
Probability Theory

Volker Betz

1. Basic definitions and facts

In this section, we recall the definitions and statements from the lecture ’Einführung in die
Stochastik’ that will be relevant for this course. Another purpose of this repetition is to make
you familiar with the English terminology.

(1.1) Definition

Let Ω be a non-empty set. A collection of subsets F ⊂ P(Ω) is a σ-algebra (σ-field) over Ω if

a) ∅ ∈ F ,

b) A ∈ F ⇒ Ac := Ω\A ∈ F ,

c) Ai ∈ F ∀i ∈ N ⇒
⋃
i∈NAi ∈ F .

(Ω,F) is called a measurable space.
Remark: You should check that the conditions imply

⋂
i∈NAi ∈ F in the situation of c).

(1.2) Definition

Let F be a σ-algebra over Ω. A measure is a map µ : F → R+
0 with

a) µ(∅) = 0.

b) µ
(⋃

i∈NAi
)

=
∑

i∈N µ(Ai) for all disjoint collections of Ai ∈ F .

If µ(Ω) = 1, then µ is called a probability measure. In this case we often use the letter P instead
of µ and call (Ω,F ,P) a probability space.

(1.3) Lemma

Let P be a probability measure on (Ω,F), A, B, (Ai) ∈ F .

a) A ⊂ B ⇒ P(B)− P(A) = P(B \ A) > 0; (’Monotonicity’);

b) A ⊂
⋃
i∈NAi =⇒ P(A) 6

∑
i∈N P(Ai); (’Subadditivity’);

c) Ai ↗ A =⇒ P(Ai)↗ P(A); (’Continuity from below’);

d) Ai ↘ A =⇒ P(Ai)↘ P(A); (’Continuity from above’).
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Notational Remarks:
a) Above, Ai ↗ A means that Ai ⊂ Ai+1 for all i and

⋃
iAi = A. Ai ↘ A means Ai+1 ⊂ Ai for

all i and
⋂
iAi = A.

b) We will often write ↗ instead of ↗i→∞ if it is clear what limit is taken. Similarly, we will
often write

⋃
i instead of

⋃
i∈N if it is clear what set the i are from.

(1.4) Most important elementary examples

a) Ω countable set, F = P(Ω), p : Ω→ R+
0 with

∑
ω∈Ω p(ω) = 1. Then

P(A) :=
∑
ω∈A

p(ω) =
∑
ω∈Ω

1A(ω)p(ω)

defines a probability measure. 1A(ω) = 1 if ω ∈ A and = 0 otherwise, is called the indicator
function of A. p is called the probability weight function. All probability measures on countable
spaces are of the above form.

b) Ω = Rd, F = B(Rd) ≡ Bd the Borel-σ-algebra, f : Rd → R+
0 a measurable function with∫

Rd f(x)dx = 1. Then

P(A) :=

∫
A

f(x)dx =

∫
Rd
f(x)1A(x) dx (A ∈ Bd)

defines a probability measure on Rd. f is called Lebesgue-density of P. Not all probability
measures on Rd can be written in the form above, but many important ones can.

(1.5) Product spaces, product measures, generated σ-algebras

Let Ω1, . . . ,Ωn be probability spaces. We define the cartesian product

Ω1 × Ω2 × . . .× Ωn ≡
n∏
i=1

Ωi = {(ω1, . . . , ωn) : ωi ∈ Ωi∀i},

and

F := F1 ⊗F2 ⊗ . . .⊗Fn ≡
n⊗
i=1

Fi

to be the smallest σ-algebra over
∏n

i=1 Ωi that contains all measurable rectangles

A1 × . . .× An := {(ω1, . . . , ωn) : ωi ∈ Ai∀i}
with Ai ∈ Fi for all i. If we construct a σ-algebra as the smallest σ-algebra containing a certain
collection G ⊂ P(Ω) of subsets, we say that it is the σ-algebra generated by G and write σ(G).

If Pi is a probability measure on (Ωi,Fi) for all i, then there is a unique probability measure
P := P1⊗P2⊗ . . .⊗Pn on Ω so that for all measurable rectangles A = A1× . . .×An the equality

P(A) = P1(A1)P2(A2) · · ·Pn(An)

holds. This measure is called the product of the Pi. As a main example, think of the n-
dimensional Lebesgue measure.
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(1.6) Random variables, distributions

Let (Ω,F ,P) be a probability space, and (Ω′,F ′) be a measurable space, i.e. a set Ω′ with a
σ-algebra F ′ over Ω′. A function X : Ω→ Ω′ is called random variable (RV) if it is measurable,
i.e. if

X−1(A′) ≡ {ω ∈ Ω : X(ω) ∈ A′} ∈ F
holds for all A′ ∈ F ′. The distribution of a RV X is the measure PX on Ω′ so that

PX(A′) = P(X−1(A′)) for all A′ ∈ F ′.
We also say that PX is the image of P under X, or the pushforward of P under X. When
PX = µ for some probability measure µ, we also sometimes write X ∼ µ and say that X is
distributed like µ. Example: X ∼ N (0, 1). Finally, we sometimes write

PX = P ◦X−1

(1.7) Example

Let (Ω,F ,P) be a probability space.

a) A ∈ F , X = 1A, then X is a real-valued RV and for B ∈ B,

PX(B) =


P(A) if 1 ∈ B, 0 /∈ B,
1− P(A) if 0 ∈ B, 1 /∈ B,
1 if 0 ∈ B, 1 ∈ B,
0 otherwise.

More compactly, for B ∈ B, PX(B) = P(A)δ1(B) + (1 − P(A))δ0(B), where δx is the Dirac
measure in the point x ∈ R.

b) Ai ∈ F , Ai ∩ Aj = ∅ for all i 6= j, X =
∑n

i=1 αi1Ai . Then X is a real-valued RV, and you
should convince yourself that

PX(·) =
n∑
i=1

P(Ai)δαi(·) + (1− P(
n⋃
i=1

Ai))δ0(·).

The last term can be dropped if we assume that
⋃n
i=1Ai = Ω. In this case, X is called elementary

RV.

(1.8) Distribution functions

Let X be a real-valued RV. The function

F : R→ [0, 1], x 7→ P(X 6 x) = PX((−∞, x])

is called (cumulative) distribution function of X. It uniquely determines the distribution of X
(but not X itself).



4 VOLKER BETZ

(1.9) Equality in Distribution

Let X, Y be RVs. We say that X and Y have the same distribution, and write X
d
= Y , if

PX = PY . Note that X
d
= Y is a much weaker statement than X = Y .

(1.10) Examples for important non-real-valued RVs

A RV X : (Ω,F ,P)→ (Ω′,F ′) is also called a

random vector if Ω′ = Rd, F ′ = Bd, d > 1;

random permutation if Ω′ = S(N) = {π : {1, . . . , N} → {1, . . . , N}, π bijective}, F ′ = P(SN).

random continuous function, or random path if Ω′ = C(R+
0 ,Rd). The σ-algebra is the one

generated by the point evaluations (not relevant in this lecture).

(1.11) Testing for measurability

Measurability of a random variable needs only be tested on a collection of sets generating the
σ-algebra on the target space of X. In symbols: Let F ′ be a σ-algebra, and let G be a collection
of sets with σ(G) = F ′. A function X is measurable from (Ω,F) to (Ω′,F ′) if and only if
X−1(A′) ∈ F for all A′ ∈ G.

(1.12) Generated σ-algebra

Let X be a RV from (Ω,F) to (Ω′,F ′). The σ-algebra (!) σ(X) := σ({X−1(A) : A ∈ F ′}) is
the smallest σ-algebra over Ω with respect to which X is measurable. It is called the σ-algebra
generated by X and can be much smaller than F . Try to find the σ-algebra generated by the
RVs in Example (1.7).

(1.13) New RVs from old

a) If X : Ω→ Ω′, Y : Ω′ → Ω′′ are RVs, then also Y ◦X : Ω→ Ω′′ is a RV.

b) If Xi, i = 1, . . . , n, are real-valued RVs and f : Rn → Rm is measurable, then f(X1, . . . , Xn) :
Ω→ Rm is a RV. This works the same with more general target spaces.

c) Special case of b):
∑n

i=1Xi is a RV.

d) Let (Xi)i∈N be a sequence of RVs. Then ω 7→ infiXi(ω) and ω 7→ supiXi(ω) are RVs. The
same for ω 7→ lim supi→∞Xi(ω) and ω 7→ lim infi→∞Xi(ω).

e) In the situation of d), Ω0 := {ω ∈ Ω : limn→∞Xi(ω) exists} is measurable, and

1Ω0(ω) lim
n→∞

Xn(ω) := 1Ω0(ω) lim sup
n→∞

Xn(ω) = 1Ω0(ω) lim inf
n→∞

Xn(ω)

is a RV.
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Exercise: check that all the statements so far also hold for the probability space R̄ = R ∪
{−∞,∞} with the σ-algebra generated by the intervals [−∞, a) and (b,∞] for a, b ∈ R.

(1.14) Expected Value

a) Discrete probability spaces: Ω = {ωi : i ∈ N};
A RV X : Ω → Rd is integrable if

∑
i∈N ‖X(ωi)‖P({ωi}) < ∞, where ‖x‖ is any (e.g. the

euclidean) norm on Rd. In this case,

E(X) :=
∑
i∈N

X(ωi)P({ωi})

is the expected value of X with respect to P (defined component-wise).

b) Lebesgue densities: Ω = Rn, P(A) =
∫
A
ρ(y)dy for A ∈ Bn, with some density ρ > 0,∫

ρ(y) dy = 1.
A RV X : Rn → Rd is integrable if

∫
ρ(y)‖X(y)‖ dy <∞, and in this case,

E(X) :=

∫
ρ(y)X(y) dy

is the expected value of X with respect to the measure P = ρ(y) dy (defined component-wise) .

c) General case, positive RV: (Ω,F ,P) general, X : Ω→ R+
0 a RV. Then for each n ∈ N, let

Xn(ω) = min
{ 1

n
bnX(ω)c , n

}
.

Then, Ωn := {ωj : 0 6 j 6 n2} with ’points’ ωj := X−1
n (j/n) ⊂ Ω, for 0 6 j 6 n2, and

probability measures Pn({ωj}) = P
(
X−1
n ({j/n})

)
is a discrete probability space (situation a),

and we define

E(Xn) := EPn(Xn) :=
n2∑
k=0

k

n
Pn({ωk}) =

n2∑
k=0

k

n
P(X−1

n ({k/n})).

X is called integrable if E(X) := limn→∞ E(Xn) exists, and E(X) is then called expected value
of X. If E(X) = ∞, then X is not called integrable, but we still say that the expected value
exists and is +∞.

d) General case, general RV: For real valued RVs, X is called integrable if positive part X+ and
negative part X− are integrable in the sense of c). Then E(X) = E(X+)− E(X−).
For Rd-valued RVs, X is integrable if the positive RV ω 7→ ‖X(ω)‖ is integrable. Equivalently,
if each component is integrable. E(X) is then defined component-wise.

e) Properties of the expected value:

Linearity: If X, Y are integrable, then also X + αY (α ∈ R) is integrable, and E(X + αY ) =
E(X) + αE(Y ).

Monotonicity: If X(ω) > Y (ω) for all ω, then E(X) > E(Y ) if the expected values exist.
If X(ω) > Y (ω) for all ω and E(X) = E(Y ), then P(X 6= Y ) = 0. In this case, we say that
X = Y almost surely.
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(1.15) Variance

For a real-valued RV X with E(X) <∞, we define the variance of X as

V(X) ≡ Var(X) = E
(
(X − E(X))2

)
= E(X2)− E(X)2.

The variance can be infinite. We have that V(aX + b) = a2V(X).

(1.16) Computing expected values

a) Let X be a Rd-valued RV on a probability space (Ω,F ,P), and let f : Rd → Rn be a
measurable function so that f(X) is integrable. Then

E(f(X)) =

∫
Rd
f(y)PX(dy),

where PX is the image measure of P under X.

b) Special case: d = n, f(x) = x, then

E(X) =

∫
Rd
y PX(dy).

If d = n = 1 and f(x) = xm, then the m-th moment of X is defined as E(Xm) and can be
calculated via

E(Xm) =

∫
ym PX(dy), m > 1.

c) Special case: Gaussian measure. If X is a Gaussian RV with expected value µ and variance
σ2, then PX has the Lebesgue-density

ρ(y) =
1√

2πσ2
e−

1
2σ2
|y−µ|2 , y ∈ R.

Then,

E((X − µ)n) =
1√

2πσ2

∫
R
(y − µ)n e−

1
2σ2
|y−µ|2 dy =

{
0 if n is odd,

(n− 1)!!σn if n is even.

Here (n − 1)!! = (n − 1) · (n − 3) · · · 3 · 1. Also, E(Xn) can be calculated by expanding Xn =
(X − µ+ µ)n =

∑n
k=0

(
n
k

)
µk(X − µ)n−k and using linearity.

d) A very useful formula for calculating expected values is the following: if X is a real-valued
RV, X > 0, and if f : R+ → R+ is differentiable and monotone increasing, then

E(f(X)) = f(0) +

∫ ∞
0

f ′(y)P(X > y)dy.

(Proof: the integral on the right hand side equals∫ ∞
0

dy f ′(y)

∫
Ω

P(dω)1{X(ω)>y} =

∫
P(dω)

∫ ∞
0

dy f ′(y)1{X(ω)>y},

by Fubini’s theorem which holds since f ′ > 0. The inner integral in the last expression on the

right hand side above equals
∫ X(ω)

0
f ′(y)dy = f(X(ω))− f(0). This shows the claim.)
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e) A frequently useful special case of the above equation is

E(Xp) =

∫
p yp−1 P(X > y) dy.

(1.17) Inequalities for expected values

a) Jensen: If X is a real-valued RV, φ : R→ R is convex and both X and φ(X) are integrable,
then

E(φ(X)) > φ(E(X)).

b) Hölder: For p, q ∈ [1,∞] with 1
p

+ 1
q

= 1,

E(|XY |) 6 ‖X‖p‖Y ‖q where ‖X‖p := E(|X|p)1/p, ‖Y ‖q := E(|X|q)1/q.

c) Cauchy-Schwarz: Hölder with p = q = 2, i.e.

E(|XY |)2 6 E(|X|2)E(|Y |2).

c) Chebyshev-Markov: Let X be a real-valued RV, f : R → R+ measurable and A ∈ B.
Then

inf{f(x) : x ∈ A}P(X ∈ A) 6 E
(
f(X)1{X∈A}

)
6 E(f(X)).

(Proof: inf{f(x) : x ∈ A}1{X(ω)∈A} 6 f(X(ω))1{X(ω)∈A} for all ω. Now take expectation.)
Special cases:

f(x) = x2, a > 0, A = R\(−a, a) : a2P(|X| > a) 6 E(X2),

f(x) = x2, X = |Z − E(Z)| for some RV Z, a > 0, A = [a,∞) : a2P(|Z − E(Z)| > a) 6 V(Z).

(1.18) Exchange of limit and integration

Let (Xn) be a sequence of RVs.

a) Fatou: Xn > 0 =⇒ lim infn→∞ E(Xn) > E(lim infn→∞Xn).

b) Monotone Convergence: If 0 6 Xn ↗ X, then E(Xn)↗ E(X).

c) Dominated Convergence: If Xn → X almost surely (a.s.), and if |Xn| 6 Y a.s. for some
integrable RV Y, then E(Xn)→ E(X).

(1.19) Independence

a) Two events (= measurable sets) A,B are independent if

P(A ∩B) = P(A)P(B).

We write A ⊥⊥ B.

b) Two collections F and G of sets are independent if

∀A ∈ F ,∀B ∈ G : P(A ∩B) = P(A)P(B).
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We write F ⊥⊥ G. The most important special case is when F and G are σ-algebras.

c) Two RVs X, Y : (Ω,F ,P)→ (Ω′,F ′) are independent if

∀A,B ∈ F ′ : P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B).

We write X ⊥⊥ Y .

d) Fact:

X ⊥⊥ Y ⇔ σ(X) ⊥⊥ σ(Y ) ⇔ E
(
f(X)g(Y )

)
= E

(
f(X)

)
E
(
g(Y )

)
∀f, g bounded and measurable.

e) A family (Ai)i∈I of sets Ai ⊂ F , with some index set I, is independent (or: an independent
family of sets) if for all finite subsets {i1, . . . , in} ⊂ I, we have that

P

(
n⋂
k=1

Aik

)
=

n∏
k=1

P(Aik).

f) A family of σ-algebras Gi, i ∈ I, is an independent family of σ-algebras (or: independent) if
e) holds for each choice of sets Ai with Ai ∈ Gi.
g) A family of RVs Xi, i ∈ I, is called independent family of RVs (or: independent) if their
σ-algebras Gi = σ(Xi) are independent.

(1.20) The π-λ-Theorem

a) A π-system is a collection A ⊂ P(Ω) of sets with the property that

A,B ∈ A =⇒ A ∩B ∈ A.
b) A λ-system is a collection L ⊂ P(Ω) of sets with the property that
(i): Ω ∈ L.
(ii): A,B ∈ L, B ⊂ A =⇒ A \B ∈ L.
(iii): An ∈ L, n ∈ N, with An ↗ A =⇒ A ∈ L.

c) Theorem: Let A be a π-system and L be a λ-system. If A ⊂ L, then also σ(A) ⊂ L. An
important special case is when L is itself a σ-algebra.

d) Consequence: IfA1, . . . ,An are π-systems andA1, . . . ,An are independent, then σ(A1), . . . , σ(An)
are independent. (proof: exercise!)

e) Application: For a real-valued RV X, the system {X−1((−∞, c)) : c ∈ R} is a π-system.
(Reason: the inverse image map preserves all set operations!) Therefore, two real-valued RVs
X and Y are independent if and only if P(X < a, Y < b) = P(X < a)P(Y < b) for all a, b ∈ R.

(1.21) Independence and Distribution

a) Theorem: If X1, . . . , Xn are RVs and PXi = µi, then the Xi are independent if and only if

P(X1,...Xn) = µ1 ⊗ . . .⊗ µn (product measure!).

b) Consequence: Let Xi, i = 1, . . . , n, be independent real-valued RVs and µi probability
measures on R with Xi ∼ µi for all i. If h : Rn → R is either positive or has E(h(X1, . . . , Xn)) <
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∞, then

E(h(X1, . . . , Xn)) =

∫
Rn
h(x1, . . . , xn)µ1(dx1) · · ·µn(dxn).

c) Special case of b): h(x1, . . . , xn) =
∏n

i=1 fi(xi), then

E

(
n∏
i=1

fi(Xi)

)
=

n∏
i=1

E(fi(Xi))

d) For fi(xi) = xi and n = 2 in c), we get

E(XY ) = E(X)E(Y ) (∗).
RVs having the property (∗) are called uncorrelated. As we have seen, independence implies
uncorrelation. The converse is usually not true.

e) Notable exception to the last statement: if X and Y both have a Gaussian distribution, then
X, Y uncorrelated implies X, Y independent.

(1.22) Sums of Random variables, convolution

a) If X and Y are real RVs, and if (X, Y ) has a Lebesgue-density (x, y) 7→ ρ(x, y), then X + Y
has a Lebesgue-density

∫∞
−∞ ρ(x− y, y)dy. We write

Z = X + Y ∼
(∫ ∞
−∞

ρ(z − y, y) dy
)

dz.

(Proof: calculate P(X + Y 6 a) using (1.16 a).

b) If X ⊥⊥ Y , X ∼ f(x)dx, Y ∼ g(x) dx, then

Z = X + Y ∼
(∫ ∞
−∞

f(z − y)g(y) dy
)

dz.

We say that the density of X + Y is the convolution f ∗ g, with

f ∗ g(z) :=

∫ ∞
−∞

f(z − y)g(y) dy,

of the densities of X and Y . Note that even though the formula does not look symmetric in
f and g, we do have f ∗ g = g ∗ f . This can be seen by a change of variable in the defining
integral.

(1.23) Limsup and Liminf

Let An ⊂ Ω for all n.

a) lim supn→∞An := limm→∞
⋃∞
n=mAn :=

⋂∞
m=1

⋃∞
n=mAn = {ω : ω ∈ An for infinitely many n}.

b) lim infn→∞An := limm→∞
⋂∞
n=mAn :=

⋃∞
m=1

⋂∞
n=mAn = {ω : ω /∈ An for only finitely many n}.

c) We have that lim inf An ⊂ lim supAn, and that 1lim supAn(ω) = lim sup 1An(ω) for all ω, where
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the last limsup is just the definition from real analysis. Same for liminf.

d) Sometimes we write

P(lim supAn) = P({ω : ω ∈ An infinitely often} = P(An infinitely often) = P(An i.o.).

(1.24) First Borel-Cantelli Lemma

Let An ∈ F for all n.

If
∞∑
n=1

P(An) <∞ then P(An i.o.) = 0.

(1.25) Second Borel-Cantelli Lemma

Let An ∈ F be an independent family of sets, Then
∞∑
n=1

P(An) =∞ implies P(An i.o.) = 1.

(1.26) Weak laws of large numbers

Let (Xn) be a collection of real-valued RVs. Let S̄n := 1
n

∑n
i=1Xi.

a) If the Xi are independent and identically distributed (i.e. PXi = PXj for all i, j), and if
E(X2

i ) <∞, then for all δ > 0

lim
n→∞

P(|S̄n − E(X1)| > δ) = 0.

b) Stronger version: if all the Xi are uncorrelated, and if their variances are uniformly bounded,
i.e. v := supiV(Xi) <∞, then for all positive sequences (εn) and all n ∈ N we have

P
(∣∣∣ 1
n

n∑
i=1

(Xi − E(Xi))
∣∣∣ > εn

)
6

v

nε2
n

.

For suitable εn this can be turned into a weak law of large numbers.

c) L1-version: Let the Xi be pairwise independent, and identically distributed. Assume that
E(|Xi|) <∞. Then for all δ > 0,

lim
n→∞

P(|S̄n − E(X1)| > δ) = 0.

We also did a strong law of large numbers and a central limit theorem in the last semester,
but we will do them again, slightly better and/or differently. So they do not appear in this
revision. The last thing is an overview over the types of convergence for random variables.
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(1.27) Types of convergence for random variables

Let (Xn) be a sequence of Rd-valued random variables. We say that

a) Xn → X almost surely (a.s.) if P(lim supn→∞ |Xn −X| > 0) = 0.
We write Xn → X a.s. in this case.

b) Xn → X in probability if for all δ > 0, lim supn→∞ P(|Xn −X| > δ) = 0.

We write Xn
p−→ X in this case.

c) Xn → X in Lp if E(|Xn −X|p)→ 0.

We write Xn
Lp−→ X in this case.

d) Xn → X in distribution if the image measures PXn converge weakly to PX , i.e. if∫
f(x)PXn(dx)→

∫
f(x)PX(dx) for all bounded and continuous functions f.

In probabilistic notation, the last condition reads

E(f(Xn))→ E(f(X)) for all bounded and continuous functions f.

We write Xn ⇒ X, or PXn ⇒ PX in this case. Convergence in distribution is the only type of
convergence where the Xn do not need to be defined on the same probability space.

We end this section by giving all the relations between the different types of convergence.
Some of them have been done in the last semester, but we will prove all of them now.

(1.28) Theorem

Let (Xn) and X be Rd-valued random variables.

a) Assume Xn → X in probability. Then

(i): Xn ⇒ X;

(ii): there exists a subsequence (Xnk)k∈N that converges to X almost surely.

b) Assume that Xn ⇒ X, and P(X = c) = 1 for some c ∈ Rd (in other words, the image
measure of X is a Dirac measure). Then

(i): Xn → X in probability.

c) Assume that Xn → X a.s. Then

(i): Xn → X in probability.

(ii): Xn ⇒ X.

(iii): if in addition E(|X|p)→ E(|X|), then Xn → X in Lp.

d) Assume Xn → X in Lp. Then

(i): Xn → X in probability.

(ii): Xn ⇒ X.

(iii): there exists a subsequence (Xnk)k∈N that converges to X almost surely.

(iv): Xn → X in Lq for all 1 6 q 6 p.
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Proof: a) we start with part (ii). By assumption, we can pick an increasing sequence of
integers (nk) with the property that P(|Xnk −X| > 1/k) < 1/k2. We set Ak := {|Xnk −X| >
1/k} and find that

∑∞
k=1 P(Ak) <∞. Therefore by Borel-Cantelli, P(Ak i.o.) = 0, and thus

P( lim
k→∞
|Xnk −X| = 0) > P(|Xnk −X| > 1/k only finitely often) = 1− P(Ak i.o.) = 1.

This proves (ii). For (i), assume that Xn 6⇒ X. Then there exists f ∈ Cb, δ > 0 and a sequence
(nj)j∈N so that

(∗) |E(f(Xnj))− E(f(X))| > δ ∀j.
Since however Xnj → X in probability as j → ∞, we have just proved the existence of
a subsequence Xnjk

of Xnj that converges to X almost surely. Since f is continuous, also

f(Xnjk
) → f(X) almost surely, and since f is bounded, dominated convergence now implies

|E(f(Xnjk
))− E(f(X))| k→∞−→ 0. This is in contradiction to (∗), so we conclude that Xn ⇒ X.

b) The function

gε : Rd → R+
0 , x 7→

{
1 if |x− c| > ε
|x−c|
ε

if |x− c| < ε

is continuous and bounded, and therefore

lim
n→∞

P(|Xn −X| > ε) 6 lim
n→∞

E(gε(Xn)) = 0.

c) We start with (i). Put An := {|Xn −X| 6 ε}. Then

lim inf
n→∞

An = {∃m ∈ N : ∀n > m : |Xn −X| 6 ε} = {lim sup
n→∞

|Xn −X| 6 ε}.

