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Zusammenfassung

Das Thema dieser Arbeit ist die Bestimmung und die Charakterisierung ver-
allgemeinerter Ableitungen für Lösungsoperatoren von Hindernisproblemen.
Das klassische Hindernisproblem beschreibt die Gleichgewichtsposition

einer elastischen Membran unter Krafteinwirkung, wobei die Membran am
Rand eines Gebietes eingespannt ist und ober- oder unterhalb eines gegebenen
undurchdringbaren Hindernisses bleiben muss. Verwandte Probleme lassen
sich beispielsweise auch in der Physik, der Biologie oder dem Finanzwesen
finden.
Mathematisch lassen sich Hindernisprobleme durch Variationsungleichung-

en beschreiben, bei denen die zulässige Menge durch ein oder mehrere Hin-
dernisse begrenzt ist. Es ist bekannt, dass die betrachteten Variationsunglei-
chungen für verschiedene Eingabewerte eindeutige Lösungen besitzen und
der zugehörige Lösungsoperator Lipschitz-stetig ist. Die Hindernisbedin-
gung führt jedoch dazu, dass die jeweiligen Lösungsoperatoren im Allge-
meinen nicht differenzierbar sind. Eine Verallgemeinerung des Satzes von
Rademacher auf genügend reguläre unendlichdimensionale Räume besagt
nun, dass die betrachteten Lösungsoperatoren auf einer dichten Teilmenge
Gâteaux-differenzierbar sind. Damit lassen sich sogenannte verallgemeinerte
Differentiale in jedem Punkt definieren. Die verallgemeinerten Ableitungen
in einem festen Punkt des Urbildraums sind definiert als Grenzwerte von
Gâteaux-Ableitungen in approximierenden Punkten des Urbildraums. Hier-
bei können im Unendlichdimensionalen sowohl im Urbildraum als auch im
Raum der stetigen linearen Operatoren unterschiedliche Topologien betrach-
tet werden.
Durch Kenntnis von verallgemeinerten Ableitungen können einerseits nicht-

glatte Optimierungsmethoden, zum Beispiel Bundle-Methoden, zur Lösung
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iv Zusammenfassung

von Optimalsteuerproblemen bezüglich der Hindernisprobleme angewandt
werden und andererseits Kandidaten für Optimallösungen charakterisiert
werden. Die Struktur der verallgemeinerten Differentiale ist aber auch aus
theoretischer Sicht interessant.
Ausganspunkt für die Analyse in dieser Arbeit ist die Beschreibung der

Richtungsableitung als Lösung einer Variationsungleichung, wie sie von
Mignot [Mig76] gefunden wurde. Hieraus gewinnen wir eine Charakteri-
sierung der Gâteaux-Ableitungen als Lösungsoperatoren von Variationsglei-
chungen auf quasi-offenen Mengen, die durch die Kontaktmenge zwischen
Hindernis und Lösung festgelegt ist und so von dem betrachteten Punkt des
Urbildraums abhängt.
Das Grenzverhalten dieser Operatoren wird nun für verschiedene Lö-

sungsoperatoren von Hindernisproblemen untersucht. Unter Ausnutzung
von Monotonieeigenschaften bestimmen wir für beliebige Punkte im Urbild-
raum zwei verallgemeinerte Ableitungen für ein allgemein formuliertes Hin-
dernisproblem, bei dem die Eingabedaten mittels eines möglicherweise nicht-
linearen Operators in die Variationsungleichung eingehen. Hierfür wird für
geeignete konvergente Folgen im Urbildraum die Mosco-Konvergenz der zuläs-
sigen Mengen für die Gâteaux-Ableitungen, also die Mosco-Konvergenz von
Sobolevräumen auf quasi-offenen Mengen, gezeigt und der Grenzwert charak-
terisiert. Betrachten wir das Hindernisproblem für den Laplace-Operator
auf dem Gesamtraum, so können sogar alle Elemente der verallgemeinerten
Differentiale bestimmt werden. Im Falle der schwachen Operatortopologie
als Konvergenzbegriff auf dem Raum der Operatoren tauchen hier Lösungs-
operatoren zu relaxierten Dirichletproblemen auf, die nicht mehr durch eine
quasi-offene Menge bestimmt sind sondern durch ein kapazitäres Maß. Zu-
dem betrachten wir auch ein allgemein formuliertes Hindernisproblem mit
zwei Hindernissen und finden in diesem Fall verallgemeinerte Ableitungen.
Schließlich untersuchen wir, wie numerisch ein Clarke-Subgradient im Finite-
Elemente-Raum für ein Optimalsteuerproblem bezüglich des Hindernispro-
blems berechnet werden kann. Wir leiten einen Fehlerschätzer her, der bei-
spielsweise für die Implementierung von inexakten Bundle-Verfahren verwen-
det werden kann.
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CHA PTER 1
Introduction

Variational inequalities of obstacle type are the central objects that are con-
sidered within this thesis. The challenge inherent in these problems is the in-
trinsic nonsmoothness of the corresponding solution operators that is caused
by the obstacle constraint.
As a prototype, we consider the variational inequality

Find y ∈ Kψ : 〈Ly − ζ, z − y〉H−1(Ω),H1
0 (Ω) ≥ 0 ∀ z ∈ Kψ (OP)

and the respective admissible set

Kψ := {z ∈ H1
0 (Ω) : z ≥ ψ a.e. in Ω}.

Here, L ∈ L(H1
0 (Ω), H−1(Ω)) is a bounded, linear, coercive operator and

ψ : Ω→ R∪{−∞} is the obstacle function, which is chosen such that Kψ 6= ∅
is guaranteed. We call the operator S mapping ζ ∈ H−1(Ω) to the unique
solution of (OP) the solution operator of the above problem.
Without the obstacle constraint, e.g., when considering ψ = −∞, and

assuming that L is a differential operator, S is the bounded and linear solution
operator to a partial differential equation. In particular, the corresponding
operator is Gâteaux differentiable.
While being related to the unconstrained problem, the solution operator

of (OP) with nontrivial obstacle does not share this property. One can show
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2 1. Introduction

that it is a nonsmooth, but Lipschitz continuous operator between infinite di-
mensional spaces. A generalization of Rademacher’s theorem to such spaces
states that S is Gâteaux differentiable on a dense subset of H−1(Ω). This
motivates to consider generalized differentials consisting of limits of Gâteaux
derivatives at converging points in the domain. Considering the weak op-
erator topology for the convergence of the Gâteaux derivatives, one can a
priori show that the obtained differential is nonempty. Now, on the one
hand, the structure of the differentials is interesting from an analytic point
of view. On the other hand, the availability of generalized derivatives allows
to apply nonsmooth optimization methods, such as Bundle methods, to the
optimal control of obstacle problems. The characterization of these general-
ized derivatives for solution operators of obstacle problems and the analysis
of the obtained objects is the aim of this thesis.
In the literature, the optimal control of obstacle problems and of more

general elliptic variational inequalities is considered by various authors, e.g.,
[Bar84, Ber97, BL04, Fri88, IK00, HW18, HK11, KKT03, KW12, MRW15,
Mig76, MP84, SW13]. To overcome the difficulties caused by the nonsmooth
operator, penalization, relaxation and regularization techniques are employed
that approximate the problem by more regular formulations. Based on such
approaches, optimality conditions are derived in [Bar84, Ber97, BL04, MP84,
IK00, HK11] and numerical solution methods are developed in [IK00, HK11,
KKT03, KW12, MRW15, SW13].
In addition, some authors also deal with nonsmooth operators in infinite

dimensions. Different optimality systems for the optimal control of the obsta-
cle problem are compared in [HW18]. In [CCMW18], generalized derivatives
for the nonsmooth solution operator of a semilinear elliptic equation are char-
acterized. For the usage of generalized derivatives, inexact bundle methods
in Hilbert space can be employed, see, e.g., [HU19].
On the other hand, considering a finite dimensional version of the obstacle

problem, a characterization of the entire Clarke subdifferential of the reduced
objective function is obtained in [HR86].
In the classical reference [Mig76], Mignot establishes the directional dif-

ferentiability of the solution operator and gives a characterization of the di-
rectional derivative as the solution of a another variational inequality. The
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analysis in the present thesis heavily relies on this representation. It allows to
describe the Gâteaux derivatives at points of differentiability as solution op-
erators of variational equations. Here, the admissible sets are Sobolev spaces
on quasi-open domains, which are determined by the contact set of the so-
lution y = S(ζ) and the obstacle ψ and by the properties of the mulitplier
Ly−ζ. Using the tool of Mosco convergence, we can perform the convergence
analysis of the Gâteaux derivatives. Here, the monotonicity structures of the
set-valued maps mapping ζ to the admissible Sobolev spaces are important.
We also change our perspective and understand the Gâteaux derivatives as
solution operators of superordinate relaxed Dirichlet problems. Using classi-
cal results and connecting them to the problem at hand, we gain new insights
into the generalized differentials.
Within this thesis, we consider a variety of formulations related to (OP).

On the one hand, we consider the composition of the solution operator of
(OP) with a nonlinear monotone operator with domain space different from
H−1(Ω). In this case, we cannot rely on chain rules to characterize the
generalized differentials since, in general, they do not apply. Moreover, we
consider also a bilateral obstacle problem where, in addition to the lower
obstacle ψ, the admissible set is constrained also by a second upper obstacle.
Our insights on generalized derivatives are used to derive error estimators

for inexact Clarke subgradients of an objective functional that are computed
on a discrete level.

Outline of the thesis

This work is structured as follows. In Chapter 2, we clarify the notation,
recall basic concepts and provide auxiliary results that will be used later on.
In particular, in Section 2.3 we introduce the sets of generalized derivatives
that are the subject of our analysis in the context of solution operators of
variational inequalities of obstacle type. Another important aspect that is
addressed in Section 2.5 is the notion of capacity on Ω w.r.t. the space H1

0 (Ω)

which is essential in studying the structure of the generalized differentials for
the solution operator of the obstacle problem. This concept enables us to
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work with quasi-continuous representatives in H1(Ω) that are defined more
precisely than up to a set of Lebesgue measure zero. As a consequence, we
can find adequate descriptions of subsets of Ω which are, for instance, defined
as the preimage of a quasi-continuous representative, such as the active set.
We study the basic features of the obstacle problem in Chapter 3. For a

general variational inequality we recall existence, uniqueness and continuity
results in Section 3.1. In the subsequent analysis we also state conditions
under which the solution operator of a variational inequality is monotone and
directionally differentiable. These results are transferred to the variational
inequality describing the obstacle problem in Section 3.2. The directional
derivative is characterized as the solution operator of another variational
inequality. For a suitable description of the admissible set, the active set and
the strictly active set are introduced and illustrated.
Chapter 4 discusses the composition of the solution operator of the obsta-

cle problem with a monotone, possibly nonlinear operator on a potentially
smaller space than H−1(Ω) and is based on the publication [RU19]. The
assumptions on the differential operator in the variational inequality and on
the obstacle are not very restrictive and the considered formulation covers
a wide class of imaginable settings. Using the representation of the direc-
tional derivatives, we derive variational equations which describe the Gâteaux
derivatives in points at which the corresponding solution operator is differ-
entiable. The admissible sets depend on the active and strictly active sets.
Exploiting the monotonicity structures, we can show the Mosco convergence
of the admissible sets using increasing or decreasing sequences in the preim-
age space in Section 4.5. Additionally, by application of a generalization of
Rademacher’s theorem, we establish the existence of such increasing and de-
creasing sequences at which the solution operator is Gâteaux differentiable
in Section 4.3. The chapter will be closed with the characterization of two
generalized derivatives for the solution operator and with the representation
of Clarke subgradients for corresponding reduced objective functions.
In Chapter 5, a selection of results from [RW20] is presented which orig-

inated from a collaboration with Gerd Wachsmuth. Here, the solution op-
erator of an obstacle problem on the complete space H−1(Ω) is considered.
We demonstrate that the Gâteaux derivatives can be interpreted as solu-
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tion operators of relaxed Dirichlet problems involving capacitary measures,
which motivates the study of these objects that is performed and reviewed
in Section 5.1. In Section 5.2, a characterization of the entire generalized
differentials using the strong operator topology for the convergence of the
Gâteaux derivatives is obtained. Under regularity assumptions we also char-
acterize the generalized differential relative to the weak operator topology in
the subsequent section. It consists of particular solution operators of relaxed
Dirichlet problems involving capacitary measures.
Chapter 6 is dedicated to the analysis of the bilateral obstacle problem and

presents the results from [RU20]. Unlike in the previous analysis of the unilat-
eral obstacle problem, the corresponding multiplier in the variational inequal-
ity describing the bilateral obstacle problem is not nonnegative and, hence,
cannot be identified with a nonnegative measure. Therefore, the analysis
of the admissible set for the variational inequality describing the directional
derivative is more involved and carried out in Section 6.2. Again, we show
the convergence of the Gâteaux derivatives in points of suitable monotone se-
quences, although the respective admissible sets in the variational equations
for the Gâteaux derivatives are nonmonotone. Two generalized derivatives
are obtained in Section 6.5.
Finally, in Chapter 7, we deduce error estimates for Clarke subgradients

that are computed on a discrete level. We address the inexactness that arises
due to the lack of knowledge on the correct active and strictly active sets,
which are, by the previous analysis, the sets determining the domain on
which generalized derivatives can be computed. We focus on the generalized
derivative that is obtained on the complement of the strictly active set. In
Section 7.6.2, imposing a nondegeneracy condition that is well known in the
literature concerning the analysis of free boundaries, we can show that the
strictly active set and the weakly active set have a suitable structure. Now,
we derive discrete approximations of the complement of the strictly active
set from the interior to use it as the domain for the discrete subgradient and
from the exterior to find an upper bound for the error. The construction of
these approximations is performed in Section 7.6.3 and Section 7.6.4. Finally,
we obtain an error estimate for an inexact Clarke subgradient and test our
findings in a numerical example in Section 7.9.





CHA PTER 2
Mathematical framework

In this chapter, we recall basic results and concepts that are frequently used
throughout this thesis. Moreover, the corresponding notation is introduced.
We start with notions of differentiability in Section 2.1 and continue with

a generalization of Rademacher’s theorem to infinite dimensional spaces in
Section 2.2. The standard operator topologies on the space of linear bounded
operators are recalled and sets of generalized derivatives are introduced in
Section 2.3. Subsequently, in Section 2.4, we define the relevant Sobolev
spaces and recall basic calculus rules. Section 2.5 serves as a brief introduction
into capacity theory and we collect the concepts and results that are needed
later on. Finally, in Section 2.6, we will see that nonnegative elements in the
dual space of H1

0 (Ω) can be identified with specific measures.

2.1 Concepts of differentiability

Let us give the definition of directional differentiability, see also [BS00,
Def. 2.44].

Definition 2.1 (Directional differentiability) Let X,Y be Banach spaces and
consider a mapping T : X → Y . We say that T is directionally differentiable

7



8 2. Mathematical framework

at a point x ∈ X in a direction h ∈ X if the limit

T ′(x;h) := lim
t↘0

T (x+ th)− T (x)

t
(2.1)

exists. If the limit in (2.1) exists for all directions h ∈ X, we say that T is
directionally differentiable at x.

Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ) be Banach spaces. Throughout this thesis, we
use the notation

L(X,Y ) := {T : X → Y | T is linear and ‖T‖L(X,Y ) <∞}

and for a linear operator T : X → Y we set

‖T‖L(X,Y ) = sup
‖x‖X≤1

‖T (x)‖Y .

Definition 2.2 (Gâteaux differentiability) Let X,Y be Banach spaces and
consider a mapping T : X → Y . We say that T is Gâteaux differentiable at
a point x ∈ X if T is directionally differentiable at x and if the directional
derivative operator T ′(x; ·) is linear and bounded, i.e., T ′(x; ·) ∈ L(X,Y ).
We also use the notation T ′(x) for the Gâteaux derivative of T .

The solution operators of variational inequalities that we consider in this
thesis are directionally differentiable. We are interested in chain rules for
the directional derivative of composite mappings. Since the chain rule does
not hold for merely directionally differentiable mappings a stronger form of
directional differentiability is needed. The following definition is taken from
[BS00, Def. 2.45].

Definition 2.3 (Hadamard directional differentiability) Let X,Y be Banach
spaces and consider a mapping T : X → Y . Then T is directionally dif-
ferentiable at x ∈ X in the Hadamard sense (or Hadamard directionally
differentiable) if the directional derivative T ′ (x;h) exists for all h ∈ X and



2.1. Concepts of differentiability 9

fulfills

T ′ (x;h) = lim
n→∞

T (x+ tnhn)− T (x)

tn

for all sequences (tn)n∈N and (hn)n∈N with tn ↘ 0 and hn → h.

We also state the following continuity property of Hadamard directionally
differentiable mappings. The result is taken from [BS00, Prop. 2.46].

Lemma 2.4 Let X,Y be Banach spaces. Suppose that T : X → Y is direc-
tionally differentiable at x ∈ X in the Hadamard sense. Then the directional
derivative T ′(x; ·) is continuous on X.

The next proposition can be found in [BS00, Prop. 2.49]. It states that Lip-
schitz continuity and directional differentiability together ensure directional
differentiability in the Hadamard sense.

Proposition 2.5 Assume X,Y are Banach spaces. Suppose that T : X → Y

is directionally differentiable at x and Lipschitz continuous in a neighborhood
of x. Then T is directionally differentiable at x in the Hadamard sense.

If the outer function in a composition is Hadamard directionally differen-
tiable, the following chain rule holds, see [BS00, Prop. 2.47].

Lemma 2.6 Let X,Y, Z be Banach spaces and assume that T : X → Y is
directionally differentiable at x and that R : Y → Z is Hadamard directionally
differentiable at T (x). Then the composite mapping R ◦ T is directionally
differentiable at x and the following chain rule holds

(R ◦ T )′ (x;h) = R′
(
T (x);T ′ (x;h)

)
.

We state the following auxiliary lemma.

Lemma 2.7 Let X, Y and Z be Banach spaces and suppose that X is densely
embedded into Y . Denote by ι : X ↪→ Y the continuous and dense linear
embedding. Assume the operator T : Y → Z is directionally differentiable at
ι(x) and locally Lipschitz continuous in a neighborhood of ι(x). If (T ◦ ι) is
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Gâteaux differentiable at x ∈ X, then T is Gâteaux differentiable at ι(x) ∈ Y .

Proof. Observe that T is directionally differentiable at ι(x) in the sense of
Hadamard, cf. Proposition 2.5. Thus, using the chain rule in Lemma 2.6, for
every hX ∈ X we have

T ′(ι(x); ι(hX)) = (T ◦ ι)′(x;hX).

Moreover, since T ◦ ι is Gâteaux differentiable at x, the operator
T ′(ι(x); ι(·)) : X → Z is linear. Furthermore, the operator T ′(ι(x); ·) is con-
tinuous on X since T is directionally differentiable in the sense of Hadamard,
see Lemma 2.4. Now, density of ι(X) in Y implies that T ′(ι(x); ·) is a bounded
linear operator on Y . Hence, T is Gâteaux differentiable at ι(x).

2.2 Generalization of Rademacher’s theorem to
infinite dimensions

Before we can present a meaningful definition of generalized differentials for
locally Lipschitz continuous maps between infinite dimensional spaces, we
have to make sure that a Gâteaux derivative exists at sufficiently many points.
In finite dimension, a result of this form is well-known as Rademacher’s the-
orem which states that for a locally Lipschitz continuous map T : Rd → R,
the set of points at which T is not differentiable is a set of Lebesgue measure
zero in Rd, see [Rad19].
Here, we use the following generalization of Rademacher’s theorem to infi-

nite dimensions. For a proof we refer to, e.g., [Aro76, Ch. II, Sect.2, Thm. 1],
[BL00, Thm. 6.42]. If the space X in Theorem 2.8 is additionally a Hilbert
space, a version can be found in [Mig76, Thm. 1.2].

Theorem 2.8 Let X be a separable Banach space and let Y be a Hilbert
space. Assume T : X → Y is locally Lipschitz continuous. Then the set DT
of points at which T is Gâteaux differentiable is a dense subset of X.



2.3. Operator topologies and generalized differentials 11

In [Aro76], the map T is Lipschitz continuous and defined on an open subset
of X. By considering neighborhoods of points separately, the formulation as
in Theorem 2.8 can be obtained.
Note that there are different possibilities to generalize Rademacher’s the-

orem to infinite dimensions. On the one hand, different concepts of differ-
entiability can be considered and on the other hand, the size of the X \ DT
can be measured using various concepts. For a selection of results, we refer
to [BL00].

2.3 Operator topologies and generalized differentials

In this thesis, we analyze generalized derivatives for solution operators of ob-
stacle problems. Here, we define the sets of generalized derivatives which we
consider in our studies. If T : X → Y is an operator, then the set of general-
ized derivatives in a point in X will be a subset of L(X,Y ). In the definition,
we will differentiate between different topologies on X and L(X,Y ). We
consider the following standard operator topologies on L(X,Y ).

Definition 2.9 (Operator topologies) Let X and Y be Banach spaces and
let (Ξn)n∈N,Ξ ⊆ L(X,Y ).

1. We say that the sequence (Ξn)n∈N converges to Ξ in the strong operator
topology of L(X,Y ) if and only if (Ξn(x))n∈N converges to Ξ(x) in Y
for all x ∈ X.

2. We say that the sequence (Ξn)n∈N converges to Ξ in the weak operator
topology of L(X,Y ) if and only if (Ξn(x))n∈N converges weakly to Ξ(x)

in Y for all x ∈ X.

From the uniform boundedness principle, we obtain that a sequence of
operators which converges in the weak operator topology has to be bounded.

Lemma 2.10 Let X,Y be Banach spaces. Suppose (Ξn)n∈N ⊆ L(X,Y ) and
assume that Ξn → Ξ in the weak operator topology of L(X,Y ) for some
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Ξ ∈ L(X,Y ). Then there is a constant c > 0 such that ‖Ξn‖L(X,Y ) ≤ c for
all n ∈ N.

Proof. The convergence of (Ξn)n∈N ⊆ L(X,Y ) to Ξ in the weak operator
topology implies that

sup
n∈N
|〈y∗,Ξn(x)〉Y ∗,Y | <∞

for fixed x ∈ X and y∗ ∈ Y ∗. Let x ∈ X and define ϕn ∈ Y ∗∗ by

〈ϕn, y∗〉Y ∗∗,Y ∗ = 〈y∗,Ξn(x)〉Y ∗,Y

for y∗ ∈ Y ∗. By the uniform boundedness principle, it holds ‖ϕn‖Y ∗∗ ≤ cx
for a constant cx > 0 and for all n ∈ N. Since ‖ϕn‖Y ∗∗ = ‖Ξn(x)‖Y , it follows
that ‖Ξn(x)‖ ≤ cx for all n ∈ N. Applying the uniform boundedness principle
once more, we deduce the existence of a constant c > 0 with ‖Ξn‖L(X,Y ) ≤
c.

The next lemma shows conditions under which a sequence (Ξn(xn))n∈N
converges. The proof is taken from [RW20, Lem. 2.9].

Lemma 2.11 Let X,Y be Banach spaces. Suppose (Ξn)n∈N ⊆ L(X,Y ) and
(xn)n∈N ⊆ X are sequences.

1. Assume that Ξn → Ξ in the strong operator topology of L(X,Y ) and
xn → x in X. Then Ξn(xn)→ Ξ(x) holds in Y .

2. Assume that Ξn → Ξ in the weak operator topology of L(X,Y ) and
xn → x in X. Then we conclude Ξn(xn) ⇀ Ξ(x) in Y .

3. Assume that Ξn → Ξ in the weak operator topology of L(X,Y ), Ξ∗n →
Ξ∗ in the strong operator topology of L(Y ∗, X∗) and xn ⇀ x in X. Then
this implies Ξn(xn) ⇀ Ξ(x) in Y . Here, Ξ∗n,Ξ

∗ denote the (Banachian)
adjoint operators of Ξn,Ξ, respectively.

Proof. In any case, the norm of the operators Ξn is uniformly bounded, see
Lemma 2.10. Now, we use the identity

Ξn(xn)− Ξ(x) = (Ξn(x)− Ξ(x)) + Ξn(xn − x). (2.2)
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Then the claim of the first two statements follows immediately.
Let us also prove the third statement. The convergence Ξn(x)−Ξ(x) ⇀ 0

is clear. To prove the weak convergence of the second term in (2.2), we take
y∗ ∈ Y ∗ and oberve

〈y∗,Ξn (xn − x)〉Y ∗,Y = 〈Ξ∗n(y∗), xn − x〉X∗,X → 0

since Ξ∗n → Ξ∗ in the strong operator topology of L(Y ∗, X∗) by assumption.

Now, let us define the Bouligand generalized differentials that we will deal
with in this thesis. The definition is based on the concept of the Bouli-
gand generalized differentials which is known in finite dimensions, see, e.g.,
[OKZ98, Def. 2.12], [FP03, Def. 4.6.2]. The below generalizations to infinite
dimension are also used in [CCMW18]. We obtain four different differentials,
since we consider combinations of strong and weak topologies. Note that in
finite dimensions these concepts coincide.

Definition 2.12 (Generalized differentials) Let T : X → Y be a locally Lip-
schitz mapping from a separable Banach space X to a separable and reflexive
Banach space Y . We denote the set of points in X at which T is Gâteaux
differentiable by DT . For x ∈ X we define the following generalized differen-
tials

∂ss
BT (x) := {Ξ ∈ L(X,Y ) |∃ (xn)n∈N ⊆ DT : xn → x in X,

T ′(xn)→ Ξ in the strong op. top. of L(X,Y )},
∂sw

B T (x) := {Ξ ∈ L(X,Y ) |∃ (xn)n∈N ⊆ DT : xn → x in X,

T ′(xn)→ Ξ in the weak op. top. of L(X,Y )},
∂ws

B T (x) := {Ξ ∈ L(X,Y ) |∃ (xn)n∈N ⊆ DT : xn ⇀ x in X,

T (xn) ⇀ T (x) in Y,

T ′(xn)→ Ξ in the strong op. top. of L(X,Y )},
∂ww

B T (x) := {Ξ ∈ L(X,Y ) |∃ (xn)n∈N ⊆ DT : xn ⇀ x in X,

T (xn) ⇀ T (x) in Y,

T ′(xn)→ Ξ in the weak op. top. of L(X,Y )}.
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Note that the first superscript refers to the mode of convergence of the points
(xn)n∈N in X, whereas the second superscript refers to the type of operator
topology for the convergence of (T ′(xn))n∈N ⊆ L(X,Y ).

Lemma 2.13 Let T : X → Y be a locally Lipschitz mapping from a separable
Banach space X to a separable Hilbert space Y . Let x ∈ X be arbitrary. Then
the generalized differential ∂sw

B T (x) is nonempty. Moreover, it holds

∂ss
BT (x) ⊆ ∂sw

B T (x) ⊆ ∂ww
B T (x) and ∂ss

BT (x) ⊆ ∂ws
B T (x) ⊆ ∂ww

B T (x).

Moreover, if T is Gâteaux differentiable at x, then T ′(x) is an element of
the generalized differentials ∂ss

BT (x), ∂sw
B T (x), ∂ws

B T (x), ∂ww
B T (x).

Proof. Since DT is dense in X, x is the limit of a sequence (xn)n∈N ⊆ DT ⊆
X in X, see Theorem 2.8. Now, since T is locally Lipschitz continuous,
the Gâteaux derivatives T ′(xn) are bounded by the Lipschitz constant of
T in a neighborhood of x. The sequential compactness of the unit ball in
L (X,Y ) with respect to the weak operator topology, which follows from a
generalization of the Banach-Alaoglu theorem to the weak operator topology,
yields the existence of an accumulation point of the sequence (T ′(xn))n∈N.
Thus, ∂sw

B T (x) is nonempty.
The inclusions of the differentials follows easily by the relation between the

respective topologies.
It directly follows from the definition that if T is Gâteaux differentiable

at x with Gâteaux derivative T ′(x), then T ′(x) belongs to the generalized
differentials defined in Definition 2.12.

In the following proposition, we address closedness properties of the
generalized differentials. Related results can be found in [CCMW18,
Prop. 3.4, Prop. 3.5]

Proposition 2.14 Let T : X → Y be a globally Lipschitz continuous map
from a separable Banach space X to a separable, reflexive Banach space Y .

1. Let x ∈ X. Suppose there is a sequence (xn)n∈N ⊆ X with xn → x in X
and a sequence (Ln)n∈N ⊆ L(X,Y ) with Ln ∈ ∂ss

BT (xn) for all n ∈ N.
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Furthermore, assume that Ln → L in the strong operator topology of
L(X,Y ) for some L ∈ L(X,Y ). Then L is in ∂ss

BT (x).
2. Let x ∈ X. Suppose there is a sequence (xn)n∈N ⊆ X with xn → x

in X and a sequence (Ln)n∈N ⊆ L(X,Y ) with Ln ∈ ∂sw
B T (xn) for all

n ∈ N. Furthermore, assume that Ln → L in the weak operator topology
of L(X,Y ) for some L ∈ L(X,Y ). Then L is in ∂sw

B T (x).

Proof. 1. This part can be found in [CCMW18, Prop. 3.4], one just hast to
replace L2(Ω) by an arbitrary separable Banach space X.
2. We modify the proof of [CCMW18, Proposition 3.5] so it fits to our setting.
Since Ξn ∈ ∂sw

B T (xn), there are sequences
(
x

(n)
m

)
⊆ DT with x(n)

m → xn as

m → ∞ and T ′
(
x

(n)
m

)
→ Ξn in the weak operator toplogy of L(X,Y ) as

m→∞. Since X is separable and since the properties of Y imply that Y ∗ is
separable as well, we can find sequences (hn)n∈N and (y∗n)n∈N that are dense
in X, respectively Y ∗. For all n ∈ N, fix m(n) ∈ N with∣∣∣〈y∗l , T ′ (x(n)

m(n);hk

)
− Ξn(hk)

〉∣∣∣ < 1/n ∀ k, l = 1, . . . , n,∥∥∥x(n)
m(n) − xn

∥∥∥ ≤ 1/n.

For fixed h ∈ X, y∗ ∈ Y ∗, and for all n ∈ N we define

h̄n := arg min{‖hk − h‖X | 1 ≤ k ≤ n},
ȳ∗n := arg min{‖y∗k − y∗‖Y ∗ | 1 ≤ k ≤ n}.

These definitions imply that h̄n → h in X and ȳ∗n → y∗ in Y ∗. We men-
tion that all elements in ∂ww

B T (x) are bounded by the Lipschitz constant of
T , see [CCMW18, Lem. 3.2(iii)]. In particular,

∥∥∥T ′ (x(n)
m(n)

)
− Ξn

∥∥∥
L(X,Y )

is

bounded. This shows∣∣∣〈y∗, T ′ (x(n)
m(n);h

)
− Ξ(h)

〉∣∣∣
≤
∣∣∣〈ȳ∗n, T ′ (x(n)

m(n); h̄n

)
− Ξn(h̄n)

〉∣∣∣+
∣∣∣〈ȳ∗n − y∗, T ′ (x(n)

m(n); h̄n

)
− Ξn(h̄n)

〉∣∣∣
+
∣∣∣〈y∗, (T ′ (x(n)

m(n)

)
− Ξn)(h̄n − h)

〉∣∣∣+ |〈y∗,Ξn(h)− Ξ(h)〉|
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≤ 1/n+ ‖ȳ∗n − y∗‖Y ∗
∥∥∥T (x(n)

m(n)

)
− Ξn

∥∥∥
L(X,Y )

‖h̄n‖X

+ ‖y∗‖Y ∗
∥∥∥T ′ (x(n)

m(n)

)
− Ξn

∥∥∥
L(X,Y )

‖h̄n − h‖X + |〈y∗,Ξn(h)− Ξ(h)〉|

→ 0

as n→∞. Together with x(n)
m(n) → x, we obtain the desired Ξ ∈ ∂sw

B T (x).

Lemma 2.15 Let X and Y be separable Banach spaces and assume that
X is densely embedded into Y . Denote by ι : X ↪→ Y the continuous and
dense linear embedding. Additionally, let Z be a separable Hilbert space and
T : Y → Z be an operator that is locally Lipschitz continuous and directionally
differentiable at some x ∈ X. Then

1. ∂sw
B (T ◦ ι)(x) ⊆ ∂sw

B T (ι(x)) ◦ ι := {Ξ ◦ ι | Ξ ∈ ∂sw
B T (ι(x))} and

2. ∂ss
B (T ◦ ι)(x) ⊆ ∂ss

BT (ι(x)) ◦ ι := {Ξ ◦ ι | Ξ ∈ ∂ss
BT (ι(x))}.

Proof. 1. Let ΞX ∈ ∂sw
B (T ◦ ι)(x). Then there is a sequence (xn)n∈N ⊆ X

with xn → x such that T ◦ ι is Gâteaux differentiable at xn for each n ∈ N
and it holds (T ◦ ι)′(xn)→ ΞX in the weak operator topology of L(X,Z). By
Lemma 2.7, for every n ∈ N, T is Gâteaux differentiable at ι(xn). Moreover,
the Lipschitz continuity of T imples that

‖T ′(ι(xn))‖L(Y,Z) ≤ c (2.3)

for all n ∈ N, where c denotes the Lipschitz constant of T . Thus, for fixed
h ∈ X and all n ∈ N, (T ◦ ι)′(xn;h) = T ′(ι(xn); ι(h)) is an element of the
closed and convex ball of radius c‖ι(h)‖Y . Since ΞX(h) is the weak limit of
these elements, Mazur’s lemma yields

‖ΞX(h)‖Z ≤ c‖ι(h)‖Y . (2.4)

Now, define ΞY : ι(X)→ Z by

ΞY (y) := ΞX(ι−1(y)).



2.3. Operator topologies and generalized differentials 17

Then ΞY is well-defined on ι(X), linear, and (2.4) implies

‖ΞY (y)‖Z = ‖ΞX(ι−1(y))‖Z ≤ c‖y‖Y

for y within the dense subset ι(X). Thus, by [BS00, Lem. 6.5], ΞY has a
unique linear and continuous extension over Y that will again be denoted by
ΞY . Also note that ‖ΞY ‖L(Y,Z) ≤ c and ΞY ◦ ι = ΞX , i.e., it suffices to show
convergence of T ′(ι(xn)) to ΞY .
To this end, let ε > 0, y ∈ Y be arbitrary and fix yε ∈ ι(X) with ‖y−yε‖Y <
ε
3c . In particular, we have

‖ΞY (y)− ΞY (yε)‖Z + ‖T ′(ι(xn); yε)− T ′(ι(xn); y)‖Z

≤ c‖y − yε‖Y + c‖y − yε‖Y <
2

3
ε.

Then, for any z∗ ∈ Z∗ with ‖z∗‖Z∗ = 1, we may choose n0 ∈ N such that

|〈z∗,ΞY (yε)− T ′(ι(xn); yε)〉Z∗,Z |
= |〈z∗,ΞX(ι−1(yε))− (T ◦ ι)′(xn; ι−1(yε))〉Z∗,Z | < ε

3

to find that

|〈z∗,ΞY − T ′(ι(xn); y)〉Z∗,Z | <
2

3
ε+

ε

3
= ε.

Therefore, T ′(ι(xn)) converges to ΞY in the weak operator topology and
ΞY ∈ ∂sw

B T (ι(x)).
2. If ΞX ∈ ∂ss

B (T ◦ ι)(x) ⊆ ∂sw
B (T ◦ ι)(x), there exists a sequence (xn)n∈N ⊆ X

converging to x such that T ◦ ι is Gâteaux differentiable at each xn and
(T ◦ ι)′(xn) → ΞX in the strong operator topology. For this sequence, the
arguments above hold but in addition, within the last step we may find n0 ∈ N
such that ‖ΞX(ι−1(yε))−T ′(ι(xn); yε)‖Z = ‖ΞY (yε)−(T ◦ι)′(xn; ι−1(yε))‖Z <
ε
3 and conclude

‖ΞY (y)− T ′(ι(xn); y)‖ < 2

3
ε+

ε

3
= ε.

Thus, T ′(ι(xn))→ ΞY in the strong operator topology, i.e., ΞY ∈ ∂ss
BT (ι(x)).
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Finally, let us give a connection to Clarke’s generalized gradient. It is
defined as follows, see [Cla90].

Definition 2.16 (Clarke’s generalized gradient) Let U be a Banach space
and assume that J : U → R is locally Lipschitz continuous. Then Clarke’s
generalized gradient ∂CJ(u) of J at u ∈ U is defined as

∂CJ(u) := {u∗ ∈ U∗ | J◦(u;h) ≥ 〈u∗, h〉U∗,U for all h ∈ U}.

Here, J◦(u;h) denotes the generalized directional derivative in the sense of
Clarke defined by

J◦(u;h) := lim sup
v→u
t↘0

J(v + th)− J(v)

t
.

We do not need many results concerning Clarke’s generalized gradient.
The next lemma shows how a Clarke subgradient (or a Clarke generalized
derivative) can be obtained for a reduced objective function when an ele-
ment of ∂sw

B T (u) is available for the solution operator T of a state equation.
The resulting subgradient for the reduced objective function can be used in
nonsmooth optimization methods.
In a slightly different context, the following result can be found in

[CCMW18, Prop. 4.6].

Lemma 2.17 Let U be a separable Banach space and let Y be a separable
Hilbert space. Assume J : Y ×U → R is a continuously differentiable function
and let T : U → Y be a locally Lipschitz continuous operator. Denote by
Ĵ : U → R the map defined by

Ĵ(u) := J(T (u), u).

Let u ∈ U be arbitrary. Then

{Ξ∗Jy(T (u), u) + Ju(T (u), u) | Ξ ∈ ∂sw
B T (u)} ⊆ ∂ss

B Ĵ(u) ⊆ ∂CĴ(u) (2.5)
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holds.

Proof. Let Ξ ∈ ∂sw
B T (u). Then there exists a sequence (un)n∈N with

un → u in U and T ′(un) → Ξ in the weak operator topology of L(U, Y ).
Since J is continuously differentiable and thus Hadamard directionally dif-
ferentiable, the chain rule holds, see Lemma 2.6. Since T is Gâteaux
differentiable at un, Ĵ is also Gâteaux differentiable at un and it holds
Ĵ ′(un) = T ′(un)∗Jy(T (un), un) + Ju(T (un), un). Taking the limit and us-
ing that T ′(un)→ Ξ in the weak operator topology of L(U, Y ) and that J is
continuously differentiable we obtain the first inclusion in (2.5).
Since Ĵ ′(un) ∈ ∂CĴ(un), see [Cla90, Prop. 2.2.2], the second inclusion is

implied by weak∗-closedness of Clarke’s generalized gradient, compare [Cla90,
Prop. 2.1.5b].

2.4 Sobolev functions

Let Ω be an open, bounded set. We denote by Cc(Ω) the function space
of continuous functions on Ω with compact support contained in Ω. The
subspace of infinitely differentiable functions is denoted by C∞c (Ω). As usual,
we define

H1(Ω) :=
{
z ∈ L2(Ω) | ∂z∂xi ∈ L

2(Ω), i = 1, . . . , d
}
,

where ∂z
∂xi

is to be understood in the distributional sense. H1(Ω) is equipped
with the norm

‖z‖H1(Ω) =

(∫
Ω
z2 +

d∑
i=1

(
∂z

∂xi

)2

dλd

)1/2

.

Here, λd denotes the d-dimensional Lebesgue measure. The space H1
0 (Ω) is

defined as the completion of C∞c (Ω) in H1(Ω). Equipped with the scalar
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product

(v, w)H1
0 (Ω) := (∇v,∇w)L2(Ω) (v, w ∈ H1

0 (Ω)),

and the respective norm

‖z‖H1
0 (Ω) := ‖∇z‖L2(Ω),

H1
0 (Ω) is a Hilbert space.
We sometimes use the following product rules for the weak derivatives. The

results follow from, e.g., [GT01, (7.18)].

Lemma 2.18 Assume v, w are elements of H1
0 (Ω).

1. If v, w ∈ L∞(Ω), then v w is in H1
0 (Ω) and it holds

∇(v · w) = v∇w + w∇v. (2.6)

2. Assume v ∈ C1(Ω). Then v w is in H1
0 (Ω) and the product rule in (2.6)

holds.

The dual space of H1
0 (Ω) is denoted by H−1(Ω) and if p ∈ H−1(Ω) and

z ∈ H1
0 (Ω) we use the notation 〈p, z〉 for the dual pairing.

We do not identify H1
0 (Ω) with its dual space. Instead, we use the contin-

uous and dense embeddings

H1
0 (Ω) ↪→ L2(Ω) ↪→ H−1(Ω),

see, e.g., [BS00, Lem. 6.2 and 6.3]. Here, we regard g ∈ L2(Ω) as an element
of H−1(Ω) via

〈g, v〉 = (g, v)L2(Ω) (v ∈ H1
0 (Ω)).

We denote by H1(Ω)+, respectively by H1
0 (Ω)+, the respective subsets of

nonnegative elements. Here, we define

v ≥ 0 :⇔ v ≥ 0 a.e. on Ω.
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It is well-known that for v ∈ H1
0 (Ω) also v+ := max(0, v) and v− :=

−min(0, v) are elements of H1
0 (Ω), see [ABM14, Sect. 5.8.1]. If w ∈ H1

0 (Ω),
then also max(v, w),min(v, w) ∈ H1

0 (Ω). Let us define |v| := v+ + v−.

Proposition 2.19 Let v be an element in H1
0 (Ω).

1. It holds ‖|v|‖H1
0 (Ω) = ‖v‖H1

0 (Ω).
2. Suppose that (vn)n∈N ⊆ H1

0 (Ω) is a sequence with vn ⇀ v in H1
0 (Ω).

Then it holds |vn|⇀ |v| in H1
0 (Ω).

3. Let vn, w, wn ∈ H1
0 (Ω), n ∈ N, with vn ⇀ v and wn ⇀ w in H1

0 (Ω).
Then max(vn, wn) ⇀ max(v, w) in H1

0 (Ω).

Proof. 1. This statement can be found in [ABM14, Cor. 5.8.1].
2. By the weak convergence of (vn)n∈N and since ‖|vn|‖H1

0 (Ω) = ‖vn‖H1
0 (Ω) for

all n ∈ N by the first statement, (|vn|)n∈N is a bounded sequence and thus
has a weakly convergent subsequence. By the compact embedding H1

0 (Ω) ↪→
L2(Ω), we conclude that the weak limit has to be |v|. This yields that the
whole sequence (|vn|)n∈N converges weakly to |v| in H1

0 (Ω).
3. This follows from (2.) by

max(vn, wn) =
1

2
(vn + wn + |vn − wn|) ⇀

1

2
(v + w + |v − w|) = max(v, w).

Let us shortly comment on the notation used in this thesis. In this thesis,
we always write 〈·, ·〉 for the dual pairing between H−1(Ω) and H1

0 (Ω). If we
mean the dual pairing between another space X and its dual X∗, we write
〈·, ·〉X∗,X . Similarly, we write (·, ·) for the scalar product on L2(Ω). If we
mean the scalar product on another Hilbert space X, we use the notation
(·, ·)X .

2.5 Capacity theory

We give a short introduction to capacity theory on Ω w.r.t. H1
0 (Ω).
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For the definitions, see e.g. [ABM14, Sect. 5.8.2, 5.8.3], [DZ11, Def. 6.2] or
[BS00, Def. 6.47].

Definition 2.20 (Capacity theory)
1. For every set E ⊆ Ω the capacity (in the sense of H1

0 (Ω)) is defined as

cap(E) := inf{‖z‖2H1
0 (Ω) |z ∈ H

1
0 (Ω),

z ≥ 1 a.e. on a neighborhood of E}.

2. A subset O ⊆ Ω is called quasi-open if for all ε > 0 there is an open
set Oε ⊆ Ω with cap(Oε) < ε such that O ∪ Oε is open. The relative
complement of a quasi-open set in Ω is called quasi-closed.

3. A function v : Ω → R ∪ {±∞} is called quasi-continuous (quasi lower-
semicontinuous, quasi upper-semicontinuous, respectively) if for all ε >
0 there is an open setOε ⊆ Ω with cap(Oε) < ε such that v is continuous
(lower-semicontinuous, upper-semicontinuous, respectively) on Ω \Oε.

If a property holds on Ω except on a set of zero capacity, we say that this
property holds quasi-everywhere (q.e.) in Ω.
Let us note that the capacity as defined above is an outer measure but

not a measure, since it is not σ-additive. The family of quasi-open sets does
not define a topology on Ω, since arbitrary unions of quasi-open sets are not
necessarily quasi-open.
It is straightforward to observe that a set of capacity zero has Lebesgue

measure zero. The converse is not true. Nevertheless, let us make the follow-
ing observation. We refer to [Wac14, Lem. 2.3] for a proof.

Lemma 2.21 Let O ⊆ Ω be quasi-open and assume v : Ω → R is quasi-
continuous. Then v ≥ 0 a.e. on O is equivalent to v ≥ 0 q.e. on O.

The following statements can be found in [Fug71, Lem. 3.3]. We also refer
to [BB05, Thm. 4.16] and [ABM14, Thm. 5.8.6].

Lemma 2.22 Let v : Ω → R ∪ {±∞} be a function. Then the following
assertions are equivalent.
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(i) The function v is quasi lower-semicontinuous.
(ii) The sets {v > c} are quasi-open for all c ∈ R.
(iii) The function −v is quasi upper-semicontinuous.

Recall that if 1 − d/2 ≥ β for some 0 < β < 1, and if ∂Ω is sufficiently
regular, then we have the embedding H1(Ω) ↪→ C0,β(Ω). Here, C0,β(Ω)

denotes a usual Hölder space. Hence, if d = 1, each element in H1(Ω) has a
continuous representative.
We will see that, independent from the space dimension d, there is a quasi-

continuous representative. Note that in dimension d = 1, the concept of
quasi-continuity coincides with the classical concept of continuity. The fol-
lowing result can be found in, e.g., [DZ11, Chap. 8, Thm. 6.1].

Lemma 2.23 Each v ∈ H1(Ω) possesses a quasi-continuous representative,
which is uniquely determined up to values on a set of zero capacity.

The above lemma reveals why concepts from capacity theory are important
for our analysis. We can always identify v ∈ H1

0 (Ω) with its quasi-continuous
representative which is essentially unique (up to a set of capacity zero). In
particular, this allows to talk about the pointwise behavior of elements in
H1

0 (Ω) even on subsets of Ω of Lebesgue measure zero and positive capacity.
Throughout this thesis, when dealing with elements of H1(Ω) we always
consider the quasi-continuous representative.
Since we are often dealing with such representatives, definitions and rela-

tions between subsets of Ω such as equalities and inclusions are often meant
to hold only up to a set of capacity zero. To indicate this, we use a subscript
q throughout this thesis. For example, for v ∈ H1(Ω) we could define the set
Ec :=q {v > c} for some c ∈ R. Then, Ec is defined up to a set of capacity
zero and quasi-open, cf. Lemma 2.22.
By the following lemma, we can also consider Borel measurable quasi-

continuous representatives of H1
0 (Ω) and that will be our convention for this

thesis. Moreover, each quasi lower- and upper-semicontinuous function is
Borel measurable after a modification on a set of zero capacity. The proof of
the second statement can be found in [RW20, Sec. 2.1].
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Lemma 2.24 1. Each v ∈ H1
0 (Ω) has a quasi-continuous representative

that is Borel measurable.
2. Let v : Ω → R ∪ {±∞} be quasi lower- or quasi-upper semicontinuous.

Then, there is a Borel measurable quasi lower-, respectively quasi upper-
semicontinuous function w such that v(ω) = w(ω) for quasi-all ω ∈ Ω.

Proof. 1. This is implied by the proof of [BS00, Lem. 6.50].
2. We show the statement for a quasi upper-semicontinuous function v. By
Lemma 2.22, the sets {v < c} are quasi-open for all c ∈ Q. Hence, there
are open sets Ocn with cap(Ocn) < 1

n such that the sets {v < c} ∪ Ocn are
open. The set Oc :=

⋂
n∈NO

c
n is a Borel set and satisfies cap(Oc) = 0, by

monotonicity of the capacity. In addition,⋂
n∈N

({v < c} ∪On) = {v < c} ∪
⋂
n∈N

On = {v < c} ∪Oc,

i.e., {v < c} ∪Oc is a Borel set aswell. Define

w(ω) :=

{
−∞ if ω ∈

⋃
c∈QOc,

v(ω) else.

Then w is still quasi upper-semicontinuous and, by construction, Borel mea-
surable. Here, we have used countable sub-additivity of the capacity, see
[BS00, Lem. 6.48].

The following lemma states that quasi-open sets have Borel measurable
representatives. A proof is given in [Wac14, Lem. 2.2].

Lemma 2.25 Let O ⊆ Ω be a quasi-open set. Then there exists a set M ⊆ Ω

with cap(M) = 0 such that O ∪M is a Borel set.

Now, we argue that quasi lower- and upper-semicontinuous functions can
be approximated pointwise quasi-everywhere by functions in H1

0 (Ω).

Lemma 2.26 Let v : Ω → R ∪ {+∞} be quasi lower-semicontinuous. and



2.5. Capacity theory 25

assume that v is nonnegative. Then there exists an increasing sequence
(vn)n∈N ⊆ H1

0 (Ω)+ with vn → v pointwise quasi-everywhere.

