 3.2.1 (Lem. 3.1.13, [69]). Let (A2) hold true. Then there exist con-
stants C > 0 and Mu > 0 such that for every

u = (u0, uB,a, uB,b, u1) ∈ L∞(Ω)×BV (]0, T [)2 × L∞(]0, T [;C1(R))m

with

‖u0‖∞,Ω ≤Mu,
∥∥uB,a/b∥∥∞,]0,T [

≤Mu and ‖u1‖C(]0,T [;C1(ΩT )) ≤Mu (3.2.2)
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the corresponding entropy solution y(u) satisfies Oleinik’s entropy condition

yx(t, ·) ≤ C

1− e−mf′′Cmin(t,Cε1,Cε2)
on [a + ε1, b− ε2] (3.2.3)

for all t ∈]0, T ] and all ε1, ε2 > 0 in the sense of distributions.

We note that Proposition 3.2.1 is an extension of Proposition 3.4.1 in [81] from
initial value problems to initial-boundary value problems. Under assumption (A2),
from the previous result we can deduce that the conditions in (3.2.1) are satisfied
for all t ∈]0, T ].
More precisely, with similar arguments as in the proof of [81, Proposition 3.4.1],

one can show that (3.2.3) implies that y(t, ·) ∈ BVloc(R) holds for all t ∈]0, T ]

and hence the limits y(t, x−) and y(t, x+) exist for all t ∈]0, T ] and all x ∈ Ω.
Furthermore, (3.2.3) yields that

y(t, x−) ≥ y(t, x+) for all x ∈ Ω (3.2.4)

is valid for all t ∈]0, T ]. Similarly to [81], we will consider the following pointwise
defined representative of the entropy solution y:

Convention 3.2.2. We consider the representative of y satisfying y ∈
C([0, T ];L1

loc(Ω)) and y(t, x) = y(t, x−) for all (t, x) ∈ [0, T ]× Ω.

Hence, we can apply the concept of generalized characteristics. A generalized
characteristic is according to [31] defined as follows:

Definition 3.2.3. A Lipschitz continuous curve t 7→ (t, ξ(t)) → ΩT defined on an
interval [α, β] ⊂ [0, T ] and satisfying

ξ̇(t) ∈ [f ′(y(t, ξ(t)+)), f ′(y(t, ξ(t)−))] a.e. on [α, β] (3.2.5)

is called a (generalized) characteristic on [α, β]. In what follows, we also call
ξ a generalized characteristic. If f ′(y(t, ξ(t)+)) = f ′(y(t, ξ(t)−)) holds true for
almost all t ∈ [α, β], then ξ is called genuine. A characteristic that satisfies
ξ̇±(t) = f ′(y(t, ξ(t)±)) is called maximal/minimal characteristic.

A solution ξ to (3.2.5) is a so-called contingent solution of

ξ̇(t) = f ′(y(t, ξ(t)))

with discontinuous right-hand side in the sense of Filippov [35]. Therefore, according
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to the theory of contingent equations in [35], in every point (t̄, x̄) ∈ ΩT there is at
least one forward characteristic defined on a maximal interval [t̄, t̄ + δ[ for some
δ > 0 and at least one backward characteristic defined on a maximal interval [s, t̄[

for some s > 0. According to [31, Theorem 3.4], the forward characteristic through
any point (t̄, x̄) ∈ ΩT with t̄ > 0 is unique, while the set of backward characteristics
lies within the funnel between the minimal and the maximal characteristic through
(t̄, x̄). Since the entropy solution y is uniformly bounded in L∞ the maximal speed
of the corresponding generalized characteristics is bounded as well. Moreover, since
y is also a weak solution of (3.1.2), we obtain that a characteristic ξ defined on some
interval [α, β] satisfies

ξ̇(t) =

{
f ′(y(t, ξ(t)±)) if y(t, ξ(t)−) = y(t, ξ(t)+)
f(y(t,ξ(t)+))−f(y(t,ξ(t)−))

y(t,ξ(t)+)−y(t,ξ(t)−) if y(t, ξ(t)−) > y(t, ξ(t)+)
(3.2.6)

for almost all t ∈ [α, β]. A function η :]α, β[→ ΩT satisfying the sec-
ond case of (3.2.6), which describes the so-called Rankine-Hugoniot condition, is
called a shock-curve. The next result is an extension of [31, Theorem 3.3] to
initial-boundary value problems and can be found in [69].

Proposition 3.2.4 (Prop. 3.1.14, [69]). Let (A2) and (3.1.15) hold true, con-
sider a control u ∈ U additionally satisfying u0 ∈ L∞(Ω) ∩ BVloc(Ω), uB,a/b ∈
BV (]0, T [) and u1 ∈ C(]0, T [;C1(R))m. Furthermore, assume that (3.2.2) is satis-
fied and denote by y(u) the corresponding entropy solution of the IBVP (3.1.2). Let
ξ :]α, β[⊂]0, T [→ Ω denote some generalized characteristic defined on a maximal
interval ]α, β[⊂]0, t̄] ⊂]0, T [. Then the following assertion holds: If ξ is genuine,
then ξ(·) = ζ(·) and v(·) = y(·, ξ(·)) is valid on ]α, β[, where ζ :]α, β[→ Ω and
v :]α, β[→ Ω solve the so-called characteristic equation

ζ̇(t) = f ′(v(t)),

v̇(t) = g(t, ζ(t), v(t), u1(t, ζ(t))).
(3.2.7)

We further observe the following:
(i) Considering the case that ξ is genuine and α = 0, set z := ξ(0) := limt↘0 ξ(t) ∈

Ω. Then it holds that

z = ζ(0), u0(z−) ≤ v(0) ≤ u0(z+).

(ii) Considering the case that ξ is genuine and ξ(α) = a, define θ := α. Then

uB,a(θ+) ≤ v(θ) ≤ uB,a(θ−)
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is satisfied. In addition, if ξ(α) = b, then it holds that

uB,b(θ+) ≥ v(θ) ≥ uB,b(θ−).

(iii) If ξ is genuine and ξ(β) := limt↗β ξ(t) ∈ Ω, then

ξ(β) = ζ(β), y(t, ξ(β)−) ≥ v(β) ≥ y(t, ξ(β)+)

is valid. Moreover, if ξ(β) = a, then θ := β satisfies

f ′(v(θ)) ≤ 0, f(v(θ)) ≥ f(uB,a(θ−)).

In addition, if ξ(α) = b, then it holds true that

f ′(v(θ)) ≥ 0, f(v(θ)) ≥ f(uB,b(θ−)).

(iv) If f ′(y(θ, a−)) < 0 holds true for some θ ∈]0, T [, then there exists a genuine
characteristic ξ on ]α, θ] that satisfies

ξ(θ) := lim
t↗θ

ξ(t) = a, ξ̇(θ) := lim
t↗θ

ξ̇(t) = f ′(y(θ, a+)).

Furthermore, if f ′(y(θ, b−)) > 0 holds true for some θ ∈]0, T [, then there
exists a genuine characteristic ξ on ]α, θ] that satisfies

ξ(θ) = b, ξ̇(θ) = f ′(y(θ, b−)).

(v) Finally, if ξ = ξ± is a minimal/maximal backward characteristic through some
point (t̄, x̄), then ξ± is genuine and it holds that ξ(·) = ζ(·), where (ζ, v) solves
(3.2.7) for given end data (ζ, v)(t̄) = (x̄, y(t̄, x̄±)).

In the next result, which can be found in [69] and is based on [81, Lemma 3.4.6],
we will collect some important properties of the solution (ξ, v) of the characteristic
equation (3.2.7). Before stating the result, we first introduce the following notation.
For given (θ, z, w, u1) ∈ [0, T ] × R2 × L∞(]0, T [;C1(R)m), let (ζ, v)(·; θ, z, w, u1)

denote the solution of (3.2.7) for initial data

(ζ, v)(θ; θ, z, w, u1) = (z, w).

Lemma 3.2.5 (Lem. 3.1.15, [69]). Let (A2) hold true and define the sets

Bi := [0, T ]×R2 × L2(]0, T [;Ci(R)m), i = 0, 1,
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B̄ :=
{

(θ, z, w, u1) ∈ B1 : |w| ≤ C1, u1 ∈ C([0, T ];C1(R)m), ‖u1‖C([0,T ];C1(R)m) ≤ C2

}
with constants C1, C2 > 0. Consider the mapping

(θ, z, w, u1) ∈ (B̄, ‖ · ‖Bi) 7→ (ζ, v)(·; θ, z, w, u1) ∈ C ([0, T ])2. (3.2.8)

Then the right-hand side of (3.2.8) is on B̄ uniformly Lipschitz w.r.t. t. Fur-
thermore, the mapping (3.2.8) is Lipschitz continuous for i = 0 and continuously
differentiable for i = 1 with derivative

d(θ,z,w,u1)(ζ, w) · (δθ, δz, δw, δu1) = (δζ, δv)(·; θ, z, w, u1; δθ, δz, δw, δu1),

where (δζ, δv)(·; θ, z, w, u1; δθ, δz, δw, δu1) denotes the solution of the
linearized characteristic equation

δ̇ζ(t) = f ′′(v(t))δv(t),

δ̇v(t) = gx(:)δζ(t) + gw(:)δv(t) + gu1
(:)u1x(t, ζ(t))δζ(t)

+ gu1
(:)δu1(t, ζ(t)),

(δζ, δv)(θ) = (δz − f ′(w)δθ, δw − g(θ, z, w, u1(θ, w))δθ),

(3.2.9)

with (:) = (t, ζ(t), v(t), u1(t, ζ(t))). Consider a closed set S ⊂ [0, T ] × R, a fixed
z̄ ∈ R and an interval T ⊂ [0, T ]. Then the mapping

(θ, uB , u1) ∈ C (S; T )× C1(T )× C ([0, T ];C1(R)m)

7→ (ζ, v)(·t, θ, z̄, uB(θ), u1) ∈ C (S)2

is continuously Fréchet-differentiable, where ·t denotes the t-part of a point (t, x) ∈ S.

Since we assume that (3.1.15) holds true, we have already observed that the
BLN-conditions (3.1.10a) and (3.1.10b) are equivalent to (3.1.13b) and (3.1.14b).
Moreover, one can deduce from (3.1.13b) and (3.1.14b) that if the characteristic
speed of the boundary trace satisfies f ′(y(t̂, a+)) ≥ 0 or f ′(y(t̂, b−)) ≤ 0 for some t̂ ∈
]0, T [, then the boundary trace of the entropy solution y of the IBVP (3.1.2) coincides
with the boundary data uB,a(·) or uB,b(·) at t = t̂, respectively. In addition, if
f ′(y(t̃, a+)) < 0 or f ′(y(t̃, b−)) > 0 holds for some t̃ ∈]0, T [, then the boundary
trace of the entropy of the IBVP (3.1.2) differs from the boundary data uB,a(·) or
uB,b(·) at t = t̃, due to (3.1.15). Hence, for all t ∈]0, T [ it holds true that

y(t, a+) = uB,a(t) ⇔ f ′(y(t, a+)) ≥ 0,

y(t, b+) = uB,b(t) ⇔ f ′(y(t, b+)) ≤ 0,
(3.2.10)
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cf. [69]. The result in (3.2.10) yields that the sets of time points where the character-
istic speeds at the boundaries change sign play an important role. In the following
result, which can be found in [69], we will further analyze these points. Before we
state this result, we first introduce the following definition:

Definition 3.2.6. Let y ∈ BVloc(ΩT ) and define the corresponding sets

Ta
± := {θ ∈ [0, T ] : f ′(y(θ+, a+) > 0 and f ′(y(θ−, a+) ≤ 0} ,

Ta
∓ := {θ ∈ [0, T ] : f ′(y(θ+, a+) ≤ 0 and f ′(y(θ−, a+) > 0} ,

Tb
± := {θ ∈ [0, T ] : f ′(y(θ+, b−) ≥ 0 and f ′(y(θ−, b−) < 0} ,

Tb
∓ := {θ ∈ [0, T ] : f ′(y(θ+, b−) < 0 and f ′(y(θ−, b−) ≥ 0} .

(3.2.11)

Considering some θ ∈ Ta
±, let ξθa denote the maximal backward characteristic through

(θ, a) and ϑθa the time where ξθa leaves the space-time cylinder ΩT . Analogously, if
θ ∈ Tb

∓, then ξθb denotes the minimal backward characteristic through (θ, b) and ϑθb
the time where ξθa leaves the space-time cylinder ΩT . Moreover, define the sets

Da
− :=

⋃
θ∈Ta

±

{
(t, x) ∈]ϑθa, θ[×]a, ξθa(t)[

}
(3.2.12)

and

Db
− :=

⋃
θ∈Tb

∓

{
(t, x) ∈]ϑθb, θ[×]ξθb(t), b[

}
. (3.2.13)

If ξθa ends in a point (ϑθa, b), we extend Da
− by adding [0, ϑθa] × Ω to (3.2.12). We

analogously add [a, ϑθb]×Ω to (3.2.13), if ξθb ends in a point (ϑθb, a). We finally define

D− := Da
− ∪Db

−.

The following result of [69] states that all points (θ, a) with θ ∈ Ta
± and (θ, b)

with θ ∈ Tb
∓ are shock generating points.

Lemma 3.2.7 (Lem. 3.1.17, [69]). Let (A2) hold true and consider a control u ∈ U
with U defined in Proposition 3.1.3 that satisfies in addition u0 ∈ L∞(Ω)∩BVloc(Ω),
uB,a/b ∈ BV (]0, T [) and u1 ∈ C(]0, T [;C1(R))m. Furthermore, assume that (3.2.2)
as well as f ′(uB,a) ≥ α > 0 and f ′(uB,b) ≤ −α < 0 are valid for some constant
α > 0. Denote by y(u) the corresponding entropy solution of the IBVP (3.1.2). Then
the sets defined in (3.2.11) are all finite. In addition all backward characteristics
through any point (t̄, x̄) ∈ ΩT \ D− do not intersect D−. Finally, all points (θ, a)

with θ ∈ Ta
± and (θ, b) with θ ∈ Tb

∓ are shock generating points, i.e., the unique
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forward characteristic is a shock curve.

3.3 Statement of the optimal control problem and
basic assumptions

We will now introduce the optimal control problem which will be analyzed in this
thesis. Given a mapping of the form

J : R× U → R, (3.3.1)

our goal is to find a control ū = (ū0, ūB,a, ūB,b, ū1) ∈ Û , where Û is a suitable subset
of

U := L∞(Ω)× L∞(]0, T [)2 × L∞(]0, T [×R)m,

such that

J(y(ū)) ≤ J(y(u)) for all u ∈ Û (3.3.2)

holds true and the state constraints

y(t̄, ·; ū) ≤ ȳ(·) on [a, b] (3.3.3)

are satisfied, where ȳ ∈ C1(Ωcl). Here, y(u) denotes the entropy solution of the
IBVP (3.1.2). Moreover, a, b are constants with −∞ < a < a < b < b < ∞ and
t̄ ∈]0, T [ is a fixed time point. We will assume that

Û ⊂PC1(Ω;x1, . . . , xnx)× PC1([0, T ]; t1, . . . , tnt,a)× PC1([0, T ]; t1, . . . , tnt,b)

× C([0, T ];C1(R)m),

where nx, nt,a and nt,b describe the fixed numbers of switching points, where the
initial data and the boundary data, respectively, switch between C1-functions. In
what follows, the control is given by the switching points and the smooth functions
which are separated by them. More precisely, consider some

u = (u0, uB,a, uB,b, x0, ta, tb, u1) ∈ Uad,
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where

Uad ⊂C1(Ωcl)nx+1× C1([0, T ])nt,a+1× C1([0, T ])nt,b+1× Ωnx × [0, T ]nt,a × [0, T ]nt,b

× C([0, T ];C1(R)m).

Then the initial and boundary data u0, uB,a and uB,b associated with u are given
by

u0(x;u) =


u0

1(x) if x ∈ I1
0 (u) := (a, x0

1],

u0
j (x) if x ∈ Ij0(u) := (x0

j−1, x
0
j ],

u0
nx+1(x) if x ∈ Inx+1

0 (u) := (x0
nx , b),

(3.3.4)

where 2 ≤ j ≤ nx and

uB,a/b(t;u) =


u
B,a/b
1 (t) if t ∈ I1

B,a/b(u) := [0, t
a/b
1 ],

u
B,a/b
j (t) if t ∈ IjB,a/b(u) := (t

a/b
j−1, t

a/b
j ],

u
B,a/b
nt,a/b+1(t) if t ∈ Int,a/b+1

B,a/b (u) := (tnt,a/b , T ],

(3.3.5)

where 2 ≤ j ≤ nt,a/b. From now on, we consider u ∈ U as control and Uad as the
space of admissible controls. Furthermore, the entropy solution of the IBVP (3.1.2)
associated with u ∈ U will be denoted by y(u). Since for all u ∈ U it holds that
uB,a/b(u) ∈ BV (]0, T [), u0(u) ∈ BV (Ω) and u1 ∈ C([0, T ];C1(R)m), we obtain by
Proposition 3.1.4 that y(u) ∈ BV (ΩT ) and that (3.1.10a) and (3.1.10b) are satisfied.
Concerning the mapping in (3.3.2), we consider cost functionals of the form

J(y,u) =

∫ b

a

ψ(y(t̄, x), yd(x)) dx+R(u),

where ψ ∈ C1,1
loc (R2), yd ∈ BVloc(R) ∩ L∞(R) and R : U → [0,∞) is a Fréchet-

differentiable regularization term.
To summarize, we will consider the optimal control problem

min
u∈Uad

J(y(u),u) =

∫ b

a

ψ(y(t̄, x;u), yd(x)) dx+R(u),

where y(u) is the entropy solution of the IBVP (3.1.2)

and y(t̄, x;u) ≤ ȳ (x) for all x ∈ [a, b].

 (P)

The main goal of this thesis is to derive necessary optimality conditions for (P).
Since entropy solutions of hyperbolic balance laws develop shock-curves after finite
time, it is not possible to prove Fréchet-differentiability of the reduced cost func-
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tional Ĵ(u) := J(y(u),u) with standard methods which can be seen in the following
example from [81]:

Example 3.3.1. We consider a pure initial value problem, i.e., the case a = −∞
and b =∞. Furthermore, let the flux function be given by f(z) = z2

2 and the source
term be equal to zero. Then the corresponding IVP reads

yt +

(
y2

2

)
x

= 0 on ΩT ,

y(0, ·) = u0(·;u) on Ω.

Let nx = 1 and consider some control ū =
(
ū0

1, ū
0
2, x̄

0
1

)
= (1,−1, 0) and some

perturbation δu = (ε, 0, 0) for some ε > 0. Setting u = ū + δu, the corresponding
initial data is given by

u0(x;u) =

{
1 + ε if x ≤ 0,

−1 if x > 0

and the entropy solution of the IVP denoted by y(u) is given by

y(t, x; ū + δu) =

{
1 + ε if x ≤ tε

2 ,

−1 if x > tε
2 .

One can see that y(ū + δu) has a shock-curve emanating from (0, 0) given by

η(t;u) =
ε

2
t.

If we fix some t̄ ∈]0, T [ and try to compute a directional derivative of the mapping
u 7→ y(t̄, ·;u) ∈ L1(Ω) in u = ū in the direction (1, 0, 0), we observe that the limit

lim
ε↘0

y(t, x; ū + δu)− y(t, x; ū)

ε

does not exist in L1. Hence, the control-to-state mapping u 7→ y(t̄, ·;u) is not
differentiable to L1

loc, but only to Mloc(R) w.r.t. the weak topology, where the
derivative is given by

duy(t̄, ·)|u=ū · δu = 1x<η(t̄;ū)ε+ [y(t̄, η(t̄; ū), ū)] δ (· − η(t̄; ū))
t

2
ε. (3.3.6)

We note the weak topology of Mloc(R) is not strong enough to yield the Fréchet-
differentiability of the reduced cost functional Ĵ(·) w.r.t. u. Nevertheless, in [81] the



3.3. Statement of the optimal control problem and basic assumptions 35

derivative in (3.3.6) serves as starting point to construct a first order approximation
of y(t̄, ·, ū + δu)− y(t̄, ·, ū) in L1

loc. Indeed, replacing the second term in (3.3.6) by
sgn( t̄2ε) [y(t̄, η(t̄; ū), ū)]1I(η(t̄;ū),η(t̄;ū)+ t̄

2 ε)
, we obtain

S
(η(t;ū))
y(t̄,·;ū)

(
1x<η(t̄;ū) · ε,

t

2
ε

)
:= 1x<η(t̄;ū)ε+ sgn(

t̄

2
ε) [y(t̄, η(t̄; ū), ū)]1I(η(t̄;ū),η(t̄;ū)+ t̄

2 ε)
,

(3.3.7)

which is a (nonlinear) first order approximation of y(t̄, ·, ū + δu)− y(t̄, ·, ū) in L1
loc.

This feature will be analyzed in a more general setting in §3.4.

Another problem arises in the fact that due to the state constraints (3.3.3), we
have to require the state y(t̄, ·) to have at least L∞-regularity. However, the previous
example shows that the control-to-state mapping u 7→ y(t̄, ·,u) ∈ L∞(Ω) is in
general not even continuous. This is due to the appearance of discontinuities whose
positions possibly change if the control varies. Before solving those problems, we
first introduce the assumptions for the subsequent analysis.
(A3) Let (A2) hold true and assume in addition that f ∈ C3

loc(R) and f ′−1 ∈
C2,β

loc (R) for some β ∈ (0, 1]. We further assume that there exists a constant
εg > 0 such that

g(·, y, u1) = 0 on [0, εg]×R ∪ [0, T ]×R \ (a + εg, b− εg) (3.3.8)

is satisfied for all (y, u1) ∈ R × Rm. Finally we assume that g is Lipschitz
w.r.t. x and affine linear w.r.t. y.

(A4) Let Uad denote the set of admissible controls. We assume that Uad is a
nonempty and convex subset of the set U, which is given by

U := C1(Ωcl)nx+1 × UαB,a × UαB,b ×X × T a × T b × C([0, T ];C1(R)m),

where U is equipped with the norm

‖u‖U :=‖u0‖C1(Ωcl)nx+1 + ‖uB,a‖C1([0,T ])nt,a+1 + ‖uB,b‖C1([0,T ])nt,b+1

+ ‖x0‖1 + ‖ta‖1 + ‖tb‖1 + ‖u1‖C([0,t];C1(R)m).

Here, we use the abbreviations

X := {~x ∈ Ωnx : a < x1 < . . . < xnx < b} ,
T a :=

{
~t ∈ [0, T ]nt,a : 0 < t1 < . . . < tnt,a < T

}
,
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T b :=
{
~t ∈ [0, T ]nt,b : 0 < t1 < . . . < tnt,b < T

}
,

UαB,a :=
{
uB,a ∈ C1([0, T ])nt,a+1 : f ′(uB,aj ) ≥ α, j = 1, . . . , nt,a + 1

}
,

UαB,b :=
{
uB,b ∈ C1([0, T ])nt,b+1 : f ′(uB,bj ) ≤ −α, j = 1, . . . , nt,b + 1

}
for some α > 0. Moreover, we assume that Uad is sequentially compact in
U and that there exists a constant Mu > 0 such that ‖u1‖L∞(0,T ;C1(Ωcl

T )m) ≤
Mu holds true for all u ∈ Uad. Finally, suppose that ψ ∈ C1,1

loc (R2), yd ∈
BVloc(R) ∩ L∞(R), ȳ ∈ C1(Ωcl) and let R : U → [0,∞) be continuously
Fréchet-differentiable.

Remark 3.3.2. In (A4) we assume inter alia that Uad is sequentially compact in U.
According to [2, Theorem 5.1] and [33, Theorem 8.2] or alternatively [79, Theorem
4.6.1], this holds for example if we choose

Uad = V0 × VαB,a × VαB,b ×Xε × T a
ε × T b

ε × Vg,

with

V0 :=
{
u0 ∈W s+1,2(Ω)nx+1 : ‖u0

j‖W s+1,2(Ω) ≤ C, j = 1, . . . , nx + 1
}
,

VαB,a :=
{
uB,a ∈W s+1,2([0, T ])nt,a+1 : ‖uB,aj ‖W s+1,2([0,T ]) ≤ C and f ′(uB,aj ) ≥ α,

j = 1, . . . , nt,a + 1} ,

VαB,b :=
{
uB,b ∈W s+1,2([0, T ])nt,b+1 : ‖uB,bj ‖W s+1,2([0,T ]) ≤ C and f ′(uB,bj ) ≤ −α,

j = 1, . . . , nt,b + 1} ,

Xε := {~x ∈ X : xj − xj−1 ≥ ε, j = 1, . . . , nx + 1} ,

T a
ε :=

{
~t ∈ T a : tj − tj−1 ≥ ε, j = 1, . . . , nt,a + 1

}
,

T b
ε :=

{
~t ∈ T b : tj − tj−1 ≥ ε, j = 1, . . . , nt,b + 1

}
,

Vg :=
{
u1 ∈W s,2((0, T );W s+1,2(Ω)m) : ‖u1‖W s,2((0,T );W s+1,2(Ω)m) ≤ C

}
for some ε, C > 0, s > 1

2 , where we set x0 := a, xnx+1 = b, t0 = 0 and
tnt,a+1 = tnt,b+1 = T .

We note that at the switching points, the initial and the boundary data have
a discontinuity or a kink. We first consider a switching time taj at which the left
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boundary data uB,a is discontinuous. It is well known (see for example [50]) that if
[uB,a(taj )] < 0, i.e., the boundary data has an up-jump at taj , then the corresponding
entropy solution y has a shock-curve emanating from the point (taj , a). On the other
hand, if it holds that [uB,a(taj )] > 0, i.e., the boundary data has a down-jump at taj ,
then (taj , a) is the center of a rarefaction wave. Considering the initial data and the
right boundary data, we note that switching times produce shock-curves if they are
down-jumps and rarefaction waves if they are up-jumps. Therefore, we introduce
the following notation:

Notation 3.3.3. For a given u ∈ U, we associate the sets of indices:

Ic,0(u) :=
{
j ∈ {1, . . . , nx} : [u0(x0

j )] = 0
}
,

Ic,a(u) :=
{
j ∈ {1, . . . , nt,a} : [uB,a(taj )] = 0

}
,

Ic,b(u) :=
{
j ∈ {1, . . . , nt,b} : [uB,b(tbj )] = 0

}
,

Is,0(u) :=
{
j ∈ {1, . . . , nx} : [u0(x0

j )] > 0
}
,

Is,a(u) :=
{
j ∈ {1, . . . , nt,a} : [uB,a(taj )] < 0

}
,

Is,b(u) :=
{
j ∈ {1, . . . , nt,b} : [uB,b(tbj )] > 0

}
,

Ir,0(u) := {1, . . . , nx} \ (Is,0(u) ∪ Ic,0(u)) ,

Ir,a(u) := 1, . . . , na \ (Is,a(u) ∪ Ic,a(u)) ,

Ir,b(u) := 1, . . . , nb \ (Is,b(u) ∪ Ic,b(u)) .

At the end of this chapter, we want to prove that the reduced cost functional Ĵ(u)

is Lipschitz continuous w.r.t. the control u. To this end, we will need the following
two results:

Lemma 3.3.4. Let (A3) and (A4) hold true and consider some controls u, ū ∈ Uad.
Then the initial and boundary data u0, uB,a and uB,b, which are defined in (3.3.4)
and (3.3.5) satisfy the following estimations

‖u0(u)− u0(ū)‖1,[a,b] ≤ (|b− a|+ ‖u‖U + ‖ū‖U)‖u− ū‖U,
‖uB,a(u)− uB,a(ū)‖1,[0,T ] ≤ (T + ‖u‖U + ‖ū‖U)‖u− ū‖U,
‖uB,b(u)− uB,b(ū)‖1,[0,T ] ≤ (T + ‖u‖U + ‖ū‖U)‖u− ū‖U.

Proof. We will only prove the first inequality and notice that the remaining two
inequalities can be proved analogously. Recalling the definition of u0 in (3.3.4),
we first observe that the locations of the ith switching point differ by |x0

i − x̄0
i |.
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Furthermore, it holds that

‖u0(x;u)− u0(x; ū)‖C (I(x0
i ,x̄

0
i ))
≤ ‖u0‖C(Ωcl)nx+1 + ‖ū0‖C(Ωcl)nx+1 .

We further note that outside the intervals I
(
x0
i , x̄

0
i

)
, i = 1, . . . , nx, the difference

|u0(x;u)− u0(x;u)| is bounded by ‖u0 − ū0‖C(Ωcl)nx+1 . Therefore, we obtain

‖u0(u)− u0(ū)‖1,[a,b]

≤ |b− a|‖u0 − ū0‖C(Ωcl)nx+1 + (‖u0‖C(Ωcl)nx+1 + ‖ū0‖C(Ωcl)nx+1)‖x0 − x̄0‖1
≤ (|b− a|+ ‖u‖U + ‖ū‖U)‖u− ū‖U.

Using the estimations from Proposition 3.1.3 in combination with Lemma 3.3.4
and the fact that Uad is bounded in U, we obtain the following two corollaries:

Corollary 3.3.5. Let (A3) and (A4) hold true. Then for all u, ū ∈ Uad the follow-
ing estimation holds true

‖y(t, ·;u)− y(t, ·; ū)‖1,[a,b] ≤ Ly‖u− ū‖U,

where Ly > 0 is a sufficiently large constant.

Corollary 3.3.6. Let (A3) and (A4) hold true. Then there exists a constant L > 0

such that ∣∣J(y(u),u)− J(y(ū), ū)
∣∣ ≤ L‖u− ū‖U for all u, ū ∈ Uad.

Proof. The proof can be found for example in [83] and is based on the estimation
in Corollary 3.3.5, the regularity of the mapping R and the fact that ψ ∈ C1,1

loc (R2)

and yd ∈ BV ([a, b]).

3.4 Shift-differentiability

Considering the optimal control problem (P), Example 3.3.1 shows that it is not
possible to derive the Fréchet-differentiability of the reduced cost functional Ĵ(·) by
standard arguments. In [81], the concept of the shift-differentiability is introduced
for the pure initial value problem to cope with this problem, see also [17]. This
concept is extended to initial-boundary value problems in [69]. Using (3.3.7) in Ex-
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ample 3.3.1 as a motivation, the following definition of shift-variations is introduced
in [81]:

Definition 3.4.1. Consider an interval [a, b] with a < b, a function y ∈ BV ([a, b])

and points a < x1 < . . . < xN < b. Then we associate with (δy, δx) ∈ L1([a, b])×RN
the shift-variation

S(xi)
y (δy, δx) (x) := δy(x) +

N∑
i=1

[y(xi)] sgn(δxi)1I(xi,xi+δxi)(x) (3.4.1)

and call (δy, δx) a generalized variation of u. We recall that

[y(xi)] := y(xi−)− y(xi+),

I (x, x̃) := [min(x, x̃),max(x, x̃)], for x, x̃ ∈ R.

In the original work [81], the definition of the shift-variation is slightly different:

S(xi)
y (δy, δx) (x) := δy(x) +

N∑
i=1

[y(xi)]+ sgn(δxi)1I(xi,xi+δxi)(x), (3.4.2)

where [ϕ(z)]+ := max {0, ϕ(z−)− ϕ(z+)}. In this definition, only down-jumps of
the function y(·) are shifted, which on the one hand is motivated by the fact that
considering a pure initial value problem, the entropy solution of (3.1.2) satisfies
y(t, x−) ≥ y(t, x+) for all x ∈ R and almost all t ∈]0, T ], due to (3.2.3). On the
other hand, another reason behind the definition (3.4.2) is that in [81] the initial
data is varied by shift-variations, where the centers of rarefaction waves, which are
exactly the up-jumps in the initial data, are not allowed to be shifted. In [69], the
shifting of centers of rarefaction waves is also prohibited, but nevertheless shift-
variations are also defined as in (3.4.1), since the initial and boundary data is not
varied by shift-variations. In the present thesis, we will extend the results of [81]
and [69] to the case where the shifting of rarefaction waves is allowed.
We now recall a further definition of [81]:

Definition 3.4.2. Consider a Banach space U , an open subset D ⊂ U and an
interval [a, b] ⊂ R with a < b. A mapping D 3 u → y(u) ∈ L∞(R) is called
shift-differentiable in ū ∈ D with y(ū) ∈ BV ([a, b]) if there exist a < x̄1 < . . . <

x̄N < b and a linear bounded operator

Ts (y(ū)) ∈ L(U ;Lr([a, b])×RN )
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for some r ∈]1,∞] such that

lim
u→ū

∥∥∥y(u)− y(ū)− S(x̄k)
y(ū) (Ts (y(ū)) (u− ū))

∥∥∥
1,[a,b]

‖u− ū‖U
= 0 (3.4.3)

holds true. Moreover, the mapping u 7→ y(u) is called continuously shift-
differentiable at ū if it is shift-differentiable in all

u ∈ BUρ (ū) := {u ∈ U : ‖u− ū‖U ≤ ρ}

with a sufficiently small constant ρ > 0 and the corresponding mappings

Ts (y(u)) , xk(u) and y(xk(u)±;u) k = 1, . . . , N,

are continuous in ū.

A useful feature is that the shift-differentiability of a mapping D 3 u → y(u) ∈
L∞(R) in some ū yields the Fréchet-differentiability of the mapping

u 7→ J(y(u)) =

∫ b

a

ψ(y(x;u), yd(x)) dx (3.4.4)

if ψ and yd satisfy certain assumptions as we can see in the next result, which can
be found in [81]:

Lemma 3.4.3 (Lemma 3.2.3, [81]). Consider an interval [a, b] ⊂ R with a < b and
let U be a Banach space with an open subset D ⊂ U . Consider in addition a mapping
D 3 u → y(u) ∈ L∞(R) satisfying y(ū) ∈ BV ([a, b]) that is shift-differentiable in
ū ∈ D according to Definition 3.4.2 with corresponding a < x̄1 < . . . < x̄N < b

and linear bounded operator Ts (y(ū)) ∈ L(U ;Lr([a, b]) × RN ) for some r ∈]1,∞].
Considering the mapping in (3.4.4), assume that ψ ∈ C1,1

loc (R2) and yd ∈ L∞([a, b])

is approximately continuous at x̄1, . . . , x̄N . Then the mapping in (3.4.4) is Fréchet-
differentiable in ū with derivative

duJ(y(ū))· (u− ū) = (ψy(y(ū), yd), δy)2,[a,b]

+

N∑
k=1

∫ 1

0

ψy(y(x̄k+; ū) + τ [y(x̄k; ū)] , yd(x̄k)) dτ [y(x̄k; ū)] δxk,

where (δy, δx1, . . . , δxN ) = Ts (y(ū)) · δu. If u 7→ y(u) is continuously shift-
differentiable in ū and yd is continuous in a neighborhood of x̄1, . . . , x̄N , then the
mapping u 7→ J(y(u)) is continuously Fréchet-differentiable at ū.



3.5. Main results of Chapter 3 41

If yd possesses at least at one x̄k an approximate discontinuity, then the map-
ping (3.4.4) is still directionally differentiable, where the directional derivative in a
direction δu ∈ U is equal to

(ψy(y(ū), yd), δy)2,[a,b]

+

N∑
k=1

∫ 1

0

ψy(y(x̄k+; ū) + τ [y(x̄k; ū)] , yd(x̄k + 0 · sgn(δxk))) dτ [y(x̄k; ū)] δxk,

where

yd(x̄k + 0 · sgn(δxk)) :=

{
yd(x̄k−)) if sgn(δxk) < 0,

yd(x̄k+)) if sgn(δxk) > 0.

Lemma 3.4.3 will play a key role in the proof of the Fréchet-differentiability of the
reduced cost functional of (P), cf. [81, 69].

3.5 Main results of Chapter 3

Before we state the main results of Chapter 3, we need some further basic def-
initions and assumptions. We note that these results are only slightly different
from those in [69, Ch. 5, §2] and are based on the corresponding results for the
pure initial value problem in [81]. In order to prove Fréchet-differentiability of the
reduced cost functional of (P) in some ū ∈ Uad, the control ū has to satisfy non-
degeneracy conditions. In particular, we have to ensure that the points where the
characteristic speed at the boundary changes its sign are controllable in some sense.
As we will see in the following lemma, considering some u ∈ U, it is sufficient to
claim that the conditions

ess inf
t : uB,a(t;u)6=y(t,a+;u)

|f(uB,a(t;u))− f(y(t, a+;u))| > 0, (3.5.1a)

ess inf
t : uB,b(t;u) 6=y(t,b−;u)

|f(uB,b(t;u))− f(y(t, b−;u))| > 0 (3.5.1b)

are satisfied.

Lemma 3.5.1. Suppose that (A3) and (A4) hold true and consider a control u ∈ U

such that the corresponding entropy solution of the IBVP (3.1.2) satisfies the condi-
tions in (3.5.1). Then, recalling the sets defined in (3.2.11) and in Notation 3.3.3,
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it holds

Ta
± ⊂ Is,a(u) and Tb

∓ ⊂ Is,b(u). (3.5.2)

Proof. Throughout the proof, let ρ > 0 denote a constant which is always sufficiently
small such that the corresponding results hold true. In addition, ρ may be reduced
throughout the proof. We will only prove the first assertion and note that the second
one can be proved analogously. Let θ ∈ Ta

± and suppose that

θ /∈ Is,a(u). (3.5.3)

We note that (θ, a) is, by Lemma 3.2.7 a shock generating point, i.e., there exists
a unique forward characteristic through (θ, a) which is a shock-curve given by some
function η(t) defined on ]θ, θ + τ ] such that

η̇(t) =
f(y(t, η(t)+))− f(y(t, η(t)−))

y(t, η(t)+)− y(t, η(t)−)
> 0 and y(t, η(t)−) > y(t, η(t)+) (3.5.4)

is satisfied on ]θ, θ+ ρ]. This yields that (θ, a) cannot be the center of a rarefaction
wave, i.e., it holds that

θ /∈ Ir,a(u). (3.5.5)

From (3.5.3) and (3.5.5) we obtain that uB,a(·) is continuous on the interval I =

]θ − ρ, θ + ρ[. Further on, note that (A4) yields f ′(uB,a) ≥ α > 0 and in addition
f ′(y(·, a+)) ≤ 0 is satisfied on [θ − ρ, θ[ since θ ∈ Ta

±. Using this and the strict
monotonicity of f ′, we obtain

y(t, a+)− uB,a(t) < −δ1 ∀t ∈ [θ − ρ, θ[, (3.5.6a)

y(θ−, a+)− y(θ+, a+) = y(θ−, a+)− uB,a(θ) < −δ2 (3.5.6b)

for some constants δ1, δ2 > 0. Here, the equality in (3.5.6b) holds due to the BLN-
conditions and the continuity of uB,a(·) on the interval I.
Using (3.1.13b), (3.5.1a) and (3.5.6a), we obtain that

f(y(θ−, a+))− f(uB,a(θ)) > ε (3.5.7)

holds for some constant ε > 0. We will now analyze all possible scenarios case
by case and show that for all these cases (3.5.4) is violated so that we obtain a
contradiction to (3.5.3).
We now consider the first case in which we assume that y(·;u) is continuous on
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the set

S>ηρ := {(t, x) ∈ ΩT : (t, x) ∈ Bρ2((θ, a)) and x > η(t) for all t ∈]θ, θ + τ ]} . (3.5.8)

Note that, due to the smoothness of uB,a(·) on I, y(·;u) is always continuous on the
set

S<ηρ := {(t, x) ∈ ΩT : (t, x) ∈ Bρ2((θ, a)) and x < η(t) for all t ∈]θ, θ + τ ]} . (3.5.9)

Next, we rewrite the first term of (3.5.4) on ]θ, θ + ρ] by

f(y(t, η(t)+))− f(y(t, η(t)−))

y(t, η(t)+))− y(t, η(t)−)

=
f(y(t, η(t)+))− f(y(θ−, a+))

y(t, η(t)+))− y(t, η(t)−)
+
f(y(θ−, a+))− f(uB,a(θ))

y(t, η(t)+))− y(t, η(t)−)

+
f(uB,a(θ))− f(y(t, η(t)−))

y(t, η(t)+))− y(t, η(t)−)
=: I1(t) + I2(t) + I3(t).

(3.5.10)

Before analyzing the terms I1(t), I2(t) and I3(t) in (3.5.10), we note that (3.5.6b)
and the continuity of y on the sets defined in (3.5.8) and (3.5.9) yield

y(t, η(t)+))− y(t, η(t)−) ≤ −δ3 ∀t ∈ [θ, θ + ρ] (3.5.11)

for some constant δ3 > 0. This result and (3.5.7) together imply

I2(t) ≤ − ε

δ3
=: −ε0 < 0 ∀t ∈ [θ, θ + ρ]. (3.5.12)

Using (3.5.11) and the continuity of y on the sets defined in (3.5.8) and (3.5.9), we
further obtain

|I1(t)|+ |I3(t)| ≤ ε0

2
∀t ∈ [θ, θ + ρ]. (3.5.13)

Using (3.5.12) and (3.5.13), we deduce from (3.5.10) that

f(y(t, η(t)+))− f(y(t, η(t)−))

y(t, η(t)+))− y(t, η(t)−)
≤ −ε0

2

is valid on ]θ, θ + ρ], which is a contradiction to (3.5.4) and hence to (3.5.3).
We now consider the second case where y(·;u) possesses exactly one shock-curve

denoted by η2 : [θ−ρ2, θ]→ Ω on the set (3.5.8) which ends in (θ, a). We first observe



44 Chapter 3. Optimal boundary control of hyperbolic balance laws

that

η̇2(t) =
f(y(t, η2(t)+))− f(y(t, η2(t)−))

y(t, η2(t)+)− y(t, η2(t)−)
< 0 and y(t, η2(t)+) < y(t, η2(t)−)

(3.5.14)

holds on ]θ − ρ, θ[, where the second inequality holds due to (3.2.4). We note that
y is continuous on the sets

S<ηρ , S>ηρ ∩ {(t, x) ∈]θ − ρ, θ[×Ω : x > η2(t)} ,
S>ηρ ∩ {(t, x) ∈]θ − ρ, θ[×Ω : x < η2(t)} .

(3.5.15)

Next, we consider again the first term of (3.5.4) on ]θ, θ + ρ]:

f(y(t, η(t)+))− f(y(t, η(t)−))

y(t, η(t)+)− y(t, η(t)−)

=
f(y(t, η(t)+))− f(y(θ − ρ

2 , η2(θ − ρ
2 )+))

y(t, η(t)+)− y(t, η(t)−)

+
f(y(θ − ρ

2 , η2(θ − ρ
2 )+))− f(y(θ − ρ

2 , η2(θ − ρ
2 )−))

y(t, η(t)+)− y(t, η(t)−)

+
f(y(θ − ρ

2 , η2(θ − ρ
2 )−))− f(y(θ−, a+))

y(t, η(t)+))− y(t, η(t)−)

+
f(y(θ−, a+))− f(uB,a(θ))

y(t, η(t)+)− y(t, η(t)−)

+
f(uB,a(θ))− f(y(t, η(t)−))

y(t, η(t)+)− y(t, η(t)−)
=: I4(t) + I5(t) + I6(t) + I7(t) + I8(t).