So by assumption, P(lim inf An) = 1, and with Yn = 1An , therefore E(lim inf Yn) = 1. Therefore,

lim sup
n→∞

P(|Xn−X| > ε) = 1−lim inf
n→∞

P(|Xn−X| 6 ε) = 1−lim inf
n→∞

E(Yn)
Fatou

6 1−E(lim inf
n→∞

Yn) = 0.

So Xn → X in probability. By a), then also Xn ⇒ X.
For (iii), note that |Xn−X|p 6 2p(|Xn|p+|X|p), and so Yn := 2p(|Xn|p+|X|p)−|Xn−X|p > 0.

Also, lim infn→∞ Yn = 2p+1|X|p almost surely. Thus,

2p+1E(|Xp|)− lim sup
n→∞

E(|Xn −X|p) = lim inf E(Yn)
Fatou

> E(lim inf
n→∞

Yn) = 2p+1E(|X|p),

and the claim follows.

d) (i) is shown by

P(|Xn −X| > ε)
Chebyshev

6
1

εp
E(|Xn −X|p)

n→∞−→ 0.

(ii) now follows from a(i), and (iii) from a(ii). For (iv), let q < p, and set p̃ = p
q
, q̃ = p

p−q . Then

1/p̃+ 1/q̃ = 1, and Hölders inequality gives for all random variables Y that

‖Y ‖qq = E(|Y |q · 1) 6 E(|Y |qp̃)1/p̃E(1q̃)1/q̃ = E(|Y |p)q/p = ‖Y ‖qp,
so ‖Y ‖q 6 ‖Y ‖p if q 6 p. Applying this to Y = |Xn −X| shows the claim. �
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(1.29) Diagram

The following diagram summarizes all the relations of the previous theorem.

(1.30) Warning

Note that since x 7→ x and x 7→ x2 are not bounded functions, convergence in distribution
does not imply that E(Xn)→ E(X) or V(Xn)→ V(X). To assume this is a very tempting and
common mistake.

2. Sums of independent random variables

We are now interested in what happens when we take infinitely many independent random
variables and sum them up. We start by making sure that there exist a probability space that
is large enough to define all those independent random variables.

Part 1: Existence of countably many independent random variabes

(2.1) Infinite products of measurable spaces

a) Let (Ωi,Gi), i ∈ N, be measurable spaces. The set

Ω := Ω1 × Ω2 × . . . :=
∞⊕
i=1

Ωi := {(ωi)i∈N : ωi ∈ Ωi ∀i}
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is called the direct sum of the sets Ωi. We define the σ-algebras

F{n} := {Ω1 × · · · × Ωn−1 × A× Ωn+1 × . . . : A ∈ Gn}

and

Fn := σ
( n⋃
j=1

F{j}
)
, F := σ

( ∞⋃
j=1

F{j}
)
,

Recall that if A is a collection of sets, then σ(A) is the smallest σ-algebra containing A.

b) The σ-algebras Fn have the property that F1 ⊂ F2 ⊂ . . .. Such a collection of σ-algebras is
called a filtration. It will become important later in the lecture when we discuss martingales.

c) In most examples, all the (Ωi,Gi) are the same. Then we write

∞⊕
i=1

Ωi = ΩN
1 , F = G⊗N1 .

Note that even in that case, F{i} 6= F{j} if i 6= j.

We now work towards proving the existence of independent RVs. The first step is

(2.2) Proposition

Let Ω = {0, 1}N, F = P({0, 1})⊗N. There exists a probability measure µ on Ω with the property
that for all q = (q1, . . . , qn) ∈ {0, 1}n, we have

µ({ω ∈ {0, 1}N : ωi = qi ∀i 6 n}) = 2−n.

Proof: Consider the probability space ((0, 1],B((0, 1]), λ) where λ is the Lebesgue measure. For
x ∈ (0, 1] consider its unique non-terminating dyadic representation:

x =
∞∑
i=1

qi2
−i with qi ∈ {0, 1}, lim sup

i→∞
qi = 1.

(e.g. 0.1 is represented with q1 = 0 and qj = 1 if j > 1.) Now define the random variable

f : (0, 1]→ {0, 1}N, x 7→ (qi)i∈N.

f is indeed measurable because

f−1
(
{q1} × . . . {qn} × {0, 1}N) =

( n∑
i=1

qi2
−i,

n∑
i=1

qi2
−i + 2−n

]
∈ B,

and the sets {q1} × . . . {qn} × {0, 1}N generate Fn for each n, and therefore generate F when
we consider all n. Now we can use (1.11). Since µ = λ ◦ f−1, the claim is shown. �

(2.3) Corollary

A sequence of independent Bernoulli(1/2) random variables exists.

Proof: Take Ω as in (2.2) and Xi(ω) = ωi. Then for each finite set i1, . . . , in of different integers,
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and all q1, . . . , qn ∈ {0, 1}, simple combinatorics give

µ(Xi1 = q1, . . . Xin = qn) = µ
(
{ω ∈ {0, 1}N : ωi = qi∀i 6 n}

)
= 2−n =

n∏
i=1

µ(Xij = qj).

This shows independence and B(1/2)-distribution. �

The following Lemma goes the opposite way as (2.2):

(2.4) Lemma

Let µ be defined as in (2.2), and let

g : {0, 1}N → [0, 1], (qi)i∈N 7→
∞∑
i=1

qi2
−i.

Then µ ◦ g−1 = λ[0,1].

Proof: g is ’almost’ equal to f−1 with f from the proof of (2.2). The only difference is for
sequences ending in 0, 0, . . .. We have

g−1
([ n∑

i=1

qi2
−i,

n∑
i=1

qi2
−i + 2−n

])
= {q1} × {q2} × · · · × {qn} × {0, 1}N ∈ F .

Since the intervals generate B, g is measurable, and

µ ◦ g−1
([ n∑

i=1

qi2
−i,

n∑
i=1

qi2
−i + 2−n

])
= 2−n = λ

([ n∑
i=1

qi2
−i,

n∑
i=1

qi2
−i + 2−n

])
.

Since the closed intervals form a ∩-stable generator of B, the π-λ-Theorem implies that

µ ◦ g−1(A) = λ(A) for all A ∈ B.
�

The last Lemma can be used to prove the existence of infinitely many real-valued RVs:

(2.5) Proposition

a) Let Ω = [0, 1]N, F = B([0, 1])⊗N. There exists a measure λ⊗N[0,1] on Ω with

(∗) λ⊗N[0,1]

(
[a1, b1)× · · · × [an, bn)× [0, 1]N

)
=

n∏
i=1

(bi − ai)

for all 0 6 ai < bi 6 1. Consequently, there exists a sequence of independent U [0, 1]-distributed
(i.e. uniformly distributed on [0, 1]) RVs.

b)Let Ω = RN, F = B⊗N. Let µi, i ∈ N be probability measures on R. Then the product
measure

⊗∞
i=1 µi, i.e. the unique measure with

∞⊗
i=1

µi

(
[a1, b1)× · · · × [an, bn)× RN

)
=

n∏
i=1

µi([ai, bi)) ∀ai 6 bi
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exists. Consequently, a sequence of independent RVs Xi with Xi ∼ µi exists.

Proof: Let p1, p2, . . . be the sequence of prime numbers, and consider the map

G : {0, 1}N → [0, 1]N, (qi)i∈N 7→
( ∞∑
j=1

qpji
2−j
)
i∈N =

(
0.q2q4q8q16 · · · , 0.q3q9q27 · · · , 0.q5q25q125 · · · , . . .

)
,

where in the last expression we used binary digits. You should check as an exercise that G is
measurable with respect to the product σ-algebras. Since no qj is used twice (many are not used
at all!), each component of G has the same distribution as g from (2.4), and the components
are alle independent. This proves a).

For b), consider the distribution function transform: Let Fi be the distribution function of µi,
and put

fi(x) := sup{z ∈ R : Fi(z) < x}.
Then you can (and should) check that µi = λ[0,1] ◦ f−1

i . So, we can apply this transform to each
coordinate of the measure in a) and prove b). �

Nomenclature We will write iid for ’independent, identically distributed’.

Part 2: Strong laws of large numbers

We have already shown the following strong law in the previous course:

(2.6) Strong law under fourth moment condition

Let (Xn) be a sequence of iid random variables, and assume E(Xi) = µ and E(X4
i ) <∞ for all

i. Then

lim
n→∞

1

n

n∑
i=1

Xi → µ almost surely.

The next theorem (the main result of this subsection) states the same convergence under
weaker conditions.

(2.7) Theorem: Strong law of large numbers

Let (Xi) be pairwise independent and identically distributed RVs, with E(|Xi|) <∞. Then

lim
n→∞

1

n

n∑
i=1

Xi → µ almost surely.

Proof: We do the proof in several steps.

Step 1: Truncation. Let Yn(ω) := Xn(ω)1{|Xn| 6 n}, and

Sn :=
n∑
i=1

Xi, Tn :=
n∑
i=1

Yi.
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We claim that
lim
n→∞

1
n
Tn = µ a.s. implies lim

n→∞
1
n
Sn = µ a.s.

Indeed, we have
∞∑
k=1

P(|Xk| > k) =
∞∑
k=1

P(|X1| > k) 6
∫ ∞

0

P(|X1| > t) dt = E(|X1|) <∞,

and so the first Borel-Cantelli Lemma implies that with A := {Yn 6= Xn i.o.}, we have P(A) = 0.
It follows that for all ω /∈ A, there exists N(ω) <∞ with

sup
n∈N
|Sn(ω)− Tn(ω)| 6

N(ω)∑
k=1

Xk(ω)1{|Xk(ω)|>k} <∞.

This implies that
lim
n→∞

∣∣ 1
n
Tn(ω)− 1

n
Sn(ω)

∣∣ = 0

for all ω /∈ A and finishes step 1.

Step 2: We prove the estimate
∞∑
k=1

V(Yk)

k2
6 4E(|X1|) <∞,

which we will need shortly. We start by computing

V(Yk) 6 E(Y 2
k )

(1.16e)
=

∫ ∞
0

2yP(|Yk| > y) dy 6
∫ ∞

0

2yP(|X1| > y)1{y 6 k} dy.

So summing over k and using Fubini (everything is nonnegative!) gives

(∗)
∞∑
k=1

V(Yk)

k2
6

∞∑
k=1

1

k2

∫ ∞
0

2yP(|X1| > y)1{y 6 k} dy = 2

∫ ∞
0

(
y
∞∑
k=1

1

k2
1{y<k}

)
P(|X1| > y) dy.

A little analysis gives that for y > 1,

y
∞∑
k=1

1

k2
1{y<k} 6 y

∫ ∞
byc

1

x2
dx =

y

byc
6 2,

and for 0 6 y 6 1,

y
∞∑
k=1

1

k2
1{y<k} 6

∞∑
k=1

1

k2
=
π2

6
< 2.

Using this and (1.16 e) with p = 1 in (∗) shows step 2.

Step 3: We now prove the claim for the Tn, but for the moment only along a subsequence. Let
k(n) = bαnc with some α > 1. Then by the Chebyshev inequality, for each ε > 0,

∞∑
n=1

P
(
|Tk(n) − E(Tk(n))| > εk(n)

)
6

∞∑
n=1

V(Tk(n))

ε2k(n)2
=

=
1

ε2

∞∑
n=1

1

k(n)2

k(n)∑
m=1

V(Ym) =
1

ε2

∞∑
m=1

V(Ym)
∑

n:k(n) > m

1

k(n)2
.
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In the last step, we re-ordered the sum of nonnegative terms. Since αn > k(n) > αn/2, we have∑
n:k(n) > m

1

k(n)2
6 4

∑
n:αn > m

α−2n 6
4

m2

∞∑
n=0

α−2n =
4

m2(1− α−2)
.

We conclude that, by step 2 and our calculations,
∞∑
n=1

P
(
|Tk(n) − E(Tk(n))| > εk(n)

)
6

4

ε2(1− α−2)

∞∑
m=1

V(Ym)

m2
6

16

ε2(1− α−2)
E(|X1|) <∞.

By Borel-Cantelli, this means that for each ε > 0,

P
( 1

k(n)
|Tk(n) − E(Tk(n))| > ε i.o.

)
= 0,

and so in particular with

Am :=
{
ω ∈ Ω : lim sup

n→∞

1

k(n)
|Tk(n) − E(Tk(n))| >

1

m

}
,

we find P(
⋂
mA

c
m) = P((

⋃
mAm)c) = 1− P(

⋃
mAm) > 1−

∑
m P(Am) = 1. So,⋂

m

Acm =
{
∀m : lim sup

n→∞

1

k(n)
|Tk(n) − E(Tk(n))| 6

1

m

}
= {lim sup

n→∞

1

k(n)
|Tk(n) − E(Tk(n))| = 0}.

Finally, limk→∞ E(Yk) = E(X1), and for any sequence (an) such that an → a we have that

limN→∞
1
N

∑N
n=1 an = a (exercise!). Applying this to the sequence E(Yk) gives

lim
n→∞

1

k(n)
E(T(k(n))) = lim

n→∞

1

k(n)

k(n)∑
j=1

E(Yj) = E(X1).

We have finished step 3.

Step 4: We now prove the full claim, but only for nonnegative RVs. If Xi(ω) > 0 for all i and
all ω, then also Yi(ω) > 0 for all i, ω. Therefore with k(n) as in step 3,

Tk(n)(ω)

k(n+ 1)
6
Tm(ω)

m
6
Tk(n+1)(ω)

k(n)

for all ω, all n, and all m ∈ [k(n), k(n+ 1)]. Since k(n+ 1)/k(n)→ α as n→∞, we find a.s.

1

α
E(X1) 6 lim inf

m→∞
Tm
m
6 lim sup

m→∞

Tm
m
6 αE(X1).

Since α > 1 was arbitrary, the claim holds for all nonnegative (Xn).

Step 5: For general (Xn), we just decompose into positive and negative part: Xn = Xn,+−Xn,−.
By step 4, the claim holds for Xn,± and so also for Xn. �

The strong law also holds in the situation where E(X1) = +∞:

(2.8) Theorem

Let (Xi) be iid with E(X1,+) =∞, E(X1,−) <∞. Then with Sn =
∑n

i=1 Xi, we have lim 1
n
Sn =

+∞ almost surely.



PROBABILITY THEORY 19

Proof: Let XM
i (ω) = min{Xi(ω),M}, and SMn =

∑n
i=1 X

M
i . Then almost surely,

lim inf
n→∞

Sn
n
> lim

n→∞

1

n
SMn

(2.7)
= E(XM

1 ).

By monotone convergence, E(XM
1,+)→∞ as M →∞, and since E(XM

1,−) = E(X1,−) <∞, the
claim follows. �

Next we give a few applications for the strong law of large numbers.

(2.9) Example: Renewal Theory

Let (Xi) be iid RVs, with 0 < Xi <∞. We interpret Xi as the waiting time between two events,
e.g. the time it takes between two clicks of a Geiger counter. Then

Tn(ω) :=
n∑
i=1

Xi(ω)

is the total time it takes before we see the n-th event, and

Nt(ω) := sup{n ∈ N : Tn(ω) 6 t}

is the total number of events up to (and including) time t. We want to understand how Nt

behaves for large t.

(2.10) Theorem

In the situation of the example above, write µ := E(X1) 6∞. Then

lim
t→∞

Nt

t
=

1

µ
a.s.

Proof: By definition of Nt, we have for all ω ∈ Ω

TNt(ω)(ω) =

Nt(ω)∑
i=1

Xi(ω) 6 t < TNt(ω)+1(ω),

and thus

(∗)
TNt(ω)(ω)

Nt(ω)
6

t

Nt(ω)
<
TNt(ω)+1(ω)

Nt(ω) + 1

Nt(ω) + 1

Nt(ω)
.

Since Xi(ω) < ∞ for all ω, we have that limt→∞Nt(ω) = ∞ for all ω. By (2.7) or (2.8), there

is a set Ω0 with P(Ω0) = 1 and Tn(ω)
n
→ µ for all ω ∈ Ω0. Then on Ω0, the left hand side and

right hand side of (∗) both converge to µ. The claim follows. �

(2.11) Remark and Exercise

In the previous proof, we used the fact that if Xn → X a.s., and if Nn → ∞ a.s., then also
XNn → X a.s. This becomes false when we replace the a.s. convergence of Xn by convergence
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in probability. Exercise: give an example of a sequence (Xn) with Xn ∈ {0, 1}, Xn → 0 in
probability, N(n)→∞ a.s. and XN(n) → 1 a.s..

(2.12) Empirical measure and empirical distribution function

Let (Xi) be real random variables. We write δx for the Dirac measure at x ∈ R. The map Ω→
(probability measures on R),

ω 7→ µn,ω =
1

n

n∑
i=1

δXi(ω)

(i.e.: the random probability measure µn) is called the empirical measure of the random variables
X1, . . . , Xn. µn,ω is the normalized histogram of values that we have obtained by observing the
first n of the Xi for the choice of randomness ω.

The distribution function Fn of µn, i.e. the random function ω 7→ Fn,ω with

Fn,ω(x) = µn,ω((−∞, x]) =
1

n

n∑
i=1

1{Xi(ω) 6 x}

is called the empirical distribution function of the Xi. Fn,ω(x) is the fraction of values 6 x
that have been observed after n observations of the Xi, for the particular incarnation ω of the
randomness. If the Xi are iid, then the RVs Yi = 1{Xi 6 x} are iid and integrable. Therefore by
(2.7),

Fn,ω(x) =
1

n

n∑
i=1

Yi
n→∞−→ E(Y1) = P(X1 6 x) = F (x),

almost surely. The following result shows that convergence is even uniform in x.

(2.13) Glivenko-Cantelli theorem

In (2.12), assume that the Xi are iid, and let F be the distribution function for X1. Then

lim
n→∞

‖Fn − F‖∞ = lim
n→∞

sup
x∈R
|Fn(x)− F (x)| = 0 a.s.

Proof: Pointwise convergence has been shown in (2.12). By the same argument as there, we
can set Zn = 1{Xn<x} and find

Fn(x−) := lim
y↗x

Fn(y) =
1

n

n∑
i=1

Zi
n→∞−→ E(Z1) = lim

y↗x
F (y) =: F (x−)

almost surely, for each fixed x. Now choose k ∈ N, then there is a set Ωk with P(Ωk) = 1 and,
for each ω ∈ Ωk a number N(ω) ∈ N so that with xj,k = inf{y ∈ R : F (y) > j/k}, j = 1, . . . ,
k-1, x0,k = −∞, xk,k =∞, we have

max{|Fn,ω(xj,k)− F (xj,k)| : 0 6 j 6 k, n > N(ω)} 6 1

k
and

max{|Fn,ω(xj,k−)− F (xj,k−)| : 0 6 j 6 k, n > N(ω)} 6 1

k
.
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Let x ∈ (xj−1,k, xj,k) for some 0 6 j 6 k. Since F is monotone and F (xj,k−) − F (xj−1,k) 6 1
k
,

we find that for all ω ∈ Ωk, all x ∈ R and all n > N(ω):

Fn,ω(x) 6 Fn,ω(xj,k−) 6 F (xj,k−) + 1
k
6 F (xj−1,k) + 2

k
6 F (x) + 2

k
,

and
Fn,ω(x) > Fn,ω(xj−1,k) > F (xj−1,k)− 1

k
> F (xj,k−)− 2

k
> F (x)− 2

k
.

We conclude that lim supn→∞ ‖Fn,ω−F‖∞ 6 2
k

for all ω ∈ Ωk. Consequently, for all ω ∈ Ω∞ :=⋂
k∈N Ωk, we find that limn→∞ ‖Fn,ω − F‖∞ = 0. Since P(Ω∞) = 1, the result follows. �

Part 3: Large Deviations

(2.14) Motivation

Let (Xi) be iid integrable RVs, Sn =
∑n

i=1Xi. By the weak law of large numbers,

lim
n→∞

P(| 1
n
Sn − E(X1)| > a) = 0

for all a > 0. We are now interested in the rate of convergence, i.e. how quickly P(| 1
n
Sn −

E(X1)| > a) decays to zero. Since in applications, we always have large but finite n, such an
information is often more valuable than just the convergence.

We will find that under mild conditions, the decay is exponentially fast, and we can give
an (usually implicit) formula for the rate of exponential decay. We concentrate on the case
E(X1) = 0 and the expression P( 1

n
Sn > a). The case of E(X1) 6= 0 and P( 1

n
Sn 6 − a) can then

be easily deduced from our results.

(2.15) Existence of exponential rate

Let (Xi) be a sequence of iid random variables. Then, with Sn =
∑n

i=1Xi, the limit

γ(a) := lim
n→∞

1
n

lnP( 1
n
Sn > a) = sup

n∈N

1
n

lnP( 1
n
Sn > a)

exists for all a ∈ R and is in [−∞, 0]. Furthermore, γ(a) = −∞ if and only if P(X1 > a) = 0.

Proof: Let πn := P( 1
n
Sn > a) = P(Sn > na). If P(X1 > a) = 0, then P(Sn > na) = 0 for all n

and γ(a) = −∞. Let now P(X1 > a) > 0. Sn and Sn+m − Sn are independent, and thus

πn+m = P(Sn+m > (n+m)a) > P(Sn > na, Sn+m − Sn > ma)

= P(Sn > na)P(Sn+m − Sn > ma) = πnπm > 0.

So taking logarithms (ln is monotone!) we find with γn := lnπn, γm+n > γn+γm. By the lemma
below (with γn = −xn), this shows that limn→∞

1
n
γn = supn∈N

1
n
γn exists in (−∞,∞] and is in

particular not −∞. Since πn = P( 1
n
Sn > a) 6 1, the limit is 6 0. �

The next lemma is needed in the proof above. It is so frequently useful that it deserves its
own number.
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(2.16) Subadditive Lemma, or Fetekes Lemma

Let (xn) be a sequence that is subadditive, i.e. such that

xn+m 6 xn + xm ∀n,m ∈ N.
Then

lim
n→∞

xn
n

= inf
n∈N

xn
n

exists in [−∞,∞).

Proof: Fix m ∈ N, and write n > m in the form n = km+ l, k ∈ N, with 0 6 l < m. Then

xn 6 xkm + xl 6 x(k−1)m + xm + xl = . . . = kxm + xl.

Thus
xn
n
6
kxm
n

+
xl
n

=
km

km+ l

xm
m

+
xl
n
6
xm
m

+
xl
n
.

Taking lim supn→∞ and using that l = l(n) < m, we find that

lim sup
n→∞

xn
n
6
xm
m

for all m ∈ N. Taking now infm∈N and lim infm→∞ in the equation above, and using that x1
1
<∞,

shows all the claims. �

(2.17) General large deviation estimate

Let (Xi) be iid integrable RVs, E(X1) = 0, and define γ(a) as in (2.15). Then the function
a 7→ γ(a) is concave on [0, inf{a : γ(a) = −∞}), and for all n ∈ N,

(∗) P( 1
n
Sn > a) 6 enγ(a) = e−n|γ(a)| .

Also, γ(a) = 0 if a < E(X1) = 0 and γ(a) = −∞ if P(X1 > a) = 0.

Proof: Equation (∗) follows from (2.15):

1

n
lnP( 1

n
Sn > a) 6 sup

m

1

m
lnP( 1

m
Sm > a) = γ(a)

for all n. Now rearrange. The two statements after (∗) are also clear, the first one follows from
the law of large numbers. To see the concavity, note that the same trick as in the proof of (2.15)
gives

P(Sqm > pma+ (q − p)mb) > P(Spm > pma)P(S(q−p)m > (q − p)mb),
for all p, q ∈ N with q > p and all a, b ∈ R. With λ = p/q, this means that

1

qm
lnP( 1

qm
Sqm > λa+(1−λ)b) > λ

1

pm
lnP( 1

pm
Spm > a)+(1−λ)

1

(q − p)m
lnP( 1

(q−p)mS(q−p)m > b).

Taking the limit m→∞ on both sides above shows

γ(λa+ (1− λ)b) > λγ(a) + (1− λ)γ(b)

for all rational λ ∈ (0, 1). Since a 7→ γ(a) is monotone, it is easy to extend this to all real λ. �
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The existence of some γ(a) is nice, but more interesting is to actually compute its value; in
particular, if γ(a) = 0 then (2.17) is not very useful. We calculate γ(a) in two special cases.

(2.18) Example: Normal distributions

If Xi ∼ N (0, 1) for all i in (2.17), then Sn ∼ N (0, n) and thus

P(Sn > an) = P(X1 > a
√
n) =

1√
2π

∫ ∞
a
√
n

e−x
2/2 dx

An important fact about the Gaussian density (exercise!) is that

1

c+ 1/c
e−c

2/2 6
∫ ∞
c

e−x
2/2 dx 6

1

c
e−c

2/2

for all c > 0. Therefore

γ(a) = lim
n→∞

1

n
lnP(Sn > an) = −a

2

2
,

for all a > 0.

(2.19) Example: Coin flips

If P(Xi = −1) = P(Xi = 1) = 1/2 for all i in (2.17), then for a ∈ [0, 1]

(∗) γ(a) = lim
n→∞

1

n
lnP(Sn > an) = −

(1 + a

2
ln(1 + a) +

1− a
2

ln(1− a)
)
.

For a > 1, γ(a) = −∞ as we know from (2.17). Note that γ(1) = − ln 2 (convention: 0 ln 0 =
limx↘0 x lnx = 0), so γ is ’discontinuous’ at a = 1. To prove formula (∗), note first that the
case a = 0 is clear. For 0 < a < 1, we have

P(Sn > an) = 2−n
n∑

k=b(1+a)n/2+1c

(
n

k

)
.