Proof. We want to use the result in [Dal83, Lem. 1.5]. Since the statement
is posed for quasi lower-semicontinuous functions on Rd, and not on Ω, we
need to work with a capacity on all of Rd. This can be defined as in [Dal83,
Sect. 1]. The function y − ψ is nonnegative and quasi lower-semicontinuous.
Moreover, if we extend this function by 0, it is quasi lower-semicontinuous
on all of Rd. Now, [Dal83, Lem. 1.5] implies the existence of an increasing
sequence (zm)m∈N ⊆ H1(Rd) with 0 ≤ zm and zm ↗ y − ψ pointwise q.e.
on Rd. From y − ψ = 0 on Rd \ Ω, we have zm = 0 q.e. on Rd \ Ω. Thus,
zm ∈ H1

0 (Ω), see [HKM93, Thm 4.5]. Moreover, the capacity on Rd is such
that also zm ↗ y−ψ pointwise q.e. on Ω w.r.t. the capacity we use on Ω.

The following lemma is taken from [HW18, Lem. 3.4].

Lemma 2.27 For every set E ⊆ Ω it holds

cap(E) = inf{‖v‖2H1
0 (Ω) | v ∈ H

1
0 (Ω) and v ≥ 1 q.e. on E}. (2.7)

If cap(E) is finite, the infimum in (2.7) is attained by a nonnegative function
v with v = 1 q.e. on E.

For the following result, we refer to [BS00, Lem. 6.52]. It states that
convergent sequences in H1

0 (Ω) have subsequences which converge pointwise
quasi-everywhere on Ω.

Lemma 2.28 Let (vn)n∈N ⊆ H1
0 (Ω), v ∈ H1

0 (Ω) and assume that vn → v

in H1
0 (Ω). Then there is a subsequence of (vn)n∈N, such that the sequence

(of quasi-continuous representatives of) (vn)n∈N converges pointwise quasi-
everywhere to (the quasi-continuous representative of) v.

Lemma 2.29 Let O ⊆ Ω be quasi-open and assume there is a sequence of
quasi-open sets (On)n∈N such that (On)n∈N is increasing in n and such that
O =q

⋃
n∈NOn. Let v ∈ H1

0 (O). Then there is a sequence (vn)n∈N with
vn ∈ H1

0 (On) for each n ∈ N such that vn → v in H1
0 (Ω). Furthermore, it

holds sup |vn| ≤ sup |v|.
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Proof. The sequence (On)n∈N represents a quasi-covering of O, see Re-
mark 2.30 therefore, combining [KM92, Thm. 2.10 and Lem. 2.4], we find
a sequence (vn)n∈N such that vn → v in H1

0 (Ω) and such that each vn is
a finite sum of elements in

⋃
m∈NH

1
0 (Om). Furthermore, sup |vn| ≤ sup |v|.

Since the sets On are increasing, for each n ∈ N there is j ∈ N such that
vn ∈

⋂∞
m=j H

1
0 (Om). We extend the sequence by adding copies of elements

in (vn)n∈N to the original sequence. This yields a sequence with the desired
properties.

Remark 2.30 Assume J is an index set and (Oj)j∈J a family of quasi-open
subsets of Ω. Let E ⊆ Ω be a set. If there is a countable subfamily (Ojn)n∈N
with the property that

E ∩
⋃
n∈N

Ojn =q E,

then (Oj)j∈J is also called a quasi-covering in the literature, see, e.g., [KM92].

The following lemma can be found in [HW18, Lem. 3.6]. We also refer to
[Vel15, Prop. 2.3.14].

Lemma 2.31 Let O ⊆ Ω be quasi-open. Then there exists a function v ∈
H1

0 (Ω)+ such that {v > 0} =q O.

Definition 2.32 (Sobolev spaces on quasi-open domains) Let O ⊆ Ω be a
quasi-open set. Then we define

H1
0 (O) := {v ∈ H1

0 (Ω) | v = 0 q.e. outside O}.

By Lemma 2.28, for a quasi-open set O ⊆ Ω, the set H1
0 (O) is a closed

subspace of H1
0 (Ω). Moreover, for an open set O ⊆ Ω, the definition of

H1
0 (O) as in Definition 2.32 coincides (up to extension by 0 onto Ω) with

the classical definition of H1
0 (O) as the closure of C∞c (O) in H1(O), see, e.g.,

[HKM93, Thm. 4.5].
Note that if O1, O2 ⊆ Ω are quasi-open sets which coincide up to a set of

capacity zero, then H1
0 (O1) = H1

0 (O2) follows.
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2.6 Identification of elements in H−1(Ω)+ with
measures

We use the following partial ordering on H−1(Ω). For ξ ∈ H−1(Ω) we say
that

ξ ≥ 0 :⇔ 〈ξ, v〉 ≥ 0 ∀ v ∈ H1
0 (Ω)+.

We denote the subset of nonnegative elements in H−1(Ω) by H−1(Ω)+.
Note that the composition of elements H−1(Ω) into positive and negative

parts is in general not possible, see also Example 6.8.
In this section we will see that elements in H−1(Ω)+ can be identified with

nonnegative measures.
Let µ be a nonnegative Borel measure on Ω. Then µ is called regular, if

µ(B) = sup{µ(K) | K ⊆ B is compact} = inf{µ(U) | B ⊆ U ⊆ Ω is open}

holds for every Borel set B ⊆ Ω. We say that µ is a nonnegative Radon
measure on Ω if µ is a nonnegative regular Borel measure which is finite on
compact subsets of Ω. We denote byM+(Ω) the set

M+(Ω) := {µ | µ is the completion of a nonnegative Radon measure on Ω}.
(2.8)

The following lemma states that we can identify functionals in H−1(Ω)+

with measures in M+(Ω). For the proof we refer to [BS00,
Thm. 6.54, Lem. 6.55, Lem. 6.56], see also [Wac14, Lem. 2.4].

Lemma 2.33 Let ξ ∈ H−1(Ω)+. Then ξ can be identified with a unique
element ξ̃ of M+(Ω). For every Borel set E ⊆ Ω with cap(E) = 0 it holds
ξ̃(E) = 0. In addition, the quasi-continuous representatives of v ∈ H1

0 (Ω) are
ξ̃-integrable and it holds

〈ξ, v〉 =

∫
Ω
v dξ̃.
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For the proof of the following result we refer to [HW18, Lem. 3.7].

Lemma 2.34 Let ξ ∈ H−1(Ω)+. Then there exists a quasi-closed set
f-supp(ξ̃) ⊆ Ω such that for all v ∈ H1

0 (Ω) it holds ξ̃({v 6= 0}) = 0 if and only
v = 0 q.e. on f-supp(ξ̃). The set f-supp(ξ̃) is unique up to a set of capacity
zero.

Remark 2.35 The quasi-closed set in Lemma 2.34 is called f-supp(ξ̃) since
it can be defined as the fine support of the measure ξ̃, i.e., the support of ξ̃
w.r.t. the fine topology on Ω. We refer to [Wac14, App. A] for the details.



CHA PTER 3
The obstacle problem

In this chapter, we introduce the variational inequality describing the obsta-
cle problem. We formulate and collect basic results for general variational
inequalities in Hilbert spaces and transfer these properties to the variational
inequality describing the obstacle problem.
Let ζ ∈ H−1(Ω). We consider the following formulation of the obstacle

problem

Find y ∈ Kψ : 〈Ly − ζ, z − y〉 ≥ 0 ∀ z ∈ Kψ. (OPid)

Here, the closed convex admissible set Kψ is defined as

Kψ := {z ∈ H1
0 (Ω) | z ≥ ψ q.e. in Ω} (3.1)

and ψ is quasi upper-semicontinuous and chosen such thatKψ 6= ∅. Note that
if ψ ∈ H1(Ω), then ψ has a quasi-continuous representative, see Lemma 2.23.
Since quasi-continuous functions are quasi upper-semicontinuous this setting
is also covered by our formulation. The operator L ∈ L(H1

0 (Ω), H−1(Ω)) is
coercive, i.e., there is a constant α > 0 such that

〈Ly, y〉 ≥ α‖y‖2H1
0 (Ω)

holds for all y ∈ H1
0 (Ω).

29
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Ω obstacle ψ

membrane

no external forces

(a) Solution for force term ζ = 0

Ω obstacle ψ

membrane

external forces

(b) Solution for force term ζ ≤ 0

Ω obstacle ψ

membrane

external forces

(c) Solution for force term ζ ≥ 0

Ω obstacle ψ

membrane

external forces

(d) Solution for force term ζ

Figure 3.1. Obstacle problem for different force terms

If L = −∆, i.e.,

〈Lv,w〉 =

∫
Ω
∇vT∇w dλd,

the solution of (OPid) coincides with the solution of the problem

min
y∈Kψ

1

2

∫
Ω
|∇y|2 dλd − 〈ζ, y〉

Now, from a physical point of view, the solution of the obstacle problem
satisfies the principle of energy minimization. Figure 3.1 illustrates the
solutions of an obstacle problem for four different exemplary force terms
ζ ∈ H−1(Ω).
The outline of the present chapter is as follows. We consider a general

variational inequality in Hilbert space and show uniqueness and existence in
Section 3.1. Global Lipschitz continuity of the corresponding solution oper-
ator is also established. In Section 3.1.1, assuming that the Hilbert space
is equipped with a suitable partial ordering and that the differential opera-
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tor behaves well with this ordering, we derive that the solution operator is
increasing. Under assumptions on the admissible set, the directional differen-
tiability is derived in Section 3.1.2. The directional derivative itself is given
as the solution of a variational inequality on the critical cone. This famous
result is due to Mignot (see [Mig76]). In Section 3.2, we convince ourself that
the uniqueness, existence, Lipschitz continuity and monotonicity results also
apply to the variational inequality of interest, the obstacle problem. Finally,
in Section 3.2.1, the directional differentiability of the solution operator of
the obstacle problem is obtained. We introduce the active and strictly active
sets which are useful in the description of the critical cone.

3.1 Properties of solution operators of variational
inequalities

We consider the following formulation of an abstract variational inequality in
Hilbert space which includes the formulation of the obstacle problem (OPid).
We fix the following assumptions.

Assumption 3.1 We assume that H is a real Hilbert space and thatK ⊆ H is
a nonempty closed convex subset. Furthermore, let L ∈ L(H,H∗) be coercive,
i.e., let α > 0 be a constant such that

〈Lh, h〉H∗,H ≥ α‖h‖2H ∀h ∈ H.

For ζ ∈ H∗, we consider the variational inequality

Find y ∈ K : 〈Ly − ζ, z − y〉H∗,H ≥ 0 ∀ z ∈ K. (VI)

The following result states that the variational inequality (VI) has a unique
solution and that the solution depends Lipschitz continuously on f ∈ H∗.
This classical result is originally shown in [Sta64, LS67].

Theorem 3.1 Suppose the conditions of Assumption 3.1 are satisfied. Then
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for each ζ ∈ H∗ the variational inequality (VI) has a unique solution. More-
over, the solution operator S : H∗ → H of (VI) is globally Lipschitz continu-
ous with Lipschitz constant α−1.

Proof. The idea of this proof is based on the proof given in [Rod87,
Thm. 4:3.1]. The existence and uniqueness part of the proof relies on an
application of Banach’s fixed point theorem. We denote by ι : H → H∗ the
canonical isomorphism operator defined by

〈ι(h), g〉H∗,H = (h, g)H .

Let ζ ∈ H∗ be arbitrary. Moreover, for ρ > 0, we define the operator Tρ : H →
H∗ as

Tρ(v) = ι(v)− ρ(Lv − ζ).

Then we can rewrite the variational inequality (VI) as

Find y ∈ K : (y − ι−1Tρ(y), z − y)H ≥ 0 ∀ z ∈ K. (3.2)

Now, y ∈ K is a solution of (3.2) and thus of (VI) if and only if y ∈ K is the
projection of ι−1(Tρ(y)) onto the closed convex set K which we denote by

y = PK(ι−1(Tρ(y))).

Therefore, we show that for appropriate ρ > 0 the operator Rρ := PK◦ι−1◦Tρ
has a unique fixed point in K. To apply Banach’s fixed point theorem, we
argue that Rρ is a strict contraction for appropriately chosen ρ > 0.
Let v, w ∈ K. Since PK is a contraction,

‖Rρ(v)−Rρ(w)‖H ≤ ‖ι−1(Tρ(v))− ι−1(Tρ(w))‖H

holds. Moreover, using coercivity and continuity of L, we estimate

‖ι−1(Tρ(v))− ι−1(Tρ(w))‖2H
= (ι−1(Tρ(v))− ι−1(Tρ(w)), ι−1(Tρ(v))− ι−1(Tρ(w)))H

= (v − w − ρι−1(Lv − Lw), v − w − ρι−1(Lv − Lw))H
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= ‖v − w‖2H − 2ρ〈Lv − Lw, v − w〉H∗,H + ρ2‖Lv − Lw‖2H∗
≤ (1− 2αρ+ ‖L‖2L(H,H∗)ρ

2)‖v − w‖2H .

This shows that for 0 < ρ < 2α
‖L‖2L(H,H∗)

the operator Rρ is a strict contraction.

Now, Banach’s fixed point theorem yields the existence of a unique fixed point
of Rρ in K and thus the existence of a solution of (VI) for arbitrary ζ ∈ H∗.
Denote by yi solutions of (VI) for ζi ∈ H∗, i = 1, 2. Testing the variational

inequalities describing yi with yj , i 6= j, gives

〈Lyi − ζi, yj − yi〉H∗,H ≥ 0.

Summing up and using coercivity yields

α‖y1 − y2‖2H ≤ 〈Ly1 − Ly2, y1 − y2〉H∗,H
≤ 〈ζ1 − ζ2, y1 − y2〉H∗,H
≤ ‖ζ1 − ζ2‖H∗‖y1 − y2‖H .

This shows

‖y1 − y2‖H ≤ α−1‖ζ1 − ζ2‖H∗ .

We obtain the global Lipschitz continuity of the solution operator Sid : H∗ →
H.

3.1.1 Monotonicity

The next proposition states that the solution operator of the variational in-
equality (VI) is increasing. Of course, we have to make sure that (VI) is
formulated in a suitable setting allowing for monotonicity statements.
Therefore, we assume that H = (H,≥H) is a partially ordered Hilbert

space. We assume that for each h, g ∈ H with h ≥H g it holds h+ j ≥ g + j

for each j ∈ H and t g ≥ t h for each t ≥ 0. Moreover, suppose that for any
h, g ∈ H the elements sup(h, g) ∈ H and inf(h, g) ∈ H exist. Here, it holds
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z = sup(h, g) if and only if

z ≥H h, z ≥H g and j ≥H h, j ≥H g ⇒ j ≥H z.

Analogously, we have z = inf(h, g) if and only if

z ≤H h, z ≤H g and j ≤H h, j ≤H g ⇒ j ≤H z,

i.e., inf(h, g) = − sup(−h,−g). Note that under these assumptions, H is
often called a vector lattice in the literature, see e.g. [Bou04, Ch. 2, Def. 1],
[Rod87, Ch. 4:5]. For arbitrary h ∈ H we introduce the notation h+ :=

sup(h, 0). Then one can easily show that sup(h, g) = h + (g − h)+ and
inf(h, g) = g − (g − h)+, see [Rod87, Ch. 4:5].
The partial ordering on H induces a partial ordering on the dual space H∗.

For p ∈ H∗ we say that p ≥H∗ 0 if and only if 〈p, h〉H∗,H ≥ 0 holds for all
h ∈ H satisfying h ≥H 0.
Let K ⊆ H be a closed convex and nonempty set. We assume that for all

k, l ∈ K we have sup(k, l), inf(k, l) ∈ K.
Moreover, we assume that the operator L ∈ L(H,H∗) is strictly T-

monotone, i.e., for any h, g ∈ H with (h− g)+ 6= 0 it holds

〈Lh− Lg, (h− g)+〉H∗,H > 0. (3.3)

Of course, the condition in (3.3) can be simplified, but since the notion of
strict T-monotonicity exists also for nonlinear operators, we use the formu-
lation as commonly used in the literature.
The following result is taken from [Rod87, Thm. 5.1] and we also state the

proof given in this reference.

Proposition 3.2 Assume the conditions of Assumption 3.1 and, in addition,
let H be a vector lattice in the above sense and let L be strictly T-monotone.
We suppose that for all k, l ∈ K we have sup(k, l), inf(k, l) ∈ K. Then the
solution operator S : H∗ → H of the variational inequality (VI) is increasing,
i.e., if ζ1, ζ2 ∈ H∗ satisfy ζ1 ≥H∗ ζ2, then it holds S(ζ1) ≥H S(ζ2).

Proof. For i = 1, 2, let ζi ∈ H∗ such that ζ1 − ζ2 ≥H∗ 0 and set yi := S(ζi).
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We test the variational inequality characterizing y1 with z1 = sup(y1, y2) =

y1 + (y2 − y1)+ ∈ K and the variational inequality characterizing y1 with
z2 = inf(y1, y2) = y2 − (y2 − y1)+ ∈ K, respectively, and obtain

0 ≤ 〈Ly1 − ζ1, z1 − y1〉 = 〈Ly1 − ζ1, (y2 − y1)+〉

and

0 ≤ 〈Ly2 − ζ2, z2 − y2〉 = 〈Ly2 − ζ2,−(y2 − y1)+〉.

Adding up both inequalities we obtain

〈Ly1 − Ly2, (y2 − y1)+〉 ≥ 〈ζ1 − ζ2, (y2 − y1)+〉 ≥ 0.

By strict T-monotonicity, we have (y2 − y1)+ = 0, i.e., y1 ≥ y2.

3.1.2 Directional differentiability

In the following, the directional differentiability of the solution operator S of
(VI) is derived and the directional derivative is characterized as the solution
of another variational inequality under the assumption that the closed convex
set K 6= ∅ in (VI) is polyhedric.
To this end, we define the radial and tangent cone of a convex set as well

as the annihilator of a functional. For a convex set K ⊆ H we define the
radial cone to K at y ∈ K and the tangent cone to K at y ∈ K via

RK(y) := {h ∈ H | ∃ t > 0, y + th ∈ K} and TK(y) := RK(y).

(3.4)

For ξ ∈ H∗, the annihilator ξ⊥ is defined as

ξ⊥ := {h ∈ H | 〈ξ, h〉H∗,H = 0}.

The subsequent result is originally due to [Mig76]. We also mention the
related reference [Har77]. Both references examine the differentiability of



36 3. The obstacle problem

metric projections onto closed convex sets and also the extension to vari-
ational inequalities. In particular, if L is symmetric (and induces a scalar
product (·, ·)L on H), the variational inequality (VI) describes the projection
of the Riesz representative of ζ ∈ H−1(Ω) in (H, (·, ·)L) onto K.

Theorem 3.3 Suppose the conditions of Assumption 3.1 are satisfied and let
ζ ∈ H∗. We denote by S the solution operator of (VI) and set y := S(ζ),
ξ := Ly − ζ. Suppose that K is polyhedric at (y,−ξ), i.e., we assume that

TK(y) ∩ ξ⊥ = RK(y) ∩ ξ⊥.

Then S is directionally differentiable at ζ ∈ H∗. The directional derivative
S′(ζ; p) in direction p ∈ H∗ is the solution δ of the variational inequality

Find δ ∈ KK(y, ξ) : 〈Lδ − p, z − δ〉H∗,H ≥ 0 ∀ z ∈ KK(y, ξ), (3.5)

here KK(y, ξ) := TK(y) ∩ ξ⊥ denotes the critical cone.

Proof. We give a similar proof to the one that can be found in [Wac19,
Thm. 5.2].
Let ζ, h ∈ H∗ be arbitrary. For t ≥ 0 we set y(t) := S(ζ + tp), i.e., y(t) is

the solution of the variational inequality

Find y(t) ∈ K : 〈Ly(t)− ζ − tp, z − y(t)〉H∗,H ≥ 0 ∀ z ∈ K. (VIt)

We observe

y(t)− y(0)

t
=
y(t)− y

t
∈ RK(y),

cf. (3.4). By Lipschitz continuity of S, see Theorem 3.1, we conclude

‖y(t)− y(s)‖H = ‖S(ζ + tp)− S(ζ + sp)‖H ≤ α−1‖p‖H |t− s|,

i.e., t 7→ y(t) is Lipschitz continuous and it holds∥∥∥∥y(t)− y
t

∥∥∥∥
H

≤ α−1‖p‖H .
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Thus, since
(
y(t)−y
t

)
t>0

is bounded, there is a subsequence (tk)k∈N with tk ↘
0 such that

y(tk)− y
tk

⇀ δ

for some δ ∈ H.
Testing (VI) with z = y(tk) and dividing by tk > 0 we obtain〈

Ly − ζ, y(tk)− y
tk

〉
H∗,H

≥ 0 (3.6)

and taking the limit yields

〈Ly − ζ, δ〉H∗,H ≥ 0.

In particular, this implies

lim
k→∞

〈
Ly(tk)− ζ − tkp,

y(tk)− y
tk

〉
H∗,H

= 〈Ly − ζ, δ〉H∗,H ≥ 0.

On the other hand, using (VIt), we have

0 ≤
〈
Ly(tk)− ζ − tkp,

y − y(tk)

tk

〉
H∗,H

→ 〈Ly − ζ,−δ〉H∗,H . (3.7)

We conclude 〈ξ, δ〉H∗,H = 0 and, using Mazur’s lemma, δ ∈ TK(y) ∩ ξ⊥.
We want to show that the weak limit δ is the solution of (3.5). Using the

inequalities in (3.6) and (3.7), we obtain〈
L
y(tk)− y

tk
− p, y − y(tk)

tk

〉
H∗,H

≥ 0. (3.8)

Note that ‖ · ‖L :=
√
〈L ·, ·〉H∗,H defines an equivalent norm on H. Thus,

using weak lower semicontinuity of norms, we derive

〈Lδ − p,−δ〉H∗,H ≥ 0. (3.9)



38 3. The obstacle problem

Now, let z ∈ RK(y) ∩ ξ⊥. Note that we find s > 0 such that z = s(v − y)

for some v ∈ K. Using this, as well as (VIt) and 〈Ly − ζ, z〉H∗,H = 0, we
estimate〈

L
y(tk)− y

tk
− p, z

〉
H∗,H

=

〈
Ly(tk)− ζ − tkp,

s(v − y(tk) + y(tk)− y)

tk

〉
H∗,H

≥ s
〈
Ly(tk)− ζ − tkp,

y(tk)− y
tk

〉
H∗,H

k→∞→ s〈Ly − ζ, δ〉H∗,H = 0.

This shows 〈
L
y(tk)− y

tk
− p, z

〉
H∗,H

k→∞→ 〈Lδ − p, z〉H∗,H ≥ 0.

In particular, we have 〈Lδ−p, z〉H∗,H ≥ 0 for all z ∈ RK(y) ∩ ξ⊥ = KK(y, ξ)

by polyhedricity. Putting this together with (3.9), we have shown that δ is
the unique solution of the variational inequality (3.5).
This also shows that δ is the unique weak limit of the complete sequence(
y(t)−y
t

)
t>0

. We show that it is also the strong limit of this sequence. Set

dk := y(tk)−y
tk

for a sequence (tk)k∈N with tk ↘ 0. From the variational
inequality (3.5) we obtain 〈Lδ − p, δ〉H∗,H = 0. Using this and weak lower
semicontinuity of norms we derive

lim inf
k→∞

‖dk‖2L = lim inf
k→∞

〈Ldk, dk〉H∗,H

≥ 〈Lδ, δ〉H∗,H
= 〈p, δ〉H∗,H
= lim

k→∞
〈p, dk〉H∗,H

≥ lim sup
k→∞

‖dk‖2L.

Here, in the last step the inequality in (3.8) was used.
This consideration shows ‖dk‖L → ‖δ‖L. Since ‖ · ‖L is equivalent to ‖ · ‖H

and since (dk)k∈N converges weakly to δ, we obtain that lim
k→∞

dk = δ strongly
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in H.

3.2 Properties of the solution operator of the
obstacle problem

We consider again the variational inequality (OPid) describing the obstacle
problem. Let us first collect our assumptions on the data.

Assumption 3.2 Let ψ : Ω → R ∪ {−∞} be quasi upper-semicontinuous
and assume that the admissible set Kψ in (3.1) is nonempty. Suppose that
L ∈ L(H1

0 (Ω), H−1(Ω)) is a coercive operator and let α > 0 be a constant
such that

〈Lz, z〉 ≥ α‖z‖2H1
0 (Ω)

holds for all z ∈ H1
0 (Ω).

The following theorem is a corollary of Theorem 3.1 and states that for
each ζ ∈ H−1(Ω) the obstacle problem in (OPid) has a unique solution and
that the corresponding solution operator Sid : H−1(Ω) → H1

0 (Ω) is globally
Lipschitz continuous. This shows that we are in a setting where generalized
derivatives in the sense of Definition 2.12 for the operator Sid can be defined.

Theorem 3.4 Suppose the conditions of Assumption 3.2 are satisfied. Then,
for each ζ ∈ H−1(Ω), the variational inequality (OPid) has a unique solution.
Moreover, the solution operator

Sid : H−1(Ω)→ H1
0 (Ω)

is globally Lipschitz continuous with Lipschitz constant α−1.

We use the notation Sid for the solution operator of (OPid) on H−1(Ω) to
distinguish it from solution operator of the obstacle problem on subspaces,
see Chapter 4.
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Next, we apply Proposition 3.2 to the obstacle problem. First recall that
H1

0 (Ω) is a partially ordered space together with the partial ordering

v ≥ w ⇔ v ≥ w a.e. on Ω ⇔ v ≥ w q.e. on Ω (v, w ∈ H1
0 (Ω)),

compare Section 2.4 and Lemma 2.21. Moreover, max(v, w) and min(v, w)

exist for all v, w ∈ H1
0 (Ω). In particular, Kψ is closed under taking suprema

and infima of its elements, i.e., from k, l ∈ Kψ it follows max(k, l),min(k, l) ≥
ψ q.e. on Ω.
As usual, we use the ordering

p ≥ 0 ⇔ 〈p, v〉 ≥ 0 ∀ v ∈ H1
0 (Ω)+ (p ∈ H−1(Ω))

in the dual space H−1(Ω), see Section 2.6. Assuming strict T-monotonicity
of the operator L ∈ L(H1

0 (Ω), H−1(Ω)) we obtain the following monotonicity
result for the solution operator Sid of (OPid) as a corollary of Proposition 3.2.

Proposition 3.5 Suppose the conditions of Assumption 3.2 are satisfied and,
in addition, assume that L is strictly T-monotone. Then the solution operator
Sid of (OPid) is increasing, i.e., if ζ1, ζ2 are elements of H−1(Ω) satisfying
ζ1 ≥ ζ2, then it holds Sid(ζ1) ≥ Sid(ζ2) in H1

0 (Ω), i.e., a.e. and q.e. in Ω.

3.2.1 Directional differentiability

We define the following subsets of Ω that are useful to describe the critical
cone and essential for the analysis of generalized derivatives in the upcoming
chapters. For ζ ∈ H−1(Ω), we define the active set A(ζ) by

A(ζ) :=q {ω ∈ Ω | Sid(ζ)(ω) = ψ(ω)}.

As described in Lemma 2.23, by considering quasi-continuous representatives
of Sid(ζ) ∈ H1

0 (Ω), the set A(ζ) is quasi-closed and defined up to a set of
capacity zero, see also Lemma 2.22. Since we can assume that ψ is Borel
measurable, cf. Lemma 2.24, A(ζ) is Borel measurable. We also define the
inactive set I(ζ) :=q Ω \A(ζ), which is a quasi-open set.
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Ω ψ

Sid(ζ)

A(ζ)

(a) Active set for force term ζ = 0

Ω ψ

Sid(ζ)

A(ζ)

(b) Active set for force term ζ ≤ 0

Ω ψ

Sid(ζ)

(c) Active set for force term ζ ≥ 0

Ω ψ

Sid(ζ)

A(ζ)

(d) Active set for force term ζ

Figure 3.2. Active sets for different force terms, compare Fig. 3.1

Figure 3.2 shows an example where the corresponding active sets for dif-
ferent values of ζ ∈ H−1(Ω) are depicted.
Note that we have the following consequences of Proposition 3.5 on the

inclusion of active and inactive sets.

Lemma 3.6 Suppose the conditions of Assumption 3.2 are satisfied and, in
addition, assume that L is strictly T-monotone. Suppose ζ1, ζ2 ∈ H−1(Ω)

satisfy ζ1 ≥ ζ2. Then it holds
1. A(ζ1) ⊆q A(ζ2),
2. I(ζ1) ⊇q I(ζ2).

Let ζ ∈ H−1(Ω) and y := Sid(ζ). In the analysis of the obstacle problem,
the multiplier Ly−ζ appearing in the variational inequality (OPid) is relevant.
In fact, the admissible set in the variational inequality for the directional
derivative, the critical cone, see Theorem 3.3, is the intersection of the tangent
cone TKψ(y) and the annihilator of the functional Ly−ζ. Before we state the
corresponding directional differentiability result for the solution operator Sid

of the obstacle problem (OPid), let us therefore collect some features of the
corresponding functional Ly−ζ ∈ H−1(Ω). The properties established in the
following lemma will be the basis to find a characterization of the critical cone
KKψ(y). The result can be found in [Wac14, Prop. 2.5] in case the obstacle
ψ is in H1(Ω). Since we assume ψ to be merely quasi upper-semicontinuous,
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we use another argument to show the result in the second statement of the
lemma.

Lemma 3.7 Suppose the conditions of Assumption 3.2 are satisfied. Let
ζ ∈ H−1(Ω) be arbitrary and denote y := Sid(ζ) and ξ := Ly − ζ ∈ H−1(Ω).
Then the following statements hold.

1. The functional ξ is nonnegative. It can be identified with measure ξ̃ ∈
M+(Ω) fulfilling the properties described in Lemma 2.33, i.e., for every
Borel set E ⊆ Ω with cap(E) = 0 it holds ξ̃(E) = 0 and the quasi-
continuous representative of v ∈ H1

0 (Ω) is ξ̃-integrable and it holds

〈ξ, v〉 =

∫
Ω
v dξ̃.

2. The measure ξ̃ satisfies ξ̃(I(ζ)) = 0.

Proof. 1. Let v ∈ H1
0 (Ω)+. Then it holds y + v ≥ ψ, i.e. y + v ∈ Kψ. Now,

since y is the solution of (OPid), it holds

〈ξ, v〉 = 〈ξ, (y + v)− y〉 ≥ 0.

Since v ∈ H1
0 (Ω)+ was arbitrary, this shows that ξ is nonnegative. Applying

Lemma 2.33 we obtain the statement.
2. The function y − ψ is quasi lower-semicontinuous. By Lemma 2.26, since
y − ψ is nonnegative, there exists an increasing sequence (vn)n∈N ⊆ H1

0 (Ω)+

with vn → y − ψ pointwise quasi-everywhere. We have vn ≤ y − ψ q.e. in Ω

and thus −vn + y ∈ Kψ. This implies for all n ∈ N

0 ≤ 〈ξ,−vn + y − y〉 =

∫
Ω
−vn dξ̃.

Since −vn ≤ 0 q.e. on Ω and thus ξ̃-a.e., see (1.), we conclude vn = 0 ξ̃-a.e.
on Ω. By pointwise q.e. convergence of (vn)n∈N to y − ψ we have⋃

n∈N
{vn > 0} =q I(ζ).



3.2. Properties of the solution operator of the obstacle problem 43

Thus, since ξ̃({vn > 0}) = 0 for all n ∈ N and since ξ̃ vanishes on sets of
capacity zero we conclude

ξ̃(I(ζ)) = ξ̃

(⋃
n∈N
{vn > 0}

)
= 0

by σ-subadditivity of ξ̃.

In fact, the properties of the lemma hold for all elements in −TKψ(y)◦,
compare [Wac14, Prop. 2.5]. Note that ξ as in Lemma 3.7 is an element of
−TKψ(y).
The polyhedricity of the admissible set Kψ in (3.1) is established in [Mig76,

Thm. 3.2] and a version of this result is stated in the following lemma. We also
refer to [Wac19, Thm. 4.18] and [Har77]. The formulation in Lemma 3.8 will
also include the polyhedricity of the admissible set for the bilateral obstacle
problem, see Chapter 6.

Lemma 3.8 Suppose ψ : Ω → R ∪ {−∞} is a quasi upper-semicontinuous
function and ϕ : Ω→ R∪{+∞} is quasi lower-semicontinuous. Assume that
the admissible set

Kϕ
ψ := {z ∈ H1

0 (Ω) | ψ ≤ z ≤ ϕ q.e. in Ω}

is nonempty. Let L ∈ L(H1
0 (Ω), H−1(Ω)) be coercive. For an arbitrary ζ ∈

H−1(Ω) let y be the unique solution of

Find y ∈ Kϕ
ψ : 〈Ly − ζ, z − y〉 ≥ 0 ∀ z ∈ Kϕ

ψ (3.10)

and ξ := Ly − ζ. Then Kϕ
ψ is polyhedric at (y,−ξ).

Note that by choosing ϕ := +∞ on Ω the variational inequality (3.10)
is equivalent to the unilateral obstacle problem as in (OPid). We state the
result in Lemma 3.8 in this more general fashion so that it can also be applied
in the analysis of the bilateral obstacle problem in Chapter 6.
Using the polyhedricity of Kψ as in Lemma 3.8, the directional differ-
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entiability of the solution operator Sid of (OPid) can be obtained and the
variational inequalities describing the directional derivatives can be charac-
terized. We refer again to [Mig76] for this result. The structure of the critical
cone was analyzed in [Wac14, Lem. 3.1]. We state the proof from [Wac14,
Lem. 3.1] and modify it to the case where the obstacle is a general quasi
lower-semicontinuous function.

Theorem 3.9 Suppose the conditions of Assumption 3.2 are satisfied. Then
the solution operator Sid : H−1(Ω)→ H1

0 (Ω) of (OPid) is directionally differ-
entiable. Let ζ ∈ H−1(Ω) be arbitrary and set y := Sid(ζ), ξ := Ly− ζ. Then
the directional derivative S′id(ζ; p) for arbitrary p ∈ H−1(Ω) is the solution δ
of the variational inequality

Find δ ∈ KKψ(y, ξ) : 〈Lδ − p, z − δ〉 ≥ 0 ∀ z ∈ KKψ(y, ξ). (3.11)

Here, the critical cone KKψ(y, ξ) = TKψ(y) ∩ ξ⊥ has the following structure.
There exists a quasi-closed set As(ζ) ⊆q A(ζ) which is unique up to a set of
capacity zero such that

KKψ(y, ξ) = {z ∈ H1
0 (Ω) | z ≥ 0 q.e. in A(ζ) and 〈ξ, z〉 = 0}

= {z ∈ H1
0 (Ω) | z ≥ 0 q.e. in A(ζ) and z = 0 q.e. in As(ζ)}.

(3.12)

Proof. Using Lemma 3.8 and Theorem 3.3, we immediately obtain the di-
rectional differentiability of the solution operator Sid on H∗. Moreover, for
arbitrary ζ, h ∈ H−1(Ω), the directional derivative S′id(ζ;h) is the unique
solution of the variational inequality in (3.11).
Now, we verify the characterization of the critical cone stated in (3.12).

Therefore, we proceed as in the proof of [Wac14, Lem. 3.1].
By [Mig76, Lem. 3.2], the first equation in (3.12) holds. Since ξ = Ly − ζ

is a nonnegative functional in H−1(Ω) it can be identified with a regular
Borel measure ξ̃, see Lemma 3.7. Let z ∈ H1

0 (Ω) with z ≥ 0 q.e. in A(ζ).
Lemma 3.7(1.) implies z ≥ 0 ξ̃-a.e. in A(ζ). Using the integral representation
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of ξ in Lemma 3.7(1.) and ξ̃(I(ζ)) = 0, see Lemma 3.7(2.), we conclude

〈ξ, z〉 =

∫
Ω
z dξ̃ =

∫
A(ζ)

z dξ̃.

Since z ≥ 0 ξ̃-a.e. in A(ζ), it holds

〈ξ, z〉 =

∫
A(ζ)

z dξ̃ = 0

if and only if z = 0 ξ̃-a.e. on A(ζ) and, using again ξ̃(I(ζ)) = 0, see
Lemma 3.7, if and only if z = 0 ξ̃-a.e. on Ω.
This shows

KKψ(y, ξ) = {z ∈ H1
0 (Ω) | z ≥ 0 q.e. in A(ζ) and z = 0 ξ̃-a.e.}.

Now, Lemma 2.34 yields the existence of a set As(ζ) :=q f-supp(ξ̃) which
is unique up to a set of capacity zero such that the critical cone has the
structure as in (3.12).
Finally, we show the inclusion As(ζ) ⊆q A(ζ). Since y − ψ is quasi lower-

semicontinuous and nonnegative, we find an increasing sequence (vn)n∈N ⊆
H1

0 (Ω)+ with vn → y−ψ pointwise quasi-everywhere, see Lemma 2.26. With
the arguments as in the proof of Lemma 3.7, we have⋃

n∈N
{vn > 0} =q I(ζ).

Now, ξ̃(I(ζ)) = 0, see Lemma 3.7, implies vn = 0 ξ̃-a.e. on Ω for all n ∈ N
and using Lemma 2.34 we conclude vn = 0 q.e. in As(ζ). By pointwise q.e.
convergence of (vn)n∈N to y−ψ we conclude y = ψ q.e. on As(ζ). This shows
As(ζ) ⊆q A(ζ).

The second equality in (3.12) gives an implicit characterization of the
strictly active set As(ζ) and the second characterization of the critical cone
describes the pointwise behaviour of its elements.
We often need the following properties of the strictly active set As(ζ) which

are also contained in the proof of Theorem 3.9.
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Ω ψ

Sid(ζ)

As(ζ) Aw(ζ)

(a) Strictly and weakly active set for
force term ζ = 0

Ω ψ

Sid(ζ)

As(ζ)

(b) Strictly and weakly active set for
force term ζ ≤ 0

Ω ψ

Sid(ζ)

(c) Strictly and weakly active set for
force term ζ ≥ 0

Ω ψ

Sid(ζ)

As(ζ)

(d) Strictly and weakly active set for
force term ζ

Figure 3.3. Strictly and weakly active sets for different force terms, compare
Fig. 3.1

Corollary 3.10 Suppose the conditions of Assumption 3.2 are satisfied. Let
ζ ∈ H−1(Ω) be arbitrary and denote by y := Sid(ζ) and by ξ := Ly − ζ. Let
z ∈ H1

0 (Ω). Then the following statements are equivalent
(i) It holds z = 0 q.e. in As(ζ) =q f-supp(ξ̃).
(ii) It holds z = 0 ξ̃-a.e. in Ω.

and imply 〈ξ, z〉 = 0. Here, ξ̃ ∈M+(Ω) is as in Lemma 3.7.

Proof. Since As(ζ) = f-supp(ξ̃), the equivalence of the two statements is
described in Lemma 2.34. The implication follows from the identification of
ξ with the measure ξ̃, see Lemma 3.7(1.).

For ζ ∈ H−1(Ω), we also define the weakly active set Aw(ζ) as the com-
plement of the strictly active set in the active set, i.e., we set

Aw(ζ) :=q A(ζ) \As(ζ).

In Fig. 3.3, an example is shown where the strictly active and the weakly
active sets are illustrated for four different elements ζ ∈ H−1(Ω). We can
interpret the strictly active set as the part of the active set where there is a
pressure between the membrane and the obstacle.



CHA PTER 4
Generalized derivatives for the
composition with an operator

In this chapter, we construct generalized derivatives in ∂ss
BSf (·) (see Def-

inition 2.12) for the composition of the solution operator of the obstacle
problem with a general monotone and continuously differentiable operator
f : U → H−1(Ω) on a control Banach space U with suitable properties. This
composition is the solution operator Sf := Sid ◦ f : U → H1

0 (Ω) of the gener-
alized obstacle problem

Find y ∈ Kψ : 〈Ly − f(u), z − y〉 ≥ 0 ∀ z ∈ Kψ (OPf )

with forces f(U) ⊆ H−1(Ω). In particular, only a subset of H−1(Ω), more
precisely the image f(U) in H−1(Ω), can be realized as input data of the
variational inequality (OPf ). In optimization problems, it is often the case
that the set of admissible right-hand sides is a restricted subset of H−1(Ω)

and this situation can be covered by the formulation in (OPf ). Of course, the
formulation (OPf ) includes also the basic obstacle problem with distributed
controls by considering f = id: H−1(Ω)→ H−1(Ω).
The admissible set Kψ in (OPf ) is defined as

Kψ := {z ∈ H1
0 (Ω) | z ≥ ψ q.e. in Ω}.

47
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Throughout this chapter, we assume that Ω ⊆ Rd is open and bounded, and
L ∈ L(H1

0 (Ω), H−1(Ω)) is coercive. The obstacle ψ : Ω→ R∪{−∞} is a quasi
upper-semicontinuous function which is chosen such that the admissible set
Kψ is nonempty.
In addition, we sometimes use that L is strictly T-monotone, which is

the statement of the following assumption. Recall the definition of strict
T-monotonicity from (3.3).

Assumption 4.1 We assume that L ∈ L(H1
0 (Ω), H−1(Ω)) is strictly T-

monotone operator.

The assumptions on the obstacle ψ are minimal and allow for a wide class of
possible functions including thin obstacles, where the inequality constraints
y, z ≥ ψ are prescribed only on a small subset of Ω, possibly a subset of capac-
ity zero. Recall that coercivity of the operator L is needed to show existence
and uniqueness of a solution of (OPf ) and strict T-monotonicity implies
that the solution operator Sid of (OPf ) with f = id: H−1(Ω) → H−1(Ω)

is increasing, see Section 3.2. Of course, if f : U → H−1(Ω) is defined on
a partially ordered Banach space and increasing then also the composition
Sf = Sid◦f , the solution operator of (OPf ), is increasing. This monotonicity
of Sf is a central property in our arguments in this chapter, since the respec-
tive active sets and strictly active sets inherit such a monotonicity property
in the sense of inclusions.
In this chapter, U is a always a Banach space and f : U → H−1(Ω) is an

operator that is included in the variational inequality (OPf ). For the main
results, we impose the following additional assumptions on U and f which
are collected in the subsequent Assumption 4.2.

Assumption 4.2
1. We assume that the operator f : U → H−1(Ω) is defined on a partially

ordered Banach space (U,≥U ). In addition, let f be increasing, i.e.,
u1 ≥U u2 implies f(u1) ≥ f(u2) in H−1(Ω).

2. The operator f is continuously differentiable.
3. U is separable and there is a partially ordered Banach space (V,≥V )

such that the positive cone P = {v ∈ V : v ≥V 0} has nonempty interior
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and V is embedded into U . The order relation ≥V has the property that
for all v, w ∈ V with v ≥V w it holds v + z ≥V w + z for all z ∈ V
and t v ≥V t w for all t ≥ 0. We assume that the linear embedding
ι : V → U is continuous, dense and increasing, i.e., compatible with the
order structures in V and U . This means that v ∈ V with v ≥V 0

implies ι(v) ≥U 0 in U .

We give some examples of operators f and (control) spaces U , V that can
enter the optimal control problem (OPf ). For example, the operator f can
realize controls given as L2(Ω) functions with support in an open subset Ω̃ of
Ω by choosing U = L2(Ω̃) and f the embedding of L2(Ω̃) intoH−1(Ω). In this
case, one may choose V = Cc(Ω̃). Next, the range of f can consist of weighted
sums

∑n
i=1 uiζi with fixed nonnegative functionals ζi ∈ H−1(Ω), i = 1, . . . , n

by setting U = V = Rn and f(u1, . . . , un) :=
∑n

i=1 uiζi. Moreover, U can
be a closed linear subspace of H−1(Ω) satisfying Assumption 4.2, where f is
the embedding of U into H−1(Ω). Hence, in particular also different types of
sparse controls are possible. In particular, the assumptions on f include also
the choices U = H−1(Ω), f(u) = id(u) = u and U = L2(Ω), f : L2(Ω) ↪→
H−1(Ω), which are interesting from a theoretical point of view.
At the beginning of our analysis, we will see that the Gâteaux derivatives

of Sf in points u ∈ U at which Sf is Gâteaux differentiable are characterized
as solution operators of variational equations. The admissible sets in these
variational equations are sets H1

0 (D) where the domain D is any quasi-open
set satisfying I(f(u)) ⊆q D ⊆q Ω \ As(f(u)). Here, we use the notation
I(f(u)) for the inactive set in f(u) ∈ H−1(Ω) as introduced in Section 3.2.1
and As(f(u)) for the strictly active set in f(u) introduced in Theorem 3.9.
Now, for an arbitrary element u ∈ U , the goal is to construct an element in

∂ss
BSf (u), which is defined as in Definition 2.12. This means, we are looking

for limits of the derivatives (S′f (un))n∈N in the strong operator topology for
sequences (un)n∈N ⊆ U of points at which Sf is Gâteaux differentiable and
which converge to u. The tool to analyze the convergence of (S′f (un))n∈N
and to find a characterization of the limit is Mosco convergence. This notion
of convergence for sequences of nonempty closed convex (admissible) sets
is related to the convergence of the solutions of the respective variational
inequality, see [Mos69]. In fact, the convergence of (H1

0 (Dn))n∈N in the sense
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of Mosco implies the convergence of the Gâteaux derivatives (S′f (un))n∈N
which are shown to be solution operators of variational equations.
Thus, one of the main tasks in this chapter is to analyze the Mosco conver-

gence of the admissible sets. We will see that a particular monotonicity of the
sequence (un)n∈N ensures the Mosco convergence of the sets H1

0 (I(f(un))) to
H1

0 (I(f(u))) and the opposite monotonicity ensures the Mosco convergence
of the sets H1

0 (Ω \ As(f(un))) to H1
0 (Ω \ As(f(u))). Since the assumptions

on the positive cone in U allow us to apply Rademacher’s theorem and to
construct suitable increasing and decreasing sequences (un)n∈N of points at
which the locally Lipschitz continuous operator Sf is Gâteaux differentiable
and that converge to u, these considerations lead us to generalized derivatives
in ∂ss

BSf (u).
The outline of the chapter is as follows. We derive characterizations of

Gâteaux derivatives S′f (u) as solution operators of variational equations in
points u at which Sf is Gâteaux differentiable. The admissible sets in the
variational equations are Sobolev spaces H1

0 (D) for quasi-open sets D sat-
isfying I(f(u)) ⊆q D ⊆q Ω \ As(f(u)). Moreover, the relation between
Gâteaux differentiability of Sf in u and the validity of the strict comple-
mentarity condition A(f(u)) =q As(f(u)) is discussed in Section 4.1.1. In
Section 4.2, the tool of Mosco convergence is introduced and its relevance
in the analysis of convergence of solutions to variational inequalities is reca-
pitulated. Using Rademacher’s theorem in infinite dimensions, we show in
Section 4.3 that increasing and decreasing convergent sequences in U where
the solution operator Sf is Gâteaux differentiable exist for arbitrary limits.
The set-valued maps u 7→ H1

0 (I(f(u))) and u 7→ H1
0 (Ω \ As(f(u))) are ana-

lyzed in Section 4.4. In Section 4.4.1, it is shown that these maps are also
monotone which implies that (H1

0 (I(f(un))))n∈N and (H1
0 (Ω\As(f(un))))n∈N

are increasing or decreasing sequences if (un)n∈N is chosen increasing, re-
spectively decreasing. The role of suitable monotonicity properties in the
study of Mosco convergence is motivated and demonstrated by means of an
example in Section 4.4.2. The Mosco convergence of the admissible sets
(H1

0 (Dn))n∈N for Dn :=q I(f(un)) or Dn :=q Ω \As(f(un)) using increasing,
respectively, decreasing sequences (un)n∈N is established in Section 4.5. We
summarize our results and obtain generalized derivatives in ∂ss

BSf (u) in Sec-
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tion 4.6. From the characterization of these generalized derivatives, we easily
obtain subgradients in Clarke’s generalized differential when considering the
reduced objective function w.r.t. a continuously differentiable objective func-
tion J : H1

0 (Ω)×U → R and the state equation y = Sf (u). A representation
of such Clarke subgradients is obtained in Section 4.7.
A huge part of the results in this chapter is based on the paper [RU19].

The newer results analyzing the monotonicity and the Mosco convergence
properties of the sets H1

0 (Ω \As(f(u))) appear in [RU20].

4.1 Characterization of Gâteaux derivatives

In Theorem 3.9, we have seen that the directional derivatives S′id(ζ; p) for the
solution operator Sid of (OPid) on H−1(Ω) and for ζ, p ∈ H−1(Ω) are given
by the solution of the variational inequality

Find δ ∈ KKψ(y, ξ) : 〈Lδ − p, z − δ〉 ≥ 0 ∀ z ∈ KKψ(y, ξ). (4.1)

Here y := Sid(ζ) and ξ := Ly − ζ. Moreover, we have seen that the critical
cone KKψ(y, ξ) has the following structure

KKψ(y, ξ) =
{
z ∈ H1

0 (Ω) | z ≥ 0 q.e. on A(ζ), z = 0 q.e. on As(ζ)
}
. (4.2)

In order to obtain the directional derivative for the solution operator of
(OPf ) on U , i.e., for the composite mapping Sf = Sid ◦ f for an opera-
tor f : U → H−1(Ω) as specified before, we will apply a chain rule for the
directional derivatives.
For arbitrary directionally differentiable mappings the chain rule does not

hold. Thus, we use the stronger form of Hadamard directional differentiabil-
ity, as introduced in Definition 2.3.
We obtain the following corollary on directional differentiability in the

Hadamard sense for the solution operator Sid of (OPf ) for f = id.