(3.5.16)

Using (3.5.14) and the continuity of y on the sets in (3.5.15), analogously to the
first case, one can show that for a possibly smaller δ3 > 0 the inequality (3.5.11) is
valid. We observe again that (3.5.7) and (3.5.11) together yield

I7(t) ≤ − ε

δ3
=: −ε0 < 0 ∀t ∈ [θ, θ + ρ]. (3.5.17)

Moreover, (3.5.14) and (3.5.11) impy that

I5(t) =
f(y(θ − ρ

2 , η2(θ − ρ
2 )+))− f(y(θ − ρ

2 , η2(θ − ρ
2 )−))

y(θ − ρ
2 , η2(θ − ρ

2 )+)− y(θ − ρ
2 , η2(θ − ρ

2 )−)

·
y(θ − ρ

2 , η2(θ − ρ
2 )+)− y(θ − ρ

2 , η2(θ − ρ
2 )−)

y(t, η(t)+)− y(t, η(t)−)
≤ 0

(3.5.18)

holds on ]θ, θ+ρ]. Using the continuity of y on the sets defined in (3.5.15), we obtain
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that

|I4(t)|+ |I6(t)|+ |I8(t)| ≤ ε0

2
∀t ∈]θ, θ + ρ]. (3.5.19)

Finally, (3.5.18),(3.5.17), (3.5.19) and (3.5.16) together yield that

f(y(t, η(t)+))− f(y(t, η(t)−))

y(t, η(t)+)− y(t, η(t)−)
≤ −ε0

2
(3.5.20)

holds true on ]θ, θ+ρ]. However, this is again a contradiction to (3.5.4) and therefore
to (3.5.3). This technique can be extended to the case that y(·;u) possesses an
arbitrary number of shock-curves on the set in (3.5.8). Indeed, if there are N shock-
curves, then in the estimation (3.5.16) for each shock-curve a term of the form I5
will appear, which all can be estimated according to (3.5.18), such that one can
show (3.5.20).
Finally, we consider the third case where (θ, a) is the center of a centered com-

pression wave, i.e., there are two genuine backward characteristics ζl(·) and ζr(·)
through (θ, a) such that all backward characteristics in the funnel confined by them
are genuine. We can w.l.o.g. assume that y is continuous on the sets

S<ηρ , ,S>ηρ ∩ {(t, x) ∈]θ − ρ, θ[×Ω : x > ζr(t)} ,
S>ηρ ∩ {(t, x) ∈]θ − ρ, θ[×Ω : x < ζl(t)} .

(3.5.21)

If there is, in addition, one or multiple shock-curves ending in (θ, a), then one can
use the same arguments as described in the second case. We further observe that

f ′(y(ζr(t))) < f ′(y(ζl(t))) ≤ 0 ∀t ∈]θ − ρ, θ[ (3.5.22)

holds. From (3.5.22) and the strict monotonicity of f ′, we obtain that

y(ζr(t)) < y(ζl(t)) and f(y(ζl(t))) < f(y(ζr(t))) (3.5.23)

hold for all t ∈]θ − ρ, θ[. We rewrite again the right-hand side of the first term of
(3.5.4) on ]θ, θ + ρ]:

f(y(t, η(t)+))− f(y(t, η(t)−))

y(t, η(t)+)− y(t, η(t)−)

=
f(y(t, η(t)+))− f(y(θ − ρ

2 , ζr(θ −
ρ
2 )))

y(t, η(t)+)− y(t, η(t)−)

+
f(y(θ − ρ

2 , ζr(θ −
ρ
2 )))− f(y(θ − ρ

2 , ζl(θ −
ρ
2 )))

y(t, η(t)+)− y(t, η(t)−)
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+
f(y(θ − ρ

2 , ζl(θ −
ρ
2 )))− f(y(θ−, a+))

y(t, η(t)+)− y(t, η(t)−)

+
f(y(θ−, a+))− f(uB,a(θ))

y(t, η(t)+)− y(t, η(t)−)

+
f(uB,a(θ))− f(y(t, η(t)−))

y(t, η(t)+)− y(t, η(t)−)

=: I9(t) + I10(t) + I11(t) + I12(t) + I13(t).

As in the first the second case, one can show that for a possibly smaller δ3 > 0 the
inequality (3.5.11) holds true:

y(t, η(t)+))− y(t, η(t)−) ≤ δ3 ∀t ∈ [θ, θ + ρ]. (3.5.24)

Then, (3.5.23) and (3.5.24) together yield

I10(t) ≤ 0 ∀t ∈]θ, θ + ρ[. (3.5.25)

Using again (3.5.7) in connection with (3.5.24), we obtain

I12(t) ≤ − ε

δ3
=: −ε0 < 0 ∀t ∈]θ, θ + ρ[. (3.5.26)

As in the second case, we use the continuity of y on the sets defined in (3.5.21) and
get

|I9(t)|+ |I11(t)|+ |I13(t)| ≤ ε3

2
∀t ∈ [θ, θ + ρ]. (3.5.27)

Finally, (3.5.25), (3.5.26) and (3.5.27) together impy

f(y(t, η(t)+))− f(y(t, η(t)−))

y(t, η(t)+)− y(t, η(t)−)
≤ −ε0

2
∀t ∈ [θ, θ + ρ],

which is a contradiction to (3.5.4).
We find, in summary, that under the assumptions of Lemma 3.5.1, (3.5.4) and

hence (3.5.3) can never be valid such that (3.5.2) must be satisfied.

In order to prove Fréchet-differentiability of the mapping u 7→ J(y(t̄, ·,u)) in some
ū ∈ U, we have to require that ū satisfies the following non-degeneracy conditions,
which are basically the conditions of Theorem 5.2.3 in [69]:
(ND) Consider a control u ∈ U, a fixed time point t̄ ∈]0, T [ and a bounded interval

[a, b] ⊂ Ω. We say that u is non-degenerated if the following conditions hold
for a sufficiently small constant ρ > 0: Considering the sets of indices defined
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in Notation 3.3.3, it holds that

Ic,0(u) ∪ Ic,a(u) ∪ Ic,b(u) = ∅.

Moreover, the corresponding entropy solution y(t̄, ·;u) of (3.1.2) has no shock
generation points on [a, b] and a finite number of discontinuities a < x1 < · · · <
xN < b, which are no shock interaction points and non-degenerated according
to Definition 3.7.3. Furthermore, the condition (3.5.1) is satisfied. For every
taj ∈ Ta

± let ξja denote the maximal backward characteristic through the point
(taj , a). Then it is possible to construct a stripe S ⊂ ΩT with ξja ⊂ intS and
there exists a continuously differentiable local solution Y : S → R such that

y(·;u + δu) ≡ Y (·;u + δu) on S ∩ Ω× [0, taj + δtaj ]

is satisfied for all δu ∈ BU
ρ (0U) and f(Y (θ, a;u) < f(uB,a(taj+)) holds.

Considering some tbj ∈ Tb
∓ let ξjb denote the maximal backward characteristic

through the point (tbj , b). Analogously to the left boundary, one can construct
a stripe S ⊂ ΩT with ξjb ⊂ intS and there exists a continuously differentiable
local solution Y : S → R such that for all δu ∈ BU

ρ (0U)

y(·;u + δu) ≡ Y (·;u + δu) on S ∩ Ω× [0, tbj + δtbj ]

holds true and Y satisfies f(Y (θ, b;u) > f(uB,b(tbj+)). Finally, we require
that |u0(a+,u)− uB,a(0+,u)| > 0 and |u0(b−,u)− uB,b(0+,u)| > 0.

Remark 3.5.2. The last condition mentioned in (ND) ensures a certain stability
of the corresponding entropy solution y(u). More precisely, supposing that e.g.
u0(a+,u) = uB,a(0+,u), then a small perturbation of u can cause a shock or a
rarefaction wave emanating from (0, a). In [69, Lemma 6.2.16], the author provides
a method how to deal with this instability. However, as we will see later, due the
just mentioned instability, the results of Lemma 3.7.1 do not hold anymore. Since
Lemma 3.7.1 will be essential to derive necessary optimality conditions for (P), we
have to ensure that the solution near the points (0, a) and (0, b) is stable, i.e., there is
either a shock or a rarefaction wave emanating from these points, respectively, which
is guaranteed by the last condition of (ND). Another possibility to cope with this
problem is to choose some subspace Ũ(u) ⊂ U such that for all δu ∈ Ũ it holds that
u0(a+ /b−,u+ δu) = uB,a/b(0+,u+ δu) if the case u0(a+ /b−,u) = uB,a/b(0+,u)

appears.

The next result is an extension of Theorem 3.3.6. in [81] to initial-boundary value
problems:
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Theorem 3.5.3 (Nondegeneracy of shocks holds for almost all t̄ ∈]0, T ]). In ad-
dition to (A3) and (A4), assume that g ∈ L∞(]0, T [;C2

loc(R × R × Rm)) holds
true. Consider a control u ∈ U with additionally u0(u) ∈ PC2(Ω;x1, . . . , xnx),
uB,a(u) ∈ PC2([0, T ]; t1, . . . , tnt,a) and uB,b(u) ∈ PC2([0, T ]; t1, . . . , tnt,b). Then
for almost all t̄ ∈]0, T ] the corresponding entropy solution y(t̄, ·;u) of the IBVP
(3.1.2) has no shock generation points on [a, b] and a finite number of (according to
Definition 3.7.3) non-degenerated discontinuities a < x1 < · · · < xN < b, which are
no shock interaction points.

Proof. Using the results of §3.7.1 and Lemma 3.2.5, the proof of Theorem 3.5.3 is
similar to the proof of Theorem 3.3.6. in [81].

In the next result, we will prove Fréchet-differentiability of the reduced cost func-
tional Ĵ(·) and derive an adjoint-based representation of the gradient. Considering
an entropy solution y of the IBVP (3.1.2), the corresponding adjoint equation reads

pt + f ′(y)px = −gy(·, y, u1)p on Ωt̄

p(t̄, ·) = pt̄(·) on Ω,

p(·, a+) = 0 on {t ∈]0, t̄[: (t, a) ∈ D−}
p(·, b−) = 0 on {t ∈]0, t̄[: (t, b) ∈ D−}

(3.5.28)

where pt̄ is the given end data. With the adjoint equation (3.5.28) we associate the
adjoint state p, which is defined as in [69, Definition 5.2.2]:

Definition 3.5.4. Consider a time point t̄ ∈]0, T [ and let pt̄ be a bounded function
that is pointwise everywhere the limit of a sequence (pt̄n)n∈N ⊂ C0,1(Ω) which is
bounded in C(Ω) ∩W 1,1

loc (Ω). Moreover, let y ∈ BV (ΩT ) ∩ C([0, T ];L1(Ω)) be an
entropy solution of the IBVP (3.1.2). Then we associate with (3.5.28) the adjoint
state p, which is defined as follows:

1. For any generalized backward characteristic ξ through (t̄, x̄) ∈ Ωcl
T , the mapping

t 7→ pξ(t) := p(t, ξ(t)) solves the ordinary differential equation

ṗξ(t) = −gy(t, ξ(t), y(t, ξ(t)), u1(t, ξ(t)))pξ(t), t ∈]0, t̄] : ξ(t) ∈ Ω,

pξ(t̄) = pt̄(x̄).

2. The adjoint state p is equal to zero on D−.

The following result is an extension of Theorem 5.2.6 in [69] to the case that the
shifting of rarefaction centers is allowed:
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Theorem 3.5.5. Suppose that (A3) and (A4) hold true. Considering a time point
t̄ ∈]0, T [ and an interval [a, b], let ū ∈ U satisfy the conditions in (ND). Denoting
by y(ū) the corresponding entropy solution of (3.1.2), let yd be continuous in a
neighborhood of the discontinuities x̄1, . . . , x̄N of y(t̄, ·, ū) on [a, b]. Then the reduced
cost functional

U 3 u 7→ Ĵ(u) := J(y(u),u) ∈ R (3.5.29)

is continuously Fréchet-differentiable in a neighborhood BU
ρ (ū), where ρ > 0 is suf-

ficiently small. The corresponding derivative in a direction δu ∈ U is given by

Ĵ ′(u) · δu = R′(u)δu + (pgu1(·, y, u1), δu1)2,Ωt̄

+

nx+1∑
i=1

(p(0, ·), δu0
i )2,Ii0(u) +

∑
i∈Is,0(u)

p(0, x0
i )[u0(x0

i )]δx
0
i

+

nt,a+1∑
i=1

(p(·, a+), f ′(uB,ai )δuB,ai )2,IiB,a(u)∩]0,t̄[

+
∑

i∈Is,a(u):
tai≤t̄

p(tai , a+)[f(y(tai , a+;u))]δtai

−
nt,b+1∑
i=1

(p(·, b−), f ′(uB,bi )δuB,bi )2,IiB,b∩]0,t̄[

−
∑

i∈Is,b(u):

tbi ≤t̄

p(tbi , b−)[f(y(tbi , b−;u))]δtbi

−
∑

i∈Ir,0(u)

pr,0i δx0
i +

∑
i∈Ir,a(u):
tai≤t̄

pr,ai δtai +
∑

i∈Ir,b(u):

tbi ≤t̄

pr,bi δtbi

(3.5.30)

where p denotes the adjoint state according to Definition 3.5.4 with end data

pt̄ =

{∫ 1

0
ψy (y(t̄, x+; ū)) + τ [y(t̄, x; ū)], yd(x+) + τ [yd(x)]) dτ if x ∈ [a, b]

0 else

and

pr,0j :=

∫ f ′(u0
j+1(x0

j ))

f ′(u0
j (x

0
j ))

lim
t↘0

p(t, zt+ x0
j )

1

f ′′(f ′−1(z))
dz, j ∈ Ir,0(u),
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pr,aj :=

∫ f ′(uB,aj (taj ))

f ′(uB,aj+1(taj ))

lim
t↘taj

p(t, z(t− taj ))
z

f ′′(f ′−1(z))
dz, j ∈ Ir,a(u) : taj ≤ t̄,

pr,bj :=

∫ f ′(uB,bj+1(tbj ))

f ′(uB,bj (tbj ))

lim
t↘tbj

p(t, z(t− tbj ))
z

f ′′(f ′−1(z))
dz, j ∈ Ir,b(u) : tbj ≤ t̄.

The proof of Theorem 3.5.5 can be found in the last section of Chapter 3.

3.6 The adjoint equation

In this section we will have a closer look at the adjoint equation that was introduced
in (3.5.28), where we restrict ourselves to the case a = −∞ and b = ∞. Given an
entropy solution y ∈ L∞(ΩT ) and end data pτ for some τ ∈]0, T ], the corresponding
adjoint equation reads

pt + f ′(y)px = −gy(·, y, u1)p on Ωτ :=]0, τ [×Ω and p(τ, ·) = pτ (·) on Ω.

(3.6.1)

We note that (3.6.1) is a transport equation of the form

pt + apx = −bp+ c on Ωτ and p(τ, ·) = pτ (·) on Ω. (3.6.2)

This section is concerned with the analysis of general transport equations of type
(3.6.2). Here, we assume that Ω = R, b, c ∈ L∞(]0, T [;C0,1(R)) and that a ∈
L∞(ΩT ) satisfies the so-called one-sided Lipschitz condition (OSLC)

ax(t, ·) ≤ α(t), α ∈ L1(]0, T [), (3.6.3)

or at least the weakened one-sided Lipschitz condition (weakened OSLC)

ax(t, ·) ≤ α(t), α ∈ L1(]σ, T [) for all σ ∈]0, T [. (3.6.4)

We note that the inequalities in (3.6.3) and (3.6.4) have to be understood in the sense
of distributions. Although in this thesis we deal with possibly bounded domains
Ω ⊂ R, we study (3.6.2) for the case Ω = R and adapt the results in a way such
that they are applicable to the case of bounded domains, cf. [69], [70] and [71].
Setting a = f ′(y), we observe that due to Oleiniks entropy condition in (3.2.3)

the OSLC (3.6.3) cannot hold true if there are rarefaction centers in the initial data.
Nevertheless, considering the pure initial value problem, one can show that in the
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presence of rarefaction waves the weakened OSLC (3.6.4) is satisfied.
As we can see in the following example which was first discussed by Conway in

[30] and also by Bouchut and James in [11, Example 4.1.1 ], transport equations
with discontinuous coefficients of the type (3.6.2) do not admit unique solutions.

Example 3.6.1. Let a(t, x) = sgn(x), b, c ≡ 0 and consider end data pτ ∈ C0,1
loc (R).

Then for any function h ∈ C0,1([0, T ]) satisfying h(0) = pτ (0), the function

p(t, x) =

{
pτ (x− (τ − t)sgn(x)) if τ − t ≤ |x| ,
h(τ − t− |x|) if τ − t ≤ |x| .

is a Lipschitz continuous solution to (3.6.2).

In order to achieve uniqueness, Bouchut and James introduce in [11] the concept
of reversible solutions for the homogeneous version of (3.6.2) given by

pt + apx = 0 on Ωτ and p(τ, ·) = pτ (·) on R. (3.6.5)

In [81], Ulbrich extends the results of Bouchut and James to the inhomogeneous
case with possibly discontinuous end data pτ . In the rest of this section, we will
collect some important results of [11] and [81]. We first present a characterization
of reversible solutions to (3.6.5), which is introduced in [11]:

Definition 3.6.2. Denote by Lhom the set of Lipschitz continuous solutions to
(3.6.5). Then p ∈ Lhom is a reversible solution of (3.6.5), if there exist p1, p2 ∈ Lhom

satisfying (p1)x, (p2)x ≥ 0 such that p = p1 − p2.

In [11], Bouchut and James prove existence and uniqueness of a reversible solution
if the OSLC (3.6.3) is satisfied:

Theorem 3.6.3 (Theorem 4.1.5, [11]). Assume that a ∈ L∞(ΩT ) satisfies the
OSLC (3.6.3) for some α ∈ L1(]0, T [). Then for all pτ ∈ C0,1

loc (R) (3.6.5) admits a
unique reversible solution p ∈ C0,1

loc (Ωcl
τ ) such that p(τ, ·) = pτ . Finally, for arbitrary

x1, x2 ∈ R with x1 < x2 and t ∈ [0, τ ], it holds that

‖p(t, ·)‖∞,I ≤ ‖p
τ‖∞,J , ‖px(t, ·)‖∞,I ≤ e

∫ τ
t
α ‖pτx‖∞,J ,

where I :=]x1, x2[ and J :=]x1 − ‖a‖∞, (τ − t), x2 + ‖a‖∞, (τ − t)[.

As already mentioned in [81], the notion of reversible solutions according
to Definition 3.6.2 is not extendable to the inhomogeneous case. In order to
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characterize reversible solutions to (3.6.2) for the case b, c 6≡ 0, the so-called
generalized backward flow , introduced in [11], plays an important role.

Definition 3.6.4. Assume that a ∈ L∞(ΩT ) satisfies the OSLC (3.6.3) and define
the set

Db :=
{

(s, t) ∈ R2 : 0 ≤ t ≤ s ≤ T
}
.

Then the generalized backward flow X ∈ C0,1(Db × R) associated with a is defined
as follows: For any s ∈]0, T ], X(s; ·, ·) is given by the unique reversible solution to

Xt(s; ·, ·) + aXx(s; ·, ·) = 0, (t, x) ∈]0, s[×R,
X(s; s, x) = x, x ∈ R.

For s = 0, we set X(0; 0, x) = x.

Remark 3.6.5. As remarked in [11], the generalized backward flow X satisfies the
composition formula

X(s; t,X(t;σ, z)) = X(s;σ, z) for all 0 ≤ σ ≤ t ≤ s ≤ T, z ∈ R

and for all (t, x) ∈ ΩT it holds that

d

ds
X(s; t, x) ∈ [a(s,X(s; t, x)+), a(s,X(s; t, x)−)] for a.a. s ∈]0, T [.

That means that X(·; t, x) solves the ODE

d

ds
X(s; t, x) = a(s,X(s; t, x)), s ∈ [t, T ], X(t; t, x) = x (3.6.6)

in the sense of Filippov [35]. We note that (3.6.3) respectively (3.6.4) yield a(t, ·) ∈
BVloc(R) for a.a. t. Hence the left- and right-sided limits in (3.6.6) are well-defined,
cf. [81].

Furthermore, Bouchut and James show in [11] that the unique reversible solution
p to (3.6.5) is given by

p(t, x) = pτ (X(τ ; t, x)) (3.6.7)

and therefore solves (3.6.5) along the generalized characteristics in the sense of
Dafermos. Thus, the reversible solution to the transport equation in Example 3.6.1
is given by (3.6.7), where the generalized backward flow associated with a in the
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considered example is equal to

X(s; t, x) =

{
x− sgn(x)(s− t) if |x| > s− t
0 if |x| ≤ s− t

, s ∈ [t, τ ],

cf. [81].
Using this characterization of reversible solutions, Ulbrich developed the following

definition of reversible solutions to the inhomogeneous case.

Definition 3.6.6. Assume that a ∈ L∞(ΩT ) satisfies the OSLC (3.6.3), i.e.,
ax(t, ·) ≤ α(t) for some α ∈ L1(]0, T [) and let b, c ∈ L∞(]0, T [;C0,1(R)). Then
p is called a reversible solution to (3.6.2), if for all z ∈ R it holds that

p(τ,X(τ ; 0, z)) = pτ (X(τ ; 0, z)),

d

dt
p(t,X(t; 0, z)) = (−bp+ c)(t,X(t; 0, z)), for a.a. t ∈]0, τ [.

(3.6.8)

For the case that only

α ∈ L1(]σ, T [) for all σ > 0

holds, p can first be defined on the domains ]σ, τ [×R and then on Ωτ by exhaustion.

Additionally, Ulbrich extends in [81] Theorem 3.6.3 to the inhomogeneous case
(3.6.2), see also [82]. Ulbrich first derives an existence and uniqueness result for
reversible solutions to (3.6.2), assuming that a satisfies the OSLC (3.6.3) and pτ is
Lipschitz continuous. Building on this result, Ulbrich further proves existence and
uniqueness of reversible solutions under the weakened OSLC (3.6.4) for possibly
discontinuous end data lying in the set

BLip(R) :=

{
v ∈ B(R) :

v is the pointwise everywhere limit of a sequence
(wn)n∈N ⊂ C0,1(R), (wn) bounded in C(R) ∩W 1,1

loc (R)

}
,

where B(R) denotes the Banach space of bounded functions equipped with the sup-
norm. This is crucial for our analysis, since we have to deal with discontinuous
end data pτ due to the computation of gradients of the reduced cost functional in
Theorem 3.5.5. The just mentioned existence and uniqueness results are given by
the following theorems:

Theorem 3.6.7 (Thm. 4.2.10, [81]). Assume that a ∈ L∞(ΩT ) satisfies the OSLC
(3.6.3) and let b, c ∈ L∞(]0, T [;C0,1(R)). Given any pτ ∈ C0,1(R), (3.6.2) admits
a unique reversible solution p ∈ C0,1(Ωcl

τ ). Moreover, p solves (3.6.2) almost ev-
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erywhere on Ωτ and ‖p‖C0,1(Ωcl
τ ) has a bound that depends on ‖b‖L∞(]0,T [;C0,1(R)),

‖c‖L∞(]0,T [;C0,1(R)), ‖pτ‖C0,1(R), ‖a‖∞,[0,T ] and ‖α‖1,[0,T ], but not on τ .
In addition, for arbitrary t ∈ [0, τ ], x1, x2 ∈ R with x1 < x2 and 0 ≤ t1 < t2 ≤ τ ,

it holds that

‖p(t, ·)‖B(I) ≤
(
‖pτ‖B(J) + ‖c‖L1(]0,τ [;B(J))

)
e‖b‖L1(]0,τ[;B(J)) , (3.6.9a)

‖px(t, ·)‖1,I ≤
(
‖pτx‖1,J + ‖bx‖1,[t,τ ]×J ‖p‖∞,[t,τ ]×J + ‖cx‖1,[t,τ ]×J

)
e‖b‖L1(]0,τ[;B(J)) ,

(3.6.9b)

‖pt‖1,[t1,t2]×I ≤ (t2 − t1)
(
‖bp− c‖L∞(]t1,t2[;L1(I))

+ ‖a‖∞,[t1,t2]×I ‖px‖L∞(]t1,t2[;L1(I))

)
, (3.6.9c)

where I := [x1, x2] and J := [x1 − ‖a‖∞, (T − t), x2 + ‖a‖∞, (T − t)]. In particular,
(3.6.9) yields

‖p‖W 1,1(]0,τ [×I) + ‖p‖B(]0,τ ];W 1,1(I)) ≤ C1

‖p(t2)− p(t1)‖1,I ≤ C2(t2 − t1),
(3.6.10)

where the constants C1 and C2 depend on ‖pτ‖W 1,1(J), ‖a‖∞,[0,τ ]×J ,
‖b‖L∞(]0,τ [;W 1,1(J)) and ‖c‖L∞(]0,τ [;W 1,1(J)), but not on α.

Theorem 3.6.8 (Cor. 4.2.11, [81]). Let the assumptions of Theorem 3.6.7 hold
with the relaxation that only the weakened OSLC (3.6.4) is satisfied for some α with
α ∈ L1(]σ, T [) for each fixed σ > 0. Then the following holds true:
(i) Given any pτ ∈ C0,1(R), (3.6.2) admits a unique reversible solution p that

satisfies

p ∈ B(ΩT ) ∩ C0,1([σ, τ ]×R) ∩ C0,1([0, τ ];L1
loc(R)) ∩B([0, τ ];BVloc(R))

for all σ ∈]0, τ [. Furthermore, (3.6.9) and (3.6.10) hold for all t ∈]0, τ ] and
(3.6.8) for all t ∈]0, τ [. Moreover, for any closed set E such that

ax(t, ·)|R\E ≤ α̂(t)

with some α̂ ∈ L1(]0, T [), the reversible solution p satisfies in addition

p ∈ C0,1([0, τ ]× (R \ Eε))

for any ε-neighborhood Eε of E. Moreover, ‖p‖C0,1([0,τ ]×(R\Eε)) has a bound
only depending on ε, ‖b‖L∞(]0,T [;C0,1(R)), ‖c‖L∞(]0,T [;C0,1(R)), ‖pτ‖C0,1(R),
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‖a‖∞,[0,T ] and ‖α̂‖1,[0,T ], but not on τ . For the case that the OSLC (3.6.3) is
satisfied, one can choose E = Eε = ∅.

(ii) For end data pτ ∈ BLip(R), (3.6.2) admits a unique reversible solution p ∈
B(Ωτ ) satisfying (3.6.9a) and

p ∈ B(ΩT ) ∩ C0,1([0, τ ];L1
loc(R)) ∩B([0, τ ];BVloc(R)) ∩BVloc(Ωcl

τ ).

Consider an arbitrary sequence (pτn)n∈N ⊂ C0,1(R) that is bounded in C (R)∩
W 1,1

loc (R) and converges pointwise everywhere to pτ . Then the corresponding
reversible solutions pn ∈ C0,1

loc (Ωτ ) ∩ C0,1([0, τ ];L1
loc(R)) of (3.6.2) satisfy

pn → p boundedly everywhere on ]0, τ ]×R and in C([0, τ ];L1
loc(R)).

If even the OSLC (3.6.3) holds for some α ∈ L1(]0, T [), then the reversible
solutions pn ∈ C0,1

loc (Ωcl
τ ) satisfy in addition

pn → p boundedly everywhere on [0, τ ]×R.

We will close this section by a result of [81] studying the stability of reversible
solutions under the OSLC (3.6.3). Additionally, one can also find a version assuming
that only the weakened OSLC (3.6.4) is satisfied, see [81, Theorem 4.2.13].

Theorem 3.6.9 (Thm. 4.2.12, [81]). Let the following assumptions be satisfied:
1. Consider a sequence (an)n∈N which is bounded in L∞(ΩT ) and satisfies

an
∗−⇀ a in L∞(ΩT )

as well as the OSLCs

(an)x(t, ·) ≤ αn(t), ax(t, ·) ≤ α(t) for a.a. all t ∈]0, T [

for a bounded sequence (αn)n∈N ⊂ L1(]0, T [) and α ∈ L1(]0, T [).
2. Furthermore, let (bn)n∈N , (cn)n∈N ⊂ L∞(]0, T [;C0,1(R)) be sequences which

are bounded in L1(]0, T [;C (R)) and satisfy

bn → b, cn → c in L1(]0, T [;Cloc(R)),

where b, c ∈ L∞(]0, T [;C0,1(R)).
3. Finally, consider a sequence (pτn)n∈N ⊂ C0,1(R) which is bounded in C (R)
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and satisfies

pτn → pτ in Cloc(R),

with pτ ∈ C0,1(R).

Then the sequence of reversible solutions (pn)n∈N of

pt + anpx = −bnp+ cn on Ωτ , p(τ, ·) = pτn(·) on R

satisfies

pn → p in C ([0, τ ]× [−R,R])

for all R > 0, where p is the reversible solution of (3.6.2).

3.7 Proof of the main results of Chapter 3

The goal of this last section of Chapter 3 is to prove Theorem 3.5.5. Since Theo-
rem 3.5.5 is an extension of Theorem 5.2.6 in [69] to the case that the shifting of
rarefaction centers is allowed, we will use the same techniques as in [69]. These
techniques are based on the concepts that are developed in [81] for the case of pure
initial value problems, see also [70]. Therefore, we will recall some results of [69]
and show that they still hold true if rarefaction centers are shifted. One of the basic
steps to prove Theorem 3.5.5 is to show that the control-to-state mapping

U 3 u 7→ y(t̄, ·,u) ∈ L∞(Ω), (3.7.1)

is continuously shift-differentiable according to Definition 3.4.2 and then use
Lemma 3.4.3 to prove that the mapping defined in (3.5.29), i.e.,

U 3 u 7→ Ĵ(u) := J(y(u),u) ∈ R,

is continuously Fréchet-differentiable, cf. [81], [82], [69] and [70]. In order to show
that the mapping in (3.7.1) is shift-differentiable, we have to find a linear bounded
operator

Ts (y(t̄, ·, ū)) ∈ L(U ;Lr([a, b])×RN ) (3.7.2)
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for some r ∈]1,∞] such that

lim
u→ū

∥∥∥y(u)− y(ū)− S(x̄k)
y(t̄,·,ū) (Ts (y(t̄, ·, ū)) (u− ū))

∥∥∥
1,[a,b]

‖u− ū‖U
= 0. (3.7.3)

The following result will play a key-role in finding an operator (3.7.2) such that
(3.7.3) is valid.

Lemma 3.7.1. Suppose that (A3) and (A4) hold true. Considering a time point
t̄ ∈]0, T [ and an interval [a, b], let ū ∈ U satisfy the conditions in (ND). Then for
all u in a neighborhood BU

ρ (ū) of ū the corresponding entropy solution y(ū) of the
IBVP (3.1.2) is at the time point t̄ on the interval [a, b] given by

y (t̄, x;u) |[a,b] = Y1(t̄, x;u)·1[a,x1(u)](x)+

K+1∑
k=2

Yk(t̄, x;u)·1]xk−1(u),xk(u)](x), (3.7.4)

where

Yk : (x,u) ∈ Iεk ×BU
ρ (ū) 7→ Yk (t̄, x;u) ∈ R (3.7.5)

xk : u ∈ BU
ρ (ū) 7→ xk (u) ∈

]
xk(ū)− ε

2
, xk(ū) +

ε

2

[
, (3.7.6)

are continuously differentiable mappings and Iεk :=]xk−1(ū) − ε, xk(ū) + ε[ for k =

1, . . . ,K + 1, and x0 = a, xK+1 = b. Finally, the mappings

u ∈ BU
ρ (ū) 7→ Yk (t̄, ·;u) ∈ C (Iεk) , k = 1, . . . ,K + 1

are continuously differentiable.

Proof. The proof of this lemma will be given at the beginning of §3.7.5.

We consider a control ū ∈ U and observe that the unique entropy solution y(ū) to
the IBVP (3.1.2) has BV-regularity according to Proposition 3.1.4. Therefore, fixing
some time point t̄ ∈]0, T [, y(t̄, ·, ū) has at most a countable number of discontinuities
on Ω. In order to prove Lemma 3.7.1, it will be crucial to have a closer look at the
continuity and shock points of y(t̄, ·, ū). A classification and analysis of the continu-
ity and shock points have been done for the case of a pure initial value problem in
[81]. These results are extended to initial-boundary value problems in [69, Ch. 6],
which we will recall in the following subsection. Since in this thesis the shifting of
rarefaction centers is not prohibited, we will have to adapt some of the results using
the ideas of [69, §8.2].
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3.7.1 Classification of continuity points

Throughout this subsection suppose that the assumptions (A3) and (A4) are sat-
isfied. Considering a continuity point x̄ ∈ [a, b] of y(t̄, ·, ū) for some ū ∈ U,
we denote by ξ̄ the unique genuine backward characteristic through (t̄, x̄). Since
‖y(t̄, ·;u)‖∞,Ω ≤ My holds due to Proposition 3.1.3, the speed of the characteris-
tic ξ̄ is bounded as well. Therefore, ξ̄ ends in some point (θ̄, z̄) with z̄ ∈ Ωcl and
θ̄ ∈ [0, t̄[, where only three scenarios can occur: Either ξ̄ ends in t = 0 such that
θ̄ = 0, ξ̄ ends in the left boundary such that z̄ = a or ξ̄ ends in the right boundary
such that z̄ = b. For each of these scenarios there are three further cases: The
characteristic ξ̄ can end in a point where the data is continuous, in the inner of a
rarefaction wave or on the boundary of a rarefaction wave. Before having a look at
these cases, we first note that since ūB,a ≥ α and ūB,b ≤ −α are satisfied due to
(A4), it cannot happen that ξ̄ touches the boundary and then returns into the inner
of ΩT . The fact that ξ̄ is genuine implies z̄ /∈ Is,0 and θ̄ /∈ Is,a ∪ Is,b. Moreover,
from Proposition 3.2.4 we obtain that (ξ̄(·), y(·, ξ̄(·))) coincides on ]θ̄, t̄] with (ζ, v)

denoting the solution of (3.2.7) with end data (x̄, y(t̄, x̄; ū)). In what follows, we set
v(θ̄) = w̄.
We first consider the cases where ξ̄ ends in t = 0, cf. [81, §3.4.3]:
Case C: Let θ̄ = 0 and z̄ 6= x̄i for i = 1, . . . , nx. Since ξ̄ is genuine and ū0(·) is

smooth at z̄, Proposition 3.2.4 yields that ξ̄ coincides on [0, t̄] with ζ(·; 0, z̄, ū0
j (z̄), ū1)

for some j ∈ {1, . . . , nx}, where z̄ ∈ J for some open interval J ⊂ [x̄0
j−1, x̄

0
j ] and

(ζ, v) is given by the solution of (3.2.7) with initial data (z̄, ū0
j (z̄)). The fact that

genuine characteristics may only intersect at their endpoints (cf. Proposition 3.2.4)
yields

d

dz
ζ(t; 0, z, ū0

j (z), ū1)

∣∣∣∣
z=z̄

≥ 0 ∀t ∈ [0, t̄], (3.7.7)

cf. [81]. If there exists a constant β > 0 such that

d

dz
ζ(t; 0, z, ū0

j (z), ū1)

∣∣∣∣
z=z̄

≥ β ∀t ∈ [0, t̄], (3.7.8)

then we say that x̄ is of class Cc. We note that if (t̄, x̄) is not a shock generation
point, then x̄ is of class Cc, see [81].
Case R: Let ξ̄ end in the inner of a rarefaction wave emanating from t = 0,

i.e., θ̄ = 0, z̄ = x̄0
j for some j ∈ Ir,0(ū) and w̄ ∈]ū0

j−1(x̄0
j ), ū

0
j (x̄

0
j )[. Using the same
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arguments as in the case above, one can show that

d

dw
ζ(t; 0, x̄0

j , w, ū1)

∣∣∣∣
w=w̄

≥ 0 ∀t ∈ [0, t̄], (3.7.9)

cf. [81]. If furthermore

d

dw
ζ(t; 0, x̄0

j , w, ū1)

∣∣∣∣
w=w̄

≥ βt ∀t ∈]0, t̄] (3.7.10)

is satisfied for a constant β > 0, then we say that x̄ is of class Rc. Supposing that
(t̄, x̄) is not a shock generation point, one can show that x̄ is of class Rc, see [81].
Case RB: Let ξ̄ end on the boundary of a rarefaction wave emanating from

t = 0, i.e., θ̄ = 0, z̄ = x̄0
j for some j ∈ Ir,0(ū) and w̄ ∈

{
ū0
j−1(x̄0

j ), ū
0
j (x̄

0
j )
}
. Then

the one-sided derivatives satisfy (3.7.7) and (3.7.9). If the one-sided derivatives even
satisfy (3.7.8) and (3.7.10), then we say that x̄ is of class RBc. If (t̄, x̄) is not a
shock generation point, then x̄ is of class RBc, see [81].
Now we consider the case that ξ̄ leaves ΩT at x = a or x = b at a

time point θ̄ ∈]0, t̄[. Pfaff extended in [69, §6.1] the results of [81, §3.4.3] to
initial-boundary value problems. We will first collect the results for the case that ξ̄
leaves ΩT at x = a at a time point θ̄ ∈]0, t̄[:
Case CB,a: Let z̄ = a and ¯6=t̄ai for i = 1, . . . , nt,a. Analogously to the C-case

above, one can show that there exists an open interval J ⊂ [t̄aj−1, t̄
a
j ] for some

j ∈ {1, . . . , nt,a} such that θ̄ ∈ J and

d

dθ
ζ(t; θ, a, ūB,aj (θ), ū1)

∣∣∣∣
θ=θ̄

≤ 0 ∀t ∈ [θ̄, t̄], (3.7.11)

cf. [69]. If there exists a constant β > 0 such that

d

dθ
ζ(t; θ, a, ūB,aj (θ), ū1)

∣∣∣∣
θ=θ̄

≤ −β ∀t ∈ [θ̄, t̄], (3.7.12)

is valid, then we x̄ is of class CcB,a. One can show that if (t̄, x̄) is not a shock
generation point, then x̄ is of class CcB,a. This can be found in [69].
Case RB,a: Let ξ̄ end in the inner of a rarefaction wave emanating from the left

boundary, i.e., z̄ = a, θ̄ = t̄aj for some j ∈ Ir,a(ū) and w̄ ∈]ūB,aj (t̄aj ), ū
B,a
j−1(t̄aj )[. Using

the same arguments as in the R-case, one can prove that

d

dw
ζ(t; t̄aj , a, w, ū1)

∣∣∣∣
w=w̄

≥ 0 ∀t ∈ [θ̄, t̄], (3.7.13)
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holds true, cf. [69]. Moreover, if

d

dw
ζ(t; t̄aj , a, w, ū1)

∣∣∣∣
w=w̄

≥ β(t− θ̄) ∀t ∈]θ̄, t̄], (3.7.14)

is satisfied for some constant β > 0, then x̄ is of class RcB,a. If (t̄, x̄) is not a shock
generation point, then one can show that x̄ is of class RcB,a, see [69].
Case RBB,a: Let ξ̄ end on the boundary of a rarefaction wave emanating from the

left boundary, i.e., z̄ = a, θ̄ = t̄aj for some j ∈ Ir,a(ū) and w̄ ∈
{
ūB,aj−1(t̄aj ), ū

B,a
j (t̄aj )

}
.

Supposing that (t̄, x̄) is not a shock generation point, the one-sided derivatives satisfy
(3.7.11) and (3.7.13). If for the one-sided derivatives even (3.7.12) and (3.7.14) are
valid, then x̄ is of class RBcB,a. For the case that (t̄, x̄) is not a shock generation
point, one can show that x̄ is of class RBcB,a, cf. [69].
For the case that ξ̄ leaves ΩT at x = b at a time point θ̄ ∈]0, t̄[, the procedure is

similar:
Case CB,b: Let z̄ = b and θ̄ 6= t̄bi for i = 1, . . . , nt,b. Using the same arguments

as in the CB,a-case, one can show that there exists an open interval J ⊂ [t̄bj−1, t̄
b
j ]

for some j ∈ {1, . . . , nt,b} such that θ̄ ∈ J and

d

dθ
ζ(t; θ, b, ūB,bj (θ), ū1)

∣∣∣∣
θ=θ̄

≥ 0 ∀t ∈ [θ̄, t̄] (3.7.15)

holds, cf. [69]. If there is a constant β > 0 such that

d

dθ
ζ(t; θ, a, ūB,bj (θ), ū1)

∣∣∣∣
θ=θ̄

≥ β ∀t ∈ [θ̄, t̄], (3.7.16)

then we say that x̄ is of class CcB,b. Similar to the CB,a-case, (3.7.16) can be
guaranteed if (t̄, x̄) is not a shock generation point, see [69].
Case RB,b: Let ξ̄ end in the inner of a rarefaction wave emanating from the right

boundary, i.e., z̄ = b, θ̄ = t̄bj for some j ∈ Ir,b(ū) and w̄ ∈]ūB,bj−1(t̄bj ), ū
B,b
j (t̄bj )[. As in

the RB,a-case, one can show that

d

dw
ζ(t; t̄bj , b, w, ū1)

∣∣∣∣
w=w̄

≥ 0 ∀t ∈ [θ̄, t̄], (3.7.17)

cf. [69]. If in addition

d

dw
ζ(t; t̄bj , b, w, ū1)

∣∣∣∣
w=w̄

≥ β(t− θ̄) ∀t ∈]θ̄, t̄], (3.7.18)

is valid for some constant β > 0, then we say that x̄ is of class RcB,b. If (t̄, x̄) is not
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a shock generation point, then one can show that x̄ is of class RcB,b, see [69].
Case RBB,b: Let ξ̄ end on the boundary of a rarefaction wave emanating from

t = 0, i.e., z̄ = b, θ̄ = t̄bj for some j ∈ Ir,b(ū) and w̄ ∈
{
ūB,bj−1(t̄bj ), ū

B,b
j (t̄bj )

}
. If (t̄, x̄)

is not a shock generation point, then the one-sided derivatives satisfy (3.7.15) and
(3.7.17). If even (3.7.16) and (3.7.18) are valid, which can be guaranteed supposing
that (t̄, x̄) is not a shock generation point (cf. [69]), then we say that x̄ is of class
RBcB,b.
Finally, we consider the case that ξ̄ ends in (0, a) or in (0, b):
Case R0,a: Let ξ̄ end in the inner of a rarefaction wave emanating from (0, a),

i.e., z̄ = a, θ̄ = 0 and w̄ ∈]ūB,a1 (0), ū0
1(a)[. As in the RB,a-case, setting θ̄ = 0, we

obtain that (3.7.13) holds true and if even (3.7.14) is satisfied for some constant
β > 0, then we say that x̄ is of class Rc0,b, see [69].
Case RB0,a: Let ξ̄ end on the boundary of a rarefaction wave emanating from

the right boundary, i.e., z̄ = a, θ̄ = 0 and w̄ ∈
{
ūB,a1 (0), ū0

1(a)
}
. Then the one-sided

derivatives satisfy (3.7.11) and (3.7.13) in θ̄ = 0 if ξ̄ lies on the left boundary of the
rarefaction wave or (3.7.7) in z̄ = a and (3.7.13) if ξ̄ lies on the right boundary. If
the one-sided derivatives even satisfy (3.7.14) and (3.7.12) or (3.7.8), respectively,
then we say that x̄ is of class RBc0,a. If (t̄, x̄) is not a shock generation point, then
x̄ is of class RBc0,a, see [69].
Case R0,b: Let ξ̄ end in the inner of a rarefaction wave emanating from (0, b),

i.e., z̄ = b and θ̄ = 0 and w̄ ∈]ū0
1(b), ūB,b1 (0)[. As in the RB,a-case, setting θ̄ = 0

(3.7.17) holds and if even (3.7.18) is satisfied for some constant β > 0, then we say
that x̄ is of class Rc0,b, see [69].
Case RB0,b: Let ξ̄ end on the boundary of a rarefaction wave emanating from

(0, b), i.e., z̄ = b, θ̄ = 0 and w̄ ∈
{
ūB,b1 (0), ū0

1(b)
}
. Supposing that (t̄, x̄) is not

a shock generation point, the one-sided derivatives satisfy (3.7.15) and (3.7.17) in
θ̄ = 0 if ξ̄ lies on the right boundary of the rarefaction wave or (3.7.7) in z̄ = b and
(3.7.17) if ξ̄ lies on the left boundary. If even (3.7.18) and (3.7.16) or (3.7.8) are
valid, respectively, then we say that x̄ is of class RBc0,b, which is guaranteed if (t̄, x̄)

is not a shock generation point, cf. [69].