Since
(
n
k

)
6
(

n
b(1+a)n/2+1c

)
for a > 0 and all k > b(1 + a)n/2 + 1c, this means that

2−n
(

n

b(1 + a)n/2 + 1c

)
6 P(Sn > an) 6 (n+ 1)2−n

(
n

b(1 + a)n/2 + 1c

)
.

This already shows that

lim
n→∞

1

n
lnP(Sn > an) = − ln 2 + lim

n→∞

1

n
ln

(
n

b(1 + a)n/2 + 1c

)
,

since the term 1
n

ln(n + 1) on the right hand side above disappears in the limit. The rest is a
direct calculation using Stirling’s formula:

lim
n→∞

1

n!
nn e−n

√
2πn = 1.

We now want to give an (abstract) general formula for γ(a). We need the following definition:
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(2.20) Definition

For a random variable X, the function

ϕX : R→ (0,∞], θ 7→ ϕX(θ) := E( eθX )

is called the moment generating function of the random variable X.

Note that ϕX(0) = 1 always, but it is possible that ϕX(θ) =∞ for all θ 6= 0. Our first result
is an upper bound for γ(a).

(2.21) Proposition

In the situation of (2.17), with ϕ(θ) := ϕX1(θ), we have

γ(a) 6 − sup{aθ − lnϕ(θ) : θ > 0.}
Proof: If ϕ(θ) =∞ for all θ 6= 0, then the supremum above is taken at θ = 0, and the statement
is γ(a) 6 0, which is trivially true (and useless). So assume now that ϕ(θ) <∞ for some θ > 0.
Then by Chebyshev’s inequality,

eθna P(Sn > na) 6 E( eθSn )
iid
= E( eθX1 )n = ϕ(θ)n.

Thus,
P(Sn > na) 6 e−n(θa−lnϕ(θ)) ,

and taking limn→∞
1
n

ln on both sides shows

−γ(a) > θa− lnϕ(θ)

for all θ. Taking the supremum over θ on the right hand side of this inequality shows the
claim. �

(2.22) Remark

Consider θ+ := sup{θ : ϕX(θ) < ∞} and θ− := inf{θ : ϕX(θ) < ∞}. One can show that if
θ+ > 0, then lnϕX(·) is finite and convex on (θ−, θ+). For a general function F : (θ−, θ+)→ R,
the function

a 7→ LF (a) := sup{aθ − F (θ) : θ− < θ < θ+}
is itself convex on (a−, a+), with a− = inf{a : LF (a) < ∞} and a+ = sup{a : LF (a) < ∞}.
(You can prove these statements as an exercise.) So the next Theorem says that in good cases,
the exponential decay rate of P( 1

n
Sn > a) is exactly the Legendre transform of ϕX at a.

(2.23) Cramérs Large Deviation Theorem

Let (Xi) be iid RVs with E(X1) = µ ∈ R, Sn =
∑n

i=1Xi, and assume in addition that

(∗) ∀θ ∈ R : ϕ(θ) = E( eθX1 ) <∞.
Then for all a > µ,

lim
n→∞

1
n

lnP( 1
n
Sn > a) = −Llnϕ(a) ≡ − sup{aθ − lnϕ(θ) : θ ∈ R}
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In the context of (2.17), this means that γ(a) = −Llnϕ(a).

Proof:

Step 1: It is enough to show the claim when a = 0 and µ < 0. Namely, with Yi = Xi − a we
have E(Y1) < 0, and P(Sn > na) = P(

∑n
i=1 Yi > 0). On the other hand, ϕX1(θ) = eaθ ϕY1(θ),

and therefore LlnϕX1
(a) = LlnϕY1

(0). This shows the claim of step 1. Note that with a = 0 our
claim takes a simpler form: we need to prove that

(∗∗) lim
n→∞

1
n

lnP(Sn > 0) = inf{lnϕ(θ) : θ ∈ R} = ln(inf
θ∈R

ϕ(θ)).

The last equality is because ϕ > 0 and ln is monotone.

Step 2: Assume from now on that E(X1) < 0 and a = 0. By assumption (∗), it follows that
E(|X1|p eθX1 ) < ∞ for all p > 0, θ ∈ R (exercise!). Therefore, Lebesgues differentiation lemma
implies that for all θ ∈ R,

ϕ′(θ) = E(X1 eθX1 ) and ϕ′′(θ) = E(X2
1 eθX1 ) > 0.

This shows that ϕ is strictly convex, and that ϕ′(0) = E(X1) < 0.

Step 3: In the case that P(X1 6 0) = 1, we have ϕ′(θ) < 0 for all θ, and limθ→∞ ϕ(θ) = P(X1 =
0) (exercise!). Thus in this case,

lnP(Sn > 0) = lnP(Xi = 0∀1 6 i 6 n) = lnP(X1 = 0)n = n lnP(X1 = 0) = n ln inf
θ
ϕ(θ),

and the claim is shown (both sides above might be −∞).

Step 4: Assume now that P(X1 < 0) > 0 and P(X1 > 0) > 0. Then

lim
θ→−∞

ϕ(θ) = lim
θ→∞

ϕ(θ) =∞

(exercise!), and thus by strict convexity there exists a unique θ0 ∈ R with

ϕ(θ0) = min{ϕ(θ) : θ ∈ R}, and ϕ′(θ0) = 0.

So in this situation, we therefore just have to show that

(∗ ∗ ∗) lim
n→∞

1
n

lnP(Sn > 0) = ln(ϕ(θ0)).

Since ϕ′(0) < 0, we know in addition that θ0 > 0. By Chebyshevs inequality, we find that

P(Sn > 0) 6 P( eθ0Sn > 1) 6 E( eθ0Sn ) = ϕ(θ0)n,

so we know that 6 holds in (∗ ∗ ∗); in fact, we knew this from (2.21) already.

We now need to prove > in (∗ ∗ ∗) The trick is to change from the random variables Xi

where P(Sn > 0) vanishes exponentially fast to different random variables X̂i and Ŝn =
∑n

i=1 X̂i

where lnP(Ŝn > 0) remains finite, and to do this in a controlled way so that we can extract
the leading order of 1

n
lnP(Sn > 0) easily from the new expression. The correct way to do this

is the Cramér transform: Let µ = PX1 be the image measure of P under X. We fix θ̂ > θ0

and define a probability measure (!) µ̂ by

µ̂(dx) =
1

ρ̂
eθ̂x µ(dx),
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where ρ̂ = ϕ(θ̂) is the normalization constant. Then let X̂1 be a random variable with distri-
bution µ̂, and observe that its moment generating function ϕ̂ is given by

ϕ̂(θ) := ϕX̂1
(θ) =

1

ρ̂

∫
R

eθx eθ̂x µ(dx) =
1

ρ̂
E( e(θ+θ̂)X1 ) =

1

ρ̂
ϕX1(θ + θ̂).

Therefore, by strict convexity of ϕ,

ε = ε(θ̂) := E(X̂1) = ϕ̂′(0) =
1

ρ̂
ϕ′(θ̂) >

1

ρ̂
ϕ′(θ0) = 0,

and

V(X̂1) 6 E(X̂2
1 ) = ϕ̂′′(0) =

1

ρ̂
ϕ′′(θ̂) = c <∞,

Note that ε→ 0 when θ̂ → θ0 by continuity of ϕ′.
On the other hand,

P(Sn > 0) =

∫
{x1+...+xn > 0}

µ(dx1) · · ·µ(dxn) =

=

∫
{x1+...+xn > 0}

(ρ̂ e−θ̂x1 )µ̂(dx1) · · · (ρ̂ e−θ̂xn )µ̂(dxn) = ρ̂n E( e−θ̂Ŝn 1{Ŝn > 0}),

where Ŝn =
∑n

i=1 X̂i. Thus,

1

n
lnP(Sn > 0) > ln ρ̂+

1

n
lnE( e−θ̂Ŝn 1{0 6 Ŝn 6 2nε}) >

> ln ρ̂+
1

n
ln
(

e−2nθ̂ε P(0 6 Ŝn 6 2nε)
)

= ln ρ̂− 2θ̂ε+
1

n
lnP(0 6

1

n
Ŝn 6 2ε)

)
.

Since E(X̂1) > 0 and V(X1) <∞, the weak law of large numbers now shows that

lim
n→∞

1

n
lnP(Sn > 0) > ln ρ̂− 2θ̂ε = lnϕ(θ̂)− 2θ̂ε

for all θ̂ > θ0. Since θ 7→ ϕ(θ) is continuous and ε → 0 as θ̂ → θ0, we can now take the limit

θ̂ → θ0 and obtain the claim. �

Remark: There are much stronger results on large deviations: it is possible to prove similar
results when ϕ(θ) < ∞ only for some θ instead of all, and it is also possible to formulate the
statement of Cramérs theorem with the help of so-called rate functions; in that form it can
be generalized away from just sums of real-valued random variables. We refer to the literature
(Klenke, Durrett, Deuschel/Stroock).

Part 4: The Central Limit Theorem, and Convergence of Probability measures

We have treated the CLT in the previous lecture, but we will re-prove it here with a technique
that is very important in its own right, namely characteristic functions. We will also use the
opportunity to learn many useful things related to the convergence of sequences of probability
measures.
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(2.24) Motivation

Let (Xn) be iid random variables with E(X1) = 0, V(X1) = 1, and let Sn =
∑n

i=1 Xi. One way
to state the weak law of large numbers is to say that

lim
n→∞

P( 1
n
Sn ∈ (a, b)) =

{
1 if 0 ∈ (a, b)

0 otherwise

which implies that the sequence of image measures P 1
n
Sn

converges to the Dirac measure δ0 at

x = 0 weakly. Now, the Dirac measure is a very boring probability measure! Why do we not
see more interesting things?

Answer: because we killed them all by dividing through n. We should choose a different scaling
if we want to have a bit more fun with the limit. Which one should it be? Well,

V(n−αSn) = n−2α

n∑
i=1

V(Xi) = n−2α+1,

so the only candidate where the limiting variance is not zero (giving the Dirac measure) or
infinity (giving the zero measure or nothing at all, depending on your world view) is α = 1/2.

The aim of this part is to prove that the sequence of measures Pn−1/2Sn converges to some
non-trivial limiting measure µ, and to identify µ. We start with the ’identify’ part: We know
that two measures µ and ν on Rd are equal if µ(A) = ν(A) for all rectangles A built from
half-open intervals (they form a π-system generating Bd). Alternatively, if we know that

(∗) Eµ(f) ≡
∫
f(ω)µ(dω) =

∫
f(ω)ν(dω) = Eν(f)

for all f ∈ Cb(Rd) (bounded, continuous functions), then we can approximate half-open rec-
tangles from below by such functions and prove (by monotone convergence) that this also
implies µ = ν.

Question: Do we really need (∗) for all f ∈ Cb?.
Answer: No! A dense subset is enough!

(2.25) Lemma

Let µ, ν be probability measures, and let F be a dense subset of Cb. If Eµ(f) = Eν(f) for all
f ∈ F , then µ = ν.

Proof: F is dense, so for h ∈ Cb and ε > 0 there exists f ∈ F with ‖f − h‖∞ < ε. Then,

|Eµ(h)−Eν(h)| 6 |Eµ(h− f)|+ |Eµ(f)−Eν(f)|+ |Eν(f −h)| 6 ‖h− f‖∞+ 0 +‖f −h‖∞ 6 2ε.

Since ε was arbitrary, this shows Eµ(h) = Eν(h) for all h ∈ Cb and so µ = ν. �

Exercise: Show that (2.25) remains true if we only demand that the linear span of F is dense.

(2.26) Theorem and Definitions
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Let µ be a probability measure on R (or: X a real-valued RV). Then µ (or PX) is uniquely
determined by

a) the sequence

N 3 n 7→
∫
xnµ(dx) (or n 7→ E(Xn))

of its moments if we assume that µ([a, b] = 1) (or: X ∈ [a, b] almost surely) for some −∞ <
a < b <∞.

b) its Laplace transform

R+ 3 t 7→
∫ ∞

0

e−tx µ(dx) (or t 7→ E( e−tX ) )

if we assume µ(R+
0 ) = 1 (or X > 0 a.s.).

c) its Fourier transform

R 3 t 7→
∫ ∞
−∞

eitx µ(dx) =: ϕµ(t),

or, characteristic function

R 3 t 7→ ϕX(t) := E( eitX ).

Proof: a) Polynomials are the linear span of the family F = {x 7→ xn : n > 0}, and they are
dense in compact intervals by the Weierstrass theorem.

b) The linear span of F = {x 7→ e−ax : a > 0} is dense in Cb([0,∞)) by the Stone-Weierstrass
theorem after doing the one-point compactification of R+ (details: Klenke).

c) will be a consequence of Theorem (2.29) below. �

(2.27) Examples for characteristic functions

a) X with P(X = 1) = P(X = −1) = 1/2, then ϕX(t) = 1
2
( eit + e−it ) = cos t.

b) X Poisson(λ)-distributed, then

ϕX(t) = E( eitX ) =
∞∑
k=0

eitk e−λ
λk

k!
= eλ( eit−1) .

c) X ∼ N (µ, σ2), then

ϕX(t) = eitµ−σ2t2/2 , t ∈ R.

When you compare this with the Gaussian density 1√
2πσ2

e−
1

2σ2
(x−µ)2 , it looks rather similar (at

least for µ = 0), but the σ2 changes place from ’under the fraction line’ to ’above the fraction
line’ in the exponent.

To prove this formula, we calculate

ϕX(t) =

∫ ∞
−∞

eitx 1√
2πσ2

e−
1

2σ2
(x−µ)2 dx = eiµt

∫ ∞
−∞

ei(tσ)z 1√
2π

e−
1
2
z2 dz,
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where for the last equality we use the integral substitution z = (x − µ)/σ. Since the last
expression is equal to eiµt ϕY (tσ), with Y ∼ N (0, 1), it is enough to show the claimed formula
when µ = 0, σ = 1. In this case, completing the square in the exponent gives

ϕY (t) =

∫ ∞
−∞

eitx 1√
2π

e−
1
2
x2 dx = e−t

2/2 1√
2π

∫ ∞
−∞

e−(x−it)2/2 dx

The final integral above is equal to one. It is tempting to ’prove’ this by the change of variable
z = x − it which reduces the integral to the standard Gaussian integral 1√

2π

∫
e−z

2/2 dz = 1.

However, change of variable in the complex plane is not that easy and often goes wrong. Here
it does work, but the argument must be that we deform the contour of integration (which runs
on the line {x+ it : x ∈ R} onto the real line, switching back to the original line only for very
large x, where the error we make is small. The details are left as an exercise.

d) X ∼ Exp(α), i.e. with density ρ(x) = α e−αx 1{x > 0}. Then

ϕX(t) = α

∫ ∞
0

eitx e−αx dx =
α

α− it
.

(2.28) Properties of the Characteristic Function

Let X be a RV, ϕ ≡ ϕX its characteristic function (CF).

a) ϕ(t) = E(cos(tX)) + iE(sin(tX)), in particular

ϕ(0) = 1, ϕ(−t) = ϕ(t), |ϕ(t)| 6 E(| eitX |) = 1.

b) t 7→ ϕ(t) is uniformly continuous on (−∞,∞).
Proof: We have

sup
t∈R
|ϕ(t+ h)− ϕ(t)| = sup

t∈R

∣∣E( eitX︸︷︷︸
|.| 6 1

( eihX − 1)
)∣∣ 6 E(| eihX − 1|).

The last expression converges to zero as h→ 0 by dominated convergence. �

c) For a, b ∈ R,

ϕaX+b(t) = E( eit(aX+b) ) = eitb E( ei(at)X ) = eitb ϕX(at).

We have used this in example (2.27) c) in a concrete case.

d) If X and Y are independent, then

ϕX+Y (t) = E( eit(X+Y ) ) = E( eitX eitY ) = E( eitX )E( eitY ) = ϕX(t)ϕY (t).

This property, which is shared by the Laplace transform and the moment generating function,
is very useful!

We can now prove (2.26) c), and more:

(2.29) Theorem: Fourier inversion formula
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Let µ be a probability measure on R, and let ϕ be its characteristic function. Then for all a < b,

(∗) 1

2π
lim
T→∞

∫ T

−T

1

it

(
e−ita − e−itb

)
ϕ(t) dt = µ

(
(a, b)

)
+ 1

2

(
µ({a}) + µ

(
{b})

)
,

and

µ({a}) =
1

2T
lim
T→∞

∫ T

−T
e−ita ϕ(t) dt.

In particular, if X and Y are RVs, and if ϕX(t) = ϕY (t) for all t ∈ R, then PX((a, b]) = PY ((a, b])
for all a, b, and thus X and Y have the same distribution.

Proof: First note that 1
it

(
e−ita − e−itb

)
=
∫ b
a

e−ity dy, so the absolute value this expression is
bounded by b− a. We can therefore invoke Fubinis theorem and find

IT :=

∫ T

−T

1

it

(
e−ita − e−itb

)
ϕ(t) dt =

∫
µ(dx)

∫ T

−T

1

it

(
e−ita − e−itb

)
eitx dt︸ ︷︷ ︸

=:Ja,b(x,T )

.

By symmetry,∫ T

−T

1

it
eit(x−a) dt =

∫ T

−T

1

t
sin(t(x− a))dt =

= 2sign(x− a)

∫ T

0

1

t
sin(t|x− a|) dt = 2sign(x− a)

∫ T |x−a|

0

1

y
sin(y) dy.

As is often the case, the hardest part of the proof is to show some fun fact about special
functions or integrals (aka ’hard analysis’). Here it is the

Claim: For all R > 0, |
∫ R

0
1
y

sin y dy − π/2| 6 2/R.

Proof of the claim: We have∫ R

0

1

y
sin y dy =

∫ R

0

dy

∫ ∞
0

dz e−yz sin y
Fubini

=

∫ ∞
0

dz

∫ R

0

dy e−yz sin y = (∗∗).

Integration by parts (twice) gives∫ R

0

dy e−yz sin y = −[ e−yz cos y]R0−
∫ R

0

dyz e−yz cos y = −[ e−yz cos y]R0−[z e−yz sin y]R0−
∫ R

0

dyz2 e−yz sin y.

We rearrange and find∫ R

0

dy e−yz sin y =
1

1 + z2
(1− e−zR cosR− z e−zR sinR).

Since ∫ ∞
0

1

1 + z2
dz = [arctan z]∞0 = π/2

a direct computation now shows the claim.
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Continuing with the proof, a simple calculation now shows that

lim
T→∞

Ja,b(x, T ) =


2π if a < x < b

π if x ∈ {a, b}
0 if x /∈ [a, b].

Now by dominated convergence, limT→∞
1

2π
IT = µ((a, b)) + 1

2
µ({a, b}). The claim for µ({a}) is

proved analogously and left as an exercise. �

We can now easily re-prove the following fact that we already know:

(2.30) Corollary

If X ∼ N (µ, σ2) and Y ∼ N (ν, κ2), and if X ⊥⊥ Y , then X + Y ∼ N (µ+ ν, σ2 + κ2).

Proof: exercise. �

(2.31) Central limit theorem with cheat proof

Let (Xn) be iid RVs with E(X1) = 0, V(X1) = σ2 < ∞. Then 1√
n

∑n
i=1Xi converges in

distribution to a N (0, σ2)-distributed random variable Y .

Cheat Proof: Put Sn =
∑n

i=1Xi. We do the following computation with the characteristic
function of 1√

n
Sn:

ϕSn/
√
n(t) = E( e

i t√
n

∑n
i=1Xi )

(2.28d)
= E( e

i t√
n
X1 )n

(!!1)
= (Taylor expansion, t√

n
is small)

(!!1)
= E

(
1 + i

t√
n
X1 −

t2

2n
X2

1 +
t3

n3/2
R
)n

=
(

1 + 0− t2

2n
V(X1) +

t3

n3/2
E(R)

)n
(!!2),n→∞−→ e−

σ2

2
t2 = ϕY (t).

Since the characteristic functions uniquely characterize the measures, we conclude (!!3) that
1√
n
Sn → Y in distribution.

There are several shortcuts (or: cheats) in this proof.

(!!1): The Taylor expansion is not correct since X1 is a random variable, so even if t/
√
n is

small, t/
√
nX1(ω) might be very large for some ω. Also, we seem to have hidden an X3

1 in the
term R, but we never assumed that E(X3) <∞. We will show in Proposition (2.32) below (by
Taylor expanding the function ϕSn/

√
n(t) itself instead of eit/

√
nX1 ) that the equality with the

second expression of the middle line nevertheless holds.

(!!2): This seems trivial. We put an = −t2/2V(X1)+ t3n−1/2E(R), remember that the logarithm
has the Taylor expansion ln(1 + x) = x− x2/2 + x3/3− . . ., and calculate that

ln(1 + an
n

)n = n ln(1 + an
n

) = n(an
n

+ a2n
2n2 + . . .)→ lim

n→∞
an = a.

But now we realize that an is complex valued, and very surprisingly, for complex z the fun-
damental equality ln zn = n ln z is false in general! The reason is that in C, the logarithm has
many branches, and we can not be sure which one we should take. For example, when z = i
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and n = 2, then ln z2 = ln(−1) which is right on top of the standard branch cut of the ln. We
will find a less elegant, but more correct way of proving (!!2) in Theorem (2.33) below and the
two Lemmas following it.

(!!3) is where the real trouble starts. We have shown that equality of characteristic functions
implies equality of distributions. We have not shown that (pointwise) convergence of CFs im-
plies weak convergence of measures (or: convergence in distribution). To do this is not at all
trivial and will keep us busy for the remainder of this chapter (although we will also learn other
things along the way).

As promised, we start by solving problem (!!1). We actually do a bit more than that.

(2.32) Proposition

Let X be a real-valued RV.

a) If E(|X|n) <∞ for some n ∈ N, then ϕX is n times differentiable, and

∂kt ϕX(t) = E
(
(iX)k eitX

)
∀k 6 n.

b) If n > 2 in a), then

ϕX(s) = 1 + isE(X)− s2

2
E(X2) + ε(s)s2

with lims→0 ε(s) = 0.

c) Assume that there exists h > 0 with

(∗) lim
n→∞

hn

n!
E(|X|n) = 0.

Then ϕX is analytic on {z ∈ C : |Imz| < h}, and

ϕX(t+ s) =
∞∑
k=0

sk
ik

k!
E( eitX Xk) ∀t ∈ R,∀|s| 6 h.

Note that the assumption (∗) holds e.g. if E( e|hX| ) <∞.

Proof: a) Remember that by Taylors theorem, a function f is k times differentiable if and
only if there exist numbers α1, . . . αk−1 so that

(∗∗) fk(t) := lim
h→0

k!

hk

(
f(t+ h)− f(t)−

k−1∑
j=1

αj
hj

j!

)
exists,

and that in this case, αj = ∂jt f(t) and fk(t) = ∂kt f(t). For the function f = ϕX , the natural
guess is that αj = E((iX)j eitX ). Thus, the expression we need to control as h→ 0 is

k!

hk
(
ϕX(t+ h)− ϕX(t)−

k−1∑
j=1

E((iX)j eitX )
hj

j!

)
= E

( k!

hk
eitX ( eihX −

k−1∑
j=0

(ihX)j

j!
)︸ ︷︷ ︸

=:r(k,h,t,X)

)
.
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For fixed x ∈ R, we set u(x) := eihx . Further, let r1(k, h, t, x) := Re r(k, h, t, x) and r2(k, h, t, x) :=
Im r(k, h, t, x). Then

r1(k, h, t, x) = Re

[
k!

hk
eitx
(

eihx −
k−1∑
j=0

1

j!
xj(∂jx eihx |x=0)

)]
= Re

[
eitx k!

hk
1

k!
xk
(
∂kxu
)
(ξ1(x))

]
.

with −x < ξ1(x) < x. The last equality is because the term in the brackets above is the
remainder term when doing the Taylor expansion of the function x 7→ u(x) up to order k − 1.
Carrying out the differentiation gives that

r1(k, h, t, x) = Re
[

eitx (ix)k eihξ1(x)
]
.

Analogously, it follows

r2(k, h, t, x) = Im
[

eitx (ix)k eihξ2(x)
]

with some − x < ξ2(x) < x.

Therefore r(k, h, t,X(ω)) → eitX(ω) (iX(ω))k as h → 0 for all ω ∈ Ω, and |r(k, h, t,X| is
bounded by |X|k 6 1+ |X|n; the latter is integrable by assumption, and dominated convergence
now gives

fk(t) = lim
h→0

E(r(h, k, t,X)) = E((iX)k eitX ).

Since fk(t) = ∂kt ϕX(t) by (∗∗), a) is shown.

b) We know from (∗∗) (with t = 0 and h = s) and the proof of a) that

2!

s2
(ϕX(0 + s)− 1− isE(X))

s→0−→ ϕ′′X(0) = −E(X2).

Therefore

2ε(s) :=
2!

s2

(
ϕX(s)− ϕX(0)− isE(X) + s2

2
E(X2)

)
s→0−→ 0.

Since

ϕX(s) = 1 + isE(X)− s2

2
E(X2) + ε(s)s2,

b) is shown.

c) By assumption, E(|X|n) < ∞ for all n, and by a), |∂nt ϕX(t)| 6 E(|X|n) for all n and all t.
Therefore by assumption (∗), the Taylor series of ϕX around t ∈ R has radius of convergence at
least h. Thus ϕX can be extended uniquely to a complex analytic function on {z ∈ C : |Im z| < h
with the claimed power series expansion. �

Problem (!!2) in the cheat proof above is solved by the following statement about complex
numbers:

(2.33) Proposition

Let (cn) ⊂ C with limn→∞ cn = c ∈ C. Then

lim
n→∞

(
1 +

cn
n

)n
= ec .

