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Zusammenfassung

In den Natur- und Ingenieurswissenschaften ist der Gebrauch von mathematischen
Modellen das Standardwerkzeug, um physikalische Phänomene zu beschreiben,
technische Prozessketten zu steuern und Designprobleme zu lösen. Insbesondere
dynamische Prozesse sind von großem Interesse. Eine einwandfreie Modellierung
dynamischer Systeme stellt nicht selten eine Herausforderung dar. Unsicherheit wird
zunehmend in allen Phasen des Produktlebenszyklus wahrgenommen: im Design, in
der Produktion und in der Nutzung. Diese Unsicherheit hat ihren Ursprung in uns
unbekannten, unvollständigen oder unpräzisen Modellierungsannahmen bzw. Glei-
chungen und sie äußert sich aufgrund von Unwissen bzw. Vernachlässigung von
Wissen, schlechten numerischen Approximationsverfahren oder menschlichem Ver-
sagen. Deswegen ist es notwendig, Modellunsicherheit in einem möglichst frühen
Stadium der Produktentwicklung zu beherrschen.

In dieser Dissertation wird ein neuer Algorithmus zur Identifizierung von Mo-
dellunsicherheit basierend auf Methoden des optimalen Designs von Experimenten
mit partiellen Differentialgleichungen (PDE) als Nebenbedingungen und der Theo-
rie der statistischen Testverfahren vorgestellt. In einem ersten Schritt stellen wir
fünf verschiedene Ansätze zur Parameterschätzung aus verrauschten Daten vor, die
entweder auf der frequentistischen oder der Bayes’schen Sicht von Wahrscheinlich-
keit aufbauen, und bestimmen die a posteriori Wahrscheinlichkeitsverteilung der
geschätzten Parameter. In einem zweiten Schritt stellen wir den klassischen Ansatz
zu optimalem Design von Experimenten vor und zeigen, dass dieser ungeeignet
ist wenn PDE Nebenbedingungen mit einbezogen werden. Folglich gehen wir auf
moderne Methoden zur optimalen Sensorplatzierung ein und geben eine Erweite-
rung zur optimalen Wahl von Randdaten an. Dazu stellen wir ein Optimierungspro-
blem mit PDE Nebenbedingungen auf, welches die Güte der Parameterschätzung,
die Kosten der eingesetzten Sensoren und einen Regularisierer für die Randdaten
minimiert. Der Kostenterm ist ein Strafterm, der zu dünnbesetzten Sensorvariablen
führt. Zur Lösung dieses Optimierungsproblems benutzen wir das Adjungiertenkal-
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kül. Aus den Messdaten, die innerhalb dieses optimierten Experiments gesammelt
wurden, werden dann die Werte der Modellparameter mit kleiner Varianz geschätzt.
In einem dritten Schritt konstruieren wir einen Hypothesentest, um die Annahme zu
falsifizieren, dass wiederholte Modellkalibrierung und Validierung dieselben Para-
meterwerte innerhalb eines kleinen Konfidenzgebietes liefern. Falls ein neuer Mess-
datensatz zu Werten außerhalb dieses Vertrauensbereichs führt, dann ist Model-
lunsicherheit mit einer gegebenen kleinen Wahrscheinlichkeit für den Fehler erster
Art detektiert worden. Wir beweisen, dass im Fall von linearen Modellen, unser Al-
gorithmus mit der bereits gegebenen kleinen Wahrscheinlichkeit fälschlicherweise
Modellunsicherheit detektiert. Außerdem beweisen wir, dass je kleiner das Konfi-
denzgebiet ist, desto besser werden falsche lineare Modell auch als solche erkannt.

Im letzten Teil dieser Dissertation wenden wir unseren Algorithmus zur Identi-
fizierung von Modellunsicherheit auf verschiedene Modelle zweier technischer Sys-
teme an. Das Erste ist eine mechanische Presse zur Umformung von Bauteilen unter
sehr großen Kräften. Das Zweite ist ein zweidimensionaler Prototyp der oberen Tra-
gestruktur eines Flugzeugfahrwerks. Zum Schluss diskutieren wir die numerischen
Ergebnisse und geben einen Ausblick, wie ein moderner Ansatz zur optimalen Wahl
von Randdaten für ein optimales Experiment mit PDE Nebenbedingungen bei hoch-
dimensionalen Parametern aussehen könnte.
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Abstract

In science and technology, mathematical models are the standard tool to describe
physical phenomena, to master engineering processes and to solve design problems.
Especially dynamic processes are of profound interest and their accurate modeling
is still challenging. One often encounters uncertainty in the design, production
and usage phase of real products. Much of this uncertainty originates in unknown,
incomplete or inadequate modeling assumptions and equations due to lack or dis-
regard of knowledge, bad numerical approximation schemes and human shortcom-
ings. Therefore, it is important to master model uncertainty in an early stage of
product development.

In this thesis we introduce a novel algorithm to identify model uncertainty based
on methods from optimum experimental design with partial differential equation
(PDE) constraints and statistical hypothesis testing. We first introduce five different
approaches based on a frequentist and a Bayesian probabilistic perspective to esti-
mate the parameter’s a posteriori probability distribution from noisy data. Second,
we show that the classical approach to optimum experimental design is insufficient
to handle PDE constraints. Furthermore, we examine modern approaches to op-
timal sensor placement and make an extension to optimal input configuration. In
so doing, we introduce a PDE-constrained optimization problem, which adds a cost
term to sparsify the number of used sensors and a smooth regularization for the
inputs to the objective function, and solve it with an adjoint approach.

The data which are collected in an optimally designed experiment are used to
infer parameter estimates that have a small variance. In the third step, we construct
a hypothesis test to falsify the assumption that repeated calibration and validation
procedures should yield parameter values in the same small confidence region. If
a new set of data leads to estimates that lie outside of this confidence region, then
model uncertainty is detected with a given small threshold to the Type I error prob-
ability. We prove that for linear models the probability that our algorithm falsely
identifies model uncertainty is identical to the small test level. We also prove that
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the smaller the confidence region the better the rejection of false linear models.
Finally, we apply our algorithm to detect model uncertainty in mathematical

models of a forming machine and in the linear-elastic model of vibrations in a truss.
In the first case, we have a real technical system and in the second case we have a
two-dimensional representative of the upper truss structure of a landing gear. We
conclude this thesis with an evaluation of the numerical results and we give an out-
look on large-scale problems in optimal input configuration with PDE constraints.
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Notation and Symbols

N natural numbers 1, 2, . . .
R real numbers
ODE(s), PDE(s) ordinary/partial differential equation(s)
PE parameter estimation problem(s)
OED optimum experimental design
CDF cumulative probability distribution function
FEM finite element method
min, max minimize/maximize
s.t. subject to
const. constant
log natural logarithm
exp(·) exponential function
sign(·) signum function
; empty set
I identity matrix
x>, A> transpose of a vector x ∈Rn/a matrix A∈Rm×n

A� 0 symmetric, positive definite matrix A∈Rn×n

S+n (R) set of all real symmetric, positive definite n× n matrices
‖x‖2 Euclidean norm of a vector x ∈Rn

‖x‖2
C x>C x with a symmetric, positive definite matrix C ∈Rn×n

limsup limes superior
ess sup essential supremum
limx↘x0

f (x) one-sided limit limt→0 f (x0 + |t|)
o(‖x − x0‖) class of functions f such that limx→x0

‖ f (x)‖ · ‖x − x0‖
−1 = 0

1A(·) characteristic function for a subset A⊂ B
conv M convex hull of a set M
Lin(w1, . . . , wn) linear hull of the vectors/functions w1, . . . , wn
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range(A) image of the linear mapping A :Rm→Rn, x 7→ Ax
Diag(σ1, . . . ,σn) diagonal matrix S ∈Rn×n with Skk = σk

rep(w1, . . . , wn; m) vector v ∈Rn·m of m copies of (w1, . . . , wn)> ∈Rn

∂x f Jacobian Jx( f ) of f with respect to x
∇x f ,∇ f gradient Jx( f )> of f with respect to x (x omitted if it is clear)
∂ 2

x x f Hessian of f



∂ 2
x x f , (ν1,ν2)

�

second directional derivative of f in the directions (ν1,ν2)
d/dt total derivative with respect to t
y ′(t), ẏ derivative of a one-dimensional function y :R→R

P[Z < c] probability that the random variable Z is less than c
P[A |B] conditional probability of two events A and B
Ez[ f (Z)] expectation value of a function f of a random variable Z
Var[Z] variance matrix of a random variable Z
Cov[X , Y ] covariance of two random variables X , Y
N (a, b2) normal distribution with mean value a and variance b2

N (µ,Σ) multivariate Gaussian distribution with mean vector µ ∈ Rn

and variance matrix Σ ∈Rn×n

∂ G boundary of a domain G ⊂Rd

L2(G) space of quadratically integrable functions over a domain G
[·, ·]G L2 scalar product over the domain G
H1(G) Sobolev space of all functions f ∈ L2(G) such that ∇ f ∈ L2(G)

in a weak sense
L∞(0, T ) space of essentially bounded measurable functions over (0, T )
L2(G)d d-dimensional vector space of L2(G) functions
L∞(0, T ; H1(G)2) Bochner space of vector valued functions f (t, ·) ∈ H1(G)2 such

that ‖ f (·, x)‖H1(G)2 ∈ L∞(0, T )
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CHAP T ER 1

Introduction

What we observe is not nature itself, but nature exposed to our method of questioning.

– W. Heisenberg, Physics and Philosophy: The Revolution in Modern Science

Mathematics has been the most successful language to describe and predict natural
phenomena, engineering processes and economic behavior. It is precisely because of
our mental ability to transfer aspects of reality into the abstract world that enables
us to make generalized statements. Models are, in a sense, an image of reality
into mathematical abstraction. They contain a physical law, a working principle
or just axiomatic assumptions encapsulated in the language of functional relations.
Moreover, their scope and complexity is specified by the designer. These functional
relations rule between state variables, like physical quantities such as displacements,
velocities or accelerations, model parameters, like material constants or geometric
properties, and inputs, like boundary forces or initial conditions. However, the
modeling process is not free from uncertainty and errors. Various types and sources
of uncertainty exist each of which have a different impact on the descriptive and
predictive quality of models. It has been observed that the dominant source of model
uncertainty is lack or disregard of knowledge, i.e., unknown, missing or simplified
functional relations. Therefore, mathematical models are subject to a verification,
calibration and validation process [100] in which the model output is compared to
new observations and the model itself is evaluated, i.e., model parameters are tuned
and functional terms are altered, removed or redesigned.

The key to improve our models of reality is experimental evidence. Quantities
that are measured in an experiment or collected from individuals or repositories are
called data. However, it is very likely that the value, interval or distribution of data
is unknown, incomplete or insufficient. This mainly affects the model calibration
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Chapter 1. Introduction

process in which model parameters are tuned such that the model’s output correctly
represents the quantity of interest. In general, the true values of the model pa-
rameters are not known, thus, the better the data the more precise the parameter
estimates. In principle, it is not yet possible to conduct a perfect experiment yield-
ing noiseless data. There is an intrinsic randomness in the measurement process
itself which is often called aleatoric uncertainty [85], at least on the quantum scale
[33, 62] but also beyond, and which cannot be removed. Thus, data uncertainty
propagates to the model parameters and eventually to the model’s output, impair-
ing the prediction quality. In order to mitigate these effects the experimenter can
optimize the design of the experiment from which measurements are collected such
that the variance of the estimated model parameters becomes small. However, the
impact of model uncertainty is considered to be more severe than the effects of data
uncertainty.

The acquisition of scientific knowledge is based on philosophic principles which
have been developed and debated over centuries. In opposition to inductive reason-
ing, Popper [106] introduced another philosophy of science known as the falsifica-
tion principle. In this view a hypothesis in order to be considered scientific must be
able to be tested and refuted by experimental evidence. Thus, all present scientific
knowledge is provisional and subject to change if new data arise which contradict
the model. Even though this view has been criticized for being too rigid it can be
considered as safe to distinguish science from non-science. In fact, scientific knowl-
edge progresses if a hypothesis is refuted by contrary evidence and a new theory is
constructed which better explains the measurement data.

A historic example where the falsification principle was successfully employed
is black body radiation. The Rayleigh-Jeans law states that the energy distribution
upon the eigenfrequencies is continuous such that the energy density of a black
body radiator is inverse proportional to the fourth power of the wave length. This
law was validated by experiments with light in the infrared range. However, for
ultraviolet radiation the Rayleigh-Jeans model predicted a very high energy density
that goes to infinity if the wavelength approaches zero. In the sequel, the Rayleigh-
Jeans law was falsified by experimental evidence from the sun emission spectrum. It
was M. Planck who came up with the revolutionary idea that the energy distribution
upon each eigenfrequency of a black body radiator is quantized, leading to a much
better model which is today known as Planck’s radiation law. For more details the
reader may consult [33, Sec. 3.1].

We contribute to the Popperian view of science by introducing an algorithm to
falsify a mathematical model in the presence of controlled data uncertainty.
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1.1. Our Approach to Model Uncertainty

Real technical systems, such as load-bearing structures, typically have a multi-
tude of uncertain parameters and often exhibit unexpected physical effects. Thus,
one frequently encounters uncertainty in all phases of their life-cycle. In this work
we consider two systems with high safety requirements: a highly loaded forming
machine and a landing gear’s upper truss structure. The deflection of several com-
ponents of a forming press during its motion is of high technical importance. We
seek a model that accurately predicts the elastic behavior at low excitation frequen-
cies. Because of the complexity of the forming machine and its components, a
less accurate lumped parameter model together with a friction model is employed.
Hence, it is necessary to estimate some model parameters, such as stiffnesses of bars
and beams, after the assembly of the machine. Using these estimates, the model’s
correctness can be evaluated and it can be falsified by a hypothesis test. By similar
reasoning, the material constants of the upper truss structure of an airplane’s land-
ing gear must be estimated from data in the usage phase to test the model’s fitness.
It is not uncommon due to manufacturing tolerances, lack of materials or human
shortcomings in the production process that the original model may fail to predict
the behavior of the real truss under load or excitation.

1.1 Our Approach to Model Uncertainty

In this thesis we introduce a novel algorithm to detect and quantify model uncer-
tainty using parameter estimation, optimum experimental design and statistical hy-
pothesis testing. We assume that the model parameters have a true value and that
it is possible to approximate this value by repeated inference from data. By an
optimally designed experiment we minimize the Gaussian confidence ellipsoid, de-
termined by the covariance matrix of the a posteriori probability distribution, where
the true values are assumed to be. If the model is correct, then repeated calibration
and validation procedures should yield parameter values inside this confidence el-
lipsoid. However, if a set of measurements leads to parameters that lie outside this
region, then the model is incorrect and we reject it in the context of a hypothesis
test with a threshold to the Type I error probability. We use the p-value of the test
not only to detect but also to quantify model uncertainty: the lower the p-value, the
higher the model uncertainty.

The ideas of our approach originated at the Collaborative Research Center (CRC)
805 within the Subproject A3. We were able to apply our algorithm to a real-sized
technical system thanks to a collaboration with the Institute for Production Engi-
neering and Forming Machines (PtU) in the working group of Prof. Dr.-Ing. Peter
Groche at TU Darmstadt.

3



Chapter 1. Introduction

1.2 Literature Review

Parameter estimation and inverse problems are a well-studied but still ongoing field
of research [10, 22, 125]. Methods for parameter estimation and their a poste-
riori probability distribution range from (nonlinear) least-squares [11, 34, 127],
(asymptotic) maximum likelihood [31, 112] and (asymptotic) Bayesian inference
[125, 130]. These methods differ due to their probabilistic perspective and espe-
cially for nonlinear models. What is more, parameter estimation plays an important
role in machine learning [96].

Optimum experimental design is a broad field of research [43, 47, 108, 133].
The pure sensor placement problem has been studied for various objective functions
like measures of the Fisher Information matrix, Bayes factors, condition numbers or
via a modal analysis [26, 46, 47, 63, 102]. Robust formulations like the min-max
approach have been introduced by [9, 51, 132] to deal with uncertain priors and
data uncertainty. We refer to these methods as the classical approach to optimal
design of experiments. A modern perspective, however, considers PDE constraints
and comes from an infinite-dimensional setting. The modern approach to optimum
experimental design is adopted by Alexanderian et al. [3, 4] who minimize random-
ized trace estimators of the asymptotic covariance matrix of the parameters to be
estimated governed by PDE constraints. Koval et al. [82] additionally consider the
design problem in the presence of a given model uncertainty distribution. Neitzel
et al. [98] introduce a sparse optimal control approach to the sensor placement
problem using Dirac measures. On the other hand, the classical approach to op-
timal input configuration has been developed in the presence of ODE constraints
in various engineering applications [27, 69, 95, 97, 124]. A sensitivity approach
to derivative-based optimization was suggested by [12, 81] in order to find opti-
mal input configurations. In our case, however, the dimension of the input space
is large and thus we develop an adjoint method for PDE-constrained optimal input
configuration.

Recently, the topic of model uncertainty has received more attention and has
developed a considerable momentum [7, 91, 92, 100, 105, 111]. There is abundant
literature on the detection, quantification and control of model uncertainty. We dis-
tinguish between non-probabilistic methods, such as residual analysis [120, 137],
interval simulation [107] or polynomial fits [121], and probabilistic Bayesian in-
ference methods, such as modeling the discrepancy function as a stochastic process
[74], Bayesian model updating [140] or Kalman filtering [72], as well as prob-
abilistic frequentist methods, such as validation metrics [89, 111] or quantile and
density estimations [56, 77]. Bayesian methods rely on the Bayes’ rule for comput-
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1.3. Structure of the Thesis

ing posterior probability distributions whereas frequentist methods are based on the
classical definition of probability which is the relative frequency of an event. Our
novel algorithm to identify model uncertainty is based on a probabilistic frequentist
perspective where it is assumed that the true values of the model parameters lie in
a confidence region determined by the likelihood function.

Our approach is similar to Stegmaier et al. [122] who also use optimal de-
sign of experiments to minimize the parameter’s confidence region but employ the
Kullback-Leibler divergence as a model selection tool. Our work extends the idea
presented in [10, Sec. 2.2] and in [47, Fig. 2] that optimum experimental design
and parameter estimation can be used for model discrimination if the estimated
parameters lie outside of an established confidence region.

1.3 Structure of the Thesis

This thesis is organized as follows. Chapter 2 introduces the parameter estimation
problem and its a posteriori probability distribution. For models with nonlinear
parameter dependence we present five ways to approximate the covariance matrix
of the estimated parameters which are based on either a frequentist or a Bayesian
view of probability. We further discuss the influence of regularization upon the a
posteriori distribution.

In Chapter 3 we first analyze the classical optimal design of experiments prob-
lem and then introduce a modern approach to this topic which allows for PDE con-
straints to be present. Moreover, we extend the pure sensor placement problem
to incorporate the choice of optimal inputs. At the end of this chapter we discuss
advantages and disadvantages of the three most common design criteria used to
measure the size of the covariance matrix.

Chapter 4 deals with the central topic of this thesis. We first specify the defini-
tion of a mathematical model and what we mean by model uncertainty. Second, we
shortly introduce various approaches to model uncertainty from the literature and
briefly mention the extent of data uncertainty upon the model’s prediction quality.
We finally present our algorithm to detect and quantify model uncertainty and prove
that if a linear model is correct, then the probability that our algorithm falsely de-
tects model uncertainty is identical to the small test level. Moreover, we prove that
an optimally designed experiment correctly provokes the rejection of false linear
models.

In Chapter 5 we apply our method to identify model uncertainty in three quasi-
static models of a mechanical servo press and in the dynamic linear-elastic model of
vibrations in a truss.
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Chapter 1. Introduction

We summarize the main conclusions of this thesis in Chapter 6 and give a short
outlook on possible extensions of our approach to optimal input configuration with
PDE constraints for large-scale problems.
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CHAP T ER 2

Parameter Estimation and its
A Posteriori Probability Distribution

In science and engineering, one frequently relates physical parameters θ , like mate-
rial properties, and inputs u, like initial conditions or acting forces, to the quantity
of interest which can be observed by measurements z(u), which we call data. All
functional relations that are known and relevant to us are summarized in a mapping
(θ , u) 7→ η(θ , u) called model. We further assume that the model η is correct, i.e.,
for all inputs u the model explains the true (but unknown) value of the quantity of
interest z?(u):

η(θ ?, u) = z?(u), (2.1)

where θ ? are the true (but unknown) parameter values.
In general, data are subject to statistically independent noise which we model

by a (multivariate) Gaussian random variable E ∼ N (0,Σ), where Σ is a diagonal
matrix with strictly positive diagonal entries. Thus, the data z(u) are a realization of
a Gaussian random variable Z(u)∼N (z?(u),Σ). A more realistic version of (2.1) is

Z(u) = z?(u) + E ,

= η(θ ?, u) + E . (2.2)

We call the task to find for given data z(u) the best approximation θ of the true
parameters θ ? in the sense that

z(u) = η(θ , u) + ε,

7



Chapter 2. Parameter Estimation and its A Posteriori Probability Distribution

where ε is a realization of the noise variable E , a parameter estimation problem.
Since this is also dependent upon the specific model η it is sometimes called model-
based parameter estimation.

However, if the data are subject to uncertainty, modeled by Gaussian noise, so
are the estimated parameters θ by the laws of uncertainty propagation. In this chap-
ter we introduce well-known methods for parameter estimation problems (PE) and
compute their statistical properties like mean value and covariance matrix, based on
[10, 23, 36] and [125]. We present two probabilistic perspectives here: a frequentist
and a Bayesian view.

This chapter is structured as follows. Section 2.1 deals with linear models and
the linear least-squares problem where we also consider Tikhonov regularization. In
Section 2.2 we introduce nonlinear inverse problems and Newton’s method. We also
discuss simplifications of the Newton step like the Gauss-Newton and Levenberg-
Marquardt approach. Section 2.3 introduces the Bayesian framework to estimate
model parameters and their posterior probability distribution. In Section 2.4 we
bring in asymptotic maximum likelihood theory which leads to a different covari-
ance approximation. Section 2.5 discusses confidence regions derived from these
approaches. In Section 2.6 we give a short summary.

2.1 Linear Regression

Let Θ ⊂Rnθ be the set of admissible model parameters, U ⊂Rdu be the set of inputs
and QI ⊂Rdz be the domain of the quantity of interest. We consider the linear model

η : Θ× U →QI, (θ , u) 7→ η(θ , u) = B(u)θ

which maps parameters θ and inputs u to the quantity of interest by employing the
elemental system matrix B(u) ∈Rdz×nθ .

Let u := {u1, . . . , um} ⊂ U be a collection of m ∈N inputs for which corresponding
data z(u1), . . . , z(um) ∈ QI are acquired. In order to improve the information gain
and accuracy of the measurement process, we repeatedly measure the quantity of
interest nz times and acquire z1(ui), . . . , znz

(ui) ∈QI measurement series for each input
ui ∈ U . Thus, in view of (2.2) we have for all j = 1, . . . , nz and i = 1, . . . , m the
following equation:

z j(ui) = B(ui)θ
? + εi j , (2.3)

where εi j are independent realizations of Ed ∼N (0,Σd) each with the same variance

8



2.1. Linear Regression

matrix Σd = Diag(σ2
1, . . . ,σ2

dz
) ∈Rdz×dz . For convenience, let

z̃(ui) :=







z1(ui)
...

znz
(ui)






, z(u) :=







z̃(u1)
...

z̃(um)






, Ã(ui) :=

















B(ui)
...

nz times
...

B(ui)

















and A(u) :=







Ã(u1)
...

Ã(um)






,

such that z(u) and η(θ , u) := A(u)θ have dimension n := nzdzm. Here, A(u) ∈ Rn×nθ

is the overall system matrix which we use in the sequel. Similarly, we define the
diagonal matrix Σ ∈ Rn×n to be made of nzm blocks where each block is identi-
cal to the noise covariance matrix Σd, i.e., Σ := Diag(rep(σ2

1, . . . ,σ2
dz

; nzm)), where
rep(· ; nzm) produces nzm copies of its input vector. Furthermore, set Q :=Qnzm

I ⊂Rn.
In the sequel, we want to find an estimate θ that best fits the model to the data:

z(u) = A(u)θ + ε,

where ε is a realization of the noise variable E ∼ N (0,Σ). We start by introducing
the least-squares method based on [10].

2.1.1 Least-squares Estimators

From a probabilistic frequentist view, if we know the probability distribution of the
data, then we aim to find parameters such that these observations are most likely
noisy realizations of the model output. This framework is also called maximum
likelihood approach. For some given input ui , let fi(·) be the probability density
function of the random variable Ed. Now, let u ⊂ U be a set of inputs. Then the joint
probability density function f (·) can be written as

z(u) 7→ f (z(u)) =
du
∏

i=1

nz
∏

j=1

fi(z j(ui)).

For some fixed z(u), we call θ 7→ L(θ ) := f (z(u) − A(u)θ ) the likelihood function.
Evidently, L(θ ) is the joint probability that z(u)−A(u)θ is a realization of the random
variable E . We consider measurement series z j(ui)with known varianceΣd such that

L(θ ) = C
du
∏

i=1

nz
∏

j=1

exp
�

−
1
2
[B(ui)θ − z j(ui)]

>Σ−1
d [B(ui)θ − z j(ui)]

�

,

9
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where C > 0 is a normalization constant. Since the logarithm is monotonically
increasing, maximizing L(θ ) over θ is equivalent to maximizing log L(θ ). Ignoring
the factor C in front of the exponential function yields

max
θ

log L(θ ) =max
θ
−

1
2

du
∑

i=1

nz
∑

j=1

[B(ui)θ − z j(ui)]
>Σ−1

d [B(ui)θ − z j(ui)]

=max
θ
−

1
2
[A(u)θ − z(u)]>Σ−1 [A(u)θ − z(u)] ,

which is equivalent to the following problem:

Problem 2.1 (PE-LS). Let u ⊂ U be a set of inputs and z(u) ∈ Q be the corre-
sponding data as introduced above. Furthermore, let Σ ∈ Rn×n be a symmetric,
positive definite noise matrix. Then a linear least-squares estimate θ LS ∈ Rnθ is a
solution of the unconstrained optimization problem

min
θ

1
2
‖A(u)θ − z(u)‖2

Σ−1 . (2.4)

The solution of Problem 2.1 can be obtained directly:

Proposition 2.2. Let u ⊂ U be a set of inputs, let the system matrix A(u) ∈ Rn×nθ

have full column-rank and let Σ ∈ Rn×n be a symmetric, positive definite noise
matrix. Furthermore, let some data z(u) ∈Q corresponding to the inputs be given.
Then the unique solution θ LS = θ LS(u; z) to Problem 2.1 is given by the normal
equations

A(u)>Σ−1A(u)θ LS(u; z) = A(u)>Σ−1z(u). (2.5)

Proof. We denote by J(θ ) the objective function in (2.4). Differentiation yields

J ′(θ LS) = A(u)>Σ−1A(u)θ LS − A(u)>Σ−1z(u)
!
= 0

and thus

A(u)>Σ−1A(u)θ LS = A(u)>Σ−1z(u).

Since Σ is symmetric, positive definite and the system matrix A(u) has full column-
rank, the matrix A(u)>Σ−1A(u) is invertible. We have indeed a minimum since
J ′′(θ LS) = 2A(u)>Σ−1A(u) is positive definite as well.
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2.1. Linear Regression

We now consider Problem 2.1 from a probabilistic point of view. The following
is a natural consequence of Proposition 2.2:

Proposition 2.3. Let u ⊂ U be a collection of inputs and z(u) ∈ Q be the corre-
sponding data vector as a realization of the random variable Z(u) ∼ N (z?(u),Σ),
where z? = z?(u) is its mean value and Σ is its symmetric, positive definite covari-
ance matrix. Moreover, let A(u) have full column-rank. Then the optimal param-
eters θ LS = θ LS(u; z) obtained by the solution of Problem 2.1 are realizations of
Gaussian random variables with mean θLS(u, z?) and covariance matrix CLS(u):

θLS(u, z?) = (A(u)>Σ−1A(u))−1A(u)>Σ−1z?(u), CLS(u) =
�

A(u)>Σ−1A(u)
�−1

.

Proof. By Proposition 2.2 we have

θLS(u; z?) = Ez[θ LS] = (A(u)
>Σ−1A(u))−1A(u)>Σ−1Ez[Z(u)]

= (A(u)>Σ−1A(u))−1A(u)>Σ−1z?(u).