Remark 3.7.2. In the previous classifications the cases that ξ̄ ends in a point
(0, x̄0

j ) with j ∈ Ic,0 or in a point (t̄
B,a/b
j , a/b) with j ∈ Ic,a/b, which can also

occur, are not mentioned. In addition, the case that ξ̄ ends in (0, a/b) where u0(a+

/b−,u) = uB,a/b(0+,u) is not discussed. These cases are excluded in order to
guarantee a certain stability of the solution which is needed to prove Lemma 3.7.1,
see Remark 3.5.2. The analysis of these cases can be found in [69, 6.1].
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3.7.2 Classification of shock points

In this subsection suppose that (A3) and (A4) are satisfied and denote by y(ū) the
entropy solution of the IBVP (3.1.2) for some ū ∈ U. In addition, let (t̄, x̄) be a
shock point of y(ū) lying on some shock-curve η(t). Furthermore, denote by ξ̄± the
corresponding minimal and maximal backward characteristics through (t̄, x̄) and by
(θ̄±, z̄±) the points where they leave the domain ΩT . We recall that ξ̄± are genuine
due to Proposition 3.2.4. Further on, Proposition 3.2.4 yields

ξ̄±(·) = ζ±(·) and y(·, ξ̄±(·)) = v±(·) on ]θ̄±, t̄[,

where (ζ±, v±) are given by the solution of (3.2.7) with end data (x̄, y(t̄, x̄±; ū)).
We set v(θ̄±) = w̄±. Considering the genuine backward characteristics ξ̄±, one can
classify the shock points analogously to the continuity points. Such a classification
of shock points is carried out for initial value problems in [81] and extended to
initial-boundary value problems in [69]. We will briefly collect these results. If ξ̄−
ends in a point where the initial data or the boundary data is smooth, then the
corresponding function ζ− satisfies (3.7.7), (3.7.11) or (3.7.15). Analogously, if ξ̄−
ends in the inner of a rarefaction wave, then (3.7.9), (3.7.13) or (3.7.17) is valid. The
same holds for ζ+. If ζ− and ζ+ satisfy (3.7.8), (3.7.12),(3.7.16), (3.7.10), (3.7.14)
or (3.7.18), then we say that the shock point (t̄, x̄) is of class Xl/Xr with Xl, Xr ∈{
Cc, Rc, CcB,a, R

c
B,a, C

c
B,a, R

c
B,a

}
. Based on these observations, Pfaff defines in [69,

Definition 6.1.1] the non-degeneracy of shock points as follows:

Definition 3.7.3. Suppose that (A3) and (A4) are satisfied and denote by y(ū) ∈
BV (ΩT ) the entropy solution of the IBVP (3.1.2) for some ū ∈ U. We say that
a shock point (t̄, x̄) is non-degenerated if it is not a shock interaction point and of
class Xl/Xr with Xl, Xr ∈

{
Cc, Rc, CcB,a, R

c
B,a, C

c
B,b, R

c
B,b

}
.

3.7.3 Differentiability in the neighborhood of continuity points

Throughout the whole subsection, let (A3) and (A4) hold true and denote by y(u)

the unique entropy solution to the IBVP (3.1.2) for some u ∈ U. Based on the
results in [81] for the pure initial value problem, Pfaff considers continuity points of
class

X ∈
{
Cc, Rc, RBc, CcB,a, R

c
B,a, RB

c
B,a, C

c
B,a, R

c
B,a, RB

c
B,a, R

c
0,a, RB

c
0,a, R

c
0,b, RB

c
0,b

}
,
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see §3.7.1. Then he constructs in [69, §6.2] case by case smooth local solutions Y
around the corresponding genuine backward characteristics which depend continu-
ously differentiably on u in a small neighborhood of ū. In a second step, it is proved
that the local solutions coincide for all u ∈ BU

ρ (ū) with the corresponding entropy
solution y(u) of the IBVP (3.1.2) if ρ is sufficiently small. We will collect those
results, whereby we will pay attention to the fact that in this thesis the shifting of
rarefaction centers is not prohibited in contrast to [69] and [81].

3.7.3.1 Local solutions around genuine characteristics ending in t = 0

Consider a control ū ∈ U and a continuity point (t̄, x̄) of y(·, ū) of class Cc. Then
(3.7.8) holds for some positive constant β > 0 and j ∈ {1, . . . , nx + 1}. Due to
continuity of the mapping (3.2.8) in Lemma 3.2.5, there exist zl < z̄ < zr and δ > 0

such that

d

dz
ζ(t; 0, z, ū0

j (z), ū1) ≥ β

2
> 0 ∀(t, z) ∈ [0, t̄]× J (3.7.19)

is satisfied, where J :=]zl−δ, zr+δ[⊂ ]x̄0
j−1, x̄

0
j [. In the next result we will construct a

smooth function Y which is defined on a neighborhood around the genuine backward
characteristic through (t̄, x̄). This result will play an important role as we will see
later.

Lemma 3.7.4 (Local solution in a neighborhood of continuity points of class Cc,
Lemma 3.5.1, [81]). Let (A3) and (A4) hold true, consider a control ū ∈ U and
suppose that (3.7.19) is satisfied for some constants δ, β > 0 and j ∈ {1, . . . , nx + 1}.
Then

d

dz
ζ(t; 0, z, u0

j (z), u1) ≥ β

3
> 0 ∀(t, z) ∈ [0, t̄+ τ ]× J, ∀u ∈ BU

ρ (ū)

is valid for some constants ρ, τ > 0. Defining the stripe

S = S(τ) := {(t, x) ∈ [0, t̄+ τ ]× Ω : ξl(t) ≤ x ≤ ξr(t)}

with ξl/r(t) := ζ(t; 0, zl/r, ū
0
j (zl/r), ū1), the equation

ζ(t; 0, z, u0
j (z), u1) = x

admits for all (t, x) ∈ S(τ) and all u ∈ BU
ρ (ū) a unique solution z = Z(t, x,u) ∈ J .

Further defining the mapping

Y (t, x,u) = v(t; 0, Z(t, x,u), u0
j (Z(t, x,u)), u1), (3.7.20)
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for all u ∈ BU
ρ (ū) it holds that Z(·,u), Y (·,u) ∈ C0,1(S). Moreover, for all t ∈

[0, t̄+ τ [ the mappings

(x,u) ∈ ]ξl(t), ξr(t)[×BU
ρ (ū) 7→ Z(t, x,u)

(x,u) ∈ ]ξl(t), ξr(t)[×BU
ρ (ū) 7→ Y (t, x,u)

are continuously Fréchet-differentiable with corresponding derivatives

d(x,u)Z(t, x,u) · (δx, δu) =
δx− δζ(t; 0, z, u0

j (z), u1; 0, 0, δu0
j (z), δu1)

δζ(t; 0, z, u0
j (z), u1; 0, 1, u0

j
′
(z), 0)

d(x,u)Y (t, x,u) · (δx, δu) = δv(t; 0, z, u0
j (z), u1; 0, 0, δu0

j (z), δu1),

+ δv(t; 0, z, u0
j (z), u1; 0, 1, u0

j
′
(z), 0) · d(x,u)Z(t, x,u) · (δx, δu),

where δv and δζ are determined by the solution of the linearized characteristic equa-
tion in (3.2.9). Further on, the mappings

u ∈ BU
ρ (ū) 7→ Z(·,u) ∈ C(S)

u ∈ BU
ρ (ū) 7→ Y (·,u) ∈ C(S)

are continuously Fréchet-differentiable and the derivatives are given by

du(Z, Y )(·,u) · δu = d(x,u)(Z, Y )(·,u) · (0, δu).

Setting δy = duY (u) · δu, we note that δy is the unique broad solution, i.e., the
solution along characteristics of the linearized equation

δyt + (f ′(Y (u))δy)x = gy(·, y, u1)δy + gu1
(·, y, u1)δu1 on S, (3.7.21)

δy(0, ·) = δu0
j on [zl, zr].

Remark 3.7.5. According to the original version of the above lemma in [81, Lemma
3.5.1], the mappings Z, Y ∈ C0,1(S) as well as their respective derivatives w.r.t. u

and x only depend on u0
j and u1|S . Hence, despite the fact that the shifting of

rarefaction waves is allowed in this thesis (in contrast to [81] and [69]), the results
of [81, Lemma 3.5.1] are still valid.

Remark 3.7.6. The mapping Y ∈ C0,1(S) defined in (3.7.20) is a classical solution
of (3.1.2) on the stripe S.

Remark 3.7.7. In [81, Rem. 3.5.4.], it is shown that δy is also a weak solution
of (3.7.21) and that for any domain D ⊂ S with Lipschitz boundary and any p ∈



3.7. Proof of the main results of Chapter 3 65

C0,1(D), it holds that

(p(n1 + n2f
′(Y )), δy)2,∂D = (pt + f ′(Y )px + gy(t, x, Y, u1)p, δy)2,D

+ (pgu1
(t, x, Y, u1), δu1)2,D ,

(3.7.22)

where (n1, n2)T is the outer normal of D.

In the following result, we will see that the mapping Y which is constructed in
the previous result coincides with the entropy solution y(u) on a neighborhood of
the genuine backward characteristic through the continuity point (t̄, x̄).

Lemma 3.7.8 (Differentiability properties in continuity points of class Cc, Lemma
3.5.5, [81]). Suppose that (A3) and (A4) are satisfied. Furthermore, consider a con-
trol ū ∈ U and a continuity point (t̄, x̄) ∈ ΩT of y(·, ū) of class Cc. Then the
following statements are valid:
(i) There is a maximal nonempty open interval I with x̄ ∈ I such that I does

not contain any discontinuity of y(t̄, ·, ū) and for all x ∈ I the unique genuine
backward characteristic ξ through (t̄, x) does not intersect t = 0 in some z ∈{
x̄0

1, . . . , x̄
0
nx

}
. Moreover, it holds that y(t̄, ·, ū) ∈ C1(I).

(ii) Consider an arbitrary interval ]xl, xr[ with [xl, xr] ⊂ I. Denote by ξl/r the gen-
uine backward characteristics through (t̄, xl/r) and by zl/r the points where they
intersect t = 0. Then there exist constants δ, β > 0 and j ∈ {1, . . . , nx + 1}
such that (3.7.19) is satisfied. Consider the mapping

u ∈ BU
ρ (ū) 7→ Y (·,u) ∈ C(S)

from Lemma 3.7.4. Then after a possible reduction of ρ and τ we obtain

y(t, x;u) = Y (t, x,u) ∀(t, x) ∈ S, u ∈ BU
ρ (ū). (3.7.23)

Next, we consider a control ū ∈ U and a continuity point (t̄, x̄) of y(t̄, ·, ū) of class
Rc. In contrast to [69], in this thesis the shifting of rarefaction centers is allowed.
Similarly to the results in Lemma 3.7.4 and 3.7.8, our goal is to define a stripe
S ⊂ ΩT and a mapping Y (t, x,u) such that (3.7.23) is satisfied. To this end, we will
follow the concepts introduced in [71], where the shifting of rarefaction centers is
allowed, and apply them to initial-boundary value problems, cf. [69, §8.2]. One of
the main arguments is here the following: Since the source term on the right-hand
side of (3.1.2) is equal to zero on [0, ε]×R, there exists a sufficiently small s ∈]0, ε[

and ρ > 0 such that for any j ∈ Ir,0(ū) it holds

y(s, ·;u)|Isj (u) = φ0
j (x, x

0
j ) ∀u ∈ BU

ρ (ū) (3.7.24)
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with

Isj (u) :=]x0
j + f ′(u0

j (x
0
j ))s, x

0
j + f ′(u0

j+1(x0
j ))s[ and φ0

j (x, x
0
j ) := f ′−1

(
x− x0

j

s

)
.

Due to (A3), the mapping

q ∈ R 7→ φ0
j (·, q) ∈ C1

loc(R) (3.7.25)

is continuously Fréchet-differentiable with derivative

dqφ
0
j (·, q) · δq = − δq

f ′′
(
f ′−1

(
x−q
s

)) . (3.7.26)

This result can be found in the proof of Lemma 7.2.10 in [69]. A Taylor expansion
of the terms f ′(u0

j (x
0
j )) and f ′(u0

j+1(x0
j )) in ū0

j (x̄
0
j ) and ū0

j+1(x̄0
j ) yields a mapping

ρ ∈ ]0,∞[ 7→ ε(ρ) ∈]0,∞[ with ρ→ 0 ⇒ ε(ρ)→ 0 (3.7.27)

such that

x0
j + f ′(u0

j (x
0
j ))s < x̄0

j + f ′(ū0
j (x̄

0
j ))s+ ε(ρ)

< x̄0
j + f ′(ū0

j+1(x̄0
j ))s− ε(ρ)

< x0
j + f ′(u0

j+1(x0
j ))s ∀u ∈ BU

ρ (ū)

holds for sufficiently small ρ > 0. Therefore we obtain

Isj,ρ :=[x̄0
j + f ′(ū0

j (x̄
0
j ))s+ 2ε(ρ), x̄0

j + f ′(ū0
j+1(x̄0

j ))s− 2ε(ρ)] ⊂ Isj (u)

which combined with (3.7.24) and (3.7.25) yields the continuous Fréchet-
differentiability of the mapping

u ∈ BU
ρ (ū) 7→ y(s, ·;u)|Isj,ρ ∈ C

1(Isj,ρ). (3.7.28)

The derivative is given by the right-hand side of (3.7.26) with q = x0
j and δq = δx0

j ,
cf. [69, Lemma 7.2.10].
Since the genuine backward characteristic ξ̄ through (t̄, x̄) ends in the inner of a

rarefaction wave with center (0, x̄0
j ), we obtain z̄ = ξ̄(s) ∈ Isj,ρ for sufficiently small

ρ. Furthermore, (3.7.10) yields

d

dz
ζ(t; s, z, φ0

j (z, x̄
0
j ), ū1)

∣∣∣∣
z=z̄

≥ β > 0 ∀t ∈ [s, t̄]. (3.7.29)
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Analogously to the derivation of (3.7.19), we obtain from (3.7.29) the existence of
constants β, δ > 0 and zl < z̄ < zr such that

d

dz
ζ(t; s, z, φ0

j (z, x̄
0
j ), ū1) ≥ β

2
> 0 ∀(t, z) ∈ [s, t̄]× J (3.7.30)

holds, where J :=]zl − δ, zr + δ[⊂ Isj,ρ. Therefore, considering the truncated
initial-boundary value problem on the domain ]s, T [×Ω, we can apply Lemma 3.7.4
and obtain:

Lemma 3.7.9 (Local solution in a neighborhood of continuity points of class Rc).
let (A3) and (A4) be satisfied. Moreover, consider a control ū ∈ U and suppose
that (3.7.30) is satisfied for some δ, β > 0 and some j ∈ Ir,0(ū). Then there exist
constants ρ, τ > 0 such that

d

dz
ζ(t; s, z, φ0

j (z, x̄
0
j ), u1) ≥ β

3
> 0 ∀(t, z) ∈ [s, t̄+ τ ]× J, ∀u ∈ BU

ρ (ū) (3.7.31)

is valid. Defining the stripe

S = S(τ) := {(t, x) ∈ [s, t̄+ τ ]× Ω : ξl(t) ≤ x ≤ ξr(t)} ,

where ξl/r(t) := ζ(t; s, zl/r, φ
0
j (zl/r, x̄

0
j ), ū1), the equation

ζ(t; s, z, φ0
j (z, x̄

0
j ), u1) = x

admits for all (t, x) ∈ S(τ) and all u ∈ BU
ρ (ū) a unique solution z = Z(t, x,u) ∈ J .

Further on, we construct the mapping

Y (t, x,u) = v(t; s, Z(t, x,u), φ0
j (Z(t, x,u), x0

j ), u1) (3.7.32)

and observe that Z(·,u), Y (·,u) ∈ C0,1(S) holds for all u ∈ BU
ρ (ū). In addition, the

mappings

(x,u) ∈]ξl(t), ξr(t)[×BU
ρ (ū) 7→ Z(t, x,u)

(x,u) ∈]ξl(t), ξr(t)[×BU
ρ (ū) 7→ Y (t, x,u)

are continuously Fréchet-differentiable for all t ∈ [s, t̄+ τ [ with derivatives

d(x,u)Z(t, x,u) · (δx, δu) =
δx− δζ(t; s, z, φ0

j (z, x
0
j ), u1; 0, 0,dqφ

0
j (z, x

0
j )δx

0
j , δu1)

δζ(t; s, z, φ0
j (z, x

0
j ), u1; 0, 1,dxφ0

j (z, x
0
j ), 0)

,

d(x,u)Y (t, x,u) · (δx, δu) = δv(t; s, z, φ0
j (z, x

0
j ), u1; 0, 0,dqφ

0
j (z, x

0
j )δx

0
j , δu1)
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+ δv(t; s, z, φ0
j (z, x

0
j ), u1; 0, 1,dxφ

0
j (z, x

0
j ), 0) · d(x,u)Z(t, x,u) · (δx, δu),

where δv and δζ are given by the solution of the linearized characteristic equation
in (3.2.9). Finally, the mappings

u ∈ BU
ρ (ū) 7→ Z(·,u) ∈ C(S)

u ∈ BU
ρ (ū) 7→ Y (·,u) ∈ C(S)

are continuously Fréchet-differentiable and the derivatives can be computed by

du(Z, Y )(·,u) · δu = d(x,u)(Z, Y )(·,u) · (0, δu)

and δy = duY (u) · δu is the unique broad solution of the linearized equation

δyt + (f ′(Y (u))δy)x = gy(·, y, u1)δy + gu1
(·, y, u1)δu1 on S,

δy(s, ·) = dqφ
0
j (·, x̄0

j )δx
0
j on [zl, zr].

Finally, the assertions of the Remarks 3.7.6 and 3.7.7 hold true.

Following the ideas of the proof of Lemma 7.2.10 in [69], we observe that due
to (3.7.24) and (3.7.30), a continuity point (t̄, x̄) ∈ ΩT of y(·, ū) of class Rc can
be treated as a continuity point of class Cc for the truncated IBVP on [s, T ] × Ω.
Therefore, we obtain the following counterpart of Lemma 3.7.8:

Lemma 3.7.10 (Differentiability properties in continuity points of class Rc, cf.
Lemma 7.2.10 in [69]). Suppose that (A3) and (A4) are satisfied. Furthermore,
consider a control u ∈ U and a continuity point (t̄, x̄) ∈ ΩT of y(·, ū) of class Rc

such that the genuine backward characteristic through (t̄, x̄) ends in the inner of a
rarefaction wave with corresponding center in some point (0, x̄0

j ). Then the following
statements are valid:
(i) There exists a maximal nonempty open interval I with x̄ ∈ I such that I does

not contain any discontinuity of y(t̄, ·, ū) and for all x ∈ I the unique genuine
backward characteristic ξ through (t̄, x) intersects t = s in

z = ξ(s) ∈]x̄0
j + f ′(ū0

j (x̄
0
j ))s, x̄

0
j + f ′(ū0

j+1(x̄0
j ))s[.

Moreover, we obtain that y(t̄, ·, ū) ∈ C1(I).
(ii) Let ]xl, xr[ be an arbitrary interval with [xl, xr] ⊂ I and denote by ξl/r the

genuine backward characteristics through (t̄, xl/r) and by zl/r the points where
they intersect t = s, respectively. Then there exist δ, β > 0 such that (3.7.30)
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holds true. Consider the mapping

u ∈ BU
ρ (ū) 7→ Y (·,u) ∈ C(S)

from Lemma 3.7.9. Then after a possible reduction of ρ and τ we get that

y(t, x;u) = Y (t, x,u) ∀(t, x) ∈ S, u ∈ BU
ρ (ū).

Proof. The proof is analogous to the proof of Lemma 7.2.10 in [69].

Next, we consider a continuity point (t̄, x̄) of y(t̄, ·, ū) that is of class RBc and lies
on the right boundary of a rarefaction wave, i.e., the genuine backward characteristic
ξ̄ through the point (t̄, x̄) intersects t = 0 in some point z̄r = ξ̄(0) = x̄0

j ∈ Ω for
some j ∈ Ir,0(ū) and coincides on [0, t̄] with the solution ζ(·; 0, z̄r, ū

0
j+1(z̄r), ū1) of

(3.2.7). Let zl = ξ̄(s) denote the point where ξ̄ intersects t = s for some s ∈
]0, εg[. Considering the local solution φ0

j near rarefaction centers defined in (3.7.24),
ξ̄ coincides on [s, t̄] with ζ(·; s, z̄l, φ0

j (zl, x̄
0
j )ū1). Since (3.7.10) is satisfied and due to

the regularity of the solution to (3.2.7), there exist zl,l/r, zr,l/r with zl,l < z̄l < zl,r,
zr,l < z̄r < zr,r and constants β, δ > 0 such that setting Jl :=]zl,l − δ, zl,r + δ[ and
Jr :=]zr,l − δ, zr,r + δ[, (3.7.29) and (3.7.19) hold true. Therefore, one can apply
Lemma 3.7.4 and Lemma 3.7.9 yielding stripes

Sl = Sl(τ) := {(t, x) ∈ [s, t̄+ τ ]× Ω : ξl,l(t) ≤ x ≤ ξl,r(t)} ,
Sr = Sr(τ) := {(t, x) ∈ [0, t̄+ τ ]× Ω : ξr,l(t) ≤ x ≤ ξr,r(t)} ,

where ξl,l/r(t) := ζ(t; s, zl,l/r, φ
0
j (zl,l/r, x̄

0
j ), ū1), ξr,l/r(t) := ζ(t; 0, zr,l/r, ū

0
i (zr,l/r), ū1)

and τ > 0 is a positive constant. In addition, Lemma 3.7.4 and 3.7.9 yield the
mappings

(x,u) ∈]ξr,l(t), ξr,r(t)[×BU
ρ (ū) 7→ Yr(t, x,u) t ∈ [0, t̄]

and

(x,u) ∈]ξl,l(t), ξl,r(t)[×BU
ρ (ū) 7→ Yl(t, x,u) t ∈ [s, t̄].

Analogously to [81, Lemma 3.5.12], we define the set

Ŝ :=
(
Sl ∩

{
x ≤ ξ̂(t;u)

})
∪
(
Sr ∩

{
x > ξ̂(t;u)

})
,
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with ξ̂(t;u) := ζ(t; 0, x0
j , u

0
j+1(x0

j ), u1), and the mapping

Ŷ (t, x,u) :=

{
Yl(t, x,u) if x < ξ̂(t;u),

Yr(t, x,u) if x ≥ ξ̂(t;u),
u ∈ BU

ρ (ū), (t, x) ∈ Ŝ. (3.7.33)

A version of the following result, where the shifting of centers of rarefaction waves
is prohibited can be found in [81, Lemma 3.5.12].

Lemma 3.7.11 (Differentiability in continuity points of class RBc). Let (A3) and
(A4) hold true. Furthermore, consider a control ū ∈ U and a continuity point
(t̄, x̄) of y(·, ū) of class RBc lying on the right boundary of a rarefaction wave with
corresponding center in some point (0, x̄0

j ). Then there exists a constant ρ > 0 and
xl, xr ∈]a, b[ with xl < x̄ < xr such that for all u ∈ BU

ρ (ū)

y(t̄, x;u) = Ŷ (t̄, x,u) on ]xl, xr[

is satisfied with Ŷ given in (3.7.33). Hence, y(t̄, ·;u) ∈ C0,1(]xl, xr[) and y(t̄, ·;u) is
continuously differentiable on ]xl, xr[\

{
ξ̂(t̄,u)

}
. Furthermore, the mapping

u ∈ U 7→ y(t̄, ·;u) ∈ Lr([xl, xr]) (3.7.34)

is continuously Fréchet-differentiable for all r ∈ [1,∞[, where the derivative is given
by

d

du
y(t̄, ·;u) = 1]xl,ξ̂(t̄;u)[

d

du
Yl(t̄, ·;u) + 1]ξ̂(t̄;u),xr[

d

du
Yr(t̄, ·;u). (3.7.35)

If (t̄, x̄) is a continuity point of class RBc lying on the left boundary of a rarefaction
wave, we obtain a similar result, whereby in the definition of Ŷ (t, x,u) in (3.7.33)
Yl(t, x,u) is computed according to Lemma 3.7.4 and Yr(t, x,u) as in Lemma 3.7.9.

Proof. Using the definitions of the mappings Yl/r, which can be obtained by
Lemma 3.7.4 and Lemma 3.7.9, the proof of the result is similar to the proof of
Lemma 3.5.12 in [81].

We will now have a look at the case, where the genuine backward characteristic
through (t̄, x̄) ends in the left boundary x = a. We collect some results of [69, §6.2.2]
and extend them to the case that shiftings of rarefaction centers are allowed, where
we follow the ideas of [70].



3.7. Proof of the main results of Chapter 3 71

3.7.3.2 Local solutions around genuine characteristics ending in the left
boundary

Consider a control ū ∈ U and continuity point (t̄, x̄) of y(·, ū) that is of class CcB,a.
Then (3.7.12) is valid for some positive constant β > 0 and j ∈ {1, . . . , nt,a + 1}.
Due to the continuity of the mapping (3.2.8) in Lemma 3.2.5, there exist θr < θ̄ < θl
and δ > 0 such that J :=]θr − δ, θl + δ[⊂ ]t̄aj−1, t̄

a
j [ and

d

dθ
ζ(t; θ, a, ūB,aj (θ), ū1) ≤ −β

2
< 0 ∀(t, θ) ∈ Jt̄, (3.7.36)

where Js := {(t, θ) ∈ [0, s]× J : t ≥ θ}. The next result is the counterpart to
Lemma 3.7.4.

Lemma 3.7.12 (Local solution in a neighborhood of continuity points of class CcB,a,
Lemma 6.2.7, [69]). Let (A3) and (A4) be satisfied and consider some control u ∈ U.
In addition, assume that (3.7.36) is satisfied for some constants δ, β > 0 and some
j ∈ {1, . . . , nt,a + 1}. Then there exist constants ρ, τ > 0 such that

d

dθ
ζ(t; θ, a, uB,aj (θ), u1) ≤ −β

3
< 0 ∀(t, θ) ∈ Jt̄+τ , u ∈ BU

ρ (ū). (3.7.37)

Further on, we define the stripe

S = S(τ) := {(t, x) ∈ [θr, t̄+ τ ]× Ω : ξl(max {θl, t}) ≤ x ≤ ξr(t)} ,

with ξl/r(t) := ζ(t; θl/r, a, ū
B,a
j (θl/r), ū1). Then the equation

ζ(t; θ, a, uB,aj (θ), u1) = x

admits for all (t, x) ∈ S(τ) and all u ∈ BU
ρ (ū) a unique solution θ = Θ(t, x,u) ∈ J .

Moreover, defining the mapping

Y (t, x,u) = v(t; Θ(t, x,u), a, uB,aj (Θ(t, x,u)), u1), (3.7.38)

it holds that Θ(·,u), Y (·,u) ∈ C0,1(S) for all u ∈ BU
ρ (ū). Furthermore, for all

t ∈ [θr, t̄+ τ [ the mappings

(x,u) ∈ ]ξl(max {θl, t}), ξr(t)[×BU
ρ (ū) 7→ Θ(t, x,u),

(x,u) ∈ ]ξl(max {θl, t}), ξr(t)[×BU
ρ (ū) 7→ Y (t, x,u)
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are continuously Fréchet-differentiable. The corresponding derivatives

d(x,u)Θ(t, x,u) · (δx, δu) =
δx− δζ(t; θ, a, uB,aj (θ), u1; 0, 0, δuB,aj (θ), δu1)

δζ(t; θ, a, uB,aj (θ), u1; 1, 0, uB,aj

′
(θ), 0)

,

d(x,u)Y (t, x,u) · (δx, δu) = δv(t; θ, a, uB,aj (θ), u1; 0, 0, δuB,aj (θ), δu1)

+ δv(t; θ, a, uB,aj (θ), u1; 1, 0, uB,aj

′
(θ), 0) · d(x,u)Θ(t, x,u) · (δx, δu),

where δv and δζ are determined by the solution of the linearized characteristic equa-
tion in (3.2.9). Finally, the mappings

u ∈ BU
ρ (ū) 7→ Θ(·,u) ∈ C(S)

u ∈ BU
ρ (ū) 7→ Y (·,u) ∈ C(S)

are continuously Fréchet-differentiable and the derivatives are given by

du(Θ, Y )(·,u) · δu = d(x,u)(Θ, Y )(·,u) · (0, δu),

where δy = duY (u) · δ is the unique broad solution of

δyt + (f ′(Y (u))δy)x = gy(·, y, u1)δy + gu1
(·, y, u1)δu1 on S,

δy(·, a+) = δuB,bj on [θr, θl]

and the assertions of the Remarks 3.7.6 and 3.7.7 hold true.

By the next result we obtain that the mapping Y (u) constructed in the lemma
above coincides with the entropy solution y(u) of the IBVP (3.1.2) on a stripe
around the genuine backward characteristic through the continuity point (t̄, x̄) on a
neighborhood of ū.

Lemma 3.7.13 (Differentiability properties in continuity points of class CcB,a,
Lemma 6.2.8, [69]). Suppose that (A3) and (A4) are satisfied, consider a control
ū ∈ U and let (t̄, x̄) ∈ ΩT be a continuity point of y(·, ū) of class CcB,a. Then the
following statements are valid:
(i) There is a maximal nonempty open interval I with x̄ ∈ I such that I does not

contain any discontinuity of y(t̄, ·, ū) and for all x ∈ I the unique genuine back-
ward characteristic ξ through (t̄, x) does not end in some θ ∈

{
t̄a1, . . . , t̄

B,a
nt,a

}
.

Moreover, it holds that y(t̄, ·, ū) ∈ C1(I).
(ii) Consider an arbitrary interval ]xl, xr[ with [xl, xr] ⊂ I. Let ξl/r denote the

genuine backward characteristics through the points (t̄, xl/r) and θl/r the points
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where they intersect x = a, respectively. Then there exist constants δ, β > 0

and some j ∈ {1, . . . , nt,a + 1} such that (3.7.36) is satisfied. Consider the
mapping

u ∈ BU
ρ (ū) 7→ Y (·,u) ∈ C(S)

from Lemma 3.7.12. Then after a possible reduction of ρ and τ it holds that

y(t, x;u) = Y (t, x,u) ∀(t, x) ∈ S, u ∈ BU
ρ (ū).

Next, we consider a continuity point (t̄, x̄) of class RcB,a. Analogously to the case
Rc, we follow the ideas of [71] to treat the RcB,a-case. Since the source term on
the right-hand side of (3.1.2a) is by (A4) equal to zero on [0, T ]×]−∞, εg], for any
j ∈ Ir,a(ū) there exist sufficiently small t̂j ∈]t̄aj , t̄[ and ρ > 0 such that

y(t̂j , ·;u)|
I
t̂j
a (u)

= φB,aj (x, taj ) ∀u ∈ BU
ρ (ū), (3.7.39)

where

I
t̂j
a (u) :=]a + f ′(uB,aj+1(taj ))(t̂j − taj ), a + f ′(uB,aj (taj ))(t̂j − taj )[

and φB,aj (x, taj ) = f ′−1

(
x− a

t̂j − taj

)
.

Using (A3), we see that the mapping

t ∈]0, t̂j [ 7→ φB,aj (·, t) ∈ C1
loc(R)

is continuously Fréchet-differentiable with derivative

dtφ
B,a
j (·, t) · δt =

δt(
t̂j − t

)2 · f ′′ (f ′−1
(
x−a
t̂j−t

)) ,
cf. [69, proof of Lemma 7.2.10].
Analogously to the mapping in (3.7.28), we obtain that

u ∈ BU
ρ (ū) 7→ y(t̂j , ·;u) ∈ C1(I

t̂j
a,ρ)

is continuously Fréchet-differentiable, where

I
t̂j
a,ρ := [a + f ′(ūB,aj+1(t̄aj ))(t̂j − t̄aj ) + 2ε(ρ), a + f ′(ūB,aj (t̄aj ))(t̂j − t̄aj )− 2ε(ρ)].



74 Chapter 3. Optimal boundary control of hyperbolic balance laws

with some mapping ε(ρ) satisfying (3.7.27). Similar to the derivation of (3.7.30),
one can prove that there exist constants β, δ > 0 and zl < z̄ < zl such that J :=

]zl − δ, zr + δ[⊂ I t̂ja,ρ and

d

dz
ζ(t; t̂j , z, φ

B,a
j (z, t̄aj ), ū1) ≥ β

2
> 0 ∀(t, z) ∈ [t̂j , t̄]× J (3.7.40)

is satisfied. Using the same arguments as for the Rc-case, i.e., considering the
truncated initial-boundary value problem on the domain ]t̂j , T [×Ω, we treat (t̄, x̄)

as a Cc-point. Therefore, applying Lemmas 3.7.4 and 3.7.8 yields similarly to the
Rc-case the following results:

Lemma 3.7.14 (Local solution in a neighborhood of continuity points of class
RcB,a). Suppose that (A3) and (A4) are valid and consider a control u ∈ U. In
addition, assume that (3.7.40) is satisfied for some constants δ, β > 0 and some j ∈
Ir,a(ū). If we replace φ0

j by the function φB,aj and s by t̂j, the results of Lemma 3.7.9
are still valid.

Lemma 3.7.15 (Differentiability properties in continuity points of class RcB,a). Let
(A3) and (A4) be satisfied. Furthermore, consider a control u ∈ U and a continuity
point (t̄, x̄) ∈ ΩT of y(·, ū) of class RcB,a such that the genuine backward characteris-
tic through (t̄, x̄) ends in a point (t̄aj , a) which is the center of a rarefaction wave. In
addition, let t̂j ∈]t̄aj , t̄[ be chosen small enough such that (3.7.39) is satisfied. Then
the following statements hold true:
(i) There is a maximal nonempty open interval I with x̄ ∈ I such that I does

not contain any discontinuity of y(t̄, ·, ū) and for all x ∈ I the unique genuine
backward characteristic ξ through (t̄, x) intersects t = t̂j in

z = ξ(t̂j) ∈]a + f ′(ūB,aj+1(t̄aj ))
(
t̂j − t̄aj

)
, a + f ′(ūB,aj (t̄aj ))

(
t̂j − t̄aj

)
[.

Moreover, it holds that y(t̄, ·, ū) ∈ C1(I).
(ii) Let ]xl, xr[ be an arbitrary interval with [xl, xr] ⊂ I. Moreover, denote by ξl/r

the genuine backward characteristics through the points (t̄, xl/r) and by zl/r
the points where they intersect t = t̂j. Then there exist constants δ, β > 0 such
that (3.7.40) is satisfied. Considering the mapping

u ∈ BU
ρ (ū) 7→ Y (·,u) ∈ C(S)
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given by Lemma 3.7.14, after a possible reduction of ρ and τ it holds true that

y(t, x;u) = Y (t, x,u) ∀(t, x) ∈ S, u ∈ BU
ρ (ū).

Let (t̄, x̄) be a continuity point of y(ū) of class RBcB,a lying on the right boundary
of a rarefaction wave, i.e., the genuine backward characteristic through the point
(t̄, x̄) denoted by ξ̄ intersects x = a in some point θ̄ = t̄aj ∈]0, T [ for some j ∈ Ir,a(ū)

and coincides on [t̂j , t̄] with the solution ζ(·; θ̄, a, ūB,aj (θ̄), ū1) of (3.2.7). Moreover,
we set z̄ = ξ̄(t̂j), where t̂j ∈]t̄aj , t̄[ is chosen sufficiently small such that (3.7.39) holds
for small enough ρ > 0. Considering the local solution φB,aj defined in (3.7.39),
we obtain that ξ̄ coincides on [t̂j , t̄] with ζ(·; t̂j , z̄,φB,aj (z̄, t̄aj ), ū1). Since (t̄, x̄) is by
assumption not a shock generation point and due to the regularity of the solution to
(3.2.7), there exist zl/r, θl/r with zl < z̄ < zr and θr < θ̄ < θl and constants β, δ > 0

such that setting Jl :=]zl−δ, zr+δ[ and Jr :=]θr−δ, θl+δ[, we get that (3.7.12) and
(3.7.14) are satisfied. Therefore, one can apply Lemma 3.7.12 and Lemma 3.7.14
yielding stripes

Sl = Sl(τ) :=
{

(t, x) ∈ [t̂j , t̄+ τ ]× Ω : ξl,l(t) ≤ x ≤ ξl,r(t)
}
,

Sr = Sr(τ) :=
{

(t, x) ∈ [θr, t̄+ τ ]× Ω : ξr,l(max(t, t̄aj )) ≤ x ≤ ξr,r(t)
}
,

where τ > 0 is a constant and

ξl,l/r(t) := ζ(t; s, zl/r, φ
B,a
j (zl/r, t̄

a
j ), ū1),

ξr,l/r(t) := ζ(t; θl/r, a, ū
B,a
j (θl/r), ū1).

Lemmas 3.7.12 and 3.7.14 further yield continuously Fréchet-differentiable mappings

(x,u) ∈ ]ξr,l(max(t, t̄0j )), ξr,r(t)[×BU
ρ (ū) 7→ Yr(t, x,u) t ∈ [0, t̄]

and

(x,u) ∈ ]ξl,l(t), ξl,r(t)[×BU
ρ (ū) 7→ Yr(t, x,u) t ∈ [t̂j , t̄].

Analogously to [69, §6.22], we define the set

Ŝ :=
(
Sl ∩

{
x ≤ ξ̂(t;u)

})
∪
(
Sr ∩

{
x > ξ̂(t;u)

})
,
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with ξ̂(t;u) := ζ(t; taj , a, u
B,a
j (taj ), u1) and the mapping

Ŷ (t, x,u) :=

{
Yl(t, x,u) if x < ξ̂(t;u),

Yr(t, x,u) if x ≥ ξ̂(t;u),
u ∈ BU

ρ (ū), (t, x) ∈ Ŝ. (3.7.41)

Due to these considerations, we obtain similarly to the RBc-case the following result:

Lemma 3.7.16 (Differentiability in continuity points of class RBcB,a). Let (A3) and
(A4) be satisfied and consider a control ū ∈ U. In addition, let (t̄, x̄) be a continuity
point of y(·, ū) of class RBcB,a lying on the right boundary of a rarefaction wave with
center (t̄aj , a). Then there exists a constant ρ > 0 and xl, xr ∈]a, b[ with xl < x̄ < xr
such that

y(t̄, x;u) = Ŷ (t̄, x,u) on ]xl, xr[

is valid for all u ∈ BU
ρ (ū), where Ŷ (t̄, x,u) is defined in (3.7.41). Hence, y(t̄, ·;u) ∈

C0,1(]xl, xr[) and y(t̄, ·;u) is continuously differentiable on ]xl, xr[\
{
ξ̂(t̄,u)

}
. Fur-

thermore, the mapping

u ∈ U 7→ y(t̄, ·;u) ∈ Lr([xl, xr]) (3.7.42)

is continuously Fréchet-differentiable for all r ∈ [1,∞[ with derivative

d

du
y(t̄, ·;u) = 1]xl,ξ̂(t̄;u)[

d

du
Yl(t̄, ·;u) + 1]ξ̂(t̄;u),xr[

d

du
Yr(t̄, ·;u). (3.7.43)

Considering the case that a continuity point x = x̄ ∈]a, b[ of y(t̄, ·, ū) lies on the left
boundary of a rarefaction wave, we obtain a similar result, whereby in the defini-
tion of Ŷ (t, x,u) in (3.7.41) Yl(t, x,u) is computed according to Lemma 3.7.12 and
Yr(t, x,u) according to Lemma 3.7.14.

Proof. Using the definitions of the mappings Yl/r, which can be obtained by using
Lemmas 3.7.12 and 3.7.14, the proof is similar to the proof of Lemma 6.2.12 in
[81].

Remark 3.7.17. A version of Lemma 3.7.16 , where the shifting of centers of rar-
efaction waves is prohibited can be found in [69, Lemma 6.2.12].
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3.7.3.3 Local solutions around genuine characteristics ending in the right
boundary

The case that the genuine backward characteristic through a continuity point (t̄, x̄)

of y(·, ū) ends in the right boundary can be treated analogously to the case that
it ends in the left boundary at x = a. Therefore, we will only give an overview of
the results, where further explanations can be found in the previous subsection. We
start by examining continuity points of class CcB,b.

Lemma 3.7.18 (Local solution in a neighborhood of continuity points of class
CcB,b). Suppose that (A3) and (A4) are satisfied and consider some ū ∈ U. Further-
more, assume that there exist β, δ > 0, j ∈ {1, . . . , nt,b + 1} and θl < θ̄ < θr with
J :=]θl − δ, θr + δ[⊂]t̄bj−1, t̄

b
j [ such that

d

dθ
ζ(t; θ, b, ūB,bj (θ), ū1) ≥ β

2
> 0 ∀(t, θ) ∈ Jt̄ (3.7.44)

is valid, where Js := {(t, θ) ∈ [0, s]× J : t ≥ θ}.
Then there exist constants ρ, τ > 0 such that

d

dθ
ζ(t; θ, b, uB,bj (θ), u1) ≥ β

3
> 0 ∀(t, θ) ∈ Jt̄+τ , u ∈ BU

ρ (ū).

Defining the stripe

S = S(τ) := {(t, x) ∈ [θr, t̄+ τ ]× Ω : ξl(max {θl, t}) ≤ x ≤ ξr(t)} ,

where ξl/r(t) := ζ(t; θl/r, b, ū
B,b
j (θl/r), ū1), the equation

ζ(t; θ, b, uB,bj (θ), u1) = x

admits for all (t, x) ∈ S(τ) and all u ∈ BU
ρ (ū) a unique solution θ = Θ(t, x,u) ∈ J .

In addition, for all u ∈ BU
ρ (ū) it holds true that Θ(·,u), Y (·,u) ∈ C0,1(S) with

Y (t, x,u) = v(t; Θ(t, x,u), b, uB,bj (Θ(t, x,u)), u1).

Further on, the mappings

(x,u) ∈ ]ξl(max {θl, t}), ξr(t)[×BU
ρ (ū) 7→ Θ(t, x,u),

(x,u) ∈ ]ξl(max {θl, t}), ξr(t)[×BU
ρ (ū) 7→ Y (t, x,u)

are continuously Fréchet-differentiable for all t ∈ [θr, t̄+τ [ with corresponding deriva-
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tives

d(x,u)Θ(t, x,u) · (δx, δu) =
δx− δζ(t; θ, b, uB,bj (θ), u1; 0, 0, δuB,bj (θ), δu1)

δζ(t; θ, b, uB,bj (θ), u1; 1, 0, uB,bj

′
(θ), 0)

,

d(x,u)Y (t, x,u) · (δx, δu) = δv(t; θ, b, uB,bj (θ), u1; 0, 0, δuB,bj (θ), δu1)

+ δv(t; θ, b, uB,bj (θ), u1; 1, 0, uB,bj

′
(θ), 0) · d(x,u)Θ(t, x,u) · (δx, δu),

where δv and δζ are determined by the the solution of the linearized characteristic
equation in (3.2.9). Moreover, the mappings

u ∈ BU
ρ (ū) 7→ Θ(·,u) ∈ C(S)

u ∈ BU
ρ (ū) 7→ Y (·,u) ∈ C(S)

are continuously Fréchet-differentiable and the corresponding derivatives are given
by

du(Θ, Y )(·,u) · δu = d(x,u)(Θ, Y )(·,u) · (0, δu).

Finally, δy = duY (u) · δu is obtained by the unique broad solution of the linearized
equation

δyt + (f ′(Y (u))δy)x = gy(·, y, u1)δy + gu1
(·, y, u1)δu1 on S,

δy(·, b+) = δuB,bj on [θr, θl]

and the assertions of the Remarks 3.7.6 and 3.7.7 are satisfied.