The proof uses two Lemmata of independent interest. We give them first:
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(2.34) Lemma

Let z1, . . . , zn and w1, . . . , wn be complex numbers with |zj| 6 θ and |wj| 6 θ for some θ > 0
and all j. Then ∣∣ n∏

j=1

zj −
n∏
j=1

wj
∣∣ 6 θn−1

n∑
j=1

|zj − wj|.

Proof: We use induction. For n = 1 there is nothing to prove. If the claim holds up to n− 1,
we calculate∣∣∣ n∏

j=1

zj −
n∏
j=1

wj

∣∣∣ 6 ∣∣∣z1

n∏
j=2

zj − z1

n∏
j=2

wj

∣∣∣+
∣∣∣z1

n∏
j=2

wj − w1

n∏
j=2

wj

∣∣∣ 6
6 θ
∣∣∣ n∏
j=2

zj −
n∏
j=2

wj

∣∣∣+ θn−1|z1 − w1|
Ind. hyp

6

6 θθn−2

n∑
j=2

|zj − wj|+ θn−1|z1 − w1| = θn−1

n∑
j=1

|zj − wj|.

�

(2.35) Lemma

If b ∈ C, |b| 6 1, then | eb − (1 + b)| 6 |b|2.

Proof:

| eb − (1 + b)| 6
∞∑
k=2

|b|k

k!

|b| 6 1

6
|b|2

2

∞∑
k=2

2

k!
6
|b|2

2

∞∑
k=0

2−k = |b|2.

�

Proof of Proposition 2.33: We use zj = (1 + cn
n

) and wj = ecn/n for all j in Lemma (2.34)
and obtain∣∣∣(1 + cn

n
)n − ecn

∣∣∣ =
∣∣∣ n∏
j=1

zj −
n∏
j=1

wj

∣∣∣ 6 (max{|z1|, |w1|})n−1 n |z1 − w1| =: (∗).

We choose n0 large enough so that for all n > n0, |cn| 6 2|c| and |cn|/n 6 1. Then |z1| 6 1 +
2|c|/n, and

|w1| 6 |w1 − z1|+ |z1| =
∣∣ ecn/n − (1 + cn

n
)
∣∣+
∣∣1 + cn

n

∣∣ (2.35)

6
(2|c|
n

)2

+ 1 +
2|c|
n
.

Therefore,

max{|z1|, |w1|}n−1 6
(

1 +
2|c|
n

+
4|c|2

n2

)n n→∞−→ e2|c| ,

since this time we have |c| ∈ R and e.g. the trick with taking the logarithm that failed in
the cheat proof will work. Furthermore, we have already just seen that |w1 − z1| 6 2|c|2/n2.
Inserting this into (∗) shows and taking the limit n→∞ finishes the proof. �
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We now need to solve problem (!!3), which will need much more preparation. We need to
investigate weak convergence of probability measures (or: convergence in distribution) more
deeply. To be on the safe side, we repeat the definition:

(2.36) Definition

A sequence (µn) of probability measures converges weakly to a probability measure µ if for all
bounded, continuous functions f,

lim
n→∞

∫
fdµn =

∫
fdµ.

We write µn ⇒ µ. Note that by definition, a sequence of random variables (Xn) converges in
distribution to a RV X (we write Xn ⇒ X) if and only if the sequence of its image measures
converges weakly.

(2.37) Proposition

Assume Xn ⇒ X, and let Fn and F be the distribution function of Xn and X, respectively.
Then Fn(x)→ F (x) at all continuity points x of F , i.e. for all x so that F is continuous at x.

Proof: Let

gx,ε(y) =


1 if y 6 x,

1− y−x
ε

if x < y < x+ ε,

0 if y > x+ ε.

Then gx,ε ∈ Cb(R), and

P(Xn 6 x) = E(1(−∞,x](Xn)gx,ε(Xn)) 6 E(gx,ε(Xn)),

and therefore

lim sup
n→∞

Fn(x) 6 lim sup
n→∞

E(gx,ε(Xn)) = E(gx,ε(X)) 6 P(X 6 x+ ε) = F (x+ ε).

Since distribution functions are always continuous from the right, we can take ε→ 0 and find
lim supn→∞ Fn(x) 6 F (x) for all x. Similarly,

lim inf
n→∞

Fn(x) > lim inf
n→∞

E(gx−ε,ε(Xn)) = E(gx−ε,ε(X)) > P(X 6 x− ε) = F (x− ε).

If x is a continuity point of F , we can again take ε→ 0 and find lim infn→∞ Fn(x) > F (x). �

The next theorem is somewhat surprising: in (1.28) we have seen that convergence in dis-
tribution is in some sense the weakest form of convergence, it does not imply any of the others.
However, if the Xn are real-valued, and if we are prepared to abandon the probability space
that we are given for another one, we can make weakly convergent RVs even almost surely
convergent, which is quite a strong form of convergence. In detail:
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(2.38) Theorem

Let (Xn), X be real-valued RVs with Xn ⇒ X. Then there exists a probability space (Ω,F ,P)
and RVs (Yn), Y on Ω with the properties that

a) Yn ∼ Xn for all n, and Y ∼ X (∼ means they have the same distribution).

b) Yn → Y almost surely.

Proof: Let Fn be the distribution function of Xn for all n 6∞, with X∞ := X. We put

Ω := (0, 1), P := λ(0,1), Yn(ω) := sup{x ∈ R : Fn(x) < ω}.
We will show that

a) For all n, Yn has distribution function Fn, so Yn ∼ Xn.

b) A monotone function has at most countably many jumps.

c) For all ω such that Y∞ is continuous at ω, we have limn→∞ Yn(ω) = Y∞(ω).

Once we have proved a) - c), the claim holds since then outside the countable (therefore measure
zero) set where Y∞ has jumps, the random variables Yn converge.

Proof of a):

Yn(ω) 6 z ⇔ sup{x ∈ R : Fn(x) < ω} 6 z
Fn monotone⇔ Fn(z + 1

m
) > ω ∀m ∈ N

⇔ ω ∈ (0, Fn(z + 1
m

)] ∀m ∈ N ⇔ ω ∈ (0, Fn(z)].

Therefore,
P(Yn 6 z) = λ(0, 1)((0, Fn(z)]) = Fn(z) = P(Xn 6 z).

Proof of b): Let f : R→ R be monotone increasing. For x ∈ R, let

ax := sup{f(z) : z < x}, bx := inf{f(z) : z > x}.
Then ax 6 bx 6 ax+ε for all ε > 0 and all x, and therefore (ax, bx) ∩ (az, bz) = ∅ whenever
x 6= z. The set of discontinuities of f is given by

A := {x ∈ R : ax < bx} = {x ∈ R : (ax, bx) 6= ∅}.
If A is empty, the function f is continuous on R and the claim is true. Otherwise, pick qx ∈
(ax, bx)∩Q for each x ∈ A. Since the intervals (ax, bx) are disjoint for different x ∈ A, this gives
a one-to-one map from A to a subset of Q. Thus A is countable.

Proof of c): Let ω be such that Y∞ is continuous at ω. Then
(i): F∞(y) < ω if y < Y∞(ω) by definition of Y∞,
(ii): F∞(y) > ω if y > Y∞(ω). To see this, assume that F∞(y) = ω, then Y∞(ω + ε) = sup{x ∈
R : F∞(x) < ω + ε} > y for all ε > 0. This would imply that Y∞ is discontinuous at ω, which
contradicts our assumption.

Now pick y < Y∞(ω) such that F∞ is continuous at y. Such an y exists since F∞ has only
countably many jumps. By Proposition (2.37), limn→∞ Fn(y) = F∞(y), and by (i),

∃n0 ∈ N : ∀n > n0 : Fn(y) < ω.

This means that lim infn→∞ Yn(ω) > y for all y such that F∞ is continuous at y. Since there
are only countably many y where this is not the case, we conclude lim infn→∞ Yn(ω) > Y∞(ω).

Finally, pick y > Y∞(ω) such that F∞ is continuous at y. Then Fn(y)→ F∞(y) as n→∞, and
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by (ii) and the same argument as above, lim supn→∞ Yn(ω) 6 y. This holds for all y > Y∞(ω)
where F∞(y) is continuous, and since there are only countably many y where this is not the
case, we conclude lim supn→∞ Yn(ω) 6 Y∞(ω). This shows c). �

(2.39) Corollary: Fatou’s Lemma for weak convergence

Let g : R→ R be continuous and assume g(x) > 0 for all x. Let Xn, X be real-valued random
variables. If Xn ⇒ X, then

lim inf
n→∞

E(g(Xn)) > E(g(X)).

Proof: Exercise. �.

Now we can prove the converse of Proposition (2.37).

(2.40) Proposition

Let (Xn), n 6 ∞ be real RVs, Fn their distribution functions. Assume that limn→∞ Fn(x) =

F∞(x) whenever x is a continuity point of F∞. Then Xn
n→∞⇒ X.

Proof: Choose (Yn) with Yn ∼ Xn and Yn → Y∞ almost surely as given by (2.38). Then for
each g ∈ Cb(R), it follows that g(Yn) → g(Y∞) a.s. by continuity of g, and thus by dominated
convergence, E(g(Xn)) = E(g(Yn))→ E(g(Y∞)) = E(g(X∞)). �

(2.41) Continuous Mapping Theorem

Let g : R→ R be measurable, and define

Dg := {x ∈ R : g is not continuous at x}.

(i): If for random variables Xn, X we have Xn
n→∞⇒ X, and if P(X ∈ Dg) = 0, then we have

g(Xn)
n→∞⇒ g(X).

(ii): If in addition to the conditions of (i) g is bounded, then also E(g(Xn))
n→∞→ E(g(X)).

Proof: (i): We need to show that for each f ∈ Cb(R),

(∗) lim
n→∞

E(f(g(Xn))) = E(f(g(X)).

As in the previous proof, choose Yn with Yn ∼ Xn, Y with Y ∼ X, and Yn → Y almost surely.
Since f is continuous, we have Df◦g ⊂ Dg, and so P(Y ∈ Df◦g) 6 P(Y ∈ Dg) = P(X ∈ Dg) = 0.
Consequently, the set

Ω0 := {ω ∈ Ω : Yn(ω) 6→ Y (ω)} ∪ {ω ∈ Ω : f ◦ g is discontinuous at Y (ω)}

has measure zero. For ω /∈ Ω0, we have limn→∞ f(g(Yn(ω)))→ f(g(Y (ω))), and thus by domi-
nated convergence (and the fact that Yn ∼ Xn, Y ∼ X) we conclude (∗).
(ii): For bounded g, we are allowed to take f(x) = x in (i) since f ◦ g is still bounded. This
gives the conclusion. �
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We now need another basic theorem about weak convergence. It collects equivalent criteria
that can be used to detect weak convergence of measures and has a strange name. We formulate
it for random variables, but you can easily translate it to statements for the image measures.

(2.42) Portmanteau Theorem

Let X,Xn be RVs. The following statements are equivalent:

(i): Xn ⇒ X.

(ii): lim inf P(Xn ∈ G) > P(X ∈ G) for all open subsets G of R.

(iii): lim supn→∞ P(Xn ∈ K) 6 P(X ∈ K) for all closed subsets K of R.

(iv): For all A ∈ B(R) with P(X ∈ ∂A) = 0, we have limn→∞ P(Xn ∈ A) = P(X ∈ A).
(∂A is the boundary of A, i.e. in each little ball around a point of ∂A we find both points in
and outside of A).

Remark: The inequalities in (ii) and (iii) can be strict. To see this, take P(Xn = 1/n) = 1,
G = (0, 1) and K = [−1, 0].

Proof:

(i)⇒ (ii): Choose Yn ∼ Xn, Y ∼ X, and Yn → Y almost surely. If Yn(ω) converges, G is open
and Y (ω) ∈ G, then Yn(ω) ∈ G for all large enough n. Thus lim infn→∞ 1G(Yn) > 1G(Y ) almost
surely, and so

lim inf P(Yn ∈ G) = lim inf E(1G(Yn))
Fatou

> E(lim inf 1G(Yn)) > E(1G(Y )) = P(Y ∈ G).

By Xn ∼ Yn, X ∼ Y this then holds for the Xn, X as well.

(ii)⇔ (iii): We have {G : G ⊂ R : G open} = {Kc : K ⊂ R, K closed}, and thus

lim inf P(Xn ∈ G) > P(X ∈ G)⇔ lim sup (1− P(Xn ∈ G))︸ ︷︷ ︸
P(Xn∈Gc)

6 1− P(X ∈ G)︸ ︷︷ ︸
P(X∈Gc)

shows the equivalence.

(ii) and (iii) ⇒ (iv): For A ∈ B(R), let A◦ be the open interior of A and Ā be the closure of
A. Then ∂A = Ā \ A◦. By assumption, then P(X ∈ A◦) = P(X ∈ A) = P(X ∈ Ā). Now (ii)
implies

lim inf P(Xn ∈ A) > lim inf P(Xn ∈ A◦) > P(X ∈ A◦) = P(X ∈ A),

and (iii) implies

lim supP(Xn ∈ A) 6 lim supP(Xn ∈ Ā) 6 P(X ∈ Ā) = P(X ∈ A).

Together this gives (iv).

(iv)⇒ (i): Let F be the distribution function of X and let x be a continuity point of F . Then

0 = P(X ∈ {x}) = P(X ∈ ∂(−∞, x]),

and so (iv) implies
Fn(x) = P(Xn 6 x)→ P(X 6 x) = F (x).

By (2.40), this implies weak convergence. �
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(2.43) Reformulation of (2.37), (2.40), and some comments

Let Xn be RVs, Fn their distribution functions. The following statements a) and b) are equi-
valent:

a) There exists a RV X with Xn ⇒ X.
b) There exists a nondecreasing, right-continuous function F such that

(i): Fn(x)→ F (x) at all continuity points of F .
(ii): F is the distribution function of some RV X.

Question: Is b(i) already enough to imply a)?

Answer: No! As a counterexample, let G be a continuous distribution function, and let a, b, c ∈
R+ with a+ b+ c = 1. Let

Fn(x) = a1[n,∞)(x) + b1[−n,∞)(x) + cG(x),

then each Fn is a distribution function, and Fn(x)
n→∞−→ b + cG(x) =: F∞(x). But F∞ is not a

distribution function since limx→−∞ F∞(x) = b 6= 0 and limx→∞ F∞(x) = b + c = 1 − a 6= 1.
In terms of random variables, this means that if Xn has distribution function Fn, and if there
would be a RV X with Xn ⇒ X, this would mean that for all N ∈ R+,

P(X ∈ (−N,N))
(2.42)(ii)

6 lim inf P(Xn ∈ (−N,N)) = c(G(N)−G(−N)).

By continuity from below ((1.3) c), this would imply that P(X ∈ R) 6 c < 1, which is
impossible.

What has happened? Mass has escaped to infinity! Explicitly, note that the image measure of
Xn has a point mass of size a at n ∈ R, and another point mass of size b at −n ∈ R, and
these wander off to infinity as n→∞. So while the weak limit of the image measures is still a
measure, it is no longer a probability measure as its mass is smaller than 1.

In the next statements we will see that this is the only bad thing that can happen: if we exclude
it, b(i) is already enough. Even better, we will see that b(i) holds along a subsequence for
any sequence of distribution functions. We do this first.

(2.44) Hellys Selection Theorem

Let (Fn) be a sequence of distribution functions. Then there exists a subsequence (Fnk)k∈N and a
non-decreasing, right-continuous function F such that limk→∞ Fnk(x) = F (x) for all continuity
points of F .

Proof: Let (qj) be an enumeration of Q. Since (Fn(q1))n∈N ⊂ [0, 1] and the latter set is compact,
there is an increasing N-valued sequence (n1(k))k∈N so that limk→∞ Fn1(k)(q1) exists. Then,
since also (Fn1(k)(q2))k∈N ⊂ [0, 1], there is a subsequence (n2(k)) of the sequence (n1(k))k∈N so
that also limk→∞ Fn2(k)(q2) exists; of course, the first limit still exists along this subsequence.
You recognize Cantors diagonal argument: by induction, we now find sequence of sequences
(nj(k))k∈N so that each (nj(k)) is a subsequence of (nj−1(k)) and such that limk→∞ Fnj(k)(qi)
exists for all i 6 j. Choosing the sequence (nj(j))j∈N ensures that G(q) := limFnj(j)(q) exists
for all q ∈ Q. We define

F (x) := inf{G(q) : q ∈ Q : q > x}.
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Then F is right continuous since

lim
xm↘x

F (xm) = inf{G(q) : q ∈ Q,∃m with q > xm} = inf{G(q) : q ∈ Q : q > x} = F (x).

F is also increasing since {G(q) : q ∈ Q, q > x} ⊃ {G(q) : q ∈ Q, q > y} if x < y, and so the
infimum of the larger set is smaller or equal than the one of the smaller set.
Finally Fnj(j)(x) → F (x) at all continuity points x of F : to see this, choose x so that F is
continuous at x. For given ε > 0 pick r1, r2, s ∈ Q with r1 < r2 < x < s and

F (x)− ε < F (r1) 6 F (r2) 6 F (x) 6 F (s) < F (x) + ε.

This is possible since F is continuous at x. Now we have Fnj(j)(r2) → G(r2) > F (r1), and
Fnj(j)(s)→ G(s) 6 F (s). So for all sufficiently large j, we find

F (x)− ε < Fnj(j)(r2) 6 Fnj(j)(x) 6 Fnj(j)(s) < F (x) + ε

It follows that for each ε > 0,

F (x)− ε 6 lim inf
j→∞

Fnj(j)(x) 6 lim sup
j→∞

Fnj(j)(x) 6 F (x) + ε.

Taking ε→ 0 shows the convergence and hence the result. �

Now we treat the issue of escape of mass. First we give a name to the situation where escape
of mass is excluded.

(2.45) Definition

a) A sequence (µn) of probability measures on R is tight if

∀ε > 0 : ∃K ⊂ R, K compact, such that µn(K) > 1− ε ∀n ∈ N.
b) A sequence (Xn) of real-valued RVs is tight if the sequence (PXn) of image measures is tight;
explicitly, if

∀ε > 0 : ∃K ⊂ R, K compact, such that P(Xn ∈ K) > 1− ε ∀n ∈ N.
c) A sequence of distribution functions (Fn) is tight if

∀ε > 0 : ∃M > 0 : lim inf
n→∞

Fn(M)− Fn(−M) > 1− ε.

It is an easy exercise to show that (Xn) is tight iff the sequence of distribution functions
(Fn) is tight.

(2.46) Theorem

Let (Xn) be a sequence of RVs, (Fn) the sequence of their distribution functions. The following
statements are equivalent:

a) (Xn) is tight, equivalently (Fn) is tight.

b) For every convergent subsequence (Fnk) of (Fn), there exists a RV X so that limk→∞ Fnk is
the distribution function of X.

c) If (Xnk) is a subsequence of (Xn) so that limk→∞ P(Xnk ∈ (−∞, y]) exists for all y ∈ R, then
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there exists a RV X with Xnk

k→∞⇒ X.

Proof: The equivalence b)⇔ c) is by definition of distribution functions.
a)⇒ b): Assume that (Xn) is tight and that (Fnk) is a convergent subsequence of (Fn). By using
(2.44), we can conclude that there is a further subsequence (Fnkl ) of (Fnk) and a non-decreasing

and right-continuous function F so that liml→∞ Fnkl (x) = F (x) at all continuity points of F .

But since (Fnk) itself was convergent, also limk→∞ Fnk(x) = F (x) at all continuity points of F .
By tightness, we can for ε > 0 fix M so that P(|Xn| > M) < ε for all n. Let r < −M and
s > M be continuity points of F . They exist since F only has countably many discontinuities.
Then

F (s)− F (r) = lim
k→∞

Fnk(s)− Fnk(r) > lim sup
k→∞

(Fnk(M)− Fnk(−M)) > 1− ε.

Here, the first inequality holds by monotonicity of the Fnk , and the second by our choice of M .
Again since there are only countably many discontinuities, we conclude that lim infx→∞ F (x)−
F (−x) = 1, so F is the distribution function of some RV X.

b)⇒ a): Assume that (Fn) is not tight. Then there is ε > 0 and a subsequence (Fnk) with

Fnk(k)− Fnk(−k) 6 1− ε ∀k ∈ N.
By (2.44), there exists a non-decreasing, right-continuous function F so that a further sub-
sequence of (Fnk) converges to F at the continuity points of F . Then as above, we see that
F (s)−F (r) 6 1− ε for all continuity points of F , so F cannot be a distribution function. �

By combining the above theorems, we can formulate concisely:

(2.47) Theorem

a) A sequence (µn) of probability measures on R has a subsequence that converges weakly to
some probability measure if and only if (µn) is tight.

b) A sequence of random variables (Xn) has a subsequence that converges in distribution to
some random variable iff (Xn) is tight.

Now we can finally come back to the task of proving (!!3). Before we do this, let me recom-
mend the great book ’Convergence of Probability measures’ by P. Billingsley for much more
interesting stuff about weak convergence of measures. In particular, the restriction to real va-
lued RVs is completely unnecessary if we do things correctly.

The result that solves problem (!!3) is

(2.48) Lévy’s Continuity Theorem

Let (µn) be a sequence of probability measures on R, and (ϕn) their characteristic functions.

(i): Assume that µn ⇒ µ∞ for some probability measure µ∞, and let ϕ∞ be the characteristic
function of µ∞. Then ϕn(t)→ ϕ∞(t) for all t ∈ R.

(ii): Assume that there exists a function ϕ∞ : R→ C, with the properties that ϕn(t)→ ϕ∞(t)
for all t ∈ R, and that ϕ∞ is continuous at t = 0. Then ϕ∞ is the characteristic function of
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some probability measure µ∞, and µn ⇒ µ∞.

Proof: (i): Since ϕn(t) =
∫

eitx µn(dx) and the function x 7→ eitx is continuous, this holds
simply by the definition of weak convergence applied to real and imaginary parts.

(ii): First we show that the sequence (µn) is tight under the stated assumptions. Fix ε > 0; we
have to find K ∈ R so that lim infn→∞ µn([−K,K]) > 1− ε. For all K > 0 and all functions h
that are positive on [−K,K]c, Chebyshevs inequality gives

µn([−K,K]c) 6
1

inf{h(x) : |x| > K}

∫
[−K,K]c

h(x)µn(dx).

The function that makes the connection to the characteristic function is h(x) = 1 − sin(x/K)
x/K

.

Indeed, it is not hard to see that for all x > 1, sin(x)/x 6 α := sin(1)/1, and so h(x) > 1− α
for all x > K. So,

µn([−K,K]c) 6
1

1− α

∫
[−K,K]c

h(x)µn(dx).

On the other hand,

h(x) = 1− K
x

sin(x/K) = 1−
∫ 1

0

cos(tx/K) dt =

∫ 1

0

(1− cos(tx/K) dt,

and so by Fubini’s Theorem (everything is nonnegative!), we find that∫
[−K,K]c

h(x)µn(dx) =

∫ 1

0

dt

∫
R
(1− cos(tx/K))µn(dx) =

∫ 1

0

(
1− Reϕn(t/K)

)
dt.

We assumed convergence of characteristic functions, and hence dominated convergence gives

lim sup
n→∞

µn([−K,K]c) 6
1

1− α

∫ 1

0

(
1− Reϕ∞(t/K)

)
dt.

We also assumed continuity of ϕ∞ at t = 0, which means that we can bring inf{ϕ∞(t/K) :
0 6 t 6 1} as close to ϕ∞(0) = 1 as we want by taking K large. This shows tightness.

By tightness we know that (µn) converges to some µ∞ along a subsequence. We still have to show
convergence without a subsequence. This follows by a standard argument from analysis: pick
any subsequence (µnk) of (µn). Then by tightness, there exists a further subsequence (µnk(j))j
that converges to some probability measure ν. The characteristic function of ν is given by ϕ∞: to
see this, note that the CF of ν is the limit of the sequence of characteristic functions (ϕnk(j))j by

part (i), and the limit of this sequence is ϕ∞ by the assumed convergence of CFs. Since the CF
uniquely determines the measure, we conclude that ν = µ∞. In other words every subsequence
of (µn) has a further subsequence that converges to µ∞. The standard argument from analysis
is that in such a case, the sequence itself must already converge. To be explicit, assume that
(µn) does not converge to µ∞. Then we can pick δ > 0, a subsequence (µn(i))i and a continuous
and bounded function f so that for all i, |

∫
f(x)µn(i)(dx)−

∫
f(x)µ∞(dx)| > δ. Applying the

argument above to that particular subsequence gives a contradiction. Hence µn ⇒ µ∞. �

Now we can finally really prove the CLT:

(2.49) Central Limit Theorem for iid random variables
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Let (Xi) be iid real RVs with E(Xi) = µ ∈ R and V(Xi) = σ2 ∈ (0,∞) for all i. Then

1√
σ2n

n∑
i=1

(Xi − µ)⇒ Y with Y ∼ N (0, 1).

Proof: By considering X ′i = Xi − µ, we only need to treat the case µ = 0. By (2.32 b),

ϕX1(t) = 1− σ2t2

2
+ ε(t)t2

with limt→0 ε(t) = 0. Setting Sn =
∑n

i=1Xi and using independence gives

ϕSn/
√
σ2n(t) = E

(
e

i t√
σ2n

∑n
j=1Xj

)
=
(
ϕX1(

t√
nσ2

)
)n

=
(
1− t2

2n
+ t2

nσ2 ε(
t√
nσ2

)
)n (2.33)−→ e−t

2/2 .