Let F(u) := A(u)>Σ−1A(u) for convenience. The definition of the covariance of a
random variable then yields

CLS(u) = Ez

�

(θ LS − θLS(u; z?)) · (θ LS − θLS(u; z?))>
�

= F(u)−1A(u)>Σ−1Ez

�

(Z(u)− z?(u)) · (Z(u)− z?(u))>
�

Σ−1A(u)F(u)−>

= F(u)−1A(u)>Σ−1ΣΣ−1A(u)F(u)−>

= F(u)−>.

Remark 2.4. The inverse of the covariance matrix M(u) := CLS(u)
−1 = A(u)>Σ−1A(u)

is also called information matrix. If Σ is a diagonal matrix with strictly positive
entries σ2

i =Σii , then

M(u) =
n
∑

i=1

σ−2
i Ai(u)

>Ai(u),

where Ai(u)>Ai(u) ∈ Rnθ×nθ is a rank-1 update with the row vectors Ai(u) = Ai·(u)
for each i = 1, . . . , n.

Moreover, we introduce the notion of bias in statistical estimators:

Definition 2.5. Let θE(z) be a statistical estimator of the true value θ ?. Then we
call the estimator unbiased if Ez[θE(Z)] = θ ?.

11
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Corollary 2.6. If the linear model is correct, then θ LS is unbiased.

Proof. Let θ ? be the true value of the model parameters. We have A(u)θ ? = z? and
by Proposition 2.3

Ez[θ LS(u; z)] = (A(u)>Σ−1A(u))−1A(u)>Σ−1z?(u)

= (A(u)>Σ−1A(u))−1A(u)>Σ−1A(u)θ ? = θ ?.

Remark 2.7. Note, that we have treated the unconstrained case so far. If θ ? is an
interior point of Θ ⊂ Rnθ , the data z(u) are reasonable for all admissible u ⊂ U
and the model is accurate enough, then this may be sufficient. However, for the
constrained problem

min
θ

1
2
‖A(u)θ − z(u)‖2

Σ−1 ,

s.t. θ ∈ Θ,

a projection method may be suited, see [127] if θ ∈ Θ describes box constraints.

2.1.2 Tikhonov Regularization

We consider the case where Problem 2.1 is ill-posed which happens if rank (A)< nθ.
A widely used method to deal with this ill-posedness is Tikhonov regularization
around an arbitrary value θ0 ∈ Rnθ . Adding a damping term to the objective func-
tion yields

Problem 2.8 (PE-DLS). Let u ⊂ U be a set of inputs and z(u) ∈ Q be the corre-
sponding data. Moreover, let Σ ∈ Rn×n be a symmetric, positive definite matrix
and θ0 ∈ Rnθ be given. Then a damped linear least-squares estimate θDLS ∈ Rnθ is
a solution of the unconstrained optimization problem

min
θ

1
2
‖A(u)θ − z(u)‖2

Σ−1 +
α

2
‖θ − θ0‖

2
2 , (2.6)

where α > 0 is the damping parameter.

We rewrite (2.6) to

min
θ

1
2
















�

Σ−
1
2 A(u)
p
αI

�

θ −
�

Σ−
1
2 z

p
αθ0

�
















2

2

(2.7)

12



2.1. Linear Regression

and observe that the last nθ rows of the augmented matrix in (2.7) are linearly
independent such that we have a full-rank linear least-squares problem.

Corollary 2.9. Let u ⊂ U be a set of inputs and z(u) ∈Q be the corresponding data.
Moreover, let Σ ∈Rn×n be a symmetric, positive definite matrix. Let θ0 ∈Rnθ and
α < 0 be given. Then the unique solution θDLS(u; z) of Problem 2.8 is given by

�

A(u)>Σ−1A(u) +αI
�

θDLS(u; z) = A(u)>Σ−1z(u) +αθ0.

Proof. As mentioned above, (2.7) is a full-rank linear least-squares problem. Ap-
plying the normal equations, cf. Proposition 2.2, yields

�

A(u)>Σ−
1
2 ,
p
αI
�

�

Σ−
1
2 A(u)
p
αI

�

θDLS(u; z) =
�

A(u)>Σ−
1
2 ,
p
αI
�

�

Σ−
1
2 z

p
αθ0

�

,

which simplifies to the assertion.

We also mention the statistical properties of the damped linear least-squares
estimator:

Corollary 2.10. Let u ⊂ U be a collection of inputs and Z(u)∼N (z?(u),Σ) be the
corresponding data random variable where Σ is symmetric and positive definite.
Moreover, let θ0 ∈ Rnθ , α > 0 be given. Then the parameters θDLS = θDLS(u; z)
obtained by the solution of Problem 2.8 are realizations of Gaussian random vari-
ables with mean θDLS(u; z?) and covariance matrix CDLS(u) given by

θDLS(u; z?) =
�

A(u)>Σ−1A(u) +αI
�−1 �

A(u)>Σ−1z?(u) +αθ0

�

CDLS(u) =
�

A(u)>Σ−1A(u) +αI
�−1

A(u)>Σ−1A(u)
�

A(u)>Σ−1A(u) +αI
�−>

.
(2.8)

Proof. By Corollary 2.9 we have

θDLS(u; z?) = Ez[θDLS] =
�

A(u)>Σ−1A(u) +αI
�−1 �

A(u)>Σ−1z?(u) +αθ0

�

.

Let F(u) := A(u)>Σ−1A(u) +αI for convenience. Then

CDLS(u) = Ez

�

(θDLS − θDLS(u; z?)) · (θDLS − θDLS(u; z?))>
�

= F(u)−1A(u)>Σ−1Ez[(Z(u)− z?(u)) · (Z(u)− z?(u))>]Σ−1A(u)F(u)−>

= F(u)−1A(u)>Σ−1ΣΣ−1A(u)F(u)−>

= F(u)−1A(u)>Σ−1A(u)F(u)−>.
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Remark 2.11. The damped linear least-squares estimator is biased even if the linear
model is correct since

Ez[θDLS(u; z)] =
�

A(u)>Σ−1A(u) +αI
�−1 �

A(u)>Σ−1A(u)θ ? +αθ0

�

6= θ ?

if θ0 6= θ ?, where θ ? is the true value of the model parameters.

So far, the damping term introduced by α and θ0 has no meaningful statistical in-
terpretation. Moreover, the choice of θ0 is very subjective which may lead to a
significantly large bias in the estimator. The disadvantages of using CDLS(u) as a
covariance matrix of the estimated model parameters are discussed in Chapter 3.

Finally, we want to mention that for large-scale problems, i.e., the dimensions
of the system matrix A(u) being large, Conjugate Gradient or Krylov methods to
solve the normal equations are more efficient, see [10, 113]. Furthermore, if A(u)
contains many zeros a sparse approach to the storage of its non-zero elements is
advised.

2.2 Nonlinear Inverse Problems

In this section we do not assume that the model η(θ , u) is linear in θ but consider the
general nonlinear case. We are mainly interested in inverse problems that involve
partial differential equations (PDEs) which describe the underlying physical laws.
Therefore, we introduce state variables y ∈ Y ⊂Rdy which obey the modeled physics
summarized by a discretized operator e : Θ× U × Y → Y in a state equation

e(θ , u, y) = 0. (2.9)

We denote the partial derivatives shortly by ∂θ e := ∂θ e(θ , u, y), ∂ue := ∂ue(θ , u, y)
and ∂y e := ∂y e(θ , u, y) at some (θ , u, y) ∈ Θ × U × Y if this is clear and in case
they exist. By ∂y(·) we mean the Jacobian Jy(·). Since e is the discretization in
space (and time) of a PDE we require that this discretized PDE always has a unique
solution y. In this section we also require

Assumption 2.12. For every θ ∈ Θ, u ∈ U and y ∈ Y the following holds:
(a) ∂y e and ∂θ e exist and are continuous,
(b) ∂ 2

y y e, ∂ 2
yθ e, ∂ 2

θ y e and ∂ 2
θθ

e exist and are continuous,
(c) ∂y e is invertible.

By the Theorem of Schwarz, Assumption 2.12 (b) implies that ∂ 2
yθ e = ∂ 2

θ y e. More-
over, by the Implicit Function Theorem, Assumption 2.12 (a) and (c) imply that

14



2.2. Nonlinear Inverse Problems

there exists a unique solution y(θ ; u) to Equation (2.9) which is continuously differ-
entiable with respect to θ .

In general, not all state variables are of equal interest. Therefore, we define an
observation operator as (y,θ ) 7→ h(y,θ ) ∈ QI which maps states and parameters to
the quantity of interest that can be observed through measurements. The overall
reduced model η(θ , u) := h(y(θ ; u),θ ) is composed of the solution operator of the
state equation and the observation operator. We also require in this section

Assumption 2.13. The observation operator (y,θ ) 7→ h(y,θ ) is twice continu-
ously differentiable.

Let u := {u1, . . . , um} ⊂ U be a collection of m ∈N inputs for which corresponding
data z(u1), . . . , z(um) ∈QI are acquired. We again collect nz ∈N measurement series
for each input to improve the information gain and adjust the dimensions of the
data and model output vector to n := nz · dz ·m as in the linear case:

z̃(ui) :=







z1(ui)
...

znz
(ui)






, z(u) :=







z̃(u1)
...

z̃(um)






∈Rn, h̃(yi ,θ ) :=















h(yi ,θ )
...

nz times
...

h(yi ,θ )















(2.10)

and η(θ , u) :=
�

h̃(y1(θ ; u1),θ )>, . . . , h̃(ym(θ ; um),θ )>
�> ∈Rn. We now naturally have

Problem 2.14 (PE-NLS). Let Assumption 2.12 be satisfied, u ⊂ U be a set of in-
puts and z(u) ∈ Q be the corresponding data. Let σ1, . . . ,σdz

> 0, θ0 ∈ Rnθ and
α ≥ 0 be given. Then a (damped) nonlinear least-squares estimate θNLS ∈ Rnθ is a
(local) solution of the constrained optimization problem

min
θ ,y1,...,ym

m
∑

j=1

dz
∑

k=1

nz
∑

i=1

1
2σ2

k

�

hk(y j ,θ )− zik(u j)
�2
+
α

2
‖θ − θ0‖

2
2 ,

s.t. e(θ , u j , y j) = 0, for all j = 1, . . . , m.

(2.11)

We can write a reduced formulation of (2.11) by inserting the reduced model into
the objective function and introducing the diagonal matrix Σ ∈Rn×n as before:

min
θ

1
2
‖η(θ , u)− z(u)‖2

Σ−1 +
α

2
‖θ − θ0‖

2
2 . (2.12)
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2.2.1 Newton’s Approach

We consider the reduced problem first. Let f = f (θ ; z, u) be the objective function
in (2.12) and in addition to this setting let Assumption 2.13 be satisfied. Newton’s
method requires the gradient and the Hessian of f with respect to θ . We have

∇θ f (θ ; z, u) = ∂θη(θ , u)>Σ−1(η(θ , u)− z(u)) +α(θ − θ0) (2.13)

and

∂ 2
θθ f (θ ; z, u) = ∂θη(θ , u)>Σ−1∂θη(θ , u) +αI +

n
∑

i=1

σ−2
i (ηi(θ , u)− zi(u))∂

2
θθηi(θ , u).

Writing J(θ ; u) := ∂θη(θ , u) and S(θ ; z, u) :=
∑n

i=1σ
−2
i (ηi(θ , u)−zi(u))∂ 2

θθ
ηi(θ , u) we

reformulate the Hessian as

∂ 2
θθ f (θ ; z, u) = H(θ ; z, u) = J(θ ; u)>Σ−1J(θ ; u) +αI + S(θ ; z, u). (2.14)

The exact expressions for J(θ ; u) and S(θ ; z, u) are computed in Appendix A.4. Pro-
vided that H(θ ; z, u) is invertible in a neighborhood of a (local) solution θNLS of
Problem 2.14 we can apply Newton steps from a suitable starting point θ 0 as de-
picted in Algorithm 2.1. The following result is standard:

Proposition 2.15. Let Br(θNLS) ⊂Rnθ be a sufficiently small neighborhood of the
local minimizer θNLS such that f ∈ C2(Br(θNLS),R),∇θ f (θNLS) = 0 and the Hessian
be Lipschitz and positive definite in Br(θNLS). Moreover, let θ 0 ∈ Br(θNLS) be
given. Then Algorithm 2.1 either terminates with θ k = θNLS for some k ∈N or the
sequence of iterations (θ k)k∈N converges q-quadratically to θNLS, i.e.,

‖θ k+1 − θNLS‖ ≤ C ‖θ k − θNLS‖2, for all k ≥ 0, where C > 0.

Proof. See [129, Thm. 10.8], for example.

Since the relationship between data and estimated parameters is nonlinear, θNLS

is no longer a realization of a multivariate normal distribution. However, if small
perturbations in the data cause small changes in the parameter estimate a lineariza-
tion of the mapping Z 7→ θNLS(Z; u) at the estimate θNLS(z; u) may be justified:

θNLS(Z; u) = θNLS(z; u) + ∂zθNLS(z; u)(Z − z) + o(‖Z − z‖).
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Algorithm 2.1 (Newton for PE [10, 129]).
Input: f (θ ) ∈ C2(Rnθ ,R), initial guess θ 0, small tolerance δ > 0.
Output: sequence θ 1,θ 2, . . . that converges to the solution θNLS of (2.12).

1: Set k := 0.
2: if ‖∇θ f (θ k)‖2≤ δ then stop.
3: Calculate ∇θ f (θ k) and ∂ 2

θθ
f (θ ) from (2.13) and (2.14).

4: Solve ∂ 2
θθ

f (θ )∆θ k = −∇θ f (θ k).
5: Determine step size αk > 0 via line search.
6: Set θ k+1 := θ k +αk∆θ k.
7: Update k := k+ 1 and go to line 2.

Following [11], we compute ∂zθNLS(z; u) by applying the Implicit Function Theorem.
Let the assumptions of Proposition 2.15 be satisfied. Then the Hessian H(θ ; z, u) is
(Lipschitz) continuous and invertible for all θ in a small neighborhood of θNLS(z; u).
Since the mixed partial derivatives ∂ 2

θz f (θNLS(z; u); z, u) exist and are continuous,
the Implicit Function Theorem applied to the first order optimality condition

∂θ f (θNLS(z; u); z, u) = 0

yields a mapping Z 7→ θNLS(Z; u) which is continuously differentiable and its deriva-
tive ∂zθNLS(z; u) satisfies

∂ 2
θθ f (θNLS(z; u); z, u)∂zθNLS(z; u) Z̃ = −∂ 2

θz f (θNLS(z; u); z, u) Z̃ ,

for any direction Z̃ ∈Q, and thus with (2.14)

∂zθNLS(z; u) = H(θNLS(z; u); z, u)−1J(θNLS(z; u); u)>Σ−1.

By definition, we get a local, data-dependent covariance matrix at the (damped)
nonlinear least-squares estimate:

CNLS(θNLS, z, u) =Ez

�

∂zθNLS(z; u)(Z − z)(Z − z)>∂zθNLS(z; u)>
�

=H(θNLS; z, u)−1J(θNLS; u)>Σ−1Ez

�

(Z − z)(Z − z)>
�

Σ−1J(θNLS; u)H(θNLS; z, u)−>

=H(θNLS; z, u)−1J(θNLS; u)>Σ−1J(θNLS; u)H(θNLS; z, u)−>.

We have proved the following:
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Proposition 2.16. Let u ⊂ U be given and the data z = z(u) be a realization of
Z(u) ∼ N (z?(u),Σ). Let the assumptions of Proposition 2.15 be satisfied and let
θNLS = θNLS(z; u) be the output of Algorithm 2.1. Then, in a first order approxi-
mation, the estimated parameters are also Gaussian and the covariance matrix is
given by

CNLS(θNLS, z, u) = H(θNLS; z, u)−1J(θNLS; u)>Σ−1J(θNLS; u)H(θNLS; z, u)−>. (2.15)

The disadvantages of using CNLS(θNLS, z, u) for the damped case, i.e., when α > 0,
are discussed in Chapter 3.

For large-scale problems, it is impracticable to compute the full Hessian. There-
fore, consider the optimization problem (2.11) and apply the method of Lagrange
multipliers. Let g(θ , y1, . . . , ym; z) be the objective function in (2.11). Then the
Lagrangian is defined as

LPE(θ , y1, . . . , ym,λ1, . . . ,λm) := g(θ , y1, . . . , ym; z) +
m
∑

i=1

λ>i e(θ , ui , yi),

where λi ∈ Y are Lagrange multipliers, and the first order optimality conditions are
given by

0=∇λi
LPE = e(θ , ui , yi), (2.16)

0=∇yi
LPE =∇yi

g(θ , y1, . . . , ym; z) + ∂yi
e(θ , ui , yi)

>λi , (2.17)

0=∇θLPE =∇θ g(θ , y1, . . . , ym; z) +
m
∑

j=1

∂θ e(θ , u j , y j)
>λ j , (2.18)

for i = 1, . . . , m. The right-hand side of (2.18) is the gradient of the objective func-
tion provided that yi and λi are solutions of the state and adjoint equations (2.16)–
(2.17), respectively. Solving systems of the form H(θ ; z, u)ξ = r requires to find
(v1, . . . , vm, q1, . . . , qm,ξ) which satisfy

∂yi
e(θ , ui , yi)qi + ∂θ e(θ , ui , yi)ξ= 0, (2.19)

as well as

∂yi
e(θ , ui , yi)

>vi +
¬

∂ 2
yi yi

e(θ , ui , yi)
>, (λi , qi)

¶

+ ∂ 2
yi yi

g(θ , y1, . . . , ym; z)qi

+
¬

∂ 2
yiθ

e(θ , ui , yi)
>, (λi ,ξ)

¶

+ ∂ 2
yiθ

g(θ , y1, . . . , ym; z)ξ= 0,
(2.20)
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for i = 1, . . . , m and

∂ 2
θθ g(θ , y1, . . . ,ym; z)ξ+

m
∑

i=1

�

∂θ e(θ , ui , yi)
>vi + ∂

2
θ yi

g(θ , y1, . . . , ym; z)qi

+
¬

∂ 2
θ yi

e(θ , ui , yi)
>, (λi , qi)

¶

+



∂ 2
θθ e(θ , ui , yi)

>, (λi ,ξ)
�

�

= r,

(2.21)

compare [4]. This system is linear in (v1, . . . , vm, q1, . . . , qm,ξ) and can be solved by
Krylov methods requiring only matrix-vector products, see [113]. Thus, for large-
scale problems the Newton step ∆θ k in line 4 of Algorithm 2.1 can be efficiently
computed without implementing the full Hessian.

2.2.2 Gauss-Newton and Levenberg-Marquardt Methods

If the residuals ri(θ , u) := ηi(θ , u)− zi(u) in (2.14) are small and the model is mildly
nonlinar, i.e., ‖ ∂ 2

θθ
ηi(θ , u) ‖2 is not too large, then the term S(θ ; z, u) can be ne-

glected and we have the Gauss-Newton (GN) approximation of the Hessian:

H(θ ; z, u)≈ HGN(θ ; u) := J(θ ; u)>Σ−1J(θ ; u) +αI . (2.22)

Note, that HGN is independent of data and free from second derivatives of the model.
In a Gauss-Newton solver scheme, the Newton step in line 4 of Algorithm 2.1 is thus
replaced by

�

J(θ k; u)>Σ−1J(θ k; u) +αI
�

∆θ k = J(θ k; u)>Σ−1r(θ k, u) +α(θ k − θ0). (2.23)

If Tikhonov regularization is active, then the matrix on the left-hand side is invert-
ible since J(θ k; u)>Σ−1J(θ k; u) is positive semidefinite and αI is obviously positive
definite. On the other hand, if α= 0, we have to ensure that J(θ ; u) has full column-
rank for all θ in a small neighborhood of the solution. Since this may not always be
the case, the Levenberg-Marquardt method modifies (2.23) to

�

J(θ k; u)>Σ−1J(θ k; u) + γk I
�

∆θ k = J(θ k; u)>Σ−1r(θ k, u), (2.24)

where γk > 0 is adjusted after every iteration. For large values of γk we achieve a
steepest descent step, for small ones we get close to a Gauss-Newton step.

As in the linear case, if Tikhonov regularization is active, then the Gauss-Newton
method leads to a biased solution of the nonlinear least-squares problem. However,
the Levenberg-Marquardt approach (2.24) does not alter the solution at conver-
gence. The additional term γk I only stabilizes the solver that is used in (2.24), but
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does not enter the objective function in (2.12). See also [10].
For a quasi-Newton modification of the Gauss-Newton step we refer to [34].

The convergence analysis is very similar as for Newton-type methods. In general,
the convergence rate is linear and in some cases even superlinear. However, for
large residuals ri(θ , u) or for strongly nonlinear models η(θ , u) the Gauss-Newton
method does not converge [22, 23].

Another view of the Gauss-Newton method is based on a sequence of linear
approximations of the model η(θ , u). Let θ k be the current approximation. Then
the correction ∆θ k is the solution of the (damped) linear least-squares problem

min
∆θ k

1
2





r(θ k, u) + J(θ k; u)∆θ k






2
Σ−1 +

α

2





θ k +∆θ k − θ0







2
2 . (2.25)

By applying Corollary 2.9, we obtain

∆θ k = −
�

J(θ k; u)>Σ−1J(θ k; u) +αI
�−1 �

J(θ k; u)>Σ−1r(θ k, u) +α(θ k − θ0)
�

which is identical to (2.23).
The statistical interpretation of the (damped) nonlinear least-squares estimate

in Proposition 2.16 stays the same if one uses the Gauss-Newton method except
that one replaces the full Hessian H(θNLS; z, u) by the Gauss-Newton approximation
HGN(θNLS; u) in (2.15) which yields

CGN(θNLS, u) = HGN(θNLS; u)−1J(θNLS; u)>Σ−1J(θNLS; u)HGN(θNLS; u)−>. (2.26)

Again, the disadvantages of using CGN(θNLS, u) for the damped case are discussed in
Chapter 3.

Remark 2.17. We again neglected the constraints θ ∈ Θ. As before, this may not be
a problem if θ ? is an interior point of Θ ⊂ Rnθ , the data z(u) are reasonable for all
admissible u ⊂ U and the model is accurate enough. Otherwise, one can reformulate
the inequality constraints as a penalty term in the objective function of Problem 2.14
and use penalty methods [129].

2.3 The Bayesian Perspective

This section is based on [10] and [125]. In the Bayesian approach to PE we en-
counter philosophically different ideas. In the perspective introduced before, we
first computed a (deterministic) parameter estimate which is the solution to an op-
timization problem and then projected statistical properties upon it. We have always
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assumed that there is a true (but unknown) value θ ? of the model parameters which
we want to approximate very well by an optimization procedure using data. This
view of probability is also known as the frequentist’s perspective. On the other hand,
in the Bayesian approach the model parameters are random variables themselves
and their estimation has a probability distribution known as posterior. One obtains
the posterior by applying Bayes’ formula to density functions. In the classical setting
of conditional probability the Bayes’ rule is given by

P[A |B] =
P[B |A] P[A]

P[B]
,

for two events A and B.
A second difference is that the Bayesian view naturally incorporates prior knowl-

edge about the parameters into the modeling process. We call all such information
the prior, and in terms of Gaussian probability distributions it suffices to consider a
prior mean θ0 and a prior covariance Γ . As we will see, the Tikhonov regulariza-
tion term introduced in the last two sections now has a statistical meaning and its
bias upon the solution can be interpreted as incorporating prior knowledge into the
modeling process.

Let π0 ∼ N (θ0,Γ ) be a multivariate Gaussian prior and u ⊂ U be a collection of
inputs. We consider observational noise ε in the data z = z(u) as before:

z = η(θ , u) + ε,

where ε is a realization of the random variable E ∼ N (0,Σ) with Σ being a sym-
metric, positive definite covariance matrix Σ. We call ρ(·) the probability density
function of the random variable E . Then the data likelihood function π(· |θ ) has
the density ρ(· − η(θ , u)). According to Bayes’ formula the parameter’s posterior
probability distribution π(θ | z) is proportional to π(z |θ )π0(θ ), more precisely

π(θ | z) = cπ(z |θ )π0(θ )

= c exp
�

−
1
2
‖η(θ , u)− z‖2

Σ−1 −
1
2
‖θ − θ0‖

2
Γ−1

�

, (2.27)

where the proportionality constant c is given such that π(θ | z) is normalized:

1
c
=

∫

Rnθ

ρ(z −η(θ , u))π0(θ )dθ .

In general, it is difficult to work with the entire distribution. Therefore, one consid-
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ers a point that maximizes the posterior π(θ | z) which is equivalent to minimizing
the negative exponent in the exponential function in (2.27).

Definition 2.18. The maximum a posteriori estimator (MAP) is a point θMAP ∈Rnθ

such that the posterior π(θ | z) given in (2.27) becomes maximal:

θMAP(z; u) := argmin
θ

1
2
‖η(θ , u)− z‖2

Σ−1 +
1
2
‖θ − θ0‖

2
Γ−1 . (2.28)

We observe that Tikhonov regularization is a particular instance of (2.28), namely,
for Γ = α−1 I . Thus, in the Bayesian context it has a statistical interpretation.

In general, the posterior is not Gaussian if the model η is nonlinear. However,
for linear models η(θ , u) = A(u)θ the posterior is a multivariate normal distribution
with the following characteristics:

Proposition 2.19. Let Γ ∈ Rnθ×nθ , Σ ∈ Rn×n be symmetric and positive definite
and η(θ , u) = A(u)θ be a linear model. Moreover, let z = z(u) ∈ Q be given. Then
the density function of the posterior π(θ | z) is proportional to

π(θ | z)∝ exp
�

−
1
2








θ − θ LMAP










2

CLB(u)−1

�

,

with mean θ LMAP and covariance CLB(u) given by

θ LMAP(z; u) =
�

A(u)>Σ−1A(u) + Γ−1
�−1 �

A(u)>Σ−1z(u) + Γ−1θ0

�

,

CLB(u) =
�

A(u)>Σ−1A(u) + Γ−1
�−1

.
(2.29)

Proof. See [125, Thm. 2.4].

Remark 2.20. There is a striking difference between (2.8) and (2.29) in the covari-
ance matrix even for the specific choice Γ = α−1 I . The reason is that a Bayesian PE
is fundamentally different from the classical approach where one solves a damped
linear least-squares problem and then infers statistical properties of the solution.
These differences have a significant impact on optimum experimental design which
we present in Chapter 3.

The Bayesian approach can be extended to nonlinear models. After finding the
MAP solution of (2.28) by a Newton-type method, see Section 2.2, one linearizes
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the model around θMAP:

η(θ , u) = η(θMAP, u) + J(θMAP; u)(θ − θMAP) + o(‖θ − θMAP ‖),

where J(θMAP; u) = ∂θη(θMAP, u). Then the expression for the approximated covari-
ance matrix is a direct consequence of Proposition 2.19:

CB =
�

J(θMAP; u)>Σ−1J(θMAP; u) + Γ−1
�−1

. (2.30)

What is more, the Bayesian approach is naturally suited for ill-conditioned problems
where the system matrix A(u) or the Jacobian J(θMAP; u) become rank deficient. This
is due to incorporating prior knowledge (θ0,Γ ) about the parameters directly into
the model.

In most cases, adding inequality constraints θ ∈ Θ is not needed since we expect
the MAP point to be close to the prior θ0. Moreover, it is unreasonable to choose a
prior (θ0,Γ ) whose, e.g., 95% confidence region does not lie entirely in Θ.

2.4 Asymptotic Maximum Likelihood Approach

In this section we follow [31] and [112] without introducing all concepts rigorously.
As before, let Θ ⊂Rnθ be the set of model parameters and let m= 1, i.e., let one in-
put u ∈ U be given. We consider the nonlinear model η(θ , u) = h(y(θ ; u),θ ) without
repeating the output vector nz times. Recall, that nz is the number of measurement
series where we repeatedly measure the quantity of interest yielding independent,
identically distributed multivariate Gaussian data z1, . . . , znz

each with known vari-
ance matrix Σ = Diag(σ2

1, . . . ,σ2
dz
) ∈Rdz×dz and unknown mean z?.

