Uniqueness of solutions on the whole time axis to the Navier-Stokes equations in unbounded domains

Reinhard Farwig∗, Tomoyuki Nakatsuka† and Yasushi Taniuchi‡

Abstract
We consider the uniqueness of bounded continuous L^3_w-solutions on the whole time axis to the Navier-Stokes equations in 3-dimensional unbounded domains. Thus far, uniqueness of such solutions to the Navier-Stokes equations in unbounded domain, roughly speaking, is known only for a small solution in $BC(\mathbb{R}; L^3_w)$ within the class of solutions which have sufficiently small $L^\infty(L^3_w)$-norm. In this paper, we discuss another type of uniqueness theorem for solutions in $BC(\mathbb{R}; L^3_w)$ using a smallness condition for one solution and a precompact range condition for the other one. The proof is based on the method of dual equations.

AMS Subject Classification (2010): 35Q30; 35A02; 76D05
Key words: Navier-Stokes equations; mild solutions; uniqueness; almost periodic solutions; precompact range condition; unbounded domains

1 Introduction
The motion of a viscous incompressible fluid in 3-dimensional domains Ω is governed by the Navier-Stokes equations:

\[
\begin{aligned}
\partial_t u - \Delta u + u \cdot \nabla u + \nabla p &= f, & t &\in \mathbb{R}, & x &\in \Omega, \\
\text{div} u &= 0, & t &\in \mathbb{R}, & x &\in \Omega, \\
u|_{\partial \Omega} &= 0, & t &\in \mathbb{R},
\end{aligned}
\]

where $u = (u^1(x,t), u^2(x,t), u^3(x,t))$ and $p = p(x,t)$ denote the velocity vector and the pressure, respectively, of the fluid at the point $(x,t) \in \Omega \times \mathbb{R}$. Here f is a given external...
force. In this paper we consider the uniqueness of mild solutions to (N-S) in unbounded domains \(\Omega \) which are bounded on the whole time axis. Typical examples of such solutions are periodic-in-time and almost periodic-in-time solutions.

In case where \(\Omega \subset \mathbb{R}^3 \) is bounded, the existence and uniqueness of time-periodic solutions were considered by several authors; see e.g. [8] and references therein. Maremonti [30, 31] was the first to prove the existence of unique time-periodic regular solutions to (N-S) in unbounded domains, namely for \(\Omega = \mathbb{R}^3 \) and \(\Omega = \mathbb{R}^3_+ \). In the case of more general unbounded domains, the existence of time-periodic solutions was proven by Kozono-Nakao [23], Maremonti-Padula [32], Salvi [38], Yamazaki [45], Galdi-Sohr [16], Kubo [27], Crispo-Maremonti [6] and Kang-Miura-Tsai [21]. In particular, Yamazaki [45] proved the existence of time-periodic mild solutions in \(L^{3,\infty}(\Omega) \) in the case where \(\Omega \) is a 3D exterior domain with \(\partial \Omega \in C^\infty \). Here \(L^{p,q} \) denotes the Lorentz space and \(L^{p;\infty} \) is equivalent to the weak-\(L^p \) space (\(L_w^p \)). Without time-periodic condition on \(f \), the existence of mild solutions bounded on the whole time axis was also shown in [23], [45] and [21]. Furthermore, Kang-Miura-Tsai [21] showed the existence of mild solutions \(u \) with the spatial decay

\[
\sup_{t} \sup_{|x| > r} |x|^{\alpha} |u(x,t) - U(x)| < \infty
\]

for some \(\alpha > 1 \), \(r > 0 \) and some function \(U(x) \) with \(\sup_{|x| > r} |x||U(x)| < \infty \), if \(\Omega \subset \mathbb{R}^3 \) is an exterior domain and if \(f \) satisfies adequate conditions. They also dealt with the inhomogeneous boundary value problem. Concerning the uniqueness of solutions bounded on the whole time-axis, roughly speaking, it was shown in [30, 31, 23, 32, 45, 27, 6] that a small solution in some function spaces (e.g. \(BC(\mathbb{R}; L^{3,\infty}(\Omega)) \)) is unique within the class of solutions which are sufficiently small; i.e., if \(u \) and \(v \) are solutions for the same force \(f \) and if both of them are small, then \(u = v \). In [16], it was shown that a small time-periodic solution is unique within the larger class of all periodic weak solutions \(v \) with \(\nabla v \in L^2(0,T; L^2) \), satisfying the energy inequality \(\int_0^T \|\nabla v\|_{L^2}^2 \, d\tau \leq - \int_0^T (F, \nabla v) \, d\tau \) and mild integrability conditions on the corresponding pressure; here \(T \) is a period of \(F \) and \(f = \nabla \cdot F \).

Another type of uniqueness theorem for time-periodic \(L^{3,\infty} \)-solution was proven by the third author [43] without assuming the energy inequality. In the case of an exterior domain \(\Omega \subset \mathbb{R}^3 \), the whole space \(\mathbb{R}^3 \), the halfspace \(\mathbb{R}^3_+ \), a perturbed halfspace, or an aperture domain, it was shown in [43] that if \(u \) and \(v \) are time-periodic solutions in

\[
BC(\mathbb{R}; L^{3,\infty}) \cap L^2_{uloc}(\mathbb{R}; L^{6,2})
\]

for the same force \(f \), and if one of them is small in \(L^{3,\infty} \), then \(u = v \). The same uniqueness
theorem was proven in [12] and [13] for almost periodic-in-time solutions and backward asymptotically almost periodic-in-time solutions, respectively. The second author [36, 37] also proved similar uniqueness theorems for stationary solutions. In [37], he proved that if \(u \) and \(v \) are stationary solutions in \(L^{3,\infty} \) with \(\nabla u, \nabla v \in L^{3/2,\infty} \) for the same force \(f \), and if \(u \) is small in \(L^{3,\infty} \) and \(v \in L^3 + L^\infty \), then \(u = v \).

Note that stationary as well as continuous time-periodic and almost periodic-in-time \(L^{3,\infty} \)-solutions \(u \) have a precompact range \(\mathcal{R}(u) = \{ u(t); t \in \mathbb{R} \} \) in \(L^{3,\infty} \), see [5, Theorem 6.5]. Furthermore, there exist many functions which have a precompact range and are not almost periodic, e.g. \(a \sin(t^2) \) for \(a \neq 0 \). Hence, the set of all functions having precompact range is much larger than the set of all almost periodic functions. In the present paper, we establish new uniqueness theorems for bounded continuous solutions having precompact range on the whole time axis, which improve our previous results in [43, 12, 13, 36, 37]. We also consider the uniqueness of solutions with (1.1) and solutions in weighted \(L^\infty \) spaces.

Our proof is based on an idea given by Lions-Masmoudi [29]. They proved the uniqueness of \(L^n \)-solutions to the initial-boundary value problem of (N-S) by using the backward initial-boundary value problem of dual equations. Of course, in the initial-boundary value problem of (N-S), the initial condition \(u(0) = v(0) \) plays an important role in proving \(w(t) := u(t) - v(t) = 0 \) for \(t > 0 \). In our problem, however, we cannot assume \(u(0) = v(0) \), and hence, it is difficult to prove \(w \equiv 0 \) directly. A key point of our proof is to show

\[
\lim_{j \to \infty} \int_{-j}^{j} \| w(t) \|^2_{L^2(B)} dt = 0
\]

for any ball \(B \), by using the method of dual equations. Then, applying some uniqueness theorems on mild solutions, we can conclude \(w \equiv 0 \), under some hypotheses.

Throughout this paper we impose the following assumption on the domain.

Assumption 1 \(\Omega \subset \mathbb{R}^3 \) is an exterior domain, the half-space \(\mathbb{R}^3_+ \), the whole space \(\mathbb{R}^3 \), a perturbed half-space, or an aperture domain with \(\partial \Omega \in C^\infty \).

For the definitions of perturbed half-spaces and aperture domains, see Kubo-Shibata [28] and Farwig-Sohr [9, 10]. Let \(BC(I; X) \) denote the set of all bounded continuous functions on an interval \(I \) with values in a Banach space \(X \). The open ball in \(X \) with center 0 and radius \(R > 0 \) will be denoted by \(B_R(0) = B_R \).

Now our main results on uniqueness of mild \(L^{3,\infty} \)-solutions, to be defined in the next section, read as follows:
Theorem 1. Let \(\Omega \) satisfy Assumption 1. There exists a constant \(\delta(\Omega) > 0 \) such that if \(T \leq \infty \), \(u \) and \(v \) are mild \(L^{3,\infty} \)-solutions to (N-S) on \((-\infty, T) \) for the same force \(f \),

\[
(1.3) \quad u, v \in BC((-\infty, T); \tilde{L}^{3,\infty}_\sigma),
\]

\[
(1.4) \quad \text{the range } \mathcal{R}(v) := \{ v(t); t \in (-\infty, T) \} \text{ is precompact in } L^{3,\infty}
\]

and if

\[
(1.5) \quad \limsup_{t \rightarrow -\infty} \| u(t) \|_{L^{3,\infty}} < \delta,
\]

then \(u \equiv v \) on \((-\infty, T) \). Here \(\tilde{L}^{3,\infty}_\sigma = \overline{L^{3,\infty}_\sigma \cap L^{3,\infty}} \).