By (2.48), this shows the claim. �

(2.50) Remarks

a) Consider the situation of (2.49) with µ = 0. Define

S̄n(ω) :=
1√
nσ2

n∑
i=1

Xi(ω)

This random variable converges in distribution to N (0, 1) as we have just seen, but it does
not converge almost surely. Even more drastically, the set of ω where S̄n(ω) does converge has
measure zero. To see this, note the following:

(i): Since the normalization 1/
√
n kills all finite sums of Xi, we have for each M > 0:

{lim sup
n→∞

S̄n >M} =
⋂
k∈N

{ lim sup
n→∞,n>k

1√
nσ2

n∑
i=k+1

Xi >M} ∈ T , the tail σ-algebra.

The same is true for {lim infn→∞ S̄n 6 −M}, and so the probability that S̄n oscillates between
arbitrarily large and arbitrarily small values infinitely often is either zero or one by Kolmogorov’s
0− 1-law.

(ii): We will now show that zero is not an option in (i). For each M > 0, we have

{lim sup
n→∞

S̄n >M} =
⋂
n∈N

⋃
m > n

{S̄m >M}︸ ︷︷ ︸
=:Am

= lim sup
n→∞

An,

and by Fatou’s Lemma applied to 1− 1An , we find

P(lim sup
n→∞

S̄n >M) = P(lim sup
n→∞

An) > lim sup
n→∞

P(An) =
1√
2π

∫ ∞
M

e−x
2/2 dx > 0.

By (i), this only leaves the possibility that P(lim supn→∞ S̄n >M) = 1, and the same holds for
P(lim supn→∞ S̄n 6 −M). Thus S̄n converges with probability zero.

On the other hand, (2.49) and (2.38) tell us that there exists a sequence of RVs (Yn) with
Yn ∼ S̄n that converges almost surely. But the ’natural’ choice S̄n behaves very badly for point-
wise convergence!

b) Pairwise independence (i.e. Xi ⊥⊥ Xj for all i 6= j) is not enough to prove the CLT: as an
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example, consider a sequence (ξi) of iid Bernoulli RVs, i.e. P(ξi = ±1) = 1/2. We are looking
for random variables (Xi) with the properties that

(i): Xi ⊥⊥ Xj if i 6= j, and Xi ∼ ξ1 for all i.

(ii):
∑2n−1

i=1 Xi = ξ1(1 + ξ2)(1 + ξ3) · · · (1 + ξn) for all n.

Assume we have found such Xi. Then we write S̄m = 1√
m
2

∑m
2
i=1Xi. Property (i) means that

E(Xi) = 0 and V(Xi) = 1, and so S̄m is the right candidate for a CLT.
By property (ii), however, P(S̄2n = 0) = 1−2−n+1. This means that for bounded continuous

g, E(g(S̄2n)) → E(g(0)), so along that particular subsequence the sequence S̄m converges in
distribution to a Dirac measure at zero. This excludes the validity of the CLT.

It remains to find Xi with the properties (i) and (ii). We can take inspiration from (ii): the sum
on the left hand side has 2n−1 terms, and there are also exactly 2n−1 terms if we multiply out
the right hand side; so those terms are strong candidates for the Xi . We just have to order
them correctly: we start with just X1 = ξ1; we have used the 1’s in all the remaining brackets
after ξ1 here. The second is the additional term that we get when we use the ξ2 instead of the 1
in the second bracket. I.e. X2 = ξ1ξ2. We now have two terms. The next two terms are obtained
by multiplying each of them by ξ3, i.e. by using the ξ3 in the third bracket instead of the 1 on
everything that we have obtained so far. The result is X3 = ξ1ξ3 and X4 = ξ1ξ2ξ3. The next
four terms are obtained by multiplying each of the four terms that we already have by ξ4, and
so on. You should now check as an exercise that these Xi have the property (i), which finishes
the example.

We have just seen that we cannot replace independence by pairwise independence. What
we can do, however, is to relax the condition of identical distribution.

(2.51) Lindeberg-Feller CLT

For each n ∈ N, let (Xn,m)m 6 n be a family of independent RVs. Assume that for all m,n
E(Xn,m) =: µn,m and V(Xn,m) =: σ2

n,m exist. Define

s2
n :=

n∑
m=1

σ2
n,m,

and assume that for all ε > 0,

(∗) lim
n→∞

1

s2
n

n∑
m=1

E
(
(Xn,m − µn,m)21{|Xn,m−µn,m| > εsn} = 0.

(the so-called Lindeberg condition). Then

1

s2
n

n∑
m=1

(Xn,m − µn,m)
n→∞⇒ Y with Y ∼ N (0, 1).

Proof: See the books of Durett or Klenke. The Lindeberg condition means that no single
random variable can dominate the sum: note that without the indicator function, the expression
in (∗) would be equal to 1. Also note that in the identically distributed case, sn = 1. So indeed,
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the Lindeberg condition means that no single σ2
n,m can contribute a finite amount to sn as

n→∞.

3. Conditional Expectation

You probably recall the conditional probability P(A|B) = P(A∩B)
P(B)

, defined if P(B) > 0.

The following extension of this concept is one of the most important definitions of modern
probability.

(3.1) Definition

Let (Ω,F ,P) be a probability space, and X be a real-valued RV with E(|X|) <∞. Let G be a
σ-algebra over Ω with G ⊂ F (i.e. G contains fewer sets). Any random variable Y : Ω → R is
called conditional expectation of X given G if it has the following two properties:

(i): Y is G-measurable

(ii): For all G ∈ G, the equality E(X1G) = E(Y 1G) holds.

If Y is a conditional expectation of X given G, it is customary to write Y = E(X | G).

(3.2) Remarks

a) This definition is very convenient to work with, but not that easy to understand intuitively.
We will see examples below that should help you understand it.

b) We will later see that the conditional expectation is unique almost surely, i.e. if both Y and
Ỹ fulfill (i) and (ii) above, then Y (ω) = Ỹ (ω) outside a set of measure zero. This justifies to
just write E(X | G).

c) A formula that you should memorize is

E(ZE(X | G)) = E(ZX) for all bounded, G- measurable RVs Z.

The proof is by one of the most frequently used arguments of probability theory: for Z = 1G,
G ∈ G, this holds by definition. For finite linear combinations Z =

∑n
i=1 αi1Gi with Gi ∈ G,

it then holds by linearity of E. For positive X and Z, it holds by monotone convergence. For
general X and Z, it holds by decomposition into positive and negative parts and linearity
again. If you are not completely familiar with the procedure, you should now do the details as
an exercise.

We will now give examples to illustrate Definition (3.1).

(3.3) Examples

a) Let (Ω,F ,P) be a probability space, and Ai ∈ F , i = 1, . . . , n, be a partition of Ω, i.e.
Ai∩Aj = ∅ if i 6= j, and

⋃n
i=1Ai = Ω. Assume P(Ai) 6= 0 for all i. Let G = σ({Ai : 1 6 i 6 n}).
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Let X be any RV on Ω with E(|X|) <∞. Then

Y : Ω→ R, ω 7→
n∑
i=1

1Ai(ω)
E(X1Ai)

P(Ai)

is a conditional expectation of X given G (exercise!). Y (ω) is the average of X on the set Ai
containing ω, and is therefore the best approximation to (or best guess of) X when we only
know in which Ai we find ω, but not the exact value of ω. This leads to the important intuition
of conditional expectation as a best approximation under incomplete information.

b) In example a), let Ω = (0, 1] with Borel-σ-algebra and Lebesgue measure, k ∈ N, Ai =
((i− 1)2−k, i2−k], with 1 6 i 6 2k. For an integrable RV X, we then have

E(X|G)(ω) =
2k∑
i=1

1{(i−1)2−k<ω 6 i2−k}
1

2−k

∫ i2−k

(i−1)2−k
X(s)ds.

So, this is a step function, similar to the one used in the Riemann-Approximation to the integral,
but ’better’ since instead of the left, right or trapeze rule value, the ’true’ average of X is used
on each Riemann interval.

c) In example a), let X = 1B for B ∈ F . Then E(X|G) encodes all classical conditional
probabilities P(B|Ai) at once: if ω ∈ Ai, then E(1B|G) = P(B|Ai).
d) The real strength of Definition (3.1) is that it is not restricted to σ-Algebras G that are
generated by finitely many sets (and thus are finite). Let Ω = [−L,L]2 with Borel-σ-algebra
and normalized Lebesgue measure. Let

G = σ({{(u, v) : −L 6 v 6 L, a 6 u 6 b} : −L 6 a 6 b 6 L})
be the σ-algebra generated by the ’vertical cylinders’. Then for any integrable RV X,

Y (u, v) :=
1

2L

∫ L

−L
X(u,w) dw

is a conditional expectation of X given G (exercise!). Again, this is the best guess of the true
value X(u, v) if we know that the first coordinate is u but have no information about the second
coordinate. From this example, we also see that E(X|G) is not unique: setting Y (u, v) = 0 for
all u in a set of Lebesgue-measure zero will also give a conditional expectation (exercise).

e) The construction of d) works for more fancy choices of G too: think of polar coordinates; or
let Z be any random variable and let G = σ(Z), see (1.12). The last situation is very important
and we will come back to it later.

(3.4) Lemma

Let X be an integrable, F -measurable RV, G ⊂ F and Y = E(X|G) a conditional expectation
of X given G. Then Y is integrable.

Proof: Let A+ = {Y > 0} and A− = {Y < 0}. By property (i) of Def. (3.1), A+, A− ∈ G.
Thus, by property (ii),

E(|Y |) = E(1A+Y ) + E(1A−Y ) = E(1A+X) + E(1A−X) 6 2E(|X|) <∞



PROBABILITY THEORY 47

�

We now prove existence and uniqueness of the conditional expectation. As usual, uniqueness
is easier, so we start with it.

(3.5) Proposition

In the situation of Definition (3.1), assume that Y and Ỹ both have properties (i) and (ii).
Then Y = Ỹ P-almost surely.

Proof: For all G ∈ G,

E((Y − Ỹ )1G) = E(Y 1G)− E(Ỹ 1G)
(ii)
= E(X1G)− E(X1G) = 0.

Since Y − Ỹ ∈ mG, we thus have

E((Y − Ỹ )1{Y > Ỹ }) = 0.

Since (Y − Ỹ )1{Y > Ỹ } is integrable (by (3.4)) and nonnegative, monotonicity of the expected

value (see (1.14) e) gives (Y − Ỹ )1{Y > Ỹ } = 0 almost surely. The same argument shows that

(Y − Ỹ )1{Y <Ỹ } = 0 almost surely, finishing the proof. �

(3.6) About existence of conditional expectation

The existence of conditional expectation can be proved using the Radon-Nikodym theorem. But
we will take another, more geometric approach, which gives additional insight into the concept.
We will show that the conditional expectation E(X|G) of some square integrable RV is the
orthogonal projection of the vector X ∈ L2(dP) onto the closed subspace of L2(dP)
consisting of all G-measurable, square integrable RVs. As usual, we work with equi-
valence classes of P-almost surely equal functions. We introduce some notions from functional
analysis. If you are unfamiliar with them, you should study them. Alternatively, you can take
the existence of conditional expectation as a black box.

(3.7) Definitions and Facts from the theory of L2 spaces

We define

L 2
F(P) = {X ∈ mF : E(|X|2) <∞}.

You should check that this is a vector space. Note the restriction to F -measurable functions.
We say that X ∈ L 2

F is equivalent to Y ∈ L 2
F and write X ∼ Y if X = Y P-almost surely.

Then L2
F(P) = L2 is the vector space whose points (vectors) are equivalence classes in L 2

F(P).
We define, for X, Y ∈ L2

F(P ) the inner product

(X, Y ) := E(X0Y0),

where X is complex conjugation, and X0, Y0 are representatives of the equivalence classes X
and Y . You should check that the definition is independent of the choice of representative, that
X 7→ (X, Y ) is an antilinear map from L2 to C and that Y 7→ (X, Y ) is a linear such map.
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Also, ‖X‖ := (X,X)1/2 is a norm on L2, and L2 is complete under this norm (i.e. Cauchy
sequences converge). This (by definition) makes L2 a Hilbert space. As usual, we will often
denote equivalence classes and their representatives with the same symbol.

(3.8) Orthogonal projection in Hilbert spaces

Let V be a Hilbert space, U a closed subspace of V , x ∈ V . Then for y ∈ U , the following
statements are equivalent:

(i): ‖y − x‖ 6 ‖z − x‖ for all z ∈ U .
(ii): (y − x,w) = 0 for all w ∈ U .

If (i) or (and) (ii) hold, then y is called orthogonal projection of x onto U .

Proof: Let y ∈ U . Since U = {y + w : w ∈ U}, we have

∀z ∈ U : ‖y − x‖2 6 ‖z − x‖2 ⇔ ∀w ∈ U : ‖y − x‖2 6 ‖y + w − x‖2

⇔ ∀w ∈ U : ‖y − x‖2 6 ‖y − x‖2 + ‖w‖2 + 2Re (y − x,w)

⇔ ∀w ∈ U : 0 6 ‖w‖2 + 2Re (y − x,w). (∗)
So (ii) implies (i). On the other hand, assume that (ii) is false. Then we can find w ∈ U with
Re (y − x,w) < 0 (why?). Now,

‖εw‖2 + 2Re (y − x, εw) = ε2‖w‖2 + 2εRe (y − x,w) < 0

for small enough ε. So, (∗) is false for this εw, and thus (i) does not hold. �

(3.9) Proposition

Let V be a Hilbert space, U a closed subspace of V . Then for each x ∈ V , there exists a unique
orthogonal projection of x onto U .

Proof: If x ∈ U , then x is the unique vector y that fulfills (i) of (3.8) and is therefore the
projection. For x /∈ U , put d := inf{‖w − x‖ : w ∈ U}. By the definition for an infimum, there
exists a sequence (wn) ∈ U such that limn→∞ ‖wn − x‖ = d. We calculate, for m,n ∈ N,

‖wn − x‖2 + ‖wm − x‖2 = 2‖1
2
(wn + wm)− x‖2 + 2‖1

2
(wn − wm)‖2.

Since 1
2
(wn + wm) ∈ U , the first term on the right hand side above is > 2d2 for all m,n. We

conclude

lim
N→∞

sup
m,n>N

1
2
‖wn−wm‖2 6 lim

N→∞

(
sup
n>N
‖wn−x‖2 + sup

m>N
‖wm−x‖2− 2d2

)
= d2 + d2− 2d2 = 0.

So, (wn) is a Cauchy sequence. Since U is closed, its limit is in U , and it fulfils (3.8) (i). �

(3.10) Theorem

Let (Ω,F ,P) a probability space, and G ⊂ F a σ-algebra. Then L2
G(P) is a closed subspace of

L2
F(P). For any RV X with E(|X|2) <∞, every representative of the orthogonal projection of

X onto L2
G is a conditional expectation of X given G.
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Proof: The claim that L2
G is a closed subspace is left as an easy exercise. Let X ∈ L2

F and
let Y be the orthogonal projection onto L2

G. Since Y is an equivalence class of G-measurable
functions, every representative fulfils (i) of Definition (3.1). For (ii), let G ∈ G. Then

E(1GY − 1GX) = (Y −X, 1G) = 0

by property (3.8) (ii). �

Before we extend this to L1, is is convenient to state some simple properties of conditional
expectation.

(3.11) Proposition: integral-related properties of conditional expectation

Let X, Y be integrable RVs, and assume that all conditional expectations below exist.

a) (Linearity): We have, for almost all ω,

E(αX + βY |G)(ω) = αE(X|G)(ω) + βE(Y |G)(ω).

b) (Monotonicity): If X > 0 a.s., then also E(X|G) > 0 a.s..

Proof: a) is just easy definition chasing. For b), let Y = E(X|G) and A = {ω : Y (ω) 6 0}.
Then A ∈ G, and we have

0
X > 0

6 E(X1A)
(3.1)(ii)

= E(Y 1A).

Since Y 1A 6 0, we conclude Y 1A = 0 a.s., thus Y > 0 a.s. �

(3.12) Theorem

Let X be an integrable RV and G ⊂ F a σ-algebra. Then E(X|G) exists.

Proof: Assume first that X > 0, and let Xn = X ∧ n. Then Xn is bounded and thus in L2,
and Theorem (3.10) gives the existence of Yn = E(Xn|G). By (3.11) b), the sequence (Yn) is
monotone. Let Y := limn→∞ Yn a.s. We have that Y ∈ mG, and monotone convergence gives
for all G ∈ G

E(Y 1G) = lim
n→∞

E(Yn1G)
(3.1)(ii)

= lim
n→∞

E(Xn1G) = E(X1G).

For general X, decompose into positive and negative part, use the above argument and recom-
pose by linearity. �

In the following statements, we always assume that all occurring RVs are integrable, and
that all curly letters denote σ-algebras.

(3.13) Proposition: basic measurability properties

a) Expected value is conserved: E
(
E(X|G)

)
= E(X)

b) G-measurable functions do not change: if X ∈ mG, then E(X|G)(·) = X(·) a.s.

c) The ’Tower property’: If H ⊂ G ⊂ F , then

E
(
E(X|G)

∣∣H) = E(X|H) a.s.
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Proof: For a) use (3.1) (ii) with G = Ω.
For b) note that X already fulfils (3.1) (i) and (ii).
For c), we have to check the definition for X replaced by E(X|G) and Y replaced by E(X|H).
(3.1) (i) is clear since E(X|H) ∈ mH. For (ii), let H ∈ H ⊂ G. Then,

E(1HE(X|G))
(3.1)(ii) for G

= E(1HX)
(3.1)(ii) for H

= E(1HE(X|H)).

�

(3.14) Proposition: limits and inequalities

a) Monotone convergence: if 0 6 Xn ↗n→∞ X a.s., then also 0 6 E(Xn|G)↗n→∞ E(X|G) a.s.

b) Conditional Fatou: if 0 6 Xn for all n, then

E(lim inf
n→∞

Xn|G)(·) 6 lim inf
n→∞

E(Xn|G)(·) a.s.

c) Dominated convergence: Assume that |Xn(·)| 6 Z(·) for all n for some integrable Z a.s., and
that Xn(·)→ X(·) a.s. Then

lim
n→∞

E(Xn|G)(·) = E(X|G)(·) a.s.

d) Conditional Jensen: Let ϕ : R→ R be convex and assume E(|ϕ(X)|) <∞. Then

E(ϕ(X)|G)(·) > ϕ
(
E(X|G)(·)

)
a.s

e) Lp-contractivity: If X ∈ Lp, 1 6 p 6∞, then E(X|G) ∈ Lp, and

‖E(X|G)‖pLp ≡ E
(
|E(X|G)|p

)
6 E

(
|X|p

)
≡ ‖X‖pLp .

Proof: a) As in the proof of Theorem (3.12), we see that Y := limn→∞ E(Xn|G) a.s. satisfies
the definition of a conditional expectation of X given G.

b) Let Yn := infk > nXk. By monotonicity of conditional expectation, E(Yn|G) 6 E(Xk|G)
a.s. for all k > n, and so

E( inf
k > n

Xk|G) = E(Yn|G) 6 inf
k > n

E(Xk|G).

As n → ∞, the expression on the left hand side converges to E(lim infn→∞Xn|G) by a). The
expression on the right hand side converges to lim infn→∞ E(Xn|G).

c) By assumption, Z +Xn > 0 a.s. By b), a.s.,

E(Z +X|G) = E(Z + lim inf
n→∞

Xn|G) 6 lim inf
n→∞

E(Z +Xn|G),

and by linearity of conditional expectation this shows E(X|G) 6 lim inf E(Xn|G) a.s. As Z −
Xn > 0 for all n a.s. is also true, the same argument shows −E(X|G) 6 − lim inf E(Xn|G),
thus E(X|G) > lim supE(Xn|G) a.s.

d) Convexity implies that the left derivative ∂−ϕ(x) exists for all x, and that the graph of ϕ is
always above the tangent at ϕ(x) with slope ∂−ϕ(x). In symbols:

∀x ∈ R,∀y ∈ R : ϕ(x) + ∂−ϕ(x)(y − x) 6 ϕ(y).
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Since ϕ is convex, it is continuous, and so

∀y ∈ R : ϕ(y) = sup{ϕ(q) + (y − q)∂−ϕ(q) : q ∈ Q};
By choosing an enumeration (cn) of Q and putting an := ∂−ϕ(cn), bn := ϕ(cn)− cn∂−ϕ(cn), we
find that

(∗)∀y ∈ R : ϕ(y) = sup{any + bn : n ∈ N}.
By using this inequality for y = X(ω), ω ∈ Ω, we find that

∀ω ∈ Ω,∀n ∈ N : ϕ(X(ω)) > anX(ω) + bn.

For fixed n ∈ N, we can now take conditional expectation and use monotonicity to find that
for each n, there exists a set Ωn ⊂ Ω with P(Ωn) = 1 and

E(ϕ(X)|G)(ω) > anE(X|G)(ω) + bn ∀ω ∈ Ωn

This shows that for ω ∈
⋂
n∈N Ωn,

E(ϕ(X)|G)(ω) > sup{anE(X|G)(ω) + bn : n ∈ N} (∗)
= ϕ(E(X|G)(ω)).

Since P(
⋂
n∈N Ωn) = 1, the claim is proved.

(Exercise: look at the (much simpler) proof of the ordinary Jensen inequality, e.g. from last
semester, and find out why it cannot be easily adapted to work for conditional expectation.)

e) From d) with ϕ(x) = |x|p, 1 6 p <∞, we get

|E(X|G)|p 6 E
(
|X|p

∣∣G) a.s..

The claim follows by taking expectation and using (3.13 a). The claim for p =∞ follows from
monotonicity:

±E(X|G) 6 E(|X| |G) a.s. =⇒ |E(X|G)| 6 E(|X| |G) a.s.

The claim now follows by taking the essential supremum over ω; essential supremum means
that we may leave out a set of measure zero when taking the supremum. �

(3.15) Proposition: Advanced measurability properties

a) ’Measurable factors can be pulled out of the conditional expectation’:
If Z is a RV with ZX ∈ L1 and Z ∈ mG, then

E(XZ|G) = ZE(X|G) a.s.

b) ’Independent information is irrelevant’:
If H ⊂ F and H ⊥⊥ σ(G, σ(X)), then

E(X|σ(G,H)) = E(X|G).

Note that the condition on H is stronger than the condition that H is independent from G and
from σ(X).

c) A special case of b): if H ⊥⊥ σ(X), then ω 7→ E(X|H) is a.s. constant and equal to E(X).

Proof: a) We check the definition: for (i), we confirm that ω 7→ Z(ω)E(X|G)(ω) is G-measurable.
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For (ii), we start with X > 0 and Z = 1A for some A ∈ G. Then for B ∈ G, A∩B ∈ G, and we
have

(∗) E(1BZE(X|G)) = E(1A∩BE(X|G)) = E(1A∩BX) = E(1BZX),

which is (ii). By using the standard method of linarity and monotone convergence (we still
have X > 0), we find that (∗) holds for all nonnegative Z fulfilling our assumptions. Now we
decompose X and Z into positive and negative parts and get four terms on both sides of (∗)
so that for each of them both random variables have a definite sign. Linearity now concludes
the proof.

b) Exercise. �

(3.16) Mnemonic rule: the smaller σ-algebra always wins

If H ⊂ G ⊂ F , then

E
(
E(X|G)

∣∣∣H) = E
(
E(X|H)

∣∣∣G) = E(X|H).

Proof: Exercise. �

In many applications, the σ-algebra G is generated by a random variable. This case is so
important that it gets its own notation.

(3.17) Definition

Let (Ω,F ,P) be a probability space, (Ω′,F ′) a measurable space, and Z : Ω → Ω′ be a RV.
Recall that σ(Z) := {Z−1(A) : A ∈ F ′}. For each integrable real RV X, the real RV

E(X|Z) : Ω→ R, ω 7→ E(X|Z)(ω) := E(X|σ(Z))(ω)

is called the conditional expectation of X given Z.

(3.18) Example

(Ω,F ,P) = ([0, 1],B([0, 1]), λ), Ω′ = N,F ′ = P(Ω′). For a RV Z : Ω→ Ω′ define Ai := Z−1({i}).
Then the (Ai) form a partition of Ω. Let X : Ω→ R be any integrable RV.

Assume that Ω describes an experiment, and ω is the true state of the physical system that
we want to measure. Our measurement apparatus only allows us to evaluate Z(ω), and we are
interested in predicting the value of X(ω). Once we have measured Z(ω) and the result is j ∈ N,
then the best guess for X(ω) is E(X|Z)(ω) for some ω ∈ Aj. The function ω 7→ E(X|Z)(ω) is
constant on all the Aj, and equal to E(X|Aj). There seems to be a problem for those Aj with
P(Aj) = 0, but in this case Z(ω) = j will never be measured, and we can assign any value to
E(X|Z)(ω) for those ω. The RV E(X|Z) assigns the ’best guess for X(ω) given Z(ω)’ to each
value of ω by the procedure

(i): determine AZ(ω), i.e. the set of all ω̃ ∈ Ω which are indistinguishable from ω when only the
information provided by Z is available,

(ii): compute the weighted average of X over AZ(ω).
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(3.19) Example

Let X,Z be real RVs so that the distribution of the RV (X,Z) : Ω → R2 has a density
ρX,Z : R2 → R+

0 . Recall that this means in particular that

P(X ∈ A,Z ∈ B) =

∫
A

dx

∫
B

dz ρX,Z(x, z) ∀A,B ∈ B(R).