Lemma 3.7.19 (Differentiability properties in continuity points of class CcB,b).
Suppose that (A3) and (A4) are satisfied and consider a control ū ∈ U. In addition,
let (t̄, x̄) be a continuity point of y(·, ū) of class CcB,b. Then the following statements
are valid:
(i) There is a maximal nonempty open interval I with x̄ ∈ I such that I does not

contain any discontinuity of y(t̄, ·, ū) and for all x ∈ I the unique genuine back-
ward characteristic ξ through (t̄, x) does not end in a point t̄bj ∈

{
t̄b1, . . . , t̄

b
nt,b

}
.

Moreover, it holds that y(t̄, ·, ū) ∈ C1(I).
(ii) Consider an arbitrary interval ]xl, xr[ with [xl, xr] ⊂ I. Let ξl/r denote the

genuine backward characteristics through the points (t̄, xl/r) and θl/r the points
where they intersect x = b, respectively. Then there exist constants δ, β > 0
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such that (3.7.44) holds true for J =]θr − δ, θl + δ[. Consider the mapping

u ∈ BU
ρ (ū) 7→ Y (·,u) ∈ C(S)

from Lemma 3.7.18. Then after a possible reduction of ρ and τ it holds that

y(t, x;u) = Y (t, x,u) ∀(t, x) ∈ S, u ∈ BU
ρ (ū).

Next, we consider a continuity point (t̄, x̄) of class RcB,b.
Analogously to the case RcB,a, we choose sufficiently small t̂j ∈]t̄bj , t̄[ and ρ > 0

such that

y(t̂j , ·;u)|
I
t̂j
b (u)

= φB,bj (x, tbj ) ∀u ∈ BU
ρ (ū) (3.7.45)

is satisfied for all j ∈ Ir,b(ū), where

I
t̂j
b (u) :=]b + f ′(uB,bj (tbj ))s, b + f ′(uB,bj+1(tbj ))s[

and φB,bj (x, tbj ) = f ′−1

(
x− b

t̂j − tbj

)
.

Recalling the assumptions in (A3), we conclude that

t ∈ ]0, t̂j [ 7→ φB,bj (·, t) ∈ C1
loc(R)

is continuously Fréchet-differentiable with derivative

dtφ
B,b
j (·, t) · δt =

δt(
t̂j − t

)2 · f ′′ (f ′−1
(
x−b
t̂j−t

)) .
Further on, similar to (3.7.28), the mapping

u ∈ BU
ρ (ū) 7→ y(t̂j , ·;u) ∈ C1(I

t̂j
b,ρ)

is continuously Fréchet-differentiable with

I
t̂j
b,ρ := [b + f ′(ūB,bj (t̄bj ))

(
t̂j − t̄bj

)
+ 2ε(ρ), b + f ′(ūB,bj+1(t̄bj ))

(
t̂j − t̄bj

)
− 2ε(ρ)],

where ε(ρ) is some mapping satisfying (3.7.27). Using the same arguments as for
the derivation of (3.7.19), we obtain constants β, δ > 0 and zl < z̄ < zr such that
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J :=]zl − δ, zr + δ[⊂ I t̂jb,ρ and

d

dz
ζ(t; t̂j , z, φ

B,b
j (z, t̄aj ), ū1) ≥ β

2
> 0 ∀(t, z) ∈ [t̂j , t̄]× J (3.7.46)

is satisfied. Therefore, considering the truncated initial-boundary value problem on
the domain ]t̂j , T [×Ω, Lemmas 3.7.4 and 3.7.8 hold true. Similarly to the RcB,a-case
we obtain the following two results:

Lemma 3.7.20 (Local solution in a neighborhood of continuity points of class
RcB,b). Assume that (A3) and (A4) hold and consider a control ū ∈ U. In addition,
suppose that (3.7.46) is satisfied for some constants δ, β > 0 and j ∈ Ir,b(ū). If we
replace φ0

j by φB,bj and s by t̂j, then the results of Lemma 3.7.9 are still valid.

Lemma 3.7.21 (Differentiability properties in continuity points of class RcB,b).
Suppose that (A3) and (A4) are satisfied. Furthermore, consider a control ū ∈ U

and a continuity point (t̄, x̄) ∈ ΩT of y(·, ū) of class RcB,b such that the genuine
backward characteristic through (t̄, x̄) ends in a point (t̄bj , b) which is the center of a
rarefaction wave. Moreover, choose t̂j ∈]t̄bj , t̄[ such that (3.7.45) is satisfied. Then
the following statements are valid:
(i) There is a maximal nonempty open interval I with x̄ ∈ I such that I does

not contain any discontinuity of y(t̄, ·, ū) and for all x ∈ I the unique genuine
backward characteristic ξ through (t̄, x) intersects t = t̂j in

z = ξ(t̂j) ∈]b + f ′(ūB,bj (t̄bj ))
(
t̂j − t̄bj

)
, b + f ′(ūB,bj+1(t̄aj ))

(
t̂j − t̄bj

)
[.

Moreover, it holds that y(t̄, ·, ū) ∈ C1(I).
(ii) Let ]xl, xr[ be an arbitrary interval with [xl, xr] ⊂ I. Let ξl/r denote the

genuine backward characteristics through the points (t̄, xl/r) and zl/r the points
where they intersect t = t̂j, respectively. Then there exist constants δ, β > 0

such that (3.7.46) is satisfied. Consider the mapping

u ∈ BU
ρ (ū) 7→ Y (·,u) ∈ C(S)

given by (3.7.32) with the adaptations described in Lemma 3.7.20. Then

y(t, x;u) = Y (t, x,u) ∀(t, x) ∈ S, u ∈ BU
ρ (ū)

is valid after a possible reduction of ρ and τ .

To complete the case where the backward characteristic ends in the right bound-
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ary, we now consider a continuity point (t̄, x̄) of y(ū) of class RBcB,b that lies on
the right boundary of a rarefaction wave, i.e., the genuine backward characteristic
ξ̄ through the point (t̄, x̄) denoted by ξ̄ intersects x = b in some point θ̄ = t̄bj ∈]0, T [

for some j ∈ Ir,b(ū).
Analogously to the RBcB,a- case, one can use the Lemmas 3.7.18 and 3.7.20 yield-

ing stripes Sl/r around ξ̄ and mappings Yl/r : Sl/r × BU
ρ (ū)→ R such that we can

define

Ŷ (t, x,u) :=

{
Yl(t, x,u) if x < ξ̂(t;u),

Yr(t, x,u) if x ≥ ξ̂(t;u),
u ∈ BU

ρ (ū), (t, x) ∈ Ŝ, (3.7.47)

where ξ̂(t;u) := ζ(t; tbj , b, u
B,b
j (tbj ), u1) and

Ŝ :=
(
Sl ∩

{
x ≤ ξ̂(t;u)

})
∪
(
Sr ∩

{
x > ξ̂(t;u)

})
.

Lemma 3.7.22 (Differentiability in continuity points of class RBcB,b). Suppose that
(A3) and (A4) hold true and consider a control ū ∈ U. Furthermore, let (t̄, x̄) be a
continuity point of y(·, ū) of class RBcB,b lying on the right boundary of a rarefaction
wave with center (t̄bj , b). Then there are constants ρ > 0 and xl, xr ∈]a, b[ with
xl < x̄ < xr such that

y(t̄, x;u) = Ŷ (t̄, x,u) on ]xl, xr[ ∀u ∈ BU
ρ (ū)

is satisfied with Ŷ (t̄, x,u) as defined in (3.7.47). Hence, y(t̄, ·;u) ∈ C0,1(]xl, xr[)

and y(t̄, ·;u) is continuously differentiable on ]xl, xr[\
{
ξ̂(t̄,u)

}
. In addition, the

mapping

u ∈ U 7→ y(t̄, ·;u) ∈ Lr([xl, xr]) (3.7.48)

is continuously Fréchet-differentiable for all r ∈ [1,∞[, where the derivative is given
by

d

du
y(t̄, ·;u) = 1]xl,ξ̂(t̄;u)[

d

du
Yl(t̄, ·;u) + 1]ξ̂(t̄;u),xr[

d

du
Yr(t̄, ·;u). (3.7.49)

If we consider the case that a continuity point x = x̄ ∈ [a, b] of y(t̄, ·, ū) lies on
the left boundary of a rarefaction wave, we obtain a similar result, whereby in the
definition of Ŷ (t, x,u) in (3.7.47) Yl(t, x,u) is computed according to Lemma 3.7.18
and Yr(t, x,u) according to Lemma 3.7.20.

Proof. The proof is similar to the proof of Lemma 3.7.16.
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3.7.3.4 Local solutions around genuine characteristics ending in (0, a) or (0, b)

Consider a control ū ∈ U and denote by y(ū) the corresponding entropy solution of
(3.1.2). If (t̄, x̄) is a continuity point of class Rc0,a, then one can apply Lemmas 3.7.14
and 3.7.15 with t̄aj = t̄B,a0 = 0. Now we consider the case that (t̄, x̄) is a continuity
point of class RBc0,a. If (t̄, x̄) lies on the left boundary of the rarefaction wave, then
one can use Lemma 3.7.16 with t̄aj = t̄B,a0 = 0. On the other hand, if (t̄, x̄) lies on the
right boundary, one can apply Lemma 3.7.11 with x̄0

j = x̄0
0 = a. Analogously, for the

case that (t̄, x̄) is a continuity point of class Rc0,b or RB
c
0,b, we can use Lemmas 3.7.20,

3.7.21 and 3.7.22 with t̄bj = t̄B,b0 = 0 or Lemma 3.7.11 with x̄0
j = x̄0

0 = b.

3.7.4 Differentiability of the shock position

In order to prove Theorem 3.5.5, which is the main result of §3.7, Lemma 3.7.1 will
play a key-role. Further on, it will be essential to derive necessary optimality con-
ditions for (P). Recall that for a given control u ∈ U satisfying (ND), Lemma 3.7.1
guarantees the following representation for the entropy solution y(t̄, ·; ū) to (3.1.2)
on the interval [a, b]:

y (t̄, x;u) |[a,b] = Y1(t̄, x;u) · 1[a,x1(u)](x) +

K+1∑
k=2

Yk(t̄, x;u) · 1(xk−1(u),xk(u)](x)

for some functions Y1, . . . , YK+1 and x1, . . . , xK given in (3.7.5) and (3.7.6) and
xK+1 = b. One question that arises if we want to prove Lemma 3.7.1 is how to
choose those functions. To give an answer to this question, we first note that the
functions Y1, . . . , YK+1 can be obtained by using the results in §3.7.3. Moreover,
we note that according to (ND), the interval [a, b] contains finitely many non-
degenerated discontinuities and points lying on boundaries of rarefaction waves,
which we will choose for the functions x1, . . . , xK in Lemma 3.7.1. In order to prove
Lemma 3.7.1, it remains to show that these points are functions depending con-
tinuously Fréchet-differentiably on the control. Concerning the points lying on the
boundary of rarefaction waves this is not difficult to show since the continuously
Fréchet-differentiable of continuity points lying on the boundary of a rarefaction
wave with respect to the control is a direct consequence of Lemma 3.2.5.
The goal of this subsection is to obtain similar result for the case that xk is a

non-degenerated discontinuity of y(t̄, ·, ū) for some k ∈ {1, . . . ,K}. Such a result
can be found in [81] for a pure initial value problem. Building on the results of
[81], Pfaff provides an extension to initial-boundary value problems in [69, Lemma
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6.3.1, 6.3.7], see also [70]. In contrast to this thesis, in [81] and [69] the shifting of
rarefaction centers is prohibited. Therefore, we will adapt the results in [69, Lemma
6.3.1, 6.3.7] to the scenario considered in this thesis.
The following result is an extension of [69, Lemma 6.3.1] to the case that shiftings

of rarefaction centers in the initial and boundary data are allowed, see also [81,
Lemma 3.6.3].

Lemma 3.7.23 (Stability of the shock position). Let (A3) and (A4) be satisfied,
ū ∈ U be an arbitrary control and denote by y(ū) the corresponding entropy solution
of the IBVP (3.1.2). Furthermore, consider a shock point (t̄, x̄) of y(·; ū) which is
non-degenerated according to Definition 3.7.3 and lies on a shock-curve η(t). Then
there exist functions Yl/r which are constructed according to the Lemmas 3.7.4,
3.7.9, 3.7.12, 3.7.14, 3.7.18 or 3.7.20 along stripes around the minimal and maximal
characteristics through (t̄, x̄). Moreover, we find an interval ]xl, xr[ with x̄ ∈]xl, xr[

and a mapping

xs : u ∈ BU
ρ (ū) 7→ xs(u) ∈]xl, xr[ (3.7.50)

such that

y(t̄, x;u) =

{
Yl(t̄, x,u) if x ∈]xl, xs(u)[,

Yr(t̄, x,u) if x ∈]xs(u), xr[,
u ∈ BU

ρ (ū)

holds if ρ > 0 is chosen small enough.

Proof. At first, we note that the case that (t̄, x̄) is a shock of class Xl/Xr with
Xl, Xr ∈

{
Cc, CcB,a, C

c
B,b

}
can be found in the proof of Lemma 6.3.1 in [69],

cf. [81, Lemma 3.6.3]. Therefore, only the case that either Xl or Xr is of class{
Rc, RcB,a, R

c
B,b

}
is of further interest. However, in this case one can compute the

local solution Yl/r according to the Lemmas 3.7.9, 3.7.14 and 3.7.20 so that the
remaining procedure is the same as in [69].

Theorem 3.7.24 (Differentiability of shock points of class RcB,a/C
c). Let (A3) and

(A4) hold true and consider some ū ∈ U satisfying (ND) and a non-degenerated
shock point x̄ = xs(ū) of y(t̄, ·; ū) of class RcB,a/C

c. Then the mapping in (3.7.50)
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is continuously differentiable with derivative

∂

∂u
xs(u)δu = (p, gu1

(·, y, u1)δu1)2,Ωt̄

+

nx+1∑
i=1

(p(0, ·), δu0
i )2,Ii0(u) +

∑
i∈Is,0(u)

p(0, x0
i )[u0(x0

i )]δx
0
i

+

nt,a+1∑
i=1

(p(·, a+), f ′(uB,ai )δuB,ai )2,IiB,a(u)∩]0,t̄[

+
∑

i∈Is,a(u):
tai≤t̄

p(tai , a+)[f(y(tai , a+;u))]δtai

−
nt,b+1∑
i=1

(p(·, b−), f ′(uB,bi )δuB,bi )2,IiB,b∩]0,t̄[

−
∑

i∈Is,b(u):

tbi ≤t̄

p(tbi , b−)[f(y(tbi , b−;u))]δtbi

−
∑

i∈Ir,0(u)

pr,0i δx0
i +

∑
i∈Ir,a(u):
tai≤t̄

pr,ai δtai +
∑

i∈Ir,b(u):

tbi ≤t̄

pr,bi δtbi

(3.7.51)

for δu ∈ U, where p denotes the adjoint state with end data pt̄ = 1x̄(·) 1
[y(t̄,x̄;ū)] and

pr,0j :=

∫ f ′(u0
j+1(x0

j ))

f ′(u0
j (x

0
j ))

lim
t↘0

p(t, zt+ x0
j )

1

f ′′(f ′−1(z))
dz, j ∈ Ir,0(u),

pr,aj :=

∫ f ′(uB,aj (taj ))

f ′(uB,aj+1(taj ))

lim
t↘taj

p(t, z(t− taj ))
z

f ′′(f ′−1(z))
dz, j ∈ Ir,a(u) : taj ≤ t̄,

pr,bj :=

∫ f ′(uB,bj+1(tbj ))

f ′(uB,bj (tbj ))

lim
t↘tbj

p(t, z(t− tbj ))
z

f ′′(f ′−1(z))
dz, j ∈ Ir,b(u) : tbj ≤ t̄.

Proof. In this proof we will first show Fréchet-differentiability of the mapping
(3.7.50) in u = ū and deduce the continuous Fréchet-differentiability from the stabil-
ity of genuine characteristics and of the adjoint state (cf. [69, Proof of Lemma 6.2.7]).
Let ξl/r denote the minimal/maximal backward characteristic through (t̄, xs(ū)).
Since (t̄, xs(ū)) is a shock point of class RcB,a/C

c, ξl ends in the interior of a rar-
efaction wave created by a discontinuity of the boundary data uB,a in t = t̄am and
ξr ends in a point (0, z) where the initial data u0 is smooth.
Let δu ∈ U be arbitrarily chosen and denote by ȳ := y(ū) and y := y(u) the cor-
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responding entropy solutions of the IBVP (3.1.2), where u := ū+ δu. Furthermore,
set ū0 := u0(ū), ūB,a/b := uB,a/b(ū), u0 := u0(u), uB,a/b := uB,a/b(u) and define
δu0 := u0 − ū0, δuB,a/b := uB,a/b − ūB,a/b, δu1 = u1 − ū1 and ∆y := y − ȳ.
To simplify the further steps we set a = 0 and denote by C a sufficiently large

constant which may change its value throughout the proof. Analogously, let ρ > 0

denote a constant that also may change its value throughout the proof and which is
always chosen small enough such that the corresponding results hold true. Similar
to the proof of Lemma 6.3.7 in [69], one can use Lemma 3.7.23 to show that∫ xs(ū)+ε̄

xs(ū)−ε̄
∆y(t̄, x) dx = (xs(u)− xs(ū))[y(t̄, xs(ū))] +O((ε̄+ ‖δu‖U) ‖δu‖U)

(3.7.52)

holds for all ε̄ > 0. The goal of the remaining part is to derive an adjoint represen-
tation for the term

1

[ȳ(t̄, xs(ū))]

∫ xs(ū)+ε̄

xs(ū)−ε̄
∆y(t̄, x) dx. (3.7.53)

As in [69] and [70], we define

a(t, x) := f ′(ȳ(t, x)), b(t, x) := gy(t, x, ȳ(t, x), ū1(t, x)),

ã(t, x) :=

∫ 1

0

f ′(τy(t, x) + (1− τ)ȳ(t, x)) dτ, b̃(t, x) := gy(t, x, y(t, x), u1(t, x))

for all (t, x) ∈ Ωt̄ :=]0, t̄[×]0, b[. One can easily show that ∆y is a weak solution of

∆yt + (ã∆y)x = b̃∆y + g(·, ȳ, u1)− g(·, ȳ, ū1) (3.7.54)

on Ωt̄. In order to use the results of §3.6, we extend the the functions a, ã, b, b̃ to
the unbounded domain [0, t̄]×R by

a(t, x) = ã(t, x) = Mf ′ , if x < 0, (b, b̃)(t, x) = (b, b̃)(t, 0+) if x < 0,

a(t, x) = ã(t, x) = −Mf ′ , if x > b, (b, b̃)(t, x) = (b, b̃)(t, b−) if x > b,

cf. [70] and [69]. Since gy does not depend on y by (A3), the regularity of g yields

b̃, b ∈ L∞(]0, t̄[;C0,1(R)) and

b̃→ b in L∞(]0, t̄[;C(R)) as ‖δu‖U → 0,
(3.7.55)

cf. [83]. Let [t1, t2] ⊂ [0, T ] be an interval such that ȳ has no rarefaction wave
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creating discontinuity on [t1, t2] × [0, b]. Then the same holds for y(u) for all u ∈
BU
ρ (ū) and we obtain from Proposition 3.1.3 and Corollary 3.3.5 that

‖ã‖∞,[t1,t2]×R, ‖a‖∞,[t1,t2]×R ≤My,

ã→ a in L1
loc([t1, t2]×R) as ‖δu‖U → 0,

ã
∗−⇀ a in L∞([t1, t2]×R) as ‖δu‖U → 0.

(3.7.56)

In addition, (3.2.3) together with [69, Lemma 6.3.3] assure that the coefficients ã
and a satisfy on [t1, t2]×R the OSLC (3.6.3) for all u ∈ BU

ρ (ū).
Due to (ND), the points x = xs(ū)− ε̄ and x = xs(ū) + ε̄ are points of continuity

of ȳ(t̄, ·) for sufficiently small ε̄. For this reason we obtain unique genuine backward
characteristics through the points xs(ū) ∓ ε̄ denoted by ζl/r and we can define the
set

Dε̄ :=

(
{(t, x) ∈ [0, t̄am]× [0, b] : 0 ≤ x ≤ ζr(t)}

∪ {(t, x) ∈ [t̄am, t̄]× [0, b] : ζl(t) ≤ x ≤ ζr(t)}
)
.

Furthermore, the stability of backward characteristics yields

D := D0 =

(
{(t, x) ∈ [0, t̄am]× [0, b] : 0 ≤ x ≤ ξr(t)}

∪ {(t, x) ∈ [t̄am, t̄]× [0, b] : ξl(t) ≤ x ≤ ξr(t)}
)
.

(3.7.57)

We assume w.l.o.g. that ȳ has outside the set Dε̄ no rarefaction center. Since for
the subsequent analysis the points outside the set Dε̄ do not play any role, this is
not a restriction. Therefore, let the rarefaction centers on the domain [0, t̄] × Ω be
given by

R :=
{
t̄aj1 , . . . , t̄

a
jNa

}
= {t̄ai : i ∈ Ir,a(ū)} ,

where the constant s ∈]0, εg[ is chosen sufficiently small. For each taji ∈ R, we
introduce time points t̂i < t̄aji < t̃i that are sufficiently close to t̄aji , respectively, cf.
Figure 3.1. In particular, we require that the points t̃k are sufficiently small such
that

x̃ := Mf ′(t̃k − t̄ajk) <
εg
2

and ȳ(t̃k, ·) ∈ C0,1([0, 2x̃]) (3.7.58)
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holds for all k = 1, . . . , Na. Moreover, we assume w.l.o.g. that

Dε̄ ∩D− = ∅. (3.7.59)

This assumption is for simplicity and the treatment of the more general case can be
found in [70, Proof of Lem. 4.13.], see also [69].
Before giving a short overview of the main steps of the proof, we first define the

following subdomains

D1
Na,ε̄

:= Dε̄ ∩
(
[t̃Na

, t̄]×R
)
, D1

Na
:= D ∩

(
[t̃Na

, t̄]×R
)

D1
k := D ∩

(
[t̃k, t̂k+1]×R

)
, k = 1, . . . , Na − 1

D2
k := D ∩

(
[t̂k, t̃k]×R

)
, k = 1, . . . , Na

D1
0 := D ∩

(
[s, t̂1]×R

)
,

D2
0 := D ∩ ([0, s]×R) ,

(3.7.60)

see also Figure 3.1.
We note that ȳ has no rarefaction center on D1

Na,ε̄
and the sets D1

k, k = 0, . . . Na,
such that the coefficients ã and a satisfy (3.7.55), (3.7.56) and the OSLC (3.6.3) on
[t̃k, t̂k+1]×R, k = 0, . . . , Na + 1, where t̃0 = s and t̂Na+1 = t̄. Hence, if we choose

pt̂Na+1 = pt̄ =
1

[ȳ(t̄, xs(ū))]
∈ C0,1(R),

pt̂k+1 = prk+1(t̂k+1, ·) ∈ C0,1(R), for k = 0, . . . , Na − 1

as end data, where the functions prk for k = 1, . . . , Na are defined below, then
Theorem 3.6.7 guarantees that for all k = 0, . . . , Na the equations

pt + ãpx = −b̃p on ]t̃k, t̂k+1[×R, p(t̂k+1, ·) = pt̂k+1(·) on R (3.7.61)

and pt + apx = −bp on ]t̃k, t̂k+1[×R, p(t̂k+1, ·) = pt̂k+1(·) on R (3.7.62)

admit reversible solutions

p̃1
k ∈ C0,1([t̃k, t̂k+1]×R),

p1
k ∈ C0,1([t̃k, t̂k+1]×R).

(3.7.63)

Furthermore, from Theorem 3.6.9 we obtain that

p̃1
k → p1

k in C([t̃k, t̂k+1]× [−R,R]) ∀k = 0, . . . , Na (3.7.64)

holds true for all R > 0.
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We note that the subdomains D2
k contain for all k = 1, . . . , Na exactly one rar-

efaction center such that the OSLC (3.6.3) is violated for the coefficients ã and
a. Therefore, we cut out the rarefaction wave, respectively, and obtain for each
k = 1, . . . , Na one subset of D2

k on the left-hand side of the rarefaction wave and
one of its right-hand side. These subsets are given by

Dl
ε,k :=

{
(t, x) ∈ D2

k : x ≤ f ′
(
ūB,ajk+1(t̄ajk + ε)

)
(t− t̄ajk − ε)

}
, k = 1, . . . , Na

Dr
ε,k :=

{
(t, x) ∈ D2

k : x ≥ f ′
(
ūB,ajk

(t̄ajk − ε)
)

(t− t̄ajk + ε)
}
, k = 1, . . . , Na,

(3.7.65)

where ε is a function depending on δu that satisfies

ε(δu) ≥ 2 ‖δu‖U and ε(δu)→ 0 if ‖δu‖U → 0. (3.7.66)

Since the integration by parts will only be carried out on the sets defined in (3.7.65),
we replace ã and a by coefficients which satisfy (3.7.56) as well as the OSLC (3.6.3)
and coincide with ã and a on the sets in (3.7.65). Such coefficients are given by

ãlk(t, x) = −Mf ′ , if (t, x) ∈ [t̂k, t̃k]× Ω \Dl
ε,k, ãlk(t, x) = ã(t, x), else

alk(t, x) = −Mf ′ , if (t, x) ∈ [t̂k, t̃k]× Ω \Dl
0,k, alk(t, x) = a(t, x), else

and

ãrk(t, x) = Mf ′ , if (t, x) ∈ D2
k \Dr

ε,k, ãrk(t, x) = ã(t, x), else

ark(t, x) = Mf ′ , if (t, x) ∈ D2
k \Dr

0,k, ark(t, x) = a(t, x), else.

In what follows, we require that the function ε(δu), which is defined in (3.7.66), is
chosen such that

D
l/r
ε,k ⊂ D

l/r
ε
2 ,k
⊂ Dl/r

0,k for all u ∈ BU
ρ (ū). (3.7.67)

Due to their construction, for all k = 1, . . . , Na the new coefficients ãl/rk and a
l/r
k

satisfy (3.7.56) and the OSLC (3.6.3) on [t̂k, t̃k]×R. Therefore, and due to (3.7.55),
setting

pt̃k = p1
k(t̃k, ·) ∈ C0,1(R), k = 1, . . . , Na

as end data, Theorem 3.6.7 guarantees that

pt + ã
l/r
k px = −b̃p on ]t̂k, t̃k[×R, p(t̃k, ·) = pt̃k on R (3.7.68)
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and pt + a
l/r
k px = −bp on ]t̂k, t̃k[×R, p(t̃k, ·) = pt̃k on R (3.7.69)

admit for all k = 1, . . . , Na reversible solutions

p̃
l/r
k ∈ C0,1([t̂k, t̃k]×R),

p
l/r
k ∈ C0,1([t̂k, t̃k]×R).

(3.7.70)

Using Theorem 3.6.9 we further get that

p̃
l/r
k → p

l/r
k in C([t̂k, t̃k]× [−R,R]) ∀k = 1, . . . , Na (3.7.71)

holds for all R > 0. Moreover, (3.7.67) guarantees that

ã
l/r
k |Dl/rε,k ≡ ã and a

l/r
k |Dl/rε,k ≡ a for k = 1, . . . , Na. (3.7.72)

Moreover, according to [69, Lemma 6.3.5 (i)], it holds that

p1
Na
|D1

k
= p ∀k = 1, . . . , Na,

p
l/r
Na
|
D
l/r
0,k

= p ∀k = 1, . . . , Na.
(3.7.73)

We note that starting with end data pt̄ = 1
[ȳ(t̄,xs(ū))] ∈ C

0,1(R) ensures that pt̃Na ∈
C0,1(R) and hence pt̂k+1 ∈ C0,1(R) for all k = 0, . . . , Na − 1 and pt̃k ∈ C0,1(R) for
all k = 0, . . . , Na.
The proof consists of five main steps, cf. Figure 3.1. In step 1 we consider

(3.7.54) on [t̃Na
, t̄] × Ω, multiply it by p̃1

Na
and carry out integration by parts on

D1
Na,ε̄

. Then (3.7.64) yields that (3.7.53) can be rewritten in terms of the adjoint
state, g and two integral terms I1

Na,ε
and I2

Na,ε
whose simplification will be done in

step 2 and 3.
In step 2, we derive a representation of I1

Na,ε
depending on the local solution

near the rarefaction center and the adjoint state.
In step 3, we consider (3.7.54) on [t̃Na

, t̄] × Ω and multiply it by p̃rNa
. Using

integration by parts and (3.7.71), we obtain a representation of I2
Na,ε

depending,
inter alia, on an integral term It̂,Na

which will be further simplified in the next step.
In step 4, we proceed as in step 1: Consider (3.7.54) on [t̃Na

, t̄]×Ω, multiply it by
p̃1
Na−1 and use integration by parts on D1

Na−1. Then we use use (3.7.64) and obtain
that It̂,Na

can be rewritten in terms of the adjoint state, g and three integral terms
I1
Na−1,ε, I

2
Na−1,ε and I3

Na−1,ε. These terms can again be reformulated by using the
same techniques as in step 2 and 3. We continue this procedure until k = 1 yielding
a presentation of the term It̂,Na

which depends inter alia on an integral term It̂,1,
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which will be simplified in the last step.
In step 5, we consider (3.7.54) on [s, t̂1]×Ω, multiply it by p̃1

0, apply integration
by parts on D1

0 and use (3.7.64). This yields a representation of It̂,1 depending inter
alia on terms Ik0,ε for k = 1, . . . , N0 + 1 and Ijr,ε for j = 1, . . . , N0, where N0 = |Ir,0|.
These terms can be treated by using the methods of step 2 and 3. Finally, reinserting
the terms and using (3.7.73) yields an adjoint representation for (3.7.53).
The idea of this proof is based on the proof of Lemma 7.3.4 in [69]. The procedure

in step 1 and 4 can be found in [70, Proof of Lemma 4.10].
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Figure 3.1. Proof of Theorem 3.7.24
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Step 1: Considering (3.7.54) on ]t̃Na
, t̄[×Ω, multiplying it with p̃1

Na
, which de-

notes the reversible solution of (3.7.61), and applying integration by parts on the
domain D1

Na,ε̄
gives

1

[ȳ(t̄, xs(ū))]

∫ xs(ū)+ε̄

xs(ū)−ε̄
∆y(t̄, x) dx

=

∫ ζr(t̃Na )

ζl(t̃Na )

p̃1
Na

(t̃Na
, x)∆y(t̃Na

, x) dx

+

∫
D1
Na,ε̄

p̃1
Na

(t, x)
(
g(t, x, ȳ, u1)− g(t, x, ȳ, ū1)

)
dxdt

−
∫ t̄

t̃Na

p̃1
Na

(t, ζl(t))∆y(t, ζl(t))(ã(t, ζl(t))− a(t, ζl(t))) dt

+

∫ t̄

t̃Na

p̃1
Na

(t, ζr(t))∆y(t, ζr(t))(ã(t, ζr(t))− a(t, ζr(t))) dt,

(3.7.74)

where we have used that p̃1
Na

solves (3.7.61) almost everywhere on ]t̃Na
, t̄[×Ω. Using

the regularity of g w.r.t. u1 and (3.7.64), the second term on the right hand side of
(3.7.74) can be reformulated∫

D1
Na,ε̄

p̃1
Na

(t, x)
(
g(t, x, ȳ, u1)− g(t, x, ȳ, ū1)

)
dxdt

=

∫
D1
Na,ε̄

p1
Na

(t, x)gu1(t, x, ȳ, ū1)δu1 dx dt+ o(‖δu‖U)

=

∫
D1
Na,ε̄

\D1
Na

p1
Na

(t, x)gu1
(t, x, ȳ, ū1)δu1 dxdt

+

∫
D1
Na

p1
Na

(t, x)gu1
(t, x, ȳ, ū1)δu1 dx dt+ o(‖δu‖U),

where p1
Na

denotes the reversible solution of (3.7.62) and the term o(‖δu‖U) is
uniform w.r.t. ε̄ > 0. Using Lemma 3.2.5, we deduce

‖ξl/r(·)− ζl/r(·)‖C ([tNa ,t̄])
≤ Cε̄, (3.7.75)

which yields together with the boundedness of gu1
(·, ȳ, ū1) and p1

Na∫
D1
Na,ε̄

\D1
Na

p1
Na

(t, x)gu1
(t, x, ȳ, ū1)δu1 dx dt = ε̄O(‖δu‖U)
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and thus ∫
D1
Na,ε̄

p̃1
Na

(t, x)
(
g(t, x, ȳ, u1)− g(t, x, ȳ, ū1)

)
dx dt

=

∫
D1
Na

p1
Na

(t, x)gu1(t, x, ȳ, ū1)δu1 dxdt

+ ε̄O(‖δu‖U) + o(‖δu‖U).

(3.7.76)

Since (t̄, x̄) is a shock point of class RcB,a/C
c, Lemma 3.7.15 and Lemma 3.7.10

guarantee smooth local solutions u 7→ Yl/r(·,u) which are defined on some stripes
Sl/r containing ξl/r and ζl/r for sufficiently small ε̄. With the local solutions, the
definitions of ã and a and the uniform boundedness of p̃1

Na
, the last two integrals on

the right hand side of (3.7.74) are equal to O(‖δu‖2U). In fact, using the definition
of ã and a, we first note that the last two integrals of (3.7.74) can be rewritten by

−
∫ t̄

t̃Na

p̃1
Na

(t, ζl(t))∆y(t, ζl(t))
(
ã(t, ζl(t))− a(t, ζl(t))

)
dt

+

∫ t̄

t̃Na

p̃1
Na

(t, ζr(t))∆y(t, ζr(t))
(
ã(t, ζr(t))− a(t, ζr(t))

)
dt

= −
∫ t̄

t̃Na

p̃1
Na

(t, ζl(t))
(
f(y(t, ζl(t)))− f(ȳ(t, ζl(t)))− f ′(ȳ(t, ζl(t))

)
∆y(t, ζr(t))) dt

+

∫ t̄

t̃Na

p̃1
Na

(
t, ζl(t))(f(y(t, ζr(t)))− f(ȳ(t, ζr(t)))− f ′(ȳ(t, ζr(t))

)
∆y(t, ζr(t))) dt

(3.7.77)

Using (3.7.64) and the regularity of p̃1
Na

, we conclude∥∥p̃1
Na

∥∥
∞,[t̃Na ,t̄]×R

< Mp̃1
Na

∀ δu ∈ BU
ρ (ū).

Moreover, the regularity of f and Proposition 3.1.3 yield ‖f ′′(y(u))‖Ωt̄,∞ ≤Mf ′′

for all δu ∈ BU
ρ (ū). Therefore, the absolute value of the terms in (3.7.77) is bounded

from above by

Mf ′′Mp̃1
Na

(∫ t̄

t̃Na

|∆y(t, ζl(t))|2 dt+

∫ t̄

t̃Na

|∆y(t, ζr(t))|2 dt

)
≤Mf ′′Mp̃1

Na
· (t̄− t̃Na

)

(
‖Yl(·,u)− Yl(·, ū)‖2C (Sl)

+ ‖Yr(·,u)− Yr(·, ū)‖2C (Sr)

)
≤ C ‖δu‖2U .
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The last inequality holds due to Lemma 3.7.15 and Lemma 3.7.10. This estimation
guarantees

−
∫ t̄

t̃Na

p̃1
Na

(t, ζl(t))∆y(t, ζl(t))(ã(t, ζl(t))− a(t, ζl(t))) dt

+

∫ t̄

t̃Na

p̃1
Na

(t, ζr(t))∆y(t, ζr(t))(ã(t, ζr(t))− a(t, ζr(t))) dt

= O(‖δu‖2U)

(3.7.78)

Here, the term O(‖δu‖2U) is uniform w.r.t. ε̄.
Next, we want to rewrite the first integral on the right hand side of (3.7.74). To

this end, we first obtain from (3.7.64) and Corollary 3.3.5 that∣∣∣∣∫ ζr(t̃Na )

ζl(t̃Na )

(p̃1
Na

(t̃Na
, x)− p1

Na
(t̃Na

, x))∆y(t̃Na
, x) dx

∣∣∣∣
≤
∥∥p̃1

Na
− p1

Na

∥∥
∞,[t̃Na ,t̄]×R

· ‖∆y‖1,[t̃Na ,t̄]×Ω = o(‖δu‖U)

holds which leads to∫ ζr(t̃Na )

ζl(t̃Na )

p̃1
Na

(t̃Na
, x)∆y(t̃Na

, x) dx

=

∫ ζr(t̃Na )

ζl(t̃Na )

p1
Na

(t̃Na
, x)∆y(t̃Na

, x) dx+ o(‖δu‖U),

(3.7.79)

where o(‖δu‖U) is uniform w.r.t. ε̄.
Furthermore, we get∫ ζr(t̃Na )

ζl(t̃Na )

p1
Na

(t̃Na
, x)∆y(t̃Na

, x) dx

=

∫ ξl(t̃Na )

ζl(t̃Na )

p1
Na

(t̃Na
, x)∆y(t̃Na

, x) dx

+

∫ ξr(t̃Na )

ξl(t̃Na )

p1
Na

(t̃Na
, x)∆y(t̃Na

, x) dx

+

∫ ζr(t̃Na )

ξr(t̃Na )

p1
Na

(t̃Na
, x)∆y(t̃Na

, x) dx.

(3.7.80)

Recalling the local solutions Yl/r which are used to prove (3.7.78) and the bound-
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edness of p1
Na

, we obtain the following estimation∣∣∣∣∫ ξl(t̃Na )

ζl(t̃Na )

p1
Na

(t̃Na
, x)∆y(t̃Na

, x) dx

∣∣∣∣
+

∣∣∣∣∫ ζr(t̃Na )

ξr(t̃Na )

p1
Na

(t̃Na
, x)∆y(t̃Na

, x) dx

∣∣∣∣
≤Mp1

Na
‖Yl(·,u)− Yl(·, ū)‖C (Sl)

·
∣∣ξl(t̃Na

)− ζl(t̃Na
)
∣∣

+Mp1
Na
‖Yr(·,u)− Yr(·, ū)‖C (Sr) ·

∣∣ξr(t̃Na
)− ζr(t̃Na

)
∣∣

≤
(
|ξl(t̃Na

)− ζl(t̃Na
)|+ |ξr(t̃Na

)− ζr(t̃Na
)|
)
· C ‖δu‖U ,

(3.7.81)

where the last inequality is justified by Lemma 3.7.15 and Lemma 3.7.10. From
(3.7.81) and (3.7.75) we deduce∣∣∣∣∫ ξl(t̃Na )

ζl(t̃Na )

p1
Na

(t̃Na
, x)∆y(t̃Na

, x) dx

∣∣∣∣+

∣∣∣∣∫ ζr(t̃Na )

ξr(t̃Na )

p1
Na

(t̃Na
, x)∆y(t̃Na

, x) dx

∣∣∣∣
≤ ε̄O(‖δu‖U).

(3.7.82)

Inserting (3.7.82) in (3.7.80) gives the following reformulation of (3.7.79):∫ ζr(t̃Na )

ζl(t̃Na )

p̃1
Na

(t̃Na
, x)∆y(t̃Na

, x) dx

=

∫ ξr(t̃Na )

ξl(t̃Na )

p1
Na

(t̃Na
, x)∆y(t̃Na

, x) dx+ ε̄O(‖δu‖U) + o(‖δu‖U)

(3.7.83)

Furthermore, inserting (3.7.76), (3.7.78) and (3.7.83) in (3.7.53) leads to

1

[ȳ(t̄, xs(ū))]

∫ xs(ū)+ε̄

xs(ū)−ε̄
∆y(t̄, x) dx

=

∫ ξr(t̃Na )

ξl(t̃Na )

p1
Na

(t̃Na
, x)∆y(t̃Na

, x) dx

+

∫
D1
Na

p1
Na

(t, x)gu1(t, x, ȳ, ū1)δu1 dxdt+ o(‖δu‖U) + ε̄O(‖δu‖U).

(3.7.84)
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For the first term of the right hand side of (3.7.84) we write∫ ξr(t̃Na )

ξl(t̃Na )

p1
Na

(t̃Na
, x)∆y(t̃Na

, x) dx

=

∫ f ′(ūB,am (t̄am−ε)·(t̃Na−t̄
a
m+ε)

ξl(t̃Na )

p1
Na

(t̃Na
, x)∆y(t̃Na

, x) dx

+

∫ ξr(t̃Na )

f ′(ūB,am (t̄am−ε)·(t̃Na−t̄am+ε)

p1
Na

(t̃Na
, x)∆y(t̃Na

, x) dx

= I1
Na,ε + I2

Na,ε,

(3.7.85)

where ε is given according to (3.7.66). Using (3.7.85) and (3.7.73), we obtain that
(3.7.84) reads

1

[y(t̄, xs(ū))]

∫ xs(ū)+ε̄

xs(ū)−ε̄
∆y(t̄, x) dx

= I1
t̄,ε + I2

Na,ε +

∫
D1
Na

p(t, x)gu1
(t, x, ȳ, ū1)δu1 dxdt

+ o(‖δu‖U) + ε̄O(‖δu‖U).

Step 2: First we have a closer look at I1
t̄,ε. Since the minimal backward char-

acteristic through (t̄, x̄) ends in the inner of a rarefaction wave, we obtain from
Lemma 3.7.16 and (3.7.58) that for all u ∈ BU

ρ (ū) the corresponding entropy solu-
tion y(t̃Na

, ·;u) is locally given by

y(t̃Na
, x;u) =

f ′−1
(

x
t̃Na−tam

)
if x ∈ Il,

Y (t̃Na
, x,u) if x ∈ Ir,

(3.7.86)

where

Il :=]f ′(uB,am+1(tam)) · (t̃Na
− tam), f ′(uB,am (tam)) · (t̃Na

− tam)[

Ir := [f ′(uB,am (tam)) · (t̃Na
− tam), f ′(ūB,am (t̄am)) · (t̃Na

− t̄am) + δ[

and δ > 0 is sufficiently small. Here, the continuously Fréchet-differentiable function

BU
ρ (ū) 3 u 7→ Y (t̃Na

, ·;u) ∈ C(I)

is obtained by Lemma 3.7.16 with

I =]f ′(ūB,am (t̄am)) · (t̃Na
− t̄am)− 2δ, f ′(ūB,am (t̄am)) · (t̃Na

− t̄am) + 2δ[.
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In addition, we note that y(t̃Na
, x) is continuous on I for all u ∈ BU

ρ (ū).
A Taylor expansion of the term f ′(uB,am (tam)) · (t̃Na

− tam) in uB,am = ūB,am and
tam = t̄am yields the existence of a constant C > 0 such that

ξl(t̃Na
) < f ′(ūB,am (t̄am)) · (t̃Na

− t̄am)− C ‖δu‖U and

[ξl(t̃Na
), f ′(ūB,am (t̄am)) · (t̃Na

− t̄am)− C ‖δu‖U]

⊂ [ξl(t̃Na
), f ′(uB,am (tam)) · (t̃Na

− tam)]

(3.7.87)

is valid for all u ∈ BU
ρ (ū). Using (3.7.86) and (3.7.87), we derive the following local

approximation of the term ∆y(t̃Na
, ·) in I1

t̄,ε:

∆y(t̃Na
, x)|[ξl(t̃Na ),f ′(ūB,am (t̄am))·(t̃Na−t̄am)−C‖δu‖U]

=
x · δtam

f ′′
(
f ′−1

(
x

t̃−t̄am

))
· (t̃− t̄am)2

+ o(‖δu‖U).