Remark 1. (i) Since \(L^{\infty} \cap L^3_\sigma \) is dense in \(L^3_\sigma \) and \(L^3_\sigma \) is continuously embedded in \(L^{3,\infty}_\sigma \), we see that \(\tilde{L}^{3,\infty}_\sigma \) coincides with \(L^{3,\infty}_\sigma \cap (L^\infty + L^3_\sigma) \). Moreover, \(\tilde{L}^{3,\infty}_\sigma \) also coincides with \(\overline{L^{3,\infty}_\sigma \cap L^p} \) for any \(p > 3 \).

(ii) Yamazaki [45] proved the existence of bounded continuous mild \(L^{3,\infty} \)-solutions \(u \) on the whole time axis, if \(f \) can be written in the form \(f = \nabla \cdot F \), \(F \in BUC(\mathbb{R}; L^{3/2,\infty}) \) and \(F \) is sufficiently small. We note that, in addition to this smallness condition on \(F \), if we assume \(f \in BC(\mathbb{R}; L^{3,\infty}) \), then standard arguments easily prove that Yamazaki’s small solution \(u \) belongs to \(L^{\infty}(\mathbb{R}; L^9) \cap BC(\mathbb{R}; L^{3,\infty}_\sigma) \); see [12, Remark 2]. Then, \(u \) belongs to \(BC(\mathbb{R}; \tilde{L}^{3,\infty}_\sigma) \), since \(L^{3,\infty}_\sigma \cap L^9 \) is dense in \(\tilde{L}^{3,\infty}_\sigma \). Moreover, Yamazaki showed that if \(F \) is almost periodic in \(L^{3/2,\infty} \), then \(u \) is almost periodic in \(L^{3,\infty} \). Since an almost periodic function in \(L^{3,\infty}_\sigma \) has a precompact range in \(L^{3,\infty}_\sigma \), Theorem 1 is applicable to his solution. For the definition and properties of almost periodic functions in a Banach space, see [5].

(iii) In [12], the first and third authors proved a similar uniqueness theorem for almost periodic mild \(L^{3,\infty} \)-solutions. Since it was assumed that both of \(u \) and \(v \) are almost periodic and belong to (1.2) and since the class (1.3) is strictly larger than (1.2), Theorem 1 improves the result given in [12].

(iv) Condition (1.3) will be used only in the proofs of Lemmata 2.5 and 2.7. As will be mentioned in the proofs of these lemmata, (1.3) can be replaced by the condition

\[
(1.5) \quad u, v \in S_I := \{ g = g_1 + g_2 \in BC(I; L^{3,\infty}_\sigma); g_2 \in C(I; L^{3,\infty}_\sigma \cap L^{\infty}); \sup_{t \in I} \| g_1(t) \|_{L^{3,\infty}} \leq \kappa \}
\]

where \(I = (-\infty, T) \) and \(\kappa \) is a small constant depending only on \(\Omega \). Hence, we can prove Theorem 1 without assuming condition (1.3), provided that \(v \in S_I \) and \(\sup_{t < T} \| u \|_{L^{3,\infty}} < \min(\delta, \kappa) \), instead of (1.5). From this observation, we notice that our uniqueness result improves that in [37].
Theorem 2. Let Ω satisfy Assumption 1. There exists a constant $\delta(\Omega) > 0$ with the following property: Let $R > 0$, $p > 3$, $T \leq \infty$, u and v be mild $L^{3,\infty}$-solutions to (N-S) on $(-\infty, T)$ for the same force f,

$$u, v \in BC((-\infty, T); \tilde{L}^{3,\infty}_\sigma(\Omega \cap L^p(\Omega \cap B_R))),$$

and let

$$\limsup_{t \to -\infty} \|u(t)\|_{L^{3,\infty}} < \delta.$$

Assume that either

(i) The range

$$\{v(t)|_{\Omega \setminus B_R} : t \in (-\infty, T)\}$$

is precompact in $L^{3,\infty}(\Omega \setminus B_R)$,

or

(ii) there exists a function $V(x) \in L^{3,\infty}(\Omega \setminus B_R)$ such that

$$\limsup_{t \to -\infty} \|v(t) - V\|_{L^{3,\infty}(\Omega \setminus B_R)} < \delta.$$

Then $u \equiv v$ on $(-\infty, T)$.

The following corollaries are direct consequences of Theorem 2.

Corollary 1. Let $\Omega = \mathbb{R}^3$, $T \leq \infty$ and $\alpha > 1$. If u, v are mild $L^{3,\infty}$-solutions to (N-S) on $(-\infty, T)$ for the same force f,

$$u, v \in BC((-\infty, T); X_\alpha), \quad \limsup_{t \to -\infty} \|u(t)\|_{L^{3,\infty}} < \delta,$$

then $u \equiv v$ on $(-\infty, T)$. Here $X_\alpha := \{f \in L^\infty : \|(1 + |x|)^\alpha f(x)\|_{L^\infty} < \infty\}$.

It is straightforward to see that if $v \in BC((-\infty, T); X_\alpha)$ for some $\alpha > 1$, then v belongs to $BC((-\infty, T); L^{3,\infty} \cap L^\infty)$ and satisfies (1.7) with $V \equiv 0$ for large $R > 0$.

Corollary 2. Let $\Omega \subset \mathbb{R}^3$ be an exterior domain with $\partial \Omega \in C^\infty$, $T \leq \infty$, $\alpha > 1$ and $p > 3$. If u, v are mild $L^{3,\infty}$-solutions to (N-S) on $(-\infty, T)$ for the same force f,

$$u, v \in BC((-\infty, T); \tilde{L}^{3,\infty}_\sigma(\Omega \cap L^p(\Omega))), \quad \limsup_{t \to -\infty} \|u(t)\|_{L^{3,\infty}} < \delta,$$

and if there exist $r > 0$, $s \in (-\infty, T)$ and $V \in L^{3,\infty}(\Omega \setminus B_r)$ such that

$$\sup_{t < s} \sup_{|x| > r} |x|^\alpha |v(x, t) - V(x)| < \infty,$$

then $u \equiv v$ on $(-\infty, T)$. 5
For the proof note that \(L^3_{\alpha} \cap L^p \subset \tilde{L}^3_{\infty} \). Moreover, we see easily that if \(v \) satisfies (1.8) for some \(\alpha > 1 \), then (1.7) holds for sufficiently large \(R > r \).

Remark 2. The existence of small mild solutions with property (1.8) was proven by Kang-Miura-Tsai [21] if \(\Omega \) is a 3D exterior domain with \(\partial \Omega \in C^\infty \) and under adequate conditions on \(f \). Moreover, if \(\Omega = \mathbb{R}^3 \), the existence of small mild solutions in \(BC(\mathbb{R}; X_\alpha) \) was also proven in [21] for \(1 \leq \alpha < 2 \).

2 Preliminaries

In this section, we introduce some notation, function spaces and key lemmata. Let \(C^\infty_{0, \sigma}(\Omega) = C^\infty_{0, \sigma} \) denote the set of all \(C^\infty \)-real vector fields \(\phi = (\phi^1, \cdots, \phi^n) \) with compact support in \(\Omega \) such that \(\text{div} \phi = 0 \). Then \(L^r_{\sigma}, 1 < r < \infty \), is the closure of \(C^\infty_{0, \sigma} \) with respect to the \(L^r \)-norm \(\| \cdot \|_r \). Concerning Sobolev spaces we use the notations \(W^{k,p}(\Omega) \) and \(W^{0,k,p}(\Omega), k \in \mathbb{N}, 1 \leq p \leq \infty \). Note that very often we will simply write \(L^r \) and \(W^{k,p} \) instead of \(L^r(\Omega) \) and \(W^{k,p}(\Omega) \), respectively. Let \(L^{p,q}(\Omega), 1 \leq p, q \leq \infty \), denote the Lorentz spaces and \(\| \cdot \|_{p,q} \) the norm (not quasi-norm) of \(L^{p,q}(\Omega) \); for the definition and properties of \(L^{p,q}(\Omega) \), see e.g. [1]. The symbol \((\cdot, \cdot)\) denotes the \(L^2 \)-inner product and the duality pairing between \(L^{p,q} \) and \(L^{p',q'} \), where \(1/p + 1/p' = 1 \) and \(1/q + 1/q' = 1 \). We note that \(L^{p,\infty} \) is norm equivalent to the weak-\(L^p \) space \((L^p_0) \) and \(L^{p,p} \) is norm equivalent to \(L^p \). Moreover, when \(1 < p < \infty \) and \(1 \leq q < \infty \), then the dual space of \(L^{p,q} \) is isometrically isomorphic to \(L^{p',q'} \).