Proposition 4.1 The solution operator Sid : H−1(Ω)→ H1
0 (Ω) of (OPid) is
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directionally differentiable in the Hadamard sense.

Proof. Since Sid is Lipschitz continuous, see Theorem 3.4, the statement fol-
lows from Proposition 2.5.

Applying the chain rule from Lemma 2.6, we obtain the following result.

Proposition 4.2 Assume that the operator f : U → H−1(Ω) is directionally
differentiable. Then the solution operator Sf : U → H1

0 (Ω) of (OPf ) is direc-
tionally differentiable. For given u, h ∈ U , the directional derivative S′f (u;h)

is given by the solution of the variational inequality

Find δ ∈ KKψ(y, ξ) : 〈Lδ − f ′(u;h), z − δ〉 ≥ 0 ∀ z ∈ KKψ(y, ξ). (4.3)

Here, y := Sf (u), ξ := LSf (u) − f(u) and f ′(u;h) denotes the directional
derivative of f in u ∈ U and in direction h ∈ U . Moreover, we have

KKψ(y, ξ) =
{
z ∈ H1

0 (Ω) | z ≥ 0 q.e. on A(f(u)), z = 0 q.e. on As(f(u))
}
.

(4.4)

Proof. This follows from the Hadamard directional derivative of Sid, see (4.1),
(4.2), and the chain rule in Lemma 2.6.

We now specify the behavior of S′f in points where Sf is Gâteaux differen-
tiable.

Theorem 4.3 Assume that f : U → H−1(Ω) is directionally differentiable.
Suppose that the solution operator Sf of (OPf ) is Gâteaux differentiable at
u ∈ U and let h ∈ U be arbitrary. Then the directional derivative S′f (u;h) is
determined by the solution of the variational equation

Find δ ∈ H1
0 (D) : 〈Lδ − f ′(u;h), z〉 = 0 ∀ z ∈ H1

0 (D). (4.5)

Here, any quasi-open set D with I(f(u)) ⊆q D ⊆q Ω \As(f(u)) is admissible
and provides the same solution δ.

Proof. The assumption that u is a point where Sf is Gâteaux differentiable
implies that S′f (u; ·) is linear and the image is a linear subspace of H1

0 (Ω).
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By the characterization (4.3) in Proposition 4.2, the image of Sf (u; ·) lies
in a linear subspace of the critical cone KKψ(y, ξ) for y = Sf (u), ξ = Ly −
f(u). The structure of the critical cone, cf. (4.4), implies that S′f (u;h) ∈
H1

0 (I(f(u))) for all h ∈ U , since H1
0 (I(f(u))) is the largest linear subset

contained in the critical cone. Thus, for all h ∈ U it holds

〈LS′f (u;h)− f ′(u;h), z − S′f (u;h)〉 ≥ 0 ∀ z ∈ H1
0 (I(f(u))) ⊆ KKψ(y, ξ).

Since H1
0 (I(f(u))) is a linear subspace, the variational inequality becomes a

variational equation and thus S′f (u;h) is determined by the unique solution
of the variational equation (4.5) for D =q I(f(u)).
On the other hand, the image of Sf (u; ·) is also contained in the linear hull

of the critical cone KKψ(y, ξ), the set H1
0 (Ω \ As(f(u))). We argue that the

inequality

〈LS′f (u;h)− f ′(u;h), z − S′f (u;h)〉 ≥ 0

is fulfilled for all test functions z from H1
0 (Ω \ As(f(u))), and not only from

the subset KKψ(y, ξ).
Fix z ∈ KKψ(y, ξ) and take an arbitrary h ∈ U . Then the test function z

fulfills the variational inequality for the direction −h, namely

〈LS′f (u;−h)− f ′(u;−h), z − S′f (u;−h)〉 ≥ 0

or, equivalently,

〈LS′f (u;h)− f ′(u;h),−z − S′f (u;h)〉 ≥ 0.

This shows that −z is also an admissible test function for the direction h.
Now, consider an arbitrary z ∈ H1

0 (Ω \ As(f(u))). Then we can write z =

z+−z−, where z+ = max(0, z) denotes the positive part and z− = −min(0, z)

the negative part of z. We conclude z+, z− ∈ KKψ(y, ξ). Since KKψ(y, ξ) is a
cone, 2z+, respectively 2z−, are in KKψ(y, ξ) and it holds

〈LS′f (u;h)− f ′(u;h), 2z+ − S′f (u;h)〉 ≥ 0
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and

〈LS′f (u;h)− f ′(u;h),−2z− − S′f (u;h)〉 ≥ 0

for all h ∈ U . Adding up both inequalities and dividing by 2 yields

〈LS′f (u;h)− f ′(u;h), z − S′f (u;h)〉 ≥ 0.

Therefore, each z ∈ H1
0 (Ω \As(f(u))) is a valid test function and S′f (u;h) is

the unique solution of the variational equation (4.5) for D =q Ω \As(f(u)).
Consider now an arbitrary quasi-open set D with I(u) ⊆q D ⊆q Ω \

As(f(u)). Then we have H1
0 (I(f(u))) ⊆ H1

0 (D) ⊆ H1
0 (Ω \ As(f(u))) and

together with what we have shown already, this implies that for arbitrary
h ∈ U , S′f (u;h) is the solution of (4.5).

4.1.1 Relation to strict complementarity

In this subsection, we discuss the connection between Gâteaux differentia-
bility of the solution operator Sf of (OPf ) and the validity of the so-called
strict complementarity condition. We say that the strict complementarity
condition holds in f(u) ∈ H−1(Ω) if the equality A(f(u)) =q As(f(u)) holds
(up to a set of capacity zero).
From Proposition 4.2 and in particular, from the characterization of the

critical cone in (4.4), it follows that strict complementarity in f(u) implies
Gâteaux differentiability of Sf in u ∈ U , since the critical cone turns into a
linear subset. Beyond that, we obtain the following result, which states that
for certain operators f the strict complementarity condition is also necessary
for Gâteaux differentiability. For parts of this result, we refer to [RW20,
Lem. 2.6].

Lemma 4.4 Assume f : U → H−1(Ω) is Gâteaux differentiable at u ∈ U .
If the strict complementarity condition holds in f(u) ∈ H−1(Ω), then the
solution operator Sf : U → H1

0 (Ω) of (OPf ) is Gâteaux differentiable at u ∈
U .
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Moreover, if ι is a continuous and dense linear embedding ι : U ↪→ H−1(Ω),
then the solution operator Sι : U → H1

0 (Ω) is Gâteaux differentiable at u ∈ U
if and only if the strict complementarity conditions holds in ι(u).

Proof. Let us assume A(f(u)) =q As(f(u)). Then the critical cone
KKψ(y, ξ) = {z ∈ H1

0 (Ω) | z = 0 q.e. on A(f(u))} = H1
0 (I(f(u))) is a linear

subspace and the variational inequality (4.3) for the directional derivative
S′f (u;h) reduces to

Find δ ∈ KKψ(y, ξ) : 〈Lδ − f ′(u;h), z〉 = 0 ∀z ∈ KKψ(y, ξ).

Now, linearity of S′f (u; ·) follows from linearity of f ′(u; ·) and from the unique-
ness of solutions of variational inequalities. Moreover, boundedness of S′f (u; ·)
follows from boundedness of f ′(u; ·), since

α2‖S′f (u;h)‖2H1
0 (Ω) ≤ 〈LS

′
f (u;h), S′f (u;h)〉

= 〈f ′(u;h), S′f (u;h)〉
≤ ‖f ′(u;h)‖H−1(Ω)‖S′f (u;h)‖H1

0 (Ω).

Thus, if the strict complementarity condition holds in f(u), then Sf is
Gâteaux differentiable at u ∈ U .
For the second statement of the lemma, we first show that if Sid is Gâteaux

differentiable at ζ ∈ H−1(Ω), then the strict complementarity condition
A(ζ) =q As(ζ) holds. Thus, let us assume that Sid is Gâteaux differentiable
at ζ ∈ H−1(Ω). Denote y := Sid(ζ) and ξ := Ly− ζ. Arguing as in the proof
of Theorem 4.3, we see that the image of S′id(ζ; ·) is contained in KKψ(y, ξ).
Conversely, let v ∈ KKψ(y, ξ) be arbitrary. We know that S′id(ζ;Lv) is the
solution of

Find δ ∈ KKψ(y, ξ) : 〈Lδ − Lv, z − δ〉 ≥ 0 ∀ z ∈ KKψ(y, ξ). (4.6)

Thus, we can derive S′id(ζ;Lv) = v, since v solves (4.6). This implies that
KKψ(y, ξ) coincides with the image of S′id(ζ; ·). Thus, KKψ(y, ξ) is a linear
subspace of H1

0 (Ω) and we have shown KKψ(y, ξ) = H1
0 (I(ζ)), since H1

0 (I(ζ))
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is the largest linear subset of KKψ(y, ξ). In summary, we have

H1
0 (I(ζ)) = KKψ(y, ξ) ⊆ H1

0 (Ω \As(ζ)).

Now, for v ∈ H1
0 (Ω \ As(ζ))+, we have v ≥ 0 q.e. in Ω. This implies v ∈

KKψ(y, ξ) by the structure of the critical cone, see (4.2), and, since KKψ(y, ξ)

is a linear subspace, we also have −v ∈ KKψ(y, ξ). This leads to v ≥ 0 and
v ≤ 0 q.e. on A(ζ). Therefore, v ∈ H1

0 (I(ζ)). This shows

H1
0 (I(ζ)) = KKψ(y, ξ) = H1

0 (Ω \As(ζ)). (4.7)

By Lemma 2.31, we find v ∈ H1
0 (Ω)+ satisfying {v > 0} =q Ω \ As(u). In

particular, v is an element of H1
0 (Ω\As(ζ)) and by (4.7) also of H1

0 (I(ζ)), i.e.,
v = 0 q.e. on A(ζ) ⊇q A(ζ)\As(ζ). By choice of v this implies A(ζ) =q As(ζ).
We have shown that the strict complementarity condition holds in ζ ∈

H−1(Ω) if and only if Sid is Gâteaux differentiable at ζ.
Assume now Sι is Gâteaux differentiable at u ∈ U . We apply Lemma 2.7

and deduce that Sid is Gâteaux differentiable at ι(u).
By what we have shown, the strict complementarity condition holds in ι(u),

i.e., A(ι(u)) =q As(ι(u)).

Remark 4.5 In particular, if Ω ⊆ Rd is bounded, any space Lq(Ω) with q ≥ 2

is densely embedded into H−1(Ω). Moreover, C∞c (Ω) is densely embedded
into H−1(Ω). Denote the respective embeddings by ι : U ↪→ H−1(Ω). We
have shown that Sι is Gâteaux differentiable at u if and only if A(u) =q As(u).

Example 4.6 For f in the generality of Assumption 4.2 the strict com-
plementarity condition is not necessary for Gâteaux differentiability. As a
counterexample consider the following setting. Let p ∈ H−1(Ω) such that
the strict complementarity condition is not satisfied in p. Now, consider the
constant map

f : L2(Ω)→ H−1(Ω), v 7→ p.

Then f fulfills the assumptions of Assumption 4.2 and Sf is constant and
thus Gâteaux differentiable. Yet, the strict complementarity condition is not
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fulfilled in p.

4.2 Mosco convergence of admissible sets

The goal of this section is to introduce the notion of Mosco convergence as
a tool to show convergence of solutions to varitional inequalities. In order to
obtain elements of ∂ss

BSf (u), the convergence analysis of Gâteaux derivatives
(S′f (un))n∈N in sequences (un)n∈N with un → u is indispensable. We have
seen in Theorem 4.3 that the Gâteaux derivatives S′f (un) are solution opera-
tors of variational equations. Thus, a criterion on convergence of solutions to
variational equations, or, more generally, variational inequalities, is of high
interest for our purpose.
We introduce the notion of Mosco convergence in the following definition.

The concept of this convergence for closed convex sets goes back to [Mos69].
In this form, the definition can be found in [Rod87, Ch. 4:4].

Definition 4.7 (Mosco convergence) We say that a sequence (Cn)n∈N of
nonempty, closed, convex subsets of a Banach space X converges to a set
C ⊆ X in the sense of Mosco if the following two conditions hold.

1. For each x ∈ C there exists a sequence (xn)n∈N such that xn ∈ Cn
holds for every n ∈ N and such that xn → x in X as n→∞.

2. Assume (xnk)k∈N is a subsequence of a sequence (xn)n∈N ⊆ X fulfilling
xn ∈ Cn for all n ∈ N. If for some x ∈ X we have xnk ⇀ x in X, then
the weak limit x is an element of C.

If (Cn)n∈N converges towards C in the sense of Mosco, then we also write
Cn → C.

Note that the limit of a Mosco convergent sequence (Cn)n∈N is unique. To
see this, let C, C̃ be limits and x ∈ C. Now, choose xn ∈ Cn with xn → x.
Then, in particular we find xn ⇀ x and thus x ∈ C̃.
The following lemma characterizes the Mosco limit of increasing and de-

creasing sequences of sets, respectively. It can also be found in [Mos69,
Lem. 1.2, 1.3].
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Lemma 4.8 Let (Cn)n∈N be a sequence of nonempty, closed, convex subsets
of a Banach space X.

1. If (Cn)n∈N is an increasing sequence of sets, it follows

Cn →
⋃
n∈N

Cn

in the sense of Mosco.
2. If (Cn)n∈N is decreasing, it holds

Cn →
⋂
n∈N

Cn

in the sense of Mosco.

Proof. 1. Let x ∈
⋃
n∈NCn. This means, x is the limit of some sequence

(ym)m∈N ⊆
⋃
n∈NCn. Since (Cn)n∈N is increasing, there is a subsequence

(Cnm)m∈N with ym ∈ Cnm for all m ∈ N. Thus, for all n ≥ n1, we may set

xn := ymax{m∈N|nm≤n} ∈ Cnmax{m∈N|nm≤n}
⊆ Cn.

For n < n1, we choose xn ∈ Cn arbitrarily. It is clear that the constructed
sequence (xn)n∈N converges to x, as well.
To show the second condition of Mosco convergence, let (xn)n∈N be a sequence
satisfying xn ∈ Cn for all n ∈ N and assume (xnk)k∈N is a subsequence with
xnk ⇀ x in X for some x ∈ X. From Cm ⊆

⋃
n∈NCn for all m ∈ N

we conclude (xnk)k∈N ⊆
⋃
n∈NCn. Now,

⋃
n∈NCn is convex. To see this,

let y1, y2 ∈
⋃
n∈NCn. Then we find n1 and n2 such that y1 ∈ Cn1 and

y2 ∈ Cn2 . Since (Cn)n∈N is increasing, we conclude y1, y2 ∈ Cmax(n1,n2) and,
by convexity of this set, any convex combination of y1, y2 is in Cmax(n1,n2) ⊆⋃
n∈NCn. Thus, since the set

⋃
n∈NCn is convex, its closure is convex, too.

By Mazur’s lemma, we conclude that the weak limit of (xnk)k∈N is also in
the closed convex set

⋃
n∈NCn.

2. Let x ∈
⋂
n∈NCn. From

⋂
n∈NCn ⊆ Cm for all m ∈ N we conclude that

the sequence xn := x satisfies xn ∈ Cn for all n ∈ N as well as xn → x in X
as n→∞.
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To show the second property of Mosco convergence, let (xn)n∈N be a sequence
satisfying xn ∈ Cn for all n ∈ N and assume (xnk)k∈N is a subsequence with
xnk ⇀ x in X for some x ∈ X. Recall that (nk)k∈N is strictly increasing.
For all m ∈ N, also the sequence (xnk)∞k=m converges weakly to x and it
holds (xnk)∞k=m ⊆ Cnm since (Cn)n∈N is decreasing. By Mazur’s lemma, we
conclude that x ∈ Cnm for all m ∈ N, i.e., x ∈

⋂
m∈NCnm . Using once more

that (Cn)n∈N is decreasing, we have⋂
m∈N

Cnm =
⋂
n∈N

Cn

and x ∈
⋂
n∈NCn follows. Thus, we have shown the Mosco convergence of

(Cn)n∈N towards
⋂
n∈NCn.

The following proposition establishes the connection between Mosco con-
vergence of the admissible sets in variational inequalities and the convergence
of the solutions to these variational inequalities. The statement and its proof
is taken from [Rod87, Thm. 4.1], see also [Mos69, Prop. 3.5]. The formula-
tion in Proposition 4.9 is adapted to our setting with L ∈ L(H1

0 (Ω), H−1(Ω)),
but of course, it also holds in more general Hilbert space settings. Since this
result is used frequently within this thesis, we also present the proof from
[Rod87] here.

Proposition 4.9 Let Cn, n ∈ N, and C be nonempty, closed, convex sub-
sets of H1

0 (Ω) such that Cn → C in the sense of Mosco. Furthermore, let
(pn)n∈N ⊆ H−1(Ω) and p ∈ H−1(Ω) with pn → p. Then the solutions of

Find xn ∈ Cn : 〈Lxn − pn, zn − xn〉 ≥ 0 ∀ zn ∈ Cn (4.8)

converge to the solution of

Find x ∈ C : 〈Lx− p, z − x〉 ≥ 0 ∀ z ∈ C. (4.9)

Proof. As already mentioned, this proof is taken from [Rod87, Thm. 4.1].
Denote by x the solution of (4.9). Then, by the definition of Mosco conver-
gence we find ηn ∈ Cn, n ∈ N, such that ηn → x in H1

0 (Ω). Denote by α > 0
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the coercivity constant of L. Using the coercivity and (4.8) with zn = ηn we
conclude

α‖xn − ηn‖2 ≤ 〈Lxn − Lηn, xn − ηn〉
= 〈Lxn − pn, xn − ηn〉 − 〈Lηn − pn, xn − ηn〉
≤ −〈Lηn − pn, xn − ηn〉
≤ ‖Lηn − pn‖‖xn − ηn‖.

(4.10)

This implies

‖xn‖ ≤ ‖xn − ηn‖+ ‖ηn‖
≤ α−1‖Lηn − pn‖+ ‖ηn‖
≤ κ

for a constant κ > 0, since the convergent sequences (ηn)n∈N ⊆ H1
0 (Ω) and

(Lηn − pn)n∈N ⊆ H−1(Ω) are bounded. Now, the boundedness of (xn)n∈N in
H1

0 (Ω) implies the weak convergence of a subsequence (xnk)k∈N. We denote
the weak limit by η. By the Mosco convergence Cn → C we conclude that
η ∈ C.
Let v ∈ C be arbitrary and let vn ∈ Cn, n ∈ N, be elements with vn → v

in H1
0 (Ω). Then we have

〈Lxn − pn, vn − xn〉 ≥ 0

and this implies

〈Lvn − pn, vn − xn〉 = 〈Lvn − Lxn, vn − xn〉+ 〈Lxn − pn, vn − xn〉
≥ α‖vn − xn‖2 + 〈Lxn − pn, vn − xn〉
≥ 0

for all n ∈ N. Passing to the limit, we obtain

〈Lv − p, v − η〉 ≥ 0 (4.11)

since Lvnk − pnk → Lv − p in H−1(Ω) and vnk − xnk ⇀ v − η in H1
0 (Ω)
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as k → ∞. Since v was arbitrary, (4.11) holds for all v ∈ C. Let z ∈ C

be arbitrary and choose any θ ∈ (0, 1]. Since C is convex, we can choose
v := η + θ(z − η) ∈ C in (4.11) and obtain, after dividing by θ > 0,

〈L(η + θ(z − η))− p, z − η〉 ≥ 0.

Passing to the limit θ → 0 yields

〈Lη − p, z − η〉 ≥ 0. (4.12)

Since z ∈ C was arbitrary, (4.12) holds for all z ∈ C which shows that η is
the solution of (4.9), i.e., η = x.
Now, since ηnk → x and xnk ⇀ x as k →∞, we conclude that xnk−ηnk ⇀

0. Using this and recalling

α‖xnk − ηnk‖
2 ≤ −〈Lηnk − pnk , xnk − ηnk〉 → 0

as in (4.10), we conclude that the convergence xnk − ηnk
k→∞→ 0 is strong in

H1
0 (Ω). This shows that the whole sequence (xn)n∈N converges strongly to

x.

The result in Proposition 4.9 has the following implications for our aim to
construct elements in ∂ss

BSf (u).

Corollary 4.10 Assume that U is a separable Banach space and let f satisfy
Assumption 4.2(2.). Denote by Sf : U → H1

0 (Ω) the solution operator of the
variational inequality (OPf ). Let u ∈ U be arbitrary and assume that

(un)n∈N ⊆ DSf := {v ∈ U | Sf is Gâteaux differentiable at v}

is such that un
n→∞→ u in U . For each n ∈ N, let Dn be a quasi-open set

with I(f(un)) ⊆q Dn ⊆q Ω \As(f(un)). If H1
0 (Dn)→ H1

0 (D) in the sense of
Mosco for some quasi-open set D, then it holds S′f (un) → ΞD in the strong
operator topology, where ΞD(h) is the solution of the variational equation

Find δ ∈ H1
0 (D) : 〈Lδ − f ′(u;h), z〉 = 0 ∀ z ∈ H1

0 (D). (4.13)
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In particular, it holds ΞD ∈ ∂ss
BSf (u).

Proof. Let h ∈ U be arbitrary. In Theorem 4.3, we have seen that S′f (un;h)

is the solution of

Find δn ∈ H1
0 (Dn) : 〈Lδn − f ′(un;h), z〉 = 0 ∀ z ∈ H1

0 (Dn) (4.14)

and (4.14) is of the form (4.8) with Cn = H1
0 (Dn) and pn = f ′(un;h) for each

n ∈ N. Note that the admissible sets are linear subspaces of H1
0 (Ω) and the

variational inequalities reduce to variational equations. We have f ′(un;h)→
f ′(u;h) since f is continuously differentiable. Now, Proposition 4.9 implies
that S′f (un;h)→ ΞD(h), where ΞD(h) is the solution of (4.13). In particular,
ΞD ∈ L(U,H1

0 (Ω)) and S′f (un) → ΞD in the strong operator topology. By
definition of ∂ss

BSf (u), see Definition 2.12, we conclude ΞD ∈ ∂ss
BSf (u).

As the preceding corollary suggests, our goal for the construction of ele-
ments in ∂ss

BSf (u) for an arbitrary u ∈ U is to find sequences (un)n∈N ⊆ DSf
with un

n→∞→ u such that H1
0 (Dn) → H1

0 (D) in the sense of Mosco can be
verified for a quasi-open set Dn with I(f(un)) ⊆q Dn ⊆q Ω \ As(f(u)) and
some quasi-open set D.

4.3 Existence of monotone convergent sequences of
points at which Sf is Gâteaux differentiable

In this section, we will show the existence of increasing and decreasing se-
quences of points in U where Sf , the solution operator of the variational
inequality (OPf ), is Gâteaux differentiable converging to an arbitrary ele-
ment u ∈ U . Once the existence is shown, then by the preceding section
Section 4.2 and the analysis of the Mosco convergence of the sets (Dn)n∈N
for such a sequence (un)n∈N, the characterization of the limit will guide us to
an element of ∂ss

BSf (u).
The key assumption to show such a result is the condition that the positive

cone in V has interior points and V ↪→ U , cf. Assumption 4.2. Together
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with the generalization of Rademacher’s theorem to infinite dimensions, cf.
Theorem 2.8, the existence of monotone and convergent sequences in DSf can
be shown.

Proposition 4.11 Assume T : H−1(Ω) → H1
0 (Ω) is a locally Lipschitz con-

tinuous operator which is directionally differentiable. Let the conditions of
Assumption 4.2 be satisfied and let u ∈ U be arbitrary. Then there are se-
quences (u+

n )n∈N and (u−n )n∈N such that Tf := T ◦ f is Gâteaux differentiable
at each u+

n , u
−
n , n ∈ N, as well as u+

n ↗ u and u−n ↘ u.

Proof. Fix u ∈ U . Denote by P the positive cone in V and for r > 0 and
v ∈ V denote by Br(v) the open ball of radius r around v in V . For short,
we write also Br instead of Br(0). Let v∗ be an interior point of P. Note
that this implies that for all λ > 0 the element λv∗ is an interior point of P.
Without loss of generality, assume that ‖v∗‖V = 1.
We define T̃f : V → H1

0 (Ω) by

T̃f (v) := Tf (u+ v).

In this definition and in the rest of this proof, with a little abuse of notation,
we do not write down the embedding V ↪→ U explicitly but regard V as a
subset of U . Since V is continuously embedded into U , the operator T̃f is
locally Lipschitz continuous on V . Therefore, by Theorem 2.8, the set of
points in V in which T̃f is Gâteaux differentiable is dense in V . We construct
a sequence

(v+
n )n∈N ⊆ DT̃f = {w ∈ V | T̃f is Gâteaux differentiable at w}

with v+
n ↗ 0 inductively. Then, in the last part of the proof, we will show

that (u+
n )n∈N with u+

n := u+v+
n , n ∈ N, is a sequence in DTf with u+

n ↗ u. A
sketch visualizing the following inductive construction of (v+

n )n∈N is depicted
in Fig. 4.1. For n ∈ N we define

ϑ+
n := −2−nv∗,

then each ϑ+
n is an element of −P, i.e., ϑ+

n ≤V 0, and the sequence (ϑ+
n )n∈N
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0V

ϑ+
1

ϑ+
1 − P

B2−1(ϑ+
1 )

v+
1

ϑ+
2

v+
2

ϑ+
3v+

3

−P

V

Figure 4.1. Sketch of the construction of the sequence (v+
n )n∈N in the proof of

Proposition 4.11

is increasing. The element v+
n will be chosen in such a way that it satisfies

v+
n−1 ≤V v+

n ≤V ϑ+
n .

This ensures, on the one hand, that the monotonicity of the sequence (vn)n∈N
is satisfied up to the n-th member and, on the other hand, that choosing
v+
m+1 with vm ≤V v+

m+1 ≤V 0 is possible for all m ≥ n within the inductive
construction. More precisely, the purpose of the elements (ϑ+

n )n∈N is to ensure
that nesting v+

n+1 between v+
n and 0 is possible for all n ∈ N, i.e., that the

sets

{w ∈ V | v+
n ≤V w ≤V 0}

do all have interior points, so that Theorem 2.8 implies that they contain
points in DT̃f .
Starting with the first member of the sequence, we find and fix v+

1 ∈
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(ϑ+
1 − P) ∩B2−1(ϑ+

1 ) where T̃f is Gâteaux differentiable. We have

‖v+
1 ‖V ≤ ‖ϑ

+
1 ‖V + ‖v+

1 − ϑ
+
1 ‖V ≤ 2−1 + 2−1 = 1.

Now, for n ≥ 2 assume that we have fixed v+
n−1 ∈ ϑ

+
n−1 − P with

‖v+
n−1‖V ≤ 2−(n−2).

We argue that in V , the set

(ϑ+
n − P) ∩ (v+

n−1 + P) ∩B2−n(ϑ+
n ) (4.15)

has nonempty interior:
Let εn > 0 be such that Bεn(2−(n+1)v∗) ⊆ P holds and let yn be an

arbitrary element of Bεn . The following arguments show that the element
ϑ+
n − 2−(n+1)v∗ + yn is contained in all the sets that are intersected in (4.15)

and thus, ϑ+
n − 2−(n+1)v∗ +Bεn is an open subset of the intersection.

It holds 2−(n+1)v∗ + yn ∈ P, i.e.,

yn ≥V −2−(n+1)v∗ (4.16)

and ϑ+
n − (2−(n+1)v∗ − yn) ≤V ϑ+

n , therefore

ϑ+
n − 2−(n+1)v∗ + yn ∈ (ϑ+

n − P).

From (4.16), the definition of ϑ+
n and from v+

n−1 ∈ ϑ
+
n−1 −P, i.e., −v

+
n−1 ≥V

−ϑ+
n−1, we conclude that

ϑ+
n − 2−(n+1)v∗ + yn = (v+

n−1 − v
+
n−1) + ϑ+

n − 2−(n+1)v∗ + yn

≥V v+
n−1 − ϑ

+
n−1 + ϑ+

n − 2−(n+1)v∗ − 2−(n+1)v∗

= v+
n−1 + 2−(n−1)v∗ − 2−nv∗ − 2 · 2−(n+1)v∗

= v+
n−1.

Furthermore, we estimate

‖ϑ+
n − 2−(n+1)v∗ + yn − ϑ+

n ‖V = ‖2−(n+1)v∗ − yn‖V ≤ 2−(n+1) + εn ≤ 2−n.
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Here, in the last step, we have used that Bεn(2−(n+1)v∗) ⊆ P and ‖v∗‖ = 1

imply εn ≤ 2−(n+1).
This shows that the set in (4.15) has nonempty interior. Thus, we can

find a point in the intersection (4.15), denoted v+
n , where T̃f is Gâteaux

differentiable and which then fulfills

0 ≥V ϑ+
n ≥V v+

n ≥V v+
n−1

as well as

‖v+
n ‖V ≤ ‖ϑ+

n ‖V + ‖ϑ+
n − v+

n ‖V ≤ 2−n + 2−n = 2−(n−1).

In particular, we obtain a sequence (v+
n )n∈N ⊆ DT̃f with v+

n ↗ 0 in V . To
construct (v−n ) ⊆ DT̃f with vn ↘ 0, we set ϑ−n := −ϑ+

n = 2−nv∗ and choose
v−n in

(ϑ−n + P) ∩ (ϑ−n−1 − P) ∩B2−n(ϑ−n )

instead of the set in (4.15). Then the remaining arguments are easily adapted
to show the existence of (v−n )n∈N with the mentioned properties.
Next, we argue that Tf is Gâteaux differentiable at u+

n := u+ v+
n , respec-

tively u−n := u + v−n , for all n ∈ N. Let n ∈ N. By the definition of T̃f , it
holds

T̃ ′f (v+
n ;h) = T ′f (u+

n ;h) and T̃ ′f (v−n ;h) = T ′f (u−n ;h)

for all h ∈ V . Now, it follows as in the proof of Lemma 2.7 that Tf is Gâteaux
differentiable at u+

n and u−n .
By construction, (u+

n )n∈N is an increasing and (u−n )n∈N is a decreasing
sequence of Gâteaux differentiability points of Tf in U and both sequences
converge to u.

The formulation in Proposition 4.11 is such that the statement can also
be applied for applications where Tf is not the solution operator of (OPf ).
We will apply the proposition also to the solution operator of the bilateral
obstacle problem, see Chapter 6. Of course, we obtain the following corollary
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for the solution operator Sf of (OPf ).

Corollary 4.12 Let Assumption 4.2 be satisfied and let u ∈ U be arbitrary.
Then there is an increasing sequence (u+

n )n∈N and a decreasing sequence
(u−n )n∈N such that the solution operator Sf of (OPf ) is Gâteaux differen-
tiable at each u+

n , u−n and it holds u+
n , u

−
n → u.

4.4 Influence of Monotonicity

The purpose of this section is to analyze the monotonicity of the set-valued
maps u 7→ H1

0 (D) for D :=q I(f(u)) and D :=q Ω \As(f(u)). In the preced-
ing section, we have seen that for arbitrary u ∈ U there exists an increasing,
respectively decreasing, sequence of points in U where Sf , the solution op-
erator of (OPf ), is Gâteaux differentiable and which converges to u. If we
can show the Mosco convergence of the sets H1

0 (Dn) for an increasing or de-
creasing sequence (un)n∈N and for Dn with I(f(un)) ⊆q Dn ⊆q Ω\As(f(un))

and characterize the limit H1
0 (D), then Corollary 4.10 implies that Ξ as the

solution operator of (4.13) is indeed an element of ∂ss
BSf (u). We will moti-

vate why monotonicity is a favorable property of the sequence (un)n∈N when
trying to show the Mosco convergence.
Therefore, in Section 4.4.1, we first show the monotonicity properties of

the sets H1
0 (Dn) for Dn :=q I(f(un)) and Dn :=q Ω\As(f(un)). Afterwards,

in Section 4.4.2, by considering an example, it is motivated that the Mosco
convergence H1

0 (Dn) → H1
0 (D) can be shown when combining the suitable

monotonicity of (un)n∈N with the suitable characterization of Dn, D as either
I(f(un)), I(f(u)) or Ω \As(f(un)),Ω \As(f(u)).

4.4.1 Monotonicity of the set-valued maps

Here, we show that u 7→ H1
0 (I(f(u))) and u 7→ H1

0 (Ω\As(f(u))) are monotone
set-valued maps.
For the map u 7→ H1

0 (I(f(u))), this is an immediate consequence of
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Lemma 3.6.

Lemma 4.13 Suppose Assumption 4.1 is satisfied and let f , U fulfill
the conditions of Assumption 4.2(1.). Then the set-valued map U 3
u 7→ H1

0 (I(f(u))) is increasing, i.e., u1 ≥U u2 implies H1
0 (I(f(u1))) ⊇

H1
0 (I(f(u2))).

Proof. Assume u1, u2 ∈ U satisfy u1 ≥U u2. Since f is increasing, it holds
f(u1) ≥ f(u2) in H−1(Ω). By Lemma 3.6, it holds I(f(u1)) ⊇q I(f(u2)).
This shows H1

0 (I(f(u1))) ⊇ H1
0 (I(f(u2))).

In contrast to the statement for the active sets in Lemma 3.6, it is not
immediately clear from the monotonicity of the solution operator Sf of (OPf )
that the strictly active sets are also monotone. Nevertheless, such a result can
be established. Before we can prove the statement, let us show the following
proposition stating that perturbations in the obstacle outside the strictly
active set leave the solution of (OPf ) unchanged.
The next results concerning the strictly active sets are modifications of the

results in [RU20] for the bilateral obstacle problem.

Proposition 4.14 Let ζ ∈ H−1(Ω) and let v ∈ H1
0 (Ω)+ such that {v >

0} ⊆q Ω\As(ζ). Then it holds Sψ,id(ζ) = Sψ−v,id(ζ), where Sφ,id : H−1(Ω)→
H1

0 (Ω) denotes the solution operator of (OPf ) with respect to the quasi upper-
semicontinuous obstacle φ : Ω→ R∪{−∞} and w.r.t. the identity map id on
H−1(Ω).

Proof. Obviously, Sψ,id(ζ) ≥ ψ − v, i.e., Sψ,id(ζ) is admissible. Now, let
z ∈ Kψ−v be arbitrary. We have

〈LSψ,id(ζ)− ζ, z − Sψ,id(ζ)〉
= 〈LSψ,id(ζ)− ζ, z + v − Sψ,id(ζ)〉+ 〈LSψ,id(ζ)− ζ,−v〉 ≥ 0

by the variational inequality characterizing Sψ,id(ζ) since z+v ≥ ψ and using
v = 0 q.e. on As(ζ) which implies 〈LSψ,id(ζ)− ζ,−v〉 = 0, see Corollary 3.10.
This shows Sψ,id(ζ) = Sψ−v,id(ζ).
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Lemma 4.15 Suppose Assumption 4.1 is satisfied. Then the set-valued map
H−1(Ω) 3 ζ 7→ H1

0 (Ω \ As(ζ)) is increasing, i.e., ζ1 ≥ ζ2 implies H1
0 (Ω \

As(ζ1)) ⊇ H1
0 (Ω \As(ζ2)).

In particular, if f , U fulfill the conditions of Assumption 4.2(1.), then the
set-valued map U 3 u 7→ H1

0 (Ω \As(f(u))) is increasing.

Proof. Let ζ1, ζ2 ∈ H−1(Ω) and assume ζ1 ≥ ζ2. We show that the strictly
active sets satisfy As(ζ1) ⊆q As(ζ2), from which the conclusion of our lemma
follows.
Assume Ω \ As(ζ2) 6=q ∅ (otherwise the assertion follows directly). Fix

v ∈ H1
0 (Ω)+ satisfying {v > 0} ⊆q Ω \As(ζ2), see Lemma 2.31.

As in Proposition 4.14, for quasi upper-semicontinuous obstacle φ : Ω →
R∪ {−∞} we denote by Sφ,id : H−1(Ω)→ H1

0 (Ω) the corresponding solution
operator of (OPf ) for f = id. Let yv(t) := Sψ−tv,id(ζ1), t ∈ [0, 1], and denote
ȳv(t) := yv(t) + tv. Note that ȳv(t) ∈ Kψ for each t ∈ [0, 1]. Then it holds

〈Lyv(t)− ζ1, z − yv(t)〉 ≥ 0 ∀ z ∈ Kψ−tv

which is equivalent to

〈Lȳv(t)− ζ1 − tLv, z̄ − ȳv(t)〉 ≥ 0 ∀ z̄ ∈ Kψ.

We conclude yv(t) = Sψ,id(T (tv)) − tv with T : H1
0 (Ω) → H−1(Ω), v 7→ ζ1 +

Lv. Since Sψ,id is directionally differentiable in the Hadamard sense, see
Proposition 4.1, we can apply the chain rule for the directional derivatives
and obtain

y′v(0; 1) = S′ψ,id(T (0);T ′(0; v))− v = S′ψ,id(ζ1;Lv)− v.

Since S′ψ,id(ζ1;Lv) is 0 q.e. on the strictly active set As(ζ1), compare The-
orem 3.9, we have y′v(0; 1) = −v < 0 q.e. on As(ζ1) ∩ {v > 0}. Thus, by
reducing the obstacle on a subset of As(ζ1) the solution with respect to the
new obstacle will drop on this set.
Now, we show the statement of the lemma by contradiction. Therefore,

assume the set W ⊆ Ω is a set of positive capacity which is weakly active for
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ζ2 and strictly active for ζ1, i.e.,

W ⊆q As(ζ1) ⊆q A(ζ2) and W ⊆q Ω \As(ζ2). (4.17)

Let v ∈ H1
0 (Ω)+ satisfy {v > 0} =q Ω \ As(ζ2). Then, Proposition 4.14

yields

Sψ−v,id(ζ2) = Sψ,id(ζ2) (4.18)

and on W we have

Sψ−v,id(ζ1)|W < Sψ,id(ζ1)|W = Sψ,id(ζ2)|W (4.19)

by the structure of the directional derivative with respect to the obstacle and
by (4.17). Putting (4.18) and (4.19) together, we see that

Sψ−v,id(ζ2) > Sψ−v,id(ζ1)

on W . On the other hand, Sψ−v,id(ζ1) ≥ Sψ−v,id(ζ2) since ζ1 ≥ ζ2, see
Proposition 3.5. Thus, such a set W cannot exist and we conclude As(ζ1) ⊆q

As(ζ2) and with that H1
0 (Ω \As(ζ1)) ⊇ H1

0 (Ω \As(ζ2)).
Now, the statement for the set-valued map U 3 u 7→ H1

0 (Ω \ As(f(u)))

follows since f is increasing.

4.4.2 Monotonicity and Mosco convergence

In this subsection, we motivate the consideration of increasing and decreasing
sequences (un)n∈N for the analysis of the Mosco convergence H1

0 (I(f(un)))→
H1

0 (I(f(u))), respectively H1
0 (Ω \As(f(un)))→ H1

0 (Ω \As(f(u))).
In the preceding Section 4.4.1, we have seen that the set-valued maps u 7→

H1
0 (I(f(u))) and u 7→ H1

0 (Ω \ As(f(u))) are increasing. This property alone
guarantees the existence of a Mosco limit for the sets (H1

0 (I(f(un))))n∈N
and (H1

0 (Ω \ As(f(un))))n∈N when (un)n∈N is increasing or decreasing, see
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Lemma 4.8. The Mosco limit of the respective sequences is⋃
n∈N

H1
0 (I(f(un))), respectively

⋃
n∈N

H1
0 (Ω \As(f(un))),

if (un)n∈N is increasing and⋂
n∈N

H1
0 (I(f(un))), respectively

⋂
n∈N

H1
0 (Ω \As(f(un)))

if (un)n∈N is decreasing. These characterizations of the limits depend on the
sequence (un)n∈N and is not an intrinsic characterization for given u ∈ U .
It is not clear that H1

0 (I(f(u))) is the Mosco limit of (H1
0 (I(f(un))))n∈N

and that H1
0 (Ω\As(f(u))) is the Mosco limit of (H1

0 (Ω\As(f(un))))n∈N, i.e.,
that we find a suitable intrinsic characterization for the limits. This is, as
we will see, not true if the sequence (un)n∈N does not have the appropriate
direction of monotonicity.
The example we will consider shows that the active and strictly active sets

are stable only in one monotone direction and it is the opposite monotonicity
for the active and for the strictly active sets, respectively.

Example 4.16 Solutions of the obstacle problem (OPf ) w.r.t. a family of
different choices of ζ := f(u) are shown in Fig. 4.2. The associated values of
ζ are chosen constant on Ω, some of the values are greater than zero, some
of them are smaller than zero, and one of them is zero. We can also see the
corresponding active sets A(ζ) and the strictly active sets As(ζ) underneath.
For ζ = 0, the active set A(0) is the union of an interval and an isolated

point ω0. The corresponding strictly active set As(0) does not contain ω0,
thus, the strict complementarity condition does not hold in ζ = 0, i.e., A(0) 6=
As(0). Note that a single point has capacity strictly positive in the one-
dimensional case. Therefore, u ∈ U with f(u) = 0 is a point where the
respective solution operator is potentially non-Gâteaux differentiable.
Let us consider the sets (H1

0 (I(f(un))))n∈N. We argue that the Mosco limit
will, in general, not be H1

0 (I(f(u))) for a decreasing sequence (un)n∈N with
un → u.
Exemplary, suppose f(u) = 0, un ↘ u, and assume the strict comple-
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Ω
ψ

ω0

(a) An instance of the obstacle problem for force terms ζ ≤ 0, ζ = 0 and ζ ≥ 0

(b) Corresponding active sets A(ζ) for the different choices of ζ

(c) Corresponding strictly active sets As(ζ) for the different choices of ζ

Figure 4.2. Influence of monotonicity in the behavior of active and strictly active
sets for the obstacle problem
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mentary condition is satisfied in f(un), n ∈ N. In the situation of Fig. 4.2,
choose an element v ∈ H1

0 (Ω)+ with {v > 0} = Ω \ As(0), see Lemma 2.31,
and define vn := v for all n ∈ N. Then, it holds vn ∈ H1

0 (I(f(un))) for all
n ∈ N, since I(f(un)) = Ω \ As(f(un)) ⊇ Ω \ As(0) for all n ∈ N, as well
as vn → v. Nevertheless, v is not an element of H1

0 (I(0)) since v 6= 0 on
the isolated weakly active point. Therefore, recalling the second condition
for Mosco convergence (see Definition 4.7), the Mosco limit of the sequence
(H1

0 (I(f(un))))n∈N is not H1
0 (I(0)) (but rather H1

0 (Ω \As(0))).
Similarly, suppose f(u) = 0, un ↗ u, and assume the strict complementary

condition is satisfied in f(un), n ∈ N. In the situation of Fig. 4.2, we consider
again v ∈ H1

0 (Ω)+ with {v > 0} = Ω \ As(0), see Lemma 2.31. Now, any
sequence (vn)n∈N with vn ∈ H1

0 (Ω \ As(f(un))) for each n ∈ N is zero on
As(f(un)). By A(0) ⊆ A(f(un)) = As(f(un)), the isolated weakly active
point ω0 of A(0) is contained in As(f(un)) and it holds vn(ω0) = 0. On
the other hand, by choice of v, it holds v(ω0) > 0. This shows that vn →
v cannot hold, since convergent sequences in H1

0 (Ω) possess pointwise q.e.
convergent subsequences, and thus, in dimension d = 1, pointwise everywhere
convergent subsequences. Recalling the first condition of Moscoc convergence,
see Definition 4.7, the Mosco limit of the sequence (H1

0 (Ω \ As(un)))n∈N is
not H1

0 (Ω \As(0)) (but rather H1
0 (I(0))).

4.5 Mosco convergence of the admissible sets

The purpose of this section is to show the Mosco convergenceH1
0 (I(f(un)))→

H1
0 (I(f(u))) for an arbitrary u ∈ U and an increasing sequence (un)n∈N with

un → u and the Mosco convergence H1
0 (Ω \ As(f(un)))→ H1

0 (Ω \ As(f(u)))

for a decreasing sequence (un)n∈N with un → u.
In the preceding section we have motivated the influence of monotonicity

of (un)n∈N on the Mosco convergence of the sets (H1
0 (I(f(un))))n∈N and

H1
0 (Ω \ As(f(un)))n∈N and the determination of the limit. These ideas are

formalized in Theorem 4.17 and Theorem 4.18.
We start with the statement for the Sobolev spaces on the inactive sets.
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Theorem 4.17 Suppose Assumption 4.1 is satisfied and let f , U fulfill the
conditions of Assumption 4.2(1.). Additionally, assume that f is continuous.
Consider an arbitrary u ∈ U and let (un)n∈N ⊆ U be an increasing sequence
with un → u. Then it holds

H1
0 (I(f(un)))→ H1

0 (I(f(u)))

in the sense of Mosco.

Proof. By Lemma 4.13, the sequence of sets (H1
0 (I(f(un)))n∈N is increasing.

Thus, Lemma 4.8 implies

lim
n→∞

H1
0 (I(f(un))) =

⋃
n∈N

H1
0 (I(f(un))).

Now, our goal is to show the equality H1
0 (I(f(u))) =

⋃
n∈NH

1
0 (I(f(un))).

The inclusions H1
0 (I(f(un))) ⊆ H1

0 (I(f(u))) for all n ∈ N imply⋃
n∈N

H1
0 (I(f(un))) ⊆ H1

0 (I(f(u))).

Since the set on the right-hand side is closed, also⋃
n∈N

H1
0 (I(f(un))) ⊆ H1

0 (I(f(u)))

holds.
To show the opposite inclusion, assume v ∈ H1

0 (I(f(u))). We will first
show that the sequence (I(f(un)))n∈N of quasi-open sets is an increasing
quasi-covering of I(f(u)). By the monotonicity of (un)n∈N, it is clear from
Lemma 4.13 that the sequence (I(f(un)))n∈N is increasing. Since un →
u, it follows Sf (un) → Sf (u) in H1

0 (Ω) by continuity of Sf = Sid ◦ f , cf.
Theorem 3.4, and therefore pointwise q.e. for a subsequence, see Lemma 2.28.
This means for quasi-all ω ∈

⋂
n∈NA(f(un)) it holds Sf (u)(ω) = ψ(ω), i.e.,
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quasi-all such ω belong to A(f(u)) and

cap

(
I(f(u)) \

⋃
n∈N

I(f(un))

)
= cap

(
I(f(u)) ∩

⋂
n∈N

A(f(un))

)
= 0

follows. Therefore, the family (I(f(un)))n∈N is an increasing quasi-covering
of I(f(u)). Now, by Lemma 2.29, there is a sequence (vn)n∈N with vn → v

as well as

vn ∈ H1
0 (I(f(un))) ⊆

⋃
m∈N

H1
0 (I(f(um)))

for all n ∈ N and thus, the limit v is an element of the latter set. All in all, we
deduce the Mosco convergence of the sequence

(
H1

0 (I(f(un)))
)
n∈N towards

H1
0 (I(f(u))).

Analogously, we also show the Mosco convergence of the Sobolev spaces on
the complements of the strictly active sets for decreasing sequences (un)n∈N.

Theorem 4.18 Suppose Assumption 4.1 is satisfied and let f , U fulfill the
conditions of Assumption 4.2(1.). Additionally, assume that f is continuous.
Consider an arbitrary u ∈ U and let (un)n∈N ⊆ U be a decreasing sequence
with un → u. Then it holds

H1
0 (Ω \As(f(un)))→ H1

0 (Ω \As(f(u)))

in the sense of Mosco.

Proof. By Lemma 4.15, the sequence of sets (H1
0 (Ω \ As(f(un)))n∈N is de-

creasing. Thus, Lemma 4.8 implies

lim
n→∞

H1
0 (Ω \As(f(un))) =

⋂
n∈N

H1
0 (Ω \As(f(un))).

Now, our goal is to show the equality H1
0 (Ω \ As(f(u))) =

⋂
n∈NH

1
0 (Ω \

As(f(un))).
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Since the sequence H1
0 (Ω \As(f(un)))n∈N is decreasing, we conclude

H1
0 (Ω \As(f(u))) ⊆ H1

0 (Ω \As(f(un)))

for all n ∈ N, which implies

H1
0 (Ω \As(f(u))) ⊆

⋂
n∈N

H1
0 (Ω \As(f(un))).

To show the opposite inclusion, assume v ∈
⋂
n∈NH

1
0 (Ω\As(f(un))). Denote

ξn := LSf (un) − f(un) ∈ H−1(Ω)+. Since v = 0 q.e. on As(f(un)) for each
n ∈ N, we conclude

〈ξn, |v|〉 = 0

for all n ∈ N, see Corollary 3.10. By ξn → ξ in H−1(Ω), which follows from
continuity of Sid, L and f , compare Theorem 3.4, we conclude

〈ξ, |v|〉 = lim
n→∞

〈ξn, |v|〉 = 0.

This implies |v| = 0 q.e. on As(f(u)), in particular, v ∈ H1
0 (Ω \ As(f(u))).

We have shown

H1
0 (Ω \As(f(u))) =

⋂
n∈N

H1
0 (Ω \As(f(un))).

All in all, we deduce the Mosco convergence of the sequence(
H1

0 (Ω \As(f(un)))
)
n∈N towards H1

0 (Ω \As(f(u))).

Remark 4.19 The Mosco convergence H1
0 (I(f(un))) → H1

0 (I(f(ũ))) for an
arbitrary increasing sequence (un)n∈N converging to ũ and the Mosco conver-
genceH1

0 (Ω\As(f(un)))→ H1
0 (Ω\As(f(ũ))) for a decreasing sequence can be

interpreted as a continuity property of the set-valued maps u 7→ H1
0 (I(f(u))),

respectively u 7→ H1
0 (Ω \As(f(u))) in ũ.
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4.6 Characterization of two generalized derivatives

In this section, we bring together the results of this chapter and formulate
the main theorem of this chapter on generalized derivatives in ∂ss

BSf (u) for
the solution operator Sf of (OPf ).

Theorem 4.20 Suppose the conditions of Assumption 4.1 and Assump-
tion 4.2 are satisfied. Let u ∈ U be arbitrary. For some h ∈ U , denote
by ΞI(f(u))(h) the solution of

Find δ ∈ H1
0 (I(f(u))) : 〈Lδ − f ′(u;h), z〉 = 0 ∀ z ∈ H1

0 (I(f(u))) (4.20)

and by ΞΩ\As(f(u))(h) the solution of

Find δ ∈ H1
0 (Ω \As(f(u))) :

〈Lδ − f ′(u;h), z〉 = 0 ∀ z ∈ H1
0 (Ω \As(f(u))).

(4.21)

Then it holds

ΞI(f(u)),ΞΩ\As(f(u)) ∈ ∂ss
BSf (u).

Proof. By Corollary 4.12, there is an increasing sequence (u+
n )n∈N and a

decreasing sequence (u−n )n∈N satisfying

(u+
n )n∈N, (u

−
n )n∈N ⊆ DSf = {v ∈ U | Sf is Gâteaux differentiable at v}

as well as u+
n → u and u−n → u. Now, Theorem 4.17 implies that the

sequence (H1
0 (I(f(u+

n ))))n∈N converges to H1
0 (I(f(u))) in the sense of Mosco.

Moreover, by Theorem 4.18, the sequence (H1
0 (Ω \As(f(u−n ))))n∈N converges

to H1
0 (Ω\As(f(u))) in the sense of Mosco. Using Corollary 4.10, we conclude

that

ΞI(f(u)),ΞΩ\As(f(u)) ∈ ∂ss
BSf (u).
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4.7 Adjoint representation of Clarke subgradients

Now, we derive Clarke subgradients for reduced objective functions in the
context of optimization problems with the obstacle problem as a constraint.
To this end, let J : H1

0 (Ω)×U → R be a continuously differentiable objective
function. We consider an optimization problem with respect to this objective
function, which is constrained by our variational inequality

min
y,u

J(y, u)

subject to y ∈ Kψ,

〈Ly − f(u), z − y〉 ≥ 0 ∀ z ∈ Kψ.

We present a formula for two generalized derivatives contained in Clarke’s
generalized differential ∂CĴ(u), see Definition 2.16, that can be obtained for
the reduced objective function

Ĵ(u) := J(Sf (u), u)

in an arbitrary point u ∈ U .

Theorem 4.21 Suppose the conditions of Assumption 4.1 and Assump-
tion 4.2 are satisfied and let u ∈ U be arbitrary. Let J : H1

0 (Ω) × U → R be
a continuously differentiable objective function and denote by q be the unique
solution of the variational equation

Find q ∈ H1
0 (D) :

〈L∗q, v〉 = 〈Jy (Sf (u), u) , v〉 ∀ v ∈ H1
0 (D).

(4.22)

Then the element

f ′(u)∗q + Ju(Sf (u), u)

is in Clarke’s generalized differential ∂CĴ(u). In (4.22), the respective sets

D :=q I(f(u)) or D :=q Ω \As(f(u))
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can be chosen and result in a particular generalized derivative.
Here, Jy and Ju denote the continuous Fréchet derivatives of J with re-

spect to y and u, respectively, f ′(u)∗ ∈ L
(
H1

0 (Ω), U∗
)
is the (Banachian)

adjoint operator of f ′(u) ∈ L
(
U,H−1(Ω)

)
and L∗ ∈ L

(
H1

0 (Ω), H−1(Ω)
)
is

the (Banachian) adjoint operator of L ∈ L
(
H1

0 (Ω), H−1(Ω)
)
.

Proof. The coercivity of L∗ follows from the coercivity of L, thus, the varia-
tional equation (4.22) has a unique solution, see Theorem 3.1. It holds

∂CĴ(u) 3 Ξ∗Jy (Sf (u), u) + Ju (Sf (u), u) (4.23)

for all Ξ ∈ ∂ss
BSf (u), see Lemma 2.17.

Assume that q solves (4.22) for D :=q I(f(u)), respectively D :=q Ω \
As(f(u)). For h ∈ U , denote by ΞD(h) the solution of (4.20) or the solution
of (4.21), respectively. Now, we have

〈f ′(u)∗q, w〉U∗,U = 〈f ′(u;w), q〉
(4.20),(4.21)

= 〈L∗q,ΞD(w)〉
(4.22)

= 〈Jy(Sf (u), u),ΞD(w)〉
= 〈Ξ∗DJy(Sf (u), u), w〉U∗,U

for all w ∈ U . Since ΞD ∈ ∂ss
BSf (u), see Theorem 4.20, the statement follows

from (4.23).





CHA PTER 5
Generalized differentials for the

basic solution operator

In this section, we analyze generalized differentials for the solution operator
Sid that maps ζ ∈ H−1(Ω) to the solution of the obstacle problem

Find y ∈ Kψ : 〈−∆y − ζ, z − y〉 ≥ 0 ∀ z ∈ Kψ. (OP∆
id)

Here, the closed, convex set Kψ is defined as

Kψ := {z ∈ H1
0 (Ω) | z ≥ ψ q.e. in Ω}.

This means, compared with the analysis of Chapter 4, we consider L = −∆

and f is the identity on H−1(Ω).
Throughout this chapter, we assume that Ω ⊆ Rd is an open and bounded

domain, the obstacle ψ : Ω → R ∪ {−∞} is quasi upper-semicontinuous and
chosen such that Kψ 6= ∅ is guaranteed. Additionally, we suppose that ψ is
Borel measurable, which, under the previous assumptions on ψ can always
be achieved by a modification on a set of capacity zero, see Lemma 2.24(2.).
The goal is to find a specific representation of the generalized differentials

∂ss
BSid(ζ), ∂sw

B Sid(ζ) and ∂ws
B Sid(ζ) in a point ζ ∈ H−1(Ω) independent from

approximating sequences (ζn)n∈N ⊆ H−1(Ω) with ζn → ζ.
Again, the starting point is the characterization of the Gâteaux derivatives

81
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as solution operators of variational equations, or Dirichlet problems, on the
inactive set I(ζ), see Theorem 4.3. This means, if ζ ∈ H−1(Ω) is a point
at which Sid is Gâteaux differentiable and if p ∈ H−1(Ω) is arbitrary, then
S′id(ζ; p) is the solution of the problem

Find δ ∈ H1
0 (I(ζ)) : −∆δ = p. (5.1)

Recall that the strict complementarity condition is necessary and sufficient for
the Gâteaux differentiability of Sid at ζ ∈ H−1(Ω), cf. Lemma 4.4. Defining
a Borel measure ∞A(ζ) which takes the value 0 for Borel sets B ⊆ Ω with
cap(B \ I(ζ)) = 0 and the value ∞ otherwise, we can understand S′id(ζ) as
the solution operator of the relaxed Dirichlet problem involving the capacitary
measure ∞A(ζ) which maps p ∈ H−1(Ω) to the solution of

Find δ ∈ H1
0 (Ω) ∩ L2

∞A(ζ)
(Ω) : −∆δ +∞A(ζ)(δ ·) = p, (5.2)

where µ(δ ·) denotes the measure with density δ w.r.t. another measure µ. In
other words, the two formulations in (5.1) and (5.2) are equivalent. Thus, the
Gâteaux derivatives of Sid fall into the class of solution operators of relaxed
Dirichlet problems and it is beneficial to study these objects.
A capacitary measure is a Borel measure which takes the value 0 on all

Borel subsets of Ω with capacity zero. Additionally, capacitary measures
fullfil a regularity condition. The rigorous definition of capacitary measures
and relaxed Dirichlet problems will be given in Section 5.1.
On the set of capacitary measures the notion of γ-convergence is defined

by the convergence of the solution operators of the respective relaxed Dirich-
let problems in the weak operator topology of L(H−1(Ω), H1

0 (Ω)). It is
known that the solution operator of a relaxed Dirichlet problem involving
an arbitrary capacitary measure µ can be approximated (in the sense of γ-
convergence) by a sequence of solution operators of Dirichlet problems on
quasi-open subsets of Ω. Vice versa, each sequence of solution operators of
Dirichlet problems on quasi-open sets has a subsequence converging to the
solution operator of a relaxed Dirichlet problem relative to a capacitary mea-
sure.
In this framework, we will characterize the generalized differentials
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∂ss
BSid(ζ), ∂sw

B Sid(ζ) and ∂ws
B Sid(ζ) as solution operators of relaxed Dirich-

let problems with particular conditions on the respective capacitary mea-
sures. These conditions depend on the behavior of the capacitary measures
on the sets I(ζ) and As(ζ). Since we assume that ψ is Borel measurable
and since we consider Borel measurable quasi-continuous representatives of
H1(Ω)-functions, these subsets of Ω are Borel measurable.
We will see that the generalized differentials involving the strong operator

topology on L(H−1(Ω), H1
0 (Ω)) coincide with the set of solution operators of

Dirichlet problems on quasi-open subsets which are supersets of the inactive
set and subsets of the complement of the strictly active set. The general-
ized differential ∂sw

B Sid(ζ) contains additionally solution operators of relaxed
Dirichlet problems with more general capacitary measures. We will give an
example showing that ∂ww

B Sid(ζ) can be very large.
When reviewing the concepts w.r.t. γ-convergence of capacitary measures

we will also see the connection to the notion of Mosco convergence considered
in Chapter 4. In fact, the convergence of solution operators of Dirichlet prob-
lems (or variational equations) on quasi-open sets to a solution operator of a
Dirichlet problem on a quasi-open set is equivalent to the Mosco convergence
of the respective H1

0 -spaces. Moreover, the limit of a sequence of solution
operators of Dirichlet problems on quasi-open domains w.r.t. the strong op-
erator topology of L(H−1(Ω), H1

0 (Ω)) is always a solution operator w.r.t. a
quasi-open domain.
In the characterization of the generalized differentials of Sid we explicitly

use that the operator is defined on the whole space H−1(Ω) and not, as in
Chapter 4 on a smaller subset as L2(Ω) or even another space.
The outline of this chapter is as follows. The notions of capacitary mea-

sures and relaxed Dirichlet problems are introduced in Section 5.1. It is
argued that the Gâteaux derivatives S′id(ζ) in points ζ ∈ H−1(Ω) at which
Sid is Gâteaux differentiable are solution operators of relaxed Dirichlet prob-
lem involving capacitary measures. A concept of convergence for capacitary
measures, or equivalently, for the solution operators of the respective relaxed
Dirichlet problems, is introduced in Section 5.1.1. Additionally, we provide a
characterization of this convergence by a metric and collect useful properties
of the corresponding metric space. In Section 5.1.2, we prepare some more
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auxiliary results that will be used for the study of the generalized differentials
of Sid. Without further assumptions, for arbitrary ζ ∈ H−1(Ω), we can ob-
tain characterizations of the generalized differentials ∂ss

BSid(ζ) and ∂ws
B Sid(ζ)

in Section 5.2. Under continuity assumptions on ψ and Sid(ζ), the structure
of ∂sw

B Sid is derived in Section 5.3. We give a short example to indicate that
the generalized differential ∂ww

B Sid(ζ) is very large even when Sid is Gâteaux
differentiable at ζ ∈ H−1(Ω).
The results presented in this chapter originated in a cooperation with Gerd

Wachsmuth and we present a collection of contents published in [RW20].

5.1 Capacitary measures and relaxed Dirichlet
problems

In this section, we introduce the notions of capacitary measures and relaxed
Dirichlet problems.
Assume that Sid is Gâteaux differentiable at ζ ∈ H−1(Ω). Recall that the

strict complementarity condition A(ζ) =q As(ζ) holds at ζ, see Lemma 4.4,
and that the Gâteaux derivative S′id(ζ) is the solution operator ΞI(ζ) ∈
L(H−1(Ω), H1

0 (Ω)) that maps p ∈ H−1(Ω) to the solution of the variational
equation

Find δ ∈ H1
0 (I(ζ)) : 〈−∆δ, z〉 = 〈p, z〉 ∀ z ∈ H1

0 (I(ζ)), (5.3)

see Theorem 4.3. We will see that the operator ΞI(ζ) can be understood
as the solution operator of a so-called relaxed Dirichlet problem involving a
capacitary measure on Ω.
Let us now give the definition of capacitary measures.

Definition 5.1 (Capacitary measures) We denote by M0(Ω) the set of all
Borel measures µ on Ω with the property that µ(B) = 0 holds for every Borel
set B ⊆ Ω with cap(B) = 0. Additionally, we require that µ is regular in the
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sense that

µ(B) = inf{µ(O) : O quasi-open, B ⊆ O}

holds for every Borel set B ⊆ Ω. The setM0(Ω) is called the set of capacitary
measures on Ω.

Recall that by considering suitable representatives we can assume that
quasi-open sets are Borel measurable, see Lemma 2.25, so that µ(O) is defined
for every quasi-open set O ⊆ Ω and every µ ∈M0(Ω).
In fact, we already know a particular subclass of measures in M0(Ω), as

the following lemma shows.

Lemma 5.2 It holds H−1(Ω)+ ⊆M0(Ω).

Proof. In Lemma 2.33, we have seen that each µ ∈ H−1(Ω)+ can be identified
with a regular Borel measure µ̃ and it holds µ̃(B) = 0 for each Borel set B
satisfying cap(B) = 0. We argue that µ̃ also fulfills the regularity property
from Definition 5.1. Let B ⊆ Ω be an arbitrary Borel set. On the one hand,

µ̃(B) = inf{µ̃(O) | O open, B ⊆ O}
≥ inf{µ̃(O) | O quasi-open, B ⊆ O}

holds since every open set is quasi-open. On the other hand, we estimate

µ̃(B) ≤ inf{µ̃(O) | O quasi-open, B ⊆ O}

by monotonicity of measures. Thus, µ̃ is regular in the sense of Definition 5.1.

Partially, the name capacitary measure is motivated by the property that
capacitary measures, by definition, vanish on sets of capacity zero. Addition-
ally, the following reverse statement holds.

Lemma 5.3 Assume that B is a Borel set. If µ(B) = 0 holds for all capaci-
tary measures µ ∈M0(Ω), then cap(B) = 0.
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Proof. Assume µ(B) = 0 holds for all µ ∈ M0(Ω). Then, in particular,
µ̃(B) = 0 for all µ̃ ∈ H−1(Ω)+, see Lemma 5.2. Now, [BS00, Lem. 6.55]
implies the statement.

Let µ ∈M0(Ω). For p ∈ [1,∞) we define Lpµ(Ω) in the usual way. Note that
any v ∈ H1

0 (Ω) has a quasi-continuous representative which is Borel measur-
able and uniquely determined up to a set of capacity zero, see Lemma 2.24(1.).
Thus, ∫

Ω
|v|p dµ

is well-defined and if the integral is finite, we have v ∈ Lpµ(Ω).
It can be shown that equipped with the scalar product

(w, z)µ :=

∫
Ω
∇wT ∇z dλd +

∫
Ω
w z dµ = (w, z)H1

0 (Ω) + (w, z)L2
µ(Ω),

the space H1
0 (Ω) ∩ L2

µ(Ω) is a Hilbert space, see [BDM91, Prop. 2.1].
Now, for p ∈ H−1(Ω), we consider the so-called relaxed Dirichlet problem

Find δ ∈ H1
0 (Ω) ∩ L2

µ(Ω) :

〈−∆δ, z〉+

∫
Ω
δ z dµ = 〈p, z〉 ∀ z ∈ H1

0 (Ω) ∩ L2
µ(Ω).

(5.4)

Then a unique solution of (5.4) exists and coincides with the Fréchet-Riesz
representative of p ∈ H−1(Ω) ⊆ (H1

0 (Ω) ∩ L2
µ(Ω))∗. We denote the solution

operator of (5.4) by Ξµ. For short, we also write

Find δ ∈ H1
0 (Ω) : −∆δ + µ(δ ·) = p

instead of (5.4).
The following proposition is essential in understanding the connection be-

tween relaxed Dirichlet problems and the Gâteaux derivatives operators of
the obstacle problem.

Proposition 5.4 Let O ⊆ Ω be a quasi-open set. Then the measure ∞Ω\O
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defined by

∞Ω\O(B) :=

{
0, if cap(B \O) = 0,

+∞, otherwise,
(5.5)

for all Borel sets B ⊆ Ω is a capacitary measure and the variational equation
or Dirichlet problem

Find δ ∈ H1
0 (O) : 〈−∆δ, z〉 = 〈p, z〉 ∀ z ∈ H1

0 (O) (5.6)

is equivalent to the relaxed Dirichlet problem (5.4) for µ =∞Ω\O.

Proof. From the definition it is clear that ∞Ω\O is a Borel measure which
vanishes on Borel sets of capacity zero. It is easy to verify that ∞Ω\O is
regular in the sense of Definition 5.1, see [DM87, Rem. 3.3]. Thus, ∞Ω\O ∈
M0(Ω).
Next we argue that it holds H1

0 (Ω) ∩ L2
∞Ω\O

(Ω) = H1
0 (O). If v is in

H1
0 (O), then

∫
Ω |v|

2 d∞Ω\O = 0, i.e., v ∈ L2
∞Ω\O

(Ω). Conversely, assume∫
Ω |v|

2 d∞Ω\O <∞ for some v ∈ H1
0 (Ω). This implies v = 0 q.e. on Ω \O by

definition of ∞Ω\O, i.e., v ∈ H1
0 (O). These considerations also show that the

solution of (5.6) is the solution of (5.4) with µ =∞Ω\O and vice versa.

The preceding proposition shows that the class of relaxed Dirichlet prob-
lems contains the class of Dirichlet problems of type (5.6). In particular, the
variational equations (5.3), describing the Gâteaux derivatives are relaxed
Dirichlet problems and it holds S′id(ζ) = Ξ∞A(ζ)

.
In the following, if O ⊆ Ω is quasi-open, we also use the notation ΞO :=

Ξ∞Ω\O for the solution operators of (5.6), in particular,

S′id(ζ) = Ξ∞A(ζ)
= ΞI(ζ).
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5.1.1 The set of capacitary measures as a metric space

On M0(Ω) we will introduce the notion of γ-convergence. Later on we will
see that this concept can be characterized by a metric space.

Definition 5.5 (γ-convergence of measures) Let (µn)n∈N ⊆ M0(Ω) and
µ ∈ M0(Ω). We say that the sequence (µn)n∈N γ-converges to µ if
and only if (Ξµn)n∈N converges to Ξµ in the weak operator topology of
L(H−1(Ω), H1

0 (Ω)). We also use the notation µn
γ→ µ to express that (µn)n∈N

γ-converges to µ.

Note that, by the following lemma, the γ-limit of a γ-convergent sequence
(µn)n∈N ⊆M0(Ω) is unique.

Lemma 5.6 Let µ1, µ2 ∈ M0(Ω) and assume that Ξµ1(1) = Ξµ2(1). Then
µ1 = µ2 follows. In particular, the map

M0(Ω)→ Ξµ ∈ L(H−1(Ω), H1
0 (Ω))

is injective.

Proof. A proof can be found in [DMG94, Lem. 3.3].

Suppose ζ ∈ H−1(Ω). Then by the characterization of Gâteaux deriva-
tives, see (5.3) and Proposition 5.4, the characterization of limits of sequences
(∞Ω\I(ζn))n∈N for (ζn)n∈N ⊆ H−1(Ω) with ζn → ζ, respectively ζn ⇀ ζ,
w.r.t. the γ-convergence corresponds to the characterization of elements in
∂sw

B Sid(ζ), respectively ∂ww
B Sid(ζ).

The notion of convergence in Definition 5.5 is called γ-convergence to stress
its relation to the Γ-convergence of suitable functionals. To this end, for
µ ∈M0(Ω), we define Fµ : L2(Ω)→ [0,∞] via

Fµ(v) :=

{∫
Ω |∇v|

2 dλd +
∫

Ω v
2 dµ = (v, v)µ if v ∈ H1

0 (Ω) ∩ L2
µ(Ω),

+∞ else

for v ∈ L2(Ω).
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Definition 5.7 (Γ-convergence of functionals) Let (µn)n∈N ⊆ M0(Ω) and
µ ∈ M0(Ω) be given. We say that the functionals (Fµn)n∈N Γ-converge
towards Fµ in L2(Ω) if and only if

∀ (wn)n∈N ⊆ L2(Ω) with wn → w in L2(Ω) : Fµ(w) ≤ lim inf
n→∞

Fµn(wn)

(5.7a)

∃ (wn)n∈N ⊆ L2(Ω) with wn → w in L2(Ω) : Fµ(w) = lim
n→∞

Fµn(wn)

(5.7b)

hold for all w ∈ L2(Ω). In this case, we write Fµn
Γ→ Fµ in L2(Ω).

Now, the following lemma shows equivalent conditions for γ-convergence.

Lemma 5.8 Let (µn)n∈N ⊆ M0(Ω) and µ ∈ M0(Ω) be given. Then, the
following statements are equivalent:
(i) µn

γ→ µ,

(ii) Fµn
Γ→ Fµ in L2(Ω),

(iii) Ξµn → Ξµ in the strong operator topology of L(L2(Ω), L2(Ω)),
(iv) Ξµn → Ξµ in the weak operator topology of L(L2(Ω), H1

0 (Ω)),
(v) Ξµn(1)→ Ξµ(1) in L2(Ω),
(vi) Ξµn(1) ⇀ Ξµ(1) in H1

0 (Ω).

Proof. Assume µn
γ→ µ. Then, for all p ∈ H−1(Ω), in particular, for all

p ∈ L2(Ω), it holds Ξµn(p) ⇀ Ξµ(p) in H1
0 (Ω) by definition. Since H1

0 (Ω) is
compactly embedded into L2(Ω), it follows Ξµn(p) → Ξµ(p) in L2(Ω), and
thus (iii) holds.
Now, suppose that Ξµn → Ξµ in the strong operator topology of
L(L2(Ω), L2(Ω)). Let v ∈ L2(Ω). By [BDM91, (3.7)], there is a constant
c > 0, such that ‖Ξµn(v)‖H1

0 (Ω) ≤ c‖v‖ holds. Thus there is a subsequence
(Ξµnk (v))k∈N that converges weakly in H1

0 (Ω). Hence (Ξµnk (v))k∈N converges
strongly in L2(Ω) and the limit has to be Ξµ(v). Thus, the whole sequence
(Ξµn(v))n∈N converges weakly to Ξµ(v) in H1

0 (Ω) and (iv) follows. The proof
that (vi) follows from (v) is also contained in this argument.



90 5. Generalized differentials for the basic solution operator

(vi) is an immediate consequence of (iv) and (v) follows from (vi) by the
compact embedding of H1

0 (Ω) into L2(Ω).
The equivalence of (vi) and (i) has been shown, in a more general setting,

in [DMM04, Thm. 5.1]. The equivalence between (iii) and (ii) can be checked
as in [DMM87, Prop. 4.10].

As a corollary of the preceding Lemma 5.8 we conclude thatM0(Ω) can be
equipped with a metric and the resulting notion of convergence is equivalent
to the γ-convergence. A different proof of this statement is given in [DMM87,
Prop. 4.9].

Corollary 5.9 The γ-convergence onM0(Ω) is metrizable.

Proof. Positive definiteness of d defined by d(µ1, µ2) := ‖Ξµ1(1) −
Ξµ2(1)‖L2(Ω) for µ1, µ2 ∈M0(Ω) follows from Lemma 5.6. Now, it is straight-
forward to check that d is a metric onM0(Ω). Using Lemma 5.8(i) and (v),
convergence with respect to the metric d is equivalent to γ-convergence on
M0(Ω).

Lemma 5.8 and Corollary 5.9 illustrate the role of the so-called torsion
function Ξµ(1) that will reappear in the next subsection. For now, let us
collect some properties of the metric spaceM0(Ω). A proof of the following
lemma on completeness ofM0(Ω) can be found in [DMM87, Thm. 4.14] or in
[DMG97, Thm. 4.5]. Recall that a metric space is complete if every Cauchy
sequence converges and has a limit in the metric space.

Lemma 5.10M0(Ω) is a complete metric space.

In particular, by the above lemma and by the characteri-
zation of Gâteaux derivatives of Sid, the generalized differen-
tials ∂ww

B Sid(ζ), ∂ws
B Sid(ζ), ∂sw

B Sid(ζ), ∂ss
BSid(ζ) are all contained in

{Ξµ : µ ∈M0(Ω)}.
In the next lemma, it is shown that the class of measures ∞Ω\O for quasi-

open sets O ⊆ Ω, cf. (5.5), is a dense subset inM0(Ω). For a proof we refer
to [DMM87, Thm. 4.16] or [DMM95].
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Lemma 5.11 For each µ ∈M0(Ω) there is a sequence (On)n∈N of quasi-open
subsets of Ω such that ∞Ω\On

γ→ µ.

Remark 5.12 In shape optimization problems one is looking for the solutions
of problems like, e.g.,

min
O

J(δO)

subject to δO ∈ H1
0 (O),

〈−∆δO, z〉 = 〈p, z〉 ∀ z ∈ H1
0 (O).

Since, by Lemma 5.11, solutions of classical Dirichlet problems with vary-
ing (quasi-open) domains can converge to the solution of a relaxed Dirichlet
problem with a capacitary measure involved, an optimal domain in shape op-
timization might not exist, see e.g. [BB05, Sect. 4.2] or [ABM14, Sect. 5.8.4].

The following theorem states thatM0(Ω) is compact. By replacing Rn by
Ω, a proof of this result can be found in [DMM87, Thm. 4.14].

Theorem 5.13 For every sequence (µn)n∈N ⊆M0(Ω) there is a subequence
(µnk)k∈N and a measure µ ∈M0(Ω) such that µnk

γ→ µ.

5.1.2 Useful properties

In this subsection we state some more results that will help us later on in the
characterization of the Bouligand generalized differentials.
In the preceding chapters we have already used that for every quasi-open

set O ⊆ Ω we can find an element v ∈ H1
0 (Ω)+ satisfying {v > 0} = O, see

Lemma 2.31. The following theorem concretizes this result and states that the
torsion function ΞO(1) has exactly this property. Moreover, a dual statement
showing the existence of an element p ∈ H−1(Ω)+ with f-supp(p) =q Ω \ O
is presented (recall Lemma 2.34), which also uses the torsion function.

Theorem 5.14 Let µ ∈ M0(Ω). Then it holds Ξµ(1) ≥ 0 q.e. in Ω. Let
O ⊆ Ω be quasi-open and set w := ΞO(1). Then, w ≥ 0, O =q {w > 0} and
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the element 1 + ∆w ∈ H−1(Ω)+ satisfies f-supp(1 + ∆w) =q Ω \O.

Proof. For µ ∈ M0(Ω) it holds Ξµ(1) ≥ 0 q.e. in Ω, by [DMG94, Propo-
sition 2.4]. The assertions O =q {w > 0} and 1 + ∆w ∈ H−1(Ω)+ are
well-known, see, e.g., [Vel15, Prop. 3.4.26] and [CDM92, Thm. 1].
It remains to check C :=q f-supp(1 + ∆w) =q Ω \ O. Using the third

characterization in [HW18, Lem. 3.7],
we have

〈1 + ∆w, v〉 = 0 ⇔ v = 0 q.e. on C ∀ v ∈ H1
0 (Ω)+. (5.8)

Using w = ΞO(1), this directly implies that C ⊆q Ω \ O. Next, we define
ŵ = ΞΩ\C(1). Since w ∈ H1

0 (O) ⊆ H1
0 (Ω \ C), we have 〈1 + ∆ŵ, w〉 = 0.

Moreover, (5.8) implies 〈1 + ∆w, ŵ〉 = 0. Using 〈∆w, ŵ〉 = 〈∆ŵ, w〉, this
yields

0 = 〈1, ŵ − w〉 =

∫
Ω
ŵ − w dλd.

Next, by the comparison principle from [DMM86, Thm. 2.10], see also
[DMG94, Prop. 2.5], we find ŵ ≥ w and, therefore, ŵ = w. Finally, the
first part of the proof yields Ω \ C =q {ŵ > 0} =q {w > 0} =q O. Thus,
C =q f-supp(1 + ∆w) =q Ω \O.

The next result shows that every capacitary measure can be approximated
by Borel measures which are finite on all compact subsets of Ω.

Lemma 5.15 Let µ ∈ M0(Ω). Then there exists an increasing sequence of
measures (µn)n∈N ⊆ M0(Ω) which are finite on compact subsets of Ω such
that µn

γ→ µ.

Proof. Let w0 := ΞΩ(1) and for µ ∈ M0(Ω) let w := Ξµ(1). In [DMG94,
Prop. 4.7], it is shown that for the sequence (wn)n∈N defined by

wn :=

(
1− 1

n

)
w +

1

n
w0,



5.1. Capacitary measures and relaxed Dirichlet problems 93

the associated measures given by

µn(B) :=

{∫
B

d(1+∆wn)
wn

if cap(B ∩ {wn = 0}) = 0,

+∞ else,

for each Borel set B ⊆ Ω are finite on compact subsets of Ω and γ-converge to
µ. Thus, it remains to show the monotonicity of this sequence. Since w0 > 0

q.e. on Ω by Theorem 5.14, it holds µn(B) =
∫
B

d(1+∆wn)
wn

for all n ∈ N and
for all Borel sets B. By −∆ΞΩ(1) = 1, the representation

µn(B) =

∫
B

d(1 + ∆wn)

wn
=

∫
B

d(1 + ∆((1− 1/n)w + 1/nw0))

(1− 1/n)w + 1/nw0

=

∫
B

d(1− 1/n+ (1− 1/n)∆w)

(1− 1/n)(w + 1/(n− 1)w0)
=

∫
B

d(1 + ∆w)

w + 1/(n− 1)w0

shows that µn ≤ µn+1 ≤ µ holds for all n ∈ N.

The following lemma states that for every µ ∈ M0(Ω), the image of Ξµ is
dense in H1

0 (Ω) ∩ L2
µ(Ω).

Lemma 5.16 Let µ ∈ M0(Ω) and let δ ∈ H1
0 (Ω) ∩ L2

µ(Ω). Then there is a
sequence

(δn)n∈N ⊆ {Ξµ(p) : p ∈ H−1(Ω)}

such that δn → δ in H1
0 (Ω) ∩ L2

µ(Ω).

Proof. For every n ∈ N let δn ∈ H1
0 (Ω)∩L2

µ(Ω) be the solution of the problem

Find δn ∈ H1
0 (Ω) ∩ L2

µ(Ω) :

〈−∆δn, z〉+

∫
Ω
δn z dµ = −n

∫
Ω

(δn − δ) z dλd ∀ z ∈ H1
0 (Ω) ∩ L2

µ(Ω).

We can write δn = Ξµ(−n(δn − δ)), thus δn ∈ {Ξµ(p) : p ∈ H−1(Ω)}.
By [DMG94, Proposition 3.1], it holds δn → δ in H1

0 (Ω) ∩ L2
µ(Ω) and the

conclusion follows.

Let µ ∈M0(Ω). The following lemma gives insights into the pointwise q.e.
behavior of elements inH1

0 (Ω)∩L2
µ(Ω) using the torsion function wµ := Ξµ(1).



94 5. Generalized differentials for the basic solution operator

Lemma 5.17 Assume that µ ∈ M0(Ω) and let z be an element of H1
0 (Ω) ∩

L2
µ(Ω). Then it holds z ∈ H1

0 ({wµ > 0}).

Proof. By [DMG94, Prop. 3.4], it holds µ(B) = +∞ for all Borel sets B ⊆ Ω

with cap(B ∩ {wµ = 0}) > 0. Thus z = 0 q.e. on {wµ = 0} for all z in
the image of Ξµ. By density of this set in H1

0 (Ω) ∩ L2
µ(Ω), see Lemma 5.16,

it follows z = 0 q.e. on {wµ = 0} for all z ∈ H1
0 (Ω) ∩ L2

µ(Ω). It holds
wµ ≥ 0 on Ω by Theorem 5.14, therefore, each z ∈ H1

0 (Ω) ∩ L2
µ(Ω) is in

H1
0 ({wµ > 0}).

The next result characterizes the completion of H1
0 (Ω) ∩ L2

µ(Ω) in H1
0 (Ω).

Note that for a quasi-open set O ⊆ Ω we already know that H1
0 (Ω) ∩

L2
∞Ω\O

(Ω) = H1
0 (O), see Proposition 5.4.

Lemma 5.18 Let µ ∈M0(Ω) be given. Then,

H1
0 (Ω) ∩ L2

µ(Ω)
H1

0 (Ω)
= H1

0 ({wµ > 0}).

Moreover, for any v ∈ H1
0 ({wµ > 0})+, there exists a sequence (vn)n∈N ⊆

H1
0 (Ω) ∩ L2

µ(Ω) such that 0 ≤ vn ≤ v q.e. on Ω for all n ∈ N and vn → v in
H1

0 (Ω).

Proof. We set Z := H1
0 (Ω) ∩ L2

µ(Ω)
H1

0 (Ω)
. The inclusion Z ⊆ H1

0 ({wµ > 0})
is clear from Lemma 5.17.
Then, it can be checked that Z is a closed lattice ideal in H1

0 (Ω), i.e., it is
a closed subspace with the property that z ∈ Z, w ∈ H1

0 (Ω) and |w| ≤ |z|
imply w ∈ Z. Hence, [Sto93, Thm. 1] implies that Z = H1

0 (O) for some
quasi-open O ⊆ Ω. Thus,

Z = H1
0 (O) ⊆ H1

0 ({wµ > 0})

and together with wµ ∈ Z we get O =q {wµ > 0}. This shows the identity

H1
0 (Ω) ∩ L2

µ(Ω)
H1

0 (Ω)
= Z = H1

0 (O) = H1
0 ({wµ > 0}).

The second assertion is clear since w 7→ min(w, v)+ is continuous onH1
0 (Ω).
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The following lemma states that the solution operators associated to quasi-
open sets are a sequentially closed set w.r.t. the strong operator topology of
L(H−1(Ω), H1

0 (Ω)).

Lemma 5.19 Assume (On)n∈N is a sequence of quasi-open subsets of Ω

and suppose that (ΞOn)n∈N converges in the strong operator topology of
L(H−1(Ω), H1

0 (Ω)) to some Ξ ∈ L(H−1(Ω), H1
0 (Ω)). Then there is a quasi-

open set O ⊆ Ω such that Ξ = ΞO.

Proof. It holds ΞOn(1)→ Ξ(1) in H1
0 (Ω), therefore (∞Ω\On)n∈N is a Cauchy

sequence in M0(Ω), see the proof of Corollary 5.9. Thus, we know from
Lemma 5.10 that Ξ = Ξµ for some µ ∈ M0(Ω). For fixed p ∈ H−1(Ω), we
set zn := ΞOn(p). Then, zn → z := Ξµ(p) in H1

0 (Ω) and this yields∫
Ω
z2 dµ = 〈∆z, z〉+ 〈p, z〉 = lim

n→∞
(〈∆zn, zn〉+ 〈p, zn〉) = 0.

Hence,
∫

Ω z
2 dµ = 0 for all z in the range of Ξµ.

In order to find a quasi-open set O ⊆ Ω with Ξµ = ΞO, we use the torsion
function w := Ξµ(1) and set O :=q {w > 0}. From

∫
Ωw

2 dµ = 0 and
z ∈ H1

0 (O) for z ∈ H1
0 (Ω)∩L2

µ(Ω), see Lemma 5.17, it follows that w = ΞO(1).
Thus, ΞO = Ξµ by Lemma 5.6.

Recall that Gâteaux derivatives of Sid in a point ζ ∈ H−1(Ω) are of the
structure ΞI(ζ), cf. (5.3). Now, from Lemma 5.19 we can deduce that the
generalized differentials for the solution operator Sid defined by the strong
operator topology such as ∂ws

B Sid(ζ), ∂ss
BSid(ζ) are subsets of {ΞO : O ⊆

Ω quasi-open}.

Remark 5.20 The following converse of the statement in Lemma 5.19
holds. Assume there are quasi-open sets On, O ⊆ Ω, n ∈ N, such that
∞Ω\On

γ→ ∞Ω\O. Then it holds ΞOn → ΞO in the strong operator topology
of L(H−1(Ω), H1

0 (Ω)). In fact, in [ABM14, Prop. 5.8.6], it is shown that
ΞOn → ΞO in the strong operator topology of L(L2(Ω), H1

0 (Ω)). Now, the
convergence in the strong operator topology of L(H−1(Ω), H1

0 (Ω)) follows by
using the theorem of Banach-Steinhaus.
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For the proof of the following theorem explaining the connection
between γ-convergence and Mosco convergence we refer to [BB05,
Prop. 4.5.3, Rem. 4.5.5].

Theorem 5.21 Let On, O ⊆ Ω be quasi-open sets. Then it holds ∞Ω\On
γ→

∞Ω\O if and only if (H1
0 (On))n∈N converges to H1

0 (O) in the sense of Mosco.

Recall that the notion of Mosco convergence was introduced in Section 4.2.
In Chapter 4 it was used to obtain two particular elements of ∂ss

BSf (u). The
result in Proposition 4.9 already gives one of the two implications of the state-
ment in Theorem 5.21. Namely, the Mosco convergence H1

0 (On) → H1
0 (O)

implies the convergence of solutions to variational equations and thus the con-
vergence ΞOn → ΞO in the strong operator topology of L(H−1(Ω), H1

0 (Ω))

which in turn implies ∞Ω\On
γ→ ∞Ω\O. Now, Theorem 5.21 also gives the

reverse statement.
While the two notions of convergence are equivalent when considering

quasi-open sets, it is possible that a Mosco limit of a sequence (H1
0 (On))

does not exist if there is no quasi-open limit set O, even though the solutions
of the corresponding variational equations converge weakly in H1

0 (Ω) to some
limit. Then, by what we have seen so far, the limit operator is the solution
operator of a relaxed Dirichlet problem involving a capacitary measure.
Now, we are going to analyze the convergence of a sum of two γ-convergent

sequences. The following result is an auxiliary lemma.

Lemma 5.22 Let (vn)n∈N, (wn)n∈N ⊆ H1
0 (Ω) be sequences with wn → w in

H1
0 (Ω) and vn ⇀ w in H1

0 (Ω) for some w ∈ H1
0 (Ω). Then, zn := min(vn, wn)

satisfies zn ⇀ w in H1
0 (Ω) and

lim sup
n→∞

(
‖zn‖2H1

0 (Ω) − ‖vn‖
2
H1

0 (Ω)

)
≤ 0.

Proof. The weak convergence of (zn)n∈N follows from the weak sequential
continuity of min(·, ·) in H1

0 (Ω)×H1
0 (Ω), see Proposition 2.19(3.). To obtain

the desired inequality, we check

‖zn‖2H1
0 (Ω) − ‖vn‖

2
H1

0 (Ω)
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= ‖zn − wn‖2H1
0 (Ω) − ‖vn − wn‖

2
H1

0 (Ω) + 2 (zn − vn, wn)H1
0 (Ω)

= −‖max(0, vn − wn)‖2H1
0 (Ω) + 2 (zn − vn, wn)H1

0 (Ω)

≤ 2 (zn − vn, wn)H1
0 (Ω).

Now, the claim follows from zn − vn ⇀ 0 and wn → w in H1
0 (Ω).

In the following proposition, the γ-convergence of the sum of two particular
γ-convergent sequences is established.

Proposition 5.23 Let (µn)n∈N be a sequence inM0(Ω) such that µn
γ→ µ for

some µ ∈ M0(Ω) and let (Cn)n∈N be a sequence of quasi-closed subsets of Ω

such that ∞Cn
γ→∞C for some quasi-closed set C ⊆ Ω. Then, µn +∞Cn

γ→
µ+∞C .

Proof. We use the characterization of γ-convergence via the Γ-convergence
of the functionals Fµn+∞Cn

, see Lemma 5.8(i) and (ii). Therefore, we have
to verify (5.7). Let w ∈ L2(Ω) be given and consider an arbitrary sequence
(wn)n∈N ⊆ L2(Ω) with wn → w in L2(Ω). We have to show

Fµ+∞C (w) ≤ lim inf
n→∞

Fµn+∞Cn
(wn).

If the limes inferior is +∞, there is nothing to show. Otherwise, we select a
subsequence of (wn)n∈N (without relabeling), such that (Fµn+∞Cn

(wn))n∈N
converges to this value and such that Fµn+∞Cn

(wn) < +∞ for all n.
By the definition of the functionals, this implies wn ∈ H1

0 (Ω) as well as∫
Ωw

2
n d∞Cn < +∞, and these properties yield wn ∈ H1

0 (Ω \ Cn). Conse-
quently, we have

F∞C (w) ≤ lim inf
n→∞

F∞Cn
(wn) ≤ lim inf

n→∞
Fµn+∞Cn

(wn) < +∞.

Thus, w ∈ H1
0 (Ω \ C) and

∫
Ωw

2 d∞C = 0. Now, the desired inequality
follows from

Fµ+∞C (w) = Fµ(w) ≤ lim inf
n→∞

Fµn(wn) = lim inf
n→∞

Fµn+∞Cn
(wn),
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where we have used Fµn
Γ→ Fµ.

Further, we have to prove the existence of a sequence (w̃n)n∈N ⊆ L2(Ω)

with w̃n → w in L2(Ω) and

Fµ+∞C (w) = lim
n→∞

Fµn+∞Cn
(w̃n).

It is enough to consider the case w ≥ 0, otherwise apply the following ar-
guments to w+ and w−. If Fµ+∞C (w) = ∞, there is nothing left to show.
Otherwise, we have w ∈ H1

0 (Ω \ C). From Fµn
Γ→ Fµ and F∞Cn

Γ→ F∞C , we
find sequences (vn)n∈N, (wn)n∈N ⊆ L2(Ω) with

vn → w in L2(Ω) and Fµn(vn)→ Fµ(w),

wn → w in L2(Ω) and F∞Cn
(wn)→ F∞C (w).

W.l.o.g., we can assume vn, wn ≥ 0 (otherwise, replace vn by (vn)+ and wn
by (wn)+). Moreover, we can assume that Fµn(vn), F∞Cn

(wn) < ∞ for all
n ∈ N. Then we can infer vn ⇀ w in H1

0 (Ω) and wn → w in H1
0 (Ω). We

define zn = min(wn, vn) and already get zn → w in L2(Ω). To obtain the
convergence of the function values, we use zn = 0 q.e. on Cn to obtain

Fµn+∞Cn
(zn) = Fµn(zn) =

∫
Ω
|∇zn|2 dλd +

∫
Ω
z2
n dµn

≤
∫

Ω
|∇zn|2 dλd +

∫
Ω
v2
n dµn = Fµn(vn) +

(
‖zn‖2H1

0 (Ω) − ‖vn‖
2
H1

0 (Ω)

)
.

Now, by using Lemma 5.22 and w ∈ H1
0 (Ω \ C) we obtain

Fµ+∞C (w) ≤ lim inf
n→∞

Fµn+∞Cn
(zn)

≤ lim sup
n→∞

Fµn+∞Cn
(zn) ≤ lim sup

n→∞
Fµn(vn) = Fµ(w) = Fµ+∞C (w).

Thus, Fµ+∞C (w) = limn→∞ Fµn+∞Cn
(zn). This finishes the proof of the

convergence Fµn+∞Cn

Γ→ Fµ+∞C .
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5.2 Generalized differentials involving the strong
operator topology

Using the characterization of the Gâteaux derivative in a point ζ ∈ H−1(Ω)

as ΞI(ζ) and the properties of solution operators of relaxed Dirichlet problems
introduced in the previous section, we characterize the generalized differen-
tials ∂ss

BSid(ζ) and ∂ws
B Sid(ζ) in this section.

We start with the following technique that is frequently used in the re-
maining parts of this chapter.

Proposition 5.24 Assume O ⊆ Ω is quasi-open and let v ∈ H1
0 (O). Then it

holds v = ΞO(−∆v).

Proof. The statement follows directly from the definition of ΞO.

In the following lemma, we find a superset of ∂ws
B Sid(ζ).

Lemma 5.25 Let ζ ∈ H−1(Ω). For each Ξ ∈ ∂ws
B Sid(ζ) there is a quasi-open

set D ⊆ Ω with cap(D ∩As(ζ)) = 0 and Ξ = ΞD.

Proof. By definition of ∂ws
B Sid(ζ), see Definition 2.12, there is a sequence

(ζn)n∈N ⊆ DSid
such that ζn ⇀ ζ in H−1(Ω), Sid(ζn) ⇀ Sid(ζ) in H1

0 (Ω) and
S′id(ζn) → Ξ in the strong operator topology of L(H−1(Ω), H1

0 (Ω)). By the
characterization of differentiability points of Sid, see Theorem 4.3, we have
S′id(ζn) = ΞI(ζn). From Lemma 5.19, we already know that Ξ = ΞD for some
quasi-open set D ⊆ Ω.
It remains to check cap(D ∩ As(ζ)) = 0. From Lemma 2.31 (see also

Theorem 5.14) we infer the existence of v ∈ H1
0 (Ω)+ with {v > 0} =q D.

In particular, v ∈ H1
0 (D) and this yields that v = ΞD(−∆v), see Proposi-

tion 5.24, is the strong limit of vn := S′id(ζn;−∆v). By the properties of
S′id(ζn) = ΞI(ζn), we have vn = 0 q.e. on A(ζn) =q As(ζn). Thus,

〈ξn, |vn|〉 = 0,

where ξn := −∆Sid(ζn)−ζn, see Corollary 3.10. From ξn ⇀ ξ := −∆Sid(ζ)−ζ
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and |vn| → |v|, we infer
〈ξ, |v|〉 = 0.

Thus, v = 0 q.e. on As(ζ) by Corollary 3.10. Hence, by choice of v it holds
cap(D ∩As(ζ)) = cap({v 6= 0} ∩As(ζ)) = 0.

The following auxiliary lemma shows that for arbitrary ζ ∈ H−1(Ω) and
a sequence (ζn)n∈N ⊆ H−1(Ω) each element v ∈ H1

0 (I(ζ)), 0 ≤ v ≤ 1 is the
limit of a sequence (vn)n∈N ⊆ H1

0 (I(ζn)). A related statement has been shown
in the proof of Theorem 4.17 where the Mosco convergence of H1

0 (I(f(ζn)))

was verified. Here, the sets I(ζn) are not necessarily increasing. However,
the proof relies once more on increasing quasi-coverings, see Lemma 2.29.

Lemma 5.26 Assume (ζn)n∈N ⊆ H−1(Ω) is a sequence with ζn → ζ for
some ζ ∈ H−1(Ω). Then for each v ∈ H1

0 (I(ζ)) with 0 ≤ v ≤ 1 there exists a
sequence (vn)n∈N with vn ∈ H1

0 (I(ζn)) and vn → v in H1
0 (Ω).

Proof. We set y := Sid(ζ) and yn := Sid(ζn). Let tn := supm=n,...,∞ ‖ym −
y‖1/2

H1
0 (Ω)

. Then, (tn)n∈N is a decreasing sequence of nonnegative numbers with

tn ≥ ‖yn − y‖1/2H1
0 (Ω)

and tn ↘ 0. We have {y > ψ} =q
⋃∞
n=1{y > ψ + tn}.

Since the sets on the right-hand side are quasi-open and increasing in n, we
can apply Lemma 2.29. This yields a sequence (ṽn)n∈N ⊆ H1

0 (Ω) with ṽn → v

in H1
0 (Ω), 0 ≤ ṽn ≤ 1 and ṽn = 0 q.e. on {y ≤ ψ + tn}.

Next, using the definition and monotonicity of the set function cap, we
observe

cap ({yn = ψ} ∩ {y > ψ + tn}) ≤ cap({|yn − y| > tn})
≤ t−2

n ‖yn − y‖2H1
0 (Ω) → 0.

Thus, there exists a sequence (wn)n∈N ⊆ H1
0 (Ω) with wn → 0 in H1

0 (Ω),
0 ≤ wn ≤ 1 and wn = 1 q.e. on {yn = ψ} ∩ {y > ψ + tn}, n ∈ N, cf.
Lemma 2.27. For n ∈ N we define vn := (ṽn − wn)+. By construction,
vn → v and vn = 0 q.e. on {yn = ψ}, i.e., vn ∈ H1

0 (I(ζn)).

Next, we provide a characterization of ∂ss
BSid(ζ).
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Theorem 5.27 Let ζ ∈ H−1(Ω) be given. Then it holds

∂ss
BSid(ζ) = {ΞD | D is quasi-open and I(ζ) ⊆q D ⊆q Ω \As(ζ)}.