Using this local approximation, the term I1
t̄,ε in (3.7.85) can be rewritten as follows:

I1
t̄,ε =

∫ f ′(ūB,am (t̄am))·(t̃Na−t̄
a
m)−C‖δu‖U

ξl(t̃Na )

p1
Na

(t̃Na
, x)

x · δtam
f ′′
(
f ′−1

(
x

t̃Na−t̄am

))
(t̃Na

− t̄am)2
dx

+

∫ f ′(ūB,am (t̄am−ε))·(t̃Na−t̄
a
m+ε)

f ′(ūB,am (t̄am))·(t̃Na−t̄am)−C‖δu‖U
p1
Na

(t̃Na
, x)∆y(t̃Na

, x) dx+ o(‖δu‖U)

=

∫ f ′(ūB,am (t̄am))·(t̃Na−t̄
a
m)

ξl(t̃Na )

p1
Na

(t̃Na
, x)

x · δtam
f ′′
(
f ′−1

(
x

t̃Na−t̄am

))
(t̃Na

− t̄am)2
dx

−
∫ f ′(ūB,am (t̄am))·(t̃Na−t̄

a
m)

f ′(ūB,am (t̄am))·(t̃Na−t̄am)−C‖δu‖U
p1
Na

(t̃Na
, x)

x · δtam
f ′′
(
f ′−1

(
x

t̃Na−t̄am

))
(t̃Na

− t̄am)2
dx

+

∫ f ′(ūB,am (t̄am−ε))·(t̃Na−t̄
a
m+ε)

f ′(ūB,am (t̄am))·(t̃Na−t̄am)−C‖δu‖U
p1
Na

(t̃Na
, x)∆y(t̃Na

, x) dx+ o(‖δu‖U)

(3.7.88)

The regularity of p1
Na

and the uniform convexity of f imply that the second integral
on the right hand side is equal to o(‖δu‖U). Using again the regularity of p1

Na
,

the choice of ε in (3.7.66) and the local mapping in (3.7.86), which is in particular
Lipschitz continuous, the third integral is equal to o(‖δu‖U). More precisely, using
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the abbreviation

ξ(u) := f ′(uB,am (tam)) · (t̃Na
− tam),

the absolute value of the third integral can be estimated as follows∣∣∣∣∣
∫ f ′(ūB,am (t̄am−ε))·(t̃Na−t̄

a
m+ε)

ξ(ū)−C‖δu‖U
p1
Na

(t̃Na
, x)∆y(t̃Na

, x) dx

∣∣∣∣∣
=

∣∣∣∣∣
∫ min(ξ(ū),ξ(u))

ξ(ū)−C‖δu‖U
p1
Na

(t̃Na
, x)∆y(t̃Na

, x) dx

∣∣∣∣∣
+

∣∣∣∣∣
∫ max(ξ(ū),ξ(u))

min(ξ(ū),ξ(u))

p1
Na

(t̃Na
, x)∆y(t̃Na

, x) dx

∣∣∣∣∣
+

∣∣∣∣∣
∫ f ′(ūB,am (t̄am−ε))·(t̃Na−t̄

a
m+ε)

max(ξ(ū),ξ(u))

p1
Na

(t̃Na
, x)∆y(t̃Na

, x) dx

∣∣∣∣∣ .

(3.7.89)

We note that due to (3.7.86) and the boundedness of p1
Na

, the first and the third
integral on the right hand side of (3.7.89) are equal to o(‖δu‖U). Concerning the
second integral, using the boundedness of p1

Na
, the Lipschitz continuity of the map-

ping ξ(u) w.r.t. u and the Lipschitz continuity of the mapping in (3.7.86) for all
u ∈ BU

ρ (ū), we obtain that the second integral on the right-hand side of (3.7.89)
is equal to o(‖δu‖U). Hence, the third integral of the right hand side of (3.7.88) is
equal to o(‖δu‖U).
Therefore, and since as already mentioned the second integral of the right-hand

side of (3.7.88) is equal to o(‖δu‖U), we obtain that

I1
Na,ε =

∫ f ′(ūB,am (t̄am))·(t̃Na−t̄
a
m)

ξl(t̃Na )

p1
Na

(t̃Na
, x)

x · δtam
f ′′
(
f ′−1

(
x

t̃Na−t̄am

))
(t̃Na

− t̄am)2
dx+ o(‖δu‖U).

From Lemma 6.3.5 in [69] we know that p1
Na

coincides on D1
Na

with the adjoint state
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p. Therefore, we obtain

I1
Na,ε =

∫ f ′(ūB,am (t̄am))·(t̃Na−t̄
a
m)

ξl(t̃Na )

p(t̃Na
, x)

x · δtam
f ′′
(
f ′−1

(
x

t̃Na−t̄am

))
(t̃Na

− t̄am)2
dx

+ o(‖δu‖U)

=

∫ f ′(ūB,am (t̄am))

ξl(t̃Na )\(t̃Na−t̄am)

p(t̃Na
, z(t̃Na

− t̄am))
δtam · z

f ′′(f ′−1(z))
dz + o(‖δu‖U)

=

∫ f ′(ūB,am (t̄am))

f ′(ūB,am+1(t̄am))

lim
t↘t̄am

p(t, z(t− t̄am))
δtam · z

f ′′(f ′−1(z))
dz + o(‖δu‖U).

(3.7.90)

We note that the last equality in (3.7.90) is valid since for sufficiently small t > t̄am,
the term p(·, z(t− t̄am)) is equal to zero if

z ∈
[
f ′(ūB,am+1(t̄am)),

ξl(t̃Na
)

t̃Na
− t̄am

]
and constant on ]t̄am, t̃Na

] for all z ∈ [f ′(ūB,am+1(t̄am)), f ′(ūB,am (t̄am))].
Step 3: In order to rewrite I2

Na,ε
, let the equation (3.7.54) on ]t̂Na

, t̃Na
[×Ω be

multiplied with p̃rNa
, which denotes the reversible solution of (3.7.68). Then using

(3.7.72) and integration by parts on Dr
ε,Na

leads to

I2
Na,ε =

∫
DrNa,ε

p̃rNa
(t, x)(g(t, x, ȳ, u1)− g(t, x, ȳ, ū1)) dx dt

+

∫ ξr(t̂Na )

0

p̃rNa
(t̂Na

, x)∆y(t̂Na
, x) dx

+

∫ t̃Na

t̄am−ε
p̃rNa

(t, γ(t, ε))∆y(t, γ(t, ε))(f ′(ȳ(t, γ(t, ε)))− ã(t, γ(t, ε))) dt

−
∫ t̃Na

t̂Na

p̃rNa
(t, ξr(t))∆y(t, ξr(t))(f

′(ȳ(t, ξr(t)))− ã(t, ξr(t))) dt

+

∫ t̄am−ε

t̂Na

p̃rNa
(t, 0)ã(t, 0+)∆y(t, 0+) dt

=: I20 + It̂,Na
+ I22 + I23 + I24,

(3.7.91)

where γ(t, ε) := f ′(ūB,am (t̄am−ε))(t− t̄am+ε). Moreover, in the derivation of (3.7.91),
we have used (3.7.72) and the fact that p̃rNa

solves (3.7.68) almost everywhere on
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p̃rNa
. We further note that

y(·, 0+;u) = uB,am on [t̂Na
, t̄am[ (3.7.92)

for all u ∈ BU
ρ (ū).

First we have a closer look on I20 in (3.7.91). Since g(·, y, u1) = 0 on D2
Na
\Dr

Na,ε

for all u ∈ BU
ρ (ū) and due to the regularity of g and (3.7.71), it holds that

I20 =
(
prNa

, gu1
(·, ȳ, ū1)δu1

)
2,D2

Na

+ o(‖δu‖U), (3.7.93)

where prNa
denotes the reversible solution of (3.7.69). For I22, we will show that

|I22| ≤ C ‖δu‖2U (3.7.94)

holds true and note that one can analogously prove

|I23| ≤ C ‖δu‖2U . (3.7.95)

To this end, we rewrite I22 by

I22 =

∫ t̃Na

t̄am−ε
−p̃rNa

(t, γ(t, ε))

(
f(y(t, γ(t, ε)))

− f(ȳ(t, γ(t, ε)))− f ′(ȳ(t, γ(t, ε)))∆y(t, γ(t, ε))

)
dt.

The uniform boundedness of p̃rNa
and the regularity of f imply that

|I22| ≤Mp̃rNa
Mf ′′

∫ t̃Na

t̄am−ε
|∆y(t, γ(t, ε))|2 dt. (3.7.96)

In order to prove (3.7.94), we will estimate |∆y(t, γ(t, ε))| from above. To this end,
we first note that since the point

(t̃Na
, f ′(ūB,am (t̄am))(t̃Na

− t̄am))

is not a shock generation point and lies on the right boundary of the rarefaction
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wave emanating from (t̄am, 0), there exists a stripe S with{
((t, x) ∈ [t̄am, t̃Na

]× Ω : x = f ′(ūB,am (t̄am))(t− t̄am)
}
⊂ S,{

(t, x) ∈ [t̄am − δ, t̃Na
]× Ω : x = sup

u∈BU
ρ (ū)

{f ′(uB,am (tam))}(t− t̄am + δ))

}
⊂ S,

(3.7.97)

for sufficiently small δ > 0. Furthermore, we obtain a continuously Fréchet-
differentiable mapping BU

ρ (ū) 3 u 7→ Ym(·;u) ∈ C(S) such that

y(·;u)|Sr(u) = Ym(·;u) for all u ∈ BU
ρ (ū) (3.7.98)

holds, where

Sr(u) :=

{
(t, x) ∈ S : x > max

{
0, f ′(uB,am (tam)) · (t− tam)

}}
.

The validity of this can be found in the considerations before Lemma 3.7.16. Due
to (3.7.97), Sr(u) is nonempty for all u ∈ BU

ρ (ū) if ρ is small enough.
Moreover, we can choose ε in (3.7.66) such that (t, γ(t, ε)) ∈ Sr(u) holds for all

t ∈ [t̄am−ε, t̃Na
] and all u ∈ BU

ρ (ū) for sufficiently small ρ. Using (3.7.98), we deduce

‖∆y(·, γ(·, ε))‖C([t̄am−ε,t̃Na ])

= ‖Ym(·, γ(·, ε);u)− Ym(·, γ(·, ε); ū)‖C([t̄am−ε,t̃Na ])

≤ ‖Ym(·;u)− Ym(·; ū)‖C(S)

=

∥∥∥∥ ∂∂uYm(·; ū)

∥∥∥∥
C(S)

· ‖δu‖U + o(‖δu‖U)

≤ C ‖δu‖U ∀u ∈ BU
ρ (ū).

(3.7.99)

Finally, (3.7.96) and (3.7.99) yield (3.7.94). Next, we prove that

I24 =
(
prNa

(·, 0), f ′(ȳ(·, 0+))δuB,am

)
2,[t̂Na ,t̄

a
m]

+ o(‖δu‖U). (3.7.100)

To this end, we observe that I24 can be rewritten by using (3.7.92) as follows:

I24 =

∫ t̄am−ε

t̂Na

p̃rNa
(t, 0)ã(t, 0+)δuB,am (t) dt (3.7.101)
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With the uniform boundedness of p̃rNa
and (3.7.56), we obtain from (3.7.101) that

I24 =

∫ t̄am−ε

t̂Na

p̃rNa
(t, 0)a(t, 0+)δuB,am (t) dt+ o(‖δu‖U) (3.7.102)

holds true. Finally, the boundedness of the integrands in (3.7.102) and (3.7.71) yields
(3.7.100). Considering the term It̂,Na

in (3.7.91), with (3.7.71) and Corollary 3.3.5
we can show that

It̂,Na
=

∫ ξr(t̂Na )

0

prNa
(t̂Na

, x)∆y(t̂Na
, x) dx+ o(‖δu‖U). (3.7.103)

Inserting (3.7.93), (3.7.94), (3.7.95) and (3.7.100) in (3.7.91), I2
Na,ε

reads

I2
Na,ε =

(
prNa

gu1(·, ȳ, ū1), δu1

)
2,D2

Na

+ It̂,Na

+
(
prNa

(·, 0), f ′(ȳ(·, 0+))δuB,am

)
2,[t̂Na ,t̄

a
m]

+ o(‖δu‖U),
(3.7.104)

where It̂,Na
will be further simplified in the next step. Before starting with the next

step, we observe that (3.7.73) yields

I2
Na,ε = (pgu1(·, ȳ, ū1), δu1)2,D2

Na
+ It̂,Na

+
(
p(·, 0), f ′(ȳ(·, 0+))δuB,am

)
2,[t̂Na ,t̄

a
m]

+ o(‖δu‖U).
(3.7.105)

Step 4: Consider (3.7.54) on ]t̃Na−1, t̂Na
[×Ω, multiply it with p̃1

Na−1, which is
the reversible solution of (3.7.61), and apply integration by parts on the set D1

Na

yielding

It̂,Na
=

∫
D1
Na

p̃1
Na−1(t, x)(g(t, x, ȳ, u1)− g(t, x, ȳ, ū1)) dxdt

+

∫ t̂Na

t̃Na−1

p̃1
Na−1(t, 0)ã(t, 0+)∆y(t, 0+)) dt

−
∫ t̂Na

t̃Na−1

p̃1
Na−1(t, ξr(t))∆y(t, ξr(t))(a(t, ξr(t))− ã(t, ξr(t))) dt

+

∫ ξr(t̃Na−1)

0

p̃1
Na−1(t̃Na−1, x)∆y(t̃Na−1, x) dx+ o(‖δu‖U)

=: I30 + I31 + I32 + I33 + o(‖δu‖U).

(3.7.106)
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Due to the regularity of g and (3.7.64), I30 can be rewritten by

I30 =

∫
D1
Na

p1
Na−1(t, x)gu1

(t, x, ȳ, ū1)δu1 dtdx+ o(‖δu‖U), (3.7.107)

with p1
Na−1 denoting the reversible solution of (3.7.62). Since u0 is continuously

differentiable in x = ξr(0), we adopt Lemma 3.7.4 and prove analogously to the
estimation of I22 in (3.7.94) that

I32 = O(‖δu‖2U). (3.7.108)

Regarding the term I33, (3.7.64) and Corollary 3.3.5 together yield

I33 =

∫ ξr(t̃Na−1)

0

p1
Na−1(t̃Na−1, x)∆y(t̃Na−1, x) dx+ o(‖δu‖U). (3.7.109)

Next, we have a look at I31 and note that

∆y(t, 0+) = δuB,a(t) ∀t ∈ [t̃Na−1, t̂Na
] (3.7.110)

holds due to (3.7.59) and the BLN-conditions in (3.1.10). Therefore, Lemma 3.3.4
implies

‖∆y(·, 0+)‖1,]t̃Na−1,t̂Na [ = O(‖δu‖U). (3.7.111)

Using (3.7.64), (3.7.111) and the uniform boundedness of ã, we deduce

I31 =

∫ t̂Na

t̃Na−1

p1
Na−1(t, 0)ã(t, 0+)∆y(t, 0+) dt+ o(‖δu‖U). (3.7.112)

Further on,∥∥∥∥δuB,a − nt,a+1∑
i=1

δuB,ai · 1IiB,a −
nt,a∑
i=1

sgn(δtai )1I(t̄ai ,t̄ai +δtai )[ūB,a(t̄ai )]

∥∥∥∥
1,]t̃Na−1,t̂Na [

= o(‖δu‖U).

(3.7.113)

Now use (3.7.110), (3.7.113) and the uniform boundedness of ã and p1
Na−1 in order
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to rewrite (3.7.112) by

I31 =

nt,a+1∑
i=1

(
p1
Na−1(·, 0), ã(·, 0+)δuB,ai

)
2,IiB,a∩[t̃Na−1,t̂Na ]

+
∑

i∈Is,a(ū)

t̃Na−1<t̄
a
i<t̂Na

(
p1
Na−1(·, 0), ã(·, 0+) · sgn(δtai )[ūB,a(t̄ai )]

)
2,I(t̄ai ,t̄

a
i +δtai )

+ o(‖δu‖U)

=: I321 + I322 + o(‖δu‖U).

(3.7.114)

Lemma 3.3.4, (3.7.110), the regularity of f and the definition of ã and a yield

ã(·, 0+)→ a(·, 0+) in L1([t̃Na−1, t̂Na
]). (3.7.115)

Using (3.7.115) and the boundedness of p1
Na−1, we show that

I321 =

nt,a+1∑
i=1

(p1
Na−1(·, 0), a(·, 0+)δuB,ai )2,IiB,a∩[t̃Na−1,t̂Na ] + o(‖δu‖U). (3.7.116)

Next, we regard I322 and pick out an arbitrary i ∈ Is,a(ū) with t̃Na−1 < t̄ai < t̂Na

and assume w.l.o.g. that δtai > 0. The case δtai < 0 can be treated analogously and
δtai = 0 is trivial. Then the regularity of ūB,ai and ūB,ai+1 leads to

‖[ūB,a(t̄ai )]− (ūB,ai − ūB,ai+1)‖L1(]t̄ai ,t̄
a
i +δtai [) = o(‖δu‖U). (3.7.117)

Adopting the uniform boundedness of ã and p1
Na−1, we obtain from (3.7.117) that

I322 =
∑

i∈Is,a(ū)

t̃Na−1<t̄
a
i<t̂Na

(
p1
Na−1(·, 0), ã(·, 0+) · (ūB,ai − ūB,ai+1)

)
2,]t̄ai ,t̄

a
i +δtai [

+ o(‖δu‖U)

=
∑

i∈Is,a(ū)

t̃Na−1<t̄
a
i<t̂Na

(
p1
Na−1(·, 0), f(ūB,ai )− f(ūB,ai+1)

)
2,]t̄ai ,t̄

a
i +δtai [

+ o(‖δu‖U).
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Further on, the regularity of p1
Na−1, f and ūB,aj for j = 1, . . . , nt,a gives

I322 =
∑

i∈Is,a(ū)

t̃Na−1<t̄
a
i<t̂Na

p1
Na−1(t̄ai , 0)(f(ūB,ai (t̄ai ))− f(ūB,ai+1(t̄ai )))δt

a
i + o(‖δu‖U)

=
∑

i∈Is,a(ū)

t̃Na−1<t̄
a
i<t̂Na

p1
Na−1(t̄ai , 0)[f(ȳ(t̄ai , 0+))]δtai + o(‖δu‖U).

(3.7.118)

Inserting (3.7.116) and (3.7.118) in (3.7.114) yields

I31 =

nt,a+1∑
i=1

(p1
Na−1(·, 0), f ′(ūB,ai )δuB,ai )2,IiB,a∩[t̃Na−1,t̂Na ]

+
∑

i∈Is,a(ū)

t̃Na−1<t̄
a
i<t̂Na

p1
Na−1(t̄i, 0)[f(ȳ(t̄ai , 0+))]δtai + o(‖δu‖U).

(3.7.119)

If we insert (3.7.107), (3.7.109),(3.7.108), (3.7.109) and (3.7.119) in (3.7.106), we
finally obtain

It̂,Na
=
(
p1
Na−1gu1(·, ȳ, ū1), δu1

)
2,D1

Na

+ (p1
Na−1(t̃Na−1, ·),∆y(t̃Na−1, ·))2,]0,ξr(t̃Na−1)[

+

nt,a+1∑
i=1

(p1
Na−1(·, 0), f ′(ūB,ai )δuB,ai )2,IiB,a∩[t̃Na−1,t̂Na ]

+
∑
i∈Is,0:

t̄ai ∈[t̃Na−1,t̂Na ]

p1
Na−1(t̄ai , 0)[f(y(t̄ai , 0+;u))]δtai + o(‖δu‖U).

(3.7.120)

The second term of the right side of (3.7.120) can be rewritten as follows:

(p1
Na−1(t̃Na−1, ·),∆y(t̃Na−1, ·))2,]0,ξr(t̃Na−1)]

= (p1
Na−1(t̃Na−1, ·),∆y(t̃Na−1, ·))2,]0,γ1

Na−1,ε(t̃Na−1)]

+ (p1
Na−1(t̃Na−1, ·),∆y(t̃Na−1, ·))2,]γ1

Na−1,ε(t̃Na−1),γ2
Na−1,ε(t̃Na−1)]

+ (p1
Na−1(t̃Na−1, ·),∆y(t̃Na−1, ·))2,]γ2

Na−1,ε(t̃Na−1),ξr(t̃Na−1)]

= I1
Na−1,ε + I2

Na−1,ε + I3
Na−1,ε,
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where

γ1
Na−1,ε(t) := f ′(ūB,ajNa−1+1(t̄ajNa−1

+ ε)) · (t− t̄ajNa−1
− ε) and

γ2
Na−1,ε(t) := f ′(ūB,ajNa−1

(t̄ajNa−1
− ε)) · (t− t̄ajNa−1

+ ε).

We will now have a closer look at the terms IiNa−1,ε for i = 1, 2, 3. Consider (3.7.54)
on ]t̂Na−1, t̃Na−1[×Ω, multiply it with p̃lNa−1 denoting the reversible solution of
(3.7.68). Then we apply integration by parts and further (3.7.64). Analogously to
the estimation of I2

t̄,ε in (3.7.104) one can show that

I1
Na−1,ε =

(
plNa−1gu1

(·, ȳ, ū1), δu1

)
2,DlNa−1

+
(
plNa−1(·, 0), f ′(ȳ(·, 0+))δuB,ajNa−1+1

)
2,[t̄ajNa−1

,t̃Na−1]
+ o(‖δu‖U),

(3.7.121)

where plNa−1 is the reversible solution of (3.7.69). Due to the choice of t̃Na−1 in
(3.7.58) and using that the source term g is equal to zero for all x ∈ [0, εg[, the first
term on the right-hand side of (3.7.121) is equal to zero leading to

I1
Na−1,ε =

(
p(·, 0), f ′(ȳ(·, 0+))δuB,ajNa−1+1

)
2,[t̄ajNa−1

,t̃Na−1]
+ o(‖δu‖U).

Next, we note that we can use the same arguments as for the simplification of the
term I1

t̄,ε in (3.7.90) to justify that I2
Na−1,ε is equal to

I2
Na−1,ε =

∫ f ′(ūB,ajNa−1
(t̄ajNa−1

))

f ′(ūB,ajNa−1+1(t̄ajNa−1
))

lim
t↘t̄ajNa−1

p(t, z(t− t̄ajNa−1
))
δtajNa−1

· z
f ′′(f ′−1(z))

dz

+ o(‖δu‖U).

Finally, we observe that I3
Na−1,ε can be treated analogously as I2

Na,ε
such that we

obtain

I3
Na−1,ε =

(
prNa−1gu1

(·, ȳ, ū1), δu1

)
2,D2

Na−1
+ It̂,Na−1

+
(
prNa−1(·, 0), f ′(ȳ(·, 0+))δuB,ajNa−1

)
2,[t̂Na−1,t̄ajNa−1

]
+ o(‖δu‖U),

where prNa−1 denotes the reversible solution of (3.7.69) and

It̂,Na−1 =

∫ ξr(t̂Na−1)

0

prNa−1(t̂Na−1, x)∆y(t̂Na−1, x) dx+ o(‖δu‖U).
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We note that the term It̂,Na−1 can be treated similarly to It̂,Na
. Using (3.7.73) and

continuing the previous steps until k = 1 and reinserting successively the terms, we
finally obtain

1

[ȳ(t̄, xs(ū))]

∫ xs(ū)+ε̄

xs(ū)−ε̄
∆y(t̄, x) dx

=

Na∑
k=2

(pgu1(·, ȳ, ū1), δu1)2,D1
k∪D2

k−1∪D2
Na
∪D1

Na

+

nt,a+1∑
i=1

(p(·, 0+), f ′(ūB,ai )δuB,ai )2,IiB,a∩[t̂1,t̄am]

+

Na∑
k=1

∫ f ′(ūB,ajk
(t̄ajk

))

f ′(ūB,ajk+1(t̄ajk
))

lim
t↘t̄ajNk

p(t, z(t− t̄ajk))
δtajk · z

f ′′(f ′−1(z))
dz

+
∑
i∈Is,0:

t̄ai ∈[t̂1,t̂Na ]

p(t̄ai , 0+)[f(y(t̄ai , 0+;u))]δtai

+ It̂,1 + o(‖δu‖U) + ε̄O(‖δu‖U),

(3.7.122)

where

It̂,1 =

∫ ξr(t̂1)

0

pr1(t̂1, x)∆y(t̂1, x) dx+ o(‖δu‖U) (3.7.123)

with pr1 denoting the reversible solution of (3.7.69). The next step is concerned with
finding a simplification of the term It̂,1 in (3.7.123).
Step 5: In the last step, we simplify the term It̂,1. To this end, we first note that

It̂,1 in (3.7.123) can be simplified analogously to It̂,Na
such that we obtain

It̂,1 =
(
p1

0gu1(·, ȳ, ū1), δu1

)
2,D1

0
+ (p1

0(s),∆y(s, ·))2,]0,ξr(s)[

+

nt,a+1∑
i=1

(p1
0(·, 0), f ′(ūB,ai )δuB,ai )2,IiB,a∩[s,t̂1]

+
∑

i∈Is,0: t̄ai ∈[s,t̂1]

p1
0(t̄ai , 0)[f(y(t̄ai , 0+;u))]δtai + o(‖δu‖U),

(3.7.124)

where p1
0 denotes the reversible solution of (3.7.62). For the second term on the
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right-hand side of (3.7.124) we can write

(
p1
Na−1(s),∆y(s, ·)

)
2,(0,ξr(s))

=

N0+1∑
k=1

Ik0,ε +

N0∑
k=1

Ikr,ε (3.7.125)

with

I1
0,ε = (p1

0(s),∆y(s, ·))2,]0,γ1
l,ε(s)[

,

Ik0,ε = (p1
0(s),∆y(s, ·))2,]γk−1

r,ε (s),γkl,ε(s)[
, k = 2, . . . , N0

IN0+1
0,ε = (p1

0(s),∆y(s, ·))
2,]γ

N0
r,ε (s),ξr(s)[

,

(3.7.126)

and

Ikr,ε =
(
p1
Na−1(s),∆y(s, ·)

)
2,]γkl,ε(s),γ

k
r,ε(s)[

, k = 1, . . . , N0. (3.7.127)

Here, the mappings γkl,ε(·) and γkr,ε(·) are given by

γkl,ε(t) = x̄0
ik
− ε+ f ′(u0

ik
(x̄0
ik
− ε))t,

γkr,ε(t) = x̄0
ik

+ ε+ f ′(u0
ik+1(x̄0

ik
+ ε))t

for k = 1, . . . , N0 with N0 = |Ir,0| and{
x0
i1 , . . . , x

0
iN0

}
:=
{
x0
j : j ∈ Ir,0

}
.

Including (3.7.126) and (3.7.126) in (3.7.124) results in

It̂,1 =
(
p1

0gu1(·, ȳ, ū1), δu1

)
2,D1

0

+

N0+1∑
k=1

Ik0,ε +

N0∑
k=1

Ikr,ε

+

nt,a+1∑
i=1

(p1
0(·, 0), f ′(ūB,ai )δuB,ai )2,IiB,a∩[s,t̂1]\[0,t̄ai1 ]

+
∑
i∈Is,0:

t̄ai ∈[s,t̂1]\[0,t̄ai1 ]

p1
0(t̄ai , 0)[f(y(t̄ai , 0+;u))]δtai + o(‖δu‖U).

(3.7.128)
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Using (3.7.73), we see that (3.7.128) can be rewritten by

It̂,1 = (pgu1(·, ȳ, ū1), δu1)2,D1
0

+

N0+1∑
k=1

Ik0,ε +

N0∑
k=1

Ikr,ε

+

nt,a+1∑
i=1

(p(·, 0), f ′(ūB,ai )δuB,ai )2,IiB,a∩[s,t̂1]

+
∑

i∈Is,0:t̄ai ∈[0,t̂1]

p(t̄ai , 0)[f(y(t̄ai , 0+;u))]δtai + o(‖δu‖U).

(3.7.129)

We note that similar as for the estimation of I1
Na,ε

in step 2, the terms Ikr,ε for
k = 1, . . . , N0 can be replaced by

Ikr,ε =

∫ f ′(ū0
ik+1(x̄0

ik
))

f ′(ū0
ik

(x̄0
ik

))

lim
t↘0

p(t, zt+ x̄0
ik

))
δx0
ik

f ′′(f ′−1(z))
dz + o(‖δu‖U). (3.7.130)

Next, we consider the terms in (3.7.126) and observe that analogously to the esti-
mation of the term I2

Na,ε
in (3.7.105), one can show that

Ik0,ε =

nx+1∑
i=1

(p(0, ·), δu0
i )2,Ii0∩[γk−1

r,ε (0),γkl,ε(0)]

+

nx∑
i=1

1[γk−1
r,ε (0),γkl,ε(0)](x̄

0
i )p(0, x̄

0
i )[ū0(x̄0

i )]δx
0
i

+ o(‖δu‖U) k = 1, . . . N0 − 1

I1
0,ε =

nx+1∑
i=1

(p(0, ·), δu0
i )2,Ii0∩[0,γ1

l,ε(0)] +

nx∑
i=1

1[0,γ1
l,ε(0)](x̄

0
i )p(0, x̄

0
i )[ū0(x̄0

i )]δx
0
i

+ o(‖δu‖U),

IN0+1
0,ε =

nx+1∑
i=1

(p(0, ·), δu0
i )2,Ii0∩[γ

N0
r,ε (0),b]

+

nx∑
i=1

1
[γ
N0
r,ε (0),b]

(x̄0
i )p(0, x̄

0
i )[ū0(x̄0

i )]δx
0
i

+ o(‖δu‖U),

where we have used that g|[0,s]×R ≡ 0. Inserting (3.7.130) and the terms above in
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(3.7.129) yields

It̂,1 = (pgu1(·, ȳ, ū1), δu1)2,D1
0

+

nx+1∑
i=1

(p(0, ·), δu0
i )2,Ii0

+

nx∑
i=1

p(0, x̄0
i )[ū0(x̄0

i )]δx
0
i

+

N0∑
k=1

∫ f ′(ū0
ik+1(x̄0

ik
))

f ′(ū0
ik

(x̄0
ik

))

lim
t↘0

p(t, zt+ x̄0
ik

))
δx0
ik

f ′′(f ′−1(z))
dz

+

nt,a+1∑
i=1

(p(·, 0+), f ′(ūB,ai )δuB,ai )2,IiB,a∩[0,t̂1]

+
∑

i∈Is,0:t̄ai ∈[0,t̂1]

p(t̄ai , 0+)[f(y(t̄ai , 0+;u))]δtai + o(‖δu‖U).

(3.7.131)

Next, we insert (3.7.131) in (3.7.122), set ε̄ := ε̄(δu) such that

ε̄(δu)→ 0 if ‖δu‖U → 0 (3.7.132)

and observe that p is equal to zero on Ωt̄ \ (D1
k ∪D2

k−1 ∪D2
Na
∪D1

Na
∪D1

0). This
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yields

1

[y(t̄, xs(ū))]

∫ xs(ū)+ε̄

xs(ū)−ε̄
∆y(t̄, x) dx

= (pgu1(·, y, u1), δu1)2,Ωt̄

+

nx+1∑
i=1

(p(0, ·), δu0
i )2,Ii0(u) +

∑
i∈Is,0(u)

p(0, x0
i )[u0(x0

i )]δx
0
i

+

nt,a+1∑
i=1

(p(·, a+), f ′(uB,ai )δuB,ai )2,IiB,a(u)∩]0,t̄[

+
∑

i∈Is,a(u):
tai≤t̄

p(tai , a+)[f(y(tai , a+;u))]δtai

−
nt,b+1∑
i=1

(p(·, b−), f ′(uB,bi )δuB,bi )2,IiB,b∩]0,t̄[

−
∑

i∈Is,b(u):

tbi ≤t̄

p(tbi , b−)[f(y(tbi , b−;u))]δtbi

−
∑

i∈Ir,0(u)

pr,0
i δx0

i +
∑

i∈Ir,a(u):
tai≤t̄

pr,a
i δtai +

∑
i∈Ir,b(u):

tbi ≤t̄

pr,b
i δtbi

(3.7.133)

Finally, (3.7.52), (3.7.133) and the choice of ε̄ in (3.7.132) yield the Fréchet-
differentiability of the mapping in (3.7.50) in u = ū, where the derivative is given
by (3.7.51).

Analogously, one can treat the more general case that (t̄, x̄) is a non-degenerated
shock point of class Xl/Xr with Xl, Xr ∈

{
Cc, Rc, CcB,a, R

c
B,a, C

c
B,a, R

c
B,a

}
:

Corollary 3.7.25 (Differentiability of shock points). Suppose that (A1) and (A4)
hold true and consider some ū ∈ U satisfying (ND). Moreover, let x̄ be a non-
degenerated shock point of y(t̄, ·; ū). Then the mapping in (3.7.50) is continuously
differentiable with derivative given by (3.7.51).

3.7.5 Proof of Theorem 3.5.5

Considering a control ū ∈ U satisfying (ND), our goal is to prove Theorem 3.5.5, i.e.,
the continuous Fréchet-differentiability of the cost functional u 7→ J(y) in ū. To this
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end, we follow the ideas of [81]: At first, we prove that the mapping u 7→ y(t̄, ·,u)

is continuously shift-differentiable. Then we use Lemma 3.4.3 to show that the
mapping u 7→ J(y) is continuously Fréchet-differentiable in ū, cf. [82, 70, 69]. As
already mentioned, in order to derive the shift-differentiability of the control-to-state
mapping, we will use Lemma 3.7.1 which we hence have to prove at first:

Proof of Lemma 3.7.1. Since ū ∈ U satisfies by assumption the conditions in (ND),
the requirements of Lemma 3.7.23, Corollary 3.7.25 and the Lemmas in §3.7.3 are
satisfied.
The results of §3.7.3 show that the mappings in (3.7.6) consist of non-degenerated

shock points xs,1, . . . , xs,N , which depend continuously Fréchet-differentiably on the
control due to Corollary 3.7.25, and of points xr,1, . . . , xr,K−N lying on the bound-
aries of rarefaction waves emanating from t = 0, x = a or x = b. The continuous
Fréchet-differentiability of the points xr,1, . . . , xr,K−N w.r.t. the control is a direct
consequence of Lemma 3.2.5. The mappings in (3.7.5) and its derivatives can be
computed according to the results in §3.7.3, these are the Lemmas 3.7.4, 3.7.9, 3.7.12,
3.7.14, 3.7.18 or 3.7.20. Finally, (3.7.4) holds due to Lemma 3.7.23, Lemmas 3.7.22,
3.7.16, 3.7.11 and the Lemmas 3.7.8, 3.7.13, 3.7.19, 3.7.10, 3.7.15 and 3.7.21.

Using Lemma 3.7.1, one can show the following result:

Theorem 3.7.26 (Shift-differentiability of entropy solutions). Suppose that (A3)
and (A4) hold true and consider a control ū ∈ U satisfying (ND) for some t̄ and an
interval [a, b] ⊂ Ω. Then the mapping

U 3 u 7→ y(t̄, ·,u) ∈ L∞([a, b]) (3.7.134)

is continuously shift-differentiable on a neighborhood BU
ρ (ū), where ρ > 0 is chosen

sufficiently small.

Proof. The proof is basically similar to the proof of the Theorems 5.2.3 and 5.2.4 in
[69, §6.4], see also [81]. We need to find points a < x̄1 < . . . < x̄N < b and a linear
bounded operator

Ts (y(t̄, ·; ū)) ∈ L(U;Lr([a, b])×RN ) (3.7.135)

such that

lim
u→ū

∥∥∥y(t̄, ·;u)− y(t̄, ·; ū)− S(x̄k)
y(t̄,·;ū) (Ts (y(t̄, ·; ū)) (u− ū))

∥∥∥
1,[a,b]

‖u− ū‖U
= 0 (3.7.136)
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holds true. To this end, we choose as points the non-degenerated discontinuities
of y(t̄, ·, ū) on the interval [a, b], which are the only discontinuities on [a, b] due to
(ND). Let xs,1(u), . . . , xs,N (u) denote the corresponding mappings which exist due
to Lemma 3.7.23 and are continuously Fréchet-differentiable due to Corollary 3.7.25.
In order to find a mapping (3.7.135) such that (3.7.136) is satisfied, we recall the

mappings defined in (3.7.5) and (3.7.6) in Lemma 3.7.1 and set

Ts (y(t̄, ·; ū)) =

(
d

du
Y1(t̄, x; ū)1[a,x̄1(ū)](x) +

K+1∑
k=2

d

du
Yk(t̄, x; ū)1(xk−1(ū),xk(ū)](x),

d

du
xs,1(ū), . . . ,

d

du
xs,N (ū)

)
.

(3.7.137)

According to Lemma 3.7.1, Ts (y(t̄, ·; ū)) in (3.7.137) is a linear bounded oper-
ator. We note that {xs,1, . . . , xs,N} ⊂ {x1, . . . , xK} and that {x1, . . . , xK} \
{xs,1, . . . , xs,N} is equal to the set of points lying on a boundary of a rarefaction
wave. The set of these points is denoted by

{xr,1, . . . , xr,K−N} := {x1, . . . , xK} \ {xs,1, . . . , xs,N} .

Now, it remains to show that the limit in (3.7.136) holds if we choose the linear
bounded operator in (3.7.135) according to (3.7.137). To this end, we choose a small
constant δ > 0 and rewrite the left-hand side of (3.7.136) as follows:

lim
u→ū

∥∥∥y(t̄, ·;u)− y(t̄, ·; ū)− S(x̄k)
y(t̄,·;ū) (Ts (y(t̄, ·; ū)) (u− ū) , )

∥∥∥
1,[a,b]

‖u− ū‖U

= lim
u→ū


∥∥∥y(t̄, ·;u)− y(t̄, ·; ū)− S(x̄k)

y(t̄,·;ū) (Ts (y(t̄, ·; ū)) (u− ū) , )
∥∥∥

1,[a,x1(ū)−δ]

‖u− ū‖U

+

N∑
i=1

∥∥∥y(t̄, ·;u)− y(t̄, ·; ū)− S(x̄k)
y(t̄,·;ū) (Ts (y(t̄, ·; ū)) (u− ū) , )

∥∥∥
1,[xs,i(ū)−δ,xs,i(ū)+δ]

‖u− ū‖U

+

K−N∑
i=1

∥∥∥y(t̄, ·;u)− y(t̄, ·; ū)− S(x̄k)
y(t̄,·;ū) (Ts (y(t̄, ·; ū)) (u− ū) , )

∥∥∥
1,[xr,i(ū)−δ,xr,i(ū)+δ]

‖u− ū‖U

+

K∑
i=2

∥∥∥y(t̄, ·;u)− y(t̄, ·; ū)− S(x̄k)
y(t̄,·;ū) (Ts (y(t̄, ·; ū)) (u− ū) , )

∥∥∥
1,[xi−1(ū)+δ,xi(ū)−δ]

‖u− ū‖U
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+

∥∥∥y(t̄, ·;u)− y(t̄, ·; ū)− S(x̄k)
y(t̄,·;ū) (Ts (y(t̄, ·; ū)) (u− ū) , )

∥∥∥
1,[xK(ū)+δ,b]

‖u− ū‖U


=: lim

u→ū

[
I1 +

N∑
i=1

Ii,s +

K−N∑
i=1

Ii,r +

K∑
i=2

Ii + IK+1

]
.

We first consider I1 and note that for all u ∈ BU
ρ (ū) the term I1 is equal to

I1 =

∥∥Y1(t̄, ·;u)− Y1(t̄, ·; ū)− d
duY1(t̄, ·; ū)(u− ū)

∥∥
1,[a,x1(ū)−δ]

‖u− ū‖U
,

where ρ is chosen sufficiently small. Due to the continuous Fréchet-differentiability
of u 7→ Y1(t̄, ·;u) ∈ C ([a, x1(ū)− δ]), we obtain that

lim
u→ū

I1 = 0.

Analogously, one can show that

lim
u→ū

K∑
i=2

Ii = 0 and lim
u→ū

IK+1 = 0.

Using the continuous Fréchet-differentiability of the mappings (3.7.34), (3.7.42) and
(3.7.48) with derivatives (3.7.35), (3.7.43) and (3.7.49) in Lemmas 3.7.11, 3.7.16 and
3.7.22, we obtain that

lim
u→ū

K−N∑
i=1

Ii,r = 0. (3.7.138)

Finally, using the stability and the continuous Fréchet-differentiability of shock
points in Lemma 3.7.23 and Corollary 3.7.25, one can analogously to the proof
of Theorem 5.2.3 in [69] show that

lim
u→ū

N∑
i=1

Ii,s = 0

holds true. Hence, we can conclude that the mapping in (3.7.134) is shift-
differentiable in u = ū. The continuous shift-differentiability holds due the con-
tinuity of the mapping (3.7.137) w.r.t. u and the fact that the identity (3.7.4) in
Lemma 3.7.1 holds in a neighborhood BU

ρ (ū) of ū.
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Remark 3.7.27. In the previous theorem, we have proved the shift-differentiability
of the entropy solution, where the shift-derivative is given in (3.7.137) by

Ts (y(t̄, ·; ū)) =

(
d

du
Y1(t̄, x; ū)1[a,x̄1(ū)](x) +

K+1∑
k=2

d

du
Yk(t̄, x; ū)1(xk−1(ū),xk(ū)](x),

d

du
xs,1(ū), . . . ,

d

du
xs,N (ū)

)
.

(3.7.139)

The derivatives d
duY1(t̄, x; ū), . . . , d

duYK+1(t̄, x; ū) can be computed according to the
Lemmas 3.7.4, 3.7.9, 3.7.12, 3.7.14, 3.7.18 and 3.7.20. The derivative of the shock
position d

duxk(u) · δu for any k ∈ {1, . . . , N} is given by Corollary 3.7.25.

Using Theorem 3.7.26 in connection with Lemma 3.4.3, we obtain the following
result which is an extension of Corollary 5.2.5 in [69] to the case that the shifting of
rarefaction centers is allowed:

Theorem 3.7.28. Suppose that (A3) and (A4) hold true, consider a time point
t̄ ∈]0, T [, an interval [a, b] and let ū ∈ U satisfy the conditions in (ND) for this
choice. Denote by y(ū) the corresponding entropy solution of the IBVP (3.1.2) and
let yd be continuous in a neighborhood of the discontinuities x̄1, . . . , x̄N of y(t̄, ·, ū)

on [a, b]. Then the reduced cost functional

U 3 u 7→ Ĵ(u) := J(y(u),u) ∈ R

is continuously Fréchet-differentiable in a neighborhood BU
ρ (ū), where ρ > 0 is suf-

ficiently small. The corresponding derivative in a direction δu ∈ U is given by

Ĵ ′(u)·δu = R′(ū)δu +
(
ψy(y(t̄, ·), yd), δyt̄

)
2,[a,b]

+

N∑
j=k

∫ 1

0

ψy(y(t̄, xk(u)) + τ [y(t̄, xk(u))], yd(xk(u))) dτ [y(t̄, xk(u))]s̄k,

(3.7.140)

where

(δyt̄, s̄1, . . . , s̄N ) = Ts (y(t̄, ·; ū)) · δu (3.7.141)

is given according to (3.7.139).