In this paper, we denote by \(C \) various constants. In particular, \(C = C(\ast, \cdots, \ast) \) denotes a constant depending only on the quantities appearing in the parentheses.

Let us recall the Helmholtz decomposition: \(L^r(\Omega) = L^r_\sigma \oplus G_r \) \((1 < r < \infty) \), where \(G_r = \{ \nabla p \in L^r; p \in L^r_{loc}(\Omega) \} \), see Fujiwara-Morimoto [14], Miyakawa [34], Simader-Sohr [41], Borchers-Miyakawa [2], and Farwig-Sohr [9, 11]; \(P_r \) denotes the projection operator from \(L^r \) onto \(L^r_\sigma \) along \(G_r \). The Stokes operator \(A_r \) on \(L^r_\sigma \) is defined by \(A_r = -P_r \Delta \) with domain \(D(A_r) = W^{2,r} \cap W^{1,r}_0 \cap L^r_\sigma \). It is known that \((L^r_\sigma)^* \) (the dual space of \(L^r_\sigma \)) = \(L^{r'}_\sigma \) and \(A^*_r \) (the adjoint operator of \(A_r \)) = \(A_{r'} \), where \(1/r + 1/r' = 1 \). It is shown by Giga [17], Giga-Sohr [18], Borchers-Miyakawa [2] and Farwig-Sohr [9, 11] that \(-A_r\) generates a uniformly bounded holomorphic semigroup \(\{ e^{-tA_r}; t \geq 0 \} \) of class \(C_0 \) in \(L^r_\sigma \). Since \(P_r u = P_q u \) for all \(u \in L^r \cap L^q \) \((1 < r, q < \infty) \) and since \(A_r u = A_q u \) for all \(u \in D(A_r) \cap D(A_q) \), for simplicity, we shall abbreviate \(P_r u, P_q u \) as \(Pu \) for \(u \in L^r \cap L^q \) and \(A_r u, A_q u \) as \(Au \) for
where $1 < p_0 < p < p_1 < \infty$, $\theta \in (0, 1)$, $q \in [1, \infty]$ satisfy $1/p = (1 - \theta)/p_0 + \theta/p_1$.

Now, we define mild $L^{3,\infty}$-solutions to (N-S), following [24].

Definition 1 ([24]). Let $T \leq \infty$ and $f \in L^1_{loc}(-\infty, T; D(A_p)^* + D(A_q)^*)$ for some $1 < p, q < \infty$. A function $v \in C((-\infty, T); L^{3,\infty}_\sigma)$ is called a mild $L^{3,\infty}$-solution to (N-S) on $(-\infty, T)$ if v satisfies

\begin{equation}
(v(t), \phi) = (e^{-(t-s)A}v(s), \phi) + \int_s^t \left((v(\tau) \cdot \nabla e^{-(t-\tau)A} \phi, v(\tau)) + \langle f(\tau), e^{-(t-\tau)A} \phi \rangle \right) d\tau
\end{equation}

for all $\phi \in L^{3/2,1}_\sigma$ and all $-\infty < s < t < T$.

For a moment let us consider the case where $\int_s^t < f(\tau), e^{-(t-\tau)A} \phi > d\tau$ converges as $s \to -\infty$ for all $\phi \in L^{3/2,1}_\sigma$. E.g., this holds true by (2.7) below when $f = \nabla \cdot F$ with $F = (F_{ij})_{i,j=1,2,3} \in L^\infty(-\infty, T; L^{3/2,\infty}_\sigma)$. Since moreover $\lim_{s \to -\infty} e^{-(t-s)A} \phi = 0$ in $L^{3/2,1}_\sigma$, we conclude from Lemma 2.3 below that in this case (2.1) for $v \in L^\infty(-\infty, T; L^{3,\infty}_\sigma)$ is equivalent to

\begin{equation}
(v(t), \phi) = \int_{-\infty}^t \left((v \cdot \nabla e^{-(t-\tau)A} \phi, v(\tau)) + \langle f(\tau), e^{-(t-\tau)A} \phi \rangle \right) d\tau
\end{equation}

for all $\phi \in L^{3/2,1}_\sigma$ and all $t < T$. We also note that (2.2) is a weak form of

\begin{equation}
v(t) = \int_{-\infty}^t e^{-(t-\tau)A} P(-v \cdot \nabla v + f)(\tau) d\tau.
\end{equation}

In order to prove our main results, we recall properties of the Lorentz spaces, estimates of the Stokes semigroup and several uniqueness theorems for mild solutions.

Lemma 2.1 (Kozono-Yamazaki [25]). Let $p_1, p_2 \in (1, \infty)$ with $1/r := 1/p_1 + 1/p_2 < 1$ and let $q \in [1, \infty]$. Then, for all $f \in L^{p_1,\infty}(\Omega)$ and $g \in L^{p_2,q}(\Omega)$, it holds that

\begin{equation}
\|f \cdot g\|_{r,q} \leq C\|f\|_{p_1,\infty}\|g\|_{p_2,q},
\end{equation}

where $C = C(p_1, p_2, q)$.

For $u \in W^{1,2}_0(\Omega) = \overline{C^0_0(\Omega)}^{\| \cdot \|_2}$ it holds with an absolute constant $C > 0$ that

\begin{equation}
\|u\|_{0,2} \leq C\|\nabla u\|_2.
\end{equation}
Moreover, we mention the convolution estimate $\|\rho * f\|_{p,q} \leq \|\rho\|_1 \|f\|_{p,q}$, $1 < p < \infty$, $1 \leq q \leq \infty$, for functions $\rho \in L^1$ and $f \in L^{p,q}$ using the norm properties of $\|\cdot\|_{p,q}$ including its translation invariance.

Lemma 2.2 (Shibata [39, 40]). For all $t > 0$ and $\phi \in L^q_{s}$, the following inequalities are satisfied:

$$
(2.5) \quad \|e^{-tA}\phi\|_{p,r} \leq Ct^{-3/2(1/q-1/p)}\|\phi\|_{q,s}, \quad \text{when } \begin{cases} 1 < q \leq p < \infty, & r = s \in [1, \infty], \\ 1 < q < p < \infty, & r = 1, s = \infty, \end{cases}
$$

$$
(2.6) \quad \|\nabla e^{-tA}\phi\|_{p,r} \leq Ct^{-1/2-3/2(1/q-1/p)}\|\phi\|_{q,s}, \quad \text{when } \begin{cases} 1 < q \leq p \leq 3, & r = s \in [1, \infty], \\ 1 < q < p \leq 3, & r = 1, s = \infty. \end{cases}
$$

In the case where Ω is an exterior domain, Shibata [39, 40] proved (2.5) and (2.6) for all $r = s$. If $q < p$, his estimates (2.5)-(2.6) with $r = s$ and real interpolation yield (2.5)-(2.6) even for $r = 1$, $s = \infty$. In the restricted case $r = 1$, Yamazaki [45] obtained (2.6) also by a method different from [39, 40]. In the case where Ω is \mathbb{R}^3, a perturbed halfspace or an aperture domain, the usual L^q-L^p estimates for the Stokes semigroup and real interpolation directly yield (2.5)-(2.6), since in this case the L^q-L^p estimates hold for all $1 < q \leq p < \infty$. For details of L^q-L^p estimates for the Stokes semigroup, see [44, 18, 20, 2, 3, 22, 39, 19, 28, 26].

Lemma 2.3 (Meyer [33], Yamazaki [45]). The following estimates

$$
(2.7) \quad \int_s^t \|\nabla e^{-(t-\tau)A}\phi\| d\tau \leq C(\text{ess sup}_{s<\tau<t} \|F\|_{3/2,\infty})\|\phi\|_{3/2,1},
$$

$$
(2.8) \quad \int_s^t \|u \cdot \nabla e^{-(t-\tau)A}\phi, w(\tau)\| d\tau \leq C(\text{ess sup}_{s<\tau<t} \|u\|_{3,\infty})(\text{ess sup}_{s<\tau<t} \|w\|_{3,\infty})\|\phi\|_{3/2,1}
$$

hold for all $F \in L^\infty(s, t; L^3/2,\infty)$, $u, w \in L^\infty(s, t; L^3,\infty)$, $\phi \in L^{3/2,1}_{s}(\Omega)$ and all $-\infty \leq s < t$, where the constant C depends only on Ω.

In the case where Ω is an exterior domain, the whole space or halfspace, Yamazaki [45] proved Lemma 2.3 by real interpolation. His proof is also valid in the case where Ω is a perturbed halfspace or an aperture domain. In the case where $\Omega = \mathbb{R}^3$ Meyer [33] obtained Lemma 2.3 by a method different from [45].

The following lemma is direct consequence of Lemma 2.3 using the duality $L^{3,\infty}_{s} = (L^{3/2,1}_{s})^*$.

8
Lemma 2.4 ([45]). There exists a constant \(\epsilon_0 = \epsilon_0(\Omega) \) with the following property: Let \(T \leq \infty \), \(u, v, w \in BC((-\infty, T); L^{3,\infty}_\sigma) \) and let \(w \) satisfy

\[
(w(t), \phi) = \int_{-\infty}^{t} \left((w \cdot \nabla e^{-(t-\tau)A} \phi, u)(\tau) + (v \cdot \nabla e^{-(t-\tau)A} \phi, w)(\tau) \right) d\tau
\]

for all \(\phi \in L^{3/2,1}_\sigma \) and all \(-\infty < t < T \). Assume that

\[
\sup_{-\infty < t < T} \|u\|_{3,\infty} + \sup_{-\infty < t < T} \|v\|_{3,\infty} < \epsilon_0.
\]

Then, \(w(t) = 0 \) for all \(t \in (-\infty, T) \).

Lemma 2.5. Let \(T \leq \infty \). If \(u, v \) are mild \(L^{3,\infty} \)-solutions to (N-S) on \((0, T)\) for the same force \(f \), \(u(0) = v(0) \) and

\[
u, v \in BC([0, T); \tilde{L}^{3,\infty}_\sigma),
\]

then

\[
u = v \text{ on } [0, T).
\]

Lemma 2.5 was essentially proven by Meyer [33], Yamazaki [45] and Lions-Masmoudi [29]. See also Furioli, Lemarié-Rieusset and Terraneo [15], Cannone-Planchon [4], Monniaux [35]. We note that Lemma 2.5 can be proven by using Lemma 2.3, cf. [13, Lemma 2.5]. For readers’ convenience, we give a sketch of the proof of Lemma 2.5. Since \(u, v \in BUC([0, T]; \tilde{L}^{3,\infty}_\sigma) \) for each fixed \(T' \in (0, T) \) and since \(L^{\infty} \cap L^{3,\infty}_\sigma \) is dense in \(\tilde{L}^{3,\infty}_\sigma \), \(u \) and \(v \) can be decomposed into \(u = u_1 + u_2 \) and \(v = v_1 + v_2 \) with

\[
u_1, v_1 \in BC([0, T]; L^{3,\infty}_\sigma), \quad u_2, v_2 \in BC([0, T'); \tilde{L}^{3,\infty}_\sigma \cap L^{\infty})
\]

\[
sup_{0 < \tau < T'} \|u_1(\tau)\|_{3,\infty} \leq \kappa, \quad \sup_{0 < \tau < T'} \|v_1(\tau)\|_{3,\infty} \leq \kappa,
\]

\[
K_{T'} := \sup_{0 < \tau < T'} \|u_2(\tau)\|_{\infty} + \sup_{0 < \tau < T'} \|v_2(\tau)\|_{\infty} < \infty
\]

where \(\kappa = \kappa(\Omega) > 0 \) is a sufficiently small number. Let \(w := u - v \). Then \(w \) satisfies

\[
(w(t), \phi) = \int_{0}^{t} \left((w \cdot \nabla e^{-(t-\tau)A} \phi, u_1)(\tau) + (v \cdot \nabla e^{-(t-\tau)A} \phi, w_2)(\tau) \right) d\tau.
\]

Using Lemmata 2.2 and 2.3, we observe that the first term on the right-hand side of (2.11) is bounded by

\[
\int_{0}^{t} \left| (w \cdot \nabla e^{-(t-\tau)A} \phi, u_1)(\tau) \right| d\tau + \int_{0}^{t} \left| (w \cdot \nabla e^{-(t-\tau)A} \phi, u_2)(\tau) \right| d\tau
\]

\[
\leq C \kappa \sup_{0 < \tau < t} \|w\|_{3,\infty} \|\phi\|_{3/2,1} + C \int_{0}^{t} \|w\|_{3,\infty} (t-\tau)^{-\frac{1}{2}} \|\phi\|_{3/2,1} \|u_2\|_{\infty} d\tau
\]

\[
\leq C(\kappa + K_{T'} t^{1/2}) \sup_{0 < \tau < t} \|w\|_{3,\infty} \|\phi\|_{3/2,1}
\]

9
for $0 < t \leq T'$, where the constant C depends only on Ω. Since the second term on the right-hand side of (2.11) can be estimated in the same way, by the duality $L^{3,\infty}_\sigma = (L^{3/2,1}_\sigma)^*$, we have

$$\sup_{0 < \tau < t} \|w(\tau)\|_{3,\infty} \leq 2C(\kappa + K_T t^{1/2}) \sup_{0 < \tau < t} \|w(\tau)\|_{3,\infty}$$

for all $0 < t \leq T'$. Hence, letting $\kappa < \frac{1}{4C}$ and $t_0 = (\frac{1}{8C^2 K_T})^2$, we obtain $w \equiv 0$ on $[0, \min(t_0, T')]$. Repeating this argument, we can also prove $w \equiv 0$ on $[0, T']$, which proves Lemma 2.5, since $T' \in (0, T)$ is arbitrary.

As can be seen from the above proof, condition (2.10) can be replaced by the condition $u, v \in S_I$ with $I = [0, T)$. For the definition of S_I, see Remark 1 (iv). See also [29, Remark 1.4.2] and [13].

Lemma 2.6. There exists a constant $\epsilon_1(\Omega) > 0$ such that if $T \leq \infty$, u, v are mild $L^{3,\infty}$-solutions to (N-S) on $(-\infty, T)$ for the same force f,

$$u, v \in BC((-\infty, T); \tilde{L}^{3,\infty}_\sigma),$$

$$\limsup_{t \to -\infty} \|u(t)\|_{3,\infty} < \epsilon_1 \quad \text{and} \quad \liminf_{t \to -\infty} \|u(t) - v(t)\|_{3,\infty} < \epsilon_1,$$

then

$$u = v \text{ on } (-\infty, T).$$

Proof of Lemma 2.6. Since $\limsup_{t \to -\infty} \|u(t)\|_{3,\infty} < \epsilon_1$, there exists $\tau_0 \in (-\infty, T)$ such that

$$\sup_{-\infty < \tau \leq \tau_0} \|u(\tau)\|_{3,\infty} \leq \epsilon_1.$$

Furthermore, for $w = u - v$, from the assumption $\liminf_{t \to -\infty} \|w(t)\|_{3,\infty} < \epsilon_1$, we see that there exists a sequence $\{s_j\}$ such that

$$\|w(s_j)\|_{3,\infty} \leq \epsilon_1, \ s_j < \tau_0 \text{ and } s_j \to -\infty.$$

Let $h_s(t) := \sup_{s \leq \tau \leq t} \|w(\tau)\|_{3,\infty}$ for $s < t < T$. Since w satisfies

$$w(t) = (e^{-(t-s_j)A}w(s_j), \phi) + \int_{s_j}^t \left\{ (w(\tau) \cdot \nabla e^{-(t-\tau)A}\phi, u(\tau)) + (v(\tau) \cdot \nabla e^{-(t-\tau)A}\phi, w(\tau)) \right\} d\tau$$