As in Subsection 2.1.1 the likelihood function takes the form

L(θ ; nz) :=
nz
∏

i=1

Li(θ ) =
nz
∏

i=1

exp
�

−
1
2
(η(θ , u)− zi)

>Σ−1(η(θ , u)− zi)
�

,

where we omitted the normalization factors. Moreover, let `i(θ ) := log Li(θ ) and
the overall log-likelihood function be defined as

`(θ ; nz) := log L(θ ; nz) =
nz
∑

i=1

`i(θ ) = −
1
2

nz
∑

i=1

(η(θ , u)− zi)
>Σ−1(η(θ , u)− zi). (2.31)
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Definition 2.21. The maximum likelihood estimator θMLE(nz) ∈ Θ is a value that
maximizes the log-likelihood function:

θMLE(nz) := argmax
θ∈Θ

`(θ ; nz).

We call θ LE(nz) ∈Rnθ just a likelihood estimator if it is a solution of

∂θ`(θ ; nz) = 0. (2.32)

Asymptotic distribution theory determines conditions under which a (maximum)
likelihood estimator converges to the true (but unknown) value θ ? if nz →∞, and
characterizes their distribution in the limit case. We present a few concepts of this
theory in Appendix A.3 in order to make the following statements meaningful.

For the rest of this section, let Assumption 2.12 and Assumption 2.13 be satisfied,
Θ be compact and θ ? be an interior point of Θ. First, we observe

Ez[∇θ`i(θ )] = −Ez[J(θ ; u)>Σ−1(η(θ , u)− Z)] = −J(θ ; u)>Σ−1(η(θ , u)− z?),

where J(θ ; u) = ∂θη(θ , u). Particularly,

Ez[∇θ`i(θ
?)] = 0,

if the model is correct, i.e., if η(θ ?, u) = z? which we also assume from now on.

Definition 2.22. The Fisher information matrix F(θ ?, u) ∈Rnθ×nθ is defined per
observed sample as

F(θ ?, u) := Ez[∇θ`i(θ
?)∇θ`i(θ

?)>],

if this expectation exists.

In our case

F(θ ?, u) = J(θ ?; u)>Σ−1Ez[(η(θ
?, u)− Z)(η(θ ?, u)− Z)>]Σ−1J(θ ?; u)

= J(θ ?; u)>Σ−1J(θ ?; u),

which has a similarity to the Gauss-Newton covariance matrix (2.26) in absence of
damping. We further have a useful identity:
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Lemma 2.23. Let ∂ 2
θθ
`i(θ ?) have finite expectation and F(θ ?, u) exist. Then

−Ez[∂
2
θθ`i(θ

?)] = F(θ ?, u).

Proof. See [112, Lem. 14.4] or [44].

Our main result of this section is a statement about asymptotic normality of the
likelihood estimator:

Proposition 2.24. Let the following additional assumptions hold:
(a) ∂ 2

θθ
`i(θ ?) has finite expectation,

(b) if η(θ , u) = η(θ ?, u), then θ = θ ? and
(c) F(θ ?, u) exists and is positive definite.

Let θ LE(nz) be a likelihood estimator. Then θ LE(nz) converges in probability to θ ?

and pnz (θ LE(nz)− θ ?) converges in distribution to N (0, F(θ ?, u)−1), for nz→∞.

Proof. The proof is an application of the central limit theorem (Proposition A.13) in
the multivariate case, see [30, p. 500 et seq.] or [44, Thm. 18]. The other technical
assumptions stated there are fulfilled in our setting since we consider only Gaussian
probability density functions.

Remark 2.25. A few comments are at hand:
(a) The statement of this proposition does not say that θMLE(nz) is asymptotically

normal. There is only a sequence of likelihood estimators θ LE(nz) that solve
(2.32) and are asymptotically normal. For nonlinear models, multiple solu-
tions of (2.32) may exist and it may be difficult to obtain θMLE(nz). Further
details can be found in [44].

(b) As a practical application and in view of Lemma 2.23, one can approximate
θ LE(nz) for large nz by a Gaussian distribution with covariance matrix

CAL =
�

−nzEz[∂
2
θθ`i(θ

?)]
�−1

.

Since θ ? is unknown we choose to insert θ LE(nz) and arrive at

CAL ≈

�

−nz
1
nz

nz
∑

i=1

∂ 2
θθ`i(θ LE(nz))

�−1

= H(θ LE(nz); z, u)−1, (2.33)

where H( · ; z, u) is exactly the Hessian from (2.14) for m= 1 and α= 0.

This approach does not take into account prior information (θ0,Γ ) about the
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model parameters yet. To do this, the asymptotic theory needs to be extended to the
Bayesian setting which the reader can find in [130], for example. Following [11],
we only motivate the incorporation of the term Γ−1 into the Hessian approximation
of the covariance matrix of a likelihood estimate in Equation (2.33).

Let θMAP be the maximum a posteriori estimator (MAP) which is the solution
of the optimization problem (2.28). This estimate maximizes the logarithm of the
posterior distribution π(θ | z). Then a quadratic Taylor model is given by

logπ(θ | z) = logπ(θMAP | z)−
1
2
(θ − θMAP)

>HB(θMAP; z, u)(θ − θMAP)

+ o(‖θ − θMAP ‖2),

where in this case

HB(θMAP; z, u) = J(θMAP; u)>Σ−1J(θMAP; u) + Γ−1 + S(θMAP; z, u), (2.34)

compare also (2.14). It follows that

π(θ | z)≈ exp
�

−
1
2








θ − θMAP










2

HB(θMAP;z,u)

�

,

and thus the posterior is approximately Gaussian with mean θMAP and covariance
matrix

CAB = HB(θMAP; z, u)−1. (2.35)

We call this expression the asymptotic Bayesian covariance approximation (AB).

2.5 Confidence Regions

In this section we follow [36] and [10]. Given an estimate θ and its covariance
matrix C one is interested in a confidence region K ⊂ Rnθ in which it is very likely
that the true values θ ? of the model parameters lie. Confidence regions are the
multidimensional analogue of confidence intervals.

For linear models and a linear least-squares estimator the expression

(θ ? − θ LS)
>C−1

LS (θ
? − θ LS)

has a chi-squared distribution, see Proposition 2.3 and Appendix A.2, and the confi-
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dence region for θ ? is exactly an nθ-dimensional ellipsoid

K(α,θ LS, CLS) :=
¦

θ ∈Rnθ : (θ − θ LS)
>C−1

LS (θ − θ LS)≤ γnθ(1−α)
©

(2.36)

for a given confidence level 1−α, where α ∈ (0,1) and γnθ(·) is the quantile function
of the chi-squared distribution χ2

nθ
with nθ degrees of freedom. In other words, the

probability that θ ? ∈ K(α,θ LS, CLS) is 1−α.
For damped linear least-squares estimators, which are usually biased, confidence

regions of this kind are misleading.
In case of nonlinear models the specific form of the confidence region is nonlin-

ear as well and it depends on the probabilistic perspective. However, if linearization
methods are applied, then the confidence region is in a first order approximation an
nθ-dimensional ellipsoid

K(α,θ , C) :=
¦

θ ∈Rnθ : (θ − θ )>C−1(θ − θ )≤ γnθ(1−α)
©

, (2.37)

around the estimate θ given by the Newton, Gauss-Newton, (asymptotic) Bayesian
or asymptotic maximum likelihood method, and with covariance matrix C given by
(2.15), (2.26), (2.30), (2.35) or (2.33), respectively. This expression of the confi-
dence region is convenient for us for several reasons and we use it in our optimum
experimental design approach, see Chapter 3.

On the other hand, the likelihood method yields a nonlinear approximation of
the confidence region for nonlinear models. If `(θ ; nz) is the log-likelihood function
from (2.31) and θ LE is a likelihood estimate, then

¦

θ ∈Rnθ : `(θ LE; nz)− `(θ ; nz)≤ γnθ(1−α)
©

(2.38)

is no longer ellipsoidal. For linear models, (2.38) and (2.36) coincide. In general,
the likelihood approximation of the confidence region has several disadvantages.
The set in (2.38) can be disconnected and unbounded. Furthermore, it is very
expensive to determine its shape. We refer to [14] for more details.

The lack of fit method is an exact way to determine nonlinear confidence regions
but it is still more expensive than the likelihood method [36]. Thus, we refrain from
further details.
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2.6 Summary

In this chapter we introduced several approaches and probabilistic perspectives to
PE. Given a data vector z(u) ∈Q for some inputs u ⊂ U and a model η we developed
estimators θ of the true (but unknown) model parameters θ ? for both linear and
nonlinear models. Moreover, we analyzed their statistical properties. We conclude
that in absence of damping or priors there are three reasonable ways to approximate
the covariance matrix of the Gaussian distribution of the estimated parameters:

CNLS(θNLS, z, u) = H(θNLS; z, u)−1J(θNLS; u)>Σ−1J(θNLS; u)H(θNLS; z, u)−>, (2.39)

CGN(θNLS, u) =
�

J(θNLS; u)>Σ−1J(θNLS; u)
�−1

, (2.40)

CAL(θ LE, z, u) = H(θ LE; z, u)−1, (2.41)

and two ways if priors are used:

CB(θMAP, u) =
�

J(θMAP; u)>Σ−1J(θMAP; u) + Γ−1
�−1

, (2.42)

CAB(θMAP, z, u) = HB(θMAP; z, u)−1, (2.43)

where the subscripts stand for NLS= Nonlinear Least Squares, GN= Gauss-Newton,
B = Bayes and AB/AL = asymptotic Bayes/asymptotic likelihood.

In [34] the authors suggest that (2.39) is more useful if the sample size is small
and in cases where the conditions of the asymptotic maximum likelihood theory are
violated. Moreover, they find (2.40) not justified if the residuals are large. However,
(2.40) is favored in [36] among the three variants. In the presence of priors, (2.42)
is quite standard [47] but one frequently finds (2.43) as well in the literature, see,
e.g., [4].

Note that for linear models the expressions (2.39)–(2.41) coincide. The same
holds true for (2.42)–(2.43). The extent and severity of the model’s nonlinearity
decides how much these approximations of the parameter’s covariance differ.
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CHAP T ER 3

Optimum Experimental Design with
PDE Constraints

It is natural to ask the question how good the solution of the parameter estimation
problem (PE) actually is in terms of statistical measures. In optimum experimental
design (OED) we address the problem of finding a perfect experiment determined
by sensor locations and acting inputs such that the parameter estimate, which is
inferred from data collected in such an experiment, has minimum variance. This ap-
proach leads to another optimization problem and we add to its complexity by intro-
ducing constraints that consist of discretized partial differential equations (PDEs).

G

u(t)

Figure 3.1 OED Motivation.

In order to illustrate the problem more rig-
orously, let G ⊂ Rd be a bounded domain with
Lipschitz boundary ∂ G ⊂Rd , see Figure 3.1. We
consider G to be fixed at ΓD ⊂ ∂ G indicated by
red straight lines, free at ΓF ⊂ ∂ G and acted at
ΓN ⊂ ∂ G with time-dependent inputs u(t) indi-
cated by blue arrows. Here, the state variables
y(t) ∈ Y , parameters θ ∈ Θ and inputs u ∈ U sat-
isfy a time-variant PDE which we consider in a
discretized form. The bullets in Figure 3.1 repre-
sent sensors that are placed on ΓF to collect mea-
surements z ∈ QI. These data are used to com-
pute a parameter estimate θ = θ (z). The main
question in this chapter is where to locate the sensors and how to choose the inputs
u(t) ∈ U such that a version of the covariance matrix C(θ , u(t)) of the parameter
estimate, cf. Section 2.6, becomes “minimal” in a sense that will be explained be-
low. We interpret small variances as a big information gain and this interpretation
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is supported by the notion of the information matrix, see also Remark 2.4.
This chapter is structured as follows. Section 3.1 introduces the classic approach

to optimal design of experiments as it was developed by Fedorov and Leonov [43],
Pukelsheim [108] and others. In Section 3.2 we make the transition to more mod-
ern approaches to optimal sensor placement, specifically when PDE constraints are
present. We extend this method to optimal input configuration in Section 3.3 and
finally discuss advantages and disadvantages of common design criteria in Sec-
tion 3.4.

3.1 The Classical Method for Optimal Design of
Experiments

In this section we follow [43, Chap. 2]. Let us adopt the notation of Section 2.1 and
consider linear models η(θ , u) = A(u)θ where the system matrix A(u) ∈ Rn×nθ has
full column-rank. Moreover, let X ⊂Rdu be closed and bounded. In classical optimal
design of experiments the time-invariant input u is understood to be a collection
of m design points x1, . . . , xm ∈ X and the number of repeated observations ri ∈ N
taken at x i , i = 1, . . . , m. An experiment is performed with m sensors positioned at
x1, . . . , xm which collect a fixed number N of observations. Thus, we always have
the constraint r1 + . . .+ rm = N . We refer to the collection

u= {(x1, r1), . . . , (xm, rm)} ⊂ X ×N=: U , where
m
∑

i=1

ri = N ,

and to the number m as the design of the experiment from now on. The design enters
the system matrix A(u) in the following way:

Ã(ui) :=

















B(x i)
...

ri times
...

B(x i)

















, for all i = 1, . . . , m and A(u) :=







Ã(u1)
...

Ã(um)






,

where B(x i) is the elemental system matrix at the design point x i . Thus, A(u) has
n := dz · (r1 + . . .+ rm) rows.

Using Proposition 2.3, let the linear least-squares estimate θ LS and its infor-
mation matrix M(u) = CLS(u)−1 be given. It is our aim to find an optimal design
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(u, m) ∈ U ×N such that CLS(u) is minimal (or equivalently M(u) is maximal) in the
sense of the Loewner order of symmetric, positive definite matrices. This order is
defined in the following way.

Definition 3.1. Let A, B � 0, i.e., A and B are symmetric, positive definite matrices
with compatible dimensions. Then we say A� B if, and only if, A− B � 0.

Thus, one may suggest the following optimization problem:

min
u,m

CLS(u)

s.t. u= {(x1, r1), . . . , (xm, rm)} ⊂ U ,
m
∑

i=1

ri = N .
(3.1)

The solution of this problem yields the optimal number of used sensors m, their
optimal positions x i and the optimal number of repeated observations r i at x i , for
i = 1, . . . , m. However, there are examples with very simple models η where the
optimization problem (3.1) has no solution, see [43, p. 50]. It is therefore inevitable
to consider less ambitious objectives instead.

Definition 3.2. Let S+nθ(R) be the set of all real nθ × nθ matrices which are sym-
metric, positive definite. We call a continuous function φ : S+nθ(R)→ (0,∞) a cri-
terion of optimality, which maps the information matrix M(·) ∈ S+nθ(R) to a scalar
value, if it has the following structure: φ[M(·)] = Ψ[M(·)−1] = Ψ[C(·)], where the
function Ψ(·) is either ΨA(C) = tr (C), ΨD(C) = det (C) or ΨE(C) = λmax(C).

The functions ΨA/D/E(·) are also called design criteria and we discuss their properties,
advantages and disadvantages in Section 3.4. For theoretical reasons, we consider
the mapping M 7→ φ[M] in this chapter. The objective function in (3.1) is now
replaced by a criterion of optimality:

Problem 3.3. Let θ LS be the linear least-squares estimate and M(·) = CLS(·)−1 be
its information matrix. Moreover, let φ : S+nθ(R) → (0,∞) be a criterion of op-
timality. Then an optimal discrete design (u, m) ∈ U ×N of an experiment with N
observations is the solution of the constrained optimization problem

min
u,m

φ[M(u)]

s.t. u= {(x1, r1), . . . , (xm, rm)} ⊂ U ,
m
∑

i=1

ri = N .
(3.2)
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Notice that (3.2) is discrete since m and r1, . . . , rm are natural numbers. This makes
it extremely difficult to solve.

Remark 3.4. The usage of the damped linear least-squares estimate and its covari-
ance matrix CDLS(·), see Corollary 2.10, leads to unreasonable optimal discrete de-
signs. If there is a design (u, m) such that A(u)>Σ−1A(u) = 0, then CDLS(u) is the null
matrix and Ψ[CDLS(u)] = 0. Thus, u = u and m = m but such designs are undesir-
able. Even a restriction of the set of design points X to avoid such cases is not a
solution to this ill-posedness since any design criterion Ψ(·) that minimizes CDLS(·)
actually minimizes A(u)>Σ−1A(u). But A(u)>Σ−1A(u) is the information gain which
we want to maximize. Therefore, in OED we discard any covariance matrix that
includes Tikhonov regularization. However, regularization can be realized within a
Bayesian framework.

An equivalent formulation of Problem 3.3 introduces weights pi = ri/N and uses
them in the design variable u instead of ri . Then, clearly, p1 + . . .+ pm = 1 and the
normalized information matrix can be written as

eM(u) :=
1
N

M(u) =
m
∑

i=1

pi F(x i), (3.3)

where F(x i) = B(x i)>Σ−1B(x i) is the Fisher information matrix which is indepen-
dent of the parameter estimate in our linear setting, cf. Definition 2.22. We de-
note Equation (3.3) as the additive property of the information matrix. The difficul-
ties which arise when solving (3.2) can be circumvented if one allows continuous
weights pi ∈ [0,1]. Thus, a continuous design uc of an experiment consists of the
collection

uc = {(x1, p1), . . . , (xm, pm)} ⊂ X × [0,1] =: Uc, where
m
∑

i=1

pi = 1,

and the number m of design points. There is no restriction on m in this case. We
define a convex combination of two continuous designs

uc = αuc1 + (1−α)uc2, (3.4)

where α ∈ (0,1) in the following way. If a design point x j1 belongs to uc1 only, then
its weight in the new design is p j := αp j1. Similarly, if the design point x j2 belongs
to uc2 only, then its weight in the new design is p j := (1− α)p j2. Design points that
are common to both uc1 and uc2 have the new weight p j := αp j1 + (1−α)p j2. Thus,
p1 + . . .+ pm = 1 is always guaranteed. The number m of new design points is the
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cardinality of the set
�

x j1 : j = 1, . . . , m1

	

∪
�

x j2 : j = 1, . . . , m2

	

.
Having these notions settled, we observe that the definition of the continuous

weights implies that any (discrete) probability measure on X can be a design whose
density function is given by the Fisher information matrix. Thus, in view of (3.3)
and (3.4) a convex combination of normalized information matrices is well defined:

eM(αuc1 + (1−α)uc2) = α eM(uc1) + (1−α) eM(uc2), (3.5)

where α ∈ (0, 1).
We are ready to restate Problem 3.3 in a continuous version:

Problem 3.5. Let θ LS be the linear least-squares estimate and eM(·) = 1
N CLS(·)−1

be its normalized information matrix. Moreover, let φ : S+nθ(R) → (0,∞) be a
criterion of optimality. Then an optimal continuous design (uc, m) ∈ Uc ×N of an
experiment is the solution of the constrained optimization problem

min
uc,m

φ[ eM(uc)]

s.t. uc = {(x1, p1), . . . , (xm, pm)} ⊂ Uc,
m
∑

i=1

pi = 1.
(3.6)

In order to guarantee that a solution to (3.6) exists and that it has desirable proper-
ties we make the following assumption:

Assumption 3.6. Let the following hold:
(a) X is compact,
(b) the Fisher information matrix F(x) is continuous with respect to x ∈ X ,
(c) φ(·) is convex, i.e., for all M1, M2 ∈ S+nθ(R) and α ∈ (0, 1)

φ(αM1 + (1−α)M2)≤ αφ(M1) + (1−α)φ(M2),

(d) φ(·) is a monotonically decreasing function, i.e., for all M1, M2 ∈ S+nθ(R)

M1 � M2 ⇒ φ(M1)≤ φ(M2),

(e) there exists q ∈R such that Uc(q) :=
�

uc ∈ Uc : φ[ eM(uc)]≤ q
	

is non-empty.

We can state the main result of this section:
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Proposition 3.7. Let Assumption 3.6 and Equation (3.5) be satisfied. Then there
exists an optimal continuous design (uc, m) ∈ Uc ×N which solves Problem 3.5 in
such a way that m≤ nθ(nθ+ 1)/2. Moreover, the set of optimal designs is convex.

Proof. See [43, Thm. 2.2].

Remark 3.8. A few comments are at hand:
(a) In general, the solution to Problem 3.5 is not unique. The experimenter still

has the difficulty to choose a suitable optimal continuous design. However,
this may not necessarily be a disadvantage. If φ(·) is even strictly convex,
then the optimal normalized information matrix is unique. This follows by a
direct contradiction argument.

(b) A solution to (3.6) may not be a solution to (3.2). In fact, ri = N pi may not
be an integer. In this case rounding strategies are often acceptable where ri is
rounded to the nearest integer such that r1+ . . .+ rm = N is satisfied. However,
a rounded solution may not be an optimal discrete design.

(c) Efficient numerical techniques to solve Problem 3.5 rely on a particular repre-
sentation of the derivate of φ(·) and on iteratively adding design points. An
algorithm based on first-order derivatives can be found in [43, Chap. 3], for
example.

If prior information about the model parameters is available as it is the case in
a Bayesian approach, then the covariance matrix is given by CLB(u), see (2.29), and
the normalized information matrix is defined as

eMLB(u) =
1
N

CLB(u)
−1 = eM(u) +

1
N
Γ−1, (3.7)

where eM(u) is given by (3.3). It can easily be seen that if the criterion of optimality
φ(·) satisfies Assumption 3.6 (c) and (d), then so does the function φ(· + Γ−1/N).
Thus, in this setting Proposition 3.7 holds as well. Note, however, that Bayesian
optimal continuous designs depend on the number of observations N .

The classical approach to optimal design of experiments can be extended to the
case where nonlinear models η(θ , u) which are not derived from PDEs enter the
stage. As in the linear case we require the model to have the following structure:
η(θ , u) := (ξ(θ , u1), . . . ,ξ(θ , um))>, i.e., in each row of η enters only one of the de-
sign variables ui via an elemental nonlinear function ξ(θ , ui). In a nonlinear setting
the normalized information matrix can only be chosen from the Gauss-Newton (GN)
or Bayesian (B) approach since any other choice violates the additive property (3.3)
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and thus also (3.5) does not hold. Thus, we have

eMGN(θNLS, u) =
1
N

CGN(θNLS, u)−1 or eMB(θMAP, u) = eMGN(θMAP, u) +
1
N
Γ−1,

depending on the probabilistic perspective. These expressions are reliant on the
estimated parameters θNLS or θMAP, respectively, see (2.40) and (2.42). As a conse-
quence, we speak of a locally optimal continuous design

�

uc(θ ), m(θ )
�

∈ Uc ×N of
an experiment if it is the solution of the following optimization problem in which
the estimate θ is fixed to θNLS or θMAP:

min
uc,m

φ[ eMGN/B(θNLS/MAP, uc)]

s.t. uc = {(x1, p1), . . . , (xm, pm)} ⊂ Uc,
m
∑

i=1

pi = 1.
(3.8)

Existence of a locally optimal continuous design follows from an analog version
of Proposition 3.7. Usually, an adaptive procedure is pursued in which (3.8) is
solved with the current estimate θ = θ j and then a new θ j+1 is computed with
data obtained from the locally optimal continuous design

�

uc(θ j), m(θ j)
�

. In the
next step the normalized information matrix is re-evaluated at θ = θ j+1 and (3.8) is
solved again. The new design is accepted with a predefined probability or on other
conditions, see [12] or [43, Sec. 5.3], and the iteration continues.

For (nonlinear) PDE models, however, the classical approach fails since the con-
nection between the design points x i and the variables which are involved in a PDE,
see Section 2.2, is unclear. Therefore, modern approaches to OED with PDE con-
straints become a necessity.

3.2 A Modern Approach to Optimal Sensor Placement
with PDE Constraints

The main idea in OED with PDE constraints is to link the concept of the observation
operator, see Section 2.2, with the sensor positions. We start with the pure sensor
placement problem. Our exposition in this section is based on [3, 4] and [12, 81].

Let us adopt the notation from Section 2.2 and let η(θ , u) := h(y(θ ; u),θ ) be a
nonlinear PDE model where h is the observation operator and y(θ ; u) is the unique
solution to the state equation (2.9) for given parameters θ and inputs u. Further-
more, let Assumption 2.12 and Assumption 2.13 be satisfied. The state equation
comes from a PDE defined on a bounded domain G ⊂ Rd with Lipschitz boundary
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∂ G = ΓD∪ΓN∪ΓF as stated in the introduction of this chapter. In a first-discretize-then-
optimize approach the state variable y is a large-scale vector and its components are
defined on the mesh element nodes, e.g., finite element nodes, of the whole domain
and its boundary. Our goal is to find optimal sensor positions x k ∈ ΓF such that a cri-
terion of optimality φ(·) of the estimated parameter’s information matrix becomes
minimal.

It is crucial to emphasize that all candidate sensor locations xk are restricted to
the free boundary part ΓF of the domain. The observation operator maps precisely all
components of the state vector that belong to ΓF to the quantity of interest that can
be measured by a sensor. Let ns be the fixed number of all candidate sensor locations.
We introduce a new variableω ∈ {0, 1}ns which assigns to each candidate location xk

a weight ωk for k = 1, . . . , ns. The decision ωk = 1 means that experimental data are
collected at xk and ωk = 0 decides not to do so. Thus, the design of an experiment
is fully specified by the weight variable ω.

Since an optimal design of an experiment determines optimal sensor locations
at which data samples are collected, the weights also enter the PE. Let θ ? be the
true parameter value. Recall that the measurement process is subject to noise and
we modeled this noise in the following equation:

z j(ui) = h(y(θ ?; ui),θ
?) + εi j ,

for j = 1, . . . , nz and i = 1, . . . , m, where εi j is a realization of the Gaussian random
variable Ed ∼N (0,Σd) with Σd = Diag(σ2

1, . . . ,σ2
ns
) ∈Rns×ns being a diagonal matrix

with strictly positive diagonal entries, cf. Equation (2.3). In the present setting, the
dimension dz of the data vector equals the number ns of candidate sensor locations.
Our knowledge about the quantity of interest is controlled by the weights. Ifωk = 1,
then our measurement takes place and it has the variance σ2

k. However, if ωk = 0,
we do not measure at all, i.e., we know nothing about the quantity of interest. The
last case can be interpreted in statistical terms as an infinite variance. Thus, we re-
model the noise variable as Ed ∼ N (0,Ω−1

d Σd) with Ωd := Diag(ω1, . . . ,ωns
) where

a division by zero is set to infinity in accordance with the statistical interpretation
above, see also [23, 80, 81].

In Section 2.2 we introduced the new dimension n := nznsm and adjusted the
data vector z, the output of the observation operator h and the noise covariance
matrix Σd by repeating its entries or blocks if necessary. We adopt this strategy
for the noise matrix and obtain Σ ∈ Rn×n as before. Allowing the experimenter to
control the number of repeated observations at a candidate location xk, we extend
the number of weights by the number of measurement series nz such that each
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sensor location xk has nz weights that can be switched on or off. Thus, ω ∈ {0, 1}nω

where nω = nzns. Since the position of the sensors stays the same throughout the
experiment regardless of the input ui , we defineΩ := Diag(rep(ω1, . . . ,ωnω ; m)) such
that Ω ∈Rn×n and introduce the stochastic noise variable E ∼ N (0,Ω−1Σ) . Thus, Σ
and Ω are dimension compatible diagonal matrices. The weights enter the reduced
PE in the following way:

min
θ

1
2
[η(θ , u)− z(u)]>ΩΣ−1 [η(θ , u)− z(u)] . (3.9)

Similarly, for the Bayesian case we have

min
θ

1
2
‖η(θ , u)− z(u)‖2

ΩΣ−1 +
1
2
‖θ − θ0‖

2
Γ−1 . (3.10)

where (θ0,Γ ) is the prior, see Section 2.3. As a consequence, the estimated param-
eters θNLS/LE/MAP = θNLS/LE/MAP(z;ω, u) depend on the weight variables. By a close
inspection of the proofs of the expressions (2.39)–(2.43) we see that it suffices to
replace the inverse of the noise matrix Σ−1 by ΩΣ−1 such that we can summarize
the expressions for the covariance matrices of the estimated parameters as follows:

CNLS(θNLS, z,ω, u) = H(θNLS; z,ω, u)−1F(θNLS;ω, u)H(θNLS; z,ω, u)−>, (3.11)

CGN(θNLS,ω, u) = F(θNLS;ω, u)−1, (3.12)

CAL(θ LE, z,ω, u) = H(θ LE; z,ω, u)−1, (3.13)

where F(θNLS;ω, u) := J(θNLS; u)>ΩΣ−1J(θNLS; u) and the Hessian is given by

H(· ; z,ω, u) = F(· ;ω, u) + S(· ; z,ω, u),

S(· ; z,ω, u) =
n
∑

k=1

ΩkkΣ
−1
kk [ηk(· , u)− zk(u)]∂

2
θθηk(· , u),

compare Equation (2.14). If priors are used, then

CB(θMAP,ω, u) =
�

J(θMAP; u)>ΩΣ−1J(θMAP; u) + Γ−1
�−1

, (3.14)

CAB(θMAP, z,ω, u) = HB(θMAP; z,ω, u)−1, (3.15)

where in this case

HB(θMAP; z,ω, u) = J(θMAP; u)>ΩΣ−1J(θMAP; u) + Γ−1 + S(θMAP; z,ω, u),
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compare Equation (2.34).
In a first attempt we formulate the OED problem using the modern approach

with binary weights ω ∈ {0,1}nω where the parameter estimate is kept constant:

Problem 3.9. Let u ⊂ U , θ be a fixed parameter estimate and let the information
matrix M(θ ,ω, u) = C(θ ,ω, u)−1 be given where C(θ ,ω, u) comes from one of the
expressions in (3.11)–(3.15) depending on the probabilistic perspective. More-
over, let φ : S+nθ → (0,∞) be a criterion of optimality. Then a locally optimal
discrete design ω ∈ {0, 1}nω of an experiment with at most N observations is the
solution of the constrained optimization problem

min
ω
φ[M(θ ,ω, u)]

s.t. ω ∈ {0,1}nω ,
nω
∑

k=1

ωk ≤ N .
(3.16)

Although no PDE appears in the constraints of (3.16) this problem is still very chal-
lenging due to its discrete nature. In fact, for some important design criteria Prob-
lem 3.9 was proven to be NP-hard, see [6] and the references therein. In order to
make (3.16) tractable we relax the binary constraint of the weight variables and al-
low them to take values in the interval [0,1]nω . Moreover, we remove the inequality
constraint and add a penalty function to sparsify the solution. The final number of
observations is thus controlled by a penalty parameter κ > 0. The larger κ is chosen,
the more sparse the weight variable ω becomes. We also introduce a continuation
strategy with a family of penalty functions to enforce binary weights. This approach
was first proposed by Alexanderian et al. [3]. Recall, that the `0-“norm” |x |0 of a
real number x ∈R is defined as

|x |0 =

(

0, if x = 0,

1, otherwise.

For vectors x ∈Rn we have |x |0 = |x1|0 + . . .+ |xn|0.

Definition 3.10. We call a family of penalty functions Pε : [0, 1]nω → [0,∞)
where 0< ε ≤ 1 a smooth approximation of the `0-“norm” if

(a) P1(ω) =ω1 + . . .+ωnω ,
(b) Pε(ω) =

∑nω
k=1 fε(ωk) with fε : [0, 1] → [0,1] being continuously differen-

tiable and fε(1) = 1, fε(0) = 0,
(c) Pε converges pointwise to the `0-“norm” for ε→ 0.
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The functions fε : [0, 1]→ [0, 1] have the following specific form, cf. [3]:

fε(x) :=











x/ε, for 0≤ x ≤ 1
2ε,

pε(x), for 1
2ε < x ≤ 2ε,

1, for 2ε < x ≤ 1,

where pε is the unique third-order polynomial such that fε becomes continuously
differentiable. Using these penalty functions Pε we formulate a continuous relax-
ation of Problem 3.9:

Problem 3.11. Let u ⊂ U , θ be a fixed parameter estimate and let the information
matrix M(θ ,ω, u) = C(θ ,ω, u)−1 be given where C(θ ,ω, u) comes from one of the
expressions in (3.11)–(3.15) depending on the probabilistic perspective. More-
over, let φ : S+nθ → (0,∞) be a criterion of optimality and Pε(ω) be a smooth
approximation of the `0-norm and κ > 0. Then a locally optimal continuous de-
sign ωε ∈ [0,1]nω of an experiment is the solution of the constrained optimization
problem

min
ω
φ[M(θ ,ω, u)] + κPε(ω)

s.t. ω ∈ [0,1]nω .
(3.17)

The continuation strategy works in the following way. First, Problem 3.11 is solved
for ε = ε0 := 1 and we obtain the optimum ω0. Next, we decrease ε, e.g., ε1 = ε0/2,
and solve (3.17) with ε = ε1 and ω0 as initial guess (starting point for the solver).
Subsequently, Problem 3.11 is solved for εi , i.e., with Pεi

as penalty function, and
the initial guess is given by ωi−1, i.e., the solution of the preceding optimization
problem. After a few reiterations i = 1,2, 3, . . . we observe in practice that the
optimal continuous design has the desired binary structure that remains unchanged
as ε is further decreased. Such a continuation strategy is used in a similar way
in topology optimization [17, 18]. Problem 3.11 can be solved by standard SQP-
methods with BFGS updates [129]. Note that there is still no PDE involved in the
constraints of (3.17).

Concerning the existence of a locally optimal continuous design we proceed in
a similar way as in the classical approach:

Assumption 3.12. Let the following hold:
(a) φ : S+nθ(R)→ (0,∞) is convex,
(b) the mapping ω 7→ M(θ ,ω, u) is continuous,
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(c) for all ω, eω ∈ [0,1]nω and α ∈ (0, 1) we have the following property:

M(θ ,αω+ (1−α) eω, u) = αM(θ ,ω, u) + (1−α)M(θ , eω, u),

(d) there exists ω0 ∈ [0,1]nω such that φ[M(θ ,ω0, u)]<∞.

In analogy to Proposition 3.7 we state

Proposition 3.13. Let Assumption 3.12 be satisfied. Then there exists a locally
optimal continuous design ωε ∈ [0,1]nω which is the solution of Problem 3.11.
Moreover, for ε = 1 the set of optimal designs Wopt(c) which have the same cost
c > 0

Wopt(c) :=
�

ω1 ∈ [0, 1]nω :ω1 solves (3.17) and κP1(ω1) = c
	

,

is convex.

Proof. Existence of locally optimal continuous design follows from Assump-
tion 3.12 (b) and (d) and the fact that [0,1]nω is compact.

For the second statement let c > 0 be fixed, ω, eω ∈ Wopt(c) and α ∈ (0,1) be
given. By definition of Wopt(c) we have

φ[M(θ ,ω, u)] = φ[M(θ , eω, u)] =: q.

Let ω? := αω + (1 − α) eω. Then, clearly, κP1(ω?) = c and by Assumption 3.12 (a)
and (c) it follows that

φ[M(θ ,ω?, u)]≤ αφ[M(θ ,ω, u)] + (1−α)φ[M(θ , eω, u)] = q.

Thus, ω? solves (3.17).

Remark 3.14. A few comments are at hand:
(a) If M = C−1

NLS, then Assumption 3.12 (c) is not satisfied. Consequently, the
second statement in Proposition 3.13 does not hold for this type of information
matrix.

(b) For M = C−1
GN/AL we have to ensure that the principal part of these covariance

matrices, i.e., J(θ ; u)>ΩΣ−1J(θ ; u) stays invertible in all iterations. Therefore,
we generally require that J(θ ; u) has full column-rank and that

nω
∑

k=1

ωk ≥ nθ. (3.18)
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However, we do not have to impose (3.18) as a constraint in (3.17) if we
choose an appropriate penalty constant κ > 0.

(c) We again speak of a locally optimal design since the covariance matrix de-
pends on the current parameter estimate θ . As explained at the end of the
previous section, a sequential procedure can be applied to successively solve
Problem 3.11 with a continuation strategy and then to compute a new param-
eter estimate (this requires repeated PDE solutions).

(d) In general, one cannot guarantee that a global solution of (3.16) is obtained
from the limit of the sequence ωε as ε→ 0. In practice, however, the continu-
ation strategy provides good results.

In order to deal with the parameter-dependence of the optimal design we in-
troduce an alternative to sequential design where an inner optimization problem is
added to the constraints of (3.17). The estimated parameters become a function of
the weights, i.e., we consider the mapping ω 7→ θ (z;ω, u) where θ (z;ω, u) is the
solution of (3.9) or (3.10) depending on the probabilistic perspective. As in Sub-
section 2.2.1 we can argue by the Implicit Function Theorem that ω 7→ θ (z;ω, u) is
well-defined and that this mapping is continuously differentiable. If an iterative pro-
cedure is applied to obtain optimal designs, then in each stepωk+1 =ωk+∆ωk a new
estimate θ (z;ωk+1, u) is computed. This involves computing solutions of the state
equation. Since the information matrix M(θ ,ω, u) contains the derivatives ∂θη(θ , u)
and, if applicable, ∂ 2

θθ
η(θ , u), they need to be re-evaluated at θ = θ (z;ωk+1, u)which

requires additional PDEs to be solved, see Appendix A.4.

Problem 3.15. Let u ⊂ U and let the information matrix M(θ ,ω, u) = C(θ ,ω, u)−1

be given where C(θ ,ω, u) comes from one of the expressions in (3.11)–(3.15)
depending on the probabilistic perspective. Moreover, let φ : S+nθ → (0,∞) be
a criterion of optimality, Pε(ω) be a smooth approximation of the `0-norm and
κ > 0. Then an optimal continuous design ωε ∈ [0,1]nω of an experiment is the
solution of the bilevel PDE-constrained optimization problem

min
ω
φ[M(θ (z;ω, u),ω, u)] + κPε(ω)

s.t. θ (z;ω, u) solves (3.9) or (3.10),

ω ∈ [0, 1]nω .

(3.19)

If there exists some ω0 ∈ [0, 1]nω such that φ[M(θ (z;ω0, u),ω0, u)] < ∞ and if
the mapping ω 7→ M(θ (z;ω, u),ω, u) is continuous, then the existence of optimal
continuous designs ωε which solve (3.19) follows from standard arguments. These
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assumptions are clearly fulfilled for all covariance estimates that are summarized in
(3.11)–(3.15). However, Assumption 3.12 (c) is not satisfied.

For large-scale problems a direct computation of the full Hessian and CNLS/AL/AB

is no longer tractable. In [4] randomized trace estimators are used for Bayesian
optimal designs where the criterion of optimality is φ(MAB) = tr

�

M−1
AB

�

= tr (CAB).
Within this approach, the matrix CAB is never fully computed. Since

tr (CAB) =
nθ
∑

i=1

e>i HB(θMAP; z,ω, u)−1ei , (3.20)

where ei is the i-th unit vector, only solutions of the systems HB(θMAP; z,ω, u)ξi = ei

are needed which we already examined in (2.19)–(2.21). Because of the large di-
mension nθ, the computation of the trace in (3.20) is approximated by a randomized
trace estimator:

tr (CAB)≈
ntr
∑

i=1

τ>i ξi , (3.21)

τi = HB(θMAP; z,ω, u)ξi

where τi ∼N (0, I) are realizations of multivariate standard Gaussian random vari-
ables, see [4, Sec. 2.5]. The system of equations (2.19)–(2.21) and (2.16)–(2.18)
can then be imposed as constraints to the minimization of the function in (3.21). For
an efficient adjoint calculus of this optimization problem we refer to [4, Sec. 5.4].

Another modern approach to optimal sensor placement with PDE constraints is
introduced in [98] where the design variable is treated as a positive Borel measure.
Let X ⊂ Rdx be a closed subset covering all possible sensor locations in space and
y(θ , u; x) be the solution of the state equation in an infinite dimensional setting,
i.e., the state is still a function of the space variable x . The measurement setup is
defined as a weighted sum of Dirac delta functions

ω(x ,λ) :=
ns
∑

j=1

λ jδx j

where x j ∈ X and λ j ≥ 0 are non-negative weights. The information matrix can
then be written as

M(θ ,ω, u)k` =

∫

X

∂θk
y(θ , u; x)∂θ` y(θ , u; x)dω(x ,λ),
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for k,` = 1, . . . , nθ. The corresponding optimization problem is solved with a condi-
tional gradient method in measure space. In this thesis, however, we do not pursue
this approach any further.

In some cases, a heuristic approach to optimal sensor placement provides suf-
ficiently good results, see [2, Sec. 4.8] for a description of the greedy algorithm.
However, solving Problem 3.9 with such a heuristic does not provide provably opti-
mal results.

3.3 An Extension of the Modern Approach to Optimal
Input Configuration

A relevant question is whether the modern approach to optimal sensor placement
with PDE constraints can be extended such as to incorporate the input variable u
into the design of the experiment. In this section, we add an optimal configuration
framework to the previous context in order to minimize a criterion of optimality
of the parameter’s covariance matrix. We are specifically interested in time-variant
PDE problems where the state and the input are time-dependent. Moreover, we
build on our original problem formulation as stated in the introduction to this chap-
ter. This section is based on the author’s work in [93].

We use the notation of Section 2.2 with m = 1 again. Let Assumption 2.12 and
Assumption 2.13 be satisfied. In this section the state equation is now a discretized
PDE on the space and time domain. Let T > 0 and nt denote the number of points
in the discretized time domain {t i ∈ [0, T] : t i = i · T/nt, i = 1, . . . , nt}. Since the po-
sitions of the sensors do not change in time throughout the experiment we adjust
the dimension n := nz ·ns ·nt of the matrices Ω ∈Rn×n and Σ ∈Rn×n in a similar way
as done in Section 3.2 by copying its diagonal entries nt times. The model output
η(θ , u) ∈Rn is then a vector that covers the predicted quantity of interest at all time
points and the data vector z ∈Rn is the corresponding measured quantity of interest
at all time points.

Let θ ∈ Θ ⊂ Rnθ be a given parameter estimate and let y(θ , u) ∈ Y ⊂ Rdynt be
the unique solution to the state equation

e(θ , u, y) = 0, (3.22)

for some input u ∈ U ⊂ Rdunt . We introduce new variables si := ∂θi
y(θ , u) for all

i = 1, . . . , nθ where each si is the solution to its sensitivity equation

∂y e(θ , u, y(θ , u)) si + ∂θi
e(θ , u, y(θ , u)) = 0. (3.23)
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Existence and continuity of each si follows from Assumption 2.12.
The information matrix of our choice cannot depend on the data z, since a

change in inputs u+∆u would produce a model output that mismatches the data.
In this case, the residuals rk = ηk(θ , u+∆u)−zk would be unreasonably large unless
one collects new data z(u+∆u) to the corresponding input which usually is far too
costly. Therefore, only the Gauss-Newton or Bayesian framework is applicable to
our setting, cf. (3.12) and (3.14):

MGN(θ ,ω, u) = CGN(θ ,ω, u)−1 = J(θ ; u)>ΩΣ−1J(θ ; u),

MB(θ ,ω, u) = CB(θ ,ω, u)−1 = J(θ ; u)>ΩΣ−1J(θ ; u) + Γ−1,

where θ = θNLS/MAP, depending on the probabilistic perspective, and

J(θ ; u) := ∂yh(y(θ , u),θ ) · s(y(θ , u), u) + ∂θh(y(θ , u),θ ).

Here, y(θ , u) is the solution to (3.22) and

s(y(θ , u), u) = [s1(y(θ , u), u), . . . , snθ(y(θ , u), u)] ∈Rdynt×nθ

is the matrix of the solutions si(y(θ , u), u) to (3.23). We also require the following
assumption:

Assumption 3.16. For all θ ∈ Θ, u ∈ U and y ∈ Y the derivatives ∂ue(θ , u, y),
∂ 2

yue(θ , u, y), ∂ 2
uy e(θ , u, y), ∂ 2

uθ e(θ , u, y) and ∂ 2
θue(θ , u, y) exist and are continuous.

For the OED problem, we fix an estimate θ and minimize a criterion of optimality
φ[MGN/B(θ ,ω, u)] where ω and u are the design variables. Note that MGN/B does
only implicitly depend on u via the state y and the sensitivity variable s. Therefore,
we write MGN/B = MGN/B(θ ,ω, y, s) for the formality of the Lagrange calculus in
the following optimization problem. We again add the family of penalty functions
Pε(ω) which we introduced in the previous section and a smooth regularizer R(u)
to the objective function. The regularization is chosen to smooth the optimal inputs
in the time domain, e.g., one can choose a discretized H1-norm in time if U is a
discretization of the space H1(0, T ; L2(ΓN)).

Problem 3.17. Let κ,β > 0 be constants, θ be a fixed parameter estimate and
let the information matrix MGN/B = C−1

GN/B be given depending on the probabilistic
perspective. Moreover, let φ : S+nθ → (0,∞) be a criterion of optimality, Pε(·) be
a smooth approximation of the `0-norm and R(·) be a smooth regularizer. Then
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3.3. Extension to Optimal Input Configuration

locally optimal sensor positions and input configurations (ωε, u) ∈ [0,1]nω × U for
an experiment are a solution of the PDE-constrained optimization problem

min
ω,u,y,s

φ[MGN/B(θ ,ω, y, s)] +κPε(ω) + βR(u)

s.t. 0= e(θ , u, y),

0= ∂y e(θ , u, y) si + ∂θi
e(θ , u, y), i = 1, . . . , nθ

ω ∈ [0,1]nω , u ∈ U .

(3.24)

In the following we explain the continuation strategy with the family of penalty
functions which needs to be adapted to this setting. First, Problem 3.17 is solved
for ε = ε0 = 1 and we obtain (ω0, u). In the next step we decrease ε and solve the
following derived optimization problem with fixed u and ω0 as initial guess:

min
ω
φ[MGN/B(θ ,ω, y(θ , u), s(y(θ , u), u))] +κPε(ω) + βR(u)

s.t. ω ∈ [0, 1]nω .
(3.25)

Subsequently, the continuation strategy is performed as usual with (3.25) such that
after a few reiterations the optimal sensor weights have the desired binary structure.

We continue with a statement about the existence of locally optimal sensor po-
sitions and input configurations that solve (3.24), in analogy to our statement in
Proposition 3.13. Therefore, we make the following assumption:

Assumption 3.18. Let the following hold:
(a) φ : S+nθ(R)→ (0,∞) is continuous,
(b) U ⊂Rdunt is compact,
(c) the mapping (ω, u) 7→ MGN/B(θ ,ω, y(θ , u), s(y(θ , u), u)) is continuous,
(d) there exist ω0 ∈ [0, 1]nω and u0 ∈ U such that

φ[MGN/B(θ ,ω0, y(θ , u0), s(y(θ , u0), u0))]<∞.

We now have the following result:

Proposition 3.19. Let Assumption 3.18 be satisfied. Then there exist locally opti-
mal sensor positions and input configurations (ωε, u) ∈ [0, 1]nω ×U which are the
solution of Problem 3.17.

Proof. The proof follows from standard arguments.
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The comments in Remark 3.14 (b) and (c) are also valid in the present setting.
In order to use derivative-based optimization techniques for the solution of Prob-

lem 3.17 let J(ω, u, y, s) be the objective function in (3.24) and denote the reduced
objective function as

bJ(ω, u) := φ[MGN/B(θ ,ω, y(θ , u), s(y(θ , u), u))] +κPε(ω) + βR(u).

For simplicity, we ignore the inequality constraints and define the Lagrangian as

LOED(ω, u, y, s,µ,λ) := J(ω, u, y, s) +µ>e(θ , u, y)

+
nθ
∑

i=1

λ>i
�

∂y e(θ , u, y) si + ∂θi
e(θ , u, y)

�

,

where µ,λ1, . . . ,λnθ ∈ Y are the adjoint variables that are obtained by solving the
adjoint equations

0=∇yLOED =∇y J(ω, u, y, s) + ∂y e(θ , u, y)>µ

+
nθ
∑

i=1

�¬

∂ 2
y y e(θ , u, y), (si ,λi)

¶

+ ∂ 2
θi y e(θ , u, y)>λi

�

,

0=∇si
LOED =∇si

J(ω, u, y, s) + ∂y e(θ , u, y)>λi .

(3.26)

The full derivative of the reduced objective function is then given by

∇ωbJ(ω, u) =∇ωLOED =∇ωJ(ω, u, y, s),

∇ubJ(ω, u) =∇uLOED =∇uJ(ω, u, y, s) + ∂ue(θ , u, y)>µ

+
nθ
∑

i=1

�¬

∂ 2
yue(θ , u, y), (si ,λi)

¶

+ ∂ 2
θiu

e(θ , u, y)>λi

�

.

We show in Appendix A.5 how to efficiently compute ∇y J(ω, u, y, s), ∇ωJ(ω, u, y, s)
and ∇si

J(ω, u, y, s).
For large-scale problems, solving nθ + 1 PDEs in Problem 3.17 is too costly. In

a first attempt, one could apply the procedure introduced in [4] using randomized
trace estimators for the inverse Hessian CAB. However, this Hessian depends on the
data and the parameters are obtained by solving (2.16)–(2.18) as an inner optimiza-
tion problem. This becomes precarious in our setting since a change in inputs would
produce a model output that mismatches the data resulting in unreasonable param-
eter values. In Chapter 6 we briefly present a possible solution to this drawback as
an outlook.
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3.4 Discussion of Design Criteria

In this section we discuss the three most popular criteria of optimality φ(·) and some
of their extensions. We mainly follow [43] and [47].

Recall that the linearized confidence region around the estimated parameters at
a fixed confidence level 1−α, where α ∈ (0, 1), is an nθ-dimensional ellipsoid

K(α,θ , C) :=
¦

θ ∈Rnθ : (θ − θ )>C(θ ,ω, u)−1(θ − θ )≤ γnθ(1−α)
©

,

compare Equation (2.37). The matrix C(θ ,ω, u) is given by one of the expressions
in (3.11)–(3.15). Size and volume of K(α,θ , C) are determined by the covariance
matrix C and the quantile function γnθ(·). A minimization of the following de-
sign criteria Ψ(C) has distinctive geometrical properties which we will point out
in the sequel. In view of Lemma 3.20, we again consider the information matrix
M(θ ,ω, u) = C(θ ,ω, u)−1 and the function φ : S+nθ(R)→ (0,∞).

• A-criterion: let φA(M) = tr
�

M−1
�

= tr (C) = ΨA(C) be the sum of eigenvalues
of the covariance matrix. It is proportional to the average variance n−1

θ
tr (C)

of the parameter estimates. Additionally, ΨA(C) is equal to the square of half
the length of the diagonal of an nθ-dimensional cuboid which circumscribes
the ellipsoid K(α,θ , C).

• D-criterion: let φD(M) = det
�

M−1
�

= det (C) = ΨD(C) be the product of eigen-
values of the covariance matrix. The volume of K(α,θ , C) is given by

Vol (K) =
πnθ/2

Γ (nθ/2+ 1)
γnθ(1−α)

nθ
Æ

det (C),

where Γ (·) is the Gamma function, see [15]. Since the square root function is
monotonic, a minimization of ΨD(C) corresponds to minimizing Vol (K).

• E-criterion: let φE(M) = λmax

�

M−1
�

= λmax(C) = ΨE(C) be the maximal eigen-
value of the covariance matrix. The length of the largest principal axis of
K(α,θ , C) is given by 2

p

λmax(C). Thus, minimizing ΨE(C) leads to minimiz-
ing the “linear expansion” of the confidence ellipsoid.

These criteria of optimality have the following desirable properties:

Lemma 3.20. The A-, D- and E-criterion are continuous and convex matrix func-
tions φA/D/E : S+nθ(R)→ (0,∞). Moreover, φA(·) is even strictly convex.

Proof. It is well known that tr (·) , det (·) and λmax(·) are continuous functions. The
inverse mapping M 7→ M−1 is continuous too, compare Lemma A.1. We refer to
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[25, Thm. 2.10] in order to prove that φA(·) is strictly convex. The convexity of
φD(·) is treated in [84]. Concerning φE(·), first note that for all M1, M2 ∈ S+nθ(R) and
α ∈ (0, 1) we have

x> [αM1 + (1−α)M2]
−1 x ≤ x>

�

αM−1
1 + (1−α)M

−1
2

�

x , (3.27)

for all x ∈ Rnθ , see [117, Eq. 10.61]. Consequently, for M := αM1 + (1− α)M2 we
have

λmax

�

M−1
�

:=max
x

�

x> [αM1 + (1−α)M2]
−1 x : ‖x‖2 = 1

	

,

≤max
x

�

x>
�

αM−1
1 + (1−α)M

−1
2

�

x : ‖x‖2 = 1
	

,

≤ αmax
x

�

x>M−1
1 x : ‖x‖2 = 1

	

+ (1−α)max
x

�

x>M−1
2 x : ‖x‖2 = 1

	

,

= αλmax

�

M−1
1

�

+ (1−α)λmax

�

M−1
2

�

,

where the first inequality holds due to (3.27) and the second follows from the con-
vexity of the maximum function.

Therefore, it is evident that the A-, D- and E-criterion satisfy Assumption 3.6 (c),
Assumption 3.12 (a) and Assumption 3.18 (a).

We discuss (directional) differentiability of these criteria in Appendix A.1, espe-
cially for the nonsmooth E-criterion.

We finally present advantages and disadvantages of each of these criteria. First,
the D-criterion is invariant with respect to non-degenerate transformations of the
model parameters. This property is particularly helpful when bijective coordinate
transformations have been applied in the modeling. Moreover, D-optimal designs
usually have a small number of different design points but more replications of
them. A drawback of this criterion is that it tends to emphasize the parameter
component that is most sensitive to changes in the design [47]. This may lead to
degenerated confidence ellipsoids which have a small volume but still have a large
principal axis. An advantage of the A-criterion is its adaptability to large-scale prob-
lems where the dimension nθ of the parameter space becomes large [4]. A major
drawback, however, lies in its disregard of the off-diagonal elements of the covari-
ance matrix and thus any information about cross-correlations among parameters
is lost. On the other hand, the E-criterion effectively minimizes the largest princi-
pal axis of the confidence ellipsoid. However, its usage requires a cautious scaling
of the parameters and non-smooth methods for derivative-based optimization, see
Equation (A.3).

An alternative to the standard criteria which where introduced above would be
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to use the condition number of the covariance matrix, i.e.,

cond (C) =
λmax(C)
λmin(C)

,

in order to reduce cross-correlations of the parameters. However, this criterion
operates on the shape of the confidence ellipsoid only, making it more spherical with
a very large volume. Another approach to deal with parameter cross-correlations is
to introduce constraints on the non-diagonal entries of the cross-correlation matrix
[48]. This leads to optimization problems with state constraints which are difficult
to handle especially in PDE-constrained optimization. For other criteria, which are
less used, the reader may consult [108, 133].

In the next chapters, we use the design criterion Ψ(C) instead of the function
φ(M), and the covariance matrix C instead of the information matrix M .
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CHAP T ER 4

Uncertainty Detection in Mathematical
Models

In science and technology, mathematics is the most successful language used to de-
scribe and predict natural or engineering processes that are observed in nature or
which are of common interest. It is precisely because mathematical models are em-
ployed in our way of thinking that we are able to quantify and control the behavior
and outcome of these processes. However, our knowledge is finite and thus limited
to accumulations from the past and from our present experience. Therefore, any
image of reality in the domain of mathematical abstraction is subject to change if
new data arise that contradict or refine parts of our knowledge. We denote this
tentativeness or insecurity that occurs in the mathematical modeling by model un-
certainty.

reality

natural phenomena

mathematical abstraction

observational data

inverse
problem

model construction,
calibration and validation

forward
problem

prediction

Figure 4.1 Model building cycle [119].

In general, models are constructed
by evaluating data, applying conservation
principles, incorporating prior knowledge
and using experience or intuition. In or-
der to make models successful it is vital to
subject the modeling process to a calibra-
tion and validation cycle, see Figure 4.1. In
this loop, natural phenomena are exposed
to our method of questioning and observa-
tional data, which are part of our mathe-
matical abstraction, are acquired. These ob-
servations are used to calibrate the model
by solving inverse problems. A validation
procedure follows after the model is em-
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ployed to generate a prediction. By comparing the model-output with new data,
the cycle continues and the model is either rejected or updated. It is evident that
uncertainty in the model as well as in the data significantly affects the success or
outcome of this calibration and validation procedure. This motivates a close study
of the effects uncertainty has upon both models and data.

In this chapter we first specify what we mean by the terms mathematical model
and model uncertainty. In Section 4.2 we elaborate on the different sources and
types of model uncertainty. Furthermore, we highlight the influence of uncer-
tain data on the model’s prediction quality in Section 4.3. We give a literature
overview of common methods to detect, quantify and control model uncertainty in
Section 4.4. Our main contribution to the topic is a novel algorithm that detects
and quantifies model uncertainty using parameter estimation, optimum experimen-
tal design and hypothesis testing which we present in Section 4.5. This algorithm
originated at the Collaborative Research Center (CRC) 805 within Subproject A3
and appears in several works that emerged from the CRC.

4.1 Fundamental Definitions

This section is based on ideas which the author developed in [105]. We start by
giving a clearer notion of our terms. A model is an image of reality in the domain of
mathematical abstraction. It mainly consists of functional relations between model
parameters θ , like material constants, inputs u, like boundary values or initial con-
ditions, (passive) states y and outputs q, which usually are the quantities of interest.
Let Θ ⊂ Rnθ , U ⊂ Rdu , Y ⊂ Rdy and QI ⊂ Rdz be bounded and closed, respectively.
Then we state:

Definition 4.1 (Mathematical Model). We call the set of functions and equations

M := {e : Θ× U × Y → Y, h : Y ×Θ→QI, e(θ , u, y) = 0, h(y,θ ) = q}

a mathematical model consisting of the functional relations between the model
variables θ , u, y and q. Here, e(θ , u, y) = 0 is the state equation and h : Y × θ →QI

is the observation operator.

As in Chapter 2, we assume that the state equation yields for any given θ ∈ Θ
and u ∈ U a unique solution y(θ , u) ∈ Y which is then mapped by the observation
operator to the output h(y(θ , u),θ ) = q ∈QI, i.e., the quantity of interest. The latter
can be observed in experiments through the measurement process yielding (noisy)
data z. We denote by z? the true (but unknown) value of the quantity of interest and

52



4.1. Fundamental Definitions

axiomatic or empiric assumptions /

system of ODEs or PDEs /M , ∆M
artificial neural network

Model UncertaintyData Uncertain Output

geometry (θ )

physical parameters (θ )

initial conditions (u)

boundary conditions (u)

system excitation (u)

quantities of interest (q)

Figure 4.2 The model-output q is affected by model uncertainty ∆M even if the data (pa-
rameters θ and inputs u) are exact; based on [111].

we say that our modelM is correct if its output q is identical to z? for all given inputs
u ∈ U and the true (but unknown) parameter value θ ? ∈ Θ. A model is said to be
consistent if it is free from logical errors. In Section 4.5, we develop an algorithm to
detect and quantify any substantial deviation of the output q from z? by evaluating
the model’s consistency.

Model uncertainty is present if the functional relations are (partly) unknown,
incomplete, inadequate or reduced to approximations of more complex (but expen-
sive) relations. Thus, if model uncertainty exists for the relevant process, then the
set of equations

e(θ , u, y) = 0,

h(y,θ )− q = 0

does no longer represent reality. The “real” functional relations are often repre-
sented by introducing additional terms:

e(θ , u, y) +δe(θ , u, y, . . .) = 0,

h(y,θ ) +δh(y,θ , . . .)− q = 0,

where δe(θ , u, y, . . .) is the discrepancy function of the state equation and δh(y,θ , . . .)
is the modeling error of the observation operator. We denote by ∆M := {δe,δh} the
uncertainty of the model M . In general, the discrepancy function δe is unknown,
whereas δh is quite often known from experimental practice and can be quantified,
see [75] in case of strain gauges, for example. Therefore, we focus on the uncer-
tainty in the functional relations of the state equation. Evidently, the model-output
is significantly affected by model uncertainty even if the data have zero noise, see
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Figure 4.2.
Since computer models are very dominant in the literature we reformulate our

equations using explicit functions. This is possible since we assumed that the state
equation always has a unique solution y(θ , u). Thus, a model given in explicit
form represents an input-output-relation that can be implemented in a computer
program. Let η(θ , u) := h(y(θ , u),θ ) be this reduced model and δη(θ , u, . . .) be its
uncertainty function. Then the “real” functional relations are given by

η(θ , u) +δη(θ , u, . . .) = q.

In the following, we give some sources for δη and classify its different types.

4.2 Sources and Types of Model Uncertainty

Following [111] and [105, Sec. 2.2], the main source of model uncertainty is lack
of knowledge about the functional relations between the involved variables. Any
mechanism that is unnoticed, unknown and nameless to us falls under this category.
An example could be given from materials science and engineering. When a novel
composite material is developed, then its reaction to the environment, its behavior
under pressure or stress and its wear needs to observed, modeled and validated. As
long as there is only a few data available for verification, calibration and validation,
lack of knowledge is dominant.

A second major source of model uncertainty is disregard of knowledge. Every ef-
fect that is known to us but which is neglected, ignored or kept out of consideration
in the modeling we categorize as disregarded. If a linear elastic spring, for example,
is placed under load, then the deformation of the spring is proportional to the load-
ing force provided that the latter stays below a material-dependent threshold. If the
magnitude of the load is above this limit the spring shows nonlinear, hyper-elastic
or even plastic behavior. Since these effects are difficult to model they are often
neglected.

Another source of model uncertainty is the numerical scheme used to approxi-
mately solve equations that do not admit analytical solutions or whose analytical
solutions are impracticable to compute. Numerical errors include discretization er-
rors, iterative convergence errors, rounding errors, and also implementation errors
in the computer code. If there are estimators for all these errors, then their impact
can, in principle, be removed. In engineering applications, a classic approach to the
discretization of a PDE is the finite element method (FEM) for which a large class of
error estimates is available [109].
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Besides numerical issues, erroneous solution techniques to the mathematical
equations could yield non-physical solutions which are useless. The weak solutions
of a scalar hyperbolic PDE, for example, are non-unique and one needs to select
an entropy-solution in order to catch the appropriate physics [99]. However, this
source of uncertainty is easily recognized and often taken care of by mathemati-
cians.

Additionally, human shortcomings also contribute to model uncertainty.
In view of the different sources of model uncertainty one can distinguish the

following types. First, model uncertainty addresses the functional structure itself.
Incomplete, inadequate or missing relations between all involved variables are sum-
marized in this type. Second, numerical uncertainty comprises all rounding, dis-
cretization and convergence problems and implementation errors in the computer
code. Lastly, the human factor also induces model uncertainty. In this dissertation
we focus on the detection and quantification of the first type, namely, uncertainty in
the model.

The model-output is significantly influenced by the assumptions made during
the modeling process: shall the functional relations be of axiomatic or empiric type,
linear or non-linear, time-invariant or transient [92]? Moreover, the scope and com-
plexity of the model determine its applicability and computational tractability. It is
evident that any computer simulation that is based upon uncertain models inevitably
leads to misleading predictions of the quantity of interest. As a consequence the
model’s usefulness, correctness and consistency need to be verified and revalidated.
To do this, one needs to carefully select the adequate verification and validation
processes, see Section 4.4. In the following, we investigate the role of data and data
uncertainty upon the model’s prediction quality and calibration parameters.

4.3 The Influence of Data Uncertainty upon Models

This section is based on [105, Sec. 2.1]. In general, every measured or collected
quantities, which we call data, are subject to uncertainty. We speak of data un-
certainty if the value, interval or distribution of data is unknown, incomplete or
insufficient. The functional relations as well as the scope and complexity of a model
are clearly independent from how data are at hand: as a single value, an interval
or randomly distributed. However, data often function as inputs to the model and
thus, uncertainty propagates to the model-output. In this way uncertain data affect
the prediction quality of a model but does not contribute to model uncertainty in
a strict sense. Figure 4.3 shows how uncertainty in the data is propagated through
the model whereas model uncertainty is an intrinsic tentativeness in the functional
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axiomatic or empiric assumptions /

system of ODEs or PDEs /M , ∆M
artificial neural network

Model UncertaintyUncertain Data Uncertain Output

geometry (θ )

physical parameters (θ )

initial conditions (u)

boundary conditions (u)

system excitation (u)

quantities of interest (q)

Figure 4.3 The model-output q is affected by both, model uncertainty ∆M and uncertain
parameters θ and inputs u. Data uncertainty is propagated through the model; based on
[111].

relations which has a far greater impact on the model’s prediction quality.
The output of the model q = η(θ , u) is usually compared to data z that are col-

lected from real experiments, simulations or archives. This data are used to estimate
the model parameters θ (geometrical or material properties) in a calibration proce-
dure, for example. In addition, the model’s inputs u (initial or boundary conditions)
are also uncertain since they are measured quantities. When we speak of data un-
certainty and its relation to models we thus focus on parametric uncertainty and
uncertain inputs.

In general, data uncertainty is categorized into aleatoric or epistemic [35].
Aleatoric uncertainty is an intrinsic randomness of a phenomenon, it is irreducible,
objective and often characterized by a probability distribution [85, 131, 142]. In
experimental practice this type is often referred to as noise. On the other hand,
epistemic uncertainty arises due to lack of knowledge about the origins of data or
simply because of insufficient or incomplete data [35, 131]. It is subjective and,
in principle, reducible. An example could be the unwanted systematic bias in the
measurement of seismic waves nearby a construction area. Both types of data un-
certainty can be quantified with non-probabilistic and probabilistic methods [87].
In the following we give a short literature overview of these methods.

4.3.1 A Probabilistic Framework for Data Uncertainty

The first type of methods to deal with data uncertainty is probabilistic in its nature.
If data can be modeled as a realization of a random variable Ξ with a distribution
P[Ξ], then we speak of stochastic uncertainty. The distribution can be approximated
or estimated via a parametric or non-parametric approach and within a frequentist

56



4.3. The Influence of Data Uncertainty upon Models

or Bayesian inference perspective. All these approaches operate under the assump-
tion that an event is possible with a known probability.

In parametric stochastic uncertainty, one assumes that the probability distribu-
tion Pθ [Ξ] of the random variable Ξ depends on finite dimensional parameters θ
which uniquely characterize the distribution. Measurement errors or production
tolerances are typically modeled by Gaussian distributions which are fully described
by two parameters (θ1,θ2): mean θ1 = Ξ and standard deviation θ2 = σ(Ξ). If
sufficient data are available, a maximum likelihood approach gives an estimate of
these parameters [71]. Otherwise, one can use prior knowledge from physics or
engineering to approximate their value.

Non-parametric stochastic uncertainty, however, does not use parameters as a
description but is only based upon observations. Kernel density estimators can be
applied, for example, to estimate the density function ρ(·) of the distribution P[Ξ],
see [103]. In most cases, though, if the sample size is small and the assumption on
the distribution type is correct, then a maximum likelihood estimation yields better
results than a kernel density estimator.

If the distribution of the probabilistic model of data uncertainty is thus esti-
mated, a common class of methods used in computer simulations to predict a prob-
abilistic output are Monte Carlo methods [57, 116]. These strongly depend on the
perspective from which statistical inference is made: frequentist or Bayesian. From
a frequentist perspective, the term probability is defined as the relative frequency of
an occurring event if a statistical experiment is repeated a large number of times. On
the other hand, a Bayesian view of probability is much more subjective since it in-
corporates prior knowledge and assumptions about the distribution into the process.
The prior is usually updated using Bayes’ rule to obtain the posterior whenever new
data are available. On an algorithmic level we refer to Markov Chain Monte Carlo
techniques [121]. Bayesian inference is commonly used for parameter calibration.

4.3.2 Non-Probabilistic Approaches to Data Uncertainty

We say that data are subject to non-probabilistic uncertainty if they cannot be mod-
eled as a realization of a random variable with a given probability distribution. In
order to quantify the uncertainty, fuzzy set theory or a direct interval analysis may
be suitable. These approaches mainly determine whether an event is possible or
impossible [87].

Within the fuzzy set theory framework introduced by Zadeh [141], data elements
are expressed as being members of a subset A⊆ F relative to a superset F . The char-
acteristic function 1A : F → {0, 1} describes membership as 1A(x) = 1 if x ∈ A and
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non-membership as 1A(x) = 0 otherwise. Other (smooth) membership functions are
also possible. Often, it is better to divide the domain of the membership function
into intervals to determine the possibility of a data element being inside a certain
interval. An overview of applied fuzzy arithmetic is given in [61]. However, only a
few practical applications of this theory exist.

Another approach used to quantify non-probabilistic data uncertainty is interval
analysis. Here it is assumed that the data values are between fixed minima and max-
ima. A pessimistic perspective then searches for the worst-case scenario. Assuming
that each parameter lies in an interval given by min/max values, the basic rules of
arithmetic apply: addition, subtraction, multiplication and division. Depending on
how often and in what form the parameters occur in the model equations, the in-
tervals become larger when propagated. This process may be time consuming when
implemented. Another drawback is the fact that interval analysis tends to over-
estimate uncertainty since only extreme values are considered which occur rather
seldom in practice [1]. In higher dimensions, extreme values are replaced by com-
pact uncertainty sets, like ellipsoids. For these the worst-case analysis becomes more
complicated. As shown in [16, 49, 79] robust optimization techniques are suitable
to quantify and master data uncertainty in this pessimistic setting.

4.4 CommonMethods for Analysis, Quantification and
Evaluation of Model Uncertainty

In this section we give an overview of the different approaches to handle model
uncertainty following the author’s work in [105, Sec. 2.2]. The literature can be
classified into two main perspectives on mastering model uncertainty: a determinis-
tic analysis and a probabilistic frequentist or Bayesian approach. The latter is much
more subjective since it needs prior knowledge as it was the case for data uncer-
tainty, see Section 4.3. However, a frequentist view does not take into account prior
information even if it is available and reliable. The deterministic analysis, on the
other hand, has the difficulty of finding the adequate functional correction terms. In
spite of these disadvantages, each approach has its own use cases of success. In the
following, we present the most common methods to identify, quantify and master
model uncertainty.

4.4.1 Deterministic Approaches

Simani et al. [120] develop a strategy for fault diagnosis where bounded error terms
are incorporated into the model equations. To give a short example, let η be the
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solution operator to the differential equations

∂t y(t) = A(θ )y(t) + Bu(t), for t > 0,

y(0) = Bu(0),
(4.1)

where A(θ ) and B are suitable matrices. Then model uncertainty can be described
by including the term ∆(t) ∈ [cmin(t), cmax(t)], where cmin(t) < cmax(t), to the first
equation in (4.1):

∂t y(t) = A(θ )y(t) + Bu(t) +∆(t), for t > 0. (4.2)

Using interval analysis [1] or a worst-case-scenario treatment [16, 120] for (4.2),
the uncertainty δη of the solution operator can be bounded. Thus, the model-output
is uncertain but stays in a bounded uncertainty set Uη. By employing a residual
analysis with thresholding, the engineer can recognize component failures while
considering the effects of model uncertainty. However, the approach relies on the
assumption that the uncertainty stays within a bounded set Uη which may not be
the case in practice.

In [121] and [42] it is mentioned to approximate the discrepancy function δη
by a polynomial p due to its computational tractability:

η(θ , u) + p(θ , u,ϑ) = q.

In this setting, the polynomial also depends on hyper-parameters ϑ. We say that the
original set of physical or empiric parameters is augmented by these non-physical
entities. However, it is nearly impossible to gain a physics-based understanding
of missing functional relations from these polynomial parameters. In practice, the
augmented parameter set needs to be calibrated which is done by an optimization
approach, see Chapter 2.

4.4.2 Probabilistic Framework

There is extensive literature on Bayesian inference-based methods for model cali-
bration and validation [58, 88, 114, 134]. In [91] an interval-hypothesis test is
developed to compare various models of a suspension strut concerning their basic
functional assumptions of axiomatic or empiric type.

Another important approach was introduced by Kennedy and O’Hagan [74] who
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model the discrepancy function δη as a stochastic process:

η(θ , u) +V (θ , u,ϑ) + E = Z , (4.3)

where V ∼N (m(u,θ ,ϑ), C(u,θ ,ϑ)) is a multivariate Gaussian random variable with
mean m(u,θ ,ϑ) and covariance function C(u,θ ,ϑ). In this setting, E ∼ N (0,Σ) is
the random variable describing the noise that is commonly observed in the mea-
surement process. The discrepancy function in (4.3) depends on hyper-parameters
ϑ which need to be calibrated within a Bayesian optimization scheme. An adapta-
tion for time-dependent problems is developed in [13]. Arendt et al. [8] use this
approach to update models. However, in [24] it was shown that the success of
modeling δη as in (4.3) depends on accurate prior knowledge about V which may
be difficult to obtain. Gu and Wang [60] use a scaled Gaussian process for model
calibration and output prediction by overcoming the conceptual differences to least-
squares calibration and thus, improve the method introduced in [74].

A very efficient approach to master uncertainty in statistical state estimation of
linear and nonlinear problems was developed by Kalman [72] and is today known
as Kalman filtering. The basic idea is to employ multivariate Gaussian distributions
in the state equation (4.1) as follows:

∂t y(t) = A(θ )y(t) + Bu(t) + Υ (t), for t > 0, (4.4)

where Υ (t) ∼ N (0, M(t)) is dynamical noise with zero mean and time-dependent
covariance matrix M(t). The model-output is given by the solution of (4.4) inserted
into the observation operator h(y(t;θ , u),θ ) which is compared to measurement
data at each time point t > 0:

Z(t) = h(y(t;θ , u),θ ) + E (t),

where E (t) ∼ N (0,Σ(t)) is observational noise with zero mean and covariance
matrix Σ(t). In this model, the set of all state variables is a stochastic process, a
Markov Chain. Because the measurements are also dynamic random variables one
often speaks of a Hidden Markov Model, see [54]. Equation (4.4) is then discretized
and for each time step the evolving state variable is estimated using Bayes’ rule. The
prediction is corrected by actual measurement points if available. A drawback of this
approach is the numerical instability that could arise when solving (4.4). What is
more, the Kalman estimation needs a prior initialization of the state which may be
uncertain as well.

Tuomi et al. [128] address the question whether a set of measurements is ad-
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equately described by a single model with the same parameter values. Let N in-
dependent measurements z1, . . . , zN be given and let P[Z1, . . . , ZN |M ] be their joint
probability distribution. Then the modelM is said to be an inadequate description
of the independent measurements if for some small 0< r < 1 the inequality

P[Z1 = z1, . . . , ZN = zN |M ]
∏N

k=1 P[Zk = zk|M ]
< r (4.5)

holds. This definition is only based on the statistical independence of the measure-
ments and them being modeled by a single model M with the same parameters.
In (4.5) the term on the left side is sometimes called Bayes’ factor. Other ways to
derive similar factors that evaluate the fitness of different competing models can
be found in [28, 73]. However, this approach depends on prior information about
model parameters.

From a frequentist’s perspective, a natural approach to quantify model uncer-
tainty or the discrepancy term is to use validation metrics. According to [111], a
simple way to do this is to compare the cumulative density function of the simula-
tion model FM (·) with the cumulative density function of the experimental findings
FE (·). These functions are empirical (one-dimensional) probability distributions:

FM (t) :=
1
N

N
∑

k=1

1(−∞,t](η(θ , uk)), FE (t) :=
1
N

N
∑

k=1

1(−∞,t](zk),

for N observations. Then an area validation metric can be defined as

d
�

FM , FE
�

:=
N
∑

k=1

�

�FM (t)− FE (t)
�

�∆t,

where ∆t > 0 is a predefined mesh size. Other validation metrics can be found in
[89, 143]. Within a model selection process, an arbitrary threshold is imposed on
the metric or a hypothesis test is performed.

For more complex technical systems, one often uses surrogate models to quantify
their uncertainty. These methods are based on computer simulations and a small
sample of measurements to estimate quantiles or densities of probability functions
[56, 76, 77].

Another approach to quantify the model discrepancy term is developed in [138]
which relies on bootstrap samples in a regression estimation. The authors also use
smoothing splines and artificial neural networks.
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4.5 A Novel Algorithm to Detect and Quantify Model
Uncertainty

In this section, we come to the main contribution of this thesis. We develop a novel
algorithm to detect and quantify model uncertainty using parameter estimation,
optimum experimental design and statistical hypothesis testing. All these topics
have been introduced in the previous chapters; hypothesis testing is summarized in
Appendix A.6. This exposition is based on the author’s work in [50, 93], see also
[115, Sec. 4.3.1], which originated at the CRC 805 in the Subproject A3. We only
consider models for which the following assumption holds:

Assumption 4.2. All model parameters θ ∈ Θ are physical in the sense that they
have a physics-based meaning and it is possible to know or at least to approximate
their true value.

Thus, if a model M is considered to be correct, then the true value θ ? of the pa-
rameters can be approximated by solving parameter estimation problems with given
data. We also assume that there is a direct link between the model’s correctness and
consistency:

Assumption 4.3. If a modelM is correct, then it must be consistent, i.e., it should
reproduce all measurement series obtained from any admissible inputs at any pre-
defined sensor location with the same parameter values.

In practice, we relax this assumption to the claim that the parameter values must
lie in a small confidence region due to the effects of measurement errors. In an
optimally designed experiment, i.e., using optimal sensor locations and best input
configurations, this confidence region becomes small. As discussed in Chapter 3,
we offer both a probabilistic frequentist and a Bayesian framework to do so. Thus,
the propagation of data uncertainty is controlled and its extent is minimized. If the
model is correct, then repeated calibration and validation procedures should yield
the same parameter values up to a small error. However, if a set of measurements
leads to parameters that lie outside this confidence region, then the model is incon-
sistent and according to Assumption 4.3 incorrect. Algorithm 4.1 summarizes our
approach. For a given mathematical modelM , a threshold level TOL for the Type I
error, a given number of tests to be performed ntests and a division strategy DS, the
output is the assessment whether M should be rejected with probability TOL, e.g.,
5%, for the Type I error. In the following, we explain each step in detail.
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Algorithm 4.1 (Detection of Model Uncertainty in a Mathematical ModelM ).
Input: ModelM , test level TOL, number of tests ntests, division strategy DS.
Output: DoesM need to be rejected? YES (1) or NO (0).

1: Initialize i := 1.
2: Generate initial data zini in all feasible sensor locations.
3: Compute θini by PE using zini.
4: Solve OED problem using zini or θini.
5: Acquire data z with the optimal setup of the experiment.
6: if measurement errors are not Gaussian then
7: Go to line 5 or exit.
8: Divide z into one calibration set zcal and one validation set zval using DS.
9: Calculate (θcal, Ccal) using zcal by PE. Likewise, obtain (θval, Cval) using zval.

10: Find αmin ∈ (0, 1), such that θval lies on boundary of K(αmin,θcal, Ccal + Cval).
11: if αmin ≥ TOL/ntests then
12: if i < ntests then
13: Set i := i + 1 and go to line 8.
14: else
15: return 0.
16: else if αmin < TOL/ntests then
17: return 1.

4.5.1 Description of the Algorithm

First, we need to acquire initial data zini in all feasible sensor locations for some
inputs in order to compute a first guess θini of the model parameters by solving
(3.9) or (3.10) depending on the probabilistic perspective (lines 2–3). Since the
acquisition of data is costly, one can also generate artificial data via simulations
to do so. If we consider a pure sensor placement problem, then one either uses
zini to solve Problem 3.15 with C = CNLS/GN/AL/B/AB depending on the probabilistic
framework or θini to solve Problem 3.11 with C = CGN/B. In this case, we obtain
optimal sensor positions ω. If the experimental setup allows for a free choice of
inputs, then one uses θini to solve Problem 3.17 obtaining optimal sensor positions
ω and best input configurations u. This is summarized in line 4.

The optimal experimental setup is used to collect the data z that are necessary
for the upcoming hypothesis test (line 5). If the design of the experiment consists
of optimal sensor positions and optimal input configurations (ω, u), we allow little
variations in the input choice around u in order to ensure a certain diversity in our
data which will be exploited by the division strategy DS. The size of the confidence
region around the parameters stays nearly the same because of continuity of the
function u 7→ C(ω, u) provided that the variance of the measurement process Σ
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stays constant. In case of a pure sensor placement problem, the inputs are fixed
by the boundaries and conditions of the experiment – its setup consists of optimal
sensor positions ω only.

Since our approach is based on the assumption that observational noise is Gaus-
sian, we check whether the measurement errors are indeed realizations of a normal
distribution with zero mean and variance Σ. We use the Shapiro-Wilk goodness-of-
fit test [32] to do so (line 6). If this test fails, we measure again or abort the pro-
cedure since our algorithm is not equipped to handle non-Gaussian observational
noise.

Given a set of measurements z, we split the data into one calibration set zcal and
one validation set zval according to a division rule DS (line 8). Let u1, . . . , um ∈ U
be pairwise distinct inputs for which data vectors z(u1), . . . , z(um) ∈QI are collected.
The following strategies for DS have been suggested:

• Monte-Carlo cross-validation [37]. Let ςm be a permutation of size m ∈ N
and k ∈N with 1≤ k ≤ m be arbitrary. Then zcal := {z(uςm(1)), . . . , z(uςm(k))} and
zval := {z(uςm(k+1)), . . . , z(uςm(m))}. In each run, ςm and k are randomly changed.

• m-fold cross-validation [68]. Divide the data into m groups according to the
inputs u1, . . . , um. Then use m− 1 groups for the calibration set zcal and the re-
maining group for the validation set zval. After ntests = m runs, all combinations
are passed through.

• Expert judgment. This strategy may be necessary if it is of interest whether a
specific physical effect was considered in the modeling. It may help in finding
the worst-case split to target the model uncertainty directly.

In any case, the division strategy DS must guarantee that the measurement errors
stay Gaussian.

From line 9 onward, we perform a statistical test with Bonferroni correction
for the test level, see Appendix A.6. Let θcal be the parameter estimate obtained
from the calibration set zcal and let θval be the one from the validation set zcal. For
convenience, define ucal as the set of inputs used for calibration and let uval be the
one used for validation. Compute Ccal := C(ω, ucal) and Cval := C(ω, uval) according
to one of the expressions given in (3.11)–(3.15) which depends on the probabilistic
framework. Let θ ? be the true but unknown parameter value. We test the following
hypotheses:

H0 : θ ? = Ez[θcal],

H1 : θ ? 6= Ez[θcal].
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First, we construct the acceptance region

K(α,θcal, Ccal + Cval) :=
�

θ ∈ Θ : (θ − θcal)
> (Ccal + Cval)

−1 (θ − θcal)≤ γnθ(1−α)
	

,

where γnθ(·) is the quantile function of the central χ2
nθ

distribution with nθ degrees
of freedom and α = TOL/ntests is the corrected test level. Then the statistical test is
defined as

τ(z(u1), . . . , z(um)) :=

(

0, if θval ∈ K(α,θcal, Ccal + Cval),

1, otherwise,

meaning that the null hypothesis H0 is rejected if τ(z(u1), . . . , z(um)) = 1, and this is
the case if θval /∈ K(α,θcal, Ccal + Cval). The test statistic is then defined as

T (z(u1), . . . , z(um)) := (θ − θcal)
> (Ccal + Cval)

−1 (θ − θcal) .

and the critical value c := γnθ(1− TOL). Let Z1, . . . , Zm be the random variables cor-
responding to the data samples z(u1), . . . , z(um). Then the p-value of the statistical
test is given by

αmin = Pθ=θ ?,T [T (Z1, . . . , Zm)> T (z(u1), . . . , z(um))],

which is computed in line 10. The null hypothesis H0 is rejected if αmin < α (line 17).
Otherwise, the algorithm returns to line 8 and divides the data again to perform the
next hypothesis test.

The Bonferroni correction α= TOL/ntests is a conservative method to account for
the problem of multiple testing. We are interested in keeping the probability that at
least one null hypothesis is falsely rejected small, i.e., we want to control the family-
wise error rate (FWER). By adjusting the test level in each scenario, we achieve TOL
as a bound for the FWER, see also Appendix A.6.

4.5.2 Main Theorems

In the following we prove that for correct linear models Algorithm 4.1 indeed re-
turns 0 with probability 1− TOL, in a first order approximation. For this, recall that
a linear model is defined as η(θ , u) = A(u)θ , where u ⊂ U is a set of inputs and
A(u) ∈ Rn×nθ is the system matrix, see Section 2.1. The sensor accuracy Σ ∈ Rn×n

of the measurement process is a diagonal matrix with strictly positive diagonal en-
tries σ2

i . The sensor weights ω are again written in the diagonal matrix Ω which
is dimension compatible to Σ. Furthermore, let z?(u) be the true (but unknown)
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value of the quantity of interest and Z(u) ∼ N (z?(u),Ω−1Σ) be the corresponding
random variable, where Ω−1Σ is defined as in Section 3.2. We recall the definition
of a chi-squared distribution:

Definition 4.4. Let X1, . . . , Xk ∼ N (0,1) be independently identically distributed
univariate random variables. Then

∑k
i=1 X 2

i is defined to be the chi-squared distri-
bution χ2

k with k ∈N degrees of freedom.

Without prior assumptions on the model parameters we have the following theorem:

Theorem 4.5. Let u = {u1, . . . , um} ⊂ U be a set of inputs and let η(θ , u) = A(u)θ
be a linear model with A(us) having full column-rank for any subset ; 6= us ⊂ u.
Let θ ? be the true value of the model parameters, Z(u) ∼ N (z?(u),Ω−1Σ) and let
the model be correct, i.e., z?(u) = η(θ ?, u) for all inputs u ⊂ U . Then, for any
division strategy, Algorithm 4.1 returns 0 with probability 1− TOL, in a first order
approximation.

Proof. Let z(u1), . . . , z(um) be the data which are acquired with the inputs u1, . . . , um.
Let Z1 = Z(u1), . . . , Zm = Z(um) be the corresponding independently distributed ran-
dom variables. Let DS be any division strategy and without loss of generality we
consider here an m-fold cross-validation. Set

zcal := {z(u1), . . . , z(um−1)} and zval := {z(um)}.

For convenience, define ucal = {u1, . . . , um−1} and uval = {um}. Since η is linear, the
estimates θcal,θval are given by solving Problem 2.1, and according to Proposition 2.2
we have

θcal = (A(ucal)
>ΩΣ−1A(ucal))

−1A(ucal)
>ΩΣ−1z(ucal),

θval = (A(uval)
>ΩΣ−1A(uval))

−1A(uval)
>ΩΣ−1z(uval).

By Proposition 2.3 these estimates are realizations of Gaussian random variables:

θcal ∼N (θ ?, Ccal) and θval ∼N (θ ?, Cval),

where

Ccal :=
�

A(ucal)
>ΩΣ−1A(ucal)

�−1
and Cval :=

�

A(uval)
>ΩΣ−1A(uval)

�−1
.

Since θcal and θval are independent, we have θdiff := θval − θcal ∼ N (0, Ccal + Cval) by
Lemma A.9. Using Proposition A.8, we know that (Ccal+Cval)−

1
2 θdiff ∼N (0, I). Thus,
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the test statistic in Algorithm 4.1

T (z(u1), . . . , z(um)) :=







(Ccal + Cval)
− 1

2 θdiff










2

2
= θ>diff(Ccal + Cval)

−1θdiff

is a realization of a sum of squared N (0, I)-distributed random variables, i.e., a chi-
squared distribution with nθ degrees of freedom. By the definition of its quantile
function γnθ(·), we have

P
�

T (Z1, . . . , Zm)≤ γnθ

�

1−
TOL
ntests

��

= 1−
TOL
ntests

in each hypothesis test. The probability that Algorithm 4.1 returns 0 after ntests tests
have been performed is given by

�

1−
TOL
ntests

�ntests

≈ 1− TOL,

in a first order approximation.

Remark 4.6. If a linear model is correct, then the probability that a null hypothesis
is accepted in Algorithm 4.1 does not depend on the particular choice of ui ∈ U and
ωi ∈ {0, 1}, i.e., it is independent of the experimental setup.

We now prove that in case of an incorrect linear model one can construct an instance
such that Algorithm 4.1 returns 1 with probability greater than TOL. To do this, we
review some properties of non-central chi-squared distributions.

Definition 4.7. Let X1 ∼ N (µ1, 1), X2 ∼ N (µ2, 1), . . . , Xk ∼ N (µk, 1) be inde-
pendently distributed univariate random variables. Then

∑k
i=1 X 2

i is defined to be
the non-central chi-squared distribution χ2

k,λ with k ∈ N degrees of freedom and
non-centrality parameter λ :=

∑k
i=1µ

2
i .

Corollary 4.8. Let X ∼ N (µ, I) be a multivariate Gaussian random variable with
mean µ ∈Rk and unit matrix variance. Then X>X ∼ χ2

k,λ, where λ= µ>µ.

Proposition 4.9. Let W (x; k) be the cumulative probability distribution function
(CDF) of χ2

k . Then the CDF of χ2
k,λ is given by

Q(x; k,λ) = exp
�

−
λ

2

� ∞
∑

i=0

λi

i! · 2i
W (x; k+ 2i).
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Proof. See [70].

Lemma 4.10. In the setting of Proposition 4.9 the following holds:
(a) Evidently, Q(x; k,λ)<W (x; k) for all k ∈N if x > 0 and λ > 0.
(b) Let γk(·) be the quantile function of χ2

k and let α ∈ (0,1). Then the function

(0,∞) 3 λ 7→ q(λ;α, k) := 1−Q(γk(1−α); k,λ) ∈ (0,1)

is increasing.

Proof. See [112, Lem. F.4].

We now have the following theorem:

Theorem 4.11. Let η(θ , u) = A(u)θ be a linear model with A(u) having full
column-rank for all u ∈ U . Furthermore, let u1, u2 ∈ U with u1 6= u2, vectors
c1 ∈ range (A(u1)), c2 ∈ range (A(u2)) with c1, c2 6= 0 and θ ∈ Θ be given, such that

Ez

�

η(θ , u1)− Z(u1)
�

= c1 and Ez

�

η(θ , u2)− Z(u2)
�

= −c2,

where Z(u1)∼N (z?(u1),Ω−1Σ) and Z(u2)∼N (z?(u2),Ω−1Σ). Then there is a di-
vision strategy DS such that Algorithm 4.1 returns 1 after one test with probability

p = TOL+W (γnθ(1− TOL); nθ)−Q(γnθ(1− TOL); nθ,λ)> TOL,

where W (· ; nθ) is the CDF of χ2
nθ

, γnθ(·) is its quantile function and Q(· ; nθ,λ) is
the CDF of χ2

nθ,λ with

λ= (θ1 + θ2)
> �(A(u1)

>ΩΣ−1A(u1))
−1 + (A(u2)

>ΩΣ−1A(u2))
−1
�−1
(θ1 + θ2) ,

for some θ1,θ2 ∈ Θ that satisfy A(u1)θ1 = c1 and A(u2)θ2 = c2.

Proof. Let u1, u2 ∈ U with u1 6= u2 be given such that

η(θ , u1) = z?(u1) + c1, η(θ , u2) = z?(u2)− c2,

where z?(u1) = E[Z(u1)] and z?(u2) = E[Z(u2)]. Furthermore, let z(u1) and z(u2) be
the corresponding data which are realizations of independently distributed random
variables Z1 = Z(u1) and Z2 = Z(u2). We perform one test and choose the division
strategy

zcal := {z(u1)} and zval := {z(u2)}.
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Since η is linear, the estimates θcal,θval are given by applying Proposition 2.2:

θcal = (A(u1)
>ΩΣ−1A(u1))

−1A(u1)
>ΩΣ−1z(u1),

θval = (A(u2)
>ΩΣ−1A(u2))

−1A(u2)
>ΩΣ−1z(u2).

According Proposition 2.3 these estimates are realizations of Gaussian random vari-
ables:

θcal ∼N (θ ?cal, Ccal) and θval ∼N (θ ?val, Cval),

where the covariance matrices are given by

Ccal := (A(u1)
>ΩΣ−1A(u1))

−1 and Cval := (A(u2)
>ΩΣ−1A(u2))

−1,

and the means are given by

θ ?cal = (A(u1)
>ΩΣ−1A(u1))

−1A(u1)
>ΩΣ−1z?(u1)

= θ − CcalA(u1)
>ΩΣ−1c1

= θ − θ1,

θ ?val = (A(u2)
>ΩΣ−1A(u2))

−1A(u2)
>ΩΣ−1z?(u2)

= θ + CvalA(u2)
>ΩΣ−1c2

= θ + θ2,

for some θ1,θ2 ∈ Θ. Define ξ := (Ccal + Cval)−
1
2 (θval − θcal). Using Lemma A.9 and

Proposition A.8, we have ξ∼N (s?(u1, u2), I), where

s?(u1, u2) := (Ccal + Cval)
− 1

2 (θ ?val − θ
?
cal) = (Ccal + Cval)

− 1
2 (θ1 + θ2) .

Thus, the test statistic T (Z1, Z2) := ξ>ξ has a non-central chi-squared distribution
χ2

nθ,λ with non-centrality parameter

λ := s?(u1, u2)
>s?(u1, u2) = (θ1 + θ2)

> (Ccal + Cval)
−1 (θ1 + θ2)> 0,

and nθ degrees of freedom. Following Lemma 4.10 (a), its cumulative distribution
function (CDF) Q(· ; nθ,λ) can be strictly bounded:

Q(x; nθ,λ)<W (x; nθ), for x > 0,
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where W (· ; nθ) is the CDF of χ2
nθ

. Let γnθ(·) be the quantile function of χ2
nθ

. Then

P
�

T (Z1, Z2)> γnθ(1− TOL)
�

= 1−Q(γnθ(1− TOL); nθ,λ)

= 1−W (γnθ(1− TOL); nθ)

+W (γnθ(1− TOL); nθ)−Q(γnθ(1− TOL); nθ,λ)

= TOL+W (γnθ(1− TOL); nθ)−Q(γnθ(1− TOL); nθ,λ)

> TOL.

Remark 4.12. In the proof above, the non-centrality parameter λ depends on the
design (ω, u1, u2) of the experiment. We have

s?(u1, u2)
>s?(u1, u2)≥

1
λmax(Ccal + Cval)

‖θ1 + θ2‖
2
2 .

Let (ω, u) be the optimally designed experiment and let either u1 or u2 be close to the
optimal input u. Then λmax(Ccal) or λmax(Cval) becomes small, and the lower bound
of the non-centrality parameter λ = s?(u1, u2)>s?(u1, u2) becomes large. According
to Lemma 4.10 (b), the function

λ 7→ q(λ;TOL, nθ) := 1−Q(γnθ(1− TOL); nθ,λ)

is increasing, and thus the lower bound of P
�

T (Z1, Z2)> γnθ(1− TOL)
�

becomes
large as well. To summarize, an optimally designed experiment provokes the rejec-
tion of the null hypothesis for false models as intended.
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Applications

Real technical systems encounter uncertainty in all phases of their life-cycle: from
modeling and design to production, usage and recycling. If model uncertainty is
present in the early stage of product development then it propagates to as far as the
usage phase which can cause considerable problems. Therefore, for systems with
high safety requirements, such as load-bearing structures, an early identification,
quantification and later control of model uncertainty becomes a necessity. As men-
tioned in Chapter 4 models can only be validated and improved with actual mea-
surements. We use these data to infer the true values of the model parameters, like
material constants or geometrical properties, with minimal variance. Anticipating
model uncertainty, it is reasonable to identify these parameters after the assembly
of the load-bearing system. By conducting a hypothesis test we can evaluate the
model’s fitness to describe the behavior of the system in the usage phase.

In this chapter we apply our algorithm to detect model uncertainty in two load-
bearing systems. Both played a major role in the Collaborative Research Center
(CRC) 805. The first is a mechanical forming machine, the 3D Servo Press, which
transmits torques and forces onto a component to be shaped according to a fixed
design pattern. This machine was engineered by the Institute for Production En-
gineering and Forming Machines (PtU) in the working group of Prof. Dr.-Ing. Peter
Groche. The second is a two-dimensional truss that represents the upper structure of
an airplane’s landing gear called Modular Active Spring-Damper System (MAFDS).
The MAFDS was developed by the Department of Mechanical Engineering under
Prof. Dr.-Ing. Peter Pelz and the Fraunhofer Institute for Structural Durability and
System Reliability (LBF) under Prof. Dr.-Ing. Tobias Melz. These systems are de-
scribed in much more detail in [104, Sec. 3.6].

This chapter is organized as follows. Section 5.1 introduces three models of the
3D Servo press which are distinguished by their friction part. We present numerical
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results of our Algorithm 4.1 applied to these models for different probabilistic per-
spectives where the data have been collected on a small-scale prototype of the press.
In Section 5.2 we apply our approach to identify model uncertainty in the dynamic
linear-elastic model of vibrations in a truss structure. Since we could not perform
our experiment as intended we use artificial data instead of real measurements to
test our approach.

5.1 Identification of Model Uncertainty in Mathematical
Models of the 3D Servo Press

We apply our method for identification of model uncertainty to a forming machine
that transmits the torques and forces of its drives onto an elastic body to be shaped
according to a target design. This technical system occurs in the literature under the
name 3D Servo Press [104, Sec. 3.6.3] and the following exposition is based on the
author’s work in [50, 115]. This is joint work with the PtU, and the press models as
well as the data were made available by Dr. Florian Hoppe.

5.1.1 Three Models of the 3D Servo Press

Forming machines are subject to high magnitudes of external forces. This causes
various parts of the press to experience deformation. It has been shown in [59] that
a rigid body model does not suffice to describe the behavior of the press in operation.
However, an accurate model is crucial for a closed-loop control of the machine [66].
The best candidate model would be the time-variant PDE of linear elasticity coupled
with a friction model. To keep the model computationally tractable, however, we use
a mechanical substitute model in which the components of the press are modeled as
bars, beams and spring elements depending on their stress under load. The notation
used in this subsection is independent and may deviate from previous chapters.

The 3D Servo Press consists of three identical linkage mechanisms, one of which
is shown in Figure 5.1. It shows several bars and beams connected via rotary joints.
In the figure, each elastic component is represented by a spring or a thin beam and
each mass component by a gray volume. The eccentric and spindle drives can move
along three degrees of freedom: ϕecc in rotation, ysu and ysl in translation. We
call this a gear unit. The drives cause all joints to perform a desired movement. The
gear unit presses on point D and a linear pressure bar translates this force to the ram
bearing R. Thus, the position of all marked points inside the press are determined
by the angle of the eccentric drive ϕecc and by the upper, as well as lower, spindle
drive positions ysu and ysl.
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Figure 5.1 Linkage mechanism of the 3D Servo Press in profile view [50].

Let L = T − P be the Lagrangian, where T is the kinetic and P is the potential
energy of the system. Moreover, let y be the state variables of the system and q
be the non-conservative forces. The equations of motion are given by the Euler-
Lagrange equations:

d
dt

�

∂ ẏL
�

− ∂yL = q. (5.1)

All external forces applied to the 3D Servo Press, like the torque of the eccentric
drive qecc, the forces of the upper and lower spindles qsu, qsl and the reacting process
force qP, are summarized by the term non-conservative forces. In order to validate
the elastic model, the position of the drives is fixed. Thus, all non-conservative
forces are set to zero except for qP which becomes the only applied force.

The press model consists of two rigid bodies, five bars, one beam, ten joints and

73



Chapter 5. Applications

the elasticity of the press frame. The kinetic and potential energy of the system is
equal to the sum of the kinetic and potential energy of each individual component:

T =
5
∑

i=1

Tbar,i +
1
∑

i=1

Tbeam,i +
2
∑

i=1

Tbody,i ,

P =
5
∑

i=1

Pbar,i +
1
∑

i=1

Pbeam,i +
10
∑

i=1

Pjoint,i ,

where the energy term of each individual component is defined as follows.

Bar model

A simplification of the theory of linear elasticity is the bar model. We use this model
for coupling links which experience a very small stress under load. Each bar i is
discretized using the Finite Element Method (FEM) and it is perceived as a pair of
two mass elements and a spring between them. Let mi, j be the mass of element j of
bar i, let vi, j be its translational velocity and let kbar,i be the stiffness of the spring
between the two mass elements. The total kinetic energy of each bar i is given by

Tbar,i =
1
2

2
∑

j=1

mi, j v
2
i, j +

1
2
Θiϕ̇

2
i ,

where Θi is the mass moment of inertia and ϕ̇i is the corresponding angular velocity.
The total potential energy of each bar is the sum of the elastic energy of the springs
and the gravitational energy of the masses

Pbar,i =
1
2

kbar,iξ
2
i +

2
∑

j=1

mi, j g0 yi, j ,

where g0 = 9.81m/s2, ξi is the relative displacement of the mass elements mi,1 and
mi,2, and yi, j is the relative position of each mass element above the ground.

Note that the FEM is based on detailed knowledge of the elastic modulus and
the geometry of the components where the latter comes from computer-aided de-
sign (CAD). However, due to fluctuations in the production process of the material
the elastic modulus is not constant for all finite elements. Moreover, manufacturing
tolerances compromise the accuracy of the CAD. Therefore, the stiffnesses are esti-
mated by an a priori FEM simulation which needs to be tuned by solving parameter
estimations problems with real data. This justifies our approach of estimating the
stiffnesses of the two bars k5 and k7 after the assembly of the machine.
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Figure 5.2 Beam model consisting of three masses and two springs [50].

Beammodel

The remaining coupling links, whose stress under load is significantly higher, experi-
ence bending and thus, they are modeled as beams. This is certainly the case for the
lever which connects the points F , B0 and the common anchor point of the springs
k5 and k7, see the thick gray line in Figure 5.1. The equations of motions for these
coupling links are determined by the Euler-Bernoulli beam theory [53]. Each beam
i is discretized by the FEM and the model is reduced to a mass-spring system with
three masses and two springs, see Figure 5.2. The distribution of the total mass mi

of the beam upon the three masses is approximated in the following way:

mi,1 =
mi

4
, mi,2 =

mi

2
and mi,3 =

mi

4
.

The kinetic energy of the beam has a similar form as for the bar:

Tbeam,i =
1
2

3
∑

j

mi, j v
2
i, j +

1
2

3
∑

j

Θi, jϕ̇
2
i ,

where Θi, j are the mass moments of inertia of the three masses and ϕ̇i is the angular
velocity of the whole beam. For the potential energy, again, the sum of the elastic
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energy of the springs and the gravitational energy of the masses is given by

Pbeam,i = y>beam,iKbeam,i ybeam,i +
3
∑

j=1

mi, j g0 yi, j ,

where Kbeam,i is the stiffness matrix obtained by the FEM discretization and

ybeam,i =
�

x i,1, yi,1,ϕi ,ξi,1,ηi,1,ψi,1,ξi,2,ηi,2,ψi,2

�>

are the states of the beam, see Figure 5.2.

Bearing Model

We model the bearings as spring elements that are located between the joints of
the couplers and whose stiffness kjoint,i is independent of the deflection. The radial
force applied to the bearings is a function of the radial displacement ∆ri . Thus, the
potential energy is given by

Pjoint,i =
1
2

kjoint,i ∆r2
i .

The radial displacement ∆ri can be expressed in local coordinates (η,ξ) of the body
which we omit for convenience.

Three Friction Models

All moving bearings experience friction which causes a hysteresis-type behavior of
the whole press. We consider only the bearings guiding the pressure bar that con-
nects the points D and R since the movement of the other bearings is insignificantly
small. There exist a variety of approaches to model friction. In this application we
consider three different models:

• No friction. We neglect the influence of friction and set

qfric(t) = 0.

• Discontinuous Coulomb model. We assume that the sign of the velocity Ṙ y

at the point R in y-direction is identical to the sign of q̇P. Then

qfric(t) = qc sign (Ṙ y(t)) = qc sign (q̇P(t)),
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with qc being a constant, gives a more accurate description of friction. This
model is discontinuous with respect to q̇P.

• Continuous model with rate-independent memory [21]. Here, the force at
the current time step t i and the preceding one t i−1 is considered:

qfric(t i) = µ(qP(t i), qP(t i−1), qP,min(t i), qP,max(t i)),

where µ is a memory function. We update the minimal and maximal process
forces qP,min(t i), qP,max(t i) in each time iteration i according to the rule

qP,min(t i) =

(

min{qP(t i), qP,min(t i−1)} if q̇P(t i)≥ 0,

qP(t i) if q̇P(t i)< 0,

qP,max(t i) =

(

max{qP(t i), qP,max(t i−1)} if q̇P(t i)≤ 0,

qP(t i) if q̇P(t i)> 0.

The continuous friction model is comparable to an artificial neural network
topology. In order to train this friction model we need the measured pro-
cess force and the force estimated by the inverse model function. The inverse
model maps the measured displacement and the estimated stiffness param-
eters (in absence of friction) to the causing force. When this procedure is
applied to all measurements of a loading-unloading cycle, then the full hys-
teresis curve is identified by a functional relation. For more details we refer to
[21, 94].

Summary

The press model incorporates two rigid bodies, five bars, one beam, ten joints and
the elasticity of the press frame which represents support points relative to the en-
vironment. Thus, we have a 34-dimensional state vector y. Equation (5.1) yields

F(y, ẏ , ÿ) + qfric(t)− qP(t) = 0,

with a 31-dimensional function F . We further simplify the model to the quasi-static
case by requiring ÿ = ẏ = 0. In the sequel, the parameters to be identified are the
stiffness of the two bars k5 and k7. The inputs are the process forces qP alone which
are applied by an external pneumatic source. Recall that there are three candidate
models for the 3D Servo Press:

M1 : press model with no friction,
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M2 : press model with Coulomb’s friction model,

M3 : press model with continuous friction behavior.

In the following we apply Algorithm 4.1 to detect model uncertainty in the three
modelsM1,M2 andM3 of the gear mechanism of the 3D Servo Press.

5.1.2 Numerical Results

First, we mention that we only perform measurements on the small-scale prototype
of the 3D Servo Press. The data are collected for m = 29 different process forces qp

which we call inputs u in our setting. The press has a two-phase behavior: the first
15 applied forces are the loading scenario and the last 14 are the unloading scenario.
For each input, the vertical displacement in point D, the horizontal displacement in
point F and the vertical displacement in point B0 is measured, see Figure 5.1. More-
over, we do not distinguish between initial and actual measurements but collect the
data with sensors positioned at all ns = 3 previously introduced locations. Thus,
line 5 in Algorithm 4.1 is skipped since all the relevant data are available in line 2.
Our goal is to reduce the costs for obtaining new measurements in experiments that
will be conducted on the full-scale 160 tons press by choosing two out of the three
candidate sensor positions. The data obtained from the best two sensors are then
used for the hypothesis test starting in line 8.

We repeat each measurement nz = 6 times. However, the experimental condi-
tions do not allow for constant inputs ui j to be applied in each measurement series
j = 1, . . . , nz due to variations in the pneumatic pressure. This uncertainty leads to
a violation of our assumption that the data series z1(ui), . . . , znz

(ui) are realizations
of independently, identically distributed Gaussian random variables. Nevertheless,
we know the desired setpoint values ud

i for all i = 1, . . . , m. A linear interpolation be-
tween the desired inputs ud

i and the measured quantity of interest z(ui j) is justified
if the deviations ui j − ud

i are small. Since this is the case, we fix all inputs to these
setpoint values and apply the linear interpolation:

z j(ui) :=
ud

i

ui j
· z(ui j) ∈Rns ,

for all j = 1, . . . , nz and i = 1, . . . , m. In the sequel, we only use these interpolated
measurements.

Initially, we assumed that measurements z1(ui), . . . , znz
(ui) are realizations of in-

dependent, identically distributed Gaussian random variables. In order to verify
this assumption, we test whether the measurement errors have a normal distribu-
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tion, with mean zero and variance estimated from the data, using a Shapiro-Wilk
goodness-of-fit-test [32]. Concretely, we consider the sample vector

∆z :=





z2(ui)− z1(ui)
z4(ui)− z3(ui)
z6(ui)− z5(ui)





and set a threshold of 5% to the test level. The results for each sensor are summa-
rized in Table 5.1. We clearly observe that the measurement errors ∆z are indeed
Gaussian with mean zero and variance estimated from the data.

The model parameters θ = (k5, k7) to be estimated describe the axial stiffness
of important components inside the press, see Subsection 5.1.1 and Figure 5.1. In
order to ensure that the principal part of the covariance matrix stays invertible, see
Remark 3.14 (b), we choose two out of the three candidate sensor locations that
were mentioned above. Since the overall number of combinations is small we solve
the following discrete OED problem by enumeration:

min
ω
Ψ[C(θ (z;ω, ud),ω, ud)]

s.t. θ (z;ω, ud) solves (3.9) or (3.10),

ω ∈ {0, 1}ns ,
ns
∑

k=1

ωk = 2,

(5.2)

where C(θ (z;ω, ud),ω, ud) = CNLS/GN/AB(θ (z;ω, ud),ω, ud) depending on the proba-
bilistic perspective, cf. (3.11), (3.12) and (3.15). We compare the outcome of these
perspectives and compute all the design criteria that were examined in Section 3.4.
The results for model M3 are summarized in Table 5.2–5.4. For the Bayesian per-
spective we analyze the influence of a weak and a strong prior which expresses the
confidence we place in the expert knowledge:

θ0 =

�

5.82
5.82

�

· 107, Γweak =

�

6.25 0
0 6.25

�

· 1010, Γstrong =

�

2.5 0
0 2.5

�

· 109.

Table 5.1 Analysis of the measurement data [50].

Sensor p-value in % Standard deviation

1 60.11 5.515 · 10−6
2 79.64 3.311 · 10−6
3 60.26 1.497 · 10−6
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For C = CNLS/GN we observe that omitting the second sensor leads to an increase
in all design criteria by a factor of ≈2 ·1019 in comparison to the initial design. This
is a strong indication that the information matrix became singular. However, this
is not the case in the Bayesian perspective C = CAB for both, a weak and a strong
prior. The prior covariance matrix operates as a regularizer ensuring invertibility
of the information matrix. A drawback of the Bayesian approach is the bias intro-
duced by the prior. The values of the D-criterion are significantly higher than in the
non-Bayesian cases and it seems that the stronger the prior the higher the differ-
ence. This is a hint that the estimated parameters θ are not good approximations
of the true values θ ?. Moreover, if one uses a strong prior, then the different sensor
combinations do not have any impact on the design criterion, see the last column in
Table 5.2–5.4, respectively.

We choose to be compliant to the E-criterion whereby effectively reducing the

Table 5.2 Results of the OED problem (5.2) for model M3, design criterion Ψ = ΨA and
different probabilistic perspectives (w. p. weak prior, s. p. strong prior), based on [50].

Sensor combination ΨA(CNLS) ΨA(CGN) ΨA(CAB) w. p. ΨA(CAB) s. p.

111 (initial) 4.959 · 109 9.221 · 109 6.202 · 1010 4.982 · 109
101 1.118 · 1029 1.137 · 1029 6.243 · 1010 4.994 · 109
011 6.258 · 109 9.478 · 109 6.202 · 1010 4.986 · 109
110 3.514 · 109 3.495 · 109 6.245 · 1010 4.989 · 109

Table 5.3 Results of the OED problem (5.2) for model M3, design criterion Ψ = ΨD and
different probabilistic perspectives (w. p. weak prior, s. p. strong prior), based on [50].

Sensor combination ΨD(CNLS) ΨD(CGN) ΨD(CAB) w. p. ΨD(CAB) s. p.

111 (initial) 1.168 · 1016 4.184 · 1016 1.776 · 1017 6.206 · 1018
101 7.184 · 1035 7.736 · 1035 4.533 · 1017 6.235 · 1018
011 1.485 · 1016 4.795 · 1016 2.002 · 1017 6.215 · 1018
110 2.757 · 1016 6.570 · 1016 2.433 · 1017 6.222 · 1018

Table 5.4 Results of the OED problem (5.2) for model M3, design criterion Ψ = ΨE and
different probabilistic perspectives (w. p. weak prior, s. p. strong prior), based on [50].

Sensor combination ΨE(CNLS) ΨE(CGN) ΨE(CAB) w. p. ΨE(CAB) s. p.

111 (initial) 4.957 · 109 9.217 · 109 6.201 · 1010 2.499 · 109
101 1.118 · 1029 1.137 · 1029 6.242 · 1010 2.500 · 109
011 6.256 · 109 9.473 · 109 6.201 · 1010 2.499 · 109
110 3.506 · 109 3.476 · 109 6.245 · 1010 2.500 · 109
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size of the largest principal axis of the confidence ellipsoid, see Section 3.4. Since
our sample size is small and the bias of the prior seems too strong, we evaluate the
column ΨE(CNLS) in Table 5.4 and conclude that omitting the last sensor, i.e., opting
for the sensor combination 110, is the optimal solution to (5.2). This reduces the
size of the largest principal axis of the confidence ellipsoid by ≈ 29% and at the
same time the costs are reduced by ≈33%. Note that when using CGN the predicted
reduction of the E-criterion is ≈ 62% which may be too optimistic. To summarize,
the optimal design of an experiment with the 3D Servo Press is to measure the
vertical displacements in point D and the horizontal displacements in point F , see
Figure 5.1.

We proceed with the hypothesis test described from line 8 onward in Algo-
rithm 4.1. The fitness of the three models of the 3D Servo Press M1,M2 and M3,
which were introduced in Subsection 5.1.1, is now investigated. First, a graphical
comparison is seen in Figure 5.3 where the model output and the measurement
data are plotted against the input force. Second, the friction part of model M3

is constructed by an artificial neural network which needs to be trained by real
measurement data. For this purpose we use four data series; the remaining two
measurement series are used for the hypothesis test applied to all models. Third,
the variance of the sensors is a critical value that significantly impacts the outcome
of the hypothesis test. The accuracy of each sensor is determined by summing up
the variance of the repeated measurement process, see Table 5.1, and the variance
specified by the manufacturer. Thus, the total standard deviation of each sensor is
given by

σ1 =
q

(5.515 · 10−6)2 + (1.414 · 10−5)2 ≈ 1.518 · 10−5,

σ2 =
q

(3.311 · 10−6)2 + (3.606 · 10−6)2 ≈ 4.895 · 10−6,

σ3 =
q

(1.497 · 10−6)2 + (3.606 · 10−6)2 ≈ 3.904 · 10−6.

We split the data in four different ways. In all cases, we generate the calibration
and validation sets with equal size and omit the first ud

1 = 0 and last ud
29 = 0 “applied”

force since nothing is happening when the input is zero. First, we split the data into
one loading S l and one unloading S u set according to the two-phase behavior of
the press. The first case is obtained by splitting the data obtained from the loading
scenario into one calibration S l1

c and one validation S l2
v set. The same is done for

the data obtained from the unloading scenario S u and thereby constructing the
second case. The third way to split the data is to test loading versus unloading, i.e.,
we consider the data sets S l

c for calibration and S u
v for validation. The fourth and
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Figure 5.3 Measurement series of the force-displacement curve of the linkage mechanism
and comparison with the model output forM1, M2 andM3, respectively, [50].

last case is a splitting where the loading and unloading sets are kept together and the
distribution into one calibration set S lu

c and one validation set S lu
v alternates. This

peculiar splitting maneuver was suggested by expert judgment in order to catch the
worst test scenario, i.e., the most difficult test for a model to pass, which we believe
is the third case. Our strategy is summarized in Table 5.5.

We now collect the outcome of the hypothesis test starting from line 9 in Algo-
rithm 4.1 with ntests = 4 test scenarios. Table 5.6–5.8 show the results. The value

Table 5.5 Summary of our four ways to split the data [50].

Force progression Calibration Validation

Loading S l1
c = {ud

2, ud
4, . . . , ud

14} S l2
v = {ud

3, ud
5, . . . , ud

15}
Unloading S u1

c = {ud
15, ud

17, . . . , ud
27} S u2

v = {ud
16, ud

18, . . . , ud
28}

Loading vs. unloading S l
c = {u

d
2, . . . , ud

14} S u
v = {u

d
15, . . . , ud

28}
Loading and unloading S lu

c = {u
d
3, ud

5, . . . , ud
27} S lu

v = {u
d
2, ud

4, . . . , ud
28}
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5.1. Identification of Model Uncertainty in the 3D Servo Press

αmin is the minimal test level such that the null hypothesis can only just be rejected.
We choose TOL = 5% as a bound for the family-wise error rate (FWER) and use
the conservative Bonferroni correction TOL/ntests = 1.25% for the individual level
of each test, see Appendix A.6. From all three tables we infer that the Bayesian
approach with strong prior convictions is misleading since modelM3 is rejected but
model M1 passes all tests! However, this is not the case when using weak prior
convictions. Moreover, we clearly observe that in the classical approaches to proba-
bility (CNLS and CGN) the modelM3 performs best as expected. In Table 5.6 we see
that modelM1 is mainly rejected in the second and third test scenario. This linear
model does well in describing the loading and the whole two-phase process but is
unable to explain unloading. Similarly, model M2 well describes the loading and
the unloading phases separately but is unable to explain both of them with the same

Table 5.6 Test results forM1 from different probabilistic perspectives, based on [50].

Calibration Validation αmin in %

CNLS CGN CAB w. p. CAB s. p.

S l1
c S l2

v 5.25 5.25 0.24 23.58
S u1

c S u2
v � 0.01 � 0.01 � 0.01 28.25

S l
c S u

v � 0.01 � 0.01 � 0.01 2.90

S lu
c S lu

v 4.45 4.46 5.33 99.17

Table 5.7 Test results forM2 from different probabilistic perspectives, based on [50].

Calibration Validation αmin in %

CNLS CGN CAB w. p. CAB s. p.

S l1
c S l2

v 86.40 86.40 � 0.01 28.74
S u1

c S u2
v 77.01 77.01 36.89 32.27

S l
c S u

v � 0.01 � 0.01 � 0.01 � 0.01

S lu
c S lu

v � 0.01 � 0.01 � 0.01 99.67

Table 5.8 Test results forM3 from different probabilistic perspectives, based on [50].

Calibration Validation αmin in %

CNLS CGN CAB w. p. CAB s. p.

S l1
c S l2

v 99.73 99.73 58.52 26.19
S u1

c S u2
v 92.83 92.83 93.96 33.33

S l
c S u

v 23.29 23.29 33.92 � 0.01

S lu
c S lu

v 98.25 98.25 98.82 99.70
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set of parameters, see Table 5.7. Thus, the 3D Servo Press model with a discontinu-
ous Coulomb friction term does not reproduce all the data. Note that the difference
between using CNLS and CGN is very small in this case. This should be considered
when evaluating future experiments on the full-scale press since computing CNLS is
computationally more expensive. In conclusion, we see that Algorithm 4.1 is able to
detect model uncertainty in M1 and M2 in the classical approaches to probability
and in the Bayesian approach with weak prior convictions. For M3, the algorithm
further provides a probability of the Type I error:

α=min{αmin,i ∈ (0,1) : i = 1, . . . , ntests}= 23.29%,

which is the necessary consequence ifM3 is wrongly rejected.

5.2 Detection of Model Uncertainty in the Dynamic
Linear-Elastic Model of a Truss Structure

In this section we apply Algorithm 4.1 to detect model uncertainty in the vibration
equations of a linear-elastic truss. The truss is a two-dimensional model of the upper
truss structure of the Modular Active Spring-Damper System [104, Sec. 3.6.1]. This
part is based on the author’s work in [93] which originated at the CRC 805 within
Subproject A3. We first explain the model equations and recall the OED problem.
Finally, we present numerical results.

5.2.1 Model Equations

Let G ⊂ R2 be a bounded Lipschitz domain with boundary ∂ G = ΓD ∪ ΓF ∪ ΓN. The
boundary parts ΓD, ΓF, ΓN are pairwise disjoint and non-empty. Furthermore, let (0, T )
be an open and bounded time interval with some T > 0. We consider the parameter-
dependent equations of motion for the linear-elastic body G which has a mass den-
sity % > 0, see [67, Sec. 7.2]:

%∂ 2
t t y + a%∂t y − div σ = 0, in (0, T )× G,

y = 0, on (0, T )× ΓD,

σ · n= 0, on (0, T )× ΓF,

σ · n= u, on (0, T )× ΓN,

y = 0, on {0} × G,

∂t y = 0, on {0} × G.

(5.3)
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5.2. Detection of Model Uncertainty in the Vibration Equations of a Truss

Here, a > 0 is the weak damping constant. We add Rayleigh damping to our model
by the generalized law of Hooke for the stress

σ := σ(y,∂t y;θ ) =Cθ
�

ε(y) + bε(∂t y)
�

,

where b > 0 is the strong damping constant, ε(y) = 1
2

�

∇y> +∇y
�

is the linearized
strain and

Cθ : ε 7→ θ1 tr (ε) I + 2θ2 ε,

is the fourth order elasticity tensor, see [29]. The model parameters that occur
in this PDE are the Lamé constants θ = (λL,µL) ∈ (0,∞) × (0,∞). It is evident
from (5.3) that the displacement y : (0, T ) × G 7→ R2 is only caused by the force
u : (0, T )× ΓN 7→R2 acting on the Neumann boundary.

We continue with the weak form of (5.3). Let V :=
�

v ∈ H1(G)2 : v = 0 on ΓD
	

be the space of test functions and let u ∈ H1(0, T ; L2(ΓN)2). Furthermore, we define
the parameter-dependent bilinear form A (·, ·;θ ) as

A (w, v;θ ) :=

∫

G

θ1 tr (ε(w)) tr (ε(v)) + 2θ2 ε(w) : ε(v)dx ,

where A : B = tr
�

A>B
�

is the Frobenius scalar product of two matrices A and B. We
call any y ∈ L2(0, T ;V ) with ∂t y ∈ L2(0, T ; H1(G)2) and ∂ 2

t t y ∈ L2(0, T ; L2(G)2) a
weak solution of the PDE (5.3) if it satisfies the variational equation

%
�

∂ 2
t t y(t), v

�

G + a% [∂t y(t), v]G + bA (∂t y(t), v;θ )

+A (y(t), v;θ ) = [u(t), v]ΓN ,
(5.4)

for all v ∈ V and for almost all t ∈ (0, T ), and if it satisfies the initial conditions
y(0) = 0, ∂t y(0) = 0. Here, [·, ·]G is the L2 scalar product over the domain G. Equa-
tion (5.4) is obtained by testing (5.3) with v ∈ V and partial integration, cf. [29, 41].
Now, the following holds:

Proposition 5.1. Let u ∈ H1(0, T ; L2(ΓN)2). Then the PDE (5.3) admits a unique
weak solution for almost all t ∈ (0, T ) which lies in the following function spaces:

y ∈ L∞(0, T ;V ), ∂t y ∈ L∞(0, T ; H1(G)2), ∂ 2
t t y ∈ L∞(0, T ; L2(G)2). (5.5)
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Proof. A more involved proof can be found in [83], see also [45, 135]. We give a
simpler proof in Appendix A.7.

This proposition ensures that there is no blow-up in the solution y provided that the
inputs u are sufficiently regular.

In the following, we work with a finite-dimensional approximation of (5.4)
known as the Galerkin ansatz. We employ standard quadratic finite elements and
decompose the domain G via a piecewise affine parametrization as in [78, Sec. 5.2].
Let dy ∈ N be the dimension of the space discretization. Then the Finite Element
Method (FEM) applied to (5.4) yields

M∂ 2
t t y(t) + C(θ )∂t y(t) + A(θ )y(t)− Nu(t) = 0, (5.6)

where A(θ ), M ∈ Rdy×dy are the stiffness and mass matrix, and N ∈ Rdy×du is the
boundary mass matrix. The damping matrix C(θ ) ∈Rdy×dy originates from the weak
damping term and the Rayleigh damping term as

C(θ ) := aM + bA(θ ), where a, b ≥ 0. (5.7)

The constants a and b are chosen in the way one wants to model damping. For
a > 0, b = 0 we have pure mass damping, for a = 0, b > 0 we have pure stiffness
damping and for a, b > 0 we have mixed damping. We shall mention here that both
matrices, A(θ ) and C(θ ), have a linear dependence on the Lamé constants θ .

It is common to use a discrete numerical time update with a predefined step size
∆t > 0 to solve (5.6). Renaming variables, (5.6) can be written as

Man + C(θ )vn + A(θ )dn − Nun = 0,

with the acceleration vector an = ∂ 2
t t y(tn) ∈ Rdy , the velocities vn = ∂t y(tn) ∈ Rdy

and the displacements dn = y(tn) ∈ Rdy for time steps n = 1, . . . , nt, respectively.
The implicit Newmark scheme is a commonly used method to solve this equation,
cf. [67]. We follow the implementation given by [139]. First, we choose the con-
stants βN =

1
4 and γN =

1
2 , which makes the method equivalent to the implicit

trapezoidal rule and thus unconditionally stable [67, Tab. 9.1.1], and define

α1 =
1

βN∆t2
, α2 =

1
βN∆t

, α3 =
1− 2βN

2βN
,

α4 =
γN

βN∆t
, α5 = 1−

γN

βN
, α6 =

�

1−
γN

2βN

�

∆t.
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Then the Newmark iteration scheme has the following form:

an+1 = α1 (dn+1 − dn)−α2vn −α3an,

vn+1 = α4 (dn+1 − dn) +α5vn +α6an,
�

α1M +α4C(θ ) + A(θ )
�

dn+1 = Nun+1 +M (α1dn +α2vn +α3an)

+ C(θ )(α4dn −α5vn −α6an),

(5.8)

for n= 1, . . . , nt − 1. We can write this update scheme as a matrix-vector equation:

L(θ )y − Fu= 0,

where y = (y1, . . . , ynt
)>∈ R3dynt are the states, with each yn = (an, vn, dn)>∈ R3dy

containing the acceleration, velocity and displacement, and u= (u1, . . . , unt
)>∈Rdunt

are the boundary forces at all time points. Here, the matrices L and F have the block
structure

L(θ ) =











Q(θ )
P(θ ), X (θ )

. . .
. . .

P(θ ), X (θ )











, F =











E0

E1

. . .
E1











,

where

Q(θ ) =





M , C(θ ), A(θ )
I

I



 , X (θ ) =





I , 0, −α1 I
0, I , −α4 I
0, 0, D(θ )



 , E0 =





N ,
0,
0



 , E1 =





0,
0,
N



 ,

with D(θ ) := α1M +α4C(θ ) + A(θ ) and

P(θ ) =





α3 I , α2 I , α1 I
−α6 I , −α5 I , α4 I

−α3M +α6C(θ ), −α2M +α5C(θ ), −α1M −α4C(θ )



 .

Note that Q(θ ), X (θ ) and P(θ ) are square matrices of order 3dy, L(θ ) is a square
matrix of order 3dynt and F has dynt rows and dunt columns.

5.2.2 Problem Formulation and Adjoint Equations

Let Θ ⊂ (0,∞)×(0,∞), Y ⊂R3dynt and U ⊂Rdunt . The PDE constraint in the PE and
OED problems is given by the operator e : Θ × U × Y → Y which defines the state
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equation:

e(θ , u, y) := L(θ )y − Fu= 0. (5.9)

For given θ and u, we denote its unique solution by y(θ , u). Note that the operator e
satisfies Assumption 2.12 and Assumption 3.16. We require the inputs to be constant
along the Neumann boundary ΓN such that it suffices to consider one time-dependent
input vector. Thus, du = 2. Moreover, we set feasible box constraints to the input
space which represent the limits of the experimenter. More concretely,

U :=
�

u ∈R2nt : umin ≤ u≤ umax

	

.

In order to make the inputs smooth, we employ linear finite elements to discretize
the time domain (0, T ) on which the inputs are defined. Here, we use the same grid
distance ∆t as in the time discretization of the state space. Let MT and AT be the re-
sulting mass and stiffness matrices for this linear finite element time discretization,
respectively. Then the discretized H1-norm of an input u ∈ U is given by

‖u‖2
H1 := u>(MT + AT)u.

We shall use this term as a regularizer in the objective function of Problem 3.17.
The sensitivity equations for si = ∂θi

y are given by

L(θ )si + ∂θi
L(θ )y(θ , u) = 0, i = 1, 2. (5.10)

Equations (5.9) and (5.10) are solved using the iteration scheme (5.8). To demon-
strate this, choose some i ∈ {1,2} and let s := ∂θi

y for convenience. The vector
s = (s1, . . . , snt

)>∈R3dynt consists of the components sn = (sa
n, sv

n, sd
n)
>∈R3dy , where the

superscript a stands for the acceleration, v for the velocity and d for the displace-
ment part. Then (5.10) is equivalent to

sa
n+1 = α1

�

sd
n+1 − sd

n

�

−α2sv
n −α3sa

n,

sv
n+1 = α4

�

sd
n+1 − sd

n

�

+α5sv
n +α6sa

n,
�

α1M +α4C(θ ) + A(θ )
�

sd
n+1 = M

�

α1sd
n +α2sv

n +α3sa
n

�

+ C(θ )
�

α4sd
n −α5sv

n −α6sa
n

�

−α4∂θi
C(θ )dn+1 − ∂θi

A(θ )dn+1 + ∂θi
C(θ )

�

α4dn −α5vn −α6an

�

.

We solve Problem 3.17 with Ψ = ΨE, C = CGN and R(u) = ‖u‖2
H1 to obtain optimal
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sensor positions ω and optimal input configurations u:

min
ω,u,y,s

Ψ[CGN(θ ,ω, y, s)] + κPε(ω) + βu>(MT + AT)u

s.t. 0= L(θ )y − Fu,

0= L(θ ) si + ∂θi
L(θ )y, i = 1, 2,

ω ∈ [0,1]nω , u ∈ U .

(5.11)

The adjoint equations (3.26) are the following:

L(θ )>µ+ ∂θ1
L(θ )>λ1 + ∂θ2

L(θ )>λ2 +∇yΨ = 0, (5.12)

L(θ )>λ1 +∇s1
Ψ = 0, (5.13)

L(θ )>λ2 +∇s2
Ψ = 0, (5.14)

where ∇yΨ and ∇si
Ψ are understood as Clarke subdifferentials, see Proposition A.7

and Appendix A.5. These equations can be rewritten by using the iteration scheme
above (5.8). The matrix L(θ ) is transposed on the left hand side of (5.12)–(5.14)
which leads to a backwards iteration. We show how to do this for equations (5.13)
and (5.14), see also [78, Sec. 5.4]. For convenience, let λ = λi and r := −∇si

Ψ be
the right-hand side in the equations for i ∈ {1, 2}. In the terminal point tnt

we solve

X (θ )>λnt
= rnt

,

or equivalently λa
nt
= 0, λv

nt
= 0 and

−α1λ
a
nt
−α4λ

v
nt
+ D(θ )λd

nt
= rd

nt
.

For points tn, n> 1 the current iterate is computed using values from a step forward
in time:

�

X (θ )>, P(θ )>
�

�

λn

λn+1

�

= rn,

or equivalently

λa
n = α3λ

a
n+1 +α6λ

v
n+1 + [α3M −α6C(θ )]λd

n+1,

λv
n = α2λ

a
n+1 +α5λ

v
n+1 + [α2M −α5C(θ )]λd

n+1,

−α1λ
a
n −α4λ

v
n + D(θ )λd

n = rd
n −α1λ

a
n+1 −α4λ

v
n+1 + [α1M +α4C(θ )]λd

n+1.
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In order to obtain the adjoint variable λ at the first time point t1 we solve

�

Q(θ )>, P(θ )>
�

�

λ1

λ2

�

= r1,

or equivalently

Mλa
1 = α3λ

a
2 +α6λ

v
2 + [α3M −α6C(θ )]λd

2 ,

C(θ )λa
1 +λ

v
1 = α2λ

a
2 +α5λ

v
2 + [α2M −α5C(θ )]λd

2 ,

A(θ )λa
1 +λ

d
1 = rd

1 −α1λ
a
2 −α4λ

v
2 + [α1M +α4C(θ )]λd

2 .

We solve the optimization problem (5.11) by an SQP-method with BFGS-updates
[129] and initialize the part of the Hessian of the Lagrangian that belongs to the
inputs with

βR′′(u) = 2β(MT + AT)

which is known to speed up convergence.

5.2.3 Numerical Results

Our test example is a two-dimensional truss consisting of nine beams and six connec-
tors. The spatial finite element discretization has about 5 000 degrees of freedom.
The Dirichlet boundary part ΓD is positioned at the two outer top connectors and
the Neumann boundary part ΓN on the bottom left connector as seen in Figure 5.4.
We employ pairs of strain gauges that can measure either the axial deflection or
the displacement caused by bending of the beams, cf. [65] and [110]. The strain
gauges are located on a subset of the free boundary part ΓF, i.e., on the upper and
lower boundaries of each beam, indicated as black bullets and connecting lines in
the figure. The strain gauges measure the relative displacement of two adjacent
finite element nodes:

εu = yN1 − yN2 and ε` = yN3 − yN4,

see Figure 5.4a.
However, It is easier to work with the square of the axial deflection ha(y) and the

square of the displacement caused by bending hb(y) in order to keep the following
computations simple:

ha(y) =
1
4
‖εu + ε`‖

2 and hb(y) =
1
4
‖εu − ε`‖

2 .
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Figure 5.4 (a) snapshot of the dynamic behavior of the truss with all possible positions for
strain gauges marked as bullets with connecting lines; the input boundary force is displayed
by a red arrow, (b)–(d) snapshot at the time of maximal displacement after (5.11) has been
solved with three different values for the penalty parameter: κ1 = 8,κ2 = 12,κ3 = 18; based
on [93].

The observation operator h is composed of ha and hb in a row, for all possible pairs
of strain gauges and for all time points. We also create for each such sensor five
weight variables which give us information about the importance of a strain gauge
position. In our example we have 117 candidate sensor locations in total. Hence,
there are nω = 117× 2× 5= 1170 weight variables ωk.

In a study conducted by Alipour and Zareian [5], which makes reference to
[101], it is suggested to perform such numerical simulations with pure stiffness
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damping, i.e., a = 0 in (5.7). We adopt this approach since we did not collect real
experimental data; we only simulate the acquisition of measurements. The accuracy
of the strain gauge sensors is fixed to σk = 1 · 10−4 mm2 for k = 1, . . . , nω. Note that
the unit of the standard deviation σk is mm2 since we consider the squared relative
displacement in the observation operator.

In our numerical simulations of the dynamic truss, we choose nt = 600 time
steps with a step size of ∆t = 5 ms. As a consequence, the solution of the state
equation (5.9) involves 3 000 000 degrees of freedom. Our initial point (ω0, u0(t))
for (5.11) is chosen in such a way that all weight variables ω0 are set to one and
u0(t) = u0 is the maximally feasible, constant-in-time boundary force within the box
constraints.

Our model M consists of the operators e(θ , u, y), h(y) and the state equation
(5.9). It operates under the assumption that all beams have equal cross-sectional
area in the stress-free state. On the other hand, the real model R is almost identical
to M except that two beams have a 5% and a 7% smaller diameter, respectively.
Since we were unable to acquire actual measurements, we generated simulated
Gaussian data on the computer with standard deviation σk and mean given by the
output of the real model R . In order to detect model uncertainty it is not important
to know which beams differ from each other. Note that a beam diameter is not a
single geometrical parameter but it significantly impacts the finite element terms
in the mass, damping and stiffness matrices, see Equation (5.6). In the sequel, we
apply Algorithm 4.1 to see if it detects model uncertainty inM when compared to
data obtained from R .

Since our data were generated on the computer as described above, line 6 in
Algorithm 4.1 became obsolete. Moreover, we used textbook values for θini, namely,
the Lamé-constants for steel λL = 121 154 N/mm2 and µL = 80 769 N/mm2 making
zini in line 2 unnecessary. These values for (λL,µL) are also used to generate the
output of the real model R . The optimization problem (5.11) has been solved
after about 80 iterations where the computation time was observed to be less than
eight hours on an AMD EPYC 48 × 2.8 GHz machine. As seen in Table 5.9, the
value of the design criterion decreased by several magnitudes when compared to
the initial setup. This improvement is significant and it is mainly caused by the
smart choice of the input force u(t) which excites the truss in such a way as to get
the maximum information gain for the values of the model parameters. Moreover,
the more sensors are involved in the final design the smaller becomes the largest
principal axis of the confidence region which is achieved for small κ.

In Figure 5.4b–d the final position of the strain gauges is depicted in a snap shot.
We observe that there are two main locations where a cluster of optimal sensors is
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Table 5.9 Outcome of the OED problem (5.11) for θ = θini and different κ > 0.

κ β |ω|0 ΨE[C(θini,ω0, u0(t))] ΨE[C(θini,ω, u(t))]

8 8 · 10−6 25 2.177 · 105 3.259 · 102
12 8 · 10−6 20 2.177 · 105 3.568 · 102
18 8 · 10−6 15 2.177 · 105 3.822 · 102

Table 5.10 Results for the hypothesis tests from Algorithm 4.1 with C = CGN and κ= 8.

# θcal θval ‖θcal − θval‖ λmin(Ccal + Cval)−1 αmin in %

1 2.137 3 · 10−6 1.206 8 · 105 1.254 · 105 7.441 · 103 � 0.001
1.125 7 · 105 7.868 2 · 104

2 7.872 1 · 10−5 1.206 9 · 105 1.254 · 105 7.431 · 103 � 0.001
1.125 7 · 105 7.867 6 · 104

3 2.089 2 · 10−6 1.206 9 · 105 1.254 · 105 7.432 · 103 � 0.001
1.125 7 · 105 7.867 6 · 104

4 2.081 1 · 10−6 1.206 9 · 105 1.254 · 105 7.429 · 103 � 0.001
1.125 7 · 105 7.867 6 · 104

Table 5.11 Results for the hypothesis tests from Algorithm 4.1 with C = CGN and κ= 12.

# θcal θval ‖θcal − θval‖ λmin(Ccal + Cval)−1 αmin in %

1 5.075 1 · 10−4 1.207 5 · 105 1.254 · 105 6.419 · 103 � 0.001
1.129 8 · 105 7.905 0 · 104

2 1.115 6 · 10−8 1.207 5 · 105 1.254 · 105 6.403 · 103 � 0.001
1.129 8 · 105 7.905 6 · 104

3 8.831 4 · 10−9 1.207 5 · 105 1.254 · 105 6.404 · 103 � 0.001
1.129 8 · 105 7.905 6 · 104

4 8.821 5 · 10−9 1.207 5 · 105 1.254 · 105 6.396 · 103 � 0.001
1.129 8 · 105 7.905 6 · 104

Table 5.12 Results for the hypothesis tests from Algorithm 4.1 with C = CGN and κ= 18.

# θcal θval ‖θcal − θval‖ λmin(Ccal + Cval)−1 αmin in %

1 1.569 4 · 10−6 1.207 2 · 105 1.254 · 105 5.933 · 103 � 0.001
1.126 8 · 105 7.876 9 · 104

2 1.558 9 · 10−6 1.207 2 · 105 1.254 · 105 5.938 · 103 � 0.001
1.126 8 · 105 7.876 9 · 104

3 4.324 9 · 10−5 1.207 2 · 105 1.254 · 105 5.938 · 103 � 0.001
1.126 8 · 105 7.876 9 · 104

4 3.282 8 · 10−5 1.207 2 · 105 1.254 · 105 5.932 · 103 � 0.001
1.126 8 · 105 7.876 9 · 104
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Figure 5.5 (a) comparison model output hi(y) in red for some sensor i and data zi in blue,
(b) amplitude spectra, i.e., fast Fourier transform, of the model output hi(y) and the data zi .

formed: one on the upper left beam and one on the lower central beam. The cluster
is only formed if all five weight variables for a sensor position are switched to one
which gives evidence to the fact that there are certain positions that are clearly
favorable. Clustering is thus a secondary effect and its extent is diminished if the
value of κ is slowly increased. However, a cluster design may be valuable evidence
for the engineer to couple the sensors right there or to use longer strain gauges if
possible. This would even more improve the information gain.

For the hypothesis test in Algorithm 4.1, let u(t) be the optimal input force. In
order to generate test instances, consider the following perturbed inputs:

u1(t) = u(t) +δ1, u2(t) = u(t) + 4 sin (2πt/nt) ,

u3(t) = u(t) + 4cos (2πt/nt) , u4(t) = u(t) +δ2(t),
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where δ1 ∼N (0, 4·I) and δ2(t)∼N (0,4t/nt·I) are Gaussian processes with discrete
time points t ∈ {k∆t : k = 1, . . . , nt} that have the step size∆t as introduced before.

These four inputs are used to generate four different data sets and we employ
a 4-fold cross-validation as our division strategy. Thus, ntests = 4 hypothesis tests
were conducted for three values of κ, respectively, and the results are shown in Ta-
ble 5.10–Table 5.12. We clearly observe that the suggested modelM is rejected in
all test instances when a threshold of TOL/ntests = 1.25% is applied to αmin. Accord-
ing to Assumption 4.3 this is a significant indication of model uncertainty. What is
more, the parameter estimates obtained from the calibration set have unreasonable
values. We even observed bad convergence properties of the Gauss-Newton method
in this case. Yet, this is evidence that the residuals are large, see Subsection 2.2.2.

A graphical comparison, however, either between the model output and the
data as seen in Figure 5.5a or between their amplitude spectra via the fast Fourier
transform, see Figure 5.5b, does not yield such clear evidence for model uncertainty.
The difference only prevails in the amplitude’s magnitude. A definite, quantifiable
statement about model uncertainty is difficult to justify with this approach.
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Conclusion and Outlook

In this thesis we developed an algorithm to identify model uncertainty which uses
methods from parameter estimation (PE), optimum experimental design (OED) and
statistical hypothesis testing. We showed that there are five different approaches
based on two probabilistic perspectives to estimate model parameters from data.
Each of these estimates and their covariance matrix can be used to define a confi-
dence region in which it is very likely to find the true parameter values. We then
introduced the classical theory of optimal design of experiments and its relaxation
formulations. Since this approach is insufficient in the presence of PDE constraints,
we introduced a modern approach to OED which returns optimal sensor weights
and an optimal input configuration such that a design criterion of the parameter’s
covariance becomes minimal. We also incorporated a penalty term to control the
costs of used sensors and a regularization to smooth the inputs. The solution to
this problem can be found with an iterative solver scheme, such as an SQP-solver
with BFGS-updates, for which we determined the adjoint equations. Moreover, we
relied on the assumption that the true values of the model parameters lie in this
small confidence region which was minimized by solving the OED problem. If the
mathematical model is correct, then repeated calibration and validation procedures
should yield parameter values in this confidence region. However, if a set of mea-
surements leads to estimates that lie outside of this confidence region, we concluded
that the model is incorrect.

We demonstrated the success of our algorithm to identify model uncertainty
in mathematical models of the 3D Servo Press and in the linear-elastic model of
vibrations in a truss. The press models were distinguished by their friction model for
which we introduced three different approaches: no friction at all, a discontinuous
Coulomb model and a continuous model with rate-independent memory trained by
an artificial neural network. We saw that our algorithm correctly selects the third
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model and rejects the others. Moreover, the Bayesian perspective with weak prior
convictions is suitable to cope with regularity issues of the covariance matrix in the
OED problem. However, we clearly suggest to abstain from strong prior convictions
since these yielded erroneous conclusions. Our results are of strategic importance
when conducting future experiments on the full-scale 3D Servo Press.

For the truss, we showed that our algorithm is able to detect a faulty model
that is deficient in its geometrical description and quantify model uncertainty by the
probability for the Type I error. Moreover, we significantly increased the information
gain for the parameters to be estimated by finding optimal excitation forces and op-
timal sensor positions. A direct graphical comparison between the Fourier transform
of the model’s output and the data only results in a difference in amplitudes but not
in frequencies. However, after an examination of the parameter estimates obtained
from the calibration data set, one can also infer that the model must be inadequate.

To give an outlook, our approach to optimal input configuration with PDE con-
straints can be extended to large-scale problems where the dimension of the param-
eter space is large. Adopting the notation from Section 3.3 we follow [4] and use
ntr randomized trace estimators for the inverse Hessian CAB. This Hessian depends
on the data and the parameters are obtained by solving (2.16)–(2.18) as an inner
optimization problem. An update of the input variables ui+1 = ui + ∆ui yields a
model output that mismatches the data resulting in unreasonable parameter values.
To deal with this difficulty one can update the data z(ui+1) in the following way.
First, extract the initial measurement error ε0 = h(y(θ 0, u0),θ 0)− z(u0) once, using
the first fitted parameter value θ 0, and then update the data vector:

z(ui+1) := h(yz(θ 0, ui+1),θ 0) + ε0,

where yz(θ 0, ui+1) solves the state equation

e(θ 0, ui+1, yz) = 0.

Furthermore, z(ui+1) is inserted into the objective function g = g(θ , y; z(ui+1)) of
the PE problem. Let τi ∼ N (0, I) for i = 1, . . . , ntr be given. Moreover, let κ,β > 0,
Pε(ω) be a smooth approximation of the `0-“norm” and R(u) be a smooth regular-
izer. We suggest to solve the following OED problem

min
ω,u,y,yz ,λ,θ ,vi ,qi ,ξi

ntr
∑

i=1

τ>i ξi + κPε(ω) + βR(u),
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where y, yz ,λ,θ , vi , qi ,ξi satisfy the equality constraints

e(θ , u, y) = 0,

e(θ0, u, yz) = 0,

∇y g + ∂y e>λ= 0,

∇θ g + ∂θ e>λ= 0,

∂y e qi + ∂θ eξi = 0,

∂y e>vi +
¬

∂ 2
y y e>, (λ, qi)

¶

+ ∂ 2
y y g qi +

¬

∂ 2
yθ e>, (λ,ξi)

¶

+ ∂ 2
yθ g ξi = 0,

∂θ e>vi + ∂
2
θ y g qi +

¬

∂ 2
θ y e>, (λ, qi)

¶

+ ∂ 2
θθ g ξi +




∂ 2
θθ e>, (λ,ξi)

�

= τi ,

for i = 1, . . . , ntr and (ω, u) satisfy the inequality constraints

ω ∈ [0, 1]nω , u ∈ U .

The number of PDEs to be solved in each step is 3 + 2ntr which is independent of
the dimension of the parameter space. As in [4], one can develop an adjoint calcu-
lus to apply gradient-based optimization algorithms. The success of this approach,
however, still needs to be investigated in further research.
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CHAP T E R A

Appendix

A.1 Basic Matrix Calculus

We start by citing and proving a few results on matrix inversion.

Lemma A.1. The set of invertible matrices GLn(R) := {A ∈ Rn×n : A invertible} is
open in Rn×n and the inversion mapping

inv : GLn(R)→Rn×n, A 7→ A−1

is continuous.

Proof. We note that det (·) : GLn(R)→R\{0} is continuous and that R\{0} is open.
Thus, det−1(R \ {0}) = GLn(R) is open in Rn×n as well. For the continuity of the
inversion mapping see [123].

Definition A.2. Let D ⊂ Rn be open and a function f : D → R be given. The
directional derivative of f at x ∈ D in the direction d ∈Rn is the function

Rn 3 d 7→ 〈∂x f (x), d〉 := lim
t↘0

f (x + td)− f (x)
t

,

if this limit exists.

Lemma A.3. Let A ∈ GLn(R). Then the directional derivative of inv : A 7→ A−1 in
the direction of a matrix ∆A∈Rn×n is given by

〈∂A inv(A),∆A〉= −A−1 ·∆A · A−1.
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Proof. We compute the limit

〈∂A inv(A),∆A〉 := lim
t↘0

inv (A+ t∆A)− inv (A)
t

= lim
t↘0

(A+ t∆A)−1 − A−1

t

= A−1 lim
t↘0

(I + t∆A · A−1)−1 − I
t

directly. If t becomes sufficiently small, then the Neumann series
∑∞

k=0(−t∆A ·A−1)k

converges to (I + t∆A · A−1)−1, see [136, Thm. II.1.11]. We thus have

(I + t∆A · A−1)−1 − I =
∞
∑

k=0

(−t∆A · A−1)k − I = I − t∆A · A−1 + o(t)− I

for small t and it follows

〈∂A inv(A),∆A〉= A−1 lim
t↘0

−t∆A · A−1 + o(t)
t

= −A−1 ·∆A · A−1.

We also compute some directional derivatives of common matrix functions.

Lemma A.4. (a) Let A, ∆A∈Rn×n. Then 〈∂A tr (A) ,∆A〉= tr (∆A).
(b) Let A∈ GLn(R) and ∆A∈Rn×n. Then we have

〈∂A det(A),∆A〉= det (A) · tr
�

A−1 ·∆A
�

.

Proof. Statement (a) follows directly from the definition and the fact that tr (·) is
linear. For (b) we refer to [90].

The next statements need some preparation; we follow [64]. Let Sn(R) be the
set of real symmetric matrices with inner product 〈A, B〉 = tr (A · B) for A, B ∈ Sn(R).
For m = 1, . . . , n denote the m-th largest eigenvalue of A ∈ Sn(R) by λm(A). We
further define

Òm :=min{i : λi(A) = λm(A)} and m :=max{i : λi(A) = λm(A)}.

Thus, it is evident that

λ
Òm−1(A)> λÒm(A) = . . .= λm(A) = . . .= λm(A)> λm+1(A)

which can easily be reformulated for the cases Òm = 1 and m = n. We now fix an
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orthogonal matrix U that diagonalizes A such that

U> · A · U = Diag (λ1(A), . . . ,λn(A)).

Furthermore, let Um be the submatrix of U consisting of the columns Òm, . . . , m.

Lemma A.5. Let A, ∆A∈ Sn(R). Then the following holds:

〈∂Aλm(A),∆A〉= λm−Òm+1(U
>
m ·∆A · Um). (A.1)

Proof. See [64, Thm. 3.3] and the references therein.

In general, the function λm(A) may be nonsmooth especially if there are multi-
ple eigenvalues. This is a direct consequence of the implicit function theorem. It
follows that the directional derivative in (A.1) may become instable. By introducing
generalized subdifferentials this derivative can be regularized.

Definition A.6. Let D ⊂ Rn and f : D → R be locally Lipschitz. Then the Clarke
directional derivative at x ∈ D is the mapping

Rn 3 d 7→ 〈 f ◦(x), d〉 := lim sup
t↘0, y→x

f (y + td)− f (y)
t

.

If this function coincides with the regular directional derivative at x , then we say
that f is Clarke regular at x . The Clarke subdifferential at x is the nonempty, convex
and compact set

∂ cl f (x) := {s ∈Rn : s>d ≤ 〈 f ◦(x), d〉 for all d ∈Rn}.

Knowing that λm(A) is Lipschitz, we consider the following result:

Proposition A.7. For any matrix A ∈ Sn(R) with eigenspace Em(A) ⊂ Rn corre-
sponding to the m-th largest eigenvalue λm(A) we have

∂ clλm(A) = conv{x · x> : x ∈ Em(A), ‖x‖= 1}. (A.2)

Proof. See [64, Thm. 5.3].

Following [86], Equation (A.2) can be used to write




λ◦m(A),∆A
�

=max{x> ·∆A · x : x ∈ Em(A), ‖x‖= 1}. (A.3)
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A.2 Transformations of Multivariate Normal Distributions

In this section we briefly mention a few results on transformations of multivariate
Gaussian random variables.

Proposition A.8. Let X ∼ N (µ,Σ) be a multivariate Gaussian random variable
where Σ is non-singular, A be a matrix with full row-rank and c be a vector. Then
the random variable Z = AX + c is also Gaussian with Z ∼N (Aµ+ c, AΣ A>).

Proof. See [126].

Lemma A.9. Let X ∼ N (µ1,Σ1) and Y ∼ N (µ2,Σ2) be two independent multi-
variate Gaussian random variables. Then

E[X ± Y ] = µ1 ±µ2 and Var[X ± Y ] =Σ1 +Σ2.

Proof. Let Z = (X , Y )>. Then E[Z] = (µ1,µ2)> and

Var[Z] =

�

Σ1 0
0 Σ2

�

,

since Cov[X , Y ] = 0. Let A= (I ,±I) and ξ := AZ . By Proposition A.8 we have

E[ξ] = µ1 ±µ2 and Var[ξ] =Σ1 +Σ2.

A.3 A Few Concepts from Asymptotic Distribution Theory

We briefly present a few notions from asymptotic distribution theory following
[112]. In this section, let (Xn)n∈N be a sequence of independent, identically dis-
tributed univariate random variables.

Definition A.10. Let FXn
(·) be the CDF of the random variable Xn. The sequence

(Xn)n∈N converges in distribution to X if (FXn
(y))n∈N converges to some CDF FX (y)

at all points y where FX (y) is continuous.

The case where X is a constant often gets special attention:

Definition A.11. The sequence (Xn)n∈N of random variables converges in proba-
bility to the constant X if for every ε,δ > 0 there exists some n0(ε,δ) ∈ N such
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that

P[|Xn − X |< ε]> 1−δ, for all n> n0(ε,δ).

The law of large numbers states that a sample average converges in probability to
its mean under certain conditions:

Proposition A.12. Let (Xn)n∈N be the sequence of random variables as before
such that E[Xn] = µ and Var[Xn] = σ2 exist for all n ∈ N. Then

�

1
n

∑n
i=1 X i

�

n∈N
converges in probability to µ as n→∞.

Proof. See [112, Thm. 8, p. 262].

We also mention the well-known central limit theorem:

Proposition A.13. Let (Xn)n∈N be the sequence of random variables as before
such that E[Xn] = µ and Var[Xn] = σ2 <∞ with σ > 0. Then (Yn)n∈N defined as

Yn :=
p

n
σ

�

1
n

n
∑

i=1

X i −µ

�

converges in distribution to Y ∼N (0,1) as n→∞.

Proof. See [112, Thm. 9, p. 265].

All these notions, the law of large numbers and the central limit theorem can be
generalized to the case of multivariate random variables, see [112, Lem. 13.5] for
example.

A.4 Derivatives in Newton’s Method for PE

Following up Subsection 2.2.1, we compute J(θ ; u) and S(θ ; z, u) which are used in
Equation (2.14) as we did in [50]. We derive the computation for m= nz = 1 only in
order to avoid complicated indices. Let y(θ ; u) be the solution of the state equation
(2.9) for given θ ∈ Θ and u ∈ U and let h be the observation operator. Then

∂θηi(θ , u) = ∂yhi(y(θ ; u),θ )∂θ y + ∂θhi(y(θ ; u),θ ),

∂ 2
θθηi(θ , u) = ∂θ y>∂ 2

y yhi(y(θ ; u),θ )∂θ y + ∂ 2
θθhi(y(θ ; u),θ )

+ 2∂ 2
yθhi(y(θ ; u),θ )∂θ y + ∂yhi(y(θ ; u),θ )∂ 2

θθ y.
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To determine the expressions ∂θ y and ∂ 2
θθ

y, we apply the Implicit Function Theorem
using Assumption 2.12:

∂y e(θ , u, y)∂θ y(θ ; u) = −∂θ e(θ , u, y).

In order to compute the vector-tensor product ∂yhi(y(θ ; u),θ )∂ 2
θθ

y efficiently we
want to avoid the direct calculation of ∂ 2

θθ
y(θ ; u) whose directional derivatives in

direction (ν1,ν2) ∈ Y × Y are given by

∂y e(θ , u, y)



∂ 2
θθ y(θ ; u), (ν1,ν2)

�

= −
¬

∂ 2
y y e(θ , u, y), (∂θ y(θ ; u)ν1,∂θ y(θ ; u)ν2)

¶

− 2
¬

∂ 2
yθ e(θ , u, y), (∂θ y(θ ; u)ν1,ν2)

¶

−



∂ 2
θθ e(θ , u, y), (ν1,ν2)

�

.

In order to make the next lines more readable let y = y(θ ; u), e = e(θ , u, y) and let
the lower indices represent vector components. Let wk be the solution of

∂y e>wk =∇yhk.

where hk = hk(y(θ ; u),θ ). Then

∂yhk∂
2
θθ y = −

nθ
∑

`,p=1





dy
∑

r=1

 dy
∑

s=1

wk
r (∂θ yk)` · ∂ 2

yk ys
er · (∂θ ys)p

!

+ 2
dy
∑

r=1

 dy
∑

s=1

wk
r ∂

2
θ` ys

er · (∂θ ys)p

!

+
dy
∑

r=1

wk
r ∂

2
θ`θp

er



e` ⊗ ep,

where e` ⊗ ep denotes the standard tensor product between unit vectors e` and ep.

A.5 Derivatives in Adjoint Equations for OED

We derive the computation of the gradients ∇y J(ω, u, y, s), ∇ωJ(ω, u, y, s) and
∇si

J(ω, u, y, s) from Section 3.3. The interesting parts are the gradients of the de-
sign criterion ∇yΨ[C(θ ,ω, y, s)], ∇ωΨ[C(θ ,ω, y, s)] and ∇si

Ψ[C(θ ,ω, y, s)], where
C(θ ,ω, y, s) = MGN/B(θ ,ω, y, s)−1. We only compute directional derivatives in case
of the D-criterion, i.e., Ψ[C] = ΨD[C] = det (C). With Lemma A.3 and Lemma A.4
we have

〈∂ωΨD,ek〉= det (C) · tr
�

C−1 ·∆C
�

,

∆C = − C ·∆F · C
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∆F = s> · ∂yh> ·Diag (rep(ek; nt)) ·Σ−1 · ∂yh · s,

for any unit vector ek ∈ Rnω , where rep(ek; nt) provides nt copies of ek. Further-
more, for i = 1, . . . , nθ we have




∂si
ΨD, s̃

�

= det (C) · tr
�

C−1 ·∆C
�

,

∆C = − C ·∆F · C

∆F = v>i · ∂yh> ·Ω ·Σ−1 · ∂yh · s+ s> · ∂yh> ·Ω ·Σ−1 · ∂yh · vi ,

vi =
�

δ(1, i) · s̃1, . . . ,δ(nθ, i) · s̃nθ

�

,

for any s̃ = [s̃1, . . . , s̃nθ] ∈ R
dy×nθ with the well known Kronecker delta δ(k, l). We

finally have




∂yΨD, ỹ
�

= det (C) · tr
�

C−1 ·∆C
�

,

∆C = − C ·∆F · C

∆F =
¬

∂ 2
y yh, (s, ỹ)

¶>
·Ω ·Σ−1 · ∂yh · s+ s> · ∂yh> ·Ω ·Σ−1 ·

¬

∂ 2
y yh, (s, ỹ)

¶

,

for all ỹ ∈Rdy , where

¬

∂ 2
y yh, (s, ỹ)

¶

=
dy
∑

`=1

nθ
∑

p=1

dy
∑

i, j=1

�

ỹ j · ∂ 2
yi y j

h` · sip

�

e` ⊗ ep.

A.6 Statistical Hypothesis Testing

This section is based on [40] and [55, 118]. In statistical testing one is concerned
with deciding whether to accept a null hypothesis H0 : θ = θ0, which makes a claim
on the true value θ0 of a parameter θ , or a counter hypothesis H1 : θ 6= θ0. Usu-
ally, observed measurements z1, . . . , zN ∈R, which are realizations of independently,
identically distributed random variables Z1, . . . , ZN with parameter-dependent prob-
ability distribution Pθ , are involved in this decision process.

Definition A.14. Let two competing hypotheses H0 and H1 be given. Construct
a mapping τ : RN → {0,1} with the following interpretation: τ(z1, . . . , zN ) = 0
corresponds to the acceptance of H0 and τ(z1, . . . , zN ) = 1 corresponds to a decision
in favor of H1. Then τ is called a statistical test.

Alternatively, one can define a statistical test by introducing a critical region Kc ⊂RN :
the null hypothesis is rejected if (z1, . . . , zN ) ∈ Kc, otherwise H0 is accepted. In this
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setting

τ(z1, . . . , zN ) =

(

1, if (z1, . . . , zN ) ∈ Kc,

0, if (z1, . . . , zN ) /∈ Kc.

Clearly, it is also possible to define an acceptance region K instead of a critical region.
In such a test scenario one encounters two different kinds of errors: the incorrect

rejection of H0 is the Type I error and the incorrect rejection of H1 is the Type II error.
We denote the corresponding probabilities as

α= P[Type I error] = P[reject H0 |H0 is true],

β = P[Type II error] = P[accept H0 |H0 is false].

Using the critical region, we derive a formula for the probability of the Type I error:

α= Pθ=θ0
[(Z1, . . . , ZN ) ∈ Kc].

In general, it is not possible to minimize α and β at the same time. Therefore, an
arbitrary test level TOL ∈ (0,1) is set as an upper bound to α and under this constraint
one tries to minimize β . Usually, the hypotheses H0 and H1 are stated in such a way
that H1 contains the claim one wants to verify, i.e., one wants to reject H0.

The critical region can often be written in the form

Kc = {(z1, . . . , zN ) ∈RN : T (z1, . . . , zN )> c},

where c ∈ R is the critical value and T : RN → R is a function. The corresponding
random variable T (Z1, . . . , ZN ) is called test statistic and has a probability distribution
Pθ ,T depending also on the function T . We now have another way to determine the
Type I error:

α= Pθ=θ0,T [T (Z1, . . . , ZN )> c].

In order to evaluate a statistical test faster one considers the p-value of the test. For
some given data, this is the smallest test level under which the null hypothesis can
only just be rejected. Thus, the data z1, . . . , zN ∈ R now determine the critical value
in the definition of Kc which achieves a maximal Type I error probability:

p-value = Pθ=θ0,T [T (Z1, . . . , ZN )> T (z1, . . . , zN )].
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The evaluation of the statistical test is then simple: if p-value > TOL, then H0 cannot
be rejected, otherwise H0 can be rejected with a Type I error probability of less
or equal than TOL. Often, the following guidelines are applied for choosing TOL:
for very strong evidence choose TOL = 0.01, for strong evidence use TOL = 0.05.
However, the use and abuse of p-values and their tolerances are richly debated in
literature.

If we perform m ∈ N tests on the same data, the problem of multiple testing
occurs. If the test level in each test is TOL, then the probability to reject at least
one null hypothesis is 1− (1− TOL)m. This is also called the family-wise error rate
(FWER). A common way to deal with this problem is to adjust the individual test
level αi such that the desired Type I error probability for the FWER is TOL:

1− (1−αi)
m = TOL ⇔ αi = 1− (1− TOL)

1
m . (A.4)

A first order Taylor approximation of (A.4) yields αi =
TOL
m which is called Bonferroni

correction [38]. This is a very conservative way of controlling the FWER which is
useful when one considers the rejection of at least one null hypothesis as significant.
Other methods to deal with multiple testing are described in [19, 20, 52].

A.7 Existence of Solutions for the Rayleigh Damping
Problem

We combine ideas from [39, Thm. 4.1] as well as from [41, Chap. 7.2, Thm. 5]
and adapt their proofs such as to meet our setting in Section 5.2 which incorporates
Rayleigh damping.

Since V is separable, there exists a sequence of smooth functions (wk)k∈N that
forms an orthogonal basis of V . We take the complete set of eigenfunctions of the
negative Laplacian on V , see [41, Chap. 6.5.1]. Furthermore, we define an approx-
imate solution of (5.4) of order m ∈ N by ym(t) :=

∑m
k=1 dk,m(t)wk, with smooth

coefficients dk,m(t), which solves the finite-dimensional system

%
�

y ′′m(t), v
�

G + a%
�

y ′m(t), v
�

G +A (ym(t), v,θ )

+ bA (y ′m(t), v,θ ) = [u(t), v]ΓN ,
(A.5)

for all v ∈ Lin (w1, . . . , wm) with the initial conditions ym(0) = 0 and y ′m(0) = 0. Since
w1, . . . , wm are linearly independent and by standard arguments from the theory of
ordinary differential equations, the linear system (A.5) has a unique solution ym.
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Lemma A.15. Let u ∈ L2(0, T ; L2(ΓN)2) and let y be the smooth approximate so-
lution of (A.5) of order m ∈N. Then we have the following estimate:

ess sup
t∈(0,T )

�




y ′(t)






2
L2(G)2 + ‖y(t)‖2

H1(G)2

�

≤ c ‖u‖2
L2(0,T ;L2(ΓN)2)

where c is a positive constant.

Proof. We test (A.5) with y ′(t) and thus arrive at

%

2
d

dt





y ′(t)






2
L2(G)2 + a%





y ′(t)






2
L2(G)2

+
1
2

d
dt
A (y(t), y(t),θ ) + bA (y ′(t), y ′(t),θ ) =

�

u(t), y ′(t)
�

ΓN

and after time integration

%




y ′(t)






2
L2(G)2 + 2a%

∫ t

0





y ′(s)






2
L2(G)2 ds+A (y(t), y(t),θ )

+ 2b

∫ t

0

A (y ′(s), y ′(s),θ )ds = 2

∫ t

0

�

u(s), y ′(s)
�

ΓN
ds.

(A.6)

We know by Korn’s inequality [29, Thm. 6.3-3] that the bilinear form A (·, ·,θ )
satisfies

A (v, v,θ )≥ α‖v‖2
H1(G)2 − ‖v‖

2
L2(G)2 , for all v ∈ V ,

with a constant α > 0. Thus, (A.6) becomes

%




y ′(t)






2
L2(G)2 +α‖y(t)‖2

H1(G)2 − ‖y(t)‖2
L2(G)2

+2b

∫ t

0

α




y ′(s)






2
H1(G)2 −





y ′(s)






2
L2(G)2 ds ≤ 2

∫ t

0

�

u(s), y ′(s)
�

ΓN
ds.

(A.7)

Now, with c > 0 denoting various constants we have

2
�

u(t), y ′(t)
�

ΓN
≤ 2bα





y ′(t)






2
H1(G)2 + c ‖u(t)‖2

L2(ΓN)2

and

‖y(t)‖2
L2(G)2 ≤ c

∫ t

0





y ′(s)






2
L2(G)2 ds.
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Thus, (A.7) becomes

%




y ′(t)






2
L2(G)2 +α‖y(t)‖2

H1(G)2 ≤ c

∫ t

0

‖u(s)‖2
L2(ΓN)2

ds+ c

∫ t

0





y ′(s)






2
L2(G)2 ds. (A.8)

Because of u ∈ L2(0, T ; L2(ΓN)2), the first term on the right side remains bounded
for all t ∈ (0, T ) and with ϕ(t) := ‖y ′(t)‖2

L2(G)2 + ‖y(t)‖2
H1(G)2 the inequality (A.8)

becomes

ϕ(t)≤ c

∫ t

0

‖u(s)‖2
L2(ΓN)2

ds+ c

∫ t

0

ϕ(s)ds.

From Gronwall’s inequality it follows

ϕ(t)≤ c

�∫ t

0

‖u(s)‖2
L2(ΓN)2

ds

�

· exp(c t).

Lemma A.16. Let u ∈ H1(0, T ; L2(ΓN)2) and let y be the smooth approximate so-
lution of (A.5) of order m ∈N. Then we have the additional estimate:

ess sup
t∈(0,T )

�




y ′′(t)






2
L2(G)2 +





y ′(t)






2
H1(G)2

�

≤ c




u′






2
L2(0,T ;L2(ΓN)2)

where c is a positive constant.

Proof. We differentiate (A.5) with respect to t, write ỹ(t) := y ′(t) and test with
ỹ ′(t). Thus, we arrive at

%

2
d

dt





 ỹ ′(t)






2
L2(G)2 + a%





 ỹ ′(t)






2
L2(G)2

+
1
2

d
dt
A ( ỹ(t), ỹ(t),θ ) + bA ( ỹ ′(t), ỹ ′(t),θ ) =

�

u′(t), ỹ ′(t)
�

ΓN

and after time integration

%




 ỹ ′(t)






2
L2(G)2 + 2a%

∫ t

0





 ỹ ′(s)






2
L2(G)2 ds+A ( ỹ(t), ỹ(t),θ )

+ 2b

∫ t

0

A ( ỹ ′(s), ỹ ′(s),θ )ds = 2

∫ t

0

�

u′(s), ỹ ′(s)
�

ΓN
ds.

(A.9)

As in the proof of Lemma A.15 we can argue that the right hand side of (A.9) is
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bounded from below:

%




 ỹ ′(t)






2
L2(G)2 +α‖ ỹ(t)‖2

H1(G)2 − ‖ ỹ(t)‖2
L2(G)2

+2b

∫ t

0

α




 ỹ ′(s)






2
H1(G)2 −





 ỹ ′(s)






2
L2(G)2 ds ≤ 2

∫ t

0

�

u′(s), ỹ ′(s)
�

ΓN
ds.

(A.10)

From here it follows again that

2
�

u′(t), ỹ ′(t)
�

ΓN
≤ 2bα





 ỹ ′(t)






2
H1(G)2 + c





u′(t)






2
L2(ΓN)2

and

‖ ỹ(t)‖2
L2(G)2 ≤ c

∫ t

0





 ỹ ′(s)






2
L2(G)2 ds,

where c > 0 denotes various constants. Thus, (A.10) becomes

%




 ỹ ′(t)






2
L2(G)2 +α‖ ỹ(t)‖2

H1(G)2 ≤ c

∫ t

0





u′(s)






2
L2(ΓN)2

ds+ c

∫ t

0





 ỹ ′(s)






2
L2(G)2ds. (A.11)

Because of u ∈ H1(0, T ; L2(ΓN)2), the first term on the right side remains bounded
for all t ∈ (0, T ) and with ϕ(t) := ‖ ỹ ′(t)‖2

L2(G)2 + ‖ ỹ(t)‖2
H1(G)2 the inequality (A.11)

becomes

ϕ(t)≤ c

∫ t

0





u′(s)






2
L2(ΓN)2

ds+ c

∫ t

0

ϕ(s)ds.

From Gronwall’s inequality it follows

ϕ(t)≤ c

�∫ t

0





u′(s)






2
L2(ΓN)2

ds

�

· exp(c t).

We conclude that the sequences (ym)m∈N and (y ′m)m∈N both are bounded in
L∞(0, T ; H1(G)2) and that the sequence (y ′′m)m∈N is bounded in L∞(0, T ; L2(G)2)
for m→∞, respectively. It is now possible to choose a subsequence yk, such that
yk → y weakly star and y ′k → y ′ weakly star in L∞(0, T ; H1(G)2), respectively, and
y ′′k → y ′′ weakly star in L∞(0, T ; L2(G)2).

To prove that this y is indeed the unique solution of the original problem (5.4)
one can proceed in a similar way as in the proof found in [39, Thm. 4.1].
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