Similarly to Corollary 3.3.8 in [81], inserting the formula of the shock sensitivities
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s̄k in (3.7.140), one can show that the derivative of the cost functional in (3.7.140)
has the representation

Ĵ ′(u) · δu =R′(ū)δu

+
(
ψy(y(t̄, ·), yd), δyt̄

)
2,[a,b]

+ (pgu1(·, y, u1), δu1)2,Ωt̄

+

nx+1∑
i=1

(p(0, ·), δu0
i )2,Ii0(u)

+
∑

i∈Is,0(u)

p(0, x0
i )[u0(x0

i )]δx
0
i

+

nt,a+1∑
i=1

(p(·, a+), f ′(uB,ai )δuB,ai )2,IiB,a(u)∩]0,t̄[

+
∑

i∈Is,a(u):
tai≤t̄

p(tai , a+)[f(y(tai , a+;u))]δtai

−
nt,b+1∑
i=1

(p(·, b−), f ′(uB,bi )δuB,bi )2,IiB,b∩]0,t̄[

−
∑

i∈Is,b(u):

tbi≤t̄

p(tbi , b−)[f(y(tbi , b−;u))]δtbi

−
∑

i∈Ir,0(u)

pr,0
i δx0

i +
∑

i∈Ir,a(u):
tai≤t̄

pr,a
i δtai +

∑
i∈Ir,b(u):

tbi≤t̄

pr,b
i δtbi ,

(3.7.142)

where p denotes the adjoint state with end data

pt̄(x)=

{∫ 1

0
ψy(y(t̄, xk(u))+τ [y(t̄, xk(u))], yd(xk(u))) dτ if x∈{x1(ū), . . . , xN (ū)} ,

0 else
(3.7.143)

and

pr,0
j :=

∫ f ′(u0
j+1(x0

j ))

f ′(u0
j (x

0
j ))

lim
t↘0

p(t, zt+ x0
j )

1

f ′′(f ′−1(z))
dz, j ∈ Ir,0(u),

pr,a
j :=

∫ f ′(uB,aj (taj ))

f ′(uB,aj+1(taj ))

lim
t↘taj

p(t, z(t− taj ))
z

f ′′(f ′−1(z))
dz, j ∈ Ir,a(u) : taj ≤ t̄,
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pr,b
j :=

∫ f ′(uB,bj+1(tbj ))

f ′(uB,bj (tbj ))

lim
t↘tbj

p(t, z(t− tbj ))
z

f ′′(f ′−1(z))
dz, j ∈ Ir,b(u) : tbj ≤ t̄.

Using (3.7.142), we can finally prove Theorem 3.5.5.

Proof of Theorem 3.5.5. The proof is similar to the proof of Theorem 3.3.9 in [81].
We will therefore only sum up the main arguments and assume for simplicity that yd
is continuous on the interval [a, b], where the treatment of the case that yd possesses
discontinuities on [a, b] can be found in [81]. First of all, we note that the continuous
differentiability of the mapping

BU
ρ (ū) 3 u 7→ Ĵ(u) := J(y(u),u)

holds due to Theorem 3.7.28. It remains to prove that the corresponding derivative
is given by (3.5.30). We will show that for u = ū and deduce from the stabil-
ity of genuine characteristics and of the adjoint state that the representation in
(3.5.30) is valid for all u ∈ BU

ρ (ū) if ρ is sufficiently small. Since ū ∈ U sat-
isfies (ND), the corresponding entropy solution y(t̄, ·; ū) of (3.1.2) has no shock
generation points on [a, b] and a finite number of non-degenerated discontinuities
a < x1(ū) < · · · < xN (ū) < b, which are no shock interaction points. We intro-
duce the following notation: For each xk(ū) with k ∈ {1, . . . , N}, denote by ξ−k
the minimal backward characteristic through the point (t̄, xk(ū)) and by ξ+

k the
corresponding maximal backward characteristic. Finally, let ξa and ξb denote the
genuine backward characteristic through (t̄, a) and (t̄, b), respectively. If any of these
characteristics ends in points (t̃, a) or (t̃, b) with t̃ > 0, then we extend it until t = 0

by setting ξi|[0,t̃] = a or ξi|[0,t̃] = b, where i ∈ {a, b,+,−}. Then, we define the
following domains:

Dk :=
{

(t, x) ∈ Ωt̄ : ξ−k (t) < x < ξ+
k (t)

}
, k = 1, . . . , N, D :=

N⋃
k=1

Dk

and

Sk :=
{

(t, x) ∈ Ωt̄ : ξ+
k−1(t) ≤ x ≤ ξ−k (t)

}
, k = 2, . . . , N,

S1 :=
{

(t, x) ∈ Ωt̄ : ξa ≤ x ≤ ξ−1 (t)
}
,

SN+1 :=
{

(t, x) ∈ Ωt̄ : ξ+
N+1(t) ≤ x ≤ ξb

}
.

(3.7.144)

As in [81], we denote by p̃ the adjoint state according to Definition 3.5.4 with end
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data (3.7.143) and by p the corresponding adjoint state with end data

pt̄ =

{∫ 1

0
ψy (y(t̄, x+; ū)) + τ [y(t̄, x; ū)], yd(x+) + τ [yd(x)]) dτ if x ∈ [a, b],

0 else.

Therefore, (3.7.142) can be rewritten as

Ĵ ′(ū) · δu =R′(ū)δu

+
(
pt̄, δyt̄

)
2,[a,b]

+ (p̃gu1(·, y, u1), δu1)2,Ωt̄

+

nx+1∑
i=1

(p̃(0, ·), δu0
i )2,Ii0(ū)

+
∑

i∈Is,0(ū)

p̃(0, x0
i )[u0(x0

i )]δx
0
i

+

nt,a+1∑
i=1

(p̃(·, a+), f ′(uB,ai )δuB,ai )2,IiB,a(ū)∩]0,t̄[

+
∑

i∈Is,a(ū):
tai≤t̄

p̃(tai , a+)[f(y(tai , a+; ū))]δtai

−
nt,b+1∑
i=1

(p̃(·, b), f ′(uB,bi )δuB,bi )2,IiB,b∩]0,t̄[

−
∑

i∈Is,b(ū):

tbi ≤t̄

p̃(tbi , b)[f(y(tbi , b−; ū))]δtbi

−
∑

i∈Ir,0(ū)

p̃r,0
i δx0

i +
∑

i∈Ir,a(ū):
tai≤t̄

p̃r,a
i δtai +

∑
i∈Ir,a(ū):
tai≤t̄

p̃r,b
i δtbi ,

(3.7.145)

where δyt̄ is given in (3.7.141) and
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p̃r,0
j :=

∫ f ′(ū0
j+1(x0

j ))

f ′(ū0
j (x

0
j ))

lim
t↘0

p̃(t, zt+ x0
j )

1

f ′′(f ′−1(z))
dz,

p̃r,a
j :=

∫ f ′(ūB,aj (taj ))

f ′(ūB,aj+1(taj ))

lim
t↘taj

p̃(t, z(t− taj ))
z

f ′′(f ′−1(z))
dz,

p̃r,b
j :=

∫ f ′(ūB,bj+1(tbj ))

f ′(ūB,bj (tbj ))

lim
t↘tbj

p̃(t, z(t− tbj ))
z

f ′′(f ′−1(z))
dz.

(3.7.146)

We note that

p|Dcl = p̃ and supp p̃ ⊂ Dcl (3.7.147)

holds due to the definition of the adjoint state. Furthermore, the terms for which
we take the limits in (3.7.146) are constant if t is sufficiently close to tbj . Therefore,
choosing a sufficiently small s > 0, the terms in (3.7.146) can be rewritten by

p̃r,0
j :=

∫ f ′(ū0
j+1(x0

j ))

f ′(ū0
j (x

0
j ))

1D(s, zs+ x0
j )p(s, zs+ x0

j )
1

f ′′(f ′−1(z))
dz,

p̃r,a
j :=

∫ f ′(ūB,aj (taj ))

f ′(ūB,aj+1(taj ))

1D(taj + s, z · s)p(taj + s, z · s) z

f ′′(f ′−1(z))
dz,

p̃r,b
j :=

∫ f ′(ūB,bj+1(tbj ))

f ′(ūB,bj (tbj ))

1D(tbj + s, z · s)p(tbj + s, z · s) z

f ′′(f ′−1(z))
dz.

(3.7.148)

Introducing the sets A0,k := Dcl
k ∩ {t = 0} and Aa/b,k := Dcl

k ∩ {x = a/b}, we
observe that

{
x̄0
i : i ∈ Is,0(ū)

}
⊂

N⋃
k=1

intA0,k,

{
t̄
a/b
i : i ∈ Is,a/b(ū) and ta/bi ≤ t̄

}
⊂

N⋃
k=1

intAa/b,k.

(3.7.149)

We note that (3.7.149) holds since the sets Sk in (3.7.144) do not contain shock-
curves due to their construction and the fact that Sk\∩D− = ∅ due to Lemma 3.2.7.
From (3.7.145), (3.7.147) and (3.7.149) we obtain
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Ĵ ′(ū) · δu =R′(ū)δu

+
(
pt̄, δyt̄

)
2,[a,b]

+

N∑
k=1

[
(pgu1(·, y, u1), δu1)2,Ωt̄

+

nx+1∑
i=1

(p(0, ·), δu0
i )2,Ii0(ū)∩A0,k

+

nt,a+1∑
i=1

(p(·, a+), f ′(uB,ai )δuB,ai )2,IiB,a(ū)∩Aa,k

−
nt,b+1∑
i=1

(p(·, b−), f ′(uB,bi )δuB,bi )2,IiB,b∩Ab,k

]
+

∑
i∈Is,0(ū)

p(0, x0
i )[u0(x0

i )]δx
0
i

+
∑

i∈Is,a(ū):
tai≤t̄

p(tai , a+)[f(y(tai , a+; ū))]δtai

−
∑

i∈Is,b(ū):

tbi ≤t̄

p(tbi , b−)[f(y(tbi , b−; ū))]δtbi

−
∑

i∈Ir,0(ū)

p̃r,0
i δx0

i +
∑

i∈Ir,a(ū):
tai≤t̄

p̃r,a
i δtai +

∑
i∈Ir,b(ū):

tbi≤t̄

p̃r,b
i δtbi .

(3.7.150)

In order to derive the representation of Ĵ ′(ū) ·δu in (3.5.30), we next observe that

δyt̄(x) =

(
d

du
Y1(t̄, x; ū) · 1[a,x̄1(ū)](x) +

K+1∑
k=2

d

du
Yk(t̄, x; ū) · 1(xk−1(ū),xk(ū)](x)

)
(3.7.151)

and therefore

δyt̄|]xk−1(ū),xk(ū)[ =
d

du
Yk(t̄, x; ū)δu ∀k ∈ {1, . . . , N + 1} .

We set x̄0(ū) = a and x̄N+1(ū) = b. Using the formula (3.7.22) in Remark 3.7.7,
one can show for all k ∈ {1, . . . , N + 1} that
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(
pt̄, δyt̄

)
2,]xk−1(ū),xk(ū)[

=

(
pt̄,

d

du
Yk(t̄, x; ū)δu

)
2,]xk−1(ū),xk(ū)[

=
(
p(·), gTu1

(·, y, u1)δu1

)
2,Sk

+

nx+1∑
i=1

(p(0, ·), δu0
i (·))2,Ii0(ū)∩B0,k

+

nt,a+1∑
i=1

(p(·, a), f ′(uB,ai (·))δuB,ai (·))2,IiB,a(ū)∩Ba,k

−
nt,b+1∑
i=1

(p(·, b), f ′(uB,bi (·))δuB,bi (·))2,IiB,b∩Bb,k

−
∑

i∈Ir,0(ū)

p̄r,0
k,iδx

0
i +

∑
i∈Ir,a(ū):
tai≤t̄

p̄r,a
k,iδt

a
i +

∑
i∈Ir,b(ū):

tbi≤t̄

p̄r,b
k,iδt

b
i .

(3.7.152)

where B0,k := Scl
k ∩ {t = 0}, Ba/b,k := Scl

k ∩ {x = a/b} and

p̄r,0
k,j :=

∫ f ′(u0
j+1(x0

j ))

f ′(u0
j (x

0
j ))

1Sk(s, zs+ x0
j )p(s, zs+ x0

j )
1

f ′′(f ′−1(z))
dz,

p̄r,a
k,j :=

∫ f ′(uB,aj (taj ))

f ′(uB,aj+1(taj ))

1Sk(taj + s, z · s)p(taj + s, z · s) z

f ′′(f ′−1(z))
dz,

p̄r,b
k,j :=

∫ f ′(uB,bj+1(tbj ))

f ′(uB,bj (tbj ))

1Sk(tbj + s, z · s)p(tbj + s, z · s). z

f ′′(f ′−1(z))
dz.

Here, s is chosen as in (3.7.148). From (3.7.151) and (3.7.152), we obtain that(
pt̄, δyt̄

)
2,[a,b]

=
(
p(·), gTu1

(·, y, u1)δu1

)
2,S

+

nx+1∑
i=1

(p(0, ·), δu0
i )2,Ii0(ū)∩(S∩{t=0})

+

nt,a+1∑
i=1

(p(·, a), f ′(uB,ai )δuB,ai )2,IiB,a(ū)∩(S∩{x=a})

−
nt,b+1∑
i=1

(p(·, b), f ′(uB,bi )δuB,bi )2,IiB,b∩(S∩{x=b})

−
∑

i∈Ir,0(ū)

p̄r,0
i δx0

i +
∑

i∈Ir,a(ū):
tai≤t̄

p̄r,a
i δtai +

∑
i∈Ir,a(ū):
tai≤t̄

p̄r,b
i δtbi ,

(3.7.153)
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where

p̄r,0
j :=

∫ f ′(u0
j+1(x0

j ))

f ′(u0
j (x

0
j ))

1S(s, zs+ x0
j )p(s, zs+ x0

j )
1

f ′′(f ′−1(z))
dz,

p̄r,a
j :=

∫ f ′(uB,aj (taj ))

f ′(uB,aj+1(taj ))

1S(taj + s, z · s)p(taj + s, z · s) z

f ′′(f ′−1(z))
dz,

p̄r,b
j :=

∫ f ′(uB,bj+1(tbj ))

f ′(uB,bj (tbj ))

1S(tbj + s, z · s)p(tbj + s, z · s) z

f ′′(f ′−1(z))
dz

and S =
N+1⋃
k=1

Sk. We note that

Ωt̄ \D = S =

N+1⋃
k=1

Sk. (3.7.154)

Due to (3.7.154), inserting (3.7.153) in (3.7.150) finally yields the representation of
Ĵ ′(ū)δu in Theorem 3.5.5.
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Optimality theory

We recall the optimal control problem that is introduced in §3.3:

min
u∈Uad

J(y(u),u) =

∫ b

a

ψ(y(t̄, x;u), yd(x)) dx+R(u),

where y(u) is the entropy solution of the IBVP (3.1.2)

and y(t̄, x) ≤ ȳ (x) for all x ∈ [a, b].

 (P)

The goal of this chapter is to analyze (P). Therefore, we will first prove the exis-
tence of an optimal solution in §4.1 and then derive first-order necessary optimality
conditions for (P) in §4.2. The proof of the existence of optimal controls follows
by standard arguments, see, e.g., [57]. However, the standard techniques which are
used to derive first-order necessary optimality conditions for state-constrained opti-
mal control problems, for example in [19], are not applicable to (P) for the following
reason: Due to the pointwise state constraints

y(t̄, x) ≤ ȳ (x) for all x ∈ [a, b], (4.0.1)

we have to consider the state y at least in L∞ to assure that Robinson’s CQ is
possible to be satified, cf. [19]. However, since entropy solutions of hyperbolic
balance laws may develop moving discontinuities, the control-to-state mapping is in
general not continuous to L∞ and therefore not differentiable. This poses a difficulty
since first order optimality conditions for problems with state constraints as well as
the Robinson’s CQ require the first derivative of the control-to-state mapping. To
cope with this problem, we will use Lemma 3.7.1 in order to introduce auxiliary
state variables in §4.2.2. In terms of these new states, we will formulate first-order
necessary optimality conditions in §4.2.3, which can be reformulated in terms of the

123
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original state y.

Remark 4.0.1. The state constraints in (4.0.1) are only considered for a fixed time
point t = t̄ and not for all t ∈ [0, t̄]. This restriction is due to the fact that the results
in Lemma 3.7.1, which are crucial in this chapter, hold for fixed time points t̄ ∈]0, T ],
respectively. Nevertheless, since by Theorem 3.5.3 the results of Lemma 3.7.1 hold
for almost all time points t ∈]0, T ], it seems be possible to extend the results of the
remaining part of this thesis to the case that the state constraints are considered on
the whole interval [0, t̄].

In the remaining chapters of this thesis we will use the following convention, which
is slightly different from Convention 3.2.2.

Convention 4.0.2. We consider the representative of y satisfying
y ∈ C([0, T ];L1

loc(Ω)), y(t, x) = y(t, x−) for all (t, x) ∈ [0, T ]× Ω \ {a} and
y(t, a) = y(t, a+) for all t ∈ [0, T ].

We note that one can easily check that the results of the previous sections are
still valid under Convention 4.0.2.

4.1 Existence of optimal controls

In the following result, we will prove the existence of an optimal control for (P).

Theorem 4.1.1. Let (A3) and (A4) hold true and assume that there exists ũ ∈ Uad

such that y(t̄, x; ũ) ≤ ȳ (x) is satisfied for all x ∈ [a, b]. Then (P) admits a globally
optimal solution.

Proof. The proof uses standard techniques, cf. [57]. We firstly prove compactness
of the set Ũad := {u ∈ Uad : y(t̄, x;u) ≤ ȳ (x) ∀x ∈ [a, b]}. Since Ũad is by assump-
tion nonempty, we can consider a sequence (un)n∈N ⊂ Ũad ⊂ U. Due to the
compactness of Uad in U, there exists a subsequence, again denoted by (un)n∈N,
converging to some ū ∈ Uad w.r.t. ‖ · ‖U. Corollary 3.3.5 implies that the sequence
(y(t̄, ·;un))n∈N converges in L1 ([a, b]) to y(t̄, ·, ū) and hence there exists a conver-
gent subsequence, again denoted by (y(t̄, ·;un))n∈N, converging pointwise almost
everywhere to y(t̄, ·, ū) on [a, b]. Therefore and since y(t̄, x;un) ≤ ȳ (x) holds for all
x ∈ [a, b] and all n ∈ N, we obtain that

y(t̄, x; ū) ≤ ȳ (x) for a.a. x ∈ [a, b]. (4.1.1)
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In order to show that (4.1.1) holds true for all x ∈ [a, b], let x̂ ∈]a, b] be arbitrarily
chosen. Due to (4.1.1), we can choose a sequence (xn)n∈N with xn ↗ x̂ for n→∞
such that for all xn (4.1.1) is satisfied. By Convention 4.0.2, we obtain

y(t̄, x̂; ū) = lim
n→∞

y(t̄, xn; ū) ≤ lim
n→∞

ȳ(xn) = ȳ(x̂),

where the last equality holds due to the continuity of ȳ(·). One can analogously
prove that (4.1.1) holds for x̂ = a by taking a sequence (xn)n∈N with xn ↘ a for
n→∞ and using Convention 4.0.2. Thus, (4.1.1) holds for all x ∈ [a, b] yielding that
ū ∈ Ũad. Therefore, Ũad is compact. We now consider a sequence (un)n∈N ⊂ Ũad

satisfying

Ĵ(un)→ inf
u∈Ũad

Ĵ(u) for k →∞.

Since Ũad is compact, there exists a convergent subsequence, again denoted by

(un)n∈N, with un → ū ∈ Ũad. Since Ĵ is Lipschitz continuous w.r.t. u by Corol-
lary 3.3.6, we obtain Ĵ(ū) = inf

u∈Ũad

Ĵ(u) and hence, ū is a global minimum for

(P).

4.2 Optimality conditions

In this section, we want to derive optimality conditions for (P). To this end, we
firstly consider a general optimal control problem (P) in §4.2.1. Then we introduce
auxiliary state variables in §4.2.2. Using these new states and the results for the
general problem (P), we can derive first-order necessary optimality conditions for
(P) in §4.2.

4.2.1 Optimality conditions for a general optimal control
problem

Our aim is to derive necessary optimality conditions for (P). To this end, we firstly
consider a more general optimization problem (cf. [41, Subsection 1.7.3]):

min
z∈Z

f (z) subject to G (z) ∈ K, z ∈ C. (P)
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Theorem 4.2.1. [Karush-Kuhn-Tucker conditions, [89]] Let z̄ ∈ Z be a local op-
timum of (P). Assume that Z and V are Banach-spaces and that the mappings
f : Z → R and G : Z → V are continuously differentiable in z̄. In addition, let
C ⊂ Z be closed, convex and nonempty and K ⊂ V be a closed convex cone. Finally,
assume that Robinson’s CQ is satisfied at z̄ ∈ Z,i.e.,

0 ∈ int (G (z̄) +G′ (z̄) (C − z̄)−K) . (4.2.1)

Then there exists a Lagrange multiplier q̄ ∈ V ∗ such that the
Karush-Kuhn-Tucker conditions

G (z̄) ∈ K, q̄ ∈ K◦ := {q ∈ V ∗ : 〈q, v〉V ∗,V ≤ 0 ∀v ∈ K},

〈q̄, G (z̄)〉V ∗,V = 0, z̄ ∈ C,
〈
f ′ (z̄) +G′ (z̄)

∗
q̄, z − z̄

〉
Z∗,Z

≥ 0 ∀z ∈ C

hold true.

Proof. See [89].

In order to derive optimality conditions for (P), our goal is to bring (P) in the
form of (P) and then use Theorem 4.2.1. To this end, we choose Z = U, C = Uad

and f = Ĵ . A naive choice for the mapping G could be

G(u) = y(t̄, ·;u)− ȳ(·) ∈ V, (4.2.2)

where y denotes the entropy solution of the IBVP (3.1.2).
In order to assure that the set on the right-hand side of (4.2.1) has an inner

point, we have to choose V such that V ⊂ C (Ω) or at least V ⊂ L∞(Ω) holds true.
However, since y may develop shocks after finite time, the mapping in (4.2.2) is not
even continuous. In order to cope with this problem, we have to choose G differently
from (4.2.2). To this end, we will reformulate the state variable y.

4.2.2 Reformulation of the state variable

We consider a control ū ∈ U such that the conditions (ND) are satisfied and we
can apply Lemma 3.7.1. More precisely, (3.7.4) yields that for all u ∈ BU

ρ (ū) the
corresponding entropy solution y(t̄, ·, u)|[a,b] can be rewritten by

y (t̄, x;u) |[a,b] = Y1(t̄, x;u) · 1[a,x1(u)](x) +

K+1∑
k=2

Yk(t̄, x;u) · 1(xk−1(u),xk(u)](x).
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Lemma 3.7.1 further yields that the mappings

u ∈ BU
ρ (ū) 7→ Yk (t̄, ·;u) ∈ C (Iεk) , k = 1, . . . ,K + 1, (4.2.3a)

u ∈ BU
ρ (ū) 7→ xk (u) ∈ R, k = 1, . . . ,K (4.2.3b)

are continuously Fréchet-differentiable. We recall the notation x0 = a, xK+1 = b

and Iεk := (xk−1(ū)− ε, xk(ū) + ε) for k = 1, . . . ,K+1, where ε > 0 is a sufficiently
small constant. The main idea is to introduce the mappings in (4.2.3) as new state
variables, which are transformed to the unit interval [0, 1] by using the variable
transformations

ϕk;ū : [0, 1]→
[
xk−1(ū), xk(ū)

]
, λ 7→ xk−1(ū) + λ

(
xk(ū)− xk−1(ū)

)
,

ϕ−1
k;ū :

[
xk−1(ū), xk(ū)

]
→ [0, 1], x 7→ x− xk−1(ū)

xk(ū)− xk−1(ū)
.

(4.2.4)

Hence, we introduce the mappings

u ∈ BU
ρ (ū) 7→ yk(u) ∈ C ([0, 1]), k = 1, . . . ,K + 1,

u ∈ BU
ρ (ū) 7→ xk(u) ∈ R, k = 1, . . . ,K

(4.2.5)

as new state variables, where

yk(λ;u) := Yk
(
t̄, ϕk;ū(λ);u

)
, λ ∈ [0, 1]. (4.2.6)

Using the variable transformations in (4.2.4), we also transform the state constraints
in (4.0.1) on the unit interval:

yk(λ;u) ≤ ȳ
(
t̄, ϕk;ū(λ)

)
=: ȳk(λ;u), λ ∈ [0, 1]. (4.2.7)

In the next Lemma we will show that the state constraints in (4.0.1) and in (4.2.7)
are equivalent:

Lemma 4.2.2. We assume that (A3) and (A4) hold true and consider some control
ū ∈ U that satisfies the conditions in (ND). Then the state constraints in (4.0.1)
and in (4.2.7) are equivalent, i.e.,

y(t̄, ·; ū) ≤ ȳ(·) on [a, b]

holds if and only if

yk(·; ū) ≤ ȳk(·; ū) on [0, 1]
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is satisfied for all k = 1, . . . ,K + 1.

Proof. We firstly suppose that

yk(λ; ū) ≤ ȳk(λ; ū) on [0, 1] for all k = 1, . . . ,K + 1. (4.2.8)

Using the definitions of yk(λ;u) in (4.2.6) and ȳk(λ; ū) in (4.2.7), we obtain from
(4.2.8) that

Yk
(
t̄, ϕk;ū(λ);u

)
≤ ȳ(ϕk;ū(λ)) on [0, 1] for all k = 1, . . . ,K + 1,

which is equivalent to

Yk
(
t̄, x;u

)
≤ ȳ(x) on [xk−1, xk] for all k = 1, . . . ,K + 1. (4.2.9)

Using the representation of y(t̄, ·, ū) in (3.7.4) and Convention 3.2.2, we see that
(4.2.9) yields

y(t̄, x; ū) ≤ ȳ(x) on [a, b].

Now we suppose that y(t̄, x; ū) ≤ ȳ(x) holds on [a, b]. From (3.7.4) we obtain that

Yk
(
t̄, x;u

)
≤ ȳ(x) on ]xk−1, xk] for all k = 2, . . . ,K + 1.

Y1

(
t̄, x;u

)
≤ ȳ(x) on [a, x1]

Next, we consider some xk̃ with k̃ ∈ {1, . . . ,K + 1} where y(t̄, x; ū) has a disconti-
nuity. Due to (3.2.3), all discontinuities of y(t̄, ·; ū) are down jumps such that we
get

Yk
(
t̄, x;u

)
≤ ȳ(x) on [xk−1, xk] for all k = 1, . . . ,K + 1. (4.2.10)

Using again the definitions of yk(λ;u) in (4.2.6) and ȳk(λ; ū) in (4.2.7), (4.2.10)
finally yields

yk(·; ū) ≤ ȳk(·; ū) on [0, 1] for all k = 1, . . . ,K + 1.

Using the definition of the new states in (4.2.6) and Lemma 3.7.1, we obtain the
following result:

Theorem 4.2.3 (Continuous differentiability of the state). We assume that (A3)
and (A4) hold true. In addition, consider a control ū ∈ U such that the assumptions
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in (ND) are satisfied. Then the mapping

u ∈ BU
ρ (ū) 7→

(
y1(u), . . . , yK+1(u), x1(u), . . . , xK(u)

)
∈ C ([0, 1])

K+1 ×RK

is well-defined and continuously Fréchet-differentiable if ρ > 0 is sufficiently small.
The derivatives of y1, . . . , yK+1 w.r.t. u are given by

d

du
yk(λ;u)δu =

d

dx
Yk
(
t̄, xk−1(u) + λ(xk(u)− xk−1(u));u

)
·
[
λ

d

du
xk(u)δu

+ (1− λ)
d

du
xk−1(u)δu

]
+

d

du
Yk
(
t̄, xk−1(u) + λ(xk(u)− xk−1(u));u

)
δu.

(4.2.11)

The derivatives of xk(u), k = 1, . . . ,K w.r.t. u can be computed according to
Theorem 3.7.24 if (t̄, xk) is a discontinuity of y(t̄, ·;u) or with the help of (3.2.9) if
(t̄, xk) lies on the boundary of a rarefaction wave.
Moreover, the derivatives of Yk w.r.t. u can be computed according to the Lem-

mas 3.7.4, 3.7.9, 3.7.12, 3.7.14, 3.7.18 or 3.7.20.

4.2.3 Optimality conditions for the optimal control problem
considered in this thesis

Let ū ∈ U be a locally optimal solution of (P) such that (ND) is satisfied. Recalling
the general optimization problem in (P), we want to bring (P) in the same form
such that we can derive necessary optimality conditions by using Theorem 4.2.1.
Since in ū ∈ U the conditions of (ND) are satisfied, we can introduce the mappings
in (4.2.5) as new state variables and set:

Z = U, V = C ([0, 1])
K+1 ×RK , (4.2.12a)

Gk (u) = yk (λ;u)− ȳk (λ;u) , k = 1, . . . ,K + 1, (4.2.12b)

Gk+K+1 (u) = xk(u), k = 1, . . . ,K, (4.2.12c)

K = C ([0, 1]; ]−∞, 0])K+1 ×RK , and C = Uad. (4.2.12d)
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We firstly observe that due to the choice in (4.2.12) Robinson’s CQ in (4.2.1) reads

0 ∈ int





y1 (·;u)− ȳ1 (·;u)
...

yK+1 (·;u)− ȳK+1 (·;u)

x1(u)
...

xK(u)


+

d

du



y1 (·;u)− ȳ1 (·;u)
...

yK+1 (·;u)− ȳK+1 (·;u)

x1(u)
...

xK(u)


(U− ū)

−



C ([0, 1]; ]−∞, 0])
...

C ([0, 1]; ]−∞, 0])

R
...
R




which is obviously equivalent to

0 ∈ int


 y1 (·;u)− ȳ1 (·;u)

...
yK+1 (·;u)− ȳK+1 (·;u)

+
d

du

 y1 (·;u)− ȳ1 (·;u)
...

yK+1 (·;u)− ȳK+1 (·;u)

 (U− ū)

−

C ([0, 1]; ]−∞, 0])
...

C ([0, 1]; ]−∞, 0])


 (4.2.13)

Remark 4.2.4. Technically speaking, the mappings u 7→ Gk (u) are only
well-defined on a neighborhood BU

ρ (ū) of ū. Therefore, in order to guarantee that
the mappings in (4.2.12b)-(4.2.12c) are well-defined on the whole Banach space
Z = U, we choose continuously differentiable extensions such that

Gk (u)
∣∣∣BU

ρ (ū) = (yk (λ;u)− ȳk (λ;u)), k = 1, . . . ,K + 1

Gk+K+1 (u)
∣∣∣BU

ρ (ū) = xk(u), k = 1, . . . ,K.

is satisfied.
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Remark 4.2.5. Using Theorem 2.5.2, we obtain that

V ∗ =
(
C ([0, 1])K+1 ×RK

)∗
= (C ([0, 1])∗)

K+1 ×RK =M([0, 1])K+1 ×RK .
(4.2.14)

Using (4.2.14), we obtain the following representation of the polar cone:

Lemma 4.2.6. The polar cone of K can be characterized as follows:

q ∈ K◦ ⇐⇒ q = (µ1, . . . , µK+1, 0, . . . , 0) ,

where µ1, . . . , µK+1 ∈M ([0, 1]) are nonnegative.

Using (4.2.4), we can apply Theorem 4.2.1 in order to derive first order necessary
optimality conditions for (P):

Theorem 4.2.7. Suppose that (A3) and (A4) are valid and let ū ∈ Uad be a lo-
cally optimal solution for (P). We additionally require that ū ∈ Uad satisfies the
conditions in (ND) and that Robinson’s CQ in (4.2.13) holds. Then there exist
nonnegative µ1, . . . , µK+1 ∈M([0, 1]) such that

yk (·, ū) ≤ ȳk (·, ū) on [0, 1] for all k = 1, . . . ,K + 1, (4.2.15a)
K+1∑
k=1

∫
[0,1]

(yk (λ, ū)− ȳk (λ, ū)) dµk (λ) = 0, (4.2.15b)

Ĵ ′(ū)(u− ū) +

K+1∑
k=1

∫
[0,1]

d

du
(yk(λ, ū)− ȳk(λ, ū))(u− ū) dµk(λ) ≥ 0 ∀u ∈ Uad.

(4.2.15c)

Proof. We firstly observe that ū is also a locally optimal solution for (P) with the
setting in (4.2.12) due to Lemma 4.2.2. Then we use Theorem 4.2.1 and Lemma 4.2.6
to show that (4.2.15) is satisfied. We finally note that Theorem 4.2.1 is applicable
since its requirements hold due to Theorem 4.2.3 and (A4).

The following result will provides a further characterization of Robinson’s CQ in
(4.2.13).

Lemma 4.2.8. Let (A3) and (A4) hold true and consider some ū ∈ Uad satisfying
(ND). Then (4.2.13) is satisfied if and only if there exists ũ ∈ Uad such that for a
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constant ε > 0 the following assertion is valid for all k = 1, . . . ,K + 1:

yk(λ, ū)− ȳk(λ, ū) +
d

du

(
yk(λ, ū)− ȳk(λ, ū)

)
(ũ− ū) ≤ −ε ∀λ ∈ [0, 1]. (4.2.16)

Proof. We firstly suppose that (4.2.16) is satisfied and prove that (4.2.13) holds true.
In order to show (4.2.13), it is sufficient to prove that there exists a constant ρ > 0

such that for all f := (f1, . . . , fK+1) ∈ BC([0,1])K+1

ρ (0) there exists some ũ ∈ U and
(h1, . . . , hK+1) ∈ C ([0, 1]; ]−∞, 0])K+1 such that for all k ∈ {1, . . . ,K + 1} it holds
that

fk(·) = yk (·;u)− ȳk (·;u) +
d

du
(yk (·;u)− ȳk (·;u)) (ũ− ū)− hk(·) on [0, 1].

To this end, we choose

ρ =
ε

2
(4.2.17)

and ũ as in (4.2.16). Next, we consider an arbitrary k̃ ∈ {1, . . . ,K + 1} and set

hk̃(·) = yk̃ (·;u)− ȳk̃ (·;u) +
d

du

(
yk̃ (·;u)− ȳk̃ (·;u)

)
(ũ− ū)− fk̃(·). (4.2.18)

Due to (4.2.16), the fact that

(f1, . . . , fK+1) ∈ BC([0,1])K+1

ρ (0)

and the choice of ρ in (4.2.17), we obtain hk̃(λ) ≤ − ε2 and hence hk̃ ∈ C ([0, 1]; ]−
∞, 0]). Since k̃ is arbitrarily chosen, (4.2.18) is satisfied for all k ∈ {1, . . . ,K + 1}
with functions hk̃ ∈ C ([0, 1]; ]−∞, 0]). Since f was arbitrarily chosen, (4.2.13) holds
true.
Now we suppose that (4.2.16) does not hold true and prove that (4.2.13) cannot

be satisfied. Since (4.2.16) is supposed not to hold we obtain that for all u ∈ Uad

there exists some k ∈ {1, . . . ,K + 1} and λ̂ ∈ [0, 1] such that

yk(λ̂, ū)− ȳk(λ̂, ū) +
d

du

(
yk(λ̂, ū)− ȳk(λ̂, ū)

)
(u− ū) ≥ 0. (4.2.19)

Next, we choose an arbitrary small constant ρ > 0 and observe that choosing

f = (f1, . . . , fK+1) = (− ρ

2K + 2
, . . . ,− ρ

2K + 2
) (4.2.20)
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yields

f ∈ BC([0,1])K+1

ρ (0).

If (4.2.13) is satisfied, then there exists ũ ∈ Uad and

h = (h1, . . . , hK+1) ∈ C ([0, 1]; ]−∞, 0])

such that

fk(·) = yk (·;u)− ȳk (·;u) +
d

du

(
yk̃ (·;u)− ȳk (·;u)

)
(ũ− ū)− hk(·) on [0, 1]

is satified for all k = 1, . . . ,K + 1 which is equivalent to

hk(·) = yk (·;u)− ȳk (·;u) +
d

du

(
yk̃ (·;u)− ȳk (·;u)

)
(ũ− ū)− fk(·) on [0, 1]

for all k = 1, . . . ,K + 1. Since (4.2.16) does not hold true, there exists some k̂ ∈
{1, . . . ,K + 1} and λ̂ ∈ [0, 1] such that (4.2.19) is satisfied for k = k̂. From this
and the choice of f in (4.2.20), we obtain that hk̂(λ̂) ≥ ρ

2K+2 and hence h /∈
C ([0, 1]; ]−∞, 0])K+1. Hence, (4.2.13) is not satisfied.

The optimality conditions in Theorem 4.2.15 are formulated in terms of the new
state variables which are defined in (4.2.5). Since it is convenient to have a formu-
lation of the optimality conditions in Theorem 4.2.15 in terms of the original state
y(t̄, ·; ū), in the remaining part of this chapter we will reformulate the optimality
conditions in (4.2.15). As a first step, we rewrite the optimality conditions in terms
of the mappings Y1, . . . , YK+1 which are introduced in Lemma 3.7.1. We recall that
the new state variables in (4.2.5) are obtained by using the variable transformations
in (4.2.4). Using (4.2.4) in connection with (4.2.11), the optimality conditions in
(4.2.15a)-(4.2.15c) can be written as follows

Yk(t̄, ϕk;ū(·), ū) ≤ ȳ(ϕk;ū(·)) on [0, 1] ∀k = 1, . . . ,K + 1, (4.2.21a)
K+1∑
k=1

∫
[0,1]

(
Yk(t̄, ϕk;ū(λ), ū)− ȳ(ϕk;ū(λ))

)
dµk(λ) = 0, (4.2.21b)

Ĵ ′(ū)(u− ū) +

K+1∑
k=1

∫
[0,1]

[
d

dx

(
Yk(t̄, ϕk;ū(λ); ū)− ȳ(ϕk;ū(λ))

)
·
(
ϕ−1
k,ū(ϕk,ū(λ))

d

du
xk(ū)(u− ū) +

(
1− ϕ−1

k,ū(ϕk,ū(λ))
) d

du
xk−1(u)(u− ū)

)
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+
d

du

(
Yk(t̄, ϕk;ū(λ); ū)− ȳ(ϕk;ū(λ))

)
· (u− ū)

]
dµk(λ) ≥ 0 ∀ u ∈ Uad.

(4.2.21c)

Theorem 2.5.3 yields the existence of nonnegative measures µ̄k ∈M(Ik) with

Ik := [xk−1(ū), xk(ū)] for k = 1, . . . ,K + 1

x0(ū) := a, xK+1(ū) := b,
(4.2.22)

which are defined according to (2.5.3) by

µ̄k(A) := µk(ϕ−1
k;ū(A)) ∀A ⊂ Ik measurable, k = 1, . . . ,K + 1

such that ∫
Ik

f dµ̄k =

∫
[0,1]

f ◦ ϕk;ū dµk ∀k = 1, . . . ,K + 1 (4.2.23)

holds for all measurable functions f . Applying (4.2.23) on (4.2.21) yields

Yk(t̄, ·, ū) ≤ ȳ (·) on Ik ∀k = 1, . . . ,K + 1, (4.2.24a)
K+1∑
k=1

∫
Ik

(Yk(t̄, x, ū))− ȳ(x) dµ̄k(x) = 0, (4.2.24b)

Ĵ ′(ū)(u− ū) +

K+1∑
k=1

[∫
Ik

d

dx
[Yk(t̄, x, ū)− ȳ(x)]

x− xk−1(ū)

xk(ū)− xk−1(ū)
dµ̄k(x)

· d

du
xk(ū)(u− ū) +

∫
Ik

d

dx
[Yk(t̄, x, ū)− ȳ(x)]

xk(ū)− x
xk(ū)− xk−1(ū)

dµ̄k(x)

· d

du
xk−1(ū)(u− ū) +

∫
Ik

d

du
Yk(t̄, x, ū)(u− ū) dµ̄k(x)

]
≥ 0 ∀u ∈ Uad.

(4.2.24c)

We finally rewrite Robinson’s CQ in (4.2.13) in terms of Y1, . . . , YK+1:

0 ∈ int


 Y1 (t̄, ·;u)− ȳ (·)

...
YK+1 (t̄, ·;u)− ȳ (·)

+
d

du

 Y1 (t̄, ·;u) (·)
...

YK+1 (t̄, ·;u) (·)

 (U− ū)
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+


d

dx

(
Y1 (t̄, ·;u)− ȳ (·)

) ( ·−xk−1(ū)
xk(ū)−xk−1(ū)

d
duxk(ū) + xk(ū)−·

xk(ū)−xk−1(ū)
d

duxk−1(ū)
)

...
d

dx

(
Y1 (t̄, ·;u)− ȳ (·)

) ( ·−xk−1(ū)
xk(ū)−xk−1(ū)

d
duxk(ū) + xk(ū)−·

xk(ū)−xk−1(ū)
d

duxk−1(ū)
)


(U− ū) −

 C (I1; ]−∞, 0])
...

C (IK+1; ]−∞, 0])


 (4.2.25)

Hence, we can rewrite Theorem 4.2.7 as follows:

Theorem 4.2.9. Suppose that (A3) and (A4) are satisfied and let ū ∈ Uad be
a locally optimal solution of (P) that satisfies (ND) and Robinson’s CQ (4.2.25).
Then there exist nonnegative measures µ̄k ∈M(Ik), k = 1, . . . ,K + 1, such that the
conditions in (4.2.24) are satisfied, where the intervals Ik are defined in (4.2.22).

It is very important to show that Robinson’s CQ in (4.2.25) is always satisfied
under suitable assumptions. To this end, we firstly derive an equivalent charac-
terization of (4.2.25) in the following lemma which is a direct consequence of the
definition of the new states in (4.2.5) and Lemma 4.2.8:

Lemma 4.2.10. Assume that (A3) and (A4) hold true and consider a control ū ∈
Uad that satisfies (ND). Then Robinson’s CQ (4.2.25) is satisfied if and only if there
exists δu ∈ Uad − ū such that

Yk(t̄, x, ū)− ȳ(x) +
d

du
Yk(t̄, x, ū)δu +

d

dx
[Yk(t̄, x, ū)− ȳ(x)]· (4.2.26)(

x− xk−1(ū)

xk(ū)− xk−1(ū)

d

du
xk(ū)δu +

xk(ū)− x
xk(ū)− xk−1(ū)

d

du
xk−1(ū)δu

)
≤ −ε

holds true for all x ∈ Ik and k = 1, . . . ,K + 1, where ε > 0 is a sufficiently small
constant and the intervals Ik are defined in (4.2.22).

Using Lemma 4.2.10, we will prove that Robinson’s CQ in (4.2.25) is always
satisfied under suitable assumptions:

Theorem 4.2.11. Assume that (A3) and (A4) are satisfied and consider a control
ū ∈ Uad such that (ND) and the state constraints (4.0.1) are satisfied. Furthermore,
suppose that ū + δu ∈ Uad holds for all

δu ∈ BU
ρ (ū) ∩ {u ∈ U : u ≤ 0 ∧ u1 = 0}, (4.2.27)
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if ρ > 0 is small enough. The inequality u ≤ 0 in (4.2.27) has to be understood
componentwise. Finally, let

g|ΩT ≡ 0 and ȳ(·) ≡ constant.

Then (4.2.25) is satisfied in ū.

Proof. We use Lemma 4.2.10 to prove the theorem. To this end, we show the ex-
istence of a constant ε > 0 and δu ∈ Uad − ū such that (4.2.26) is satisfied for
all x ∈ [xk−1(ū), xk(ū)] and k = 1, . . . ,K + 1. We note that xk(ū) ∈ [a, b] with
k ∈ {1, . . . ,K + 1} is by assumption either a discontinuity of y(t̄, ·, ū) or lies on
the boundary of a rarefaction wave. Here, the discontinuities of y(t̄, ·, ū) on the
interval [a, b] are nondegenerated according to Definition 3.7.3. Therefore, the dis-
continuities are all of type XlXr with Xl, Xr ∈

{
Cc, Rc, CcB,a, R

c
B,a, C

c
B,b, R

c
B,b

}
,

i.e., the minimal respectively maximal backward characteristic through a disconti-
nuity ends in a point where the initial or boundary data is smooth, or in the inner
of a rarefaction wave. Recalling the Lemmas 3.7.10 and 3.7.15, we observe that the
cases Xl/r ∈

{
Rc, RcB,a, R

c
B,b

}
can be treated analogously to the case Xl/r ∈ {Cc}.