You should check the validity of the following statements:

(i): The maps x 7→ ρX,Z(x, z) (for fixed z) and z 7→ ρX,Z(x, z) (for fixed x) are usually not
densities of a probability measure.

(ii): The map x 7→ ρX(x) :=
∫
ρX,Z(x, z) dz is a density for P◦X−1, and the map z 7→ ρZ(z) :=∫

ρX,Z(x, z) dx is a density for P ◦ Z−1.

(iii): For each z, the map

x 7→ fX|Z(x; z) :=
1

ρZ(z)
ρX,Z(x, z)1{ρZ(z)>0}

is the density of the distribution of a RV. It is called the conditional density of X given that
Z = z.

(iv): For each PX-integrable function h, the map

ω 7→
∫
h(x)ρX|Z(x, Z(ω)) dx

is a version of E(h(X)|Z).

In both examples, ω 7→ E(X|Z)(ω) could be expressed as a function of Z(ω). This is no
accident, but a consequence of the σ(Z)-measurability. The result that yields this statement is

(3.20) Lemma

Let X and Y be real RVs. Then

X ∈ mσ(Y ) ⇔ ∃f ∈ mB(R) : ∀ω ∈ Ω : X(ω) = f(Y (ω)).

Proof: ’⇐’ follows from 1.13 a).
’⇒’:

(i): Assume first X = 1A with A ∈ F . Since X ∈ mσ(Y ), we have A ∈ σ(Y ), and thus there
exists B ∈ B(R) with A = Y −1(B). So, X(ω) = 1B(Y (ω)).

(ii): Let X =
∑n

i=1 αi1Ai , with Ai ∩ Aj = ∅ and αi 6= αj if i 6= j. Then all Ai are in σ(Y )
(why?), and we find Bi ∈ B(R) to each Ai as above, and X(ω) =

∑n
i=1 αi1Bi(Y (ω)).

(iii) For X > 0, define

Xn(ω) := 2−nb2nX(ω)c ∧ n.
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By (ii), Xn = fn(Y ) for some fn ∈ mB(R) for all n. By (1.13 d), x 7→ f(x) := supn∈N fn(x) is
B(R)-measurable, and

f(Y (ω)) = sup
n
fn(Y (ω)) = sup

n
Xn(ω) = X(ω).

(iv): For general X, decompose into X+ −X− and use (iii). �

(3.21) Remark, Definition, Statement

Can we extend (3.20) to RVs with values in arbitrary measurable spaces? Step (iii) in the proof
seems to need the ordering of R. But we can do much better (but not infinitely better):

Definition: A measurable space (M,G) is called (standard) Borel space if it is isomorphic to a
Borel-subset of [0, 1] as a measure space, i.e. if

∃A ∈ B([0, 1]), f : M → A bijective with f and f−1 measurable.

This definition seems much more restrictive than it is. In particular, any separable, complete
metric space (’Polish space’) is Borel.

Statement: (3.20) holds if X maps into a Borel space, and Y into an arbitrary measurable
space.
Proof: See Kallenberg, Foundations of Modern Probability (an excellent book!).

(3.22) Definition

Let X be an integrable real RV, and let Z : Ω → Ω′ be any RV into some measurable space
(Ω′F ′). The map

Ω′ → R, z 7→ E(X|Z = z) := E(X|Z)(ω) with any ω ∈ Z−1(z)

is called the conditional expectation of X given that Z = z. By (3.21) we know that this map
is (F ′,B)-measurable.

When X and Z are independent, we have the following nice formula.

(3.23) Proposition

Let X : Ω → Ω′ and Y : Ω → Ω′′ be independent RVs, and let h : Ω′ × Ω′′ → R be F ′ ⊗ F ′′-
measurable and such that h(X, Y ) is integrable. Then

E(h(X, Y )|Y )(ω̄) = E(h(X, Y (ω̄))) ≡
∫
h(X(ω), Y (ω̄))P(dω).

Proof: Let first be h(x, y) = 1A(x)1B(y) for A ∈ F ′, B ∈ F ′′. Then

E(h(X, Y (ω̄))) = E(1A(X)1B(Y (ω̄))) = P(X ∈ A)1B(Y (ω̄)) ∈ mσ(Y ), (∗)
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and for any G ∈ σ(Y ), we have∫
1G(ω̄)E(h(X, Y (ω̄)))P(dω̄) = P(X ∈ A)

∫
1G(ω̄)1B(Y (ω̄))P(dω̄)

σ(X)⊥⊥σ(Y )
= E(1A(X)1B(Y )1G) = E(h(X, Y )1G). (∗∗)

So in this special case, the claim holds. Since both (∗) and (∗∗) are stable under linear ope-
rations, the claim also holds if h(x, y) =

∑n
i=1 1Ai(x)1Bi(y) with Ai ∈ F ′ and Bi ∈ F ′′. Since

they are also stable under monotone limits, the claim holds for h(x, y) = 1C(x, y) for arbitrary
C ∈ F ′ ⊗ F ′′. Again by stability under linear operations, we can extend to h =

∑n
i=1 αi1Ci

with measurable Ci, by monotonicity to all nonnegative functions, and by taking positive and
negative part to all integrable functions. �

(3.24) Example

Let (Xn) be iid integrable RVs, and Sn =
∑n

i=1 Xi. Let Fn := σ(X1, . . . , Xn). Then

E(Sn+1|Fn)(ω) = Sn(ω) + E(Xn+1).

To prove this, use (3.23).

We finally look at another important special case of Definition (3.1):

(3.25) Definition

For A ∈ F , G ⊂ F , the map

ω 7→ P(A|G)(ω) := E(1A|G)(ω) (3.1)

is called conditional probability of A given G.

(3.26) Observation

We can think of the conditional probability as a map (ω,A) 7→ P(A|G)(ω) of two variables. For
each fixed A ∈ F , equation (3.1) defines a G-measurable RV. For each fixed sequence (An) ⊂ F
with An ∩ Am = ∅ for m 6= n, monotone convergence guarantees that

P(
∞⋃
n=1

An|G) =
∞∑
n=1

P(An|G) almost surely.

Thus, for all ω from a set Ω1 of measure 1, the map A 7→ P(A|G)(ω) is σ-additive for the
members of that fixed sequence. It is tempting to think of the map A 7→ P(A|G)(ω) as a
probability measure, but the problem is that for this we need σ-additivity for all sequences
of mutually disjoint sets. But since for each sequence we could get a different set of measure
zero where σ-additivity fails, and since there are uncountably many sequences of disjoint sets,
we can not in general find a common set of measure 1 where σ-additivity holds. We solve this
problem in the mathematicians way.
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(3.27) Definition

Let G ⊂ F . A map µ : Ω×F → [0, 1] with the properties that

(i): ∀A ∈ F : ω 7→ µ(ω,A) is measurable, and µ(ω,A) = P(A|G)(ω) almost surely,
(ii): For all ω ∈ Ω, A 7→ µ(ω,A) is a probability measure

is called regular conditional probability of P given G.

(3.28) Example

In the situation of Example (3.19), the map

(ω,A) 7→
∫
A

fX|Z(x;Z(ω)) dx

is a regular conditional probability of PX given G = σ(Z).

In more general situations, we cannot construct regular conditional probabilities so expli-
citly. But we have

(3.29) Theorem

Let (Ω,F) be a standard Borel space (see (3.21)). Then for each σ-algebra G ⊂ F and all
probability measures P on (Ω,F), the regular conditional probability of P given G exists.

Proof: We assume first that (Ω,F) = (R,B(R)). For each r ∈ Q, let

ω 7→ F (r, ω) = P((−∞, r]|G)(ω)

be a conditional probability of (−∞, r] given G. Since r 7→ 1(−∞,r] is a growing set function,
monotonicity of conditional expectation guarantees that, for r < s, we find a set Ar,s ∈ F with
P(Ar,s) = 1 and,

F (r, ω) = E(1(−∞,r]|G)(ω) 6 E(1(−∞,s]|G)(ω) = F (s, ω) ∀ω ∈ Ar,s.
By dominated convergence, we also find, for every r ∈ Q, a set Br with P(Br) = 1 and

lim
n→∞

F (r + 1/n, ω) = F (r, ω) ∀ω ∈ Br.

Again by dominated convergence, we find a set C ∈ F with P(C) = 1 and

0 = inf
n∈N

F (−n, ω) = 1− sup
n∈N

F (n, ω) ∀ω ∈ C.

So for all ω ∈ Ω0 :=
⋂
r,s∈QAr,s ∩

⋂
r∈QBr ∩ C (with P(Ω0) = 1), we define

F̃ (z, ω) := inf
r∈Q,r>z

F (r, ω) ∀z ∈ R.

By construction and our above observations, the map z 7→ F̃ (z, ω) is a distribution function.
Let F0 be an arbitrary fixed distribution function and set F̃ (z, ω) = F0(z) for all ω ∈ Ω0. Let
µ(ω, .) be the probability measure on R induced by the distribution function F (., ω). Then the
map

ω 7→ µ(ω, (−∞, r]) = F̃ (r, ω)1Ω0(ω) + F0(r)1Ωc0
(ω)
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is measurable for each fixed r, and since the intervals (−∞, r], r ∈ R, are a ∩-stable generator
of B(R), the map ω 7→ µ(ω,A) is measurable for all A ∈ R. By construction, A 7→ µ(ω,A) is
also a measure for each fixed ω ∈ Ω.

For all ω ∈ Ω0, by definition µ(ω,A) = P(A|G)(ω) for all A of the form A = (−∞, r], r ∈ Q.
Again by extension of a ∩-stable generator, this holds for all A ∈ B(R). So, A 7→ µ(ω,A) is a
conditional probability of given G almost surely, and we have proved the theorem in the case
Ω = R.

In the general case, let (Ω,F) be a Borel space and P be a probability measure on it,
and G ⊂ F a σ-algebra. Then there exists a B ∈ B and an isomorphism of measurable spaces
ϕ : (Ω,F)→ (B,B∩B(R)). Then P̃ := P◦ϕ−1 is a probability measure on (R,B) (supported on
B), and G̃ = ϕ(G) is a sub-σ-algebra of B(R)∩B. Let (x, Ã) 7→ µ̃(x, Ã) be the regular conditional

probability measure of P̃ given G̃. Then you can check that µ(ω,A) := µ̃(ϕ(ω), ϕ(A)) is a regular
conditional probability of P given G. �

In the final example of this section, the conditional expectation can be computed explicitly,
but it is not completely easy to do so.

(3.30) Example

Let (Xi) be iid integrable RVs, and let Sn =
∑n

i=1Xi. Let Gn = σ(Sn, Sn+1, . . .). Show as an
exercise that

E(X1|Gn) = E(X2|Gn) = . . . = E(Xn|Gn) =
1

n
Sn.

Do this using the following steps:

1) Show that Gn = σ(Sn, Xn+1, Xn+2, . . .).

2) Show that E(Xi|Gn) = E(Xi|Sn) for all i 6 n.

3) Show that E(Xi|Sn) = E(Xj|Sn) almost surely for i, j 6 n.

4) Conclude the claim.

The statement says that if we sum n independent RVs, and if we know that the sum has the
value M , then the best guess for each of them is simply M/n.
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4. Martingales

(4.1) Motivating Example

We consider a simple game of chance: in each round, a coin is thrown, and you have to decide the
amount a that you want to bet. If the coin comes up heads, you win the amount a. Otherwise,
you lose the amount a.

We model this: Let (Xi) be iid RVs with P(Xi = −1) = P(Xi = 1) = 1/2. Your expected win
in round i is exactly E(Xi) = 0. Let (ai(x1, . . . , xi−1))i∈N be your gambling strategy: based on
the outcomes of the coins, 1 to i− 1, you decide to bet the amount ai. Then

Yn(ω) := an(X1(ω), . . . , Xn−1(ω))Xn

is your win/loss in round n, and

Sn(ω) =
n∑
i=1

Yi(ω)

is your total win/loss after n games.

a) Even though the Xi are independent, the Yi usually are not independent at all. On the other
hand, your strategy can only depend on the past for obvious reasons. So at least the Yi are
independent of all the Xi+j, j > 0.

b) Observe that this strategy includes the famous doubling strategy in Roulette (except that
in Roulette there is the zero): start with a1 = 1 and double every time you lose, until you win,
say that this happens in game j. It is easy to see that at this point you have won exactly one
unit. Then start again at aj+1 = 1 and repeat. Many intelligent people think that one can win
Roulette like this.

c) Let’s calculate

E(Sn) =
n∑
j=1

E(aj(X1, . . . , Xj−1)Xj) =
n∑
j=1

E(aj(X1, . . . , Xj−1))E(Xj) = 0.

So, our expected gain is exactly zero, no matter what strategy we try!

d) Assume that after j games, we have observed the outcomes X1, . . . , Xj. What is our expected
gain after j + 1 games, given these outcomes? We set Fj = σ(X1, . . . , Xj) and calculate

E(Sj+1|Fj) =

j∑
i=1

Yi + E(aj+1(X1, . . . , Xj)Xj+1|Fj) = Sj + aj+1(X1, . . . , Xj)E(Xj+1) = Sj.

So, at any point during the game, on average we stay exactly as rich as we are right at that
point.

e) All considerations still work when the Xi are arbitrary independent RVs with E(Xi) = 0.

f) The outcome of all this is: in fair games like the above one, there is no winning strategy.

g) Real games are more complicated: The game you play in the next round (i.e. the distribution
of the RV Xi+1) may depend on the outcome of all the previous rounds. Your strategy may be
based on more information than just the outcome of the previous games (e.g. Poker: the face
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of your opponent).

h) Martingales are those games where despite all this, there still is no winning strategy. On top
of that, they are one of the most powerful concepts of modern probability theory. The main
reason for this is that they allow to consider RVs that are not at all independent, but at the
same time still get very powerful general results.

(4.2) Definition

a) A collection (Xn)n∈N of real RVs is called a (discrete time) stochastic process (SP).

b) Let (Xn)n∈N be a stochastic process. A probability measure µ on Ω = RN, with F = B(R)⊗N

(product σ-algebra), is called the canonical representation of (Xn)n∈N if for all n ∈ N and all
A1, . . . , An ∈ B(R), we have

P(X1 ∈ A1, . . . , Xn ∈ An) = µ(A1 × . . .× An × RN).

(4.3) Theorem

For an arbitrary stochastic process (Xn), the canonical representation exists and is unique (as
a measure).

Proof: exercise; see also Kallenberg or Durrett. In the course ’Stochastic Processes’ we will see
a much more powerful existence result (Kolmogorovs extension theorem). �

(4.4) Definition

a) A family (Fn) of σ-algebras is called a filtration if for each n ∈ N, Fn ⊂ Fn+1.

b) A stochastic process (Xn) is called adapted to a filtration (Fn) if Xn ∈ mFn for all n.

(4.5) Examples

a) Let (Xn) be a SP, Fn := σ(X1, . . . , Xn). Then (Xn) is (Fn)-adapted, and Y ∈ Fn ⇔ Y =
f(X1, . . . , Xn) for some measurable f : Rn → R (by (3.20)).

b) σ(X1, . . . , Xn) is the minimal filtration such that (Xn) is (Fn)-adapted (why? Why not Fn =
σ(Xn)?). But (Fn) can be much larger than that. Find simple examples for larger filtrations!

c) In Example (4.1), with Fn = σ(X1, . . . , Xn), we have that (Yn) is (Fn)-adapted, and that
(an) is Fn−1-adapted.

(4.6) Definition
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Let (Fn) be a filtration and (Xn) an (Fn)-adapted process with E(|Xn|) <∞ for all n. (Xn) is
called a

a) martingale if E(Xn+1|Fn)(ω) = Xn(ω) for almost all ω.

b) supermartingale if E(Xn+1|Fn)(ω) 6 Xn(ω) for almost all ω.

c) submartingale if E(Xn+1|Fn)(ω) > Xn(ω) for almost all ω.

(4.7) Remark

a) (Xn) submartingale ⇔ (−Xn) supermartingale.

b) (Xn) and (−Xn) submartingales ⇔ (Xn) is a martingale.

c) Let (Xn)n > 0 be a stochastic process. Then:
(Xn) is a (sub-), (super-) martingale ⇔ (Xn −X0) is a (sub-), (super-) martingale.

d) These remarks allow us to state many facts only for submartingales: They then also hold
for martingales (by b) ⇒), and the ’negative’ statements hold for supermartingales (by a)). c)
says that (de-)randomizing the starting point of a SP does not change its martingale property.

(4.8) Proposition

Let (Xn) be a submartingale. Then

∀m > 0 : E(Xn+m|Fn) > Xn a.s.

Proof: Exercise. �

(4.9) Examples

a) Xn independent integrable RVs, Fn = σ(Xi : i 6 n), F0 = {∅,Ω}. Then

Sn :=
n∑
i=1

Xi is a


martingale if ∀n : E(Xn) = 0,

submartingale if ∀n : E(Xn) > 0,

supermartingale if ∀n : E(Xn) 6 0.

b) Xn independent RVs, E(Xn) = 1 for all n, Fn as in a). Put M0 = 1, Mn =
∏n

i=1 Xi.
Then (Mn) is a martingale (exercise!). In particular, this is true for Mn = exp(

∑n
j=1 Yj) when

E(expYj) = 1 and the Yj are independent.

c) Let X be an integrable RV, (Fn) an arbitrary filtration. Put Yn := E(X|Fn) (information
available on X by only considering sets from Fn). Then

E(Yn|Fn−1) = E(E(X|Fn)|Fn−1) = E(X|Fn−1) = Yn−1,

so (Yn) is a martingale.

We now extend the idea of a gambling strategy from (4.1).
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(4.10) Definition

Let (Fn) be a filtration. A stochastic process (Cn) is called previsible if Cn ∈ mFn−1 for all n.

(4.11) Defintion

Let (Fn) be a filtration, (Xn) an (Fn)-adapted SP, and (Cn) an (Fn)-previsible process. The
process (Yn) with

Yn(ω) :=
n∑
k=1

Ck(ω)(Xk(ω)−Xk−1(ω))

is called the discrete stochastic integral of (Cn) with integrator (Xn).

In this case, we write Yn = (C •X)n.
If (Xn) is a martingale, (Yn) is called the martingale transform of (Xn) by (Cn).

(4.12) Theorem

Let (Fn) be a filtration, (Cn) previsible, (Xn) a submartingale (supermartingale). Assume

either (i) that ‖Cn‖∞ <∞ for all n,

or (ii) that Cn ∈ L2 and Xn ∈ L2.

Then

a) If Cn > 0 for all n, then (C •X)n is a submartingale (supermartingale).

b) If (Xn) is a martingale, then also (C •X)n is a martingale.

Proof: Both (i) and (ii) guarantee that E(|(C •X)n|) <∞ for all n. Furthermore,

E((C •X)n|Fn−1) = (C •X)n−1 + E((C •X)n − (C •X)n−1|Fn−1) =

= (C •X)n−1 + E(Cn(Xn −Xn−1)|Fn−1) = (C •X)n−1 + Cn

(
E(Xn|Fn−1)−Xn−1

)
.

The two claims now follow immediately. �

(4.13) Remark

The interpretation of Theorem 4.12 is maybe more important than the statement itself.

1) We think of each ω ∈ Ω as one of the (pre-determined, but unknown) possible series of
outcomes of all rounds of a game of chance.

2) The process (Xn) is the amount of money you have in round n if you win/lose precisely
(Xj −Xj−1) Euro in round j, j 6 n, and if the game is governed by ω.

3) The σ-algebra Fn−1 is all the information that you have in round n − 1; this can be just
the outcomes of the previous rounds (then Fn = σ(Xj : j 6 n)), or it can contain additional
information on the previous rounds, such as the face of your opponent after getting her hand
of cards for the current round.

4) If (Xn) is a martingale, then E(Xn|Fn−1) = Xn−1 means that if we have perfect information
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on everything that can be known up to round n− 1, based on that information the best guess
for our money after round n is to be exactly equal to what we have in round n− 1.

5) For a supermartingale, it is as in 4), but now the best guess is that we will lose money in
round n (unfavourably unfair game).

6) The fact that the process (Cn) is previsible means that the value of Cn(ω) depends entirely
on the information up to round n− 1. So, Cn is a gambling strategy for round n that is allowed
to use all information from the past, but cannot use information for the future. This means
that in round n, we bet exactly Cn Euro.

7) The process (C • X)n is the money that you have after round n if in round j 6 n, you
increase/decrease all winnings/losings by a factor Cj.

8) The statement of (4.12) says that you can’t beat the system: Statement a) says that if a
game is rigged against you, and if you can only bet positive amounts of money, then your best
strategy is to stop playing immediately. Everything else will lose you money more likely than
not. Statement b) says that if a game is fair, then no strategy will make it possible to win (or
lose) money of average.

A very important special gambling strategy are stopping times.

(4.14) Definition

Let (Fn) be a filtration. A RV T : Ω → N0 ∪ {∞} is called a (Fn)-stopping time (or simply
stopping time) if

∀n ∈ N0 ∪ {∞} : {T 6 n} ∈ Fn.

(4.15) Lemma

T is an (Fn)-stopping time if and only if {T = n} ∈ Fn for all n.

Proof: Exercise. �

(4.16) Examples

(Xn)n∈N SP, Fn = σ(Xj : j 6 n).

a) T (ω) := inf{k ∈ N : Xk(ω) > c} is a stopping time, since

{T > n} = {∀k 6 n : Xk < c} =
n⋂
k=1

X−1
k ((−∞, c])︸ ︷︷ ︸

∈Fk

∈ Fn.

b) T := inf{n : Xn+4 > c} is not an (Fn)-stopping time, but it is an (Fn+4)-stopping time.

c) S := sup{n : Xn > c} is usually not a stopping time. Exercise: find natural examples where
S is not a stopping time, and find special cases where S is a stopping time.
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(4.17) Definition

Let (Xn) be an (Fn)-adapted SP and T be an (Fn)-stopping time. The SP (XT∧n)n with
XT∧n(ω) := (XT (ω)∧n)(ω) is called the process (Xn) stopped at T . Sometimes this definition is
extended to cases where T is not a stopping time.

(4.18) Theorem

Let (Xn) be an (Fn)-adapted process, X0 ≡ 0 and T be an (Fn)-stopping time. Then:

a) (XT∧n) is (Fn)-adapted.

b) If (Xn) is a (sub-, super-)martingale, then (XT∧n) also is a (sub-, super-)martingale.

Proof:

XT∧n(ω) =
n∑
i=1

Ci(ω)(Xi(ω)−Xi−1(ω)) with Ci(ω) :=

{
0 if T (ω) < i

1 if T (ω) > i.

(To see this, check the cases {T < n} and {T > n} separately.) Since {Cn = 0} = {T < n} =
{T 6 n − 1} ∈ Fn−1, the process (Cn) is previsible. In particular, a) holds, and b) directly
follows from Theorem (4.12) (i) since |Cj| 6 1 for all j. �

(4.19) Example: Distribution is Random Walk Hitting Times

Let (Xn)n∈N be iid with P(Xi = ±1) = 1/2, X0 ≡ 0. Set Sn =
∑n

j=1Xj (simple random walk),

Fn := σ(Xj : j 6 n)
check this!

= σ(Sj : j 6 n), and T := inf{n : Sn > 1} 6 ∞. Since (Sn) is
(Fn)-adapted, T is a stopping time. Can we compute its distribution? I.e., can we find out how
long it will take until the random walk is positive for the first time?

To do it, fix θ > 0 and let

Mn(ω) := Mθ,n(ω) =
1

(cosh θ)n
eθSn(ω) =

n∏
i=1

( 1

cosh θ
eθXi(ω)

)
, M0 := Mθ,0 := 1.

Since E( eθXi ) = 1
2
( eθ + e−θ ) = cosh(θ), (Mn) is a martingale by Example (4.9 b), and thus

E(Mn) = E(M0) = 1. By (4.18 b), also E(MT∧n) = 1 for all n. Next we show that MT∧n
converges pointwise: we have that

MT (ω)∧n+1(ω)

MT (ω)∧n(ω)
=


1 if T (ω) 6 n,

eθ / cosh θ if T (ω) = n+ 1,

eθXn+1(ω) / cosh θ 6 eθ / cosh θ if T (ω) > n+ 1.

The second case holds since the step from 0 to 1 must be positive. We conclude that

lim
n→∞

MT (ω)∧n(ω) = MT (ω)(ω)1{T (ω)<∞}
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exists for all ω ∈ Ω. (This is a special case of the famous Martingale convergence theorem we
will prove later.) We can even compute the pointwise limit in case of T (ω) <∞,

MT (ω)(ω) = (cosh θ)−T (ω) eθST (ω) = (cosh θ)−T (ω) eθ .

Now we can apply dominated convergence, since ST∧n 6 1:

1 = lim
n→∞

E(MT∧n) = E( lim
n→∞

MT∧n) = eθ E((cosh θ)−T1{T<∞}).

This holds for all θ > 0. Taking the limit θ → 0 (dominated convergence again!), we find first
that P(T <∞) = 1. Using this, and setting α := 1/ cosh θ, we find that

e−θ = E(αT ) =
∞∑
j=1

αjP(T = j),

i.e. we have computed the probability generating function of T . Therefore, and since e−θ =

cosh θ − sinh θ = 1−
√

1−α2

α
by the addition theorems for cosh and sinh, we conclude that

P(T = j) =
dj

dαj
1−
√

1− α2

α
|α=0 = (−1)m+1 Γ(3/2)

Γ(m+ 1)Γ(3/2−m)
1{j=2m−1}.

This decays like m−3/2 for large m.