Proof. “⊆”: Let Ξ ∈ ∂ss
BSid(ζ) be given. By definition, S′id(ζn) → Ξ in the

strong operator topology of L(H−1(Ω), H1
0 (Ω)) for some sequence (ζn)n∈N ⊆

DSid
with ζn → ζ. From Lemma 5.25 and from Ξ ∈ ∂ss

BSid(ζ) ⊆ ∂ws
B Sid(ζ),

we already have Ξ = ΞD for some quasi-open D ⊆q Ω \ As(ζ). It remains to
check I(ζ) ⊆q D.
By Lemma 2.31 (see also Theorem 5.14), there is a function v ∈ H1

0 (Ω) with
0 ≤ v ≤ 1 and I(ζ) =q {v > 0}. From Lemma 5.26, we get a sequence
(vn)n∈N ⊆ H1

0 (Ω) with vn → v and vn ∈ H1
0 (I(ζn)). Together with Proposi-

tion 5.24 and Lemma 2.11(1.) we find

v = lim
n→∞

vn = lim
n→∞

ΞI(ζn)(−∆vn) = lim
n→∞

S′id(ζn;−∆vn) = ΞD(−∆v).

This gives I(ζ) =q {v > 0} ⊆q D.
“⊇”: Let D be given as in the formulation of the theorem. From Lemma 2.31
(see also Theorem 5.14), we get a function v ∈ H1

0 (Ω)+ with {v > 0} =q D.
Similarly, Theorem 5.14 gives ν ∈ H−1(Ω)+ with f-supp(ν) =q Ω \ D. We
define ζn := ζ − (∆v + ν)/n, y := Sid(ζ), yn := y + v/n, ξn := −∆yn − ζn,
ξ := −∆y − ζ. Then

ξn = −∆y − 1

n
∆v − ζ +

1

n
(∆v + ν) = ξ +

ν

n

and we may check that yn = Sid(ζn). From v ≥ 0, we infer yn ∈ Kψ. Further,
for arbitrary z ∈ Kψ we have

〈ξn, z − yn〉 = 〈ξ, z − y〉+

〈
ξ,− 1

n
v

〉
+

1

n

〈
ν, z − y − v

n

〉
≥ 0 + 0 + 0 = 0.

The second term is zero due to v = 0 q.e. on Ω \ D ⊇q As(ζ), see Corol-
lary 3.10. Similarly, the third term is nonnegative since f-supp(ν) =q Ω \D
and z ≥ ψ = y + v/n on Ω \D. Hence, yn = Sid(ζn). Thus, I(ζn) =q D =q
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Ω \As(ζn), i.e., ζn ∈ DSid
, compare Lemma 4.4. Finally, S′id(ζn) = ΞD for all

n ∈ N and ζn → ζ ensure ΞD ∈ ∂ss
BSid(ζ).

Remark 5.28 In the proof of the inclusion “⊇” for Theorem 5.27, for ar-
bitrary quasi-open D with I(ζ) ⊆q D ⊆q Ω \ As(ζ) a sequence (ζn)n∈N is
constructed which converges to ζ such that the strict complementarity con-
dition is fulfilled in ζn and such that D coincides with I(ζn) and thus also
with Ω \As(ζn).
This proof technique is not transferable to the setting where f is an opera-

tor as in Chapter 4, since the sequence (ζn)n∈N ⊆ H−1(Ω) doesn’t necessarily
correspond to a suitable sequence in U .

We can also give a characterization of ∂ws
B Sid(ζ). Indeed, for any

ζ ∈ H−1(Ω), we will see that without any further assumptions it holds
∂ws

B Sid(ζ) = ∂ss
BSid(ζ).

Theorem 5.29 Let ζ ∈ H−1(Ω) be given. Then,

∂ws
B Sid(ζ) = {ΞD | D is quasi-open and I(ζ) ⊆q D ⊆q Ω \As(ζ)}.

Proof. “⊇”: This follows from ∂ws
B Sid(ζ) ⊇ ∂ss

BSid(ζ) and Theorem 5.27.
“⊆”: Let Ξ ∈ ∂ws

B Sid(ζ) be given. By definition, S′id(ζn) → Ξ in the strong
operator topology of L(H−1(Ω), H1

0 (Ω)) for some sequence (ζn)n∈N ⊆ DSid

with ζn ⇀ ζ and Sid(ζn) ⇀ Sid(ζ). From Lemma 5.25, we already have
Ξ = ΞD for some quasi-open D ⊆q Ω \As(ζ). It remains to check I(ζ) ⊆q D.
We set w := ΞD(1) and wn := S′id(ζn; 1) = ΞI(ζn)(1), cf. Theorem 4.3. From
Theorem 5.14, we find 1 + ∆wn ≥ 0 and f-supp(1 + ∆wn) =q A(ζn). Since
yn := Sid(ζn) = ψ q.e. on A(ζn) and since yn and ψ are assumed to be Borel
measurable, this gives ∫

Ω
(yn − ψ) d(1 + ∆wn) = 0.

The function y − ψ is nonnegative and quasi lower-semicontinuous.
Lemma 2.26 implies the existence of an increasing sequence (vm)m∈N ⊆
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H1
0 (Ω) with 0 ≤ vm and vm ↗ y − ψ pointwise q.e. on Ω.

Let m,n ∈ N. We have∫
Ω

(vm − y + yn) d(1 + ∆wn) ≤
∫

Ω
(yn − ψ) d(1 + ∆wn) = 0.

From yn ⇀ y in H1
0 (Ω) and wn → w in H1

0 (Ω), we infer

0 ≤
∫

Ω
vm d(1 + ∆w) = lim

n→∞

∫
Ω

(vm − y + yn) d(1 + ∆wn) ≤ 0.

Hence, ∫
Ω
vm d(1 + ∆w) = 0.

Since vm ≥ 0 q.e. and (1 + ∆w)-a.e. on Ω, we conclude vm = 0 (1 + ∆w)-a.e.
on Ω. By monotone pointwise q.e. convergence of (vm)m∈N to y−ψ, we have⋃

m∈N
{vm > 0} =q I(ζ).

Thus, since (1 + ∆w)({vm > 0}) = 0 for all m ∈ N and since (1 + ∆w)

vanishes on sets of capacity zero we conclude

(1 + ∆w)(I(ζ)) = (1 + ∆w)

( ⋃
m∈N
{vm > 0}

)
= 0

by σ-subadditivity of (1 + ∆w). This shows I(ζ) ⊆q D.

5.3 Generalized differentials involving the weak
operator topology

In this section, we will study the generalized differentials ∂sw
B Sid(ζ) and

∂ww
B Sid(ζ). Since these differentials contain limits of Gâteaux derivatives
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in the weak operator topology, the corresponding sets are, in general, larger
than the differentials using the strong operator topology, see Lemma 2.13.
Moreover, since the completion of

{ΞO | O ⊆ Ω quasi-open}

w.r.t. the weak operator topology is M0(Ω), see Lemma 5.10 and
Lemma 5.11, it is predictable that solution operators of certain relaxed Dirich-
let problems w.r.t. capacitary measures are also contained in these generalized
differentials.
We start with the analysis of ∂sw

B Sid(ζ).

Lemma 5.30 Let ζ ∈ H−1(Ω) be given. Then,

∂sw
B Sid(ζ) ⊆ {Ξµ | µ ∈M0(Ω), µ(I(ζ)) = 0 and µ = +∞ on As(ζ)}. (5.9)

Here, µ = +∞ on As(ζ) is to be understood as

∀ z ∈ H1
0 (Ω) ∩ L2

µ(Ω) : z = 0 q.e. on As(ζ). (5.10)

Proof. Let Ξ ∈ ∂sw
B Sid(ζ) be given. By definition, there is a sequence

(ζn)n∈N ⊆ DSid
with ζn → ζ in H−1(Ω) and S′id(ζn)→ Ξ in the weak opera-

tor topology of L(H−1(Ω), H1
0 (Ω)). From Lemma 5.10 we obtain Ξ = Ξµ for

some µ ∈M0(Ω).
First, we show µ = +∞ on As(ζ). Let p ∈ H−1(Ω) be given. Then, vn :=

S′id(ζn; p) ⇀ Ξµ(p) =: v and |vn| ⇀ |v| in H1
0 (Ω), see Proposition 2.19(2.).

For ξn := −∆Sid(ζn)− ζn and ξ := −∆Sid(ζ)− ζ we have ξn → ξ in H−1(Ω).
By |vn| = 0 q.e. on As(ζn), we find

0 = lim
n→∞

〈ξn, |vn|〉 = 〈ξ, |v|〉.

Hence, |v| = 0 q.e. on As(ζ), see Corollary 3.10. Since the range of Ξµ is
dense in H1

0 (Ω) ∩ L2
µ(Ω), see Lemma 5.16, we have µ = +∞ on As(ζ).

It remains to show µ(I(ζ)) = 0. Let v ∈ H1
0 (I(ζ)) with 0 ≤ v ≤ 1 and

{v > 0} =q I(ζ) be given, see Lemma 2.31 or Theorem 5.14. By Lemma 5.26,
there exists a sequence (vn)n∈N with vn → v in H1

0 (Ω) and vn ∈ H1
0 (I(ζn)).
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Therefore, vn = ΞI(ζn)(−∆vn) = S′id(ζn;−∆vn), see Proposition 5.24. Since
−∆vn → −∆v in H−1(Ω), Lemma 2.11(2.) implies vn = S′id(ζn;−∆vn) ⇀

Ξµ(−∆v). Hence, v = Ξµ(−∆v) and therefore, v ∈ L2
µ(Ω). Testing the

associated weak formulation with v, we infer∫
Ω
|∇v|2 dλd +

∫
Ω
v2 dµ = 〈−∆v, v〉 =

∫
Ω
|∇v|2 dλd.

Hence,
∫

Ω v
2 dµ = 0 and this means v = 0 µ-a.e. on Ω. Since v > 0 q.e. on

I(ζ) and since µ vanishes on sets of capacity zero, we have v > 0 µ-a.e. on
I(ζ). This implies µ(I(ζ)) = 0.

Let us observe that if ζ is a point at which Sid is Gâteaux differentiable,
then the strict complementarity condition holds at ζ, see Lemma 4.4, and
consequently, the right-hand side in (5.9) reduces to {Ξ∞A(ζ)

} = {ΞI(ζ)} =

{S′id(ζ)} and equality holds.
For arbitrary ζ ∈ H−1(Ω), the reverse inclusion in (5.9) is much harder

to obtain, and we will prove it under some regularity assumption on ψ and
Sid(ζ).
However, in the special case that the entire set Ω is weakly active, i.e.,

A(ζ) =q Ω and As(ζ) =q ∅, the equality in (5.9) just follows from the density
result in Lemma 5.11.

Corollary 5.31 Let ζ ∈ H−1(Ω) be given such that A(ζ) =q Ω and As(ζ) =q

∅. Then,

∂sw
B Sid(ζ) = {Ξµ | µ ∈M0(Ω)}.

In particular, (5.9) holds with equality.

Proof. “⊆”: This inclusion is established in Lemma 5.30.
“⊇”: From Theorem 5.27, we have

∂ss
BSid(ζ) = {ΞD | D ⊆ Ω is quasi-open} ⊆ ∂sw

B Sid(ζ).

Since the closure of the left-hand side w.r.t. the weak operator topology of
L(H−1(Ω), H1

0 (Ω)) is {Ξµ | µ ∈M0(Ω)}, see Lemma 5.10, Lemma 5.11, and
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since ∂sw
B Sid(ζ) is closed in the weak operator topology of L(H−1(Ω), H1

0 (Ω)),
see Proposition 2.14(2.), this yields the claim.

The difficulty in proving the reverse implication in (5.9) in the general
case lies in obtaining a suitable approximating sequence of quasi-open sets
(On)n∈N in the spirit of Lemma 5.11, which is typically proved in a rather
abstract way.
In the following approach, the explicit construction from [DMM95] is used.

This, however, needs that A(ζn) contains an open neighborhood of A(ζ) and,
therefore, we assume continuity of Sid(ζ) and ψ.
We first state two preparatory lemmata.

Lemma 5.32 Let ζ ∈ H−1(Ω) be given and define y := Sid(ζ). We assume
that y ∈ C(Ω), ψ ∈ C(Ω)∩H1(Ω). Further, we assume that either ψ ∈ H1

0 (Ω)

or ψ < 0 on ∂Ω holds.
Then, there exists a sequence (ζn)n∈N ⊆ H−1(Ω) with ζn → ζ in H−1(Ω)

and such that yn := Sid(ζn) satisfies yn = ψ q.e. on an open neighborhood of
A(ζ) as well as ξ = −∆y − ζ = −∆yn − ζn.

Proof. Our strategy is to define yn with the desired properties and to verify
afterwards that yn solves the obstacle problem with right-hand side ζn :=

−∆yn − ξ.
In the case that ψ ∈ H1

0 (Ω), we define yn := max(y − 1/n, ψ). It is
immediate that yn ∈ H1

0 (Ω), yn → y in H1
0 (Ω) and yn = ψ on {y < ψ+1/n},

which is an open neighborhood of A(ζ).
In the case that ψ < 0 on ∂Ω, we have ψ ≤ c on ∂Ω for some constant

c < 0. From y = 0 on ∂Ω, we find that the set {y = ψ} has a positive
distance to the boundary of Ω. Thus, there exists a function v ∈ C∞c (Ω) with
0 ≤ v ≤ 1 and v = 1 on {y = ψ}. Now, we set yn := max(y−v/n, ψ). Again,
we find yn ∈ H1

0 (Ω), yn → y in H1
0 (Ω) and yn = ψ on {y < ψ + v/n} which

is also an open neighborhood of A(ζ).
Finally, we define ζn := −∆yn− ξ. Since yn → y in H1

0 (Ω), it is immediate
that ζn → ζ in H−1(Ω) and we have to check that yn = Sid(ζn). The property
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yn ∈ Kψ is clear from the definition of yn. From As(ζ) ⊆q {y = ψ} ⊆ {yn =

ψ}, we infer As(ζ) ⊆q {z ≥ yn} for all z ∈ Kψ. Hence,

〈−∆yn − ζn, z − yn〉 = 〈ξ, z − yn〉 ≥ 0.

This shows that yn = Sid(ζn).

Let us state the following auxiliary result.

Lemma 5.33 Let ζ ∈ H−1(Ω) be given such that the assumptions of
Lemma 5.32 are satisfied. Then, for every measure µ ∈ M0(Ω) which is
finite on compact subsets of Ω with µ(I(ζ)) = 0, the measure ν = µ+∞As(ζ)

satisfies

Ξν ∈ ∂sw
B Sid(ζ).

Proof. Let µ be a given measure as in the formulation of the lemma. We can
use the construction of [DMM95, Thm. 2.5] to obtain a sequence (Km)m∈N
of compact subsets of Ω with the property that each Km is contained in
supp(µ) +B1/m and∞Km

γ→ µ. In particular, for all n ∈ N, Km ⊆ {yn = ψ}
for m large enough with yn = Sid(ζn), where the sequence (ζn)n∈N is given
by Lemma 5.32.
Now, we consider the sequence (νm)m∈N defined by

νm :=∞Km +∞As(ζ) =∞Km∪As(ζ)

for m ∈ N. By Proposition 5.23, we conclude that νm
γ→ ν as m → ∞. Fix

n ∈ N. Then, since

I(ζn) ⊆q K
{
m ∩ (Ω \As(ζ)) =q K

{
m ∩ (Ω \As(ζn)) ⊆q Ω \As(ζn)

for m large enough, Theorem 5.27 implies that Ξνm ∈ ∂ss
BSid(ζn) for all but

finitely many m ∈ N. Thus, the set inclusion ∂ss
BSid(ζ) ⊆ ∂sw

B Sid(ζ) (see
Lemma 2.13) and Proposition 2.14(2.) imply that Ξν ∈ ∂sw

B Sid(ζn) for all
n ∈ N. Applying Proposition 2.14(2.) once more, we obtain that Ξν ∈
∂sw

B Sid(ζ) and the claim follows.
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Now, we are able to give the characterization of ∂sw
B Sid(ζ) under the regu-

larity assumptions of ψ and Sid(ζ) considered in Lemma 5.32.

Theorem 5.34 Let ζ ∈ H−1(Ω) be given such that the assumptions of
Lemma 5.32 are satisfied. Then, (5.9) holds with equality, i.e.,

∂sw
B Sid(ζ) = {Ξµ | µ ∈M0(Ω), µ(I(ζ)) = 0 and µ = +∞ on As(ζ)}. (5.11)

Proof. Let µ ∈ M0(Ω) with µ(I(ζ)) = 0 and µ = ∞ on As(ζ). By
Lemma 5.15, we find an increasing sequence (µm)m∈N of measures which
are finite on compact subsets of Ω with µm

γ→ µ. Let m ∈ N. Since µm ≤ µ,
it holds µm(I(ζ)) = 0. Thus, by Lemma 5.33, the measure νm := µm+∞As(ζ)

satisfies

Ξνm ∈ ∂sw
B Sid(ζ).

Furthermore, Proposition 5.23 implies that νm
γ→ µ +∞As(ζ) = µ as m →

∞. The closedness property of ∂sw
B Sid, see Proposition 2.14(2.), implies that

Lµ ∈ ∂sw
B Sid(ζ).

By means of an example, we indicate that the generalized differential
∂ww

B Sid(ζ) can be surprisingly large. In fact, we have seen that for a point
ζ ∈ DSid

at which Sid is Gâteaux differentiable we have

∂ss
BSid(ζ) = ∂ws

B Sid(ζ) = ∂sw
B Sid(ζ) = {S′id(ζ)},

see Theorems 5.27 and 5.29 and Lemma 5.30. However, we will see that
∂ww

B Sid(ζ) is not always a singleton for ζ ∈ DSid
.

Example 5.35 We use the classical construction of [CM97]. Therein, the
authors construct a sequence (On)n∈N of open subsets of Ω such that the
solution operators ΞOn of

Find δn ∈ H1
0 (On) : −∆δn = p

converge in the weak operator topology of L(H−1(Ω), H1
0 (Ω)) to the solution
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operator Ξc := Ξc λd of

Find δ ∈ H1
0 (Ω) : −∆δ + c λd(δ ·) = p

for a positive constant c > 0.
We define w = Ξc(1) and wn = ΞOn(1). This yields wn ⇀ w. We fix the

obstacle ψ := 0 and set ζn := −∆wn − 2−n χΩ\On for n ∈ N, ζ := −∆w.
Then, w ∈ Kψ by Theorem 5.14 and it is clear that w = Sid(ζ). Moreover,
again by Theorem 5.14, we have wn ∈ Kψ and it holds wn = Sid(ζn) since
wn ∈ H1

0 (On). Moreover, it holds ζn ⇀ ζ.
Since A(ζ) =q ∅, we have ζ ∈ DSid

. Similarly, we have A(ζn) =q {wn =

0} =q Ω \ On, see Theorem 5.14. From ξn := −∆wn − ζn = 2−n χΩ\On , we
have As(ζn) =q Ω\On, since Ω\On is a finite union of balls (by construction).
Thus, ζn ∈ DSid

and S′id(ζn) = ΞOn . By construction, ΞOn → Ξc in the weak
operator topology of L(H−1(Ω), H1

0 (Ω)). Hence, Ξc ∈ ∂ww
B Sid(ζ) although

ζ ∈ DSid
and thus S′id(ζ) = Ξ∞A(ζ)

6= Ξc, compare Lemma 5.6.





CHA PTER 6
Generalized derivatives for the

solution operator of the
bilateral obstacle problem

In this chapter, we derive generalized derivatives in ∂ss
BSf (u) for the com-

position Sf of the solution operator of the bilateral obstacle problem with a
general monotone and continuously differentiable operator f : U → H−1(Ω)

on a control Banach space U . For f and U we consider the assumptions
from the previous analysis of the unilateral obstacle problem in Chapter 4.
More precisely, Sf := Sid ◦ f is the solution operator of the bilateral obstacle
problem

Find y ∈ Kϕ
ψ : 〈Ly − f(u), z − y〉 ≥ 0 ∀ z ∈ Kϕ

ψ . (BOPf )

Throughout this chapter, Ω ⊆ Rd is an open, bounded set and L ∈
L(H1

0 (Ω), H−1(Ω)) denotes a coercive operator. The admissible set Kϕ
ψ in

(BOPf ) is defined as

Kϕ
ψ := {z ∈ H1

0 (Ω) | ψ ≤ z ≤ ϕ q.e. in Ω}. (6.1)

In general, we assume that the lower obstacle ψ : Ω → R ∪ {−∞} is quasi
upper-semicontinuous and the upper obstacle ϕ : Ω → R ∪ {+∞} is quasi

111
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lower-semicontinuous. Moreover, we suppose that the resulting admissible set
Kϕ
ψ in (6.1) is nonempty. For the main results of this chapter, we additionally

assume the following conditions to hold for L and ψ.

Assumption 6.1
1. The operator L is assumed to be strictly T-monotone (see (3.3)).
2. We consider lower and upper obstacles ψ,ϕ ∈ H1(Ω) ∩ L∞(Ω) and

assume there is cϕψ > 0 such that ϕ− ψ ≥ cϕψ holds a.e. on Ω.

Note that the assumption on strict T-monotonicity of L ensures that also
the solution operator of the bilateral obstacle problem is increasing.
Throughout this chapter, U is a Banach space and f : U → H−1(Ω) is

an operator. Similar to Chapter 4, for the main results in this chapter we
additionally assume the following conditions.

Assumption 6.2
1. We assume that the operator f : U → H−1(Ω) is defined on a partially

ordered Banach space (U,≥U ). In addition, let f be increasing, i.e.,
u1 ≥U u2 implies f(u1) ≥ f(u2) in H−1(Ω).

2. The operator f is continuously differentiable.
3. U is separable and there is a partially ordered Banach space (V,≥V )

such that the positive cone P = {v ∈ V : v ≥V 0} has nonempty interior
and V is embedded into U . The order relation ≥V has the property that
for all v, w ∈ V with v ≥V w it holds v + z ≥V w + z for all z ∈ V
and t v ≥V t w for all t ≥ 0. We assume that the linear embedding
ι : V → U is continuous, dense and increasing, i.e., compatible with the
order structures in V and U . This means that v ∈ V with v ≥V 0

implies ι(v) ≥U 0 in U .

Imposing these assumptions, the overall approach is similar to the strategy
in Chapter 4. For arbitrary u ∈ U , we obtain the existence of increasing
and decreasing sequences converging to u at which the locally Lipschitz con-
tinuous solution operator Sf of (BOPf ) is Gâteaux differentiable. Now, we
characterize limits of the respective Gâteaux derivatives making use of the
monotonicity structures.
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Nevertheless, there is an essential difference in the analysis of the Gâteaux
derivatives compared to the analysis for the unilateral obstacle problem. The
multiplier LSf (u) − f(u) ∈ H−1(Ω) is no longer a nonnegative functional
due to the bilateral constraints. Thus, the identification with a nonnegative
measure, as in the unilateral case, is not possible. By representing the resid-
ual LSf (u) − f(u) ∈ H−1(Ω) as the difference ξ̃ψ − ξ̃ϕ of two nonnegative
measures (Theorem 6.5), we can define the strictly active set As(f(u)) using
the measures ξ̃ψ and ξ̃ϕ. This gives us a description of the critical cone based
on the pointwise q.e. behavior of elements in H1

0 (Ω). Recall that the criti-
cal cone is the admissible set in the variational inequality for the directional
derivatives, cf. Theorem 3.3.
However, the representation of LSf (u)− f(u) ∈ H−1(Ω) as the difference

of two measures requires care. We will see that, in general, not every element
in H1

0 (Ω) is integrable with respect to the two measures and thus, the repre-
sentation is not valid on the entire domain space H1

0 (Ω). In fact, it is valid
only on H1

0 (Ω) ∩ L∞(Ω). We can also show that the representation holds
true on the entire domain space H1

0 (Ω) if the active sets with respect to both
obstacles have a positive distance. Subsequently, we give an example where
the active sets do not have a positive distance and the representation fails on
unbounded elements in H1

0 (Ω). Nonetheless, the pointwise description of the
critical cone based on the strictly active set is given in any case.
Now, if the solution operator Sf is Gâteaux differentiable at u, then S′f (u)

can be obtained as the solution operator of a variational equation on H1
0 (D),

where D can be chosen as any quasi-open subset of Ω satisfying I(f(u)) ⊆q

D ⊆q Ω \As(f(u)), see Theorem 6.11.
When considering increasing, respectively decreasing, sequences (un)n∈N,

we have to consider sets Dn which neither coincide with I(f(un)) nor with
Ω\As(f(un)) in the general case to show the Mosco convergence. The sets we
study are complements of the combination of strictly active w.r.t. the lower
obstacle and active set w.r.t. the upper obstacle and vice versa. These sets
are non-monotone. This is due to the observation that strictly active and
active sets are stable in opposite monotone directions and the behavior is
exactly inverse for lower and upper obstacle. We are able to show the Mosco
convergence of the corresponding sets (H1

0 (Dn))n∈N towards H1
0 (D) for Dn
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and D as specified above. With this result, the convergence of the respective
Gâteaux derivatives S′f (un) in the strong operator topology of L(U,H1

0 (Ω))

follows and by this strategy, we obtain elements of ∂ss
BSf (u).

This chapter is organized as follows. In Section 6.1, we collect fundamental
properties of the variational inequality (BOPf ) and of its solution operator
Sf . In particular, we state the variational inequality for the directional deriva-
tive and the admissible set it the critical cone. The structure of the critical
cone is analyzed in Section 6.2. To this end, a representation of the resid-
ual LSf (u) − f(u) as the difference ξ̃ψ − ξ̃ϕ of two nonnegative measures is
derived and the strictly active sets are defined based on these measures. A
counterexample shows that this representation is, in general, only valid on
H1

0 (Ω)∩L∞(Ω), which requires some care in the sequel. Moreover, a represen-
tation of S′f (u) is derived if u is a point at which Sf is Gâteaux differentiable.
In Section 6.3, the monotonicity of the active and strictly active sets with
respect to both obstacles is established. Using monotonicity and continuity
properties, in Section 6.4, the Mosco convergence of (H1

0 (Dn))n∈N to H1
0 (D)

is shown for two different choices of admissible sets H1
0 (Dn), H1

0 (D). in the
variational equations for Gâteaux derivatives and for increasing and decreas-
ing sequences (un)n∈N converging to u, respectively. As a consequence, we
can derive two elements of ∂ss

BSf (u) in Section 6.5. Finally, an adjoint repre-
sentation of corresponding Clarke subgradients for an objective functional is
derived in Section 6.6.
The results in this chapter are versions of the contents in [RU20].

6.1 Properties of the solution operator

In this section, we collect properties of the solution operator Sf of the bilateral
obstacle problem (BOPf ). Let us first state that a unique solution of (BOPf )
exists for every u ∈ U and that the corresponding solution operator is locally
Lipschitz continuous.

Theorem 6.1 Let ψ : Ω→ R∪{−∞} be quasi upper-semicontinuous and let
ϕ : Ω→ R∪{+∞} be quasi lower-semicontinuous such that the admissible set
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Ω

obstacle ψ

obstacle ϕ

membrane

no external forces

(a) Solution for force term ζ = 0

Ω

obstacle ψ

obstacle ϕ

membrane

external forces

(b) Solution for force term ζ ≤ 0

Ω

obstacle ψ

obstacle ϕ

membrane

external forces

(c) Solution for force term ζ

Figure 6.1. Bilateral obstacle problem for different force terms

Kϕ
ψ in (6.1) is nonempty. Then, for each u ∈ U , the variational inequality

(BOPf ) has a unique solution. Moreover, if f is locally Lipschitz continuous,
then the solution operator Sf : U → H−1(Ω) of (BOPf ) is locally Lipschitz
continuous.

Proof. By Theorem 3.1, the variational inequality (BOPf ) has a unique
solution. Since Sf = Sid ◦ f is Lipschitz continuous, see Theorem 3.1,
the composition Sf is locally Lipschitz continuous if f is locally Lips-
chitz continuous. Here, Sid denotes the solution operator of (BOPf ) for
f = id: H−1(Ω)→ H−1(Ω).

Figure 6.1 illustrates solutions of the bilateral obstacle problem for different
force terms ζ ∈ H−1(Ω).
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The next lemma summarizes the monotonicity of Sf with respect to the
elements in U .

Lemma 6.2 Assume that L ∈ L(H1
0 (Ω), H−1(Ω)) satisfies Assump-

tion 6.1(1.). Let ψ : Ω → R ∪ {−∞} be quasi upper-semicontinuous and let
ϕ : Ω→ R∪{+∞} be quasi lower-semicontinuous such that the admissible set
Kϕ
ψ in (6.1) is nonempty. Suppose that the conditions of Assumption 6.2(1.)

on f and U are satisfied. Then the solution operator Sf : U → H1
0 (Ω) of

(BOPf ) is increasing, i.e., if u1, u2 ∈ U satisfy u1 ≥U u2, then it holds
Sf (u1) ≥ Sf (u2) in H1

0 (Ω), i.e., a.e. and q.e. on Ω.

Proof. It holds Sf = Sid ◦ f . Now, it follows from Proposition 3.2 that Sid is
increasing. Since f is increasing, the composition Sf is increasing aswell.

6.1.1 Differentiability properties of the solution operator

As for the unilateral obstacle problem, we can define the active and the
inactive sets. Thus, we distinguish the following subsets of Ω for a fixed
element ζ ∈ H−1(Ω) that result from the solution Sid(ζ) of (BOPf ) for
f = id being the identity operator on H−1(Ω). Let ζ ∈ H−1(Ω). By

A(ζ) :=q {ω ∈ Ω | Sid(ζ)(ω) = ψ(ω) or Sid(ζ)(ω) = ϕ(ω)}

we denote the active set. We also distinguish the active sets with respect to
ψ and ϕ, i.e., we define

Aψ(ζ) :=q {ω ∈ Ω | Sid(ζ)(ω) = ψ(ω)}

and

Aϕ(ζ) :=q {ω ∈ Ω | Sid(ζ)(ω) = ϕ(ω)}.

Note that A(ζ) =q Aψ(ζ) ∪ Aϕ(ζ). As described in Lemma 2.22, by con-
sidering quasi-continuous representatives of Sid(ζ) ∈ H1

0 (Ω), the active sets
are quasi-closed and defined up to a set of capacity zero. Moreover, by
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Ω

ψ

ϕ

Sid(ζ)

Aψ(ζ)

Aϕ(ζ)

(a) Active set for force term ζ = 0

Ω

ψ

ϕ

Sid(ζ)

Aψ(ζ)

(b) Active set for force term ζ ≤ 0

Ω

ψ

ϕ

Sid(ζ)
Aψ(ζ)

Aϕ(ζ)

(c) Active set for force term ζ

Figure 6.2. Active sets for different force terms, compare Fig. 6.1

Lemma 2.23, we can assume that they are Borel measurable.
We denote by I(ζ) :=q Ω\A(ζ) the inactive set and by Iψ(ζ) :=q Ω\Aψ(ζ),

respectively Iϕ(ζ) :=q Ω \ Aϕ(ζ), the inactive sets with respect to the two
obstacles.
Figure 6.2 illustrates the active sets with respect to the two obstacles in

some exemplary scenarios.

Proposition 6.3 Let ψ : Ω→ R∪{−∞} be quasi upper-semicontinuous and
ϕ : Ω → R ∪ {+∞} be quasi lower-semicontinuous such that the admissible
set Kϕ

ψ in (6.1) is nonempty. Assume that f : U → H−1(Ω) is directionally
differentiable. Then the solution operator Sf : U → H1

0 (Ω) of (BOPf ) is
directionally differentiable. For given u, h ∈ U , the directional derivative
S′f (u;h) is given by the solution of the variational inequality

Find δ ∈ KKϕ
ψ

(y, ξ) : 〈Lδ − f ′(u;h), z − δ〉 ≥ 0 ∀ z ∈ KKϕ
ψ

(y, ξ). (6.2)
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Here, y := Sf (u), ξ := LSf (u) − f(u) and f ′(u;h) denotes the directional
derivative of f in u ∈ U and in direction h ∈ U .
Moreover, KKϕ

ψ
(y, ξ) = TKϕ

ψ
(y) ∩ ξ⊥, where

TKϕ
ψ

(y) = {z ∈ H1
0 (Ω) | z ≥ 0 q.e. in Aψ(f(u)), z ≤ 0 q.e. in Aϕ(f(u))}.

(6.3)

Proof. By Lemma 3.8, Kϕ
ψ is polyhedric at (y,−ξ). Now, Theorem 3.3 im-

plies that Sid is directionally differentiable. Observing that Sid is Lipschitz
continuous, see Theorem 6.1, and thus, by Proposition 2.5, directionally dif-
ferentiable in the Hadamard sense, Lemma 2.6 implies that the directional
derivative S′f (u;h) exists and is given by the solution of (6.2). The charac-
terization of (6.3) is established in [Mig76, Lem. 3.4].

6.2 Analysis of the critical cone

Let u ∈ U and denote y := Sf (u), ξ := LSf (u) − f(u). As in the case with
a single obstacle, we want to find a suitable characterization of the critical
cone

KKϕ
ψ

(y, ξ) = TKϕ
ψ

(y) ∩ ξ⊥.

Note that in the setting with a single lower obstacle such a characterization
is given by

{z ∈ H1
0 (Ω) | z ≥ 0 q.e. in A(f(u)) and z = 0 q.e. in As(f(u))},

see (3.12).
A crucial difference to the case with only one obstacle is that ξ is not

a nonnegative functional and thus cannot be identified with a nonnegative
measure. Instead, we will see that, in some cases, it can be identified with
the difference of two nonnegative measures. In general, i.e., when the active
sets Aψ(f(u)) and Aϕ(f(u)) do not have a positive distance, LSf (u)− f(u)
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acts as the difference of two measures on all elements of H1
0 (Ω)∩L∞(Ω), but

the characterization does not carry over to unbounded elements of H1
0 (Ω),

see Example 6.8. Before we present the theorem on the representation, let us
state an auxiliary lemma.

Lemma 6.4 Assume that v ∈ L∞(Ω) ∩ H1(Ω). Moreover, let (wn)n∈N ⊆
L∞(Ω) ∩H1

0 (Ω) be a sequence with wn → 0 in H1
0 (Ω) and |wn| ≤ C a.e. for

some C > 0 and all n ∈ N. Then v wn → 0 in H1
0 (Ω).

Proof. Let us recall that v wn ∈ H1
0 (Ω) and ∇(v wn) = wn∇v + v∇wn, see

Lemma 2.18. Thus,

‖v wn‖H1
0 (Ω) ≤ ‖wn∇v‖L2(Ω) + ‖v∇wn‖L2(Ω)

holds. The second term tends to zero since v ∈ L∞(Ω) and ∇wn → 0 in
L2(Ω). Moreover, for a subsequence, the term ‖wn∇v‖L2(Ω) converges to zero
aswell. To see this, pick any subsequence and choose a subsubsequence (wn)n
(without relabeling) that converges to 0 pointwise q.e., see Lemma 2.28, and
thus pointwise λd-a.e. Now, the assertion follows from Lebesgue’s dominated
convergence theorem and |wn∇v| ≤ C|∇v| ∈ L2(Ω).

Now, we are looking for a characterization of the multiplier in terms of
measures. Therefore, recall the definition ofM+(Ω) in (2.8).

Theorem 6.5 Assume that ψ,ϕ fulfill the conditions of Assumption 6.1(2.).
Let ζ ∈ H−1(Ω) be arbitrary and set y := Sid(ζ), ξ := Ly − ζ. Then the
following statements hold.

1. The functional ξ ∈ H−1(Ω) acts as the difference ξ̃ψ− ξ̃ϕ of nonnegative
measures ξ̃ψ, ξ̃ϕ ∈M+(Ω) on all elements of H1

0 (Ω) ∩ Cc(Ω), i.e.,

〈ξ, w〉 =

∫
Ω
w dξ̃ψ −

∫
Ω
w dξ̃ϕ (6.4)

holds for all w ∈ H1
0 (Ω) ∩ Cc(Ω).

2. Let A ⊆ Ω be arbitrary. Then cap(A) = 0 implies ξ̃ψ(A) = ξ̃ϕ(A) = 0.
3. The characterization (6.4) carries over to all w ∈ H1

0 (Ω) ∩ L∞(Ω). In
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particular, the quasi-continuous representatives of w are ξ̃ψ- and ξ̃ϕ-
integrable.

4. Furthermore, it holds y = ψ ξ̃ψ-a.e. on Ω and y = ϕ ξ̃ϕ-a.e. on Ω, i.e.,
ξ̃ψ(Iψ(ζ)) = 0 and ξ̃ϕ(Iϕ(ζ)) = 0.

5. Assume w ∈ H1
0 (Ω) ∩ L1(ξ̃ψ). Then we have w ∈ L1(ξ̃ϕ) and (6.4)

holds for w. The opposite statement with exchanged roles of ξ̃ψ and ξ̃ϕ

is also true.

Proof. 1. We define

v :=
y − ψ
ϕ− ψ

.

By the assumptions on ψ and ϕ, we have 0 ≤ v ≤ 1 and v ∈ H1(Ω)∩L∞(Ω).
Now, for w ∈ H1

0 (Ω) ∩ L∞(Ω), we have v w, (1 − v)w ∈ H1
0 (Ω), see

Lemma 2.18, and we write

〈ξ, w〉 = 〈ξ, (1− v)w〉+ 〈ξ, v w〉.

Thus, we deduce

〈ξ, w〉 = ξψ(w)− ξϕ(w),

where ξψ, ξϕ are defined by

ξψ : w 7→ 〈ξ, (1− v)w〉, ξϕ : w 7→ 〈ξ,−v w〉.

Note that ξψ, ξϕ are nonnegative linear forms on H1
0 (Ω) ∩ L∞(Ω). To see

this, assume w ∈ H1
0 (Ω)+ ∩ L∞(Ω) and let first ‖w‖L∞ ≤ cϕψ. By definition

of v, we have −v w + y ∈ Kϕ
ψ and therefore

ξϕ(w) = 〈ξ,−v w + y − y〉 ≥ 0. (6.5)

Since ξϕ is linear, (6.5) holds for all w ∈ H1
0 (Ω)+ ∩ L∞(Ω). In a similar

fashion, we can show that ξψ is nonnegative on H1
0 (Ω)+ ∩ L∞(Ω).

In particular, ξψ, ξϕ are nonnegative linear forms on H1
0 (Ω) ∩ Cc(Ω). By

[BS00, Lem. 6.53], ξψ and ξϕ have unique nonnegative continuous exten-
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sions over Cc(Ω), also denoted by ξψ, respectively ξϕ. Moreover, by [BS00,
Thm. 6.54], there are unique nonnegative, regular, locally finite Borel mea-
sures ξ̃ψ, ξ̃ϕ such that

ξψ(w) =

∫
Ω
w dξ̃ψ and ξϕ(w) =

∫
Ω
w dξ̃ϕ

holds for all w ∈ Cc(Ω). By completion, we obtain ξ̃ψ, ξ̃ϕ ∈M+(Ω).
2. Now, we modify the proof of [BS00, Lem. 6.55] to show that for a set
A ⊆ Ω, cap(A) = 0 implies ξ̃ψ(A) = ξ̃ϕ(A) = 0. W.l.o.g. we prove the
statement for ξ̃ϕ.
Let (εn)n∈N ⊆ R+ be a sequence with εn → 0 as n → ∞. Fix n ∈ N. Then
we find an open superset An of A in Ω with cap(An) < εn. Furthermore,
by Lemma 2.27, there is un ∈ H1

0 (Ω)+ satisfying un = 1 q.e. on An as well
as ‖un‖2H1

0 (Ω)
= cap(An) < εn. Moreover, we can assume un ∈ L∞(Ω) and

0 ≤ un ≤ 1, since min(z, 1) ∈ H1
0 (Ω) satisfies ‖min(z, 1)‖H1

0 (Ω) ≤ ‖z‖H1
0 (Ω)

for z ∈ H1
0 (Ω). By regularity of ξ̃ϕ, we can find a compact set Kn ⊆ An

satisfying ξ̃ϕ(An) ≤ ξ̃ϕ(Kn) + εn. Using a smooth version of Urysohn’s
lemma, there exists a function gn ∈ H1

0 (Ω) ∩ Cc(Ω) with values in [0, 1]

satisfying gn = 1 on Kn and having compact support in An. Then we have
1Kn ≤ gn ≤ un q.e. on Ω.
Now, we conclude

ξ̃ϕ(An) ≤ ξ̃ϕ(Kn) + εn

≤
∫

Ω
gn dξ̃ϕ + εn

= 〈ξ,−v gn〉+ εn

≤ 〈ξ,−v un〉+ εn

≤ ‖ξ‖H−1(Ω)‖v un‖H1
0 (Ω) + εn.

Using Lemma 6.4, we know that ‖v un‖H1
0 (Ω) → 0. Now,

⋂
n∈NAn is Borel

measurable and

ξ̃ϕ

(⋂
n∈N

An

)
= 0.
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Since A ⊆
⋂
n∈NAn, we conclude ξ̃ϕ(A) = 0.

3. Now, we argue in a similar fashion as in [BS00, Lem. 6.56] to show that
each w ∈ H1

0 (Ω) ∩ L∞(Ω) satisfies

〈ξ, w〉 =

∫
Ω
w dξ̃ψ −

∫
Ω
w dξ̃ϕ.

Let w ∈ H1
0 (Ω) ∩ L∞(Ω). Then we find (wn)n∈N ⊆ C∞c (Ω) with wn → w in

H1
0 (Ω). Definig wn := max(−‖w‖L∞(Ω),min(wn, ‖w‖L∞(Ω))) we have wn ∈

H1
0 (Ω) ∩ Cc(Ω) and wn → w in H1

0 (Ω) as well as |wn| ≤ ‖w‖L∞(Ω). Then,
Lemma 6.4 yields v wn → v w in H1

0 (Ω). Therefore, with

‖ − v |wn − wm|‖H1
0 (Ω) =

∥∥| − v |wn − wm||∥∥H1
0 (Ω)

= ‖v wn − v wm‖H1
0 (Ω)

and

‖wn − wm‖L1(ξ̃ϕ) = 〈ξ,−v |wn − wm|〉

≤ ‖ξ‖H−1(Ω)‖ − v |wn − wm|‖H1
0 (Ω)

we find that (wn)n∈N is a Cauchy sequence in L1(ξ̃ϕ). Similarly, (wn)n∈N is a
Cauchy sequence in L1(ξ̃ψ). Thus, a subsequence converges pointwise ξ̃ϕ-a.e.
and ξ̃ψ-a.e. to an element in L1(ξ̃ϕ) ∩ L1(ξ̃ψ). Now, pick a subsubsequence
that converges pointwise q.e. to w. Then, by (2.), w ∈ L1(ξ̃ϕ) ∩ L1(ξ̃ψ) and
Lebesgue’s dominated convergence theorem implies

〈ξϕ, w〉 = 〈ξ,−v(w − wn)〉︸ ︷︷ ︸
→0 as n→∞

+

∫
Ω
wn dξ̃ϕ︸ ︷︷ ︸

→
∫
Ω w dξ̃ϕ along a subsequence

.

This yields 〈ξϕ, w〉 =
∫

Ωw dξ̃ϕ and, similarly, 〈ξψ, w〉 =
∫

Ωw dξ̃ψ.
4. We modify the proof of [Wac14, Prop. 2.5]. We consider a smooth cut-off
function χ ∈ C∞c (Ω) with 0 ≤ χ ≤ 1 and χ = 1 on a compact set K ⊆ Ω.
We define w := χ [(1− v)ψ + v y] + (1 − χ) y and obtain w ∈ Kϕ

ψ . This
implies

0 ≤ 〈ξ, w − y〉
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= 〈ξ, χ (1− v)ψ + χ v y − χy〉
= 〈ξ, (1− v)χ (ψ − y)〉

=

∫
Ω
χ (ψ − y) dξ̃ψ.

Since χ (ψ − y) ≤ 0 q.e. on Ω, and thus ξ̃ψ-a.e., see (2.), we conclude y = ψ

ξ̃ψ-a.e. on K. Covering Ω with countably many compact subsets, we infer
y − ψ = 0 ξ̃ψ-a.e. on Ω. Similarly, we can show ϕ− y = 0 ξ̃ϕ-a.e. on Ω.
5. Assume w ∈ H1

0 (Ω) ∩ L1(ξ̃ψ). We approximate w in H1
0 (Ω) by (wn)n∈N

defined via wn := max(−n,min(n,w)). Then we have wn → w in H1
0 (Ω) and

wn → w pointwise ξ̃ψ-a.e. (after choosing a subsequence). Since |wn| ≤ |w|
and since w ∈ L1(ξ̃ψ), we apply Lebesgue’s dominated convergence theorem
and obtain wn → w in L1(ξ̃ψ).
From

‖wn − wm‖L1(ξ̃ϕ) =

∫
Ω
|wn − wm| dξ̃ϕ

=

∫
Ω
|wn − wm| dξ̃ψ − 〈ξ, |wn − wm|〉

≤ ‖wn − wm‖L1(ξ̃ψ) + ‖ξ‖H−1(Ω)‖wn − wm‖H1
0 (Ω)

it follows that (wn)n∈N is a Cauchy sequence in L1(ξ̃ϕ) and we can again
conclude that wn → w in L1(ξ̃ϕ).
From the representation

〈ξ, wn〉 =

∫
Ω
wn dξ̃ψ −

∫
Ω
wn dξ̃ϕ

for all n ∈ N, since wn → w in H1
0 (Ω), L1(ξ̃ψ) and L1(ξ̃ϕ), we conclude

〈ξ, w〉 =

∫
Ω
w dξ̃ψ −

∫
Ω
w dξ̃ϕ.

The opposite statement follows similarly.

Remark 6.6 The results in Theorem 6.5 are generalizations of respective
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statements for the unilateral obstacle problem. Statements (1.) and (3.)
correspond to the representation as a nonnegative measure in the unilateral
case, cf. Lemma 3.7(1.). The unilateral counterpart for (2.) is given in
Lemma 2.33 and the counterpart of (4.) is established in Lemma 3.7(2.).

In the subsequent lemma we assume that the active sets Aψ(ζ) and Aϕ(ζ)

have a positive distance. With this condition we mean that there are quasi-
closed sets Ãψ(ζ), Ãϕ(ζ) such that dist(Ãψ(ζ), Ãϕ(ζ)) > 0 and the two sets
coincide with Aψ(ζ), Aϕ(ζ) up to a set of capacity zero.

Lemma 6.7 Assume that ψ,ϕ fulfill the conditions of Assumption 6.1(2.).
Let ζ ∈ H−1(Ω) be arbitrary and set y := Sid(ζ) and ξ := Ly − ζ. Suppose
Aψ(ζ) and Aϕ(ζ) have a positive distance. Then, with ξ̃ψ, ξ̃ϕ ∈M+(Ω) as in
Theorem 6.5, it holds H1

0 (Ω) ⊆ L1(ξ̃ψ) ∩ L1(ξ̃ϕ) and

〈ξ, w〉 =

∫
Ω
w dξ̃ψ −

∫
Ω
w dξ̃ϕ

for all w ∈ H1
0 (Ω).

Proof. Since the active sets have a positive distance C > 0, we can find
v2 ∈ C∞(Rd) with v2 = 1 q.e. on Aψ(ζ) and v2 = 0 q.e. outside Aψ(ζ)+BC/2.
Since v2 is smooth, we have v2w, (v2 − 1)w ∈ H1

0 (Ω) for all w ∈ H1
0 (Ω),

see Lemma 2.18, and we define the functionals

ξ2
ψ : w 7→ 〈ξ, v2w〉, ξϕ2 : w 7→ 〈ξ, (v2 − 1)w〉

on H1
0 (Ω). Since v2 is in C∞(Rd), it is easy to show that ξ2

ψ and ξϕ2 are
bounded linear functionals on H1

0 (Ω). Moreover, we have

〈ξ, w〉 = 〈ξ2
ψ, w〉 − 〈ξ

ϕ
2 , w〉

for all w ∈ H1
0 (Ω).

Assume first w is in H1
0 (Ω) ∩ L∞(Ω). Then we have∫

Ω
w dξ̃ψ =

∫
Ω
v2w dξ̃ψ
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=

∫
Ω
v2w dξ̃ψ −

∫
Ω
v2w dξ̃ϕ

= 〈ξ, v2w〉
= 〈ξ2

ψ, w〉.

Here, the first equation holds since ξ̃ψ(Iψ(ζ)) = 0 and w = v2w q.e. and
thus ξ̃ψ-a.e. on Aψ(ζ), see Theorem 6.5(2.) and (4.). Similarly, the second
equation holds since v2w = 0 ξ̃ϕ-a.e. on Ω.
Let w ∈ H1

0 (Ω). Now we have max(−n,min(w, n)) ∈ H1
0 (Ω) ∩ L∞(Ω) and

wn
n→∞→ w in H1

0 (Ω). Furthermore,

‖wn − wm‖L1(ξ̃ψ)

=

∫
Ω
|wn − wm| dξ̃ψ = 〈ξ2

ψ, |wn − wm|〉 ≤ ‖ξ2
ψ‖H−1(Ω)‖wn − wm‖H1

0 (Ω).

Thus, (wn)n∈N is a Cauchy sequence in L1(ξ̃ψ). Since wn → w pointwise q.e.
and thus ξ̃ψ-a.e., see Theorem 6.5(2.), we have wn → w in L1(ξ̃ψ).
Arguing for ξ̃ϕ in a similar fashion, we obtain that

〈ξ, w〉 = 〈ξ2
ψ, w〉 − 〈ξ

ϕ
2 , w〉 =

∫
Ω
w dξ̃ψ −

∫
Ω
w dξ̃ϕ.

The following example shows that, in general, i.e., when the active sets do
not have a positive distance, the characterization of the functional LSid(ζ)−ζ
as the difference of the two measures ξ̃ψ and ξ̃ϕ does not need to apply for all
possible arguments in H1

0 (Ω). See also [Wac18, App. 2] for a related example.

Example 6.8 For d = 2 and for 0 < β < 1
2 , consider the function

y(x) = sin((− ln(|x|))β), x ∈ Ω := Bρ(0), ρ = exp(−π1/β) < 1. (6.6)

Then y|∂Bρ(0) = sin(π) = 0 and y ∈ H1
0 (Ω) ∩ L∞(Ω), since |y| ≤ 1 as well as

|∇y(x)|2 =
cos2((− ln(|x|))β)β2(− ln(|x|))2β−2

|x|2
x2

1 + x2
2

|x|2
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≤ β2(− ln(|x|))2β−2|x|−2

and thus

‖y‖2H1
0 (Ω) = ‖∇y‖2L2(Ω) ≤ 2πβ2

∫ ρ

0
(− ln(r))2β−2r−2r dr

= 2πβ2 (− ln(r))2β−1

1− 2β

∣∣∣ρ
0
<∞

since β < 1
2 . Now, we consider the obstacles given by ψ(x) := min

(
−1

2 , y(x)
)
,

ϕ(x) := max
(

1
2 , y(x)

)
.

We have

(− ln(r(t)))β = t ⇔ r(t) = exp(−t1/β)

and, for k ∈ N, we set r±k := r(2kπ ± π/2). This choice implies ρ = r(π) >

r−1 > r+
1 > r−2 > r+

2 > . . . > 0 and y(r±k (cos t, sin t)) = ±1 for all t ∈ (0, 2π).
Now, let ωk > 0 be weights (that will be adjusted below), with

∑∞
k=1 ω

2
k <

∞ and consider the functional

〈ξ, w〉 :=
∞∑
k=1

ωk√
ln(r−k /r

+
k )

∫ 2π

0
(w(r−k (cos t, sin t))− w(r+

k (cos t, sin t))) dt

(6.7)

for w ∈ H1
0 (Ω). Note that the integral in (6.7) is well-defined. To see this,

observe first that the quasi-continuous representatives of w are unique up to
a set of capacity zero. Let now E ⊆ Ω be a set of capacity zero. Then, for
any radius 0 < R < ρ, by [Hel75, Thm. 7.5], the surface measure σR on the
sphere SR = ∂BR satisfies σR(E ∩ SR) = 0.
We have ξ ∈ H−1(Ω), since

|〈ξ, w〉| ≤
∞∑
k=1

ωk√
ln(r−k /r

+
k )

∫ 2π

0

∫ r−k

r+
k

|∇w(r(cos t, sin t))|1
r
r dr dt

≤
∞∑
k=1

ωk√
ln(r−k /r

+
k )
‖∇w‖L2(B

r−
k

(0)\B
r+
k

(0))

(∫ 2π

0

∫ r−k

r+
k

1

r2
r dr dt

) 1
2
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=
√

2π
∞∑
k=1

ωk‖∇w‖L2(B
r−
k

(0)\B
r+
k

(0))

≤
√

2π

( ∞∑
k=1

ω2
k

) 1
2
( ∞∑
k=1

‖∇w‖2L2(B
r−
k

(0)\B
r+
k

(0))

) 1
2

≤
√

2π

( ∞∑
k=1

ω2
k

) 1
2

‖∇w‖L2(Ω).

Here, we have used that, for all k ∈ N, the sets Br−k (0) \ Br+
k

(0) are disjoint
subsets of Ω.
Set ζ := Ly − ξ. We argue that the function y ∈ Kϕ

ψ as defined in (6.6)
satisfies the bilateral obstacle problem (BOPf ) for f = id, i.e., y = Sid(ζ).
First note that y ∈ Kϕ

ψ ⊆ H
1
0 (Ω)∩L∞(Ω) by the choice of y, ψ and ϕ. Now,

let z ∈ Kϕ
ψ be arbitrary. Then z − y ≥ 0 on {y = ψ} and z − y ≤ 0 on

{y = ϕ}. Additionally, we have

supp(ξ̃ψ) \ {0} =

∞⋃
k=1

∂Br−k
⊆ {y = ψ} (6.8)

and

supp(ξ̃ϕ) \ {0} =
∞⋃
k=1

∂Br+
k
⊆ {y = ϕ}. (6.9)

This yields

〈ξ, z − y〉(6.4)
=

∫
Ω
z − y dξ̃ψ −

∫
Ω
z − y dξ̃ϕ

=

∫
{y=ψ}

z − y dξ̃ψ −
∫
{y=ϕ}

z − y dξ̃ϕ ≥ 0

and we obtain y = Sid(ζ).
Note that by (6.8) and (6.9) we find

dist(Aψ, A
ϕ) = dist({y = ψ}, {y = ϕ}) = 0
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since r±k ↘ 0. Thus, Lemma 6.7 does not apply.
For w ∈ H1

0 (Ω) ∩ L∞(Ω), we have

〈ξ, w〉 =

∫
Ω
w dξ̃ψ −

∫
Ω
w dξ̃ϕ

=

∫
Ω
w d

 ∞∑
k=1

ωk√
ln(r−k /r

+
k )r−k

σr−k

− ∫
Ω
w d

 ∞∑
k=1

ωk√
ln(r−k /r

+
k )r+

k

σr+
k


(6.10)

where ξ̃ψ, ξ̃ϕ are nonnegative finite measures with support in Aψ and Aϕ,
respectively. In fact, to show that ξ̃ϕ is a finite measure, we observe that

ln(r−k /r
+
k ) = (2kπ + π/2)1/β − (2kπ − π/2)1/β

{
≥ (2kπ − π/2)1/β−1π/β,

≤ (2kπ + π/2)1/β−1π/β.

(6.11)

Hence, for any w ∈ C(Ω) with 0 ≤ w ≤ 1

0 ≤
∫

Ω
w dξ̃ϕ ≤

∞∑
k=1

ωk√
ln(r−k /r

+
k )

∫ 2π

0
1 dt

≤ 2π

( ∞∑
k=1

ω2
k

) 1
2
( ∞∑
k=1

1

ln(r−k /r
+
k )

) 1
2

≤ 2π

( ∞∑
k=1

ω2
k

) 1
2
( ∞∑
k=1

1

π/β(2kπ − π/2)1/β−1

) 1
2

≤ C

with a constant C > 0, since β < 1/2. The same argument shows that ξϕ is
a bounded functional on H1

0 (Ω) ∩ L∞(Ω) w.r.t. ‖ · ‖H1
0 (Ω) + ‖ · ‖L∞(Ω).

Now, consider the unbounded function w(x) = (− ln(|x|))β−π. Then since

|∇w(x)|2 =
β2(− ln(|x|))2β−2

|x|2
x2

1 + x2
2

|x|2
= β2(− ln(|x|))2β−2|x|−2,

we have w ∈ H1
0 (Ω) as above. With ωk = k−1, β = 1

3 and by using (6.11),
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we obtain the estimate∫
Ω
w dξ̃ϕ =

∞∑
k=1

ωk√
ln(r−k /r

+
k )

∫ 2π

0
(2kπ + π

2 − π) dt

≥
∞∑
k=1

2π(2kπ − π
2 )

k(2kπ + π
2 )
√

3π
≥
∞∑
k=1

2π 3
2kπ

k 5
2kπ
√

3π
=∞.

Similarly, we find∫
Ω
w dξ̃ψ ≥

∞∑
k=1

2π 1
2kπ

k 5
2kπ
√

3π
=∞.

This shows that, in general, the representation (6.4) does not hold for all
w ∈ H1

0 (Ω).

In the following lemma, we find a characterization of the critical cone.
This result is a counterpart to the characterization of the critical cone for the
unilateral obstacle problem, see Theorem 3.9. Again, the proof is based on
the proof of [Wac14, Lem. 3.1] with slight modifications.

Lemma 6.9 Assume that ψ,ϕ fulfill the conditions of Assumption 6.1(2.).
Let ζ ∈ H−1(Ω) be arbitrary and set y := Sid(ζ), ξ := Ly − ζ. Then the
critical cone

KKϕ
ψ

(y, ξ) = TKϕ
ψ

(y) ∩ ξ⊥

has the following structure. There exist quasi-closed sets As
ψ(ζ) ⊆q Aψ(ζ)

and Aϕs (ζ) ⊆q A
ϕ(ζ) which are unique up to sets of capacity zero such that

KKϕ
ψ

(y, ξ) =
{
z ∈ H1

0 (Ω) | z ≥ 0 q.e. in Aψ(ζ), z ≤ 0 q.e. in Aϕ(ζ)

and 〈ξ, z〉 = 0}
=
{
z ∈ H1

0 (Ω) | z ≥ 0 q.e. in Aψ(ζ), z ≤ 0 q.e. in Aϕ(ζ)

and z = 0 q.e. in As
ψ(ζ) ∪Aϕs (ζ)

}
.

(6.12)

Proof. Recalling (6.3) from Proposition 6.3, we see that the first equation
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in (6.12) holds. Assume z is an element of KKϕ
ψ

(y, ξ). By polyhedricity, see
Lemma 3.8, there is a sequence (zn)n∈N ⊆ RKϕ

ψ
(y)∩ξ⊥ with zn → z inH1

0 (Ω).
Since ψ,ϕ are elements of L∞(Ω), and by the structure of RKϕ

ψ
(y), see (3.4),

we conclude (zn)n∈N ⊆ L∞(Ω). Using Theorem 6.5, each zn is integrable
with respect to ξ̃ψ and ξ̃ϕ. Let n ∈ N be fixed. By RKϕ

ψ
(y) ⊆ TKϕ

ψ
(y) we

have zn ≥ 0 q.e. in Aψ(ζ) and zn ≤ 0 q.e. in Aϕ(ζ). We have

0 = 〈ξ, zn〉 =

∫
Ω
zn dξ̃ψ −

∫
Ω
zn dξ̃ϕ =

∫
Aψ(ζ)

zn dξ̃ψ −
∫
Aϕ(ζ)

zn dξ̃ϕ,

(6.13)

as ξ̃ψ(Iψ(ζ))) = 0 and ξ̃ϕ(Iϕ(ζ)) = 0, see Theorem 6.5(4.). Since zn ≥ 0 ξ̃ψ-
a.e. on Aψ(ζ) and zn ≤ 0 ξ̃ϕ-a.e. on Aϕ(ζ), cf. Theorem 6.5(2.), we conclude
that zn = 0 ξ̃ψ-a.e. on Aψ(ζ) and zn = 0 ξ̃ϕ-a.e. on Aϕ(ζ). Using once more
that ξ̃ψ(Iψ(ζ)) = 0 and ξ̃ϕ(Iϕ(ζ)) = 0, we can see that this means zn = 0 ξ̃ψ-
and ξ̃ϕ-a.e. on Ω. Since zn → z for a subsequence pointwise q.e. and thus ξ̃ψ-
and ξ̃ϕ-a.e., see Theorem 6.5(2.), we conclude z = 0 ξ̃ψ- and ξ̃ϕ-a.e.
Vice versa, assume z ∈ TKϕ

ψ
(y) and z = 0 ξ̃ψ- and ξ̃ϕ-a.e. Using The-

orem 6.5(5.), we see that (6.13) holds (with zn replaced by z) and thus
z ∈ TKϕ

ψ
(y) ∩ ξ⊥ follows.

Thus, we have shown that

KKϕ
ψ

(y, ξ) =
{
z ∈ H1

0 (Ω) | z ≥ 0 q.e. in Aψ(ζ), z ≤ 0 q.e. in Aϕ(ζ),

z = 0 ξ̃ψ- and ξ̃ϕ-a.e.
}
.

By [Sto93, Thm. 1], there exist quasi-closed sets As
ψ(ζ) and Aϕs (ζ) such that

{z ∈ H1
0 (Ω) | z = 0 ξ̃ψ-a.e.} = {z ∈ H1

0 (Ω) | z = 0 q.e. on As
ψ(ζ)} (6.14)

and

{z ∈ H1
0 (Ω) | z = 0 ξ̃ϕ-a.e.} = {z ∈ H1

0 (Ω) | z = 0 q.e. on Aϕs (ζ)}. (6.15)

We have y−ψ = 0 ξ̃ψ-a.e. and thus y−ψ = 0 q.e. on As
ψ(ζ), see (6.14), which

implies As
ψ(ζ) ⊆q Aψ(ζ). The same arguments apply to show Aϕs (ζ) ⊆q
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Aϕ(ζ).

As a bilateral counterpart to the result in Corollary 3.10, we obtain the
following corollary.

Corollary 6.10 Assume that ψ,ϕ fulfill the conditions of Assumption 6.1(2.).
Let ζ ∈ H−1(Ω) be arbitrary and denote y := Sid(ζ), ξ := Ly − ζ. Let
z ∈ H1

0 (Ω). Then the following statements are equivalent.
(i) z = 0 q.e. in As

ψ(ζ).

(ii) z = 0 ξ̃ψ-a.e. in Ω.
The statements imply z ∈ L1(ξ̃ψ) ∩ L1(ξ̃ϕ) and 〈ξ, z〉 = −

∫
Ω z dξ̃

ϕ.
Similarly, the following statements are equivalent.
(i) z = 0 q.e. in Aϕs (ζ).
(ii) z = 0 ξ̃ϕ-a.e. in Ω.

The statements imply z ∈ L1(ξ̃ψ) ∩ L1(ξ̃ϕ) and 〈ξ, z〉 =
∫

Ω z dξ̃ψ.
Here, ξ̃ψ, ξ̃ϕ ∈M+(Ω) are defined as in Theorem 6.5.

Proof. The equivalences are implied by the proof of Lemma 6.9, see (6.14) and
(6.15). The statements z ∈ L1(ξ̃ψ)∩L1(ξ̃ϕ) and 〈ξ, z〉 =

∫
Ωw dξ̃ψ−

∫
Ωw dξ̃ϕ

follow from Theorem 6.5(5.). This shows the statement of the corollary.

In the following sections, for ζ ∈ H−1(Ω), we also write

As(ζ) :=q A
s
ψ(ζ) ∪Aϕs (ζ)

for the strictly active set with respect to both obstacles, we have As(ζ) ⊆q

A(ζ). Moreover, we will use the notation

Aw
ψ(ζ) :=q Aψ(ζ) \As

ψ(ζ)

for the weakly active set with respect to the lower obstacle ψ and

Aϕw(ζ) :=q A
ϕ(ζ) \Aϕs (ζ)

for the weakly active set with respect to the upper obstacle ϕ. For the sake
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Ω

ψ

ϕ

Sid(0)

As
ψ(0) Aw

ψ(0)

As
ϕ(0) Aϕw(0)

Figure 6.3. Strictly and weakly active sets for a bilateral obstacle problem with
force term ζ = 0

of completeness, we introduce the notation

Aw(ζ) :=q A
w
ψ(ζ) ∪Aϕw(ζ)

for the weakly active set with respect to upper and lower obstacle.
Figure 6.3 illustrates an example where the strictly and weakly active sets

are shown for fixed ζ = 0 ∈ H−1(Ω).

6.2.1 Gâteaux differentiability of the solution operator

As in the case of unilateral obstacle problems, in points u where Sf is Gâteaux
differentiable, we can replace the critical cone in the characterization of the
directional derivative by the largest linear subset contained in the critical
cone, and by the linear hull of the critical cone, respectively. Both versions
yield a characterization of the Gâteaux derivative. The result in the case of
the unilateral obstacle problem can be found in Theorem 4.3.
For the bilateral case, characterizations of the Gâteaux derivative are sum-

marized in the following theorem. Note that despite the difference in the
analysis of the critical cone the characterization of Gâteaux derivatives is
similar to the unilateral case.

Theorem 6.11 Assume that ψ,ϕ fulfill the conditions of Assumption 6.1(2.).
Moreover, assume that f : U → H−1(Ω) is directionally differentiable. Sup-
pose that the solution operator Sf of (BOPf ) is Gâteaux differentiable at
u ∈ U and let h ∈ U be arbitrary. Then the directional derivative S′f (u;h) is
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determined by the solution of the variational equation

Find δ ∈ H1
0 (D) : 〈Lδ − f ′(u;h), z〉 = 0 ∀ z ∈ H1

0 (D). (6.16)

Here, any quasi-open set D with I(f(u)) ⊆q D ⊆q Ω \As(f(u)) is admissible
and provides the same solution δ.

Proof. The assumption that u is a point where Sf is Gâteaux differentiable
implies that S′f (u; ·) is linear and the image is a linear subspace of H1

0 (Ω). By
the characterization (6.2) in Proposition 6.3, the image of Sf (u; ·) lies in a lin-
ear subspace of the critical cone KKψ(y, ξ) for y = Sf (u), ξ = Ly−f(u). The
structure of the critical cone, cf. (6.12), implies that S′f (u;h) ∈ H1

0 (I(f(u)))

for all h ∈ U , since H1
0 (I(f(u))) is the largest linear subset contained in the

critical cone. Thus, for all h ∈ U it holds S′f (u;h) ∈ H1
0 (I(f(u))) and

〈LS′f (u;h)− f ′(u;h), z − S′f (u;h)〉 ≥ 0 ∀ z ∈ H1
0 (I(f(u))) ⊂ KKψ(y, ξ).

Since H1
0 (I(f(u))) is a linear subspace, the variational inequality becomes a

variational equation and thus S′f (u;h) is determined by the unique solution
of (6.16) for D :=q I(f(u)).
On the other hand, the image of Sf (u; ·) is also contained in the linear hull

of the critical cone KKψ(y, ξ), and this is the set H1
0 (Ω\As(f(u))). We argue

that the inequality

〈LS′f (u;h)− f ′(u;h), z − S′f (u;h)〉 ≥ 0

is fulfilled for all test functions z from H1
0 (Ω \ As(f(u))), and not only from

the subset KKψ(y, ξ).
Adopting the linearity arguments from the proof of Theorem 4.3, one can

also use test functions from the negative critical cone. Let z ∈ H1
0 (Ω \

As(f(u))) be arbitrary. Since the two sets Ω \ (As(f(u)) ∪ Aψ(f(u))) and
Ω \ (As(f(u)) ∪ Aϕ(f(u))) are a quasi-covering of Ω \ As(f(u)), we can
find a sequence (znψ + zϕn )n∈N converging to z and fulfilling znψ ∈ H1

0 (Ω \
(As(f(u)) ∪ Aϕ(f(u)))) and zϕn ∈ H1

0 (Ω \ (As(f(u)) ∪ Aψ(f(u)))), see the
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proof of Lemma 2.29. Considering positive and negative parts, we write

znψ = (znψ)+ − (znψ)− and zϕn = (zϕn )+ − (zϕn )−.

The representation in (6.12) implies that (znψ)+, (znψ)−, −(zϕn )+ and −(zϕn )−
are elements of the critical cone. This shows

〈LS′f (u;h)− f ′(u;h), znψ + zϕn − S′f (u;h)〉 ≥ 0

for all n ∈ N. Taking the limit n→∞ and observing that H1
0 (Ω \As(f(u)))

is a linear subspace we obtain

〈LS′f (u;h)− f ′(u;h), z〉 = 0

for all z ∈ H1
0 (Ω \As(f(u))).

Consider now an arbitrary quasi-open set D with I(u) ⊆q D ⊆q Ω \
As(f(u)). Then we have H1

0 (I(f(u))) ⊆ H1
0 (D) ⊆ H1

0 (Ω \ As(f(u))) and
together with the previous observations this implies that for arbitrary h ∈ U ,
S′f (u;h) is the solution of (6.16).

6.3 Monotonicity of the active and strictly active
sets

Now, we study the monotonicity of the active and strictly active sets. Within
this section, we specify our notation and write Sϕψ,f depending on ψ and ϕ
instead of Sf for the solution operator of (BOPf ).
The monotonicity of the active sets is a direct consequence of Lemma 6.2.

Lemma 6.12 Assume that L ∈ L(H1
0 (Ω), H−1(Ω)) satisfies Assump-

tion 6.1(1.). Let ψ : Ω → R ∪ {−∞} be quasi upper-semicontinuous and
let ϕ : Ω→ R∪{+∞} be quasi lower-semicontinuous such that the admissible
set Kϕ

ψ in (6.1) is nonempty. Suppose the conditions of Assumption 6.2(1.)
on f and U are satisfied. Let u1, u2 ∈ U satisfy u1 ≥U u2. Then
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1. Aψ(f(u1)) ⊆q Aψ(f(u2)),
2. Aϕ(f(u1)) ⊇q A

ϕ(f(u2)).

The following lemma is an auxiliary result and presents monotonicity prop-
erties of the variational inequality (BOPf ) with respect to one of the obsta-
cles. The proof is very similar to the one of Proposition 3.2 on monotonicity
with respect to the force terms.

Lemma 6.13 Assume that L ∈ L(H1
0 (Ω), H−1(Ω)) satisfies Assump-

tion 6.1(1.). For i = 1, 2, let ψi : Ω → R ∪ {−∞} be quasi upper-
semicontinuous and let ϕ : Ω → R ∪ {+∞} be quasi lower-semicontinuous
such that the admissible sets Kϕ

ψi
in (6.1) are nonempty. Let ζ ∈ H−1(Ω).

Then ψ1 ≥ ψ2 q.e. in Ω implies Sϕψ1,id
(ζ) ≥ Sϕψ2,id

(ζ) a.e. and q.e. in Ω.

Proof. Set yi := Sϕψi,id(ζ). We test the variational inequality characterizing y1

with z1 = max(y1, y2) = y1 + (y2− y1)+ ∈ Kϕ
ψ1

and the variational inequality
characterizing y2 with z2 = min(y1, y2) = y2− (y2−y1)+ ∈ Kϕ

ψ2
, respectively,

and obtain

0 ≤ 〈Ly1 − ζ, z1 − y1〉 = 〈Ly1 − ζ, (y2 − y1)+〉

and

0 ≤ 〈Ly2 − ζ, z2 − y2〉 = 〈Ly2 − ζ,−(y2 − y1)+〉.

Summing up both inequalities we obtain

〈Ly1 − Ly2, (y2 − y1)+〉 ≥ 0.

By strict T-monotonicity, see (3.3), we have (y2 − y1)+ = 0, i.e., y1 ≥ y2 a.e.
and q.e. in Ω.

The following proposition is a counterpart to the result in Proposition 4.14.
The proof is slightly different due to the presence of the upper obstacle and
since the obstacles are assumed to be in H1(Ω), and not merely quasi upper-/
lower-semicontinuous functions.
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Proposition 6.14 Suppose ψ,ϕ satisfy the conditions of Assumption 6.1(2.).
Let ζ ∈ H−1(Ω) and let v ∈ H1

0 (Ω)+ such that {v > 0} ⊆q Ω \ As
ψ(ζ). Then

it holds Sϕψ,id(ζ) = Sϕψ−v,id(ζ).

Proof. Obviously, ψ − v ≤ Sϕψ,id(ζ) ≤ ϕ, i.e., Sϕψ,id(ζ) ∈ Kϕ
ψ−v. Now, let

z ∈ Kϕ
ψ−v be arbitrary. Using (ψ − z)+− = 0 q.e. on As

ψ(ζ) which implies

〈LSψ,id(ζ)− ζ,−(ψ − z)+〉 = −
∫

Ω
−(ψ − z)+ dξ̃ϕ ≥ 0,

see Corollary 6.10, we obtain

〈LSϕψ,id(ζ)− ζ, z − Sϕψ,id(ζ)〉

= 〈LSϕψ,id(ζ)− ζ,max(z, ψ)− Sϕψ,id(ζ)〉+ 〈LSϕψ,id(ζ)− ζ,−(ψ − z)+〉

≥ 0.

Here, we have used the variational inequality characterizing Sϕψ,id(ζ) since
ψ ≤ max(z, ψ) ≤ ϕ. This shows Sϕψ,id(ζ) = Sϕψ−v,id(ζ).

Before we are able to derive montonicity properties of the strictly active
sets let us state the following auxiliary result.

Lemma 6.15 Let ζ ∈ H−1(Ω). Then we have −Sϕψ,id(ζ) = S−ψ−ϕ,id(−ζ).
Moreover, Aψ(ζ) =q Ã−ψ(−ζ) and Aϕ(ζ) =q Ã−ϕ(−ζ). Here, Ã−ϕ(ζ) =q

{ω ∈ Ω | S−ψ−ϕ,id(ζ)(ω) = −ϕ(ω)} and Ã−ψ(ζ) =q {ω ∈ Ω | S−ψ−ϕ,id(ζ)(ω) =

−ψ(ω)} denote the respective active sets for S−ψ−ϕ,id(ζ).
Furthermore, if the conditions of Assumption 6.1 are fulfilled, we have
As
ψ(ζ) =q Ã

−ψ
s (−ζ) and Aϕs (ζ) =q Ã

s
−ϕ(−ζ). Here, Ã−ψs (ζ), Ãs

−ϕ(ζ) denote
the strictly active sets for S−ψ−ϕ,id(ζ).

Proof. First, let us note that for z ∈ H1
0 (Ω) the inequalities ψ ≤ z ≤ ϕ are

valid if and only if −ϕ ≤ −z ≤ −ψ. This implies

−Kϕ
ψ = K−ψ−ϕ .
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Thus, −Sϕψ,id(ζ) ∈ K−ψ−ϕ . Let now z ∈ K−ψ−ϕ be arbitrary. Then we have

〈L(−Sϕψ,id(ζ)) + ζ, z − (−Sϕψ,id(ζ))〉

= −〈LSϕψ,id(ζ)− ζ, z − (−Sϕψ,id(ζ))〉

= 〈LSϕψ,id(ζ)− ζ,−z − Sϕψ,id(ζ)〉

≥ 0.

This yields −Sϕψ,id(ζ) = S−ψ−ϕ,id(−ζ).

Now, it holds S−ψ−ϕ,id(−ζ)(ω) = −ψ(ω) if and only if Sϕψ,id(ζ)(ω) = ψ(ω)

and we have S−ψ−ϕ,id(−ζ)(ω) = −ϕ(ω) if and only if Sϕψ,id(ζ)(ω) = ϕ(ω), thus
Aψ(ζ) =q Ã

−ψ(−ζ) and Aϕ(ζ) =q Ã−ϕ(−ζ).
In addition, we have

LSϕψ,id(ζ)− ζ = −(LS−ψ−ϕ,id(−ζ)− (−ζ)).

This shows the statements for the strictly active sets.

Remark 6.16 If f : U → H−1(Ω) satisfies f(−u) = −f(u) for all u ∈ U ,
then we obtain −Sϕψ,f (u) = S−ϕ−ψ,f (−u).

Now, we check the monotonicity of the strictly active sets. The proof is
related to the proof of Lemma 4.15.

Proposition 6.17 Suppose Assumption 6.1 is satisfied. Assume ζ1, ζ2 are
elements of H−1(Ω) and suppose ζ1 ≥ ζ2. Then it holds

1. As
ψ(ζ1) ⊆q A

s
ψ(ζ2),

2. Aϕs (ζ1) ⊇q A
ϕ
s (ζ2).

In particular, let f, U fulfill the conditions of Assumption 6.2(1.). Assume
u1, u2 are elements of U and suppose u1 ≥U u2. Then it holds

1. As
ψ(f(u1)) ⊆q A

s
ψ(f(u2)),

2. Aϕs (f(u1)) ⊇q A
ϕ
s (f(u2)).

Proof. 1. Define

U :=q {Sϕψ,id(ζ1)− ψ < (ϕ− ψ)/2}. (6.17)
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Then U is quasi-open, see Lemma 2.22, and As
ψ(ζ1) ⊆q Aψ(ζ1) ⊆q U ⊆q

Iϕ(ζ1) holds.
Assume U \ As

ψ(ζ2) 6=q ∅ (otherwise the assertion follows directly). Fix v ∈
H1

0 (U)+ satisfying {v > 0} =q U \As
ψ(ζ2), v ≤ (ϕ− ψ)/2, see Lemma 2.31.

Let yv(t) = Sϕψ−tv,id(ζ1), t ∈ [0, 1], and set ȳv(t) := yv(t) + tv. Note that
ȳv(t) ∈ Kϕ

ψ for each t ∈ [0, 1] since ψ ≤ ȳv(t) = yv(t) + tv ≤ yv(0) + tv ≤ ϕ

by Lemma 6.13 and the definition of U and v.
Then it holds

〈Lyv(t)− ζ1, z − yv(t)〉 ≥ 0 ∀ z ∈ Kϕ
ψ−tv

which is equivalent to

〈Lȳv(t)− ζ1 − tLv, z̄ − ȳv(t)〉 ≥ 0 ∀ z̄ ∈ Kϕ+tv
ψ .

This in turn implies

〈Lȳv(t)− ζ1 − tLv, z̄ − ȳv(t)〉 ≥ 0 ∀ z̄ ∈ Kϕ
ψ .

We conclude yv(t) = Sϕψ,id(T (tv)) − tv with T : H1
0 (Ω) → H−1(Ω), v 7→ ζ1 +

Lv. Since Sϕψ,id is directionally differentiable in the Hadamard sense, we can
apply the chain rule for the directional derivatives and obtain

y′v(0; 1) = (Sϕψ,id)′(T (0);T ′(0; v))− v = (Sϕψ,id)′(ζ1;Lv)− v.

Since (Sϕψ,id)′(ζ1;Lv) is 0 q.e. on the strictly active set As(ζ1), compare Propo-
sition 6.3 and, in particular, Lemma 6.9, we have y′v(0; 1) = −v < 0 q.e. on
As(ζ1) ∩ {v > 0}.
Thus, by reducing the lower obstacle on a subset of As

ψ(ζ1) the solution with
respect to the new obstacle will drop on this set.
Now, we show the statement by contradiction. Therefore, assume the set
W ⊆ Ω is a set of positive capacity which is (lower) weakly active for ζ2 and
(lower) strictly active for ζ1, more precisely,

W ⊆q A
s
ψ(ζ1) ⊆q Aψ(ζ1) ⊆q Aψ(ζ2) and W ⊆q Ω \As

ψ(ζ2), (6.18)
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where we have used the inclusion of the active sets, see Lemma 6.12. Then
U as in (6.17) is a quasi-open neighborhood of W contained in Iϕ(ζ1).
As above, let v ∈ H1

0 (U)+ satisfy {v > 0} =q U \ As
ψ(ζ2). Then, Proposi-

tion 6.14 yields

Sϕψ−v,id(ζ2) = Sϕψ,id(ζ2) (6.19)

and on W we have

Sϕψ−v,id(ζ1)|W < Sϕψ,id(ζ1)|W = Sϕψ,id(ζ2)|W (6.20)

by the structure of the directional derivative with respect to the obstacle and
by (6.18). Putting (6.19) and (6.20) together, we see that

Sϕψ−v,id(ζ2) > Sϕψ−v,id(ζ1)

on W . On the other hand, Sϕψ−v,id(ζ1) ≥ Sϕψ−v,id(ζ2) since ζ1 ≥ ζ2, see
Lemma 6.2. Thus, such a set W cannot exist and we conclude As

ψ(ζ1) ⊆q

As
ψ(ζ2).

2. By Lemma 6.15, we have Aϕs (ζi) =q Ã
s
−ϕ(−ζi) for i = 1, 2, where we use

the same notation as in Lemma 6.15. Now, the first part of the lemma implies
the statement, since

Aϕs (ζ1) =q Ã
s
−ϕ(−ζ1) ⊇q Ã

s
−ϕ(−ζ2) =q A

ϕ
s (ζ2).

Now, for f and U fulfilling the conditions of Assumption 6.2(1.), the state-
ments As

ψ(f(u1)) ⊆q A
s
ψ(f(u2)) and Aϕs (f(u1)) ⊇q A

ϕ
s (f(u2)) follow since f

is increasing.

6.4 Mosco convergence

For the rest of the chapter we use again the notation Sf for the solution
operator of (BOPf ).
The goal of this section is to choose a suitable characterization of the
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Gâteaux derivatives such that for arbitrary u ∈ U we can show the con-
vergence S′f (un) → Ξ in the strong operator topology for a sequence
(un)n∈N ⊆ DSf = {v ∈ U | Sf is Gâteaux differentiable at v} converging
to u and characterize the limit Ξ. Recall that the Gâteaux derivatives are
solution operators of variational equations on spacesH1

0 (Dn) where the quasi-
open sets Dn satisfy I(f(un)) ⊆q Dn ⊆q Ω \As(f(un)), see Theorem 6.11,
As in the analysis of the unilateral obstacle problem, cf. Sections 4.4.2

and 4.5, the individual parts of the active sets show a stable behavior in
a point u ∈ U when either an increasing or decreasing sequence (un)n∈N
converging to u ∈ U is considered. Thus, we consider complements of suitable
compositions of active and strictly active sets with respect to both obstacles as
candidates for the sequences (Dn)n∈N for increasing and decreasing (un)n∈N.
Note that such setsDn, n ∈ N, satisfy I(f(un)) ⊆q Dn ⊆q Ω\As(f(un)). This
means that if the elements un are points at which Sf is Gâteaux differentiable,
the Mosco convergence implies the convergence of the Gâteaux derivatives,
see Proposition 4.9.
Already in the case of the unilateral obstacle problem, the active sets

showed a stable behavior for increasing sequences (un)n∈N while the strictly
active sets showed a stable behavior for decreasing sequences (un)n∈N, com-
pare Sections 4.4.2 and 4.5. This behavior carries over to the active and
strictly active sets with respect to the lower obstacle for the bilateral obsta-
cle problem. The behavior of the active and strictly active sets with respect
to the upper obstacle problem is reverse. Thus, for arbitrary u ∈ U , this
motivates us to show the Mosco convergence

H1
0 (I(f(un)) ∪Aϕw(f(un)))

n→∞→ H1
0 (I(f(u)) ∪Aϕw(f(u)))

for an increasing sequence (un)n∈N converging to u and the Mosco conver-
gence

H1
0 (I(f(un)) ∪Aw

ψ(f(un)))
n→∞→ H1

0 (I(f(u)) ∪Aw
ψ(f(u)))

for a decreasing sequence (un)n∈N converging to u. Note that in gen-
eral, none of the sequences (H1

0 (I(f(un)) ∪Aϕw(f(un))))n∈N, (H1
0 (I(f(un)) ∪

Aw
ψ(f(un))))n∈N is monotone.
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Ω

ψ

ϕ

(a) An instance of the bilateral obstacle problem for force terms ζ ≤ 0, ζ = 0 and
ζ ≥ 0

(b) Corresponding sets Aψ(ζ) ∪ Aϕs (ζ) =q (I(ζ) ∪ Aϕw(ζ)){ for the different choices
of ζ

(c) Corresponding sets As
ψ(ζ) ∪ Aϕ(ζ) =q (I(ζ) ∪ Aw

ψ(ζ)){ for the different choices
of ζ

Figure 6.4. Influence of monotonicity in the behavior of active and strictly active
sets for the bilateral obstacle problem
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In Fig. 6.4, solutions of the bilateral obstacle problem for a family of values
for ζ ∈ H−1(Ω) are illustrated and the respective parts of the active set
considered here are depicted.
The following result establishes the Mosco convergence.

Theorem 6.18 Suppose Assumption 6.1 is satisfied and let f , U fulfill the
conditions of Assumption 6.2(1.). Additionally, assume that f is continuous.
Consider an arbitrary u ∈ U .

1. Let (un)n∈N ⊆ U be an increasing sequence with un → u in U . Then
H1

0 (I(f(un)) ∪ Aϕw(f(un))) → H1
0 (I(f(u)) ∪ Aϕw(f(u))) in the sense of

Mosco.
2. Let (un)n∈N ⊆ U be a decreasing sequence with un → u in U . Then
H1

0 (I(f(un)) ∪ Aw
ψ(f(un))) → H1

0 (I(f(u)) ∪ Aw
ψ(f(u))) in the sense of

Mosco.

Proof. 1. Initially, we show the first condition of Mosco convergence stated
in Definition 4.7. Therefore, let v ∈ H1

0 (I(f(u)) ∪ Aϕw(f(u))). Since we can
consider positive and negative parts separately, we can assume w.l.o.g. v ≥ 0.
We can rewrite the function space as

H1
0 (I(f(u)) ∪Aϕw(f(u)))

= {z ∈ H1
0 (Ω) | z = 0 q.e. on Aψ(f(u)) and z = 0 q.e. on Aϕs (f(u))}.

Since Aϕs (f(un)) ⊆q A
ϕ
s (f(u)) for all n ∈ N, see Proposition 6.17, it holds

v = 0 q.e. on Aϕs (f(un)) for all n ∈ N.
Since Sid is Lipschitz continuous, see Theorem 6.1, and f is assumed to be
continuous, we have Sf (un)→ Sf (u) in H1

0 (Ω). Thus, we conclude Sf (un)→
Sf (u) for a subsequence pointwise quasi-everywhere, see Lemma 2.28. This
means

cap

(
Iψ(f(u)) \

⋃
n∈N

Iψ(f(un))

)
= 0,

i.e., (Iψ(f(un)))n∈N is a quasi-covering of Iψ(f(u)), which is increasing in n,
see Lemma 6.12. We can therefore find a sequence (vn)n∈N ⊆ H1

0 (Ω) with
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vn → v in H1
0 (Ω) and vn = 0 q.e. on Aψ(f(un)), see Lemma 2.29. Since

v ≥ 0, by considering positive parts, we can assume that (vn)n∈N ⊆ H1
0 (Ω)+.

By setting

zn := min(vn, v)

we have zn ∈ H1
0 (I(f(un)) ∪ Aϕw(f(un))) for all n ∈ N as well as zn → v in

H1
0 (Ω).

Now, let us verify the second condition for Mosco convergence, cf. Defi-
nition 4.7. To this end, let (vn)n∈N ⊆ H1

0 (Ω) be a sequence with vn ∈
H1

0 (I(f(un)) ∪ Aϕw(f(un))) for all n ∈ N. Assume there is a subsequence
(vnk)k∈N with vnk ⇀ v for some v ∈ H1

0 (Ω) as k → ∞. Since Aψ(f(u)) ⊆q

Aψ(f(unk)) for all k ∈ N, see Lemma 6.12, we conclude v ∈ H1
0 (Iψ(f(u))) by

Mazur’s lemma. Using Corollary 6.10, from vn = 0 q.e. on Aϕs (f(un)) and
vn = 0 q.e. on Aψ(f(un)) ⊇q A

s
ψ(f(un)) we conclude

〈LSf (un)− f(un), |vn|〉 =

∫
Ω
|vn| dξ̃nψ −

∫
Ω
|vn| dξ̃ϕn = 0

for all n ∈ N. From vnk ⇀ v in H1
0 (Ω) we conclude |vnk | ⇀ |v| in H1

0 (Ω),
see Proposition 2.19(2.). Since also LSf (unk) − f(unk) → LSf (u) − f(u) in
H−1(Ω) we deduce

0 = 〈LSf (u)− f(u), |v|〉 = −
∫

Ω
|v| dξϕ

using v = 0 q.e. on Aψ(f(u)) ⊇q As
ψ(f(u)) as derived above, cf. Corol-

lary 6.10. Finally, this implies v = 0 ξϕ-a.e. on Ω and thus, using again
Corollary 6.10, v = 0 q.e. on Aϕs (f(u)). We have shown that v is an ele-
ment of H1

0 (I(f(u)) ∪ Aϕw(f(u))), and thus, the second condition for Mosco
convergence is verified.
2. Again, this part of the lemma follows from the first part of the lemma
combined with Lemma 6.15.
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6.5 Generalized derivatives for the bilateral obstacle
problem

In this section, we will present a characterization of two generalized deriva-
tives for the solution operator Sf of (BOPf ).

Theorem 6.19 Suppose the conditions of Assumption 6.1 and Assump-
tion 6.2 are satisfied. Let u ∈ U be arbitrary. For h ∈ U , denote by
ΞI(f(u))∪Aϕw(f(u))(h) the solution of

Find δ ∈ H1
0 (I(f(u)) ∪Aϕw(f(u))) :

〈Lδ − f ′(u;h), z〉 = 0 ∀ z ∈ H1
0 (I(f(u)) ∪Aϕw(f(u)))

and by ΞI(f(u))∪Aw
ψ(f(u))(h) the solution of

Find δ ∈ H1
0 (I(f(u)) ∪Aw

ψ(f(u))) :

〈Lδ − f ′(u;h), z〉 = 0 ∀ z ∈ H1
0 (I(f(u)) ∪Aw

ψ(f(u))).

Then it holds

ΞI(f(u))∪Aϕw(f(u)),ΞI(f(u))∪Aw
ψ(f(u)) ∈ ∂ss

BSf (u). (6.21)

Proof. By Proposition 4.11, there is an increasing sequence (u+
n )n∈N and a

decreasing sequence (u−n )n∈N satisfying

(u+
n )n∈N, (u

−
n )n∈N ⊆ DSf = {v ∈ U | Sf is Gâteaux differentiable at v}

Theorem 6.18 implies that the sequence (H1
0 (I(f(u+

n )) ∪ Aϕw(f(u+
n ))))n∈N

converges to H1
0 (I(f(u)) ∪ Aϕw(f(u))) and the sequence (H1

0 (I(f(u−n )) ∪
Aw
ψ(f(u−n ))))n∈N converges to H1

0 (I(f(u))∪Aw
ψ(f(u))) in the sense of Mosco.

Thus, recalling the characterization of the Gâteaux derivatives in The-
orem 6.11 and using Proposition 4.9, we conclude that the sequences
of Gâteaux derivatives (S′f (u+

n ))n∈N, respectively (S′f (u−n ))n∈N converge to
ΞI(f(u))∪Aϕw(f(u)), respectively ΞI(f(u))∪Aw

ψ(f(u)) in the strong operator topol-
ogy of L(U,H1

0 (Ω)). This shows (6.21).



6.6. Adjoint representation of Clarke subgradients 145

6.6 Adjoint representation of Clarke subgradients

As in the unilateral case, see Section 4.7, we can find an adjoint representation
for the Clarke subgradient of a reduced objective function.
Therefore, let J : H1

0 (Ω)×U → R be a continuously differentiable objective
function. We consider an optimization problem minimizing this objective
function, which is constrained by the bilateral obstacle problem

min
y,u

J(y, u)

subject to y ∈ Kϕ
ψ ,

〈Ly − f(u), z − y〉 ≥ 0 ∀ z ∈ Kϕ
ψ .

We present a formula for two generalized derivatives contained in Clarke’s
generalized differential ∂CĴ(u), see Definition 2.16, that can be obtained for
the reduced objective function

Ĵ(u) := J(Sf (u), u)

in an arbitrary point u ∈ U .

Corollary 6.20 Suppose that the conditions of Assumption 6.1 and Assump-
tion 6.2 are satisfied and let u ∈ U be arbitrary. Let J : H1

0 (Ω) × U → R be
a continuously differentiable objective function and denote by q be the unique
solution of the variational equation

Find q ∈ H1
0 (D) :

〈L∗q, v〉 = 〈Jy (Sf (u), u) , v〉 ∀ v ∈ H1
0 (D).

(6.22)

Then the element

f ′(u)∗q + Ju(Sf (u), u)

is contained in Clarke’s generalized differential ∂CĴ(u). In (6.22), the respec-
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tive sets

D :=q I(f(u)) ∪Aϕw(f(u)) or D :=q I(f(u)) ∪Aw
ψ(f(u))

can be chosen and result in a particular generalized derivative.
Here, Jy and Ju denote the continuous Fréchet derivatives of J with re-

spect to y and u, respectively, f ′(u)∗ ∈ L
(
H1

0 (Ω), U∗
)
is the (Banachian)

adjoint operator of f ′(u) ∈ L
(
U,H−1(Ω)

)
and L∗ ∈ L

(
H1

0 (Ω), H−1(Ω)
)
is

the (Banachian) adjoint operator of L ∈ L
(
H1

0 (Ω), H−1(Ω)
)
.

Proof. Using the elements of ∂ss
BSf (u) for the solution operator Sf of the

bileratal obstacle problem (BOPf ) derived in Theorem 6.19, the proof is
similar to the proof of Theorem 4.21.



CHA PTER 7
Error estimates for generalized

derivatives

This chapter treats the numerical challenges arising when computing inexact
subgradients for the solution operator of a reduced objective function. This
task arises when, e.g., computing a subgradient in a bundle method, see
[HU19].
There are mainly two aspects where inexactness and discretization errors

appear in this context. First of all, the solution of the obstacle problem itself
(which gives the state in the optimization problem) is determined only inex-
actly and one obtains discrete solutions. This means that the corresponding
exact active and strictly active sets are not available and one has to compute
the generalized derivative or the subgradient on an inexact domain, see (7.1).
We focus on this difficulty in the present chapter. Secondly, the system for
the generalized derivative is discretized itself, which induces inexactness due
to discretization errors.
We proceed as follows. In Section 7.1, we introduce the continuous and dis-

crete obstacle problem that we consider in this chapter. In particular, we will
see how the discrete solution of the obstacle problem affects the continuous
systems for the generalized derivatives. An error estimate for the generalized
derivative and the inexact generalized derivative based on the discrete solu-
tion of the obstacle problem is derived in Section 7.2. It relies on suitable
approximations of the respective domain on which the continuous general-

147
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ized derivative is computed from the in- and outside. These approximations
are constructed in the upcoming parts of the chapter. To find appropriate
approximations, it is not possible to work with arbitrarily irregular data.
Therefore, we review some fundamental regularity results for the obstacle
problem in Section 7.3. Section 7.4 follows up with a survey on L∞-error
estimates for the obstacle problem available in the literature, which give an
upper bound for the maximum pointwise error between the continuous and
discrete solutions of the obstacle problem. These error estimates are the ba-
sis for constructing convergent discrete subset approximations of the inactive
set. The definition is shown in Section 7.5 and properties of the approxima-
tions are investigated. It is motivated in Section 7.6 that the inactive set is
very hard to approximate from the outside. Therefore, the approximations
of the inactive set found in Section 7.5 are used to construct both sub- and
superset approximations of the complement of the strictly active set. For the
construction, error estimates for the distances of the discrete and continuous
free boundaries, the boundaries seperating the (inexact) active and inactive
sets, are necessary and a version is presented in Section 7.6. These types
of estimates for free boundaries usually rely on a so-called nondegeneracy
condition, a regularity condition for the continuous problem that ensures a
minimum growth of the solution away from the obstacle outside the active
set and which originally goes back to Caffarelli. Based on this regularity as-
sumption, the structure of the weakly and strictly active set is investigated
in Section 7.6.2. Using the structure of the weakly and strictly active sets, in
Section 7.6.3, sub- and superset approximations of Ω \As(ζ) are constructed
and the requirements for the usage in the error estimates for the generalized
derivatives are verified. In Section 7.7, an alternative discrete subset approx-
imation of the inactive set is presented that can be used instead of the set
introduced in Section 7.5. Finally, our findings are summarized in Section 7.8.
The chapter concludes with some numerical examples in Section 7.9.
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7.1 Inexact generalized derivative on inexact domain

In this subsection, we introduce the overall setting, i.e., the continuous and
discrete obstacle problem and the resulting continuous and inexact systems
for generalized derivatives.
We assume that Ω ⊆ Rd is an open, bounded domain. Let us consider the

following continuous problem for a given ζ := f(u) ∈ L2(Ω) and ψ ∈ H1(Ω)

Find y ∈ Kψ : 〈−∆y − ζ, z − y〉 ≥ 0 ∀ z ∈ Kψ. (COP)

As usual, the set Kψ is defined as

Kψ := {z ∈ H1
0 (Ω) : z ≥ ψ a.e. in Ω}.

The variational inequality (COP) coincides with the variational inequality
(OPid) for L = −∆.
Let (Th)h>0 be a family of triangulations of Ω, i.e., a family of partitionings

of Ω into triangles. We assume that the triangulations are regular and quasi-
uniform and denote by h > 0 the mesh size, see [BS08] for details.
Now, for some h > 0, the solution of the obstacle problem is computed on

a discrete level as the solution of

Find yh ∈ Kh : 〈−∆yh − ζ, zh − yh〉 ≥ 0 ∀ zh ∈ Kh (DOP)

with

Kh := {zh ∈ V0
h | zh ≥ ψh a.e. in Ω}

as well as

Vh := {v ∈ C(Ω̄) | v|T is affine for all T ∈ Th} and V0
h := Vh ∩H1

0 (Ω).

Here, ψh = Lhψ is the discrete obstacle and Lh is the Lagrange interpolation
operator onto Vh. This is the formulation of a discrete obstacle problem,
which can also be found, e.g., in [NSV05]. The discrete variational inequality
(DOP) admits a unique solution, see [Fri88], [KS00], [NSV05]. For a fixed
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ζ ∈ L2(Ω) we denote the solution by yh. Moreover, it holds yh → y in H1
0 (Ω)

as h→ 0, where y denotes the solution of (COP), see e.g., [Cia75, Thm. 9.2].
Note that, if Ω is not polyhedral, we could consider triangulations of Ωh

instead, where Ωh ⊆ Ω is polyhedral. Then zh ≥ ψh is prescribed only on Ωh

and for the elements in Vh we demand v|Ω̄\Ωh = 0.
Let J : H1

0 (Ω)×U → R be a continuously differentiable objective function.
Based on the discrete solution yh the goal is to find the solution qh to

Find qh ∈ H1
0 (Dh) : 〈−∆qh, vh〉 = 〈Jy (yh, u) , vh〉 ∀ vh ∈ H1

0 (Dh) (7.1)

and to estimate the error ‖q − qh‖H1
0 (Ω) relative to the solution q to

Find q ∈ H1
0 (D) : 〈−∆q, v〉 = 〈Jy (y, u) , v〉 ∀ v ∈ H1

0 (D). (7.2)

Here, D is a quasi-open set with I(ζ) ⊆ D ⊆ Ω \ As(ζ) admissible for the
computation of a generalized derivative for the reduced objective function
Ĵ = J(Sf (·), ·), see Theorem 4.21 and Section 5.2 andDh is an approximation
thereof, based on the discrete solution yh. We will discuss later on howDh can
be defined. Then the estimate for the error ‖q − qh‖H1

0 (Ω) yields an estimate
for the error of the Clarke subgradients

ξ(u) := f ′(u)∗q + Ju(y, u) ∈ ∂CĴ(u) and ξh(u) := f ′(u)∗qh + Ju(yh, u)

(7.3)

for the reduced objective function Ĵ(·) := J(Sf (·), ·) via

‖ξ(u)− ξh(u)‖U∗
≤ ‖f ′(u)∗‖L(H1

0 (Ω),U∗)‖q − qh‖H1
0 (Ω) + ‖Ju(y, u)− Ju(yh, u)‖U∗ ,

see Theorem 4.21. In this chapter, we always assume that the requirements
on U and f : U → H−1(Ω) from Assumption 4.2 are fulfilled so that the
obtained results in Chapter 4 are applicable. With a little abuse of language,
we often call the solutions of (7.1) and (7.2) (inexact) generalized derivatives
since they give the respective Clarke subgradients as in (7.3).
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7.2 Error estimates for approximate Clarke
subgradients

In this section we develop an error estimate for the inexact generalized deriva-
tives of (7.1). Here, we consider decreasing sequences (hn)n∈N of positive
numbers with hn → 0 in the context of triangulations with mesh size hn.
This describes the situation of successively refined meshes with mesh sizes
hn → 0. Let us also fix the notation yn := yhn for the solution of (DOP),
qn := qhn for the solution of (7.1) and Dn := Dhn for a discrete approxima-
tion of the quasi-open set D with I(ζ) ⊆ D ⊆ Ω \ As(ζ). An appropriate
choice of the set D and the approximations Dn will be given later on. In the
following sections, we always assume Dn ⊆ D.
Note that the mere Mosco convergence of (H1

0 (Dn))n∈N to H1
0 (D) yields

that the solutions (qn)n∈N of (7.1) converge to the solution q of (7.2), see
Proposition 4.9. For the usage of such approximate subgradients in, e.g.,
bundle methods, compare [HU19], it would be useful to know, a priori or a
posteriori, a computable upper bound for the error ‖qn−q‖H1

0 (Ω) which can be
computed in each iteration of the bundle method and which gets arbitrarily
small as n → ∞. This helps in estimating the rate of convergence and in
designing stopping criteria.
We will first find an upper bound for the error ‖q− qn‖H1

0 (Ω) which cannot
immediately be evaluated with knowledge only of the discrete solution and
not the continuous one. Afterwards, in Corollary 7.3, an error estimate will
be proposed that necessitates the existence of an additional Mosco convergent
superset approximation D̃n of D.
Implicitly, we can estimate the error ‖q − qn‖H1

0 (Ω) for the solutions qn, q
of (7.1) and (7.2) in the following way.

Lemma 7.1 Let D be a quasi-open set with I(ζ) ⊆ D ⊆ Ω \ As(ζ) and, for
n ∈ N, let Dn ⊆ D be quasi-open subsets. Denote by q ∈ H1

0 (Ω) the solution
of (7.2) and for n ∈ N denote by qn the solution of (7.1). Then it holds

‖q − qn‖H1
0 (Ω)

≤ ‖ −∆qn − Jy(yn, u)‖H−1(D) + ‖Jy(yn, u)− Jy(y, u)‖H−1(Ω).
(7.4)
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If H1
0 (Dn)→ H1

0 (D) in the sense of Mosco, we additionally have ‖ −∆qn −
Jy(yn, u)‖H−1(D) → 0 as n→∞.

Proof. Let us note that q−qn ∈ H1
0 (D), but not necessarily q−qn ∈ H1

0 (Dn).
We observe

‖q − qn‖2H1
0 (Ω)

=(∇(q − qn),∇(q − qn))

=(∇q,∇(q − qn))− 〈Jy(y, u), q − qn〉 − (∇qn,∇(q − qn))

+ 〈Jy(y, u), q − qn〉
=− (∇qn,∇(q − qn)) + 〈Jy(y, u), q − qn〉
=− (∇qn,∇(q − qn)) + 〈Jy(yn, u), q − qn〉+ 〈Jy(y, u)− Jy(yn, u), q − qn〉
=− 〈−∆qn − Jy(yn, u), q − qn〉H−1(D),H1

0 (D) + 〈Jy(y, u)− Jy(yn, u), q − qn〉

≤
(
‖ −∆qn − Jy(yn, u)‖H−1(D) + ‖Jy(yn, u)− Jy(y, u)‖H−1(Ω)

)
· ‖q − qn‖H1

0 (Ω).

This implies

‖q − qn‖H1
0 (Ω) ≤ ‖ −∆qn − Jy(yn, u)‖H−1(D) + ‖Jy(yn, u)− Jy(y, u)‖H−1(Ω).

Assume the sequence (H1
0 (Dn))n∈N converges toH1

0 (D) in the sense of Mosco.
Then, by Proposition 4.9, it holds qn → q in H1

0 (Ω) as n → ∞. Since also
yn → y in H1

0 (Ω) as n → ∞ and since J is continuously differentiable we
conclude

(−∆qn − Jy(yn, u))→ (−∆q − Jy(y, u))

in H−1(Ω). This implies (−∆qn − Jy(yn, u)) → (−∆q − Jy(y, u)) = 0 in
H−1(D) by (7.2).

The error estimate (7.4) is not yet suitable, since the H−1(D) norm cannot
be computed without knowledge of the exact set D. Let us establish the
following tool.
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Lemma 7.2 Let pn, p ∈ H−1(Ω) and let D ⊆ Ω be a quasi-open set. As-
sume that pn → p in H−1(Ω) and pn → 0 in H−1(D) as n → ∞. If there
is a sequence (D̃n)n∈N of quasi-open supersets of D with the property that
H1

0 (D̃n)→ H1
0 (D) in the sense of Mosco, then ‖pn‖H−1(D̃n) → 0.

Proof. For p ∈ H−1(Ω) we fix vn ∈ H1
0 (D̃n), ‖vn‖H1

0 (D̃n) ≤ 1, n ∈ N,
with 〈p, vn〉H−1(D̃n),H1

0 (D̃n) ≥ ‖p‖H−1(D̃n) −
1
n . Then, the sequence (vn)n∈N

is bounded in H1
0 (Ω) and we can extract a weakly convergent subsequence

(vnk)k∈N. We denote the weak limit by v. Note that ‖v‖H1
0 (Ω) ≤ 1 by Mazur’s

lemma. By Mosco convergence of H1
0 (D̃n) to H1

0 (D), the weak limit v is in
H1

0 (D). We have

‖p‖H−1(D) ≥ 〈p, v〉H−1(D),H1
0 (D) = 〈p, v〉H−1(Ω),H1

0 (Ω)

= lim
k→∞
〈p, vnk〉H−1(Ω),H1

0 (Ω)

= lim
k→∞
〈p, vnk〉H−1(D̃nk ),H1

0 (D̃nk )

≥ lim
k→∞

(
‖p‖H−1(D̃nk ) −

1

nk

)
.

This, together with ‖p‖H−1(D) ≤ ‖p‖H−1(D̃nk ) for all k ∈ N, which follows

from the inclusion H1
0 (D) ⊆ H1

0 (D̃nk), implies that 〈p, v〉H−1(D),H1
0 (D) =

‖p‖H−1(D). By a subsequence-subsequence argument, we can conclude that(
‖p‖H−1(D̃n)

)
n∈N

converges to ‖p‖H−1(D).

Now, we can estimate

‖pn‖H−1(D̃n) ≤ ‖pn − p‖H−1(D̃n) + ‖p‖H−1(D̃n)

≤ ‖pn − p‖H−1(Ω) + ‖p‖H−1(D̃n)

→ ‖p‖H−1(D).

On the other hand,

‖pn‖H−1(D̃n) ≥ ‖p‖H−1(D̃n) − ‖p− pn‖H−1(D̃n)

≥ ‖p‖H−1(D̃n) − ‖p− pn‖H−1(Ω)
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→ ‖p‖H−1(D)

and we conclude that

‖pn‖H−1(D̃n) → ‖p‖H−1(D) = 0.

As stated in the following corollary, the construction of an outer approx-
imation of D, which is computed based on yn, yields an error estimate for
‖q − qn‖H1

0 (Ω).

Corollary 7.3 Let D be a quasi-open set with I(ζ) ⊆ D ⊆ Ω\As(ζ) and, for
n ∈ N, assume Dn, D̃n are quasi-open sets with

Dn ⊆ D ⊆ D̃n (7.5)

and

H1
0 (Dn)→ H1

0 (D) and H1
0 (D̃n)→ H1

0 (D) (7.6)

in the sense of Mosco. Let qn, q be the solutions of (7.1), (7.2), respectively.
Then the error estimate

‖q − qn‖H1
0 (Ω)

≤ ‖ −∆qn − Jy(yn, u)‖H−1(D̃n) + ‖Jy(yn, u)− Jy(y, u)‖H−1(Ω)
n→∞→ 0

is valid.

Proof. Combining (7.4) with the inclusion H1
0 (D) ⊆ H1

0 (D̃n) for all n ∈ N,
we derive

‖q − qn‖H1
0 (Ω)

≤ ‖ −∆qn − Jy(yn, u)‖H−1(D̃n) + ‖Jy(yn, u)− Jy(y, u)‖H−1(Ω).

As argued in the proof of Lemma 7.1, we have (−∆qn−Jy(yn, u))→ (−∆q−
Jy(y, u)) in H−1(Ω). By Lemma 7.1, it holds ‖−∆qn−Jy(yn, u)‖H−1(D)

n→∞→



7.3. Regularity results for the solution of the obstacle problem 155

0. Now, Lemma 7.2 implies that ‖−∆qn− Jy(yn, u)‖H−1(D̃n)
n→∞→ 0 and the

conclusion follows.

7.3 Short survey on regularity results for the
solution of the obstacle problem

The derivation of error estimates for a generalized derivative that is computed
based on discrete solutions of the obstacle problem will require restrictions
on the data guaranteeing a certain regularity of the solution y of (COP).
Therefore, the purpose of this short section is to collect some established
smoothness results for the solution of the obstacle problem under regularity
assumptions on the data ζ, ψ and Ω.
In the literature, many authors are concerned with regularity results for

the solutions of obstacle problems. Among many others, we mention [CK80],
[Fre72], [Fri88], [KS00] and [Rod87].
In the remainder of this chapter, we always assume that ψ and y are contin-

uous. However, the assumption on y can be verified under mild assumptions
on ζ and ψ, since H2(Ω) elements have continuous representatives in dimen-
sion d = 2, 3. The result is taken from [Rod87, Cor. 5:2.3] and the proof is
based on dual estimates.

Lemma 7.4 Assume ζ ∈ L2(Ω) and ψ ∈ H2(Ω). If Ω is a convex domain or
if ∂Ω is sufficiently smooth, the solution y of (COP) satisfies y ∈ H2(Ω).

Moreover, the following statement concerning the continuity of the solution
of (COP) is true and can be found in [Rod87, Thm. 5:2.7].

Lemma 7.5 Assume ζ ∈ W−1,s(Ω) for some s > d ≥ 2. and let ψ ∈ C(Ω).
If Ω has a Lipschitz boundary, then the solution y of (COP) satisfies y ∈
C(Ω̄) ∩H1

0 (Ω).

We also mention the following result on solutions in spaces of higher regu-
larity which is taken from [KS00, Thm. IV 2.3].
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Ω

ψ

y

Figure 7.1. One-dimensional solution y = Sid(0) of the obstacle problem with
discontinuous second derivatives at ∂A(0)

Lemma 7.6 Let Ω be an open connected domain with suffiently smooth
boundary ∂Ω. Assume there is a number s with d < s < ∞ and suppose
ζ ∈ Ls(Ω) and max(−∆ψ− ζ, 0) ∈ Ls(Ω). Then, the solution y of (COP) is
in H2,s(Ω) ∩ C1,β(Ω) for β = 1− d

s .

In general, the solution y inherits the smoothness of the obstacle. It is
clear that at least on the interior of A(ζ), y will be as regular as ψ. On
I(ζ), regularity theory for the Poisson problem will apply, when ζ ∈ L2(Ω).
Nevertheless, the presence of the obstacle implies that the regularity of the
solution y is limited, regardless of how smooth ψ and ζ are.
This can already be seen in dimension d = 1. Consider a parabolic obstacle

ψ with ψ > 0 somewhere in Ω and ψ < 0 on ∂Ω. We consider the solution
of the obstacle problem for ζ = 0. Note that ψ, ζ ∈ C∞(Ω). The solution of
the obstacle problem is piecewise affine (on the inactive set), satisfies y = 0

on ∂Ω and strikes the obstacle tangentially. The situation is illustrated in
Fig. 7.1. Here, the second derivatives of y are discontinuous on ∂A(0).
In fact, it is shown that the optimal regularity of the obstacle problem is

C1,1, as the following lemma by [BK74, Thm. 1] demonstrates. We mention
also the references [Fre72] and [Fri88].

Lemma 7.7 Assume ζ ∈ C1(Ω) and ψ ∈ C2(Ω). Suppose Ω has a smooth
boundary ∂Ω. Then the solution y of (COP) satisfies y ∈ C1,1(Ω).

In the formulation in [BK74], the admissible set Kψ in (COP) is replaced
by the set of Lipschitz functions v on Ω which satisfy v ≥ ψ on Ω and v = 0

on ∂Ω. This is a convex subset of Kψ. Since under the regularity assump-
tions in Lemma 7.7 the solution y of (COP) is also Lipschitz continuous, see
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Lemma 7.6, y is a solution of the problem considered in [BK74].
Note that this is only a short selection of results concerning the regularity

of solutions to (COP) that show that the assumptions on the solution we have
in this chapter can be fulfilled and can be guaranteed a priori by requiring
the appropriate regularity of the data.

7.4 Short survey on L∞-estimates for the solution
of the discrete obstacle problem

In this section, we will review various types of L∞-error estimates for the
obstacle problems available in the literature.
We aim to obtain inexact generalized derivatives in a point u ∈ U based

on the inexact finite element solution of the obstacle problem depending on
the mesh size h. Since the systems for the generalized derivatives (7.1) and
(7.2) depend on the solution of the obstacle problem y = Sf (u), respectively
yh, itself, or, more precisely, on the complements of the respective active
and strictly active set, the error ‖y − yh‖ is relevant also for the generalized
derivatives. Since the active set A(ζ) = {y = ψ} is characterized by the
pointwise behavior of the solution y, the pointwise error of y−yh is of interest
and is best estimated via the error ‖y − yh‖L∞(Ω) in the L∞(Ω)-norm. Note
that we assume that y is continuous here. Thus, the knowledge of an upper
bound εh for ‖y − yh‖L∞(Ω) helps to control and analyze the error in the
active sets and in their boundaries, the free boundaries, see Section 7.6.1.
A priori L∞-error estimates for the obstacle problem have been derived in

the literature. They are based on the discrete maximum principle of Raviart-
Ciarlet, see [Cia70] and [CR73]. However, the validity of the discrete maxi-
mum principle requires several assumptions on the triangulations.
In [Nit77], for space dimension d = 2, obstacle ψ ∈ W 2,∞(Ω) and for

bounded Ω ⊆ Rd with sufficiently smooth boundary, an estimate of the form

‖y − yh‖L∞(Ω) ≤ Ch2| lnh|‖y‖W 2,∞(Ω) (7.7)
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is derived. From this, for sufficiently smooth data, we can derive the inequal-
ity

‖y − yh‖L∞(Ω) ≤ C̃h2| lnh|(‖ζ‖W 1,∞(Ω) + ‖ψ‖W 2,∞(Ω)). (7.8)

The estimate (7.8) can be obtained from (7.7) as follows. We can combine
the proof of [KS00, Thm. IV 6.3] with [KS00, Lem. IV 5.1, Lem. IV 6.2] to
obtain the inequality (7.8) with Ω replaced by a compact subset K. If ψ < 0

on ∂Ω, we can use [KS00, Cor. IV 6.4] and elliptic regularity theory, see, e.g.,
[GT01], to obtain (7.8).
Moreover, using stability arguments, [Chr17] establishes the estimate

‖y − yh‖L∞(Ωh) ≤ C| lnh|h2−2/q(‖ζ‖Lq(Ω) + ‖ψ‖W 2,q(Ω)) (7.9)

for a bounded domain Ω with sufficiently smooth boundary, ζ ∈ Lq(Ω), ψ ∈
W 2,q(Ω) and 2 < q <∞.
Related results are obtained in [Bai77], [FV82], [MT13], see also [NOS15]

for an overview.
The application of the discrete maximum principle imposes constraints on

the triangulations. To circumvent such assumptions, other approaches yield
a priori L∞-error estimates for the obstacle problem. It is possible to obtain
error estimates in the energy norm, i.e., error estimates for ‖y−yh‖H1(Ω), see
[BHR77], [Mos77]. By using inverse inequalities like

‖vh‖L∞(Ω) ≤ C| lnh|‖vh‖H1(Ω),

in dimension d = 2, see, e.g., [Noc86], a bound for ‖y − yh‖L∞(Ω) can be
obtained. Note that this bound is, in general, not sharp. This strategy is
also mentioned in [Noc86].
In [NSV05], a posteriori L∞(Ω)-error estimates for the obstacle problem

are established. Unlike in a priori analysis, no restrictions in the choice
of triangulations are required, since the continuous maximum principle is
applied within the derivation. Moreover, these error estimates in the L∞(Ω)

norm are used to control the error in the respective active sets. We will focus
more on this detail in Section 7.6.1.
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For this thesis, we do not rely on one specific bound εh for the error and
we do not fix any assumptions on the mesh. By requiring the appropriate
assumptions, any of the L∞(Ω)-error estimates can be used. We use the
notation εh for any upper bound for ‖y− yh‖L∞(Ω) converging to 0 as h→ 0.

7.5 Discrete inner approximation of the inactive set

The goal of this section is to introduce and to analyze the sets In from the
literature, which are subset approximations of the inactive set I(ζ). These
approximations are based on an upper bound for the L∞-error ‖y−yhn‖L∞(Ω).
We will see that the Mosco convergence H1

0 (In) → H1
0 (I(ζ)) can be shown.

The sets In will be the basis to find approximations of D := Ω \As(ζ) in the
upcoming sections.
In the following sections, we again consider sequences (hn)n∈N of mesh sizes

with hn → 0 and use again the notation with subscript n instead of h as in
Section 7.2. In particular, we denote by εn := εhn a convergent upper bound
for ‖y − yn‖L∞(Ω), see Section 7.4.
From the numerical solutions (yn)n∈N of (DOP), we want to obtain a suit-

able approximation of the inactive set I(ζ). Note that the sets {yn > ψ} can
be very different from I(ζ), even for large n ∈ N and when yn → y in L∞(Ω).
In [BP77, Thm. 1.1.], a suitable definition for the approximation In using the
L∞-error εn is proposed. The following result is a slight modification thereof.

Lemma 7.8 Let ζ := f(u) ∈ L∞(Ω) be fixed. Assume y, ψ ∈ C(Ω). Let
(εn)n∈N be such that

‖y − yn‖L∞(Ω) ≤ εn
n→∞→ 0

holds for the solutions y, yn of (COP) and (DOP). Define

In := In(ζ) := {ω ∈ Ω | yn(ω) > ψ(ω) + εn}. (7.10)

Then it holds In ⊆ I(ζ) for all n ∈ N and lim inf
n→∞

In = I(ζ), i.e.,
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Figure 7.2. Subset approximations {yi − εi > 0} of {y > 0} using L∞-error
estimates εi := ‖y − yi‖L∞(Ω) for approximations yi of y, i = 1, 2

⋃
n∈N

⋂
k≥n Ik = I(ζ).

Proof. The first part of the proof can be found in the proof of [NSV05,
Thm. 4.1]. For convenience, we also state it here. Assume ω ∈ A(ζ). Then
it holds

yn(ω) = y(ω) + (yn(ω)− y(ω)) ≤ ψ(ω) + εn.

This shows ω ∈ I{n.
In a similar form, the subsequent part of the proof can be found in [BP77,

Thm. 1.1]. Here, the set In is defined slightly different. Again, we also state
this part of the proof. Assume ω ∈ I(ζ), i.e., y(ω)−ψ(ω) = c for some c > 0.
Let n ∈ N be such that εk < c/2 for all k ≥ n. Then,

yk(ω)− ψ(ω) = c+ yk(ω)− y(ω) ≥ c− εk > εk

for all k ≥ n. This shows ω ∈
⋃
n∈N

⋂
k≥n Ik. All in all, we conclude

lim inf
n→∞

In = I(ζ).

Exemplary, Fig. 7.2 shows the function y(x) = x2 and corresponding L∞-
errors εi for interpolated approximations yi, i = 1, 2. We can see that yi − εi



7.5. Discrete inner approximation of the inactive set 161

are underestimators for y and that the sets {yi − εi > 0} are subsets of
{y > 0}.
In Section 7.7, we will propose an analogue Jn of In using the discrete

obstacle ψn instead of the continuous one ψ. This choice can have advantages
for the implementation compared to the choice In. Let us note that we can
always use Jn instead of In in the following analysis. This will be justified
in Section 7.7. For a clear and simpler presentation, we focus on In now and
introduce the alternative Jn later on in Section 7.7.
Now, we will see that with the choices In from (7.10) we can show the Mosco

convergence H1
0 (In)→ H1

0 (I(ζ)). Recall that with Lemma 7.1, we obtain the
convergence of the solutions of (7.1) with Dn := In to the solution of (7.2)
with D := I(ζ). Moreover, the error estimate (7.4) holds with D = I(ζ). To
establish the Mosco convergence, we first show that the sets

(⋂
k≥n Ik

)
n∈N

are open, which implies that they constitute an open covering of I(ζ), see
Lemma 7.8.

Lemma 7.9 Assume the conditions of Lemma 7.8 are fulfilled. Then the sets⋂
k≥n Ik are open for all n ∈ N.

Proof. Assume n ∈ N and ω ∈
⋂
k≥n Ik ⊆ I(ζ), compare Lemma 7.8. Then

it holds

c := y(ω)− ψ(ω) > 0.

Since y and ψ are continuous, there is C > 0 such that

y(z)− ψ(z) > c/2

for all z ∈ BC(ω). Let n0 ∈ N be such that εk ≤ c/4 for all k ≥ n0. Then it
holds for all k ≥ n0 and for all z ∈ BC(ω)

yk(z)− ψ(z) = yk(z)− y(z) + y(z)− ψ(z)

> −εk + c/2

≥ εk.

We conclude BC(ω) ⊆
⋂
k≥n0

Ik. If n < n0,
⋂
k≥n Ik is the finite intersection
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of
⋂
k≥n0

Ik with open sets and thus contains a ball BC̃(ω). Since ω ∈
⋂
k≥n Ik

was arbitrary, we conclude that
⋂
k≥n Ik is open.

Now, we are able to prove the Mosco convergence.

Theorem 7.10 Assume the conditions of Lemma 7.8 are satisfied. Then it
holds H1

0 (In)→ H1
0 (I(ζ)) in the sense of Mosco.

Proof. Let v ∈ H1
0 (I(ζ)) be arbitrary. The family of sets (

⋂
k≥n Ik)n∈N is

an increasing covering of I(ζ), see Lemma 7.9 and Lemma 7.8. Thus, there
exists a sequence (vn)n∈N with vn → v in H1

0 (I(ζ)) as n → ∞ and such
that vn ∈ H1

0 (
⋂
k≥n Ik) for each n ∈ N, see Lemma 2.29. In particular,

vn ∈ H1
0 (In) since

⋂
k≥n Ik ⊆ In(ζ).

Suppose there is a sequence (wn)n∈N with wn ∈ H1
0 (In) and wnk ⇀ w

in H1
0 (Ω) for some w ∈ H1

0 (Ω) and for a subsequence (wnk)k∈N of (wn)n∈N.
Since In ⊆ I(ζ) holds, see Lemma 7.8, we have wn ∈ H1

0 (I(ζ)) for all n ∈ N.
Then the weak limit w is also in H1

0 (I(ζ)) by Mazur’s lemma.

7.6 Discrete approximations of the complement of
the strictly active set

In this section, we will derive and analyze approximations Dn and D̃n of the
set D := Ω \ As(ζ) in order to obtain an error estimate for the generalized
derivative on the domain D = Ω \As(ζ) as proposed in Corollary 7.3.
We have seen in the preceding section that the sets (In)n∈N as defined

in (7.10) satisfy In ⊆ I(ζ) for all n ∈ N as well as H1
0 (In) → H1

0 (I(ζ)) in
the sense of Mosco, see Lemma 7.8 and Theorem 7.10. Using Lemma 7.1,
we can obtain a convergent sequence of inexact Clarke subgradients (qn)n∈N
by solving (7.1) with Dn := In for all n ∈ N and the limit is the Clarke
subgradient q based onD := I(ζ), compare (7.2). Motivated by Corollary 7.3,
to obtain a computable error estimate for the term ‖q− qn‖H1

0 (Ω) a sequence
(Ĩn)n∈N of quasi-open supersets of I(ζ), such that (H1

0 (Ĩn))n∈N converges to
H1

0 (I(ζ)), would need to be constructed. In general, the weakly active set
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Aw(ζ) can be thin and irregular, see also the discussion Section 7.6.2. That
makes it hard to approximate or predict the inactive set from the outside, or,
equivalently, the active set from the inside, based on the numerics.
Instead, in this section, we try to obtain approximations Dn and D̃n as in

(7.5) for the quasi-open set D := Ω \ As(ζ). In Theorem 4.20 we have seen
that this choice indeed yields a generalized derivative for a general monotone
and continuously differentiable operator f : U → H−1(Ω). The tools we use
are estimates for the distance of the free boundaries ∂I(ζ) and ∂In, which are
available in the literature. The validity of these estimates is ensured under
the so-called nondegeneracy condition (NDη). Based on this condition, it
can also be shown that the weakly active set does not have interior points,
see Lemma 7.15, and that the strictly active set is the (fine) closure of the
interior of the active set, see Corollary 7.21. This structure highlights that the
strictly active set is better suited to be approximated from both sides, from
in- and outside. The construction of these discrete approximations based on
the estimates for the distances of the free boundaries is the purpose of this
section.
In Section 7.6.1, we will see that an error estimate for the distance of the

free boundaries ∂I(ζ) and ∂In has been obtained under the nondegeneracy
condition in the literature. Assuming this condition, we analyze the topolog-
ical structure of the weakly and the strictly active set in Section 7.6.2. We
make use of this structure and suggest approximations of the complement
of the strictly active set in Section 7.6.3. We show that these approxima-
tions fulfill the conditions of Corollary 7.3 so that an error estimate for the
generalized derivative as in (7.1) is available.

7.6.1 Error estimate for the discrete and continuous free
boundaries

In this subsection, we state a result concerning error estimates for the free
boundaries ∂I(ζ) and ∂In. Here, for some n ∈ N, In is the approximate
inactive set defined in (7.10).
In the literature, error estimates for the distance of the boundaries of I(ζ)
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and of In have been discussed. As references, we mention, among other
related references, [BC83], [DS00], [Noc86], [NSV05].
First, we show that the nondegeneracy condition implies a quadratic growth

property of y − ψ away from the active set. The formulation is taken from
[NSV05] and the proof is based on [Fri88, Ch. 2, Lem. 3.1].

Lemma 7.11 Let ζ ∈ L2(Ω) and let y, ψ be continuous. Suppose there is an
open neighborhood U ⊆ Ω of the active set A(ζ) and a positive number η > 0

such that the nondegeneracy condition

〈−∆ψ − ζ, v〉 ≥ η
∫
U
v dλd ∀ v ∈ H1

0 (U)+ (NDη)

holds on U . Then, for any ω0 ∈ I(ζ) and any r > 0 such that Br(ω0) ⊆ U it
holds

sup
ω∈Br(ω0)

y(ω)− ψ(ω) ≥ y(ω0)− ψ(ω0) +
ηr2

2d
. (QG)

Proof. Let us first consider the case ω0 ∈ I(ζ) and assume Br(ω0) ⊆ U . The
function

w(x) = y(x)− ψ(x)− y(ω0) + ψ(ω0)− η

2d
|x− ω0|2

satisfies w(ω0) = 0 and also

〈−∆w, v〉 = 〈−∆y + ∆ψ, v〉+ η
2d

2d

∫
U
v dλd

= 〈∆ψ + ζ, v〉+ η

∫
U
v dλd

≤ 0

for all v ∈ H1
0 (U)+ ∩ H1

0 (I(ζ)). Here, we have used (NDη) and 〈−∆y −
ζ, v〉 = 0 due to v = 0 q.e. on As(ζ), see Corollary 3.10. In particular,
〈−∆w, v〉 ≤ 0 for all v ∈ H1

0 (Br(ω0) ∩ I(ζ))+. By the maximum principle
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[KS00, Thm. II 5.7], it holds

w(x) ≤ sup
ω∈∂(Br(ω0)∩I(ζ))

w(ω)

in Br(ω0) ∩ I(ζ). Since w < 0 holds on ∂I(ζ), there must exist a point
ω1 ∈ ∂Br(ω0) ∩ I(ζ) such that w(x1) ≥ 0 and (QG) follows.
For ω0 ∈ ∂I(ζ), let (ωn)n∈N ⊆ I(ζ) be a sequence with ωn → ω0. Then

(QG) is already shown for ωn, n ∈ N, and, using continuity arguments, we
obtain the statement for ω0.

Remark 7.12 The original strong formulation of nondegeneracy goes back to
Caffarelli, see also [Caf81]. The size of η in (NDη) determines the growth rate
of y−ψ and the larger η is, the more stable are the (discete) free boundaries,
see [NSV05, Rem. 4.2].

Based on the nondegeneracy condition (NDη) and the resulting quadratic
growth property (QG) the following result on the distance of the free bound-
aries ∂I(ζ) and ∂In can be obtained. It is based on [NSV05].

Lemma 7.13 We assume that ζ ∈ L2(Ω), y, ψ ∈ C(Ω̄) and ψ < 0 on ∂Ω.
Suppose there exists a neighborhood U of A(ζ) and a positive number η > 0

such that the nondegeneracy condition (NDη) holds on U . Assume (εn)n∈N
is a family of upper bounds for the errors ‖y − yn‖L∞(Ω) for the solutions
y, yn := yhn of (COP) and (DOP), which converges to 0 as n→∞. Set

rn := 2

√
d εn
η
. (7.11)

Then, if n is large enough, it holds

{ω ∈ Ω | dist(ω, In) ≥ rn} ⊆ A(ζ).

Proof. Since A(ζ) and ∂Ω are compact and disjoint sets, it holds
dist(∂Ω, A(ζ)) > 0. Thus, w.l.o.g., we can assume dist(U , ∂Ω) > 0. Since y
and ψ are continuous and since Ω\U is relatively compact, we find a constant
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c > 0 such that y − ψ > c holds outside U . By definition of In, this implies

I{n ⊆ U

if n ∈ N is sufficiently large. Moreover, if n is large enough, we also have
rn < dist(U , ∂Ω). Let us assume that n ∈ N is sufficiently large in the sense
of these two conditions.
Let ω ∈ Ω with dist(ω, In) ≥ rn and assume ω ∈ I(ζ), i.e.,

y(ω) > ψ(ω).

In particular, we have ω ∈ I{n ⊆ U and thus, Brn(ω) ⊆ Ω. We even observe
Brn(ω) ⊆ I{n ⊆ U .
Now, Lemma 7.11 implies

sup
x∈Brn (ω)

y(x)− ψ(x) >
ηr2
n

2d
.

This means, for some x ∈ Brn(ω) it holds

yn(x) = y(x) + (yn(x)− y(x)) > ψ(x) +
ηr2
n

2d
− εn = ψ(x) + εn

and this contradicts Brn(ω) ⊆ I{n. We conclude ω ∈ A(ζ).

Remark 7.14
1. In the classical literature concerning the analysis of the free boundaries

in the context of obstacle problems, the obstacle problem for a plate
is investigated, see, e.g., [BC83], [Caf81], [DS00], [Noc86]. This means,
the obstacle problem for ψ̃ = 0 is considered, while the admissible
displacements satisfy z̃ = g on the boundary of Ω for some H1(Ω)

function g satisfying g > 0 q.e. on ∂Ω. For the variational inequality
with general obstacle ψ ∈ H1(Ω) and zero boundary constraints as in
(COP), Sf (u)−ψ solves the obstacle problem for a plate with g = −ψ.

2. Several results analyzing the Hausdorff distance between the exact and
the approximate free boundary require regularity of ∂A(ζ), see, e.g.,
[BC83], [DS00], [Noc86]. As stressed in [NSV05, Rem. 4.4], the deriva-
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tion of the error estimate in Lemma 7.13 does not require any regularity
assumptions on the exact free boundary ∂A(ζ).

7.6.2 Structure of the weakly and strictly active set under
regularity assumptions

Assuming the nondegeneracy condition, we analyze the topological structures
of the weakly and the strictly active set. Our findings establish properties
seperately for the weakly and the strictly active set. This approach is not
common in the classical literature, where the free boundary analysis and the
investigation of topological structures is usually performed for the overall ac-
tive set and its boundary. The distinction between strictly active and weakly
active set is not drawn. Yet, as we will see, there are fundamental differences
and the strictly active set often exhibits a considerably more regular structure
than the overall active set.
The following lemma investigates the behavior of the weakly active set and

shows that it has empty interior.

Lemma 7.15 Let ζ ∈ L2(Ω). Assume the nondegeneracy condition (NDη)
holds on a neighborhood U of the active set. Then the weakly active set does
not have interior points.

Proof. Let v ∈ H1
0 (Ω)+ with

{v > 0} = int(Aw(ζ)), (7.12)

see Lemma 2.31. This implies

〈−∆ψ − ζ, v〉 =

∫
Ω
∇ψT∇v dλd − (ζ, v)

=

∫
Aw(ζ)

∇yT∇v dλd − (ζ, v)

=

∫
Ω
∇yT∇v dλd − (ζ, v)

= 〈−∆y − ζ, v〉 = 0.
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Here, we have used that ∇v = 0 a.e. on Ω \ Aw(ζ) and ∇ψ = ∇y a.e. on
Aw(ζ), see [ABM14, Prop. 5.8.2]. In the last step, we use v = 0 q.e. on As(ζ),
see Corollary 3.10. On the other hand, the nondegeneracy condition (NDη)
yields

〈−∆ψ − ζ, v〉 ≥ η
∫
U
v dλd.

Combining the two arguments, we conclude
∫
U v dλd = 0 and thus v =

0 a.e. on U . Observing int(Aw(ζ)) ⊆ U and recalling (7.12), we conclude
λd(int(Aw(ζ))) = 0 and since this set is open we derive int(Aw(ζ)) = ∅.

Before we analyze the structure of the strictly active set, we recall that
the strictly active set As(ζ) is defined as f-supp(ξ̃), cf. Lemma 2.34. In Re-
mark 2.35 we have already indicated that f-supp(ξ̃) is the support of ξ̃ w.r.t.
the fine topology on Rd and we refer again to [Wac14, App. A].
Here, we will explicitly use this characterization. We do not introduce the

fine topology, but let us collect the following properties. The fine topology is
finer than the usual topology on Rd, i.e., every open set is finely open. For a
set E ⊆ Rd we denote the closure w.r.t. the fine topology, the fine closure, by
f-cl(E) and the interior w.r.t. the fine topology, the fine interior, by f-int(E).
The following result holds, see [Wac14, App. A].

Lemma 7.16 Let ζ ∈ H−1(Ω) and denote y := Sid(ζ), ξ := −∆y − ζ ∈
H−1(Ω)+. Then there exists a largest finely open set O ⊆ Ω with ξ̃(O) = 0

and As(ζ) = f-supp(ξ̃) = O{ holds.

The next result states that quasi-continuous functions are finely continuous
quasi-everywhere. For a proof we refer to [AH96, Thm. 6.4.5].

Proposition 7.17 Every quasi-continuous function is finely continuous
quasi-everywhere in Ω.

Remark 7.18 The fine topology is the coarsest topology such that all sub-
harmonic functions are continuous. Since the quasi-open sets do not consti-
tute a topology, it is often helpful to work with the fine topology which is
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compatible with most of the concepts related to quasi-open sets and quasi-
continuous functions. For details, we refer to [AH96] and [HKM93].

Before we state the subsequent auxiliary lemma, let us recall that any
ξ ∈ H−1(Ω)+ can be identified with a regular Borel measure ξ̃ and that the
quasi-continuous representative of some v ∈ H1

0 (Ω) is integrable with respect
to ξ̃ and it holds 〈ξ, v〉 =

∫
Ω v dξ̃, see Lemma 2.33.

Lemma 7.19 Let ξ ∈ H−1(Ω)+ and let B ⊆ Ω be a Borel measurable set.
We consider the restriction ξ|B defined by

〈ξ|B, v〉 :=

∫
B
v dξ̃ =

∫
Ω
v dξ̃|B,

where ξ̃ is the Borel measure associated with ξ and ξ̃|B the trace measure or
restricted measure w.r.t. B.

1. We have ξ|B ∈ H−1(Ω)+.
2. Assume that ∂B has Lebesgue measure zero and let ξ ∈ L2(Ω)+ ⊆
H−1(Ω)+. Then f-supp(ξ̃|B) = f-cl(int(B) ∩ f-supp(ξ̃)).

Proof. 1. The operator ξ|B is well-defined and linear onH1
0 (Ω). Furthermore,

we have

|〈ξ|B, v〉| ≤
∫
B
|v| dξ̃ ≤

∫
Ω
|v| dξ̃ = 〈ξ, |v|〉,

thus, using ‖|v|‖H1
0 (Ω) = ‖v‖H1

0 (Ω), see Proposition 2.19(1.), we see that ξ|B
is bounded. Since ξ|B can be identified with the trace measure ξ̃|B, it is clear
that ξ|B is nonnegative and we conclude ξ|B ∈ H−1(Ω)+.
2. Now, assume ∂B has Lebesgue measure zero and that ξ ∈ L2(Ω)+. Let

O := f-int(B{ ∪ f-supp(ξ̃){).

Using ξ̃(E) = 0 for every Borel set E ⊆ f-supp(ξ̃){, cf. Lemma 7.16, we derive

ξ̃|B(O) = ξ̃(B ∩O) ≤ ξ̃(B ∩B{) + ξ̃(B ∩ f-supp(ξ̃){) = 0



170 7. Error estimates for generalized derivatives

since ξ̃ is absolutely continuous w.r.t. the Lebesgue measure and since
λd(∂B) = 0. Thus, f-supp(ξ̃|B) ⊆ f-cl(int(B) ∩ f-supp(ξ̃)).
On the other hand, let O := f-supp(ξ̃|B){, i.e., O is the largest finely open
set with ξ̃|B(O) = 0. Then O ∩ int(B) is finely open and ξ̃(O ∩ int(B)) = 0.
This implies O∩ int(B) ⊆ f-supp(ξ̃){. We conclude O ⊆ B{ ∪ f-supp(ξ̃){ and
obtain int(B)∩ f-supp(ξ̃) ⊆ f-supp(ξ̃|B). Since the set on the right-hand side
is finely closed, we even have f-cl(int(B) ∩ f-supp(ξ̃)) ⊆ f-supp(ξ̃|B).

In the following analysis of the strictly active set, we additionally assume
ψ ∈ H2(Ω). Note that this implies (−∆ψ − ζ) ∈ L2(Ω) if ζ ∈ L2(Ω). Let us
observe the following structure.

Lemma 7.20 Let ζ ∈ L2(Ω). Assume the nondegeneracy condition (NDη)
holds on a neighborhood U of the active set and, in addition, let ψ ∈ H2(Ω).
Denote ξψ := (−∆ψ − ζ)+ ∈ L2(Ω)+. Then f-supp(ξ̃ψ) ⊇ A(ζ) holds.

Proof. Assume ∅ 6= O ⊆ U is finely open. Let v ∈ H1
0 (O)+ with {v > 0} = O,

compare Lemma 2.31. We conclude∫
Ω

(−∆ψ − ζ) v dλd = 〈−∆ψ − ζ, v〉 ≥ η
∫
U
v dλd

by the nondegeneracy condition (NDη). This means
∫

Ω(−∆ψ− ζ) v dλd > 0,
since v ∈ H1

0 (O)+ and since O has positive Lebesgue measure, see [AG01,
Thm. 7.3.11, Cor. 7.2.4]. We have∫

Ω
v dξ̃ψ =

∫
Ω

(−∆ψ − ζ)+ v dλd ≥
∫

Ω
(−∆ψ − ζ) v dλd > 0,

which implies

ξ̃ψ(O) > 0.

Recalling Lemma 7.16, this shows

A(ζ) ⊆ U ⊆ f-supp(ξ̃ψ).
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Now, we are in the position to show that the strictly active set is the fine
closure of its interior points.

Corollary 7.21 Suppose Ω is convex or has a sufficiently regular bound-
ary. Let ζ ∈ L2(Ω). Assume the nondegeneracy condition (NDη) holds on
a neighborhood U of the active set and additionally assume ψ ∈ H2(Ω) and
λd(∂A(ζ)) = 0. Denote ξ := −∆y − ζ. Then it holds As(ζ) = f-supp(ξ̃) =

f-cl(int(A(ζ))).

Proof. Under the regularity assumptions we have y ∈ H2(Ω), see Lemma 7.4.
Moreover,

−∆y − ζ =

{
−∆ψ − ζ a.e. on A(ζ),

0 a.e. on I(ζ),
(7.13)

cf. [CW20, Thm. 2.2], which is a consequence of the regularity and of ∇ψ =

∇y a.e. on A(ζ), see [ABM14, Prop. 5.8.2]. Since ξ is nonnegative, we have
−∆y − ζ ≥ 0 a.e. on Ω and conclude that −∆ψ − ζ ≥ 0 a.e. on A(ζ). By
(7.13), we have

ξ = ξψ|A(ζ),

a.e. in Ω, where ξψ := (−∆ψ− ζ)+ as in Lemma 7.20. We apply Lemma 7.19
and Lemma 7.20 and obtain

As(ζ) = f-supp(ξ̃) = f-cl(int(A(ζ)) ∩ f-supp(ξ̃ψ)) = f-cl(int(A(ζ))),

In the following, we will always assume that λd(∂A(ζ)) = 0, so that we can
use the result in Corollary 7.21. Using the nondegeneracy condition (NDη)
and regularity assumptions on ζ and ψ, it is possible to guarantee a priori
the condition λd(∂A(ζ)) = 0, as the following lemma states. The results is
taken from [Fri88, Ch. 2, Thm. 3.5].
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Lemma 7.22 Let Ω have a smooth boundary ∂Ω. Assume ζ ∈ C1(Ω) and
ψ ∈ C2(Ω). Suppose the nondegeneracy condition (NDη) holds. Then this
implies λd(∂A(ζ)) = 0.

In [Fri88, Ch. 2, Thm. 3.5], the proof of the above lemma is based on the
C1,1(Ω) regularity of y, see Lemma 7.7 and the property (QG) implied by
(NDη). It is shown that points in ∂A(ζ) do not have density one, which in
turn implies λd(∂A(ζ)) = 0.

7.6.3 Construction of discrete inner and outer approximations of
the complement of the strictly active set

As highlighted at the beginning of Section 7.6, we want to construct discrete
approximations Dn, D̃n of D := Ω \ As(ζ) satisfying the inclusions Dn ⊆
Ω \ As(ζ) ⊆ D̃n. The purpose of this subsection is the formulation of the
construction and the verification, that the constructed sets satisfy (7.5) and
(7.6), cf. Corollary 7.3.
Here, we will make use of the structures of the weakly and strictly active

set established in Section 7.6.2. Therefore, within this section, we fix the
following assumptions that have been established consecutively within the
preceding subsections.

Assumption 7.1 Let (hn)n∈N be a sequence of mesh size parameters with
hn → 0 as n → ∞. Let Ω be convex or assume it has a sufficiently regular
boundary. We assume that ζ ∈ L2(Ω), y, ψ ∈ C(Ω̄), ψ ∈ H2(Ω) and ψ < 0

on ∂Ω. Suppose there exists a neighborhood U of A(ζ) and a positive number
η > 0 such that the nondegeneracy condition (NDη) holds on U . Let (εn)n∈N
be a sequence satisfying εn → 0 as n→∞ as well as ‖y− yn‖L∞(Ω) ≤ εn for
all n ∈ N. Moreover, we assume λd(∂A(ζ)) = 0.

Now, suppose that the conditions of Assumption 7.1 are satisfied and let
us begin with the construction of a superset approximation of Ω \As(ζ). We
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Ω

As(ζ) Aw(ζ)

In

(a) Exemplary presentation of In

Ω

As(ζ) Aw(ζ)

D̃n

(b) Exemplary presentation of D̃n

Figure 7.3. Construction of D̃n from In using the upper bound for the error r̃n

define

D̃n := {ω ∈ Ω | dist(ω, In) < r̃n}, (7.14)

with In = {yn − ψ > εn} as in (7.10) and r̃n satisfying

r̃n > rn and r̃n
n→∞→ 0

for rn = 2
√

d εn
η as in (7.11).

Lemma 7.23 Suppose the conditions in Assumption 7.1 are fulfilled. Let D̃n

be defined as in (7.14). Then it holds

Ω \As(ζ) ⊆ D̃n

for n ∈ N large enough and

H1
0 (D̃n)→ H1

0 (Ω \As(ζ))

in the sense of Mosco.

Proof. Using Corollary 7.21 and Lemma 7.13 for large enough n ∈ N we
observe

Ω \As(ζ) = (f-cl(int(A(ζ)))){ ⊆ I(ζ) ⊆ {ω ∈ Ω | dist(ω, In) ≤ rn} ⊆ D̃n
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Assume v ∈ H1
0 (Ω\As(ζ)). Then vn := v ∈ H1

0 (D̃n) for n ∈ N large enough
and vn → v in H1

0 (Ω), which shows the first condition for Mosco convergence.
Suppose there is a sequence (vn)n∈N with vn ∈ H1

0 (D̃n) and vnk ⇀ v for a
subsequence (vnk)k∈N of (vn)n∈N.
We can write

int(A(ζ)) =
⋃
m∈N

A(ζ)m :=
⋃
m∈N
{ω ∈ A(ζ) | dist(ω, ∂A(ζ)) ≥ m−1}.

By the inclusion In ⊆ I(ζ), see Lemma 7.8, and since r̃n → 0 as n→∞, there
is Nm ∈ N such that vn(x) = 0 for all n ≥ Nm and for quasi-all x ∈ A(ζ)m.
Let ξm ∈ H−1(Ω)+ with f-supp(ξ̃m) = A(ζ)m, see Theorem 5.14. Since
vn = 0 q.e. on f-supp(ξ̃m), we conclude 〈ξm, |vn|〉 = 0 for all n ≥ Nm, see
Lemma 2.34. This implies 〈ξm, |v|〉 = 0 by the weak convergence |vn| ⇀ |v|,
see Proposition 2.19(2.). We thus have v = 0 q.e. on A(ζ)m, see Lemma 2.34.
Repeating this argument for all m ∈ N, we conclude that v = 0 q.e. on
int(A(ζ)).
Since (a representative of) v is finely continuous quasi-everywhere, see

Proposition 7.17, v = 0 q.e. on f-cl(int(A(ζ))) follows. Thus, v = 0 q.e.
on As(ζ), see Corollary 7.21, and we obtain v ∈ H1

0 (Ω \As(ζ)).

To obtain a suitable subset approximation of Ω \ As(ζ), we define and
analyze the following sets

Dn :=
(⋃
{C | C connected component of I{n with C ∩ D̃{

n 6= ∅}
){
. (7.15)

Here, D̃n is defined as in (7.14).

Lemma 7.24 Suppose the conditions in Assumption 7.1 are fulfilled. Fur-
thermore, assume that dist(Aw(ζ), As(ζ)) > 0 and that we find a positive
number κ > 0 such that Bκ(x) ⊆ As(ζ) holds for at least one x in every
connected component of As(ζ). Let Dn be defined as in (7.15). Then it holds

Dn ⊆ Ω \As(ζ)
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Ω

As(ζ) Aw(ζ)

In

(a) Exemplary presentation of In and
D̃n

Ω

As(ζ) Aw(ζ)

Dn

(b) Exemplary presentation of Dn

Figure 7.4. Construction of Dn using connected components of I{n and D̃{
n

for n ∈ N large enough and

H1
0 (Dn)→ H1

0 (Ω \As(ζ))

in the sense of Mosco.

Proof. Let ω0 ∈ As(ζ). First of all, we have ω0 ∈ I{n since In ⊆ I(ζ), see
Lemma 7.8. We show that the connected component C of I{n containing ω0

fulfills C ∩ D̃{
n 6= ∅.

Recall that by Corollary 7.21 it holds As(ζ) = f-cl(int(A(ζ))). Since the
connected component of As(ζ) including ω0 and thus the component C con-
tains a ball of radius κ, the center of this ball is contained in D̃{

n if r̃n < κ,
i.e., if n is large enough. This shows ω0 ∈ D{

n and we conclude Dn ⊆ Ω\As(ζ)

for large enough n ∈ N.
The family of sets

(
int
(⋂

k≥nDk

))
n∈N

is increasing. We want to argue,

that it is also a covering of Ω \ As(ζ). The inclusion
⋂
k≥nDk ⊇

⋂
k≥n Ik

implies int
(⋂

k≥nDk

)
⊇
⋂
k≥n Ik since the sets

⋂
k≥n Ik, n ∈ N, are open,

see Lemma 7.9. From Lemma 7.8 we know that
(⋂

k≥n Ik

)
n∈N

covers I(ζ).

Thus, it is clear that
(

int
(⋂

k≥nDk

))
n∈N

covers I(ζ).

Assume P ⊆ Aw(ζ) is of positive capacity and contained in one con-
nected component of Aw(ζ). Let Vs and Vw be open neighborhoods of As(ζ)

and Aw(ζ), respectively, and assume Vs ∩ Vw = ∅. This is possible, since
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dist(Aw(ζ), As(ζ)) > 0 by assumption. Note that Vs and Vw have disjoint
connected components.
Since y and ψ are continuous and since ψ < 0 on ∂Ω, we have y−ψ ≥ c > 0

outside V := Vs ∪Vw for some c > 0. This means, if n is big enough, it holds
I{n ⊆ V. In particular, any conncected component of I{n is either contained in
Vs or in Vw.
Since D̃{

n ⊆ As(ζ) if n is large enough, this shows that Vw contains only
connected components C of I{n with C∩D̃{

n = ∅. We conclude Vw ⊆
⋂
k≥nDk

and from this

P ⊆ int

⋂
k≥n

Dk

 .

Thus,
(

int
(⋂

k≥nDk

))
n∈N

is a quasi-covering of Ω \As(ζ).

Let v ∈ H1
0 (Ω \ As(ζ)). By Lemma 2.29, there exists a sequence (vn)n∈N

with vn → v in H1
0 (Ω) as n → ∞ and such that vn ∈ H1

0

(
int
(⋂

k≥nDk

))
for each n ∈ N. In particular, vn ∈ H1

0 (Dn) since int
(⋂

k≥nDk

)
⊆ Dn.

It remains to show the weak limit property for the Mosco convergence.
Suppose there is a sequence (wn)n∈N with wn ∈ H1

0 (Dn) and wnk ⇀ w in
H1

0 (Ω) for a subsequence (wnk)k∈N of (wn)n∈N and some w ∈ H1
0 (Ω). Since

Dn ⊆ Ω \As(ζ) ⊆ D̃n

holds for all n ∈ N large enough, cf. Lemma 7.23, we have wn ∈ H1
0 (D̃n) if

n ∈ N is large enough. By the Mosco convergence ofH1
0 (D̃n) toH1

0 (Ω\As(ζ)),
see Lemma 7.23, we conclude w ∈ H1

0 (Ω \As(ζ)).

Remark 7.25 The assumption in Lemma 7.24 that there is κ > 0 such
that Bκ(x) ⊆ As(ζ) holds for some x in any connected component of As(ζ) is
fulfilled if the strictly active set has only finitely many connected components,
since As(ζ) = f-cl(int(A(ζ))), see Corollary 7.21.
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7.6.4 Alternative discrete inner approximation of the
complement of the strictly active set

In addition, we propose another possible choice for the discrete approxima-
tions Dn of Ω \ As(ζ). To distinguish it from the choice in (7.15), we use
the notation En. The construction relies on the Lipschitz domain structure
of the strictly active set. Indeed, in Lemma 7.29, we will assume that the
strictly active set is a Lipschitz domain. In contrast to Lemma 7.24, we do
not need to assume that the weakly and strictly active set have a positive
distance from each other.
First, we give some definitions and properties connected with cones and

Lipschitz domains.
The first two points in the following definition are based on [Wlo87,

Def. 2.3].

Definition 7.26 (Cone property)
1. For x ∈ Rd, ρ > 0 and an open nonempty subset Σ of Sρ(x) := {y |
‖y − x‖ = ρ} we call the set

C(x, ρ,Σ) = Bρ(x) ∩ {β(y − x) | y ∈ Σ, β > 0}

a cone with vertex in x.
2. An open and set E of Rd has the cone property, if for each x ∈ E there

is a cone Cx with vertex at x which is congruent to a fixed cone C0

such that the subset Cx is contained in E. Here, the statement that Cx
is congruent to C0 means that Cx is a possibly translated and rotated
copy of C0.

3. Let E ⊆ Rd be a Lipschitz domain. Denote by C0 := C0(x, ρ,Σ) a cone
such that E has the cone property with cone C0. Let z ∈ Σ and let
Br(z) be a ball such that Br(z)∩Sρ(x) ⊆ Σ. We say that E has at least
the interior angle α > 0, if the convex cone induced by Br(z) ∩ Sρ(x),
i.e., the cone

{β(y − x) | y ∈ Br(z) ∩ Sρ(x), β > 0}
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has the angle α.

The next lemma is taken from [Wlo87, Thm. 2.1].

Lemma 7.27 Let E be a bounded Lipschitz domain. Then E has the cone
property.

The subsequent lemma gives a sufficient condition for a point in the bound-
ary ∂A(ζ) of the active set to be a point where ∂A(ζ) is locally Lipschitz. It
is taken from [Caf77].

Lemma 7.28 Let Ω ⊆ Rd be a bounded domain with sufficiently regular
boundary and assume ψ ∈ C2(Ω). Suppose that ζ ∈ L2(Ω) is bounded and
locally Hölder continuous. If ω0 is a point of positive Lebesgue density for
A(ζ), i.e.,

lim
r→0

λd(Br(ω0) ∩A(ζ))

λd(Br(ω0))
> 0,

then in a neighborhood of w0, ∂A(ζ) can be represented as the graph of a
Lipschitz function.

Proof. By [GT01, Thm. 4.3], the Poisson equation

−∆v = ζ, v = 0 on ∂Ω

has a unique solution v ∈ C2(Ω) ∩ C(Ω). The obstacle problem with right
hand side ζ as in (COP) is then equivalent to the problem

Find w ∈ Kψ−v : (∇w,∇(z − w)) ≥ 0 ∀ z ∈ Kψ−v

and it holds w = y − v. By Lemma 7.6, the solution w is in C1,β(Ω) for any
β ∈ (0, 1). In particular, w is Lipschitz continuous. This shows that w is the
solution to the problem considered in [Caf77]. Noting that {w = ψ − v} =

{y = ψ}, we can apply [Caf77, Thm. 2] to deduce the statement.

We define
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En := {ω ∈ Ω | dist(ω, D̃{
n) > γn} (7.16)

for some γn specified in Lemma 7.29.

Lemma 7.29 Suppose the conditions in Assumption 7.1 are fulfilled. Assume
that As(ζ) is a closed set with Lipschitz boundary that has at least the interior
angle α > 0 and let (γn)n∈N be a sequence with γn → 0 as n→∞ and

γn ≥
r̃n

sin(α/2)
.

Let En be defined as in (7.16). Then it holds

En ⊆ Ω \As(ζ)

for n ∈ N large enough and

H1
0 (En)→ H1

0 (Ω \As(ζ))

in the sense of Mosco.

Proof. Since int(As(ζ)) has the cone property, see Lemma 7.27, we find a
fixed cone C0 with radius α > 0, such that for each x ∈ As(ζ) the set Cx is
contained in As(ζ).
Let n ∈ N be fixed and let ω ∈ As(ζ) be arbitrary.
For x ∈ As(ζ) we have

Cx ⊆ As(ζ) ⊆ I{n,

i.e.,

In ⊆ C{
x .

This shows

{x ∈ Ω | dist(x, In) ≥ r̃n} ⊇ {x ∈ Ω | dist(x,C{
ω) ≥ r̃n}.
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ω

Cω

r̃n

{x ∈ Ω | dist(x,C{
ω) ≥ r̃n}

α/2·

Figure 7.5. The cone Cω and the set of points within Cω that have a distance of
at least r̃n to Ω \ Cω

Using this and the trigonometry indicated in Fig. 7.5, we estimate

dist(ω, D̃{
n) = dist(ω, {x ∈ Ω | dist(x, In) ≥ r̃n})

≤ dist(ω, {x ∈ Ω | dist(x,C{
ω) ≥ r̃n})

≤ r̃n
sin(α/2)

≤ γn.

This shows ω ∈ E{
n. Since ω ∈ As(ζ) was arbitrary, we have shown En ⊆

Ω \As(ζ).

We want to show that the sets
(

int
(⋂

k≥nEk

))
n∈N

are a quasi-covering

of Ω \As(ζ). Let ω ∈ Ω \As(ζ). Since As(ζ) is closed, ω has a fixed distance
> 0 to the set As(ζ). If n ∈ N is sufficiently large, we find c(n) > 0 such that

Bc(n)(ω) ⊆ {x ∈ Ω | dist(x,As(ζ)) > γn}

and thus, by D̃{
n ⊆ As(ζ), see Lemma 7.23,

Bc(n)(ω) ⊆ {x ∈ Ω | dist(x, D̃{
n) > γn} = En.
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In particular, ω ∈ int
(⋂

k≥nEk

)
for some n ∈ N large enough. Thus, the

family
(

int
(⋂

k≥nEk

))
n∈N

is an increasing covering of Ω \As(ζ).

To prove Mosco convergence, we proceed analogously to the proof of
Lemma 7.24. Let v ∈ H1

0 (Ω \ As(ζ)). By Lemma 2.29, there exists
a sequence (vn)n∈N with vn → v in H1

0 (Ω) as n → ∞ and such that
vn ∈ H1

0

(
int
(⋂

k≥nEk

))
for each n ∈ N. In particular, vn ∈ H1

0 (En)

since int
(⋂

k≥nEk

)
⊆ En.

Now, we verify the second condition for Mosco convergence. Suppose that
there is a sequence (wn)n∈N with wn ∈ H1

0 (En) and wnk ⇀ w in H1
0 (Ω) for a

subsequence (wnk)k∈N of (wn)n∈N. Since

En ⊆ Ω \As(ζ) ⊆ D̃n

holds for all n ∈ N large enough, cf. Lemma 7.23, we have wn ∈ H1
0 (D̃n) if

n ∈ N is large enough. By the Mosco convergence ofH1
0 (D̃n) toH1

0 (Ω\As(ζ)),
see Lemma 7.23, we conclude w ∈ H1

0 (Ω \As(ζ)).

Remark 7.30 A downside of this approach is that, in practice, we do not
know the interior angle in the Lipschitz domain As(ζ). This unknown con-
stant leads to a worse approximation of Ω \ As(ζ) and a slower Mosco con-
vergence of H1

0 (En) → H1
0 (Ω \ As(ζ)) compared to the choice Dn in (7.15).

In this case, one cannot set γn := r̃n
sin(α/2) in (7.16), but has to use, e.g.,

γn := r̃1−κ
n ≥ r̃n

sin(α/2)

for κ > 0 small. The last inequality holds if n is large enough.
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7.7 Alternative inner approximation of the inactive
set

As an alternative for the sets In introduced in (7.10), we can consider the
discrete inactive sets

Jn :=
{
yn > ψn + εn + ‖(ψ − ψn)+‖L∞({yn≤ψn+εn+‖(ψ−ψn)+‖L∞(Ω)})

}
.

(7.17)

Note that ψn → ψ uniformly. Then, the analogous statements in Lemma 7.8
also hold for Jn. To see this, assume ω is an element of A(ζ). Then it holds

yn(ω) = y(ω) + (yn(ω)− y(ω))

= ψ(ω) + ψn(ω)− ψn(ω) + (yn(ω)− y(ω))

≤ ψn(ω) + εn + ‖(ψ − ψn)+‖L∞(Ω).

This shows ω ∈ {yn ≤ ψn + εn + ‖(ψ − ψn)+‖L∞(Ω)} and thus

yn(ω) ≤ ψn(ω) + εn + ‖(ψ − ψn)+‖L∞({yn≤ψn+εn+‖(ψ−ψn)+‖L∞(Ω)}).

We conclude Jn ⊆ I(ζ) for all n ∈ N.
To verify the property lim infn→∞ Jn = I(ζ), we suppose ω ∈ I(ζ) and

y(ω)− ψ(ω) =: c > 0. Let n ∈ N be such that

2εk + ‖(ψ − ψk)+‖L∞({yk≤ψk+εk+‖(ψ−ψk)+‖L∞(Ω)}) − ψ(ω) + ψk(ω) < c

holds for all k ≥ n. Then we conclude

yk(ω)− ψk(ω) = y(ω)− ψ(ω) + ψ(ω)− ψk(ω)− y(ω) + yk(ω)

≥ c+ ψ(ω)− ψk(ω)− εk
> εk + ‖(ψ − ψk)+‖L∞({yk≤ψk+εk+‖(ψ−ψk)+‖L∞(Ω)}).

This shows that the sets (
⋂
k≥n Jk)n∈N cover I(ζ).

In particular, the Mosco convergence H1
0 (Jn)→ H1

0 (I(ζ)) can be shown as
in Theorem 7.10.



7.8. Summary of the results 183

To obtain a similar statement to the one in Lemma 7.13, we set

(rJn)2 :=
2d

η

(
2εn + ‖(ψ − ψn)+‖L∞({yn≤ψn+εn+‖(ψ−ψn)+‖L∞(Ω)})

+ ‖(ψn − ψ)+‖L∞({yn≤ψn+εn+‖(ψ−ψn)+‖L∞(Ω)})
)
.

Now, a slight modification of the proof of Lemma 7.13 shows that

{ω ∈ Ω | dist(ω, Jn) ≥ rJn} ⊆ A(ζ).

Choosing r̃Jn > rJn with r̃Jn → 0, we can define D̃J
n as in (7.14) with r̃n replaced

by r̃Jn , use D̃J
n instead of D̃n in the definitions of Dn in (7.15) or En in (7.16)

and all results established in Section 7.6.3 carry over using the properties of
Jn that are similar to the properties of In.

7.8 Summary of the results

Collecting the results in this chapter, we can formulate the following theorem
on error estimates for a generalized derivative for the obstacle problem.

Theorem 7.31 Assume the conditions in Assumption 7.1 are satisfied and
let D̃n be defined as in (7.14). Denote by q the solution of

Find q ∈ H1
0 (Ω \As(ζ)) : 〈−∆q, v〉 = 〈Jy (y, u) , v〉 ∀ v ∈ H1

0 (Ω \As(ζ)),

i.e., f ′(u)∗q + Ju(y, u) is a Clarke generalized derivative for Ĵ . In addition,
consider one of the following cases.

1. Suppose dist(Aw(ζ), As(ζ)) > 0 and let κ > 0 be a positive number such
that Bκ(x) ⊆ As(ζ) holds for some x in every connected component
of As(ζ). Let Dn be defined as in (7.15) and denote by (qn)n∈N the
solutions of

Find qn ∈ H1
0 (Dn) : 〈−∆qn, vn〉 = 〈Jy (yn, u) , vn〉 ∀ vn ∈ H1

0 (Dn).
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2. Suppose As(ζ) is a closed set with Lipschitz boundary and let En be
defined as in (7.16) with γn as specified in Lemma 7.29. Denote by
(qn)n∈N the solutions of

Find qn ∈ H1
0 (En) : 〈−∆qn, vn〉 = 〈Jy (yn, u) , vn〉 ∀ vn ∈ H1

0 (En).

In both cases, qn → q holds as n→∞ as well as

‖q − qn‖H1
0 (Ω)

≤ ‖ −∆qn − Jy(yn, u)‖H−1(D̃n) + ‖Jy(yn, u)− Jy(y, u)‖H−1(Ω)
n→∞→ 0.

(7.18)

7.9 Numerical examples

In this section, we test our considerations on error estimates for the general-
ized derivatives.
We deal with the following test setting. In the domain Ω := B1(0) := {x ∈

R2 | x2
1 + x2

2 < 1} we consider the radial symmetric obstacle

ψ̃(x) := −x2
1 − x2

2 +
1

2
=: ψ̃c(|x|)

with ψ̃c : R→ R, s 7→ 1
2−s

2. We are looking for the radial symmetric solution
y of the obstacle problem (COP) for ζ = 0 in this setting.
We show that for r ∈ (0, 1) solving the equation

ln(r) = − 1

4r2
+

1

2

the function

y(x) =

{
ψ̃(x) for |x| ≤ r,
−2r2 ln(|x|) for r < |x| ≤ 1

=: yc(|x|)

solves the obstacle problem in the given setting.
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It is easy to check that y is continuously differentiable and that y(x) = 0

for all x with |x| = 1, i.e., y ∈ H1
0 (Ω). Moreover, for t ∈ [r, 1] it holds

yc(t)− ψ̃c(t) = −2r2 ln(t)− 1

2
+ t2.

Using t ≥ r we can estimate the derivative on (r, 1) and obtain

y′c(t)− ψ̃′c(t) =
−2r2

t
+ 2t ≥ −2r2

r
+ 2t = −2r + 2t ≥ 0.

Thus, since y(x) = ψ̃(x) for |x| = r, we conclude that y ≥ ψ̃ holds on Ω.
This shows y ∈ Kψ.
For |x| < r we have

−∆y(x) = −∆ψ(x) = 2 + 2 > 0

and for |x| > r we compute

−∆y(x) =
4x2

1 r
2

|x|4
+

4x2
2 r

2

|x|4
− 4r2

|x|2
= 0.

Thus, for z ∈ Kψ

〈−∆y, z − y〉

=

∫
Ω
−∆y (z − y) dλ2 =

∫
Br(0)

4(z − y) dλ2 =

∫
Br(0)

4(z − ψ) dλ2 ≥ 0

(7.19)

holds.
The active set for this example is strictly active. Therefore we perturb

the obstacle inside of the inactive set to obtain a problem where the strict
complementarity condition does not hold and where the solution y we have
just derived does not change. Therefore, we set

ϑ(x) :=


0 for 0 ≤ |x| ≤ r,
1
2

(
1− cos

(
|x|−r
1+r

2
−rπ

))
for r < |x| ≤ 1
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−1 1ψ̃c

ψc

yc

(a) Cross section of radial symmetric obstacle problem
Aw(0)

As(0)Ω

(b) Corresponding active sets in Ω

Figure 7.6. Visualisation of the obstacle problem considered in Section 7.9

and consider the perturbed obstacle

ψ(x) := ϑ(x) y(x) + (1− ϑ(x)) ψ̃(x) (x ∈ B1(0)).

We have 0 ≤ ϑ(x) ≤ 1 for all x ∈ B1(0), thus y(x) ≥ ψ(x). Moreover, it
holds ϑ(x) = 1 if and only if x = 1+r

2 . This implies that the set S 1+r
2

(0) is
weakly active.
Note that solution y and the multiplier −∇y are not affected by the per-

turbation of the obstacle. In fact, since z ≥ ψ is only important in the set
Br(0) in (7.19), y is the solution of the perturbed obstacle problem.
The cross section of the obstacle and the corresponding solution of this

problem as well as the respective strictly and weakly active set are shown in
Fig. 7.6.
For the implementation in MATLAB we consider the continuously differ-

entiable objective function J : H1
0 (Ω)× U → R given by
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J(y, u) :=
1

2
‖y − yd‖2L2(Ω)

and we choose the constant desired state yd := 1
4 . Note that the exact choice

of U and f are not relevant for our computation since we assume that the
conditions of Assumption 4.2 are fulfilled and since we already know how a
generalized derivative can be obtained.
We verify the conditions of Assumption 7.1. It is straightforward to verify

the regularity assumptions on ζ, y and ψ. Moreover, λ2(∂A(0)) = 0 holds.
In addition, we have −∆ψ ≥ 4 on A(0) and −∆ψ ≥ 3.8 holds a.e. in a
neighborhood of the active set. Thus, the nondegeneracy condition (NDη) is
satisfied.
By the structure of A(0) we have dist(Aw(0), As(0)) > 0 and also Br(0) ⊆

As(0). Thus, the results from Theorem 7.31(1.) are applicable.
In a first computation, we use the sets Jn introduced in (7.17). The bound-

aries of these sets are level sets of piecewise affine functions, thus, in each
triangle the boundary can be determined accurately and the mesh is ad-
justed accordingly in each iteration. This leads to a less serrated appear-
ance of the boundary of the constructed sets Jn and consequently also D̃J

n

and DJ
n . The resulting sets D̃J

n and DJ
n in the first iterations are shown

in Fig. 7.7. Here, we use the a posteriori L∞(Ω)-error estimates from
[NSV05] to construct the sets Jn. The mesh is refined adaptively taking
into account the error contribution for the L∞(Ω)-error estimate εn and
the error ‖(ψ − ψn)+‖L∞({yn≤ψn+εn+‖(ψ−ψn)+‖L∞(Ω)}) in each triangle sep-
arately. These quantities determine the quality of the approximation Jn,
see (7.17). Exemplary, the resulting generalized derivative q2 in iteration
n = 2 is shown in Fig. 7.8. Table 7.1 shows the computed contributions
‖−∆qn−Jy(yn, u)‖H−1(D̃Jn) to the upper bounds for the error ‖q− qn‖H1

0 (Ω),
see (7.18). Moreover, the used radii for the construction of D̃J

n from Jn, see
(7.14), are recorded as well as the ratio

‖ −∆qn − Jy(yn, u)‖H−1(D̃Jn)√
r̃Jn

.
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(a) J1 (b) D̃J
1 (c) DJ

1

(d) J2 (e) D̃J
2 (f) DJ

2

(g) J3 (h) D̃J
3 (i) DJ

3

Figure 7.7. Construction of the sets Jn, D̃J
n and DJ

n in the numerical example in
iterations n = 1, 2, 3
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Figure 7.8. Numerical subgradient in iteration n = 2 for the first computation

Table 7.1. Terms ‖ − ∆qn − Jy(yn, u)‖H−1(D̃Jn), r̃Jn and rate ‖ − ∆qn −
Jy(yn, u)‖H−1(D̃Jn)/

√
r̃Jn in iteration n

Iteration
Error term for
‖q − qn‖H1

0 (Ω) r̃Jn Ratio

0 0.0260 0.2225 0.0551
1 0.0164 0.1394 0.0439
2 0.0150 0.1292 0.0417
3 0.0143 0.1183 0.0416
4 0.0126 0.0955 0.0408
5 0.0112 0.0736 0.0413
6 0.0105 0.0650 0.0412
7 0.0096 0.0539 0.0414
8 0.0085 0.0414 0.0418
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One can see that this ratio is approximately constant. Indeed, if the consid-
ered sets are sufficiently regular, one can theoretically derive an estimate of
the form

‖ −∆qn − Jy(yn, u)‖H−1(D̃Jn) ≤ C
√
r̃Jn

for a constant C.
In a second computation, we use the sets In as in (7.10). The constructed

sets In, D̃n andDn are shown in Fig. 7.9. This time, the mesh is not adjusted
when the allocation of triangles to either In or I{n is performed. Instead, we
use a possibly larger set D̃n for the error estimate and a possibly smaller
set Dn as a domain for the computation of the subgradient. As a result,
the boundaries of the constructed sets are more serrated compared to the
sets in the first experiment. Again, the a posteriori L∞(Ω)-error estimates
from [NSV05] are used. Since we know the exact solution y, we can tighten
the error estimate from [NSV05] for this particular example leading to a
more accurate approximation of the complement of the strictly active set and
speeding up the convergence process. The resulting generalized derivative
q2 in iteration n = 3 is shown in Fig. 7.10.
Table 7.2 shows again the computed contributions ‖ − ∆qn −

Jy(yn, u)‖H−1(D̃n) to the upper bounds for the error ‖q − qn‖H1
0 (Ω), compare

(7.18), as well as the considered radii r̃n and the ratio

‖ −∆qn − Jy(yn, u)‖H−1(D̃n)√
r̃n

.

By using the previously established error estimates in the two computa-
tions, we have shown the applicability of our results, which ends this chapter.
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(a) I0 (b) D̃0 (c) D0

(d) I1 (e) D̃1 (f) D1

(g) I2 (h) D̃2 (i) D2

Figure 7.9. Construction of the sets In, D̃n and Dn in the numerical example in
iterations n = 0, 1, 2
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Figure 7.10. Numerical subgradient in iteration n = 3 for the second computation

Table 7.2. Terms ‖ − ∆qn − Jy(yn, u)‖H−1(D̃n), r̃n and rate ‖ − ∆qn −
Jy(yn, u)‖H−1(D̃n)/

√
r̃n in iteration n

Iteration
Error term for
‖q − qn‖H1

0 (Ω) r̃n Ratio

0 0.0152 0.0649 0.0597
1 0.0118 0.0459 0.0551
2 0.0090 0.0271 0.0547
3 0.0074 0.0174 0.0561
4 0.0062 0.0130 0.0544
5 0.0049 0.0079 0.0551
6 0.0041 0.0052 0.0569
7 0.0032 0.0034 0.0549
8 0.0027 0.0024 0.0551



Conclusion and outlook

In this thesis we have derived generalized derivatives for solution operators
of obstacle problems.
Considering a monotone operator with suitable properties, we have shown

that solution operators of variational equations on the inactive set and on
the complement of the strictly active set are elements of the generalized dif-
ferential for the composition of the solution operator of the obstacle problem
with the monotone operator.
Additionally, we studied the solution operator on H−1(Ω) and we were able

to present a complete representation of the generalized differentials defined by
the strong operator topology for the convergence of the Gâteaux derivatives.
These differentials consist exactly of all solution operators relative to quasi-
open domains which are located between the inactive set and the complement
of the strictly active set.
If we consider the generalized differentials using the weak operator topol-

ogy for the convergence of the Gâteaux derivatives, then solution operators of
relaxed Dirichlet problems with respect to capacitary measures are also con-
tained in the generalized differentials. These measures vanish on the inactive
set and have infinite values on the strictly active set.
Moreover, we have analyzed the bilateral obstacle problem and provided

generalized derivatives for its solution operator. Here, we have also considered
the composition with a monotone, possibly nonlinear operator.
Finally, we have seen how inexact generalized derivatives can be computed

without knowledge of the exact active and strictly active sets. We have
developed an error estimate for this particular inexact generalized derivatives
and have tested our results in a numerical example.

193
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Of course, there are related problems with a similar structure that have
not been addressed in this thesis. For example, the directional derivative of
the solution operator of a certain parabolic variational inequality is derived
in [JKRSo03]. Similar to the result by [Mig76], this directional derivative
is given by a variational inequality. Based on this result, it might also be
possible to obtain generalized derivatives in this setting. This is still work in
progress.
Recently, the directional differentiability of quasi-variational inequalities of

obstacle type have been studied in [AHR19]. This might also be a starting
point to obtain generalized derivatives.
In addition, in [HRUU21], stochastic obstacle problems are considered and

generalized derivatives are obtained. A short remark on generalized deriva-
tives in the context of a shape optimization problem for the obstacle problem
is contained in [RU19].
Finally, the implementation of a Bundle method as in [HU19] that applies

the error estimates derived in Chapter 7 remains to be realized.



Bibliography

[ABM14] Hedy Attouch, Giuseppe Buttazzo, and Gérard Michaille. Vari-
ational analysis in Sobolev and BV spaces, volume 17 of MOS-
SIAM Ser. Optim. SIAM, Philadelphia, PA, second edition,
2014. Applications to PDEs and optimization.

[AG01] David H. Armitage and Stephen J. Gardiner. Classical potential
theory. Springer Monographs in Mathematics. Springer, London,
2001.

[AH96] David R. Adams and Lars Inge Hedberg. Function spaces and po-
tential theory, volume 314 of Grundlehren Math. Wiss. Springer-
Verlag, Berlin, 1996.

[AHR19] Amal Alphonse, Michael Hintermüller, and Carlos N. Rauten-
berg. Directional differentiability for elliptic quasi-variational in-
equalities of obstacle type. Calc. Var. Partial Differential Equa-
tions, 58(1):39, 2019.

[Aro76] Nachman Aronszajn. Differentiability of Lipschitzian mappings
between Banach spaces. Studia Math., 57(2):147–190, 1976.

[Bai77] Claudio Baiocchi. Estimations d’erreur dans L∞ pour les in-
équations à obstacle. In Mathematical aspects of finite element
methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.),
Rome, 1975), pages 27–34. Lecture Notes in Math., Vol. 606,
1977.

[Bar84] Viorel Barbu. Optimal control of variational inequalities, volume
100 of Research Notes in Mathematics. Pitman, Boston, MA,
1984.

[BB05] Dorin Bucur and Giuseppe Buttazzo. Variational methods in

195



196 Bibliography

shape optimization problems, volume 65 of Progr. Nonlinear Dif-
ferential Equations Appl. Birkhäuser, Boston, MA, 2005.

[BC83] Franco Brezzi and Luis A. Caffarelli. Convergence of the discrete
free boundaries for finite element approximations. RAIRO Anal.
Numér., 17(4):385–395, 1983.

[BDM91] Giuseppe Buttazzo and Gianni Dal Maso. Shape optimization
for Dirichlet problems: Relaxed formulation and optimality con-
ditions. Appl. Math. Optim., 23(1):17–49, 1991.

[Ber97] Maïtine Bergounioux. Optimal control of an obstacle problem.
Appl. Math. Optim., 36(2):147–172, 1997.

[BHR77] Franco Brezzi, William W. Hager, and P.-A. Raviart. Error es-
timates for the finite element solution of variational inequalities.
Numer. Math., 28(4):431–443, 1977.

[BK74] Haïm Brézis and David Kinderlehrer. The smoothness of solu-
tions to nonlinear variational inequalities. Indiana Univ. Math.
J., 23:831–844, 1974.

[BL00] Yoav Benyamini and Joram Lindenstrauss. Geometric nonlinear
functional analysis, volume 1 of Amer. Math. Soc. Colloq. Publ.
Amer. Math. Soc., Providence, RI, 2000.

[BL04] Maïtine Bergounioux and Suzanne Lenhart. Optimal control of
bilateral obstacle problems. SIAM J. Control Optim., 43(1):240–
255, 2004.

[Bou04] Nicolas Bourbaki. Elements of Mathematics: Integration I.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[BP77] Claudio Baiocchi and Gianni A. Pozzi. Error estimates and
free-boundary convergence for a finite difference discretization
of a parabolic variational inequality. RAIRO Anal. Numér.,
11(4):315–340, iii, 1977.

[BS00] J. Frédéric Bonnans and Alexander Shapiro. Perturbation anal-
ysis of optimization problems. Springer Series in Operations Re-
search. Springer, New York, 2000.

[BS08] Susanne C. Brenner and L. Ridgway Scott. The mathematical
theory of finite element methods, volume 15 of Texts in Applied
Mathematics. Springer, New York, third edition, 2008.



Bibliography 197

[Caf77] Luis A. Caffarelli. The regularity of free boundaries in higher
dimensions. Acta Math., 139(3-4):155–184, 1977.

[Caf81] Luis A. Caffarelli. A remark on the Hausdorff measure of a free
boundary, and the convergence of coincidence sets. Boll. Un.
Mat. Ital. A (5), 18(1):109–113, 1981.

[CCMW18] Constantin Christof, Christian Clason, Christian Meyer, and
Stephan Walther. Optimal control of a non-smooth semilinear el-
liptic equation. Math. Control Relat. Fields, 8(1):247–276, 2018.

[CDM92] Michel Chipot and Gianni Dal Maso. Relaxed shape optimiza-
tion: The case of nonnegative data for the Dirichlet problem.
Adv. Math. Sci. Appl., 1(1):47–81, 1992.

[Chr17] Constantin Christof. L∞-error estimates for the obstacle problem
revisited. Calcolo, 54(4):1243–1264, 2017.

[Cia70] Philippe G. Ciarlet. Discrete maximum principle for finite-
difference operators. Aequationes Math., 4:338–352, 1970.

[Cia75] Philippe G. Ciarlet. Lectures on the finite element method. Tata
Institute of Fundamental Research, Bombay, 1975. Notes by S.
Kesavan, Akhil Ranjan and M. Vanninathan.

[CK80] Luis A. Caffarelli and David Kinderlehrer. Potential methods in
variational inequalities. J. Analyse Math., 37:285–295, 1980.

[Cla90] Frank H. Clarke. Optimization and nonsmooth analysis, volume 5
of Classics in Applied Mathematics. SIAM, Philadelphia, PA,
second edition, 1990.

[CM97] Doina Cioranescu and François Murat. A strange term com-
ing from nowhere. In Topics in the mathematical modelling of
composite materials, volume 31 of Progr. Nonlinear Differential
Equations Appl., pages 45–93. Birkhäuser Boston, Boston, MA,
1997.

[CR73] Philippe G. Ciarlet and Pierre A. Raviart. Maximum principle
and uniform convergence for the finite element method. Comput.
Methods Appl. Mech. Engrg., 2:17–31, 1973.

[CW20] Constantin Christof and Gerd Wachsmuth. On second-order op-
timality conditions for optimal control problems governed by the
obstacle problem, 2020.



198 Bibliography

[Dal83] Gianni Dal Maso. On the integral representation of certain local
functionals. Ric. Mat., 32:85–113, 1983.

[DM87] Gianni Dal Maso. Γ-convergence and µ-capacities. Ann. Scuola
Norm. Sup. Pisa Cl. Sci. (4), 14(3):423–464 (1988), 1987.

[DMG94] Gianni Dal Maso and Adriana Garroni. New results on the
asymptotic behavior of Dirichlet problems in perforated domains.
Math. Models Methods Appl. Sci., 4(3):373–407, 1994.

[DMG97] Gianni Dal Maso and Adriana Garroni. The capacity method for
asymptotic Dirichlet problems. Asymptot. Anal., 15(3-4):299–
324, 1997.

[DMM86] Gianni Dal Maso and Umberto Mosco. Wiener criteria and en-
ergy decay for relaxed Dirichlet problems. Arch. Ration. Mech.
Anal., 95:345–387, 1986.

[DMM87] Gianni Dal Maso and Umberto Mosco. Wiener’s criterion and
Γ-convergence. Appl. Math. Optim., 15(1):15–63, 1987.

[DMM95] Gianni Dal Maso and Annalisa Malusa. Approximation of re-
laxed Dirichlet problems by boundary value problems in perfo-
rated domains. Proc. Roy. Soc. Edinburgh Sect. A, 125(1):99–
114, 1995.

[DMM04] Gianni Dal Maso and François Murat. Asymptotic behaviour
and correctors for linear Dirichlet problems with simultaneously
varying operators and domains. Ann. Inst. H. Poincaré Anal.
Non Linéaire, 21(4):445–486, 2004.

[DS00] Klaus Deckelnick and Kunibert G. Siebert. W 1,∞-convergence of
the discrete free boundary for obstacle problems. IMA J. Numer.
Anal., 20(3):481–498, 2000.

[DZ11] Michel C. Delfour and Jean-Paul Zolésio. Shapes and geome-
tries. Metrics, analysis, differential calculus, and optimization,
volume 22 of Adv. Des. Control. SIAM, Philadelphia, PA, sec-
ond edition, 2011.

[FP03] Francisco Facchinei and Jong-Shi Pang. Finite-dimensional vari-
ational inequalities and complementarity problems, volume 1 of
Springer Ser. Oper. Res. Springer, New York, NY, 2003.



Bibliography 199

[Fre72] Jens Frehse. On the regularity of the solution of a second order
variational inequality. Boll. Un. Mat. Ital. (4), 6:312–315, 1972.

[Fri88] Avner Friedman. Variational principles and free-boundary prob-
lems. Robert E. Krieger, Malabar, FL, 1988. Reprint of the 1982
edition.

[Fug71] Bent Fuglede. The quasi topology associated with a countably
subadditive set function. Ann. Inst. Fourier (Grenoble), 21(fasc.
1):123–169, 1971.

[FV82] Stefano Finzi Vita. L∞-error estimates for variational inequal-
ities with Hölder continuous obstacle. RAIRO Anal. Numér.,
16(1):27–37, 1982.

[GT01] David Gilbarg and Neil S. Trudinger. Elliptic partial differential
equations of second order. Volume 224 of Classics in Mathemat-
ics. Springer, Berlin, 2001. Reprint of the 1998 edition.

[Har77] Alain Haraux. How to differentiate the projection on a convex set
in Hilbert space. Some applications to variational inequalities. J.
Math. Soc. Japan, 29(4):615–631, 1977.

[Hel75] Lester L. Helms. Introduction to potential theory. Robert E.
Krieger Publishing Co., Huntington, N.Y., 1975. Reprint of the
1969 edition, Volume 22 of Pure and Applied Mathematics.

[HK11] Michael Hintermüller and Ian Kopacka. A smooth penalty ap-
proach and a nonlinear multigrid algorithm for elliptic MPECs.
Comput. Optim. Appl., 50(1):111–145, 2011.

[HKM93] Juha Heinonen, Tero Kilpeläinen, and Olli Martio. Nonlinear
potential theory of degenerate elliptic equations. Oxford Math-
ematical Monographs. The Clarendon Press, Oxford University
Press, New York, 1993.

[HR86] Jaroslav Haslinger and Tomáš Roubíček. Optimal control of vari-
ational inequalities. Approximation theory and numerical real-
ization. Appl. Math. Optim., 14(1):187–201, 1986.

[HRUU21] Lukas Hertlein, Anne-Therese Rauls, Michael Ulbrich, and Ste-
fan Ulbrich. An inexact bundle method and subgradient computa-
tions for optimal control of deterministic and stochastic obstacle



200 Bibliography

problems. M. Hintermüller et al. (eds.), SPP1962 Special Issue
(to appear). ISNM, Birkhäuser, 2021.

[HU19] Lukas Hertlein and Michael Ulbrich. An inexact bundle algo-
rithm for nonconvex nonsmooth minimization in Hilbert space.
SIAM J. Control Optim., 57(5):3137–3165, 2019.

[HW18] Felix Harder and Gerd Wachsmuth. Comparison of optimality
systems for the optimal control of the obstacle problem. GAMM-
Mitt., 40(4):312–338, 2018.

[IK00] Kazufumi Ito and Karl Kunisch. Optimal control of elliptic vari-
ational inequalities. Appl. Math. Optim., 41(3):343–364, 2000.

[JKRSo03] Jiří Jarušek, Miroslav Krbec, Murali Rao, and Jan Sokoł owski.
Conical differentiability for evolution variational inequalities. J.
Differential Equations, 193(1):131–146, 2003.

[KKT03] Tommi Kärkkäinen, Karl Kunisch, and Pasi Tarvainen. Aug-
mented Lagrangian active set methods for obstacle problems. J.
Optim. Theory Appl., 119(3):499–533, 2003.

[KM92] Tero Kilpeläinen and Jan Malý. Supersolutions to degenerate
elliptic equation on quasi open sets. Comm. Partial Differential
Equations, 17(3-4):371–405, 1992.

[KS00] David Kinderlehrer and Guido Stampacchia. An introduction
to variational inequalities and their applications. Classics Appl.
Math. SIAM, Philadelphia, PA, 2000. reprint of the 1980 edition.

[KW12] Karl Kunisch and Daniel Wachsmuth. Path-following for optimal
control of stationary variational inequalities. Comput. Optim.
Appl., 51(3):1345–1373, 2012.

[LS67] Jacques-Louis Lions and Guido Stampacchia. Variational in-
equalities. Comm. Pure Appl. Math., 20:493–519, 1967.

[Mig76] Fulbert Mignot. Contrôle dans les inéquations variationelles el-
liptiques. J. Funct. Anal., 22:130–185, 1976.

[Mos69] Umberto Mosco. Convergence of convex sets and of solutions of
variational inequalities. Adv. Math., 3:510–585, 1969.

[Mos77] Umberto Mosco. Error estimates for some variational inequali-
ties. In Mathematical aspects of finite element methods (Proc.



Bibliography 201

Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975),
pages 224–236. volume 606 of Lecture Notes in Math., 1977.

[MP84] Fulbert Mignot and Jean-Pierre Puel. Optimal control in some
variational inequalities. SIAM J. Control Optim., 22(3):466–476,
1984.

[MRW15] Christian Meyer, Andreas Rademacher, and Winnifried Wollner.
Adaptive optimal control of the obstacle problem. SIAM J. Sci.
Comput., 37(2):A918–A945, 2015.

[MT13] Christian Meyer and Oliver Thoma. A priori finite element error
analysis for optimal control of the obstacle problem. SIAM J.
Numer. Anal., 51(1):605–628, 2013.

[Nit77] Joachim Nitsche. L∞-convergence of finite element approxima-
tions. In Mathematical aspects of finite element methods (Proc.
Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975),
pages 261–274. volume 606 of Lecture Notes in Math., 1977.

[Noc86] Ricardo H. Nochetto. A note on the approximation of free bound-
aries by finite element methods. RAIRO Modél. Math. Anal.
Numér., 20(2):355–368, 1986.

[NOS15] Ricardo H. Nochetto, Enrique Otárola, and Abner J. Salgado.
Convergence rates for the classical, thin and fractional elliptic ob-
stacle problems. Philos. Trans. Roy. Soc. A, 373(2050):20140449,
14, 2015.

[NSV05] Ricardo H. Nochetto, Kunibert G. Siebert, and Andreas Veeser.
Fully localized a posteriori error estimators and barrier sets for
contact problems. SIAM J. Numer. Anal., 42(5):2118–2135,
2005.

[OKZ98] Jiři Outrata, Michal Kočvara, and Jochem Zowe. Nonsmooth
approach to optimization problems with equilibrium constraints.
Theory, applications and numerical results. volume 28 of Non-
convex Optim. Appl. Kluwer Acad., Dordrecht, 1998.

[Rad19] Hans Rademacher. Über partielle und totale Differenzierbarkeit
von Funktionen mehrerer Variabeln und über die Transformation
der Doppelintegrale. Math. Ann., 79(4):340–359, 1919.



202 Bibliography

[Rod87] José-Francisco Rodrigues. Obstacle problems in mathemati-
cal physics, volume 134 of North-Holland Mathematics Stud-
ies. North-Holland Publishing Co., Amsterdam, 1987. Notas
de Matemática, 114.

[RU19] Anne-Therese Rauls and Stefan Ulbrich. Computation of a
Bouligand generalized derivative for the solution operator of the
obstacle problem. SIAM J. Control Optim., 57(5):3223–3248,
2019.

[RU20] Anne-Therese Rauls and Stefan Ulbrich. On the characterization
of generalized derivatives for the solution operator of the bilat-
eral obstacle problem. submitted to SIAM J. Control Optim. (in
revision), 2020. arXiv:2008.04358.

[RW20] Anne-Therese Rauls and Gerd Wachsmuth. Generalized deriva-
tives for the solution operator of the obstacle problem. Set-
Valued Var. Anal., 28:259–285, Feb 2020.

[Sta64] Guido Stampacchia. Formes bilinéaires coercitives sur les ensem-
bles convexes. C. R. Acad. Sci. Paris, 258:4413–4416, 1964.

[Sto93] Peter Stollmann. Closed ideals in Dirichlet spaces. Potential
Anal., 2(3):263–268, 1993.

[SW13] Anton Schiela and Daniel Wachsmuth. Convergence analysis of
smoothing methods for optimal control of stationary variational
inequalities with control constraints. ESAIM Math. Model. Nu-
mer. Anal., 47(3):771–787, 2013.

[Vel15] Bozhidar Velichkov. Existence and regularity results for some
shape optimization problems, volume 19 of Tesi Sc. Norm. Super.
Pisa (N. S.). Ed. Norm., Pisa, 2015.

[Wac14] Gerd Wachsmuth. Strong stationarity for optimal control of
the obstacle problem with control constraints. SIAM J. Optim.,
24(4):1914–1932, 2014.

[Wac18] GerdWachsmuth. Pointwise constraints in vector-valued Sobolev
spaces: with applications in optimal control. Appl. Math. Optim.,
77(3):463–497, 2018.

[Wac19] Gerd Wachsmuth. A guided tour of polyhedric sets: basic prop-



Bibliography 203

erties, new results on intersections, and applications. J. Convex
Anal., 26(1):153–188, 2019.

[Wlo87] Joseph Wloka. Partial differential equations. Cambridge Univer-
sity Press, Cambridge, 1987. Translated by C. B. Thomas and
M. J. Thomas.





List of Figures

3.1 Obstacle problem for different force terms . . . . . . . . . . . 30
3.2 Active sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Strictly and weakly active sets . . . . . . . . . . . . . . . . . . 46

4.1 Construction of monotone sequence in the proof of Proposi-
tion 4.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Influence of monotonicity . . . . . . . . . . . . . . . . . . . . 72

6.1 Bilateral obstacle problem for different force terms . . . . . . 115
6.2 Active sets for the bilateral obstacle problem . . . . . . . . . 117
6.3 Strictly and weakly active sets for the bilateral obstacle problem132
6.4 Influence of monotonicity for the bilateral obstacle problem . 141

7.1 Discontinuous second derivatives . . . . . . . . . . . . . . . . 156
7.2 Approximate inactive sets In . . . . . . . . . . . . . . . . . . 160
7.3 Construction of D̃n . . . . . . . . . . . . . . . . . . . . . . . . 173
7.4 Construction of Dn . . . . . . . . . . . . . . . . . . . . . . . . 175
7.5 Cone Cω in the proof of Lemma 7.29 . . . . . . . . . . . . . . 180
7.6 Visualisation of the obstacle problem . . . . . . . . . . . . . . 186
7.7 Approximations Jn, D̃J

n and DJ
n in first computation . . . . . 188

7.8 Numerical subgradient for the first computation . . . . . . . . 189
7.9 Approximations In, D̃n and Dn in second computation . . . . 191
7.10 Numerical subgradient for the second computation . . . . . . 192

ix





List of Tables

7.1 Error terms for the first computation . . . . . . . . . . . . . . 189
7.2 Error terms for the second computation . . . . . . . . . . . . 192

xi





Wissenschaftlicher Werdegang

Anne-Therese Rauls
geboren am 18.10.1990 in Landau

04/2021 Promotion in Mathematik
10/2016 – 09/2019 Mitglied im DFG Schwerpunktprogramm

1962:
Non-smooth and Complementarity-based Dis-
tributed Parameter Systems: Simulation and
Hierarchical Optimization

seit 07/2016 Wissenschaftliche Mitarbeiterin am Fachbe-
reich Mathematik der Technischen Univer-
sität Darmstadt, Arbeitsgruppe Nichtlineare
Optimierung

06/2016 Abschluss Master of Science in Mathematik
10/2010 – 06/2016 Studium der Mathematik an der Technischen

Universität Darmstadt
03/2010 Abitur am Eduard-Spranger-Gymnasium in

Landau

xiii


	Acknowledgment
	Zusammenfassung
	Introduction
	Mathematical framework
	Concepts of differentiability
	Generalization of Rademacher's theorem to infinite dimensions
	Operator topologies and generalized differentials
	Sobolev functions
	Capacity theory
	Identification of elements in H-1()+ with measures

	The obstacle problem
	Properties of solution operators of variational inequalities
	Monotonicity
	Directional differentiability

	Properties of the solution operator of the obstacle problem
	Directional differentiability


	Generalized derivatives for the composition with an operator
	Characterization of Gâteaux derivatives
	Relation to strict complementarity

	Mosco convergence of admissible sets
	Monotone convergent sequences of Gâteaux differentiability
	Influence of Monotonicity
	Monotonicity of the set-valued maps
	Monotonicity and Mosco convergence

	Mosco convergence of the admissible sets
	Characterization of two generalized derivatives
	Adjoint representation of Clarke subgradients

	Generalized differentials for the basic solution operator
	Capacitary measures and relaxed Dirichlet problems
	The set of capacitary measures as a metric space
	Useful properties

	Generalized differentials involving the strong operator topology
	Generalized differentials involving the weak operator topology

	Generalized derivatives for the bilateral obstacle problem
	Properties of the solution operator
	Differentiability properties of the solution operator

	Analysis of the critical cone
	Gâteaux differentiability of the solution operator

	Monotonicity of the active and strictly active sets
	Mosco convergence
	Generalized derivatives for the bilateral obstacle problem
	Adjoint representation of Clarke subgradients

	Error estimates for generalized derivatives
	Inexact generalized derivative on inexact domain
	Error estimates for approximate Clarke subgradients
	Regularity results for the solution of the obstacle problem
	L-estimates for the solution of the discrete obstacle problem
	Discrete inner approximation of the inactive set
	Discrete approximations of the complement of the strictly active set
	Error estimate for free boundaries
	Structure of the weakly and strictly active set
	Discrete inner and outer approximations
	Alternative discrete inner approximation

	Alternative inner approximation of the inactive set
	Summary of the results
	Numerical examples

	Conclusion and outlook
	Bibliography
	List of Figures
	List of Tables