Moreover, the case CcB,a can be treated similarly to the case CcB,b. Therefore, in
order to discuss all relevant cases, we can firstly restrict ourselves to the following
case:
Let K = 2 and assume that (t̄, x1(ū)) lies on the right boundary of a rarefac-

tion wave being created in a discontinuity t̄aj of the left boundary data uB,a(·; ū).
Moreover, let (t̄, x2(ū)) be a nondegenerated shock, where the minimal backward
characteristic through (t̄, x2(ū)) ends in a continuity point t̃a ∈ (t̄aj−1, t̄

a
j ) of uB,a(·; ū)

and the maximal backward characteristic ends in a continuity point x̃ ∈ (x̄0
l−1, x̄

0
l )

of the initial data u0(·; ū). Then the genuine backward characteristic through (t̄, a)

also ends in (t̄aj , a) and the one through (t̄, b) ends within the interval (x̄0
l−1, x̄

0
l ).

If that was not the case, more discontinuities or points lying on the boundary of
rarefaction wave would occur on ]a, b[ which would be a contradicion to K = 2.
The further part of the proof is divided in two steps: Step 1 will be concerned

with deriving representations for the terms d
duY1(t̄, ·; ū), d

duY2(t̄, ·; ū), d
duY3(t̄, ·; ū),

d
dux1(ū) and d

dux2(ū). In Step 2, we will construct some δu ∈ Uad − ū and prove
that (4.2.26) is satisfied for all k = 1, 2, 3.
Step 1: With g|ΩT ≡ 0, we obtain that Y1(t̄, x, ū) = f ′−1

(
x

t̄−t̄aj

)
and in addition

d

dx
Y1(t̄, x, ū)δx =

δx

(t̄− t̄aj ) · f ′′(f ′−1( x
t̄−t̄aj

))
, (4.2.28)
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d

du
Y1(t̄, x, ū)δu =

x · δtaj
(t̄− t̄aj )2f ′′(f ′−1( x

t̄−t̄aj
))
. (4.2.29)

Since the minimal backward characteristic through (t̄, x2(ū)) ends in a point
t̃a ∈ (t̄ai , t̄

a
i+1) where uB,a(·; ū) is smooth, we obtain from Lemma 3.7.15 that the

derivatives of Y2 are given by

d

dx
Y2(t̄, x, ū)δx =

(ūB,aj )′(Φ(:)) · δx
f ′′(ūB,aj (Φ(:)))(ūB,aj )′(Φ(:))(t̄− Φ(:))− f ′(ūB,aj (Φ(:)))

, (4.2.30)

d

du
Y2(t̄, x, ū)δu = −

f ′(ūB,aj (Φ(:))) · δuB,aj (Φ(:))

f ′′(ūB,aj (Φ(:)))(ūB,aj )′(Φ(:))(t̄− Φ(:))− f ′(ūB,aj (Φ(:)))
,

(4.2.31)

where (:) = (t̄, x, ū), (ūB,aj )′(·) denotes the derivative of ūB,aj (·) and Φ(t̄, x, ū) is the
unique solution of the equation x = f ′(ūB,aj (φ))(t̄− φ) + a w.r.t. φ. We note that

Φ(t̄, x, ū) ∈ [t̃a, t̄aj ] for all x ∈ [x1(ū), x2(ū)].

is satisfied. The estimation (3.7.37) in Lemma 3.7.13 implies that

q1(:) := f ′′
(
ūB,aj

)
(Φ(:)))(ūB,aj )′(Φ(:))(t̄− Φ(·))− f ′(ūB,aj (Φ(:))) < −β (4.2.32)

holds for all x ∈ (x1(ū)− δ0, x2(ū) + δ0) for some constants δ0, β > 0.
It remains to examine the term Y3. Since the maximal backward characteristic

through (t̄, x2(ū)) ends in a point x̃ ∈ (x̄0
l−1, x̄

0
l ) where the initial data u0(·; ū) is

smooth, Lemma 3.7.8 yields

d

dx
Y3(t̄, x, ū)δx =

(ū0
l )
′(Z(:)) · δx

f ′′(ū0
l (Z(:)))(ū0

l )
′(Z(:))t̄+ 1

, (4.2.33)

d

du
Y3(t̄, x, ū)δu =

δu0
l (Z(:))

f ′′(ū0
l (Z(:)))(ū0

l )
′(Z(:))t̄+ 1

, (4.2.34)

where Z(:) = Z(t̄, x, ū) denotes the unique solution of the equation

x = f ′
(
ū0
l (z)

)
t̄+ z

w.r.t. z. The estimation (3.7.31) in Lemma 3.7.13 yields the existence of a constant
δ0 > 0 such that

q2(:) = f ′′(ū0
l (Z(:)))u0

l
′
(Z(:))t̄+ 1 > β (4.2.35)
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is satified for x ∈ (x2(ū)− δ0, b) and a possibly smaller constant β > 0.
Now we consider the term x1(ū). Since (t̄, x1(ū)) lies on the right boundary of a

rarefaction wave and the source term g ≡ 0, we see that x1(ū) = f ′(ūB,aj (t̄aj )) · (t̄−
t̄aj ) + a and thus

d

du
x1(ū)δu =f ′′(ūB,aj (t̄aj ))(t̄− t̄aj )

[
δuB,aj (t̄aj )+(ūB,aj )′(t̄aj )δt

a
j

]
− f ′(ūB,aj (t̄aj ))δt

a
j .

(4.2.36)

Concerning the shock position x2(ū), we obtain from Corollary 3.7.25 that its deriva-
tive w.r.t. u is given by

d

du
x2(ū)δu =

l∑
k=1

(
p(0, ·), δu0

k

)
2,Ik0∩]0,x̃[

+

j∑
k=1

(
p(·, a), f ′(ūB,ak )δuB,ak

)
2,IkB,a∩]0,t̃a[

+
∑

k∈Is,0:x̄0
k∈]0,x̃[

p(0, x̄0
k)[ū0(x̄0

k)]δxk +
∑

k∈Is,a(ū):t̄ak∈]0,t̃a[

p(t̄ak, a)[f(y(t̄ak, a+; ū))]δtak

−
∑

k∈Ir,0:x̄0
k∈]0,x̃[

pr,0
k δx0

k +
∑

k∈Ir,a(ū):t̄ak∈]0,t̃a[

pr,a
k δtak,

(4.2.37)

where p denotes the adjoint state with end data p(t̄, ·) = 1
[y(t̄,x2(ū);ū] . According

to Definition 3.5.4, p is given by p(t, x)|ΩT \D− ≡ 1
[y(t̄,x2(ū);ū] > 0 and equal to zero

on D−.
Step 2: In this step we contruct some δu such that (4.2.26) holds for all k ∈
{1, 2, 3}. First of all, all components of δu except δuB,aj and δu0

l are set equal to
zero and δuB,aj and δu0

l are chosen as follows

δuB,aj (t) =



0 if t̄aj−1 ≤ t < t̃a − ρ1,

φ1(t) if t̃a − ρ1 ≤ t < t̃a,

−ε0 if t̃a ≤ t < t̄aj − ρ2,

φ2(t) if t̄aj − ρ2 ≤ t < t̄aj ,
−ε0

f ′′(ūB,aj (t̄aj ))(t̄−t̄aj )N
if t = t̄aj ,

δu0
l (x) =


0 if x < x̃− ρ3,

φ3(t) if x̃−ρ3 ≤ x < x̃,

−ε0 if x̃ ≤ x,

(4.2.38)

where 0 < ε0 < ρ and ρ1, ρ2, ρ3 > 0 are constants. In addition, we choose a natural
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number N ∈ N such that f ′′(ūB,aj (t̄aj ))(t̄ − t̄aj ) · N > 1 holds. We note that ρ1, ρ2

and ρ3 are chosen independently from ε0. We will identify these constants later.
Further on, choose φ1, φ2 and φ3 such that −ε0 ≤ φi ≤ 0 and ū + δu ∈ Uad holds
for sufficiently small ε0.
Now, we prove that (4.2.26) holds for k = 1. Since f ′′ ≥ mf ′′ holds by assumption,

we see that the function Y1(t̄, ·; ū) is monotonously increasing. Thus, the only point
on the interval [a, x1(ū)] where Y1 may touch the upper bound is at x1(ū). Moreover,
we obtain from (4.2.36) and (4.2.38) that d

dux1(ū) = −ε0
N . Using the state constraints

(4.0.1), the derivatives of Y1 in (4.2.28)-(4.2.29), the fact that d
dux1(ū) = −ε0

N and
the construction of δu in (4.2.38), we conclude that the term on left-hand side of
(4.2.26) is at x = x1(ū) bounded from above by

d

dx
Y1(t̄, x1(ū), ū) · d

du
x1(ū)δu =

−ε0

N(t̄− t̄aj )f ′′(f ′−1(x1(ū)
t̄−̄taj

))
≤ −ε0

NTMf ′′
=: −ε11.

(4.2.39)

The inequality in (4.2.39) is valid since 0 < mf ′′ ≤ f ′′(·) ≤Mf ′′ .
Due to (4.2.39) and the continuity of the left term of (4.2.26) w.r.t. x, we obtain

that the left term of (4.2.26) is on the interval ]x1 − δ1, x1] bounded from above by
− ε11

2 , where δ1 is some positive constant. Using that Y1(t̄, ·; ū) is strictly monotonous
increasing, we conclude that

Y1(t̄, x; ū)− ȳ ≤ −ε12 for all x ∈ [a, x1(ū)− δ1] (4.2.40)

holds for some constant ε12 > 0. Using the representation derivative of Y1 w.r.t. x
in (4.2.28), the choice of δu in (4.2.38) and the fact that

d

du
x1(ū) =

−ε0

N
, (4.2.41)

we obtain that the term of the left-hand side of (4.2.26) is bounded from above by

−ε12 −
ε0

N · (t̄− t̄aj ) · f ′′(f ′−1( x
t̄−t̄aj

))

x− a
x1(ū)− a

≤ −ε12 ∀x ∈ [a, x1(ū)− δ1].

(4.2.42)

Therefore, choosing ε = ε1 := min{ ε11

2 , ε12}, one can see that (4.2.26) is satisfied for
k = 1.
Now we consider the case k = 2. At first, we observe that the state constraints

(4.0.1) imply that the the term on the left-hand side of (4.2.26) is bounded from
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above by

d

du
Y2(t̄, x, ū)δu +

d

dx
Y2(t̄, x, ū)

[
x2(ū)− x

x2(ū)− x1(ū)

d

du
x1(ū)δu

+
x− x1(ū)

x2(ū)− x1(ū)

d

du
x2(ū)δu

] (4.2.43)

for all x ∈ [x1(ū), x2(ū)]. Then, using the derivatives of Y2 in (4.2.30)-(4.2.31) and
the derivative of x1(u) in (4.2.36), inserting x = x1(ū) in (4.2.43) yields

d

du
Y2(t̄, x1(ū), ū)δu +

d

dx
Y2(t̄, x1(ū), ū)

d

du
x1(ū)δu = δuB,aj (t̄aj )

=
−ε0

f ′′(ūB,aj (t̄aj ))(t̄− t̄aj )N
.

(4.2.44)

From (4.2.44) and the continuity of (4.2.43) w.r.t. x we obtain that the term in

(4.2.43) is bounded on [x1(ū), x1(ū)+δ] from above by δuB,aj (t̄aj )

2 := −ε21 < 0. Here,
δ > 0 is chosen sufficiently small and does not depend on ε0. Now, we choose ρ2

such that Φ(x1(ū) + δ) = t̄aj − ρ2,

ρ1 =
[y(t̄, x2(ū); ū)]

2N‖f ′(ūB,aj (·))‖∞,[0,t̃a]

> 0 and ρ3 =
[y(t̄, x2(ū); ū)]

2N
> 0.

Then the formula for derivative of x2(ū) in (4.2.37), the choice of δu in (4.2.38)
and the fact ‖φi(·)‖∞ ≤ ε0 yield∣∣∣∣ d

du
x2(ū)δu

∣∣∣∣ ≤ ε0

N
. (4.2.45)

We note that using (4.2.31), (4.2.32) and (4.2.38) yield

d

du
Y2(t̄, ·; ū) ≤ −αε0

‖q1(·)‖∞,[x1(ū)+δ,x2(ū)]
on [x1(ū) + δ, x2(ū)],

where α is given by the constant in (A4). Due to the boundedness of d
dxY2(t̄, x, ū)

and the derivatives of x1(ū) and x2(ū) in (4.2.41) and (4.2.45), we choose N large
enough such that (4.2.43) is bounded on the interval [x1(ū) + δ, x2(ū)] from above
by

−ε22 :=
−αε0

2‖q1(t̄, ·, ū)‖∞,[x1(ū)+δ,x2(ū)]
.
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Now we can see that (4.2.26) is satisfied for k = 2, if we choose ε = min{ε21, ε22}.
Now we consider the last case k = 3. At first, we observe that (4.2.34), (4.2.35)

and (4.2.38) yield the estimation

d

du
Y3(t̄, ·; ū) ≤ −ε0

‖q2(t̄, ·, ū)‖∞,[x2(ū),b]
on [x2(ū), b]. (4.2.46)

Using the boundedness of d
dxY2(t̄, x, ū) and the estimation of | d

dux2(ū)δu| in (4.2.45),
(4.0.1) and (4.2.46), we obtain that the left term of (4.2.26) is on the interval
[x2(ū), b] bounded from above by the term

− ε0

2‖q2(t̄, ·, ū)‖∞,[x2(ū),b]
=: −ε3

if N is sufficiently large. Note that ε3 is finite due to the continuity of q2((t̄, ·, ū).
Thus, choosing ε = ε3, we see that (4.2.39) is satisfied for k = 3.
We finally observe that (4.2.39) is satisfied for k = 1, 2, 3 if we choose ε :=

min{ε1, ε2, ε3} and δu according to (4.2.38).
The case that K > 2 can be treated by continuing the procedure and using similar

arguments.

Remark 4.2.12. The main concept of the proof above is to construct δu ∈ Uad −
ū such that the mappings in (4.2.29), (4.2.31) and (4.2.34) are negative and the
absolute values of the terms in (4.2.36) and (4.2.37) sufficiently small.
One can see that the proof is extendable to source terms g 6≡ 0 guaranteeing

that if one chooses componentwise negative u0, δuB,a and δuB,b, then the terms in
(4.2.29), (4.2.31) and (4.2.34) are also negative. Studying the results in §3.7.3 and
Corollary 3.7.25, one can see that this holds e.g., for source terms only depending on
the state y and satisfying (A3). Furthermore, the proof is still valid for non-constant
upper bounds ȳ.

Finally, we further simplify the optimality conditions in (4.2.24) by using the
following result.

Lemma 4.2.13. Suppose that (A3) and (A4) are satisfied and consider a control
ū ∈ Uad and nonnegative measures µk ∈ M (Ik) , k = 1, . . . ,K + 1, such that
(4.2.24a) and (4.2.24b) are satisfied, where the intervals Ik are defined in (4.2.22).
Then for all measurable sets A ⊂]xk−1(ū), xk(ū)[ the following holds true:∫

A

d

dx
[Yk(t̄, x, ū)− ȳ(x)]

(
x− xk−1(ū)

xk(ū)− xk−1(ū)

)
dµk(x) = 0 (4.2.47)
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∫
A

d

dx
[Yk(t̄, x, ū)− ȳ(x)]

(
xk(ū)− x

xk(ū)− xk−1(ū)

)
dµk(x) = 0 (4.2.48)

Proof. Considering an arbitrary k ∈ {1, . . . ,K+ 1} and an arbitrary measurable set
A ⊂ ]xk−1(ū), xk(ū)[, we define the following subsets of A:

A1 := {x ∈ A : Yk(t̄, x, ū) < ȳ (x)} ,
A2 := {x ∈ A : Yk(t̄, x, ū) = ȳ (x)} .

Due to the regularity of the functions Y1, . . . , YK+1 and ȳ(·), the sets A1 and A2 are
both measurable. We further note that (4.2.24a) yields that A = A1 ∪A2. In order
to prove the lemma, we show

µk(A1) = 0 and
d

dx
[Yk(t̄, x, ū)− ȳ(x)]

∣∣∣∣
A2

≡ 0. (4.2.49)

For the proof of the first assertion of (4.2.49), we suppose that

µk(A1) 6= 0.

Due to the nonnegativity of µk, we obtain that µk(A1) > 0. Then (4.2.24a) yields

K+1∑
j=1

∫
Ij

(Yj(t̄, x, ū))− ȳ(x) dµj(x) ≤
∫
Ik

(Yk(t̄, x, ū))− ȳ(x) dµk(x)

≤
∫
Ik∩A1

(Yk(t̄, x, ū))− ȳ(x) dµk(x) < 0,

which is a contradiction to (4.2.24b) and hence the first assertion of (4.2.49) is
proved.
Next, we prove the second assertion. To this end, we suppose that

∃x̃ ∈ A2 :
d

dx
[Yk(t̄, x̃, ū)− ȳ(x̃)] 6= 0.

Here, we assume w.l.o.g. that

d

dx
[Yk(t̄, x̃, ū)− ȳ(x̃)] > 0 (4.2.50)

and note that the other case can be treated analogously. Since x̃ ∈ A2, we obtain



4.2. Optimality conditions 143

that

[Yk(t̄, x̃, ū)− ȳ(x̃)] = 0. (4.2.51)

Next, we deduce that (4.2.50) and (4.2.51) yield the existence of a constant ε > 0

such that [x̃, x̃+ ε] ⊂ ]xk−1(ū), xk(ū)[ and

Yk(t̄, x, ū)− ȳ(x) > 0 for all x ∈]x̃, x̃+ ε]

which is a contradiction to (4.2.24a) and hence to the assumptions of the lemma.
For the case that instead of (4.2.50) it holds that

d

dx
[Yk(t̄, x̃, ū)− ȳ(x̃)] < 0, (4.2.52)

one can use similar arguments. More precisely, as already mentioned, since x̃ ∈ A2,
(4.2.51) is valid which together with (4.2.52) implies the existence of a constant
ε > 0 such that [x̃− ε, x̃] ⊂ ]xk−1(ū), xk(ū)[ and

Yk(t̄, x, ū)− ȳ(x) > 0 for all x ∈ [x̃− ε, x̃[,

which again is a contradiction to (4.2.24a). Therefore, we obtain that the second
assertion of (4.2.49) holds. Using A = A1 ∪A2 and (4.2.49), we can deduce that∫

A

d

dx
[Yk(t̄, x, ū)− ȳ(x)]

(
x− xk−1(ū)

xk(ū)− xk−1(ū)

)
dµk(x)

=

2∑
i=1

∫
Ai

d

dx
[Yk(t̄, x, ū)− ȳ(x)]

(
x− xk−1(ū)

xk(ū)− xk−1(ū)

)
dµk (x) = 0.

Using similar arguments, we can prove (4.2.48).

With the help of the previous Lemma, we can further simplify the optimality
conditions in Theorem 4.2.9:

Corollary 4.2.14. Suppose that (A3) and (A4) are satisfied. In addition, consider
some control ū ∈ Uad and nonnegative measures µk ∈ M (Ik), k = 1, . . . ,K + 1

such that (4.2.25) is satisfied, where the intervals Ik are defined in (4.2.22). Then
(4.2.24c) can be rewritten by

Ĵ ′(ū)(u− ū) +

K+1∑
k=1

[
d

dx
[Yk(t̄, xk(ū), ū)− ȳ(xk(ū))] · µ̄k({xk(ū)})
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· d

du
xk(ū)(u− ū) +

d

dx
[Yk(t̄, xk−1(ū), ū)− ȳ(xk−1(ū))] · µ̄k({xk−1(ū)})

· d

du
xk−1(ū)(u− ū) +

∫
Ik

d

du
Yk(t̄, x, ū)(u− ū) dµk(x)

]
≥ 0, ∀u ∈ Uad.

As a final result of this chapter, we rewrite the optimality conditions in Theo-
rem 4.2.9 respectively in Corollary 4.2.14 in terms of the original state y(t̄, ·; ū).
Using the representation of y in (3.7.4) in Lemma 3.7.1 and Convention 3.2.2, the
optimality conditions in (4.2.24) can be rewritten by

y(t̄, x−, ū) ≤ ȳ (x) ∀x ∈ [a, b], (4.2.53a)
K+1∑
k=1

∫
Ik

(y(t̄, x−, ū)− ȳ(x)) dµ̄k(x) = 0, (4.2.53b)

Ĵ ′(ū)(u− ū) +

K+1∑
k=1

[
d

dx
[y(t̄, xk(ū), ū)− ȳ(xk(ū))] · µ̄k({xk(ū)})

· d

du
xk(ū)(u− ū) +

d

dx
[y(t̄, xk−1(ū), ū)− ȳ(xk−1(ū))] · µ̄k({xk−1(ū)})

· d

du
xk−1(ū)(u− ū) +

∫
Ik

d

du
y(t̄, x, ū)(u− ū) dµk(x)

]
≥ 0, ∀u ∈ Uad.

(4.2.53c)

Hence, Theorem 4.2.24 can be reformulated as follows:

Theorem 4.2.15. Suppose that (A3) and (A4) are satisfied and let ū ∈ Uad be a
locally optimal solution of (P) that satisfies (ND) and (4.2.25). Then there exist
nonnegative measures µ̄k ∈M(Ik) such that the conditions in (4.2.53) are satisfied,
where the intervals Ik are defined in (4.2.22).
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Moreau-Yosida regularization

Since the Lagrange multipliers in the optimality system in Theorem 4.2.9 are
measures, the direct computation of a solution to this system is quite involved.
To cope with this problem we will apply a well-known approach, the so-called
Moreau-Yosida regularization approach. This approach was developed by Ito and
Kunisch in [43] at the example of an elliptic problem with state constraints, cf.
[62, 63]. Later on, the approach was used for parabolic problems in [64] and for the
Navier-Stokes equations in [32]. In this chapter we want to apply this approach to
the state-constrained optimal control problem considered in this thesis. Although
the techniques in the analysis of hyperbolic balance laws are different from those
which are used in the elliptic or parabolic case, we can adopt many of the concepts
developed in the just mentioned contributions.
The main idea of this approach is to replace the state constraints by a suitable

penalty function P (y(u)) which is weighted by a penalty parameter γ, where γ > 0

and added to the cost functional such that we obtain

min
u∈U

Jγ(y(u),u) := J(y(u),u) +
γ

2

∫ b

a

(y(t̄, x;u)− ȳ(x))
2
+ dx

s.t. u ∈ Uad and y(u) solves the (IBVP)

 (Pγ)

with (·)+ := max{·, 0}. Having a look at the regularized problem (Pγ), we see that if
the state constraints are violated, then the penalty function will add a positive value
to the cost functional. Note that punishment of a violation of the state constraints is
increased, the larger the penalty parameter γ > 0 is chosen. The idea is to consider
a sequence of penalty parameter (γk)k∈N approaching infinity and compute for each
k ∈ N a corresponding optimal solution uγk for the regularized problem (Pγ). One
of the main goals of this chapter is to give an answer to the question if a sequence

145
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(uk)k∈N of optimal solutions of (Pγ) converges to an optimal solution for the original
problem (P). Considering a sequence of optimal solutions to (Pγ) converging to an
optimal solution of (P) in which the assumptions of Theorem 4.2.9 satisfied, another
question that arises is in which sense the optimality conditions of the regularized
problems converge to the optimality system in (4.2.24).
This chapter is organized as follows: In §5.1 we will first of all prove that for all

γ > 0 the problem (Pγ) is well-defined i.e., it admits an optimal solution. We will
further show that the cost functional in (Pγ) is continuously Fréchet-differentiable
w.r.t. the control u under suitable assumptions. In §5.2, we will analyze a sequence
(uγk)k∈N of optimal solutions to (Pγ) for γk →∞. In §5.3 we will derive first order
necessary optimality conditions for the regularized problems (Pγ) and examine in
which sense these optimality conditions approach the optimality system in (4.2.24).

5.1 Basic results

We first note that the cost functional Jγ(·, ·) of the regularized problem (Pγ) is of
same form as J(·, ·). Therefore, we are able to apply Theorem 3.5.5 to the regularized
problem (Pγ) and obtain the following result.

Corollary 5.1.1. Let the assumptions of Theorem 3.5.5 be satisfied for some control
ū ∈ U. Then the mapping

BU
ρ (ū) 3 u 7→ Ĵγ(u) := Jγ(y(u),u) ∈ R

is continuously differentiable for a sufficiently small neighborhood BU
ρ (ū) of ū. In

addition, the derivative in a direction δu ∈ U can be computed according to Theo-
rem 3.5.5.

Given the differentiability of the regularized cost functional, we show that (Pγ)
admits for each γ > 0 a global solution:

Corollary 5.1.2. Assume that (A3) and (A4) hold true. Then for each penalty
parameter γ > 0 the regularized problem (Pγ) admits a globally optimal solution
uγ ∈ Uad.

Proof. Using the compactness of Uad in U and the regularity of the cost functional
in (Pγ), the proof is similar to the proof of Theorem 4.1.1.
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5.2 Convergence of solutions

In the next result, we will examine the behavior of a sequence of global solutions
of (Pγ) for penalty parameters (γk)k∈N converging to infinity. The concepts of the
proofs in this section are based on the ideas developed in [43].

Theorem 5.2.1. Assume that (A3) and (A4) hold true and let (γk)k∈N be a sequence
of penalty parameters satisfying lim

k→∞
γk =∞. Then denote by (uγk)k∈N ⊂ Uad the

corresponding sequence of global solutions to (Pγ). Assume in addition that x = a

is a point of continuity of y(t̄, ·;u) for all u ∈ Uad. Then there exists a subsequence
again denoted by (uγk)k∈N, and a control u∗ ∈ Uad such that

uγk → u∗ w.r.t. ‖·‖U , (5.2.1)

where u∗ is a global solution for (P).

The idea of the proof is standard, see, e.g., the proof of Theorem 3.1 in [43].

Proof. Let (uγk)k∈N denote a sequence of globally optimal solutions to (Pγ). We will
prove the existence of a subsequence converging to a globally optimal solution for
(P). Due to compactness of the set Uad ⊂ U, there exists a convergent subsequence
, which is again denoted by (uγk)k∈N, such that

uγk → u∗ w.r.t. ‖·‖U (5.2.2)

holds. In order to show that u∗ is a global solution for (P), we need to prove that
y(u∗) fulfills the state constraints i.e.,

y(t̄, ·,u∗) ≤ ȳ(·) on [a, b]. (5.2.3)

To this end, we obverve that (P) admits a globally optimal solution according to
Theorem 4.1.1 which we denote by ū ∈ Uad. Since uγk ∈ Uad is a globally optimal
solution of (Pγk) and ū satisfies the state constraints, it holds true that

Jγk(y(uγk),uγk) ≤ J(y(ū), ū) for all k ∈ N. (5.2.4)

By the definition of Jγk in (Pγk), we obtain that (5.2.4) is equivalent to

0 ≤ γk
2

∫ b

a

(y(t̄, x;uγk)− ȳ(x))
2
+ dx ≤ J(y(ū), ū)− J(y(uγk),uγk). (5.2.5)

By the continuity of J(y(·), ·) w.r.t. u and (5.2.1), we can deduce that the right-
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hand side of (5.2.5) is bounded from above by a constant C > 0 which is uniform
in k ∈ N such that the following holds true:

0 ≤
∫ b

a

(y(t̄, x;uγk)− ȳ(x))
2
+ dx ≤ 2 · 1

γk
· C. (5.2.6)

Using (5.2.6), we will prove (5.2.3):
First, we observe that (5.2.6) and γk →∞ together yield

(y(t̄, ·;uγk)− ȳ(·))+ → 0 in L2([a, b])

which implies that

(y(t̄, ·;uγk)− ȳ(·))+ → 0 pointwise a.e. on [a, b] (5.2.7)

holds for a subsequence which is again denoted by (uγk)k∈N. Moreover, we obtain
by Corollary 3.3.5 and (5.2.2) that

y(t̄, ·;uγk)→ y(t̄, ·;u∗) in L1([a, b])

and therefore

y(t̄, ·;uγk)→ y(t̄, ·;u∗) pointwise a.e. on [a, b]. (5.2.8)

for another subsequence. With this subsequence, (5.2.7) and (5.2.8) we get for
almost all x ∈ [a, b](

y(t̄, x;u∗)− ȳ(x)
)

+
=
(
y(t̄, x;u∗)− y(t̄, x;uγk) + y(t̄, x;uγk)− ȳ(x)

)
+

≤
(
|y(t̄, x;u∗)− y(t̄, x;uγk)|+ y(t̄, x;uγk)− ȳ(x)

)
+

≤ |y(t̄, x;u∗)− y(t̄, x;uγk)|+
(
y(t̄, x;uγk)− ȳ(x)

)
+
→ 0.

Hence, we obtain that(
y(t̄, x;u∗)− ȳ(x)

)
+

= 0 for a.a. x ∈ [a, b].

which is equivalent to

y(t̄, x;u∗) ≤ ȳ(x) for a.a. x ∈ [a, b]. (5.2.9)

Using the same arguments as in the proof of Theorem 4.1.1, one can show that
(5.2.9) holds true for all x ∈ [a, b] and hence (5.2.3) is satisfied. It remains to show
that u∗ ∈ Uad is a globally optimal solution to (P). To this end, we observe that
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due to (5.2.3), (5.2.4) and the construction of Jγ in (Pγ), it holds true that

J(y(u∗),u∗) ≤ J(y(ū), ū).

Using that ū is a globally optimal solution for (P) and for u∗ the state constraints
in (5.2.3) are satisfied, we obtain that J(y(u∗),u∗) = J(y(ū), ū). Hence, u∗ is a
globally optimal solution for (P).

Remark 5.2.2. The penalty term in the cost functional of the regularized problem
(Pγ) is chosen as

γ

2

∫ b

a

(y(t̄, x;u)− ȳ(x))
2
+ dx. (5.2.10)

In [80] more general penalization terms of the form

1

γ

∫ b

a

φ(γ(y(t̄, x;u)− ȳ(x))) dx (5.2.11)

are considered, where φ : R → R is a convex, continuously differentiable mapping
for which

φ(0) = 0, φ′(0) = σ ≥ 0, φ′(s) ≥ 0 ∀s ∈ R
lim
s→∞

φ′(s) = +∞, lim
s→−∞

φ′(s) = 0

holds. Choosing φ(s) = 1
2 max2{0, s}, we obtain the penalty term considered in

this thesis, see [80]. Now, let (uk)k∈N be a sequence of controls converging to some
ū ∈ Uad such that

lim
k→∞

∫ b

a

(y(t̄, x;uk)− ȳ(x))
p
+ dx = 0 (5.2.12)

for some p ∈ [2,∞[. As we have seen in the proof of Theorem 5.2.1, (5.2.12) holds
for example if (uk)k∈N is a sequence of global solutions to (Pγ), where (γk)k∈N is a
sequence of penalty parameters satisfying lim

k→∞
γk =∞.

We assume that (t̄, a) is a point of continuity and not a shock generation point
of y(·; ū). Using this assumption, Lemma 3.7.8 (respectively Lemma 3.7.13 or
Lemma 3.7.19) yields the existence of a C1 mapping

Y : (x,u) ∈ [a, a+ ρ[×BU
ρ̃ (ū) 7→ Y (t̄, x,u) ∈ R
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with some constants ρ, ρ̃ > 0 such that

y(t̄, x;u) = Y (t̄, x,u) ∀x ∈ [a, a+ ρ[,u ∈ BU
ρ̃ (ū), (5.2.13)∣∣∣∣ d

dx
Y (t̄, x,u)

∣∣∣∣ ≤ L ∀x ∈ [a, a+ ρ[,u ∈ BU
ρ̃ (ū). (5.2.14)

Throughout this remark, L > 0 denotes a constant that is sufficiently large such
that the respective results hold. For any k ∈ N, we use the abbreviation

εk =
∥∥(y(t̄, ·;uk)− ȳ(·))+

∥∥
L∞([a,b])

.

Moreover, since y(t̄, ·;u) satisfies (3.2.1) for all u ∈ Uad, ȳ ∈ C1([a, b]) and due to
Convention 3.2.2, for all k ∈ N there exists x̃k ∈ [a, b] such that∣∣(y(t̄, x̃k;uk)− ȳ(x̃k))+

∣∣ = εk.

Hereby, we first consider the case that x̃k ∈ [a+ ρ, b], where the case x̃k ∈ [a, a+ ρ[

will be discussed later. Proposition 3.2.1 and the regularity of ȳ yield that

d

dx
(y(t̄, ·;u)− ȳ(·)) ≤ L on [a + δ, b− δ], ∀u ∈ Uad

holds in the sense of distributions, where δ > 0 is some small constant. Due to (A4),
there is no rarefaction center in some neighborhoods of the points (t̄, a) and (t̄, b)

for all u ∈ Uad. Hence, even

d

dx
(y(t̄, ·;u)− ȳ(·)) ≤ L on [a, b], ∀u ∈ Uad, (5.2.15)

holds in the sense of distributions, see [69, Lemma 6.3.3]. Using (5.2.15) and assum-
ing w.l.o.g. that x̃k − εk

2L ≥ a, we can show for any p ∈ [2,∞[ that

∥∥(y(t̄, ·;uk)− ȳ(·))+

∥∥
Lp([a,b])

≥
∥∥(y(t̄, ·;uk)− ȳ(·))+

∥∥
Lp([x̃k−

εk
2L ,x̃k])

≥
((εk

2

)p
· εk

2L

) 1
p

=
1

2
p+1
p L

1
p

∥∥(y(t̄, ·;uk)− ȳ(·))+

∥∥ p+1
p

L∞([a,b])
.

see also [80, Proof of Theorem 8.21]. From this, we get∥∥(y(t̄, ·;uk)− ȳ(·))+

∥∥
L∞([a,b])

≤ 2L
1
p+1

∥∥(y(t̄, ·;uk)− ȳ(·))+

∥∥ p
p+1

Lp([a,b])
. (5.2.16)

For the case that x̃k − εk
2L < a, using similar arguments and in particular x̃k ∈
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[a+ ρ, b], we obtain that

εk =
∥∥(y(t̄, ·;uk)− ȳ(·))+

∥∥
L∞([a,b])

≤ 2

ρ
1
p

∥∥(y(t̄, ·;uk)− ȳ(·))+

∥∥
Lp([a,b])

.

Due to (5.2.12) and x̃k ∈ [a+ρ, b], this shows that for k ∈ N large enough x̃k− εk
2L ≥ a

is always satisfied. Therefore, considering a sequence (uk)k∈N satisfying (5.2.12),
we conclude that (5.2.16) yields∥∥(y(t̄, ·;uk)− ȳ(·))+

∥∥
L∞([a,b])

→ 0 for k →∞. (5.2.17)

For the case that x̃k ∈ [a, a+ ρ[, we can use (5.2.13) and (5.2.14) and the regularity
of ȳ to prove that (5.2.16) is valid for sufficiently large k ∈ N. Therefore, we finally
obtain that (5.2.16) is always satisfied, which in particular yields

lim
k→∞

∫ b

a

(y(t̄, x;uk)− ȳ(x))
p
+ dx = 0 ⇒ lim

k→∞

∥∥(y(t̄, ·;uk)− ȳ(·))+

∥∥
L∞(a,b)

= 0

for all p ∈ [2,∞[. Therefore, in this thesis, we can restrict ourselves to the penalty
term in (5.2.10). Nevertheless, the results in this chapter are also valid for more
general penalization terms as in (5.2.11).

In the previous theorem we considered a sequence of globally optimal solutions
of the regularized problems in (Pγ). Since it is quite complex to compute global
optima of (Pγ), we will follow the ideas of [62] to examine the case of a sequence of
local solutions. More precisely, the authors in [62] introduce the following auxiliary
problems which will play a key-role in the analysis of this thesis:

min
u∈U

J(y(u),u) s.t. y(u) solves the (IBVP), u ∈ Ur := Uad ∩BU
r (ū) (P r)

y(t̄, x;u) ≤ ȳ(x) ∀x ∈ [a, b]

and

min
u∈U

Jγ(y(u),u) s.t. y(u) solves the (IBVP), u ∈ Ur, (P rγ )

where the problems are additionally restricted on a ball around ū with a sufficiently
small radius r > 0 is a sufficiently small constant.
Using the same arguments as in the proof of Theorem 4.1.1, one can show that

(P r) and (P rγ ) admit global solutions which we denote by ūr and urγ , respectively.
In the following theorem, which is based on Theorem 5.1 in [62], we will show

that for each local optimum ū for (P) satisfying a quadratic growth condition, there
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exists a sequence of local solutions to (Pγ) converging to ū.

Theorem 5.2.3. Assume that (A3) and (A4) hold true and consider a locally op-
timal solution ū ∈ Uad to (P). In addition, assume that the quadratic growth
condition

J(y(ū), ū) +
δ

2
‖u− ū‖2H ≤ J(y(u),u) ∀u ∈ Ũad with ‖u− ū‖U < ε (5.2.18)

is satisfied for some constants ε, δ > 0, where

Ũad := {u ∈ Uad : y(t̄, x;u) ≤ ȳ (x) ∀x ∈ [a, b]}

and H is a Hilbert space such that U is continuously embedded in H. Then there
exists a sequence of local solutions for (Pγ) that converges to ū w.r.t. ‖ · ‖U.

The concept of the proof can be found in the proof of Theorem 5.1 in [62].

Proof. Set r = ε
2 and let (uγk))k∈N ⊂ Ur denote a sequence of globally optimal

solutions for (P rγ ) with γk →∞.
Carefully reading the proof of Theorem 4.1.1, we observe thatUr is compact inU.

Therefore (uγk)k∈N possesses a convergent subsequence without change of notation

uγk → u∗ ∈ Ur w.r.t. ‖ · ‖U

for k → ∞. Similar to the proof of Theorem 5.2.1, one can prove that u∗ is a
globally optimal solution for (P r). Furthermore, the condition (5.2.18) yields that
that u∗ = ū. Therefore, urγk ∈ intBWr (ū) holds and hence urγk is a locally optimal
solution for (Pγ) for k large enough, cf. [62, Proof of Lemma 5.2].

Before stating the next result, we will have a look at some simple example in
which, as we will check, the quadratic growth condition in (5.2.18) holds.

Example 5.2.4. We set Ω = R and consider the following optimal control problem

min
u∈Uad

J(y(u),u) =
1

2

∫
R

(y(t̄, x;u)− yd(x))
2

dx+
κ

2
‖u1‖2L2(]−∞,x1]) +

κ

2
‖u2‖2L2([x1,x2]) ,
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where κ > 0 is a positive constant and y is the entropy solution of

yt +

(
1

2
y2

)
x

= 0 on (0, T )×R,

y(0, ·) = u1(·) on ]−∞, x1],

y(0, ·) = u2(·) on ]x1, x2],

y(0, ·) = u3(·) on ]x2,∞[.

The control is given by u = (u1, u2) with u1 ∈ C1(]−∞, x1]) and u2 ∈ C1([x1, x2]),
where −∞ < x1 < x2 <∞ and u3 ∈ C1([x2,∞[) are fixed such that

Uad = U = C1(]−∞, x1])× C1([x1, x2]).

One can show that for suitable yd, u3, x1 and x2 this optimal control problem
admits an optimal solution ū = (ū1, ū2) ∈ Uad with J(y(ū), ū) <∞ and such that
the following holds: The state y(ū) has a rarefaction center in (0, x1) and a shock-
curve ξ emanating from (0, x2) such that the minimal backward characteristic ξ−
through (t̄, xs(ū)) with xs(ū) := ξ(t̄, ū) ends in the inner of the rarefaction wave
emanating from (0, x1). We set y := y(u) for some u ∈ BU

δ (ū). In what follows, let
δ > 0 be chosen sufficiently small such that the respective results hold. We assume
that ū ∈ Uad satisfies (ND) and therefore also all u ∈ BU

δ (ū). For a suitable
choice of yd this assumption can be guaranteed to hold. Due to Lemma 3.7.1, for
all u ∈ BU

δ (ū) y(t̄, x;u) has the structure

y(t̄, x;u) =


Y1(t̄, x,u), if x ∈]−∞, x1 + u1(x1)t̄]

Y2(t̄, x) = x−x1

t̄ , if x ∈]x1 + u1(x1)t̄, xs(u)]

Y3(t̄, x), if x ∈]xs(u),∞]

, (5.2.19)

where Y1 depends continuously differentiable on x and u, Y2 and Y3 are indepen-
dent of u. The reduced cost functional is Fréchet-differentiable according to Theo-
rem 3.5.5 for any u ∈ BU

δ (ū) with derivative

d

du
J(y(u),u)δu =

∫ x1

−∞
p(0, x)δu1(x) dx

+

∫ x2

x1

p(0, x)δu2(x) dx+ κ

∫ x1

−∞
u1(x)δu1(x) dx+ κ

∫ x2

x1

u2(x)δu2(x) dx

(5.2.20)
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where p denotes the adjoint state according to Definition 3.5.4 with end data

pt̄(x) =

∫ 1

0

ψy (y(t̄, x+;u)) + τ [y(t̄, x;u)], yd(x+) + τ [yd(x)]) dτ.

We first rewrite the end data to

pt̄(x) =

{
y(t̄, x;u)− yd(x) if x ∈ R \ {xs(u)}
[(y(t̄,xs(u);u)−yd(xs(u)))2]

2[y(t̄,xs(u);u)] if x = xs(u)

and then further obtain

pt̄(x) =


Y1(t̄, x,u)− yd(x) if x ∈]−∞, xs(u)[

Y3(t̄, x,u)− yd(x) if x ∈]xs(u),∞[
1
2 (y(t̄, xs(u)−) + y(t̄, xs(u)+)− 2yd(xs(u))) if x = xs(u)

.

(5.2.21)

Using the definition of p in Definition 3.5.4, the construction of Y1 in Lemma 3.7.4
and the presentation of the end data in (5.2.21), we get

p(0, x) =

{
u1(x)− yd(x+ t̄u1(x)) if x ∈]−∞, x1[
1
2 (y(t̄, xs(u)−) + y(t̄, xs(u)+)− 2yd(xs(u))) if x ∈ [x1, x2]

,

which inserting in (5.2.20) yields

d

du
J(y(u),u)δu =

∫ x1

−∞
((1 + κ)u1(x)− yd(x+ t̄u1(x))) δu1(x) dx

+

∫ x2

x1

[
1

2
(y(t̄, xs(u)−) + y(t̄, xs(u)+)− 2yd(xs(u))) + κu2(x)

]
δu2(x) dx.

(5.2.22)

Using the representation of the gradient in (5.2.22), we will see below that the re-
duced cost functional is for all u ∈ BU

δ (ū) twice continuously differentiable with Hes-
sian d

du

(
d

duJ(y(u),u)δu
)
δu given in (5.2.32). The main idea to prove the quadratic

growth condition (5.2.18) is the following: We show that

J(y(û), û)− J(y(ū), ū) ≥ κ̃

2

(
‖û1 − ū1‖22,]−∞,x1] + ‖û2 − ū2‖22,]x1,x2]

)
(5.2.23)

holds for all û ∈ BU
δ (ū) with some constant κ̃ > 0 which does not depend on û. To
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this end, let û ∈ BU
δ (ū) be arbitrarily chosen. Since J(y(ū), ū) <∞, we obtain

lim
x→−∞

|ū1(x)| = 0. (5.2.24)

Therefore, in our setting yd must also satisfy

lim
x→−∞

|yd(x)| = 0. (5.2.25)

We observe that if

lim
x→−∞

|û1(x)| > 0, (5.2.26)

then J(y(û), û) = ∞ and (5.2.23) holds trivially. Hence, we can w.l.o.g. assume
that

lim
x→−∞

|û1(x)| = 0. (5.2.27)

Next, we observe that there exists s ∈ [0, 1] such that

J(y(û), û)− J(y(ū), ū) =
d

du
J(y(ū), ū)(û− ū)

+
1

2

d

du

(
d

du
J(y(u),u)(û− ū)

)
(û− ū)

(5.2.28)

with u = ū + s(û− ū). Using (5.2.24) and (5.2.27), we can deduce that

lim
x→−∞

|u1(x)| = 0. (5.2.29)

Due to the optimality of ū, it holds that

d

du
J(y(ū), ū) = 0. (5.2.30)

Therefore, in order to prove the quadratic growth condition (5.2.23) it is sufficient
to show that

1

2

d

du

(
d

du
J(y(u),u)(û− ū)

)
(û− ū)

≥ κ̃

2

(
‖û1 − ū1‖22,]−∞,x1] + ‖û2 − ū2‖22,]x1,x2]

)
.

(5.2.31)

To this end, we first observe that due to the regularity of yd, Y1, Y2 and Y3, the
gradient of the reduced cost functional in (5.2.22) is again continuously differentiable
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in a neighborhood of ū such that the Hessian of the reduced cost functional is given
by

d

du

(
d

du
J(y(u),u)δu

)
δu

=

∫ x1

−∞
((1 + κ)− y′d(x+ t̄u1(x))t̄) δu1(x)2 dx

+
d

dx
(y(t̄, xs(u)−;u) + y(t̄, xs(u)+;u)− 2yd(xs(u))) · d

du
xs(u)δu

·
∫ x2

x1

δu2(x) dx+ κ ‖δu2‖22,[x1,x2]

=

∫ x1

−∞
((1 + κ)− y′d(x+ t̄u1(x))t̄) δu1(x)2 dx

+ [y(t̄, xs(u))]
d

dx
(y(t̄, xs(u)−;u) + y(t̄, xs(u)+;u)− 2yd(xs(u))) ·

(
d

du
xs(u)δu

)2

+ κ ‖δu2‖22,[x1,x2] ,

(5.2.32)

where we have used that

d

du
xs(u)δu =

1

[y(t̄, xs(u))]

∫ x2

x1

δu2(x) dx,

which holds due to Theorem 3.7.24. Assuming that

y′d(x+ t̄ū1(x))t̄ < 1 +
κ

2
∀x ∈]−∞, x1] (5.2.33)

and

d

dx
(y(t̄, xs(ū)−; ū) + y(t̄, xs(ū)+, ū)− 2yd(xs(ū))) > 0, (5.2.34)

we can deduce from (5.2.32) that (5.2.31) holds with a constant κ̃ = κ
2 that does

not depend on û. Hereby, we have used that [y(t̄, xs(u))] > 0. Therefore, and
since û ∈ BU

δ (ū) was arbitrarily chosen, the quadratic growth condition (5.2.18) is
satisfied with H = L2.

In the following result we examine the convergence of a sequence of local solutions
for (Pγ):

Theorem 5.2.5. Let (A3) and (A4) hold true and let (uγk)k∈N be a sequence of
local solutions for (Pγk) with γk → ∞ for k → ∞. Assume in addition that the
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condition

Jγk(y(uγk),uγk) +
δ

2
‖u− uγk‖2H ≤ Jγk(y(u),u) ∀u ∈ Uad with ‖u− uγk‖U < ε

(5.2.35)

is satisfied for all k ∈ N large enough, where ‖ · ‖H is defined as in Theorem 5.2.3
and constants ε, δ > 0.
Finally, assume that x = a is a point of continuity of y(t̄, ·;u) for all u ∈ Uad.

Then there exists a subsequence again denoted by (uγk)k∈N such that

uγk → ū ∈ Uad w.r.t. ‖ · ‖U,

where ū ∈ Uad is a local solution for (P).

Proof. Due to the compactness of the space Uad, we obtain that (uγk)k∈N has a
identically denoted convergent subsequence with limit ū ∈ Uad. For ū we define the
corresponding problems (P r) and (P rγ ), where we set r = ε

2 .
From the condition (5.2.35), we obtain that uγk is the unique globally optimal

solution for (P
ε
2
γk), if k is sufficiently large. Then we can use the same arguments as

in the proof of Theorem 5.2.1 to show that ū ∈ Uad is a globally optimal solution
for (P

ε
2 ) and hence a local solution for (P).

5.3 Analysis of the optimality system for the
regularized problem

In the following we analyze the optimality system of the regularized problems (Pγ)
which, as we will show, converges under suitable assumptions to the optimality
system of the state-constrained optimal control problem in Theorem 4.2.9. To this
end, we will need the following technical lemma.

Lemma 5.3.1. Assume that (A3) and (A4) are satisfied and consider a sequence
of (uγk)k∈N ⊂ U converging to some control u∗ ∈ U satisfying the requirements in
(ND). Then for all sufficiently large k, the controls uγk also satisfy the requirements
in (ND), respectively. In addition, there exists ε > 0 such that for all j = 1, . . . ,K+1
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it holds true that

lim
k→∞

Yj(t̄, ·;uγk) = Yj(t̄, ·;u∗) in C1 ((xj−1(u∗)− ε, xj(u∗) + ε)) ,

(5.3.1a)

lim
k→∞

d

du
Yj(t̄, ·;uγk) =

d

du
Yj(t̄, ·;u∗) in C ((xj−1(u∗)− ε, xj(u∗) + ε)) , (5.3.1b)

where Y1, . . . , YK+1 denote the functions given by Lemma 3.7.1.

Proof. At first, the fact that uγk satisfies (ND) for sufficiently large k is a direct
consequence of (3.7.4) in Lemma 3.7.1. Now we consider the two limits in (5.3.1).
The limit in (5.3.1b) follows from Lemma 3.7.1. Recalling the construction of the
functions Y1, . . . , YK+1 and the formulas for their derivatives w.r.t. x given in the
Lemmas 3.7.4, 3.7.9, 3.7.12, 3.7.14, 3.7.18 and 3.7.20, we use Lemma 3.2.5 and
obtain that also (5.3.1a) holds true.

Since Uad ⊂ U is nonempty and convex by (A4) and due to Corollary 5.1.1, we
obtain the following necessary optimality conditions. A proof can be found in [41,
Theorem 1.46].

Theorem 5.3.2. Assume that (A3) and (A4) are satisfied and let uγ ∈ Uad be a
local solution for (Pγ) satisfying (ND). Then the variational inequality

d

du
Jγ(y(uγ),uγ) · (u− uγ) ≥ 0 ∀u ∈ Uad

holds true.

Consider a control u ∈ U satisfying the requirements of (ND). Considering the
representation of the corresponding solution y(t̄, ·,u) to the IBVP in (3.7.4) in
Lemma 3.7.1, we can rewrite Jγ(y(u),u) in terms of the functions Y1, . . . , YK+1:

Jγ(y(u),u) = J(y(u),u) +

K+1∑
j=1

zj(u) · γ

2zj(u)

∫ xj(u)

xj−1(u)

(Yj(t̄, x;u)− ȳ(x))
2
+ dx,

(5.3.2)

where zj(u) := (xj(u) − xj−1(u)). The derivative of Jγ(y(u),u) in a direction
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δu ∈ U can be written as follows:

d

du
Jγ(y(u),u)δu =

d

du
J(y(u),u)δu

+

K+1∑
j=1

zj(u)

[
γ

zj(u)

∫ xj(u)

xj−1(u)

( d

du
Yj(t̄, x,u)δu(Yj(t̄, x,u)− ȳ(x))+

)
dx

+
−γ

2zj(u)2

∫ xj(u)

xj−1(u)

(Yj(t̄, x,u)− ȳ(x))2
+ dx · d

du
zj(u)δu

+
γ

2zj(u)
·
(

(Yj(t̄, xj(u);u)− ȳ(xj(u)))2
+ ·

d

du
xj(u)δu

− (Yj(t̄, xj−1(u);u)− ȳ(xj−1(u)))2
+ ·

d

du
xj−1(u)δu

)]
+

γ

2zj(u)

∫ xj(u)

xj−1(u)

(Yj(t̄, x,u)− ȳ(x))2
+ dx · d

du
zj(u)δu

(5.3.3)

Adopting the concepts developed in [43], we introduce for j = 1, . . . ,K + 1 the
Lagrange multiplier estimates by

λj(x;u) :=

{
γ (Yj(t̄, x,u)− ȳ(x))+ , for xj−1(u) ≤ x ≤ xj(u)

0, for x ∈ [a, b] \ [xj(u), xj+1(u)],
(5.3.4)

and in addition the abbreviation

rj(u, γ) :=
γ

2(xj(u)− xj−1(u))

∫ xj(u)

xj−1(u)

(Yj(t̄, x,u)− ȳ(x))2
+ dx. (5.3.5)

Inserting (5.3.4) and (5.3.5) in (5.3.3), we can rewrite the optimality conditions of
Theorem 5.3.2 as follows:

Theorem 5.3.3. Let (A3) and (A4) hold true. Consider a local solution uγ ∈ Uad
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of (Pγ) which satisfies the requirements of (ND). Then for all u ∈ Uad it holds that

d

du
J(y(uγ),uγ)(u− uγ) +

K+1∑
j=1

[∫ xj(uγ)

xj−1(uγ)

d

du
Yj(t̄, x;uγ)(u− uγ)λj(x;uγ) dx

+

∫ xj(uγ)

xj−1(uγ)

∂

∂x
(Yj(t̄, x;uγ)− ȳ(x))

x− xj−1(uγ)

xj(uγ)− xj−1(uγ)
λj(x;uγ) dx

· d

du
xj(uγ)(u− uγ)

+

∫ xj(uγ)

xj−1(uγ)

∂

∂x
(Yj(t̄, x;uγ)− ȳ(x))

xj(uγ)− x
xj(uγ)− xj−1(uγ)

λj(x;uγ) dx

· d

du
xj−1(uγ)(u− uγ)

+ rj(uγ , γ)
d

du
(xj(uγ)− xj−1(uγ))(u− uγ)

]
≥ 0.

(5.3.6)

The terms rj(uγ , γ) for j = 1, . . . ,K+1 go to zero for γ →∞ which we will show
in the following lemma.

Lemma 5.3.4. Assume that (A3) and (A4) hold true. Moreover, consider a se-
quence (uγk)k∈N of local solutions uγk of (Pγk) with γk → ∞ for k → ∞ that
converges to a local solution ū ∈ Uad of (P) satisfying (ND). In addition, assume
that there exists a constant ε > 0 such that the condition

Jγk(y(uγk),uγk) ≤ Jγk(y(u),u) ∀u ∈ Uad with ‖u− uγk‖U < ε (5.3.7)

is satisfied for sufficiently large k ∈ N. Then it holds true that

lim
k→∞

rj(uγk , γk) = 0 for all j = 1, . . . ,K + 1.

Proof. Using (5.3.7) and the fact that uγk → ū for k →∞, we obtain for sufficiently
large k ∈ N that

Jγk(y(uγk),uγk) ≤ Jγk(y(ū), ū) = J(y(ū), ū),

where the last equality is valid since in y(ū) the state constraints are satisfied by
assumption. This yields

γk
2

∫ b

a

(y(t̄, x;uγk)− ȳ(x))2
+ dx ≤ J(y(ū), ū)− J(y(uγk),uγk). (5.3.8)
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Moreover, since ū satisfies (ND), we obtain from Lemma 5.3.1 that uγk satisfies
(ND) for sufficiently large k ∈ N. Using this and (5.3.8), we obtain for sufficiently
large k ∈ N that

0 ≤ lim
k→∞

K+1∑
j=1

γk
2

∫ xj(uγk )

xj−1(uγk )

(Yj(t̄, x,uγk)− ȳ(x))2
+ dx

= lim
k→∞

γk
2

∫ b

a

(y(t̄, x;uγk)− ȳ(x))2
+ dx

≤J(y(ū), ū)− lim
k→∞

J(y(uγk),uγk) = 0,

(5.3.9)

where the last equality holds due to the continuity of J(y(u),u) with respect to
the control u and the fact that uγk converges to ū ∈ Uad. Since the integrands in
(5.3.9) are nonnegative, (5.3.9) yields

lim
k→∞

γk
2

∫ xj(uγk )

xj−1(uγk )

(Yj(t̄, x,uγk)− ȳ(x))2
+ = 0 for all j = 1, . . . ,K + 1. (5.3.10)

Furthermore, we note that since x1(ū) < . . . < xK+1(ū) holds by the assumptions
in (ND) and

xj(uγk)→ xj(ū) for k →∞ for all j = 1, . . . ,K + 1,

we obtain that the terms (xj(uγk)− xj−1(uγk)), j = 1, . . . ,K + 1, are positive
and uniformly bounded away from zero for sufficiently large k, which together with
(5.3.10) implies

lim
k→∞

rj(uγk , γk) = lim
k→∞

γk
2(xj(uγk)− xj−1(uγk))

∫ xj(uγk )

xj−1(uγk )

(Yj(t̄, x,uγk)− ȳ(x))
2
+ dx

= 0

for all j = 1, . . . ,K + 1.

Remark 5.3.5. The quadratic growth condition (5.2.35) implies the condition
(5.3.7) in Lemma 5.3.4.

Considering the sequence from Lemma 5.3.4, we assume in addition that the
Robinson’s CQ (4.2.13) is satisfied in ū. Then the corresponding sequences of La-
grange multiplier estimates are bounded in L1([a, b]) as we will see in the following
lemma, cf. [45, Lemma 9].
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Lemma 5.3.6. Suppose that (A3) and (A4) hold and let (uγk)k∈N denote a sequence
of local solutions of (Pγk) with γk →∞ for k →∞ satisfying (5.3.7) for sufficiently
large k ∈ N and converging to a local solution ū ∈ Uad to (P) which satisfies (ND)
and the Robinson’s CQ (4.2.13). Then the corresponding sequences of Lagrange
multiplier estimates (λj(·;uγk))k∈N are uniformly bounded in L1([a, b]).

Proof. At first, we observe that uγk satisfies (ND) for sufficiently large k by
Lemma 5.3.1. For the rest of the proof, we will always assume that k is sufficiently
large such that the corresponding result holds true. Thus, we obtain from Theo-
rem 5.3.3 that (5.3.6) is satisfied in uγk and we obtain that the following inequality
is valid for all u ∈ Uad:

K+1∑
j=1

∫ xj(uγk )

xj−1(uγk )

−
[

d

du
Yj(t̄, x;uγk)(u− uγk) +

∂

∂x
(Yj(t̄, x;uγk)− ȳ(x))

· x− xj−1(uγk)

xj(uγk)− xj−1(uγk)
· d

du
xj(uγk)(u− uγk)

+
∂

∂x
(Yj(t̄, x;uγk)− ȳ(x)) · xj(uγk)− x

xj(uγk)− xj−1(uγk)

· d

du
xj−1(uγk) · (u− uγk)

]
λj(x;uγk) dx

≤ d

du
J(y(uγk),uγk) · (u− uγk) +

K+1∑
j=1

rj(uγk , γk) · d

du
(xj(uγk)− xj−1(uγk)) · (u− uγk).

Due to Theorem 3.5.5, Lemma 5.3.4 and the compactness of Uad, we obtain that
the right-hand side of the previous inequality is uniformly bounded w.r.t. k and u
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by a constant C > 0:

K+1∑
j=1

∫ xj(uγk )

xj−1(uγk )

−
[

d

du
Yj(t̄, x;uγk)(u− uγk)

+
∂

∂x
(Yj(t̄, x;uγk)− ȳ(x))

· x− xj−1(uγk)

xj(uγk)− xj−1(uγk)
· d

du
xj(uγk)(u− uγk)

+
∂

∂x
(Yj(t̄, x;uγk)− ȳ(x))

· xj(uγk)− x
xj(uγk)− xj−1(uγk)

· d

du
xj−1(uγk) · (u− uγk)

]

· λj(x;uγk) dx ≤ C.

(5.3.11)

We define the sets of points where the functions Yj(t̄, ·, ū) for j = 1, . . . ,K+1 exceed
the upper bound ȳ by

Îj := {x ∈ [xj−1(ū)− ε0, xj(ū) + ε0] : Yj(t̄, x, ū) ≥ ȳ(x)} . (5.3.12)

We observe that Îj ⊂ [xj−1(ū) − ε0, xj(ū) + ε0] holds for j = 1, . . . ,K + 1. The
constant ε0 > 0 is here chosen sufficiently small such that the functions Yj(t̄, ·, ū)

from Lemma 3.7.1 are well-defined on the intervals

[xj−1(ū)− ε0, xj(ū) + ε0] , j = 1, . . . ,K + 1.

In addition, considering a constant ε1 > 0, we introduce

Îj,ε1 =
⋃
x∈Îj

(x− ε1, x+ ε1) ∩ [xj−1(ū)− ε0, xj(ū) + ε0], j = 1, . . . ,K + 1

and note that the sets given by

[xj−1(ū)− ε0, xj(ū) + ε0] \ Îj,ε1 = [xj−1(ū)− ε0, xj(ū) + ε0] \
⋃
x∈Îj

(x− ε1, x+ ε1)

are closed and bounded and thus compact for all j = 1, . . . ,K+1. This compactness,
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the construction of the sets Îj,ε1 and the continuity of (Yj(t̄, ·; ū)− ȳ(·)) yields

Yj(t̄, x, ū)− ȳ(x) ≤ −δ0 < 0 for all x ∈ [xj−1(ū)− ε0, xj(ū) + ε0] \ Îj,ε1

with a constant δ0 > 0. Since the functions Yj(t̄, x;u) and xj(u) are continuous
w.r.t. u and the sequence (uγk)k∈N converges to ū by assumption, we can further
conclude

Yj(t̄, x;uγk)− ȳ(x) ≤ −δ0
2
< 0 for all x ∈ [xj−1(uγk), xj(uγk)] \ Îj,ε1 . (5.3.13)

Thus, using (5.3.13) and the definition of the Lagrange multiplier estimates in
(5.3.4), it turns out that

λj(x,uγk) = 0 for all x ∈ R \ Îj,ε1 , j = 1, . . . ,K + 1 (5.3.14)

if k is large enough.
We observe that since the Robinson’s CQ (4.2.13) is satisfied in ū, Lemma 4.2.10

yields the existence of some control ũ ∈ Uad and a constant ε2 > 0 such that the
estimation

Yj(t̄, x, ū)− ȳ(x) +
d

du
Yj(t̄, x, ū)(ũ− ū)

+
d

dx
[Yj(t̄, x, ū)− ȳ(x)]

(
x− xj−1(ū)

xj(ū)− xj−1(ū)
· d

du
xj(ū)(ũ− ū)

+
xj(ū)− x

xj(ū)− xj−1(ū)

d

du
xj−1(ū)(ũ− ū)

)
≤ −ε2

(5.3.15)

is satisfied on the interval [xj−1(ū), xj(ū)] for all j = 1, . . . ,K + 1

Due to the continuity of the left-hand side of (5.3.15) w.r.t. x, there exists a
constant ε3 with 0 < ε3 < ε0 such that on the extended interval x ∈ [xj−1(ū) −
ε3, xj(ū) + ε3] it holds that

Yj(t̄, x, ū)− ȳ(x) +
d

du
Yj(t̄, x, ū)(ũ− ū)

+
d

dx
[Yj(t̄, x, ū)− ȳ(x)]

(
x− xj−1(ū)

xj(ū)− xj−1(ū)
· d

du
xj(ū)(ũ− ū)

+
xj(ū)− x

xj(ū)− xj−1(ū)
· d

du
xj−1(ū)(ũ− ū)

)
≤ −ε2

2
.

(5.3.16)
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Further on, we note that

(Yj(t̄, x, ū)− ȳ(x)) |Îj∩[xj−1(ū)−ε3,xj(ū)+ε3] ≥ 0 (5.3.17)

holds due to the construction of the set Îj in (5.3.12). Using (5.3.17) and (5.3.16),
we can conclude that

Rj(x, ū) ≤ −ε2

2
∀x ∈ Îj ∩ [xj−1(ū)− ε3, xj(ū) + ε3]

holds true, where

Rj(x,u) :=
d

du
Yj(t̄, x;u)(ũ− u)

+
d

dx
[Yj(t̄, x;u)− ȳ(x)]

(
x− xj−1(u)

xj(u)− xj−1(u)
· d

du
xj(u)(ũ− u)

+
xj(u)− x

xj(u)− xj−1(u)
· d

du
xj−1(u)(ũ− u)

)
.

Since the terms Rj(·, ū) are continuous w.r.t. x, we obtain

Rj(x, ū) ≤ −ε2

4
∀x ∈ Îj,ε1 ∩ [xj−1(ū)− ε3, xj(ū) + ε3]

for for sufficiently small ε1.
Moreover, the continuity of the functions Rj(x,u) and xj(u) w.r.t. the control u

and the fact that the sequence (uγk)k∈N converges to ū for k →∞ together yield

Rj(x,uγk) ≤ −ε2

8
∀x ∈ Îj,ε1 ∩ [xj−1(uγk)− ε3

2
, xj(uγk) +

ε3

2
]. (5.3.18)

Using (5.3.14), we obtain for all j = 1, . . . ,K + 1∫ xj(uγk )

xj−1(uγk )

−Rj(x;uγk)λj(x;uγk) dx

=

∫
[xj−1(uγk ),xj(uγk )]∩Îj,ε1

−Rj(x;uγk)λj(x;uγk) dx.

(5.3.19)

holds true. Since the terms λj(x;uγk) are nonnegative, we obtain from (5.3.18) and
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(5.3.19) ∫ xj(uγk )

xj−1(uγk )

−Rj(x;uγk)λj(x;uγk) dx

=

∫
[xj−1(uγk ),xj(uγk )]∩Îj,ε1

−Rj(x;uγk)λj(x;uγk) dx

≥
∫

[xj−1(uγk ),xj(uγk )]∩Îj,ε1

ε2

8
λj(x;uγk) dx.

(5.3.20)

Using (5.3.14) again, we can conclude that∫
[xj−1(uγk ),xj(uγk )]∩Îj,ε1

ε2

8
λj(x;uγk) dx

=

∫ xj(uγk )

xj−1(uγk )

ε2

8
λj(x;uγk) dx

=

∫
[a,b]

ε2

8
λj(x;uγk) dx.

(5.3.21)

From (5.3.20) and (5.3.21) we obtain that there exists a constant k̄ ∈ N such that∫ xj(uγk )

xj−1(uγk )

−Rj(x;uγk)λj(x;uγk) dx

≥
∫

[a,b]

ε2

8
λj(x;uγk) dx

≥ 0 ∀k ≥ k̄

(5.3.22)

is valid for all j = 1, . . . ,K + 1. Note that the second inequality in (5.3.22) holds
due to λj(x;uγk) ≥ 0.
Finally, we note that the left-hand side of (5.3.22) is equal to the jth summand

of the left side of (5.3.11). Therefore, using (5.3.11) and (5.3.22) results in

K+1∑
j=1

∫
[a,b]

|λj(x;uγk)| dx ≤ 8C

ε2
:= C̃ ∀k ≥ k̄

and the sequences (λj(x;uγk))k∈N are uniformly bounded in L1([a, b]).

In the last theorem of this chapter, we show that if a sequence of local solutions to
the regularized problems (Pγ) converges to a local solution to (P) such that (ND) and
Robinson’s CQ hold, then the corresponding Lagrange multiplier estimates converge
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to measures for which the optimality system in (P) is satisfied. A similar result for
the elliptic case can be found in [43, Thm. 3.1].

Theorem 5.3.7. Suppose that (A3) and (A4) are satisfied and let (uγk)k∈N denote
a sequence of local solutions to (Pγk) with γk → ∞ for k → ∞ satisfying (5.3.7)
for sufficiently large k ∈ N and converging to a local solution ū ∈ Uad of (P).
In addition, assume that ū satisfies (ND) and Robinson’s CQ (4.2.13). Then there
exists a subsequence (uγk)k∈N without change of notation such that the corresponding
sequence of Lagrange multiplier estimates satisfies

λj(·;uγk)
∗−⇀ µj inM([a, b]) ∀j = 1, . . . ,K + 1.

The measures µj ∈M([a, b]) are nonnegative and the optimality conditions in The-
orem 4.2.9 are satisfied in ū for µ̄j = µj |Ij for all j = 1, . . . ,K + 1.

The main idea of this proof is standard and can be found for example in the proof
of Theorem 3.1 in [43]. We will use the boundedness of the Lagrange multiplier
estimates in L1 and then use Theorem 2.2.6 yielding a weakly-∗ convergent sub-
sequences with measures as limits. In a second step, we will prove that for these
measures the conditions in (4.2.13) hold true.

Proof. At first, we obtain from Lemma 5.3.6 that the sequences of Lagrange multi-
plier estimates (λj(·;uγk))k∈N are uniformly bounded in L1([a, b]). Therefore, there
exist subsequences (λj(·;uγk))k∈N that satisfy

λj(·;uγk)
∗−⇀ µj inM([a, b]) ∀j = 1, . . . ,K + 1.

Since (λj(·;uγk)) ≥ 0 holds for all k ∈ N, we obtain that the measures µj ∈M([a, b])

are nonnegative.
It remains to prove that the optimality conditions in Theorem 4.2.9, i.e. (4.2.24a),

(4.2.24b) and (4.2.24c) are satisfied for the choice µ̄j = µj |Ij for j = 1, . . . ,K + 1.
First, we note that (4.2.24a) is trivially satisfied since ū is a local solution to (P).

Next, we show that (4.2.24b) is also satisfied. To this end, we note that

0 ≤ Jγ(y(uγk),uγk) ≤ Jγ(y(ū), ū) = J(y(ū), ū) (5.3.23)

holds due to (5.3.7) for sufficiently large k ∈ N. Using the definition of Jγk(y(u),u)

in (Pγ) and λj(·;u) in (5.3.4), (5.3.23) is equivalent to

0 ≤
K+1∑
j=1

∫ xj(ū)

xj−1(ū)

(Yj(t̄, x;uγk)− ȳ(x))λj(x;uγk) dx
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≤ 2 · (J(y(ū), ū)− J(y(uγk),uγk)).

Since uγk converges to ū, the continuity of the terms above w.r.t. u yields

0 ≤ lim
k→∞

K+1∑
j=1

∫ xj(ū)

xj−1(ū)

(Yj(t̄, x;uγk)− ȳ(x))λj(x;uγk) dx

≤ 2 · lim
k→∞

(J(y(ū), ū)− J(y(uγk),uγk)) = 0.

From this result we further obtain

0 = lim
k→∞

K+1∑
j=1

∫ xj(ū)

xj−1(ū)

(Yj (t̄, x;uγk)− ȳ (x)) · λj(x;uγk) dx

= lim
k→∞

K+1∑
j=1

∫ xj(ū)

xj−1(ū)

(Yj (t̄, x, ū)− ȳ (x)) · λj(x;uγk) dx

+ lim
k→∞

K+1∑
j=1

∫ xj(ū)

xj−1(ū)

(Yj (t̄, x;uγk)− Yj (t̄, x, ū)) · λj(x;uγk) dx.

(5.3.24)

Since the sequences (λj(·;uγk)))k∈N are uniformly bounded in L1([a, b]) and the
mappings

BU
ρ (ū) 3 w 7→ Yj (t̄, ·;u) ∈ C([xj−1(ū), xj(ū)])

are continuous for sufficiently small ρ > 0 and uγk → ū, we get

lim
k→∞

K+1∑
j=1

∫ xj(ū)

xj−1(ū)

(Yj (t̄, x;uγk)− Yj (t̄, x, ū)) · λj(x;uγk) dx = 0. (5.3.25)

If we insert (5.3.25) in (5.3.24) and use that

λj(·;uγk)→ µj in M([a, b]) ∀j = 1, . . . ,K + 1,

we can conclude

0 = lim
k→∞

K+1∑
j=1

∫ xj(ū)

xj−1(ū)

(ȳ (x)− Yj (t̄, x, ū)) · λj(x;uγk) dx

=

K+1∑
j=1

∫ xj(ū)

xj−1(ū)

(ȳ (x)− Yj (t̄, x, ū)) dµj(x)

(5.3.26)
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and thus (4.2.24b) is proven.
It remains to show that (4.2.24c) also holds true. To this end, we first introduce

the following abbreviations:

Īj1(x;u) :=
∂

∂x
(ȳ(x)− Yj(t̄, x;u)) · x− xj−1(u)

xj(u)− xj−1(u)

Īj2(x;u) :=
∂

∂x
(ȳ(x)− Yj(t̄, x;u)) · xj(u)− x

xj(u)− xj−1(u)

We note that since the optimal solutions uγk to (Pγk) satisfy (ND) if k is sufficiently
large, Lemmas 5.3.1, 5.3.3 and 5.3.4 together yield

lim
k→∞

[
d

du
J(y(uγk),uγk)(u− uγk)

+

K+1∑
j=1

(∫ xj(uγk )

xj−1(uγk )

d

du
Yj(t̄, x;uγk)(u− uγk)λj(x;uγk) dx

+

∫ xj(uγk )

xj−1(uγk )

Īj1(uγk , x) · λj(x;uγk) dx · d

du
xj(uγk)(u− uγk)

+

∫ xj(uγk )

xj−1(uγk )

Īj2(uγk , x) · λj(x;uγk) dx · d

du
xj−1(uγk)(u− uγk)

)]
≥ 0

for all u ∈ Uad. As a next step, we want to replace the integration limits xj(uγk)

by xj(ū) for all j = 1, . . . ,K + 1. To this end, we use the variable transformation

x = xj−1(uγk) +
x̃− xj−1(ū)

xj(ū)− xj−1(ū)

(
xj(uγk)− xj−1(uγk)

)
(5.3.27)
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and deduce that

lim
k→∞

[
d

du
J(y(uγk),uγk)(u− uγk)+

K+1∑
j=1

(∫ xj(ū)

xj−1(ū)

Ỹj(t̄, x̃;uγk)(u−uγk)
xj(uγk)−xj−1(uγk)

xj(ū)−xj−1(ū)
λ̃j(x̃;uγk) dx̃

+

∫ xj(ū)

xj−1(ū)

Ĩj1(x̃;uγk) · xj(uγk)− xj−1(uγk)

xj(ū)− xj−1(ū)
λ̃j(x̃;uγk) dx̃

· d

du
xj(uγk)(u− uγk)

+

∫ xj(ū)

xj−1(ū)

Ĩj2(x̃;uγk) · xj(uγk)− xj−1(uγk)

xj(ū)− xj−1(ū)
λ̃j(x̃;uγk) dx̃

· d

du
xj−1(uγk)(u− uγk)

)]
≥ 0.

(5.3.28)

Hereby, we use the abbreviations

... = xj−1(uγk) +
x̃− xj−1(ū)

xj(ū)− xj−1(ū)

(
xj(uγk)− xj−1(uγk)

)
,

Ỹj(t̄, x̃;uγk) :=
d

du
Yj(t̄,

...;uγk), Ĩji (x̃;uγk) := Īji (
...;uγk),

λ̃j(x̃;uγk) := λj(
...;uγk) j = 1, . . . ,K + 1, i = 1, 2.

(5.3.29)

Due to the boundedness of the sequences (λj(x;uγk))k∈N in L1([a, b]) by

Lemma 5.3.6, the sequences
(
λ̃j(·;uγk)

)
k∈N

are also bounded in L1([a, b]).

Therefore, using Theorem 2.2.6, we obtain a further subsequence
(
λ̃j(·;uγk)

)
k∈N

satisfying

λ̃j(·;uγk)
∗−⇀ µ̃j inM([a, b]) for all j = 1, . . . ,K + 1, (5.3.30)

where µ̃j ∈M([a, b]) are nonnegative measures. Lemma 5.3.1 further yields

Ỹj(t̄, ·;uγk)→ d

du
Yj(t̄, ·; ū), Ĩji (·;uγk)→ Īji (·; ū) in C([xj−1(ū), xj(ū)]) (5.3.31)

for k → ∞. Using (5.3.30), (5.3.31) and xj(uγk )−xj−1(uγk )

xj(ū)−xj−1(ū) → 1, we can rewrite
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(5.3.28) by

d

du
J(y(ū), ū)(u− ū) +

K+1∑
j=1

[ ∫ xj(ū)

xj−1(ū)

d

du
Yj(t̄, x, ū)(w − ū) dµ̃j(x)

+

∫ xj(ū)

xj−1(ū)

Īj1(ū, x) dµ̃j(x) · d

du
xj(ū)(u− ū)

+

∫ xj(ū)

xj−1(ū)

Īj2(ū, x) dµ̃j(x) · d

du
xj−1(ū)(u− ū)

]
≥ 0.

Thus, (4.2.24c) is satisfied for the choice

µ̄j = µ̃j |Ij for all j = 1, . . . ,K + 1.

It remains to show that (4.2.24c) also holds for the choice µ̄j = µj |Ij . To this end,
we prove

µ̃j = µj inM(Ij) for all j = 1, . . . ,K + 1. (5.3.32)

Due to the continuity of the functions xj(u) with j = 1, . . . ,K+ 1 and the fact that
uγk → ū, choosing a small constant ε > 0 yields for sufficiently large k

xj−1(ū)− ε ≤ xj−1(uγk) < xj(uγk) ≤ xj(ū) + ε for all j = 1, . . . ,K + 1

which is equivalent to

(xj−1(uγk), xj(uγk)) ⊂ Jj,ε for all j = 1, . . . ,K + 1 (5.3.33)

where Jj,ε = [xj−1(ū)− ε, xj(ū) + ε].
We note that the weak-* convergence of (λj(·;uγk))k∈N to µj ∈M ([a, b]) implies

that for all j = 1, . . . ,K + 1 and for arbitrary ϕj ∈ C(Jj,ε) it holds that∫
Jj,ε

ϕj(x) dµj(x) = lim
k→∞

∫
Jj,ε

ϕj(x)λj(x;uγk) dx.
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Next we observe that (5.3.33) and (5.3.4) yield∫
Jj,ε

ϕj(x) dµj(x)

= lim
k→∞

∫
Jj,ε

ϕj(x)λj(x;uγk) dx

= lim
k→∞

∫ xj(uγk )

xj−1(uγk )

ϕj(x)λj(x;uγk) dx.

(5.3.34)

Next, we apply the variable transformation in (5.3.27) to the right-hand side of
(5.3.34) and obtain∫

Jj,ε

ϕj(x) dµj(x) = lim
k→∞

∫ xj(ū)

xj−1(ū)

ϕ̃j(x̃)λ̃j(x̃;uγk) dx̃,

where

ϕ̃j(x̃) :=ϕj

(
xj−1(uγk) +

x̃− xj−1(ū)

xj(ū)− xj−1(ū)

(
xj(uγk)− xj−1(uγk)

))

· xj(uγk)−xj−1(uγk)

xj(ū)− xj−1(ū)

and λ̃ is defined according to (5.3.29). Using this definition, we further obtain∫
Jj,ε

ϕj(x) dµj(x) = lim
k→∞

∫ xj(ū)

xj−1(ū)

ϕ̃j(x̃)λ̃j(x̃;uγk) dx̃

= lim
k→∞

∫
Jj,ε

ϕ̃j(x̃)λ̃j(x̃;uγk) dx̃.

(5.3.35)

Since ϕj ∈ C(Jj,ε) and xj(uγk)→ xj(ū) for k →∞, we can conclude that

ϕ̃j(·)→ ϕj(·) in C(Jj,ε) ∀k = 1, . . . ,K + 1. (5.3.36)

Using the uniform boundedness of
(
λ̃j(·;uγk)

)
k∈N

in L1([a, b]), (5.3.30) and

(5.3.36), we obtain from (5.3.35) for all j = 1, . . . ,K + 1 that∫
Jj,ε

ϕj(x) dµj(x) = lim
k→∞

∫
Jj,ε

ϕ̃j(x̃)λ̃j(x̃;uγk) dx̃

=

∫
Jj,ε

ϕj(x̃)µ̃j(x̃) dx̃
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holds true. Since the test functions ϕj ∈ C(Jj,ε) are arbitrarily chosen, we can
conclude that (5.3.32) holds and therefore (4.2.24c) is also satisfied if we choose
µ̄j = µj |Ij for j = 1, . . . ,K + 1.





CHA PTER 6
Conclusion and outlook

We have analyzed optimal control problems governed by scalar balance laws and
pointwise state constraints, where the partial differential equation is considered on
bounded domains and subject to initial as well as boundary conditions. For the
optimal control problem we have shown not only the existence of a global optimal
control, but moreover, we have derived necessary optimality conditions supposing
that the optimal control is non-degenerated and satisfies Robinson’s CQ. We could
further show that Robinson’s CQ always holds under suitable assumptions on the
source term and the set of admissible controls. More precisely, we have applied the
results on the structure of solutions to hyperbolic balance laws in [69, 81] yielding the
continuous Fréchet-differentiability of the reduced cost functional via the concept of
shift-differentiability. Following the ideas of [69, 71], we could reduce the restrictions
of the setting in [69] to the case that rarefaction centers can be shifted. On the other
hand, these results on the structure played a key-role in deriving the optimality
conditions. Particularly, evaluated at almost all time points, the entropy solution
y(t̄, ·,u) is piecewise smooth, where the smooth parts Y1, . . . , YK+1 are separated
by points x1, . . . , xK consisting of discontinuities and points lying on boundaries
of rarefaction waves. The analysis of the structure of entropy solutions in [69,
81] shows that Y1, . . . , YK+1 and x1, . . . , xK are functions depending continuously
Fréchet-differentiably on the control. We introduced these functions as auxiliary
state variables which we have used to derive optimality conditions. In the end, we
succeeded to reformulate the optimality system in terms of the original state.
In order to approximate the state-constrained problem, we have discussed the

Moreau-Yosida regularization approach and carried out a convergence analysis. For
a sequence of optimal solutions to the regularized problems where the penalty pa-
rameter goes to zero, we have proven strong convergence to an optimal solution
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of the original problem with pointwise state constraints. Finally, we could prove
convergence of the optimality conditions for the regularized problems to the op-
timality system of the state-constrained optimal control problem. More precisely,
supposing a sequence of solutions to the regularized problems converging to a local
solution ū ∈ Uad to the state-constrained problem, we have constructed Lagrange
multipliers estimates which we have proven to be bounded in L1. Adopting the
Banach-Alaoglu Theorem, we have proven that a subsequence converges weakly-∗

to nonnegative measures µ1, . . . , µK+1. Choosing these measures as Lagrange mul-
tipliers, we have finally shown that (ū, µ1, . . . , µK+1) is a solution to the optimality
system for the problem with state constraints. The basic structure of the proofs bases
on the auxiliary state variables and on standard techniques which are used in the
convergence analysis of the Moreau-Yosida type regularization for state-constrained
optimal control problems with elliptic or parabolic equations as constraints, see,
e.g., [43, 62, 63, 64].
One possible extension of the results in this thesis is to apply the developed

method to networks with node conditions, for example traffic light problems, where
the traffic flow is modeled by the LWR-model as proposed in [56, 74]. Building up
on the sensitivity and adjoint calculus introduced in [71], one can derive optimality
conditions for state-constrained optimal control problems on networks with node
conditions.
In this thesis we have restricted ourselves to scalar hyperbolic balance laws. But

since several physical models involve systems of hyperbolic balance laws, e.g., the
compressible Euler equations which describe the gas flow in a pipe, it is desirable
to extend the developed methods to consider systems of balance laws. The analysis
of the scalar case strongly relies on the structural properties of entropy solutions
yielding the auxiliary state variables Y1, . . . , YK+1 and x1, . . . , xK . One can show
that the concept of shift-differentiability developed in [81] can be generalized to
systems, but unfortunately Theorem 3.3 in [31] which was crucial for the derivation
of the structural properties for the scalar case in [81] does not hold in the case of
systems. Another possibility is to adopt the results developed in [17] where the
authors consider piecewise Lipschitz continuous solutions to systems of hyperbolic
balance laws and only allow variations of the control preserving this structure. Al-
though this seems very restrictive, the concepts developed [17] may be applied to
generalized Riemann problems, since Li and Yu have proved in [55] that solutions
to this class of problems are for a sufficiently small time interval piecewise smooth
and the structure is stable under small variations of the initial data. Developing a
sensitivity and adjoint calculus for generalized Riemann problems would be the first
step to treat more complex problems with systems of hyperbolic balance laws like
the optimal control of the gas flow in a network.



List of symbols

‖x‖1 ‖x‖1 :=
d∑
k=1

|xk| for all x ∈ Rd.

‖x‖2 ‖x‖2 :=

√
d∑
k=1

x2
k for all x ∈ Rd.

BXε (f) BXε (f) = {g ∈ X : ‖g − f‖X ≤ ε}, where X is a Banach space
and ε > 0.

x · y x · y :=
d∑
k=1

xkyk for all x, y ∈ Rd.

int Ω interior of Ω.

Ωcl closure of Ω.

1Ω indicator function for the set Ω.

ϕ|A restriction of the function ϕ to the set A.

suppϕ support of a function ϕ.

[ϕ(x)] [ϕ(x)] = ϕ(x−)− ϕ(x+).

I (α, β) I (α, β) := [min(α, β),max(α, β)].

(·)+ (·)+ := max(·, 0).

Lp(Ω) Lebesgue space with p ∈ [1,∞] and Ω ⊂ Rd measurable.

‖·‖Lp(Ω) Lp-Norm with ‖f‖p,Ω :=
(∫

Ω
|f(x)|p dx

) 1
p for p ∈ [1,∞[

and ‖f‖∞,Ω := ess sup
x∈Ω

|f(x)| for p =∞.
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178 List of symbols

Lploc(Ω) set of all measurable f : Ω→ R with f |K ∈ Lp(Ω)

for all compact K ⊂ Ω, where p ∈ [1,∞] and Ω ⊂ Rd
measurable.

Lp(Ω;X) Lebesgue-Bochner space, where X is a Banach space,
p ∈ [1,∞] and Ω ⊂ Rd measurable.

C(Ω) space of continuous functions, where Ω ⊂ Rd.

‖f‖C (Ω) sup norm, ‖f‖C (Ωcl) := sup
x∈Ωcl

|f(x)|.

Ck(Ω) space of k-times continously differentiable functions,
where Ω ⊂ Rd open and k ∈ N0.

‖f‖Ck(Ω) ‖f‖Ck(Ω) :=
∑
|β|≤k

∥∥Dβf
∥∥
C (Ω)

Ck(Ωcl) space of k-times continously differentiable functions
such that all derivatives admit continous extensions
to Ωcl, where Ω ⊂ Rd is open and bounded.

Ck,α(Ωcl) denotes the usual Hölder space with k ∈ N0,
α ∈]0, 1] and Ω ⊂ Rd open.

Ckc (Ω) Ckc (Ω) :=
{
f ∈ Ck(Ω) : f has compact support in Ω

}
C∞(Ω) C∞(Ω) :=

⋂
k∈N

Ck(Ω)

C∞c (Ω) C∞c (Ω):={f ∈ C∞(Ω) :f has compact support in Ω}

Ck(Ω;X) analogously defined as Ck(Ω), where X is a Banach
space.

PCk(I;x1, . . . , xN ) space of piecewise k-times continuously differentiable
functions f with possible discontinuities at points
a < x1 < · · · < xN < b for a closed interval I ⊃ [a, b]:
f |Ik ∈ Ck(Ik) for k = 1, . . . , N + 1 with
Ik=[xi−1, xi] if k ∈ {2, . . . N} and I1 =I ∩ {x ≤ x1},
IN+1 = I ∩ {x ≥ xN}.

W k,p(Ω) denotes for Ω ⊂ Rd open, p ∈]0,∞] and k ≥ 0 the
usual (fractional) Sobolev space.

D(Ω) denotes the space of test functions for distributions,
where Ω ⊂ Rd is open.
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D′(Ω) denotes the space of distributions, where Ω ⊂ Rd is open.

M(Ω) denotes the space of signed Radon measures on a compact
set Ω ⊂ Rd.

BV (Ω) denotes the space of functions with bounded variation on an
open set Ω ⊂ Rd.

‖·‖BV,Ω ‖·‖BV,Ω = ‖·‖1,Ω + ‖·‖TV,Ω

(·, ·)H denotes the inner product of a Hilbert space H where we set
(·, ·)2,Ω if H = L2(Ω).
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