(4.20) Observation

In (4.19), in the context of gambling T is the strategy to go home after winning exactly one
Euro. Since P(T <∞) = 1 and ST = 1 on {T <∞}, we have E(ST ) = 1. So, with this strategy,
we seem to win 1 Euro on average, despite the fact that Sn is a martingale.

This seems to be a contradiction with (4.13). Can we beat the system after all?

The answer is no. In practice, we have to stop playing at some point, and E(ST∧n) = 0 for
all n. Picturing the different paths of the random walk, there are many paths where for large
n, T 6 n holds, and those contribute to our winnings. But for the very few paths where still
T > n, the random walk Sn tends to be very far away from zero; i.e. the probability that we
are losing is small, but if we are losing, we are losing a lot. If we increase n further, this split
becomes more extreme: more paths will give us winnings, but the losses on the losing paths
will be even more terrible.

The limit n→∞ destroys all losing scenarios, but for finite n they exactly balance the winning
ones. Mathematically, what happens is simply that we cannot exchange limit and expectation
in the expression 0 = limn→∞ E(ST∧n).

Our next Theorem investigates conditions under which such an exchange of limits is allowed.
Note that by our calculations in (4.19), E(T ) =∞.

(4.21) Doobs Optional Stopping Theorem

Let (Xn) be an (Fn)-submartingale, and T an (Fn)-stopping time. Assume at least one of the
following conditions:
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(i): T is a.s. bounded, i.e. ∃N ∈ N : P(T > N) = 0.

(ii): (Xn) is a.s. uniformly bounded and T is a.s. finite, i.e.

∃K <∞ : ∀n ∈ N : P(|Xn| > K) = 0, and P(T =∞) = 0.

(iii): T is integrable and (Xn) has a.s. bounded increments, i.e.

E(T ) <∞ and ∃K <∞ : ∀j ∈ N : P(|Xj+1 −Xj| > K) = 0.

Then

E(XT ) > E(X0).

Proof: By (4.18), (XT∧n) is a submartingale.

If (i) holds, then E(XT −X0) = E(XT∧N −X0) > 0.

If (ii) holds, then for all n, |XT∧n −X0| 6 2K a.s., and by dominated convergence then

E(XT −X0) = lim
n→∞

E(XT∧n −X0) > 0.

If (iii) holds, then almost surely for all n,

|XT (ω)∧n(ω)−X0(ω)| =
∣∣∣ T (ω)∧n∑

k=1

(Xk(ω)−Xk−1(ω))
∣∣∣ 6 KT (ω)

Since T is integrable by assumption, dominated convergence as above gives the result. �

(4.22) Corollary

If in (4.21), (Xn) is a martingale (supermartingale), then under the same assumptions E(XT ) =
E(X0) (E(XT 6 E(X0)).

(4.23) Corollary

Let (Mn) be a martingale with bounded increments, (Cn) a uniformly bounded previsible
process, and T an integrable stopping time, all with respect to some filtration (Fn). Then
E((C •M)T ) = 0.

Proof: C •M is a martingale with bounded increments. Apply (4.22). �

A good sufficient condition for E(T ) < ∞ is given below. It says that at any time n,
conditional on the past, the stopping happens in the next N steps with probability at least ε.

(4.24) Lemma

Let (Fn) be a filtration with F0 = {∅,Ω}, T be an (Fn)-stopping time, and assume

∃N ∈ N, ε > 0 : ∀n ∈ N0 : P(T 6 N + n|Fn) > ε a. s.

Then E(T ) <∞.
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Proof: We first show by induction that

(∗) P(T > kN) < (1− ε)k ∀k ∈ N.

For k = 1, this holds since

P(T > N) = P(T > N |F0) = 1− P(T 6 N |F0) < 1− ε.

Assuming that we have shown (∗) up to some k ∈ N, we have

P(T > (k + 1)N) = E(E(1{T>(k+1)N}1{T>kN}|FkN)) =

= E(1{T>kN} E(1{T>(k+1)N}|FkN)︸ ︷︷ ︸
<1−ε by assumption, with n=kN

) < (1− ε)P(T > kN) < (1− ε)k+1.

Therefore,

E(T ) =
∞∑
n=1

P(T > n) 6 N
∞∑
k=0

P(T > kN) =
N

ε
<∞.

�

The next theorem is one of the most important results of martingale theory.

(4.25) Doobs Martingale Convergence Theorem

Let (Xn) be a supermartingale which is uniformly bounded in L1, i.e. with sup{E(|Xj|) : j ∈
N} <∞. Then limn→∞Xn exists and is finite almost surely.

For the proof, we need some preparations.

(4.26) A gambling strategy

Let (Xn) be a SP. As before, Xn − Xn−1 represents the win/loss in round n. Xn is the total
win/loss that you would get after round n by playing the game every round, but you can choose
to not play in some rounds. Consider the following strategy:

1) Pick two numbers a < b.

2) Do not play the game until Xn1(ω) < a for some n1, then start playing until Xn2(ω) > b for
some n2 > n1.

3) Stop playing at time n2, until a time n3 > n2 when again Xn3(ω) < a, then start playing
again until some n4 for which Xn4(ω) > b.

4) Continue in this way indefinitely. Each time between n2j−1 and n2j (j ∈ N), we win at least
b− a.

Formally, we set C1 = 1{X0<a}, and

Cn = 1{Cn−1=1}1{Xn−1 6 b} + 1{Cn−1=0}1{Xn−1<a}.

(Cn) is previsible and implements the above gambling strategy. The main idea of the proof of
Theorem (4.25) simply is that if (Xn) is a supermartingale (or a martingale), then this strategy
cannot be successful, since we cannot beat the system. Therefore for almost all ω ∈ Ω and all
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intervals [a, b], the sequence n 7→ Xn(ω) only ’crosses’ [a, b] finitely many times. We will now
see that this idea actually works.

(4.27) Definition

Let x = (xn)n∈N be any real-valued sequence. For a < b let

uN,[a,b](x) := max{k ∈ N : ∃s1 < t1 < s2 < t2 < . . . < sk < tk < N with xsi < a, xti > b∀i}
denote the number of upcrossings of the interval [a, b] performed by x before time N .

(4.28) Lemma

Let x be any real sequence, and assume that for all a, b ∈ Q, a < b, we have

lim
N→∞

uN,[a,b](x) <∞.

Then limn→∞ xn exists in [−∞,∞].

Proof: Assume that the limit does not exist. Then we can find a, b ∈ Q with lim inf xn < a <
b < lim supxn, which means that limN→∞ uN,[a,b](x) = ∞ for these a, b. This is excluded by
assumption, so (xn) must converge. �

(4.29) Doobs Upcrossing Lemma

Let X = (Xn) be a supermartingale, a < b,

Cn = 1{Cn−1=1}1{Xn−1 6 b} + 1{Cn−1=0}1{Xn−1<a},

and Yn = (C •X)n. Define

UN,[a,b](ω) := uN,[a,b](X(ω)).

Then

a) For all N ∈ N and all ω ∈ Ω,

YN(ω) > (b− a)UN,[a,b](ω)−max{a−XN(ω), 0}.
b) (b− a)E(UN,[a,b]) 6 E(max{a−XN , 0}).
Proof: (i) is clear: each crossing of [a, b] contributes at least b−a, and in case that CN(ω) = 1,
the loss in the last unfinished upcrossing period is not larger than |a−XN(ω)|.
(ii): Since (Cn) is previsible and bounded, (Yn) is a supermartingale. Thus E(YN) 6 E(Y0) = 0.
The result follows by integrating the inequality in a) and rearranging. �

(4.30) Corollary

In the situation of (4.29), assume in addition that c := supn E(|Xn|) <∞. Then

P( lim
N→∞

UN,[a,b] =∞) = 0.
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Proof: By (4.29) and max{a− b, 0} 6 |a|+ |b|, we have

(b− a)E(UN,[a,b]) 6 |a|+ E(|XN |) 6 |a|+ c.

Since N 7→ UN,[a,b] is monotone increasing, monotone convergence gives

E( lim
N→∞

UN,[a,b]) 6
|a|+ c

b− a
<∞,

and thus P(limN→∞ UN,[a,b] =∞) = 0. �

(4.31) Proof of Theorem (4.25)

For a, b ∈ Q, let

Λa,b := {ω ∈ Ω : lim
N→∞

UN,[a,b](ω) =∞}, and Ω1 := Ω \
⋃
a,b∈Q

Λa,b.

By (4.30) and σ-additivity, P(Ω1) = 1. Since UN,[a,b](ω) < ∞ for all a, b ∈ Q for all ω ∈ Ω1 by
construction, (4.28) implies that limn→∞Xn(ω) exists for all ω ∈ Ω1 in [−∞,∞]. Now,

E( lim
n→∞

|Xn|)
limit exists a.s.

= E(lim inf
n→∞

|Xn|)
Fatou

6 lim inf
n→∞

E(|Xn|) 6 sup
n

E(|Xn|) <∞.

So, P(limn→∞ |Xn| <∞) = 1. �

(4.32) Corollary

Theorem (4.25) holds for submartingales (Xn).
Proof: Apply it to (−Xn). �

(4.33) Corollary

Let (Xn) be a nonnegative supermartingale. Then P(limn→∞Xn exists and is finite} = 1.

Proof: E(|Xn|) = E(Xn) 6 E(X1) since (Xn) is a supermartingale. Thus (Xn) is uniformly
bounded in L1, and Theorem (4.25) applies. �

(4.34) Example

Recall the exponential distribution: X ∼ Exp(β) means that P(X > α) = e−αβ . Now let (Yi)
be iid and Yi ∼ Exp(1) for all i. Define recursively

X1 = Y1, S̄n =
1

n

n∑
i=1

Xi, Xn+1(ω) = S̄n(ω)Yn+1(ω).

Do the following exercises:

a) Check as an exercise that Fn := σ(Xi : i 6 n) = σ(Yi : i 6 n), and that

E(Xn+1|Fn) = S̄n a.s.
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b) Using S̄n+1 = n
n+1

S̄n + 1
n+1

Xn+1, conclude that (S̄n) is a martingale.

c) Show that limn→∞ S̄n exists a.s.

Note that if the (Xn) would be iid and integrable, then the strong law of large numbers would
give that S̄n converges almost surely, and would also identify the limit, namely the constant RV
E(X1). In the present case, the limit will not be constant (why?). Can you find out anything
about it or its distribution?

Another very useful property of martingales is that the distribution of the maximum up to
n is governed by the distribution of the n− th step.

(4.35) Doobs Submartingale Inequality

Let (Xn) be a submartingale. Then for all c > 0, n ∈ N,

P(max
k 6 n

Xk > c) 6
1

c
E(Xn1{maxk 6 nXk > c}).

In particular, if (Xn) is nonnegative, then P(maxk 6 nXk > c) 6 1
c
E(Xn).

Proof: For k ∈ N0, put

Ak = {Xk > c,Xj < c∀j < k}.
Then Ak ∈ Fk. We have for n > k :

E(Xn1Ak) = E(E(Xn1Ak |Fk)) = E(1AkE(Xn|Fk))
submartingale

> E(1AkXk)
Xk1Ak > c1Ak
> cP(Ak).

Since {maxk 6 nXk > c} is the disjoint union of the Ak with k 6 n, summing the above
inequality over k 6 n gives the result. �

The next lemma is simple but extremely useful. The short version is that convex functions
of martingales are submartingales. The long version is

(4.36) Lemma

Let (Xn) be a martingale, ϕ : R→ R a convex function with E(|ϕ(Xn)|) <∞ for all n. Define
Yn := ϕ(Xn). Then (Yn) is a submartingale.

Proof:

E(Yn+1|Fn) = E(ϕ(Xn+1)|Fn)
Jensen

> ϕ(E(Xn+1|Fn))
martingale

= ϕ(Xn) = Yn.

�
Remark: In (4.36) the assumption E(|ϕ(Xn)|) <∞ for all n may be weakened by the condition
E(ϕ(Xn))+ <∞ for all n. (Exercise)

(4.37) Corollary

Let (Xn) be a martingale. Then for all c > 0, n ∈ N,

P(max
k 6 n
|Xk| > c) 6

1

c
E(|Xn|1{maxk 6 n |Xk| > c}) 6

1

c
E(|Xn|).
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Proof: x 7→ |x| is convex. Use (4.36) and (4.35). �

(4.38) Reminder and Remark

For a RV X, its Lp-norm is defined as

‖X‖p := E(|X|p)1/p 6∞.

You may know from measure theory that this is a norm on the set of (equivalence classes of)
functions for which it is finite.

(4.39) Doobs Lp-maximal inequality

Let (Xn) be a nonnegative submartingale. Then for all n ∈ N, for all p > 1:

‖max
k 6 n

Xk‖p 6
p

p− 1
‖Xn‖p.

Proof: For nonnegative RVs Z and Y , r > 0, we have (exercise!) that

(∗) E(ZY r) = r

∫ ∞
0

tr−1E(Z1{Y > t}) dt.

Thus,

E(|max
k 6 n

Xk|p)
(∗),Z=1

= p

∫ ∞
0

tp−1P(max
k 6 n

Xk > t) dt

(4.35)

6 p

∫ ∞
0

tp−1 1
t
E(Xn1{maxk 6 nXk > t}) dt

(∗),Z=Xn
= p

p−1
E(Xn(max

k 6 n
Xk)

p−1)

Hölder,q=p/(p−1)

6 ‖Xn‖p‖(max
k 6 n

Xk)
p−1‖q = p

p−1
‖Xn‖pE((max

k 6 n
Xk)

(p−1)q)1/q.

Assume first that E((maxk 6 nXk)
p) < ∞. Then using that (p − 1)q = p and 1/q = 1 − 1/p,

we divide both sides by E((maxk 6 nXk)
p)1−1/p to obtain the claim. For the general case, fix

K < ∞ and let T = inf{n ∈ N : Xn > K}. Then T is a stopping time, and thus (XT∧n) is a
submartingale. We thus have

E(|max
k 6 n

XT∧k|p) 6 p
p−1
‖Xn‖p E(max

k 6 n
Xp
T∧k)

1/q (4.1)

by the calculation above, and

E(max
k 6 n

Xp
T∧k) = E(1{maxk 6 nXT∧k 6 K} ·max

k 6 n
Xp
T∧k) + E(1{maxk 6 nXT∧k>K} ·max

k 6 n
Xp
T∧k)

6 Kp + E(Xp
T∧n) (4.2)

by definition of T. Now we distinguish two cases. In the first case, let E(Xp
T∧n) < ∞. Then

(4.2) implies E(maxk 6 nX
p
T∧k) <∞ and dividing both sides of (4.1) by E(maxk 6 nX

p
T∧k)

1−1/p

yields

(E(|max
k 6 n

XT∧k|p))1/p 6 p
p−1
‖Xn‖p.
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To finish in this case the proof, let K →∞ and use monotone convergence. For the second case
assume E(Xp

T∧n) =∞. Using monotone convergence and the conditional Jensen inequality, we
obtain

E(Xp
n) = E(E(Xp

n|Fn−1)) = lim
M→∞

E(E((Xn ∧M)p|Fn−1))

> lim
M→∞

E(E(Xn ∧M |Fn−1)p) = E(E(Xn|Fn−1)p) > E(Xn−1)p.

Iteratively, this gives: E(Xp
n) > E(Xp

m) for all m 6 n. Thus, in the second case it follows
E(Xp

n) =∞. This means ||Xn||p =∞, in which case our claim is trivial. �

We end this section by looking at classes of martingales with extra integrability properties.

(4.40) Definition

A martingale (Mn) is called bounded in L2 (or: an L2-martingale) if sup{‖Mn‖2 : n ∈ N} <∞.

(4.41) Proposition

Let (Mn) be a martingale with Mn ∈ L2 for all n. Then

a) the increments of (Mn) are orthogonal i.e.,

∀i 6 j 6 k 6 l : 〈Mj −Mi,Ml −Mk〉 := E((Mj −Mi)(Ml −Mk)) = 0.

b) For all n,

E(M2
n) = E(M2

0 ) +
n∑

m=1

E((Mm −Mm−1)2)

Proof: We have

E((Mj−Mi)(Ml−Mk)) = E((Mj−Mi)E(Ml−Mk|Fk)) = E((Mj−Mi) (E(Ml|Fk)−Mk)︸ ︷︷ ︸
=0

) = 0,

so a) holds. For b), we have

E(M2
n) = E

((
M0 +

n∑
m=1

(Mm −Mm−1)
)2
)

= E(M2
0 ) + 2E(M0

n∑
m=1

(Mm −Mm−1))

+
n∑

m=1

m∑
p=1

E
(
(Mm −Mm−1)(Mp −Mp−1)

)
.

By a), the mixed terms in the last line vanish, and the last term in the first line is 0. �

(4.42) Theorem

Let (Mn) be a martingale with Mn ∈ L2 for all n. Then

a) (Mn) is an L2-martingale if and only if
∑∞

n=1 E
(
(Mn −Mn−1)2

)
<∞.

b) For any L2-martingale, M := limn→∞Mn exists a.s. and in L2.
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Proof: a) follows directly from (4.41). For b), note that E(|Mn|) 6 E(|Mn|2) + 1, and since
(Mn) is bounded in L2 we have that supn E(|Mn|) <∞. Thus almost sure convergence follows
from Theorem (4.25).

For L2-convergence, let M∞ be the almost sure limit. Then by Fatous Lemma,

E((M∞ −Mn)2) = E(lim inf
k→∞

(Mn+k −Mn)2) 6 lim inf
k→∞

E((Mn+k −Mn)2) = (∗).

Applying Proposition (4.41), we find

(∗) = lim inf
k→∞

n+k∑
j=n+1

E((Mj −Mj−1)2) =
∞∑

j=n+1

E((Mj −Mj−1)2)
n→∞−→ 0.

The claim is shown. �

L2-martingales can be used to discover interesting facts about sums of independent RVs:

(4.43) Lemma

Let (Xn) be indep. RVs with E(Xn) = 0 and σ2
n := V(Xn) <∞ for all n. Define

Mn :=
n∑
i=1

Xi, An :=
n∑
i=1

σ2
i .

Then (Mn) and (M2
n − An) are martingales.

Proof: exercise. �

(4.44) Theorem

Let (Xn) be indep. RVs with E(Xn) = 0 and σ2
n := V(Xn) <∞ for all n.

a) If
∑∞

n=1 σ
2
n <∞, then

∑∞
n=1 Xn exists a.s.

b) Assume that the Xn are a.s. uniformly bounded, i.e. that there exists K <∞ with Xn(ω) <
K for all n and almost all ω. Then the reverse implication to a) also holds, i.e. in this case

∞∑
n=1

σ2
n <∞ ⇔

∞∑
n=1

Xn exists a.s.

Proof: a) Set Mn :=
∑n

i=1Xi. (Mn) is an L2-martingale, since E((Mn+1 − Mn)2) =
E(X2

n+1) = σ2
n+1, now use (4.42 a). So claim a) follows.

For b), only ⇐ remains to be shown. Define (Mn) and (An) as in (4.43). The idea of the proof
is as follows: we assumed that (Mn) converges a.s. Now (M2

n − An) is also a martingale, and
uniform boundedness of the Xi means that it has a very good chance to converge, too. Then
(An) also converges. The implementation of ’has a very good chance’ needs a bit of care.

Fix c <∞, and define

T (ω) ≡ Tc(ω) := inf{k ∈ N : |Mk(ω)| > c}.
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T is an (Fn)-stopping time, and Nn := M2
n − An is an (Fn)-martingale. Thus by Theorem

(4.18), (NT∧n) is a martingale, and thus

E(M2
T∧n) = E(

T∧n∑
j=1

σ2
j ).

By the definition of T , M(T∧n)−1 6 c for all n. By the uniform boundedness of the Xj,

MT (ω)∧n(ω) = M(T (ω)∧n)−1(ω) +XT (ω)∧n(ω) 6 c+K

almost surely, and thus

E(
T∧n∑
j=1

σ2
j ) = E(M2

T∧n) 6 (c+K)2

for all n. Since (Mn) converges a.s. (by assumption!), we find that

1 = P({ω : (Mn(ω))n∈N is bounded) = P(∃c > 0 : ∀N ∈ N : |MN | < c) =

= P(∃c > 0 : Tc =∞)
Monotonicity

= P(
∞⋃
c=1

{ω ∈ Ω : Tc(ω) =∞}).

Thus, there exists some c ∈ N with P(Tc = ∞) = p0 > 0. We conclude that for this c and all
n ∈ N,

n∑
i=1

σ2
i =

1

p0

E(
n∑
i=1

σ2
i 1{Tc=∞}) =

1

p0

E(
Tc∧n∑
i=1

σ2
i 1{Tc=∞}) 6

1

p0

E(
Tc∧n∑
i=1

σ2
i ) 6

(c+K)2

p0

.

The proof is finished. �

(4.45) Corollary

Let (Xn) be a.s. uniformly bounded, independent RVs. Then

P(sup
n∈N
|

n∑
i=1

Xi| <∞) > 0 ⇔ P( lim
n→∞

n∑
i=1

Xi exists in R) = 1.

Proof: follows from the proof of Theorem (4.44); exercise. �

(4.46) Example: Random signs

Theorem (4.44) has the following nice application. You know from Analysis 1 that there are
sequences (an) with an > 0 for all n, where limn→∞ an = 0 but

∑∞
n=1 an = ∞. In the class of

sequences where an = n−γ, this happens if and only if γ 6 1.

On the other hand, if the sequence (an) is also monotone, then the alternating version
∑∞

i=1(−1)nan
always converges, no matter how slowly (an) goes to zero (Leibnitz theorem). Of course, the
reason is that positive and negative contributions cancel because of the extremely regular pat-
tern of positive and negative signs. So when an = n−γ, the alternating series converges for all
γ > 0.
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An interesting question is what happens with random signs: Let (εn) be iid with P(εn = ±1) =
1/2. What is the right condition for

∑∞
n=1 εnan to converge (a.s.)? The answer is given by

Theorem (4.44): we set Xn := εnan and obtain

∞∑
n=1

εnan exists a.s. ⇔
∞∑
n=1

a2
n <∞.

Thus, sequences of the type an = n−γ with random signs converge if and only if γ > 1/2.

The proof of the following statement about random signs is left as an exercise:

lim sup
n→∞

n∑
i=1

εiai = − lim inf
n→∞

n∑
i=1

εiai =∞ a. s. ⇔
∞∑
n=1

a2
n =∞.

(4.47) Remark

We know that when (Mn) is a martingale with Mn ∈ L2 for all n, then (M2
n) is a submartingale

(why?). So (M2
n) is ’increasing on average’: E(M2

n|Fn−1) > M2
n−1 almost surely. Lemma (4.43)

says that when (Mn) is the sum of n independent square integrable RVs, then we can correct
(M2

n) back to a martingale by subtracting a strictly increasing process, namely the deterministic
process (An) which is the sum of the first n variances. The next result is not hard to prove, but
it is remarkable because it says that for a completely arbitrary L2-martingale, such a monotone
increasing correction of the submartingale (M2

n) to a martingale is possible, it is unique, and
we can give a formula. We first give the axiomatic definition.

(4.48) Definition

Let (Mn) be a martingale with respect to the σ-algebra (Fn) with Mn ∈ L2 for all n. Any
process with the properties

(i): (An) is (Fn)−previsible, i.e. An is Fn−1-measurable for all n,

(ii): A0 = 0, and (An) is increasing in n a.s., i.e. the sequence n 7→ An(ω) is monotone increasing
for almost all ω,

(iii): (M2
n − An) is an (Fn)-martingale,

is called a quadratic variation of the martingale (Mn).

(4.49) Theorem

In the situation of (4.48), there exists a unique (a.s.) process that has properties (i)-(iii). This
process is called the quadratic variation process for (Mn). It is given by the formula

An =
n∑
k=1

E((Mk −Mk−1)2|Fk−1) =
n∑
k=1

E(M2
k −M2

k−1|Fk−1).
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Proof: We first show that the two expressions in the formula coincide:

E((Mk −Mk−1)2|Fk−1) = E(M2
k |Fk−1) +M2

k−1 − 2Mk−1 E(Mk|Fk−1)︸ ︷︷ ︸
=Mk−1

= E(M2
k −M2

k−1|Fk−1).

Now we show that (An) is a quadratic variation. From the first expression on the right hand
side of the formula we read off that A0 = 0, and that An is increasing and previsible. From the
second expression we conclude that

E(M2
n|Fn−1)−M2

n−1 = E(M2
n −M2

n−1|Fn−1) = An − An−1.

Using that (An) is previsible and rearranging gives

E(M2
n − An|Fn−1) = M2

n−1 − An−1,

which shows that (An) is a quadratic variation.

Finally we show uniqueness. Let (Ãn) be any process fulfilling (i)-(iii). Then for all 1 6 k 6 n,

E(M2
k − Ãk|Fk−1) = M2

k−1 − Ãk−1,

and therefore (by previsibility)

Ãk − Ãk−1 = E(M2
k −M2

k−1|Fk−1).

Summing this up from k = 1 to n, and using Ã0 = 0, we find that Ãn = An almost surely. �

(4.50) Notation

If (Mn) is a martingale with Mn ∈ L2 for all n, we often write (〈Mn〉)n∈N for its quadratic
variation.

If we give up the monotonicity requirement, we have an even more general decomposition
into a martingale and a previsible process:

(4.51) Doob Decomposition

Let (Xn) be an (Fn)-adapted process with Xn ∈ L1 for all n. Then there exists an a.s. unique
pair ((Mn), (An)) where (Mn) is a martingale with M0 = 0, (An) is a previsible process with
A0 = 0, and for all n,

Xn = X0 +Mn + An almost surely.