(2.12)
for all \(\phi \in L^{3/2,1}_\sigma \) and since
\[
\sup_{s_j \leq t \leq t} \|v\|_{3,\infty} \leq \sup_{s_j \leq t \leq t} \|u\|_{3,\infty} + h_{s_j}(t),
\]
by Lemma 2.3 and the duality \(L^{3,\infty}_\sigma = (L^{3/2,1}_\sigma)^* \), we have
\[
(2.13) \quad h_{s_j}(t) \leq C_0 \left(\|w(s_j)\|_{3,\infty} + \left(\sup_{s_j \leq \tau \leq t} \|u(\tau)\|_{3,\infty} + \sup_{s_j \leq \tau \leq t} \|v(\tau)\|_{3,\infty} \right) h_{s_j}(t) \right)
\]
for \(s_j < t \leq \tau_0 \). Since \(h_{s_j}(s_j) = \|w(s_j)\|_{3,\infty} \leq \epsilon_1 \) and \(h_{s_j}(t) \) is a continuous function, it holds that \(h_{s_j}(t) < 2(C_0 + 1)\epsilon_1 \) for \(t \) sufficiently close to \(s_j \). Assume that \(h_{s_j}(T_*) = 2(C_0 + 1)\epsilon_1 \) for some \(T_* \in (s_j, \tau_0) \). Let \(\epsilon_1 < \frac{1}{8(C_0+1)^2} \). Then, (2.13) yields
\[
h_{s_j}(T_*) \leq C_0 \epsilon_1 (1 + 4(C_0 + 1)\epsilon_1 + 4(C_0 + 1)^2 \epsilon_1) < 2C_0\epsilon_1,
\]
which contradicts the above assumption. Hence
\[
h_{s_j}(\tau_0) < 2(C_0 + 1)\epsilon_1.
\]
As \(j \to \infty \), we obtain
\[
\sup_{-\infty < t \leq \tau_0} \|w(t)\|_{3,\infty} \leq 2(C_0 + 1)\epsilon_1.
\]
Let \(\epsilon_1 < \min\left(\frac{\epsilon_0}{4(C_0+1)}, \frac{1}{8(C_0+1)^2} \right) \), where \(\epsilon_0 \) is a constant given in Lemma 2.4, i.e.,
\[
\sup_{-\infty < t \leq \tau_0} \|u(t)\|_{3,\infty} + \sup_{-\infty < t \leq \tau_0} \|v(t)\|_{3,\infty} < \epsilon_0.
\]
Since \(\lim_{j \to \infty} (e^{-(t-s_j)A}w(s_j), \phi) = \lim_{j \to \infty} (w(s_j), e^{-(t-s_j)A}\phi) = 0 \) for all \(\phi \in L^{3/2,1}_\sigma \), using Lemma 2.3 and (2.12), we easily see that \(w \) satisfies (2.9). Hence by Lemma 2.4, we have \(u = v \) on \((-\infty, \tau_0] \). Since \(u(\tau_0) = v(\tau_0) \), by Lemma 2.5, we even get that \(u = v \) on \([\tau_0, T)\), which proves Lemma 2.6.

We note that, since condition (2.10) in Lemma 2.5 can be replaced by \(u, v \in S_I \) with \(I = [0, T) \), the condition \(u, v \in BC((\infty, T); \bar{L}^{3,\infty}_\sigma) \) in Lemma 2.6 can replaced by \(u, v \in S_I \) with \(I = (-\infty, T) \),

Finally, we come to the key lemma of the proof of uniqueness. If \(u \) and \(v \) are solutions to the Navier-Stokes equations, then \(w := u - v \) satisfies
\[
(U) \quad \left\{ \begin{array}{l}
\partial_t w - \Delta w + w \cdot \nabla u + v \cdot \nabla w + \nabla p' = 0, \quad t \in (-\infty, T), \; x \in \Omega, \\
\text{div} \; w = 0, \quad t \in (-\infty, T), \; x \in \Omega, \\
w|_{\partial \Omega} = 0.
\end{array} \right.
\]
Hence, if \(\Omega \) is a bounded domain and if \(u, v \) belong to the Leray-Hopf class, under the hypotheses of Theorem 1, the usual energy method and the Poincaré inequality yield
There exists an absolute constant $k \in \mathbb{R}$ such that

$$\Psi(0) = 0 \quad \text{and} \quad \Psi(t) = 0$$

for all $t < 0$. Hence, since we cannot use the energy method, we will use the argument of Lions-Masmoudi [29].

We recall the dual equations of the above system (U), namely,

$$(D) \begin{cases}
-\partial_t \Psi - \Delta \Psi - \sum_{i=1}^3 u^i \nabla \Psi^i - v \cdot \nabla \Psi + \nabla \pi & = h, \quad t \in (-\infty, 0), \ x \in \Omega, \\
\nabla \cdot \Psi & = 0, \quad t \in (-\infty, 0), \ x \in \Omega, \\
\Psi|_{\partial \Omega} & = 0, \\
\Psi(0) & = 0.
\end{cases}$$

Lemma 2.7. There exists an absolute constant $\delta_0 > 0$ with the following property: Let $u, v \in BC((-\infty, 0]; L^2_\omega), h \in BC((-\infty, 0]; L^{6/5} \cap L^2)$ and

$$\sup_{t \leq 0} \|u(t)\|_{3, \infty} \leq \delta_0.$$

Then there exists a unique solution $\Psi \in L^2_{loc}((-\infty, 0]; D(A_2)) \cap W^{1,2}_{loc}((-\infty, 0]; L^2_\omega)$ to (D) such that

$$(2.14) \quad \|\Psi(t)\|_2^2 + \int_t^0 \|\nabla \Psi\|_2^2 d\tau \leq C \int_t^0 \|h\|_{6/5}^2 d\tau$$

for all $t < 0$. Here C is an absolute constant.

Remark 3. As can be seen from the proof below, Lemma 2.7 is valid for a general unbounded uniform C^2-domain $\Omega \subset \mathbb{R}^3$. For the properties of the Stokes operator A_2 in a uniform C^2-domain, see [42, 7].

Lemma 2.7 was essentially proven in [29]. For readers’ convenience, we give a proof.

Proof of Lemma 2.7. Let E_0 be the 0-extension operator for functions defined on $\Omega \times (-\infty, 0]$ to functions on $\mathbb{R}^3 \times \mathbb{R}$, i.e., $E_0 f := f$ if $(x, t) \in \Omega \times (-\infty, 0]$ and $E_0 f := 0$ otherwise. Then let $u_\lambda := \rho_\lambda(t) * \hat{\rho}_\lambda(|x|) x E_0 u$ for $0 < \lambda < 1$, where $\rho_\lambda(t) * \hat{\rho}_\lambda(|x|) x$ is the space-time mollifier defined via an even function $0 \leq \rho \in C^\infty_0(\mathbb{R})$ with $\int \rho \ ds = 1$ and $\rho_\lambda(\tau) = \frac{1}{\lambda} \rho(\tau/\lambda), \ \hat{\rho}_\lambda(x) = \lambda^{-3} \hat{\rho}(|x|/\lambda), \ \lambda > 0$. Similarly v_λ and h_λ are defined. Then we see that for each fixed $\lambda > 0$

$$(u_\lambda, v_\lambda) \in BC^\infty(\mathbb{R}; W^{1,\infty} \cap L^{3,\infty}), \ \text{div} \ v_\lambda = 0 \ \text{in} \ \Omega, \ h_\lambda \in BC^\infty(\mathbb{R}; L^\infty \cap L^{6/5})$$

$$(2.15) \quad \sup_{t < 0} \|u_\lambda(t)\|_{3, \infty} \leq \sup_{t < 0} \|u(t)\|_{3, \infty} \leq \delta_0,$$

$u_\lambda, v_\lambda \rightarrow u, v \ \text{in} \ L^4(\tau, 0; L^2 + L^4), \ h_\lambda \rightarrow h \ \text{in} \ L^2(\tau, 0; L^{6/5} \cap L^2) \text{ as } \lambda \rightarrow 0+$$
for all \(\tau < 0 \).

For any \(a \in L^2_\sigma \), the backward initial-boundary value problem

\[
(D)_\lambda \begin{cases}
-\partial_t \psi - \Delta \psi - \sum_{i=1}^{3} u^i_{\lambda} \nabla \psi^i - v_{\lambda} \cdot \nabla \psi + \nabla \pi = h_{\lambda}, & t < 0, \quad x \in \Omega, \\
\nabla \cdot \psi = 0, & t < 0, \quad x \in \Omega, \\
\psi|_{\partial \Omega} = 0, \\
\psi|_{t=0} = a,
\end{cases}
\]

has a unique solution \(\psi_{\lambda} \in C((\infty, 0]; L^2_\sigma) \cap C((-\infty, 0); D(A_2)) \cap C^1((-\infty, 0); L^2_\sigma) \) with \(|t|^{1/2} \nabla \psi_{\lambda} \in L^\infty_{t \to \infty}((-\infty, 0]; L^2)\). Indeed, by the usual iterative argument we observe that the integral equation

\[
\psi_{\lambda}(t) = e^{tA}a - \int_{t}^{0} e^{(t-\tau)A} P\left(- \sum_{i=1}^{3} u^i_{\lambda} \nabla \psi^i_{\lambda} - v_{\lambda} \cdot \nabla \psi_{\lambda} - h_{\lambda} \right)(\tau) \, d\tau, \quad t < 0,
\]

has a unique solution in \(C([-T_*, 0]; L^2_\sigma) \) with \(|t|^{1/2} \nabla \psi_{\lambda} \in L^\infty(-T_*, 0; L^2)\), where \(T_* = C_{\text{sup},(\|u_{\lambda}\|_6 + \|v_{\lambda}\|_6)^2} \) is independent of \(a \). Hence \(\psi_{\lambda} \) can be extended to a solution on \((-\infty, 0)\). Since \(u_{\lambda}, v_{\lambda} \in C^\infty(\mathbb{R}; L^\infty) \), by the above integral equation, for all \(\alpha > 0 \) we have

\[
- \sum_{i=1}^{3} u^i_{\lambda} \nabla \psi^i_{\lambda} - v_{\lambda} \cdot \nabla \psi_{\lambda} - h_{\lambda} \in C^\beta((-\infty, -\alpha); L^2)
\]

for some \(\beta > 0 \). Consequently, \(\psi_{\lambda} \) satisfies \((D)_{\lambda}\) in the strong sense and

\[
\psi_{\lambda} \in C((-\infty, 0]; L^2_\sigma) \cap C((-\infty, 0); D(A_2)) \cap C^1((-\infty, 0); L^2_\sigma).
\]

The usual energy calculation, the duality \(L^{6/5,2} = (L^{6,2})^* \) and Lemma 2.1 yield

\[
- \frac{1}{2} \frac{d}{dt} \|\psi_{\lambda}\|_2^2 + \|\nabla \psi_{\lambda}\|_2^2 \leq \|u_{\lambda}\|_6 \|\nabla \psi_{\lambda}\|_{6/5,2}^2 + \|h_{\lambda}\|_{6/5} \|\psi_{\lambda}\|_6
\]

\[
\leq M \|u_{\lambda}\|_{3,\infty} \|\nabla \psi_{\lambda}\|_2^2 + M \|h_{\lambda}\|_{6/5} \|\nabla \psi_{\lambda}\|_2^2
\]

\[
\leq (M \delta_0 + \frac{1}{4}) \|\nabla \psi_{\lambda}\|_2^2 + M^2 \|h_{\lambda}\|_{6/5}^2,
\]

where \(M \) is an absolute constant. Let \(\delta_0 \leq \frac{1}{4M} \) and \(a = 0 \). Then

\[
\|\psi_{\lambda}(t)\|_2^2 + \int_{t}^{0} \|\nabla \psi_{\lambda}\|_2^2 \, d\tau \leq C \int_{t}^{0} \|h_{\lambda}(\tau)\|_{6/5}^2 \, d\tau \quad \text{for } t < 0.
\]

Let \(-\infty < s < 0 \). Since \(u, v \in BUC([-s, 0]; \tilde{L}^{3,\infty}_\sigma) \) and \(L^{3,\infty}_\sigma \cap L^\infty \) is dense in \(\tilde{L}^{3,\infty}_\sigma \), \(u, v \) can be decomposed into \(u = u_1 + u_2 \) and \(v = v_1 + v_2 \) with

\[
\sup_{s-1 < \tau < 0} \|u_1(\tau)\|_{3,\infty} \leq \kappa, \quad \sup_{s-1 < \tau < 0} \|u_2(\tau)\|_{3,\infty} \leq \kappa,
\]

\[
K_s := \sup_{s-1 < \tau < 0} \|u_2(\tau)\|_\infty + \sup_{s-1 < \tau < 0} \|v_2(\tau)\|_\infty < \infty
\]

13
where \(\kappa = \kappa(\Omega) > 0 \) is a sufficiently small number. Then, with the space-time mollifications \(u_{i,\lambda}, v_{i,\lambda} \) of \(u_i, v_i, \ i = 1, 2 \), respectively, we see that

\[
\sup_{s < \tau < 0} \|u_{1,\lambda}(\tau)\|_{3,\infty} \leq \kappa, \quad \sup_{s < \tau < 0} \|v_{1,\lambda}(\tau)\|_{3,\infty} \leq \kappa, \quad \sup_{s < \tau < 0} \|u_{2,\lambda}\|_{\infty} + \sup_{s < \tau < 0} \|v_{2,\lambda}\|_{\infty} \leq K_s < \infty.
\]

The well-known \(L^2 \)-maximal regularity (cf. [42, Chap. IV, Theorem 1.6.3]) yields

\[
(2.18) \quad \int_s^0 (\|\partial_t \psi_\lambda\|_2 + \|A \psi_\lambda\|_2^2) d\tau \leq C \int_s^0 \left(\| \sum_{i=1}^3 u_i^* \nabla \psi_\lambda\|_2 + \| v_\lambda \cdot \nabla \psi_\lambda\|_2 + \| h_\lambda\|_2^2 \right) d\tau.
\]

Since there is a bounded extension mapping from \(W^{1,2}(\Omega) \) to \(W^{1,2}([0,T]) \), by Lemma 2.1 we have \(\|f\|_{L^2(\Omega)} \leq C\|f\|_{W^{1,2}(\Omega)} \) for all \(f \in W^{1,2}(\Omega) \). Then,

\[
C\|u_\lambda\| \|\nabla \psi_\lambda\|_2^2 \leq C\|u_{1,\lambda}\|_{3,\infty} \|\nabla \psi_\lambda\|_6^2 + C\|u_{2,\lambda}\|_{\infty} \|\nabla \psi_\lambda\|_2^2 + C\|v_\lambda\|_2 \|\nabla \psi_\lambda\|_2^2
\]

\[
\leq C \kappa^2 \|\nabla \psi_\lambda\|_6^2 + C K_s^2 \|\nabla \psi_\lambda\|_2^2
\]

\[
(2.19) \quad \leq C \kappa^2 (\|\nabla^2 \psi_\lambda\|_2 + \| \nabla \psi_\lambda\|_2^2) + C K_s^2 \|\nabla \psi_\lambda\|_2^2 + C (\kappa^2 + K_s^2) \|\nabla \psi_\lambda\|_2^2,
\]

where we used the fact that \(D(A_2) \subset W^{2,2}(\Omega) \). By analogy, we obtain

\[
(2.20) \quad C\|v_\lambda\| \|\nabla \psi_\lambda\|_2^2 \leq C \kappa^2 \|A \psi_\lambda\|_2^2 + C \kappa^2 \|\psi_\lambda\|_2^2 + C (\kappa^2 + K_s^2) \|\nabla \psi_\lambda\|_2^2.
\]

By combining (2.17), (2.19) and (2.20) with (2.18) and letting \(C \kappa^2 \leq 1/4 \), we observe that

\[
(2.21) \quad \int_s^0 (\|\partial_t \psi_\lambda\|_2 + \|A \psi_\lambda\|_2^2) d\tau \leq C(\Omega, s, u, v) \int_s^0 (\|\psi_\lambda\|_2^2 + \|\nabla \psi_\lambda\|_2^2 + \| h_\lambda\|_2^2) d\tau
\]

\[
\leq C(\Omega, s, u, v) \int_s^0 (\| h_\lambda\|_{6/5}^2 + \| h_\lambda\|_2^2) d\tau,
\]

where the constant \(C \) is independent of \(\lambda > 0 \).

Hence there exist a sequence \(\{\lambda_j\} \) converging to 0+ as \(j \to \infty \) and a function \(\Psi \in L^2_{\text{loc}}(-\infty, 0; D(A_2)) \cap W^{1,2}_{\text{loc}}(-\infty, 0; L^2_{\sigma}) \) with \(\Psi(0) = 0 \) such that

\[
(2.22) \quad \psi_{\lambda_j} \rightharpoonup \Psi \text{ weakly in } L^2(s, 0; D(A_2)) \cap W^{1,2}_\sigma(s, 0; L^2_{\sigma}) \text{ as } j \to \infty \text{ for all } s < 0.
\]

Letting \(j \to \infty \), by (2.15) and (2.22), we see that \(\Psi \) satisfies (D) in the sense of distributions. In the same way as in (2.19)-(2.20), we have

\[
\sum_{i=1}^3 u^i \nabla \Psi^i + v \cdot \nabla \Psi \in L^2(s, 0; L^2(\Omega)) \text{ for all } s < 0.
\]
Hence we conclude that \(\Psi \) satisfies (D) in the strong sense. It is straightforward to see that (2.17) yields (2.14), which proves Lemma 2.7. Finally, we note that the condition \(u, v \in BC((\infty, 0]; \tilde{L}^{3,\infty}_\sigma) \) can be clearly replaced by the condition \(u, v \in S_I \) with \(I = (-\infty, 0] \).

\[\square \]

3 Proof of Main Theorems

In this section, we prove Theorems 1 and 2. As in section 2 let \(w = u - v \) for two given mild solutions \(u \) and \(v \) of (N-S). We first prove the following theorem:

Theorem 3. Let \(T \leq \infty \), \(u \) and \(v \) be mild \(L^{3,\infty} \)-solutions to (N-S) on \((\infty, T)\) for the same force \(f \),

\[u, v \in BC((\infty, T); \tilde{L}^{3,\infty}_\sigma), \]

and let

\[(3.1) \quad \limsup_{t \to -\infty} \| u(t) \|_{3,\infty} < \delta_0, \]

where \(\delta_0 \) is an absolute constant given in Lemma 2.7. Then there exists \(s_0 < T \) such that

\[(3.2) \quad \lim_{j \to \infty} \frac{1}{j} \int_{-j + s_0}^{s_0} \| w(\tau) \|_{L^2(\Omega \cap B_r)}^2 d\tau = 0 \text{ for all } r > 0. \]

Moreover, there exists a sequence \(\{ t_n \} \) such that

\[(3.3) \quad \lim_{n \to \infty} t_n = -\infty \text{ and } \lim_{n \to \infty} \| w(t_n) \|_{L^2(\Omega \cap B_r)} = 0 \text{ for all } r > 0. \]

Remark 4. (i) Since \(\sup_{t < T} \| w(t) \|_{3,\infty} < \infty \) and since \(C_0(\Omega) \) is dense in \(L^{3/2,1}(\Omega) \), it is straightforward to see that (3.3) implies

\[(3.4) \quad w(t_n) \rightharpoonup^* 0 \text{ weakly-}^* \text{ in } L^{3,\infty}(\Omega) \text{ as } n \to \infty. \]

(ii) If we assume that both of \(u \) and \(v \) are stationary or time-periodic in \(L^{3,\infty} \), then (3.2) directly yields \(w \equiv 0 \).

(iii) In order to prove Theorem 3, we use Lemma 2.7. Since the condition \(u, v \in BC((\infty, 0]; \tilde{L}^{3,\infty}_\sigma) \) in Lemma 2.7 can be replaced by \(u, v \in S_I \) with \(I = (-\infty, 0] \), we notice that the condition \(u, v \in BC((\infty, T); \tilde{L}^{3,\infty}_\sigma) \) in Theorem 3 can be also replaced by \(u, v \in S_I \) with \(I = (-\infty, T) \).
Proof of Theorem 3. By (3.1), there exists $s_0 < T$ such that $\sup_{t \leq s_0} \|u(t)\|_{3,\infty} \leq \delta_0$. Without loss of generality, we may assume $0 < T$ and $s_0 = 0$. Let $j \in \mathbb{N}$. For $-3j < t < T$, let

$$
(3.5) \quad w_0(t) := e^{-(t+3j)A}w(-3j)
$$

$$
(3.6) \quad w_1(t) := w(t) - w_0(t).
$$

Then, it holds that

$$(w_1(t), \phi) = \int_{-3j}^{t} \left((w \cdot \nabla e^{-(t-s)A}\phi, u) + (v \cdot \nabla e^{-(t-s)A}\phi, w) \right) ds$$

for all $\phi \in L^{3/2,1}$. By the duality $L^{3/2,\infty} = (L^{3,1})^*$, Lemma 2.1 and Lemma 2.2, we have for $\varphi \in L^{3/2,1} \cap L^2$

$$
(3.7) \quad \|w_1(t)\|_2 \leq C(t + 3j)^\frac{1}{2} \sup_{-\infty < s < T} \|w(s)\|_{3,\infty} \sup_{-\infty < s < T} (\|u(s)\|_{3,\infty} + \|v(s)\|_{3,\infty}) \|\varphi\|_2,
$$

which implies $w_1(t) \in L^2$ for $-3j < t < T$ and

$$
(3.8) \quad \int_{-j}^{0} \left((w_1, -\partial_t \psi - \Delta \psi) - (w \cdot \nabla \psi, u) - (v \cdot \nabla \psi, w) \right) ds
$$

$$(w_1(-j), \psi(-j)) - (w_1(0), \psi(0))$$

for all $\psi \in W^{1,2}(-j, 0; L^2_2) \cap L^2(-j, 0; D(A_2))$. Indeed, let $G := v \otimes w + w \otimes u$ and $G_\epsilon := \rho_\epsilon \ast G \in BC((-\infty, T); W^{2,2}(\Omega) \cap L^{3/2,\infty}(\Omega))$ where $\{\rho_\epsilon\}$ is a usual family of space mollifiers, and define

$$
(3.9) \quad \|w_{1,\epsilon}(t)\|_2 \leq C(t + 3j)^\frac{1}{2} \sup_{-\infty < s < T} \|G_\epsilon\|_{3/2,\infty} \leq C(t + 3j)^\frac{1}{2} \sup_{-\infty < s < T} \|G\|_{3/2,\infty}.
$$
Since \((w_{1,\varepsilon}(t), \phi) = \int_{-3j}^{t} (G_{\varepsilon}, \nabla e^{-(t-s)A_{\varepsilon}} \phi) \, ds\) and \(G_{\varepsilon}(s) \rightarrow G(s)\) weakly-* in \(L^{3/2, \infty}\) for all \(s < T\), we see by Lebesgue’s theorem on dominated convergence that
\[
(w_{1,\varepsilon}(t), \phi) \rightarrow \int_{-3j}^{t} (G, \nabla e^{-(t-s)A} \phi) \, ds = (w_{1}(t), \phi) \quad \text{as } \varepsilon \to 0+
\]
for all \(t \in (-3j, T)\) and \(\phi \in L^{2}_{t}\). Moreover, by (3.9), \(\{w_{1,\varepsilon}\}\) is uniformly bounded in \(L^{2}(-3j, 0; L^{2}_{t})\) and, consequently, there exists a sequence \(\{\epsilon_{k}\}\) such that
\[
\epsilon_{k} \to 0^{+} \quad \text{and} \quad w_{1,\epsilon_{k}} \to w_{1} \text{ weakly in } L^{2}(-3j, 0; L^{2}_{t}) \quad \text{as } k \to \infty.
\]
Since \(-P \nabla \cdot G_{\epsilon_{k}} \in L^{2}(-3j, 0; L^{2}_{t})\), by \(L^{2}\)-maximal regularity \(w_{1,\epsilon_{k}} \in W^{1,2}(-3j, 0; L^{2}_{t}) \cap L^{2}(-3j, 0; D(A_{2}))\) and \(\frac{d}{dt}w_{1,\epsilon_{k}} + Aw_{1,\epsilon_{k}} = -P \nabla \cdot G_{\epsilon_{k}}\). Hence, for all test functions \(\psi \in W^{1,2}(-j, 0; L^{2}_{t}) \cap L^{2}(-j, 0; D(A_{2}))\),
\[
(3.10) \quad \int_{-j}^{0} ((w_{1,\epsilon_{k}}, -\partial_{t} \psi - \Delta \psi) - (G_{\epsilon_{k}}, \nabla \psi) \, ds = (w_{1,\epsilon_{k}}(-j), \psi(-j)) - (w_{1,\epsilon_{k}}(0), \psi(0)).
\]
Since \(\nabla \psi \in L^{2}(-j, 0; L^{2} \cap L^{6}) \subset L^{2}(-j, 0; L^{3,1})\), we obtain, as \(k \to \infty\), (3.8) from (3.10).

Let \(\Omega_{r} := \Omega \cap B(0, r)\) for fixed \(r > 0\) and
\[
h(x, t) := w(x, t) \cdot 1_{\Omega_{r}}.
\]
In order to show (3.2), we decompose \(\int_{-j}^{0} \|w(\tau)\|^{2}_{L^{2}(\Omega_{r})} \, d\tau\), the integral mean of \(\|w(\tau)\|^{2}_{L^{2}(\Omega_{r})}\) over the interval \((-j, 0)\), into two terms as follows:
\[
\int_{-j}^{0} \|w(\tau)\|^{2}_{L^{2}(\Omega_{r})} \, d\tau = \int_{-j}^{0} (w(\tau), h(\tau)) \, d\tau
\]
\[
= \int_{-j}^{0} (w_{0}(\tau), h(\tau)) \, d\tau + \int_{-j}^{0} (w_{1}(\tau), h(\tau)) \, d\tau =: I_{0} + I_{1}.
\]
We estimate \(I_{0}\) and \(I_{1}\) separately. Since Lemma 2.1 yields
\[
(3.11) \quad \|h\|_{6/5} = \|w \cdot 1_{\Omega_{r}}\|_{L^{6/5}} \leq C\|w\|_{3, \infty}\|1_{\Omega_{r}}\|_{2, 6/5} \leq C\|w\|_{3, \infty}|\Omega_{r}|^{1/2},
\]
from Lemma 2.2 we obtain
\[
|I_{0}| \leq \int_{-j}^{0} \|w_{0}(\tau)\|_{6}\|h\|_{6/5} \, d\tau \leq C\int_{-j}^{0} \|e^{-(\tau+3j)A}w(-3j)\|_{6}\|w(\tau)\|_{3, \infty}|\Omega_{r}|^{1/2} \, d\tau
\]
\[
(3.12) \quad \leq C\int_{-j}^{0} (\tau + 3j)^{-\frac{1}{2}}\|w(-3j)\|_{3, \infty}\|w(\tau)\|_{3, \infty}|\Omega_{r}|^{1/2} \, d\tau \leq Cj^{-1/4} \to 0
\]
as \(j \to \infty\).
Let Ψ be the solution to (D) with right-hand side $h = w \cdot 1_{\Omega}$, and initial value $\Psi(0) = 0$, cf. Lemma 2.7. Then,

$$I_1 = \int_{-j}^{0} (w_1(\tau), h(\tau)) \, d\tau$$

$$= \int_{-j}^{0} (w_1(\tau), -\partial_t \Psi - \Delta \Psi - \sum_{i=1}^{3} u_i \nabla \Psi^i - v \cdot \nabla \Psi + \nabla \pi) \, d\tau.$$

Since $\Psi(0) = 0$ and $w_1 \in L^2(-j; 0; L^2_\Omega)$ implies that $\int_{-j}^{0} (w_1, \nabla \pi) \, d\tau = 0$, by (3.8) we observe that

$$I_1 = \frac{1}{j} (w_1(-j), \Psi(-j))$$

$$+ \int_{-j}^{0} \left((w \cdot \nabla \Psi, u) + (v \cdot \nabla \Psi, w) - (w_1, \sum_{i=1}^{3} u_i \nabla \Psi^i + v \cdot \nabla \Psi) \right) \, d\tau$$

$$= \frac{1}{j} (w_1(-j), \Psi(-j)) + \int_{-j}^{0} (w_0 \cdot \nabla \Psi, u) \, d\tau + \int_{-j}^{0} (v \cdot \nabla \Psi, w_0) \, d\tau$$

$$=: J_0 + J_1 + J_2.$$

By (2.14), (3.7) and (3.11), we have

$$|J_0| = \frac{1}{j} |(w_1(-j), \Psi(-j))| \leq \frac{1}{j} \|w_1(-j)\|_2 \|\Psi(-j)\|_2$$

$$\leq \frac{1}{j} \cdot C j^{1/4} \cdot \left\{ \int_{-j}^{0} \|h\|_{6/5}^2 \, d\tau \right\}^{1/2}$$

$$\leq \frac{1}{j} \cdot C j^{1/4} \cdot j^{1/2} \to 0 \text{ as } j \to \infty.$$

Furthermore, by Lemmata 2.1 and 2.2, (2.14), (3.11) and the duality $L^{6,2} = (L^{6/5,2})^*$, we have

$$|J_1| = \left| \int_{-j}^{0} (w_0(\tau) \cdot \nabla \Psi(\tau), u(\tau)) \, d\tau \right| = \left| \int_{-j}^{0} (e^{-(r+3)j} A w(-3j) \cdot \nabla \Psi, u) \, d\tau \right|$$

$$\leq \int_{-j}^{0} \|e^{-(r+3)j} A w(-3j)\|_{6,2} \|\nabla \Psi(\tau)\|_{6/5,2} \|u(\tau)\|_{6/5,2} \, d\tau$$

$$\leq \int_{-j}^{0} (\tau + 3j)^{-1} \|w(-3j)\|_{3,\infty} \|\nabla \Psi(\tau)\|_{2} \|u(\tau)\|_{3,\infty} \, d\tau$$

$$\leq C \left\{ \int_{-j}^{0} (\tau + 3j)^{-1/2} \, d\tau \right\}^{1/2} \left\{ \int_{-j}^{0} \|\nabla \Psi\|_{6/5}^2 \, d\tau \right\}^{1/2}$$

$$\leq C j^{-1/4} \left\{ \int_{-j}^{0} \|h\|_{6/5}^2 \, d\tau \right\}^{1/2} \leq C j^{-1/4} \to 0$$

\[18\]
as \(j \to \infty \). Similarly, we observe that \(J_2 \to 0 \) as \(j \to \infty \). Hence, we obtain \(I_1 = J_0 + J_1 + J_2 \to 0 \) so that by (3.12)

\[
\int_{-j}^{0} \|w\|_{L^2(\Omega_r)}^2 \, d\tau = I_0 + I_1 \to 0 \text{ as } j \to \infty,
\]

which proves (3.2). It is straightforward to see that (3.2) implies

\[
\lim \inf_{t \to -\infty} \|w(t)\|_{L^2(\Omega_r)} = 0 \text{ for all } r > 0.
\]

Therefore, with \(r = n \), we see that for all \(n = 1, 2, \ldots \), there exists \(t_n \) such that

\[
t_n < -n, \quad \|w(t_n)\|_{L^2(\Omega_n)} \leq 1/n,
\]

which implies (3.3).

\(\square \)

Proof of Theorem 1. Let \(\delta < \epsilon_1/4 \), where \(\epsilon_1 \) is a constant given in Lemma 2.6. In view of Lemma 2.6, it suffices to show

\[
\lim \inf_{t \to -\infty} \|w(t)\|_{3,\infty} < \epsilon_1.
\]

Let \(\{t_n\} \) be the sequence given in Theorem 3. Due to the precompact range condition on \(v \), i.e., \(R(v) = \{v(t) : t < T\} \) is precompact in \(L^{3,\infty}(\Omega) \), there exist a subsequence \(\{t_{nk}\} \) of \(\{t_n\} \) and a function \(V(x) \in L^{3,\infty}(\Omega) \) such that

\[
\lim_{k \to \infty} \|v(t_{nk}) - V\|_{3,\infty} = 0.
\]

Since (3.4) implies \(w(t_{nk}) + V \to V \) weakly-* in \(L^{3,\infty}(\Omega) \), by (3.14) and the assumption \(\lim \sup_{t \to -\infty} \|u\|_{3,\infty} < \delta \) we have

\[
\|V\|_{3,\infty} \leq \lim \inf_{k \to \infty} \|w(t_{nk}) + V\|_{3,\infty} \leq \lim \sup_{k \to \infty} \|u(t_{nk}) - (v(t_{nk}) - V)\|_{3,\infty} < \delta.
\]

Therefore, since \(w = u - (v - V) - V \), we obtain

\[
\lim \sup_{k \to \infty} \|w(t_{nk})\|_{3,\infty} \leq \lim \sup_{k \to \infty} (\|u(t_{nk})\|_{3,\infty} + \|v(t_{nk}) - V\|_{3,\infty} + \|V\|_{3,\infty}) < 2\delta,
\]

which proves (3.13). \(\square \)
Proof of Theorem 2. Let δ be the constant given in Proof of Theorem 1 and let \(\{t_n\} \) be the sequence given in Theorem 3. Since, with \(\Omega_R = \Omega \cap B_R \),

\[
\|w(t_n)\|_{L^{3,\infty}(\Omega_R)} \leq C \|w(t_n)\|_{L^2(\Omega_R)}^{\frac{\theta}{2}} \|w(t_n)\|_{L^p(\Omega_R)}^{1-\frac{\theta}{2}}
\]

holds for \(\frac{1}{3} = \frac{\theta}{2} + \frac{1-\theta}{p} \), by (3.3) and the assumption \(u, v \in BC((-\infty, T; L^p(\Omega_R)) \), we have

(3.16) \[
\lim_{n \to \infty} \|w(t_n)\|_{L^{3,\infty}(\Omega_R)} = 0.
\]

Let \(E := \Omega \setminus B_R \).

(i) Assume that (1.6) holds. In the same way as in (3.14)-(3.15), from (3.4) and (1.6), we observe that there exist a subsequence \(\{t_{n_k}\} \) of \(\{t_n\} \) and a function \(V(x) \in L^{3,\infty}(E) \) such that \(\lim_{k \to \infty} \|v(t_{n_k}) - V\|_{L^{3,\infty}(E)} = 0 \) and consequently also that \(\|V\|_{L^{3,\infty}(E)} < \delta \). Then we conclude that

\[
\limsup_{k \to \infty} \|w(t_{n_k})\|_{L^{3,\infty}(E)} \leq \limsup_{k \to \infty} (\|u(t_{n_k})\|_{L^{3,\infty}(E)} + \|v(t_{n_k}) - V\|_{L^{3,\infty}(E)} + \|V\|_{L^{3,\infty}(E)}) < 2\delta.
\]

This and (3.16) prove (3.13) and hence the first part of the theorem.

(ii) Assume that (1.7) holds. Since \(\limsup_{n \to \infty} \|v(t_n) - V\|_{L^{3,\infty}(E)} < \delta \) and since (3.4) implies \(w(t_n) + V \rightharpoonup V \) weakly-* in \(L^{3,\infty}(E) \), in the same way as in the proof of (3.15), we obtain \(\|V\|_{L^{3,\infty}(E)} < 2\delta \) and

\[
\limsup_{n \to \infty} \|w(t_n)\|_{L^{3,\infty}(E)} \leq \limsup_{n \to \infty} (\|u(t_n)\|_{L^{3,\infty}(E)} + \|v(t_n) - V\|_{L^{3,\infty}(E)} + \|V\|_{L^{3,\infty}(E)}) < 4\delta.
\]

This and (3.16) prove (3.13).

Acknowledgments. The first and second author greatly acknowledge the support by IRTG 1529 Darmstadt-Tokyo. The second and third authors are supported in part by a Grant-in-Aid for JSPS Fellows No.25002702 and by a Grant-in-Aid for Scientific Research(C) No.23540194, respectively, from the Japan Society for the Promotion of Science.

References