Here, (An) and (Mn) are given by the formulae

An =
n∑
k=1

E(Xk −Xk−1|Fk−1), Mn = Xn −X0 − An.

Proof: Imitate the proof of Theorem (4.49). Exercise. �

We will now see one reason why the quadratic variation is very useful. (another one will
come in the module Stochastic Processes where we do stochastic integrals).

(4.52) Lemma
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Let (Mn) be a martingale withMn ∈ L2 for all n andM0 = 0. Then 〈M∞〉(ω) := limn→∞〈Mn〉(ω)
exists a.s. in [0,∞], and

E(〈M∞〉) <∞ ⇔ (Mn) is an L2-martingale.

Proof: Since n 7→ 〈Mn〉(ω) is increasing a.s., the limit 〈M∞〉(ω) exists a.s. Monotone conver-
gence gives

E(〈M∞〉) = lim
n→∞

E(〈Mn〉) = sup
n∈N

E(〈Mn〉) = sup
n∈N

E(M2
n).

The last equality holds (even without the supn) because (M2
n − 〈Mn〉) is a martingale. The

claim is shown. �

The following Theorem should be compared with the Martingale convergence Theorem
(4.25). Note in particular that uniform L1-boundedness is not assumed below.

(4.53) Theorem

Let (Mn) be a martingale with M0 = 0 and Mn ∈ L2 for all n. Write An = 〈Mn〉, and
A∞ = limn→∞An ∈ [0,∞].

a) limn→∞Mn exists a.s. on the set {A∞ <∞}, i.e.

P(A∞ <∞, lim
n→∞

Mn does not exist) = 0.

b) If we assume in addition that (Mn) has a.s. uniformly bounded increments (i.e. that for
some K < ∞, we have |Mn+1 −Mn| 6 K a.s.), then the following converse of a) is also true:
A∞ <∞ a.s. on the set {limn→∞Mn exists.}. In other words, in this case

P(A∞ =∞, lim
n→∞

Mn exists) = 0.

c) A reformulation of b): In the situation of b), we can find a set Ω0 of measure zero so that
for all ω /∈ Ω0, limn→∞Mn(ω) exists if and only if A∞(ω) < ∞. Note: We make no statement
about the value of P(limn→∞Mn exists).

Proof: a) For k ∈ N, we define

S(k, ω) := inf{n ∈ N0 : An+1(ω) > k}.

For each k, the map ω 7→ S(k, ω) is a stopping time, since

{S(k, .) > n} = {∀j 6 n : Aj+1 6 k} =
n⋂
j=0

A−1
j+1((−∞, k]) ∈ Fn.

In the last statement, we used that (An) is previsible. Since S(k, .) is a stopping time, the
process (MS(k,.)∧n) is a martingale. We claim that

〈MS(k,.)∧n〉 = AS(k,.)∧n. (∗)

To see (∗), first note that since (M2
n−An) is a martingale, the optional stopping time guarantees

that (M2
S(k,.)∧n − AS(k,.)∧n) is a martingale. Since AS(k,.)∧0 = A0 = 0 and n 7→ AS(k,ω)∧n(ω) is
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increasing, it remains to show that (AS(k,.)∧n) is previsible. This is true since (An) itself is
previsible, and thus

{AS(k,.)∧n 6 C} =
n−1⋃
m=1

{S(k, .) = m,Am 6 C} ∪
(
{S(k, .) 6 n− 1}c ∩ {An 6 C}

)
∈ Fn−1.

So (∗) holds, and

E( lim
n→∞

AS(k,.)∧n) = E(AS(k,.)︸ ︷︷ ︸
6 k

1{AS(k,.)<∞} + A∞1{AS(k,.)=∞}︸ ︷︷ ︸
6 k

) 6 2k <∞.

By Lemma (4.52), we conclude that for all k, the martingale (MS(k,.)∧n) is bounded in L2 and
thus converges a.s. This means that for each k,

P
(
S(k, .) =∞, lim

n→∞
Mn does not exist

)
= P

(
S(k, .) =∞, lim

n→∞
MS(k,.)∧n does not exist

)
= 0.

Since

{A∞ <∞} = {∃k ∈ N : S(k, ω) <∞} =
∞⋃
k=1

{S(k, .) =∞},

a) now follows from

P(A∞ <∞, lim
n→∞

Mn does not exist) 6
∞∑
k=1

P(S(k, .) =∞, lim
n→∞

Mn does not exist) = 0.

For b), note first that

P(A∞ =∞, lim
n→∞

Mn exists) 6 P(A∞ =∞, sup
n∈N
|Mn| <∞) =: p.

Assume now that b) is false and thus p > 0. Then there exists c > 0 so that

(∗∗) P(A∞ =∞, T (c, .) =∞) > 0 where T (c, ω) = inf{n ∈ N : |Mn(ω)| > c}.

Since (M2
T (c,.)∧n − AT (c,.)∧n) is a martingale, we have

E(AT (c,.)∧n) = E(M2
T (c,.)∧n) 6 E((MT (c,.)∧n−1 +K)2) 6 (c+K)2.

Taking n→∞ and using monotone convergence gives E(AT (c,.)) < (c+K)2, and so

1 = P(A∞ <∞) = P(A∞ <∞, T (c, .) =∞) + P(A∞ <∞, T (c, .) <∞) =

= P(T (c, .) =∞)− P(A∞ =∞, T (c, .) =∞) + P(T (c, .) <∞) = 1− P(A∞ =∞, T (c, .) =∞).

This means that P(A∞ =∞, T (c, .) =∞) = 0, in contradiction to (∗∗). So, b) must hold.

c) now is a direct consequence. �

As a preparation for the next Theorem, we need the following classical results from real
analysis:

(4.54) Cesàros Lemma
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Let (vn) be a convergent sequence with limit v∞, and (cn) a nonnegative sequence with c1 > 0
and

∑∞
n=1 cn =∞. Then

lim
n→∞

1∑n
i=1 ci

n∑
k=1

ckvk = v∞.

In words: weighted averages of convergent sequences converge to the same limit as the original
sequence.

Proof: exercise. �

(4.55) Kroneckers Lemma

For any monotone decreasing sequence (an) with limn→∞ an = 0, and any real sequence (xn)
the following statement holds:

If lim
n→∞

n∑
k=1

akxk exists, then lim
n→∞

an

n∑
k=1

xk = 0.

Proof: Put un =
∑n

k=1 akxk. We have

n∑
k=1

xk =
n∑
k=1

1

ak
(uk − uk−1) =

un
an
−

n∑
k=1

( 1

ak
− 1

ak−1

)
uk−1.

Thus with kn := 1
an

, cn := zn − zn−1 we have zn =
∑n

k=1 ck and

an

n∑
k=1

xk = un −
1

zn

n∑
k=1

ckuk−1.

Since we assumed the convergence of (un), both terms above converge to limn→∞ un, the second
one by Cesàros Lemma. The claim follows. �

(4.56) Theorem (SLLN for martingales)

Let (Mn) be a martingale, M0 = 0, and Mn ∈ L2 for all n. Then

lim
n→∞

1

〈Mn〉(ω)
Mn(ω) = 0 for almost all ω ∈ {〈M∞〉 =∞}.

In particular, limn→∞
1

〈Mn〉(ω)
Mn(ω) exists almost surely.

Proof: We write An = 〈Mn〉 and define

Xn := (
1

1 + A
•M)n =

n∑
k=1

1

1 + Ak
(Mk −Mk−1).
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Since (An) is previsible, so is (1/(1 + An)), and thus (Xn) is a martingale. We estimate 〈Xn〉:

〈Xn〉 =
n∑
k=1

E((Xk −Xk−1)2|Fk−1) =
n∑
k=1

E
( 1

(1 + Ak)2
(Mk −Mk−1)2

∣∣∣Fk−1

)
=

=
n∑
k=1

1

(1 + Ak)2
E((Mk −Mk−1)2|Fk−1)︸ ︷︷ ︸

=Ak−Ak−1

=
n∑
k=1

Ak − Ak−1

(1 + Ak)2
6

n∑
k=1

Ak − Ak−1

(1 + Ak)(1 + Ak−1)

=
n∑
k=1

( 1

1 + Ak−1

− 1

1 + Ak

)
= 1− 1

1 + An
.

This means that 〈X∞〉 6 1 a.s., and so by Theorem (4.53 a), limn→∞Xn exists a.s.. Now for
ω with A∞(ω) = ∞, the sequence an := 1

1+An(ω)
converges to zero, and so Kroneckers Lemma

(with xn = Mn(ω)−Mn−1(ω)) implies that

lim
n→∞

1

1 + An(ω)
Mn(ω) = 0 a.s.

The first claim now follows. For the second claim, combine this with Theorem (4.53 a). �

(4.57) Remark

We know from Theorem (4.42 b) that an L2-martingale converges to its a.s. limit also in L2.
Why is this interesting? Because it tells us that (in this case) the variance of the approximations
Mn has anything to do with the variance of the limit M∞. In the next example, we see that in
cases where there is almost sure convergence but not L1-convergence, unintuitive things happen.
Recall that by the martingale convergence theorem, sup ‖Mn‖L1 < ∞ implies the existence of
limn→∞Mn almost surely.

(4.58) Example

Consider the following game: a fair coin is thrown n times. If all outcomes are ’head’, you get
2n Euro. If at least one outcome is ’tail’, you get nothing. How much would you be willing to
pay for the privilege of playing the game? Will your answer depend on n?

There are two answers to this question. Both start with the observation that when (Xn) is a
sequence of iid RVs with P(Xn = 0) = P(Xn = 2) = 1/2, then the process (Mn) with M0 = 1,
Mn =

∏n
i=1Xi is a martingale, see Example (4.9 b).

a) First answer: Since (Mn) is a martingale, with an initial ’wealth’ of M0 = 1 the game is fair.
So, independent of n, you should pay 1 Euro to play the game. This point of view is supported
by the fact that E(Mn) = 1 for all n.

b) Second answer: Your chance of winning anything at all is 2−n. Of course, if you do win, you
win an astronomical sum for large n, but this will never happen when n is 100 or more, for
example. So, you should pay a bit for playing at very small n, but definitely not play when n
is very large.
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The first answer seems more mathematically well-founded, but the second one is the one most
people will probably choose. In contrast to other situations, the intuition here is not misleading.
The reason is that (Mn) is a martingale with E(Mn) = 1, so it converges a.s.. What is the
limit? Of course, it is M∞ = 0. So, almost surely you lose in the long run. Also, this shows that
0 = E(limnMn) < limE(Mn) = 1, an example where Fatou’s Lemma is a strict inequality.

The mathematical reason for this is that the distribution of the random variables (Mn) ’hides’
almost all of its mass on a tiny subset of the original probability space Ω = {0, 2}N: Mn = 2n

on the set {(xm)m∈N : xm = 2 ∀m 6 n} which has probability 2−n. In the remainder of this
chapter, we investigate what happens if we do not allow a martingale to ’hide’ its mass. We
start with the appropriate definition. You should pay attention to the way in which a situation
like above is excluded by it.

(4.59) Definition

Let (Xn)n∈I be a family of random variables (the index set I can be uncountable). The family
is called uniformly integrable (short: UI) if

∀ε > 0 : ∃K <∞ : ∀n ∈ I : E(|Xn|1{|Xn|>K}) < ε.

(4.60) Proposition

A familiy of finitely many integrable RVs is UI.

Proof: Consider fist a single RV X. Assume that X is not uniformly integrable. Then there
exists ε > 0 so that for all y > 0, E(|X|1{|X|>y}) > ε. Consequently,

E(|X|) =

∫ ∞
0

P(|X| > y) dy >
∫ ∞

1

1

y
E(|X|1{X>y}) > ε

∫ ∞
1

1

y
dy =∞,

so X is not integrable. Thus the claim holds for a single RV. For finitely many RVs, just take
the maximum of all the constants K that you find for each RV individually. This maximum
fulfils the UI condition. �

(4.61) Proposition

A family (Xn)n∈I of RVs is UI if one of the two following statements is true.

a) There exists p > 1 so that (Xi) is bounded in Lp, i.e. such that supn∈I E(|Xn|p) <∞.

b) (Xn) is dominated by one integrable RV X, i.e. there exists X ∈ L1 so that for all n ∈ I,
Xn 6 X a.s.

Proof: a) Let ε > 0, and choose K with K1−p supn∈I E(|X|p) < ε. Then since p > 1,

E(|Xn|1{|Xn|>K}) = E(|Xn|p|Xn|1−p1{|Xn|1−p<K1−p}) 6 K1−pE(|Xn|p) < ε.
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b) We have

sup
n∈I

E(|Xn|1{|Xn|>K}) 6 E(|X|1{|X|>K})

for all K. The claim now follows from Proposition (4.60). �

(4.62) Example

We will now give an example of a UI martingale. As we will see below, it is essentially the only
example. Let X ∈ L1 be a random variable, and (Fn) a filtration. Example (4.9 c) shows that
(Mn) with Mn = E(X|Fn) is a martingale. The interpretation of Mn is that by refining the
σ-algebra from Fn to Fn+1, we discover more and more properties of X. Theorem (4.64) below
will imply that (Mn) is UI. Before we state it, we need a strengthening of Proposition (4.60).

(4.63) Lemma

Let X ∈ L1. Then for each ε > 0 we can find δ > 0 so that

sup{E(|X|1A) : A ∈ F ,P(A) < δ} < ε.

Proof: Assume the contrary, i.e. that there exists ε > 0 so that for all δ > 0, we can find a
set A ∈ F with P(A) < δ but E(|X|1A) > ε. Then we pick such a set An for each δn = 2−n,
and define Ā := lim supn→∞An. Since

∑
n P(An) <∞, the Borel-Cantelli Lemma implies that

P(Ā) = 0. This means that

0 = E(|X|1Ā) = E(|X| lim sup
n→∞

1An) = E(|X|)− E(|X| lim inf
n→∞

1Acn)
Fatou

>

> E(|X|)− lim inf
n→∞

E(|X|1Acn) = lim sup
n→∞

E(|X|1An) > ε.

This contradiction shows the claim. �

(4.64) Theorem

Let X an integrable RV on some probability space (Ω,F ,P). Let

Σ := {G ⊂ F : G is a σ-algebra }.

Then the family (E(X|G))G∈Σ is UI.

Proof: Use Jensens inequality first: |E(X|G)| 6 E
(
|X|

∣∣G). Thus

E
(∣∣E(X|G)

∣∣ 1{|E(X|G)|>K}

)
6 E

(
E
(
|X|

∣∣G)1{|E(X|G)|>K}

)
= E

(
|X|1{|E(X|G)|>K}

)
.

In the last equality we used the definition of conditional expectation and the fact that 1{|E(X|G)|>K}
is G-measurable. On the other hand, for all K > 0, Chebyshevs inequality gives

P(|E(X|G)| > K) 6
1

K
E(|E(X|G)|) 6 1

K
E(E(|X| | G)) =

1

K
E(|X|).
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Now let ε > 0 and choose δ > 0 so that the statement of Lemma (4.63) holds. Picking K >
E(|X|)/δ, we find

sup
{
E
(∣∣E(X|G)

∣∣ 1{|E(X|G)|>K}

)
: G ∈ Σ

}
6 sup

{
E
(
|X|1{|E(X|G)|>K}

)
: G ∈ Σ

}
6 sup{E(X1A) : P(A) < δ} < ε.

�

We now need two statements that compare different types of convergence. You should
compare them to Theorem (1.28).

(4.65) Lemma

Assume that a sequence (Xn) of RVs is uniformly bounded and converges to some RV X in
probability. Then X ∈ L1, and lim ‖Xn −X‖1 = 0.

Proof: Let ε > 0. We have

‖Xn −X‖1 = E(|Xn −X|) 6 E(|Xn −X|1{|Xn−X|>ε}) + ε = (∗).

By assumption, there exists K < ∞ with |Xn| < K a.s. for all n. Then for all m > 1,
P(|X| > K + 1/m) 6 P(|X −Xn| > 1/m) → 0 as n → ∞. So, P(|X| > K + 1/m) = 0 for all
m, and thus also

P(|X| > K) = P(
⋃
m∈N

{|X| > K + 1/m}) = 0.

In particular, X ∈ L1, and

(∗) 6 2KP(|Xn −X| > ε) + ε
n→∞−→ 0 + ε.

As this is true for arbitrary ε > 0, the claim holds. �

(4.66) Theorem

Let (Xn) be a sequence of integrable RVs, and let X be a RV. Then the following statements
are equivalent:

(i): X ∈ L1 and limn→∞ ‖Xn −X‖1 = 0.

(ii): Xn → X in probability, and (Xn) is UI.

Proof: (ii) ⇒ (i): For K > 0, define the K-cutoff RV X
(K)
n = max{min{Xn, K},−K}. The

triangle inequality gives

E(|Xn −Xm|) 6 E(|Xn −X(K)
n |) + E(|X(K)

n −X(K)
m |) + E(|Xn −X(K)

m |) (∗)

for all n,m. For each K, (X
(K)
n ) converges in probability since (Xn) does, and is bounded. So

the middle term in (∗) is an L1-Cauchy sequence by (4.64). Since (Xn) is UI, for each ε > 0
there exists some K <∞ so that

sup{n ∈ N : E(|X(K)
n −Xn|) = sup{n ∈ N : E(|Xn|1{|Xn|>K})} < ε.
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Inserting these two facts into (∗), we find that for each ε > 0 we can find N > 0 so that for
all n > N , E(|Xn − Xm|) < 3ε. So, (Xn) is a L1-Cauchy sequence and thus converges. Since
convergence in L1 implies convergence in probability (to the same function), the limit must be
X.

(i)⇒ (ii) : By (1.28 d), we only need to show that (Xn) is UI. For this, let K <∞. Then for
all n ∈ N,

E(|Xn|1{|Xn|>K}) 6 E((|Xn −X|+ |X|)1{|Xn|>K}) = E(|Xn −X|1{|Xn|>K}) + E(|X|1{|Xn|>K}).
Now let ε > 0 and choose N ∈ N with E(|Xn −X|) < ε for n > N . Then

sup{E(|Xn|1{|Xn|>K}) : m ∈ N} 6 sup{E(|Xn −X|1{|Xn|>K}) : n 6 N}+
+ sup{E(|Xn −X|) : n > N}+ sup{E(|X|1{|Xn|>K}) : n ∈ N}

6 sup{E(|Xn|1{|Xn|>K}) : n 6 N}+ ε+ 2 sup{E(|X|1{|Xn|>K}) : n ∈ N}. (∗)

The first term of (∗) can be made less than ε by choosing K large enough, since finitely many
integrable RVs are UI. For the third term, note that E(|Xn|) 6 E(|Xn−X|)+E(|X|)→ E(|X|),
and so we have supn E(|X|) <∞. By Chebyshev, for each δ > 0 we can choose K so large that

sup{P(|Xn| > K) : n ∈ N} 6 sup{ 1

K
E(|Xn|) : n ∈ N} < δ.

Now fix ε > 0 and for each n let δn and Kn be so small that the statement of Lemma (4.63)
holds for |X|. Then the third term in (∗) is also 6 ε, and we have shown that (Xn) is UI. �

We can now apply this to martingales:

(4.67) Theorem

Let (Mn) be a submartingale with its natural filtration, i.e. with Fn = σ(Mk : k 6 n). If (Mn)
is UI, then M∞ = limn→∞Mn exists a.s. and in L1, and

∀n : Mn 6 E(M∞|Fn).

If (Mn) is a martingale, then even

∀n : Mn = E(M∞|Fn).

Proof: Since (Mn) is UI, we have supn E(|Mn|) < ∞, and so M∞ = limn→∞Mn exists a.s. by
the Martingale Convergence Theorem. Thus Mn → M∞ in probability, and so M∞ ∈ L1 and
Mn →M∞ in L1 by Theorem (4.66). For k > n, we compute

E(M∞|Fn) = E(Mk|Fn) + E(M∞ −Mk|Fn) >Mn + E(M∞ −Mk|Fn).

Since

lim
n→∞

E
(∣∣E(M∞ −Mk|Fn)

∣∣) 6 lim
n→∞

E
(
E
(
|M∞ −Mk|

∣∣Fn)) = E(|M∞ −Mk|)
k→∞−→ 0,

we have E(M∞ −Mk|Fn)
k→∞−→ 0 a.s. Since E(Mk|Fn) >Mn by the submartingale property, we

have E(M∞|Fn)−Mn 6 E(M∞ −Mk|Fn), and the claim follows by taking k →∞. If (Mn) is
a martingale, replace > by = at the appropriate places. �
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The following theorem is the announced statement that all UI Martingales have the form
of Example (4.62). In words, it says that every UI martingale is the ’discovery process’ by finer
and finer σ-algebras of a single ’limiting’ RV X.

(4.68) Theorem

a) Let (Mn) be a UI-martingale. Then there exists a filtration (Fn) and a RV X such that

Mn = E(X|Fn) a.s. and lim
n→∞

Mn = X in L1 and a.s..

b) Let X be a RV and (Fn) a filtration. Define F∞ := limn→∞Fn := σ(Fn : n ∈ N), and
Mn := E(X|Fn). Then (Mn) is an UI-martingale, and

lim
n→∞

Mn = E(X|F∞) in L1 and a.s.

Proof: a) Choose X = M∞ = limn→∞Mn (a.s. limit), and Fn = σ(mk : k 6 n). The statement
then is just a reformulation of Theorem (4.67).

b) (Mn) is a martingale (example (4.9 c)), and it is UI by Theorem (4.64). By Theorem (4.67)
then there exists a RV M∞ such that Mn → M∞ a.s. and in L1. It remains to show that
M∞ = E(X|F∞).

We first treat the case where X > 0. Then Y := E(X|F∞) > 0, and M∞ > 0 a.s. Consider the
finite measures µ1, µ2 on (Ω,F∞) with

∀A ∈ F∞ : µ1(A) = E(M∞1A), µ2(A) = E(Y 1A).

We claim that for each m ∈ N and each A ∈ Fm, µ1(A) = µ2(A) = E(X1A). To see this, note
that for n > m we have

E(X1A) = E(E(X1A|Fn)) = E(1AE(X|Fn)) = E(1AMn)
n→∞−→ E(1AM∞) = µ1(A),

and

E(X1A) = E(E(X1A|F∞)) = E(1AE(X|F∞)) = µ2(A).

This means that µ1(A) = µ2(A) for all A from the π-system
⋃∞
n=1Fn. The system

L := σ
(
{A ∈

∞⋃
n=1

Fn : µ1(A) = µ2(A)}
)

is a σ-algebra, hence a λ-system. Since obviously
⋃∞
n=1Fn ⊂ L, by the π-λ-Theorem (1.20) we

have F∞ = σ(
⋃∞
n=1Fn) ⊂ L. So, indeed µ1(A) = µ2(A) for all A ∈ F∞. (This is, once more, the

proof of the very useful statement: if two measures agree on a ∩-stable generator of a σ-algebra,
they agree on the σ-algebra.)

Now by choosing A = 1{M∞>Y } ∈ F∞, we find that E((M∞−Y )1{M∞>Y }) = µ1(A)−µ2(A) = 0,
so M∞ 6 Y a.s. Conversely, choosing A = 1{M∞<Y } gives M∞ < Y a.s. The claim follows. �

The final topic of this section is a sort of converse to the last theorem. Instead of increasing
the information about some RV X, we now decrease it. The resulting RVs then contain less
and less information.

(4.69) Backwards Martingale Convergence Theorem
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Let X ∈ L1, and let (G−n)n∈N be a filtration, meaning that G−n ⊂ G−m when n > m. Put

M−n := E(X|G−n), G−∞ :=
⋂
n∈N

G−n.

Then for each N ∈ N, the process (Mk)−N 6 k 6 1 is a martingale, M−∞ := limn→∞M−n exists
a.s. and in L1, and M−∞ = E(X|G−∞).

Proof: (Mk)−N 6 k 6 1 is a martingale by the tower property. The number of upcrossings UN(M)
of the martingale (Mk)−N 6 k 6 1 must be a.s. bounded by the same argument as the one gi-
ven in Lemma (4.29). Therefore, again by the same argument as for martingale convergence,
limN→∞M−N exists a.s. Since (M−k)k∈N is UI, the convergence also holds in L1. Now in the
same way as in (4.68) we show that M−∞ = E(X|G−∞). The details are left as an exercise. �

Finally, we re-prove the Strong Law of Large Numbers using martingale techniques. We are
restricted to iid RVs, but as a bonus, we even get convergence in L1.

(4.70) SLLN with Martingale Proof

Let (Xn) be iid integrable RVs and set µ := E(X1). Then

1

n
Sn :=

1

n

n∑
i=1

Xk
n→∞−→ µ a.s. and in L1.

Proof: Let G−n = σ(Sm : m > n), and G−∞ =
⋂
n∈N Gn. In Example (3.30), you were asked to

show that

E(X1|G−n) =
1

n
Sn.

Theorem (4.69) now implies that

lim
n→∞

1

n
Sn = lim

n→∞
E(X1|G−n) exists a.s. and in L1.

To see that the limit is a.s. constant, let

L(ω) := lim sup
n→∞

1

n
Sn(ω) = lim sup

n→∞

1

n
(Xk+1 + . . .+Xn),

where the last equality holds for each fixed k ∈ N. This shows that L is T -measurable, with T
the terminal σ-algebra, i.e. T =

⋂
k∈N Tk, and Tk = σ(Xk, Xk+1, . . .). BY Kolmogorovs 0-1-law,

P(L > c) ∈ {0, 1} for all c ∈ R, which means that L is a.s. constant. Then L = E(L) =
limn→∞

1
n
E(Sn) = µ. �


