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Abstract

We study several algebras generated by convolution, multiplication and flip operators
on Lp(R), their Calkin counterparts and derive new isomorphism relations. We introduce
a new class of homogenization strong limits, compatible with the flip operator and which
explore the properties of the Fourier transform in Lp(R), when p 6= 2.
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1 Introduction

In the study of approximation methods for any specific class of operators, a precise knowledge
of the analytic properties of these operators is indispensable. A relevant part of these prop-
erties can be specified by describing the Banach algebra generated by the operators under
consideration. In many cases (at least in those in the authors’ main interest), the description
of this algebra is given up to compact operators via algebra isomorphisms to a family of
simpler algebras. The construction of such isomorphisms is often related with Allan’s local
principle [1] (see also [11, Section 2.2]), which creates a family of local representatives indexed
by the points of the maximal ideal space of a central subalgebra.

The procedure described above was applied to sequence algebras generated by finite sec-
tions projections, operators of multiplication by piecewise continuous functions and operators
of convolution by piecewise continuous Fourier multipliers in [10]. These operators were con-
sidered on Lp-spaces over the real line R. In order to identify the corresponding local algebras
and, thus, to obtain invertibility conditions for the local representatives, we used homomor-
phisms which are defined by certain strong limits. More precisely, given a sequence (An)
of approximation operators, one multiplies An by certain shift operators Vn (which have to
be specified in each context), and then the homomorphism maps the sequence (An) to the
strong limit of the sequence V −1

n AnVn. Homomorphisms of this form are widely used (see for
instance the monographs and textbooks [2, 3, 4, 6, 7, 9, 11] and the papers cited there).

It is one striking advantage of homomorphisms of this special form that they allow one
to master the inverse closedness problem, which typically arises when p 6= 2. The point is
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that many properties (e.g., the stability of a sequence, the Fredholm property of an operator)
can be equivalently described as the invertibility of an associated object in a (typically large)
algebra, whereas the available technical tools often allow one to study invertibility only in
(small) subalgebras. If every element of the subalgebra which is invertible in the large one
is also invertible in the subalgebra, then the subalgebra is called inverse closed. Note that
there is no inverse closedness problem if p = 2: every C∗-subalgebra of a C∗-algebra is inverse
closed.

It is unfortunately not possible to use the until now available homomorphisms when
considering sequence algebras including the flip (defined as Ju(x) := u(−x)) in Lp(R). The
inclusion of the flip operator is important if one wants to study approximation methods for
Hankel-type operators, for instance. When including the flip, the central subalgebra must be
constituted by operators defined by even functions. This implies a “double point” localization
at non-fixed points of the shift (which are 0 and ∞). A standard technique for dealing with
this problem is doubling the dimension (see, e.g., [11, Section 1.1.5]), ending in operator
matrices. When trying to extend the results of [10] to algebras with flip and to combine
the usual homomorphisms with the doubling of the dimension, the authors were not able to
overcome the occurring inverse closedness problem.

So, it is one purpose of this work to introduce two new families of homomorphisms, which
are suitable to describe Banach operator algebras that include the flip and to tackle the
inverse closedness problem. These homomorphisms possess, in some sense, a built-in doubling
of dimension. Besides studying their properties, we use these homomorphism in the present
paper to give a description of the Calkin algebra generated by convolution, multiplication and
the flip operators, which is alternative to the description in [11, Section 5.7] and is interesting
in its own right. The application of these homomorphism to sequence algebras and, thus, to
study the stability will be the subject of a forthcoming paper.

Specifically, let A be the smallest closed subalgebra of L (Lp(R)) which contains multi-
plication operators aI and the Fourier convolution operators W 0(b), with a and b piecewise
continuous, and the flip operator J (proper definitions are given below, in Section 2). Our
main result can then be stated as follows.

Theorem 1.1. There is a family of algebra homomorphisms Ys,t labeled by the points in
([0,∞] × {∞}) ∪ ({∞} × [0,∞]) such that an operator A ∈ A is Fredholm on Lp(R) if and
only if all operators Ys,t(A) are invertible.

The paper is organized as follows. In Section 2 we present technical background mate-
rial. In Section 3, we derive an isomorphism between the algebra generated by the singular
integral operator on the half-axis and the algebra of Toeplitz operators on R. In Section 4
we introduce several auxiliary operators which are needed for the homogenization processes,
and prove results on the interaction of these operators with convolution, multiplication and
flip operators. We also introduce some families of strong limits which are later used to iden-
tify local algebras. In Section 5, the Calkin image of the algebra generated by convolution,
multiplication and the flip operator is analyzed with the use of Allans’s local principle. The
resulting local algebras are identified via algebras isomorphisms in Section 6. In Section 7 we
discuss some consequences of these results.
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2 Notation

Throughout this paper, we will work on the Lebesgue space Lp(R) with 1 < p < ∞. Let
B := B(Lp(R)) denote the Banach algebra of all bounded linear operators on Lp(R), and
K := K(Lp(R)) the closed ideal of the compact linear operators on Lp(R). Given a subinterval
Γ of the real axis, we consider Lp(Γ) as a closed subspace of Lp(R) in the natural way. In
particular, we identify the identity operator on Lp(Γ) with the operator χ

Γ
I of multiplication

by the characteristic function χ
Γ
of the interval Γ, acting on Lp(R). More general, each

bounded linear operator A on Lp(Γ) is identified with the operator χΓAχΓI acting on Lp(R).
These identifications will often be used without further comment.

We write the Fourier transform F on the Schwartz space of rapidly decreasing infinite
differentiable functions as

(Fu)(y) =

∫ +∞

−∞

e−2πiyxu(x) dx, y ∈ R.

Then its inverse is given by

(F−1v)(x) =

∫ +∞

−∞

e2πixyv(y) dy, x ∈ R.

It is well known that the operators F and F−1 can be extended continuously to bounded and
unitary operators on the Hilbert space L2(R) and that F extends continuously to a bounded
operator from Lp(R) to Lq(R) where q := p/(p − 1) if 1 < p ≤ 2 (see, for instance, [12,
Theorem 74]).

Let Mp denote the set of all Fourier multipliers, i.e., the set of all functions a ∈ L∞(R)
with the following property: if u ∈ L2(R) ∩ Lp(R), then F−1aFu ∈ Lp(R), and there is a
constant cp independent of u such that ‖F−1aFu‖p ≤ cp‖u‖p. If a ∈ Mp, then the operator
F−1aF : L2(R)∩Lp(R) → Lp(R) extends continuously to a bounded operator on Lp(R). This
extension is called a (Fourier) convolution operator , and we denote it byW 0(a). The function
a is called the generating function (sometimes also the symbol or pre-symbol) of W 0(a). In
particular, the convolution operator W 0(sgn) can be identified the singular integral operator
of Cauchy type,

(SRu)(t) :=
1

πi

∫

R

u(s)

s− t
ds, t ∈ R.

This operator satisfies S2
R
= I. We denote the associated projections by PR := (I+SR)/2 and

QR := I−PR. Further we write χ+ and χ− for the characteristic functions of the positive and
negative half axis, respectively. Given a ∈ Mp, the restriction of the operator χ+W

0(a)χ+I
onto Lp(R+) is called a Wiener-Hopf operator and will be denoted by W (a).

The set Mp of all Fourier multipliers forms a Banach algebra when equipped with the
operations inherited from L∞(R) and with the norm

‖a‖Mp
:= ‖W 0(a)‖L(Lp(R)).

We call a function a ∈ L∞(R) piecewise constant (resp. piecewise linear) if there is a partition
−∞ = t0 < t1 < . . . < tn = +∞ of the real line such that a is constant (resp. linear) on each
interval [tk, tk+1]. Stechkin’s inequality (see for instance [5]) entails that the multiplier algebra
Mp contains the (non-closed) algebras C0 of all continuous and piecewise linear functions on
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Ṙ and PC0 of all piecewise constant functions on R. Let Cp and PCp denote the closures of
C0 and PC0 in Mp, respectively.

We define the flip operator J acting on Lp(R) by (Ju)(x) := u(−x). Given a function
a ∈ L∞(R) we write ãI for the multiplication operator JaJ .

3 Isomorphy between algebras of SIOs in L
p(R)

In this section we will show that two algebras of singular integral operators which appear
as “building blocks” of larger operator algebras are isometric. The first of these algebras
is Ep, the smallest closed subalgebra of B which contains the operators χ+I and SR+ :=
χ+W

0(sgn)χ+I or, equivalently, the operators χ+I and P := χ+W
0(χ+)χ+I. Likewise, one

can consider Ep as the closed algebra of operators on Lp(R+) which is generated by the
identity operator and the operator SR+ , via the identification of A ∈ B(Lp(R+)) with the
operator χ+Aχ+I ∈ B(Lp). The Hankel operator H := χ+W

0(sgn)Jχ+I is an element of
Ep (see [11, Proposition 4.2.16]), and we let Np denote the smallest closed ideal of Ep which
contains H.

The second algebra, EF
p , is the smallest closed subalgebra of B which contains the operator

PR and the operator T := PRχ+PR. If p = 2 it is obvious that E2 and EF
2 are isometrically

isomorphic because each algebra is the Fourier image of the other, and the Fourier transform
is a unitary operator on L2(R). If p 6= 2, the Fourier transform is not even bounded in
general, and the isometry between these algebras is no longer obvious. The following result
is certainly well-known to specialists, but we were not able to find an explicit reference in the
literature.

Theorem 3.1. There is a continuous isomorphism between the algebras Ep and EF
p .

Proof. Let η : Lp(R) → Lp
2(R

+) be defined by

(ηf)(x) :=

[
f(x)
f(−x)

]

for x ∈ R
+. By [11, Proposition 4.2.19] one has

ηSRη
−1 =

[
SR+ −H
H −SR+

]
and ηχ+η

−1 =

[
I 0
0 0

]
,

whence

ηPRη
−1 =

1

2

[
I + SR+ −H

H I − SR+

]

and

ηTη−1 =
1

4

[
(I + SR+)2 −(I + SR+)H
H(I + SR+) −H2

]
.

Because S2
R+ − I = H2 by [11, Equation (4.40)], one can further write

ηTη−1 =
1

4

[
(I + SR+)2 −(I + SR+)H
H(I + SR+) (I + SR+)(I − SR+)

]
=

I + SR+

2

1

2

[
I + SR+ −H

H I − SR+

]
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or, shortly,
ηTη−1 = P ◦ ηPRη

−1

where the ◦ indicates that we multiply each entry of the matrix ηPRη
−1 by P from the

left-hand side.
Let now q(z) :=

∑n
j=0 qjz

j be a polynomial. Then, because PR is a projection and P

commutes with the entries SR+ and H of ηPRη
−1,

ηq(T )η−1 =

n∑

j=0

qj
(
ηTη−1

)j
=

n∑

j=0

qj
(
P ◦ ηPRη

−1
)j

=
n∑

j=0

(qjP
j) ◦ ηPRη

−1

what finally results in
ηq(T )η−1 = q(P ) ◦ ηPRη

−1. (1)

Consider the mapping

W : B → L
(
Lp(R+)

)
, A 7→

[
I I

]
ηAη−1

[
I
I

]

which is evidently linear and continuous. Since the sum of the entries of the matrix ηPRη
−1

equals I, we conclude from (1) that

W(q(T )) = q(P )

for every polynomial q. Hence, W is a continuous homomorphism on the set of all polyno-
mials in T . Since this set is dense in EF

p , the homomorphism W extends to a continuous

homomorphism W : EF
p → Ep.

Conversely, for A in L (Lp(R+)), define

V : A 7→ η−1
(
A ◦ ηPRη

−1
)
η.

Clearly, V is linear and continuous. Moreover, by (1), we have for every polynomial q

V (q(P )) = η−1
(
q(P ) ◦ ηPRη

−1
)
η = η−1

(
ηq(T )η−1

)
η = q(T ).

Hence, V is a homomorphism on the set of all polynomials in P . So it extends by continuity
to a continuous homomorphism V : Ep → EF

p .
Finally, on the sets of all polynomials in P (respectively in T ) we have

WV = I and VW = I.

Since these sets are dense in Ep (respectively in EF
p ), we obtain W

−1 = V. Thus Ep is

isomorphic to EF
p , with the isomorphism being given by W.

To obtain the image of the generator of the ideal Np via the isomorphism V we note that

ηJη−1 =

[
0 I
I 0

]
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which implies

η (PRsgnJPR) η
−1 =

1

4

[
2H(I + SR+) −H2 + I − S2

R+

S2
R+ − I +H2 2H(I − SR+)

]

and thus, because SR+H = HSR+ ,

W
(
η (PRsgnJPR) η

−1
)
= H.

So we arrive at the following corollary.

Corollary 3.2. The operator HF := PRsgnJPR is the image of H ∈ Ep via the isomorphism
V. Hence, HF ∈ EF

p , and the smallest closed ideal N F
p of EF

p which contains HF is isomorphic
to the ideal Np of Ep.

4 Projections, reflections, shifts, and related strong limits

In this section we are going to define several types of “shift” operators and introduce several
strong limits associated to these shifts. These strong limits will be our main tool to identify
local algebras in the following sections.

For every positive real number τ , we define the following operators acting on Lp(R):

(Pτu)(x) =

{
u(x) if |t| < τ
0 if |t| > τ

, Qτ = I − Pτ , (2)

(Rτu)(x) =





u(τ − x) if 0 < x < τ
u(−τ − x) if −τ < x < 0
0 if |x| > τ

, (3)

(Sτu)(x) =





0 if |t| < τ
u(x− τ) if x > τ
u(x+ τ) if x < −τ

, (S−τu)(x) =

{
u(x+ τ) if x > 0
u(x− τ) if x < 0

. (4)

For t ∈ R and τ > 0, we will further need the following operators on Lp(R):

(Utu)(x) = e−2πixtu(x), (Vtu)(x) = u(x− t), (Zτu)(x) := τ−1/pu(x/τ).

Clearly, U−1
t = U−t, V

−1
t = V−t, and Z−1

τ = Zτ−1 , and these operators have norm 1. We
collect some elementary properties of these operators in a few lemmata, which we will use
later without reference. The proofs of these facts are straightforward, and we omit them.

Lemma 4.1. (i) RτPτ = PτRτ = Rτ , Pτ = R2
τ , R

∗
τ = Rτ , ‖Pτ‖ = ‖Rτ‖ = 1,

(ii) SτS−τ = Qτ , S−τSτ = I, (Sτ )
∗ = S−τ , ‖Sτ‖ = ‖S−τ‖ = 1,

(iii) JS±τ = S±τJ , JPτ = PτJ , JRτ = RτJ ,

(iv) Pτ → I, S−τ → 0 strongly, and Rτ → 0, Sτ → 0 weakly as τ → ∞.
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Lemma 4.2. If a ∈ Mp and s ∈ R, then

U−sW
0(a)Us = W 0(VsaV−s), VsW

0(a)V−s = W 0(a), JW 0(a)J = W 0(ã).

Moreover, if p = 2, then

UsF
−1 = F−1V−s, FUs = V−sF, VsF

−1 = F−1Us, FVsu = UsF.

Lemma 4.3. Let J be the flip operator and F the Fourier transform. Then

(i) JUs = U−sJ , JVs = V−sJ and JZτ = ZτJ for s ∈ R and τ ∈ R
+;

(ii) FJ = JF , F−1J = JF−1 and F−1 = FJ .

It happens that when the operators Pτ , Rτ and S±τ are restricted to the positive or
negative half-axes, it is possible to describe them in terms of the shift Vt, multiplication by
the characteristic functions of the positive or negative half-axes, and the flip J .

Lemma 4.4. Let τ ∈ R
+. The following relations hold between the shift operators Vt and

the operators defined in (2) - (4)

χ±Pτ = Pτχ± = χ±V±τχ∓V∓τ , χ±Qτ = Qτχ± = V±τχ±V∓τ ,

χ±Rτ = Rτχ± = Jχ∓V∓τχ± ,

χ±Sτ = Sτχ± = V±τχ± , χ±S−τ = S−τχ± = χ±V∓τ .

A proof of the following lemma is in [11, Lemmas 4.2.5 and 4.2.12].

Lemma 4.5. The operators Vt converge weakly to zero as t → ±∞, and the Z±1
τ converge

weakly to zero as τ → ∞.

The next results characterize the application of the shifts to certain operators which will
play an important role in what follows.

Proposition 4.6. Let c ∈ PC(Ṙ). Then

Rτ cI Rτ → c(−∞)χ− + c(+∞)χ+ as τ → ∞,

Rτ cI Sτ = 0,

S−τ cI Rτ = 0,

S−τ cI Sτ → c(−∞)χ− + c(+∞)χ+ as τ → ∞.

Proof. Let u ∈ Lp(R). Then

(Rτ cI Rτu)(x) =





c(τ − x)u(x) if 0 < x < τ,
c(−τ − x)u(x) if −τ < x < 0,
0 if |x| > τ.

Assume that the support of c is contained in R
+. Given any u ∈ Lp(R), we must then prove

that ‖(Rτ cI Rτ − c(+∞)χ+)u‖ → 0. Let m = maxx |c(x) − c(+∞)|. For any ǫ > 0 there
exists τ1 such that

|c(τ) − c(+∞)| < ǫ and

∫ +∞

τ
|u(x)|p dx < ǫ for τ ≥ τ1.
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Put τ0 = 2τ1. Then, for τ ≥ τ0,

‖(Rτ cI Rτ − c(+∞)χ+)u‖
p

=

∫ τ

0
|(c(τ − x)− c(+∞))u(x)|p dx+

∫ +∞

τ
|c(+∞)u(x)|p dx

=

∫ τ−τ1

0
|(c(τ − x)− c(+∞))u(x)|p dx+

∫ τ

τ−τ1

|(c(τ − x)− c(+∞))u(x)|p dx

+

∫ +∞

τ
|c(+∞)u(x)|p dx ≤ ǫp

∫ τ−τ1

0
|u(x)|p dx+ (mp + c(+∞)p)ǫ,

which finishes the proof of the first assertion. The proofs of the second and third assertion
are immediate. For the last assertion, note that

(S−τ cI Sτu)(x) =

{
c(x+ τ)u(x) if x > 0
c(x− τ)u(x) if x < 0

and use a reasoning similar to the one above.

Recall recall that ã(x) := a(−x). The assertions in the following proposition can be easily
proved by writing the operators explicitly.

Proposition 4.7. The following relations hold for a ∈ PCp(Ṙ):

Rτχ±W
0(a)χ±Rτ = Pτχ±W

0(ã)χ±Pτ ,

Rτχ±W
0(a)χ±Sτ = Pτχ±JW

0(a)χ± ,

S−τχ±W
0(a)χ±Rτ = χ±W

0(a)Jχ±Pτ ,

S−τχ±W
0(a)χ±Sτ = χ±W

0(a)χ± ,

Proposition 4.8. The following strong limits hold for a ∈ PCp(Ṙ), when τ → ∞:

Rτχ±W
0(a)χ∓Rτ → 0,

Rτχ±W
0(a)χ∓Sτ → 0,

S−τχ±W
0(a)χ∓Rτ → 0,

S−τχ±W
0(a)χ∓Sτ → 0.

Proof. All assertions are similar, and we will only prove the first. Define the operator R′
τ

on Lp(R) by

(R′
τu)(x) :=





u(2τ − x) if 0 < x < τ
u(−2τ − x) if −τ < x < 0
0 if |x| > τ

It is easy to see that ‖R′
τ‖ = 1 and R′

τ → 0.
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If x < 0 or x > τ the function Rτχ+W
0(a)χ−Rτu gives the value 0. For 0 < x < τ we

have

(Rτχ+W
0(a)χ−Rτu)(x)

=
1

2π

∫ +∞

−∞

e−i(τ−x)ξa(ξ)

∫ 0

−τ
eiξyu(−τ − y) dy dξ

=
1

2π

∫ +∞

−∞

e−i(−(2τ−x))(−ξ)a(ξ)

∫ 0

−τ
ei(−ξ)y′u(y′) dy′ dξ,

hence
Rτχ+W

0(a)χ−Rτ = R′
τJχ−W

0(ã)χ−Pτ

which converges strongly to zero. An alternate way to prove these results would be to use
Lemma 4.4. That technique is used below, in the proof of Theorem 4.9.

Let A ∈ L(Lp(R)). If the strong limit

s-lim
τ→+∞

Zτ

[
Rs

S−s

]
A
[
Rs Ss

]
Z−1
τ

exists for some s ∈ R, we denote it by Ys,∞(A). Further we write a(s+) (resp. a(s−)) for the
limit of the function a at s from the right-hand (resp. left-hand) side. By a(−s±) we denote
the limits a((−s)±).

Theorem 4.9. Let a ∈ PCp(Ṙ), c ∈ PC(Ṙ), and K a compact operator. Then the strong
limits Ys,∞(cI), Ys,∞(W 0(a)), and Ys,∞(K) exist for all s > 0 and

Ys,∞(cI) =

[
c(−s+)χ− + c(s−)χ+ 0

0 c(−s−)χ− + c(s+)χ+

]
(5)

Ys,∞(W 0(a)) =

[
χ+W

0(ã∞)χ+I + χ−W
0(ã∞)χ−I χ+W

0(ã∞)χ−J + χ−W
0(ã∞)χ+J

χ+W
0(a∞)χ−J + χ−W

0(a∞)χ+J χ+W
0(a∞)χ+I + χ−W

0(a∞)χ−I

]

(6)

Ys,∞(J) =

[
J 0
0 J

]
, Ys,∞(K) = 0, (7)

where a∞ := a(−∞)χ− + a(+∞)χ+ .

Proof. For the multiplication operator cI, the assertion follows from the identities

(ZτRs cI RsZ
−1
τ u)(x) =





c(s − x/τ)u(x) if 0 < x < sτ

c(−s− x/τ)u(x) if − sτ < x < 0

0 if |x| > sτ

,

(ZτS−s cI SsZ
−1
τ u)(x) =

{
c(s+ x/τ)u(x) if x > 0

c(−s+ x/τ)u(x) if x < 0

in a similar way as in the proof of Proposition 4.6. For the result for the convolution operator
W 0(a), we use the decomposition

W 0(a) = χ+W
0(a)χ+I + χ+W

0(a)χ−I + χ−W
0(a)χ+I + χ−W

0(a)χ−I.
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The values of Ys,∞(χ+W
0(a)χ+I) and Ys,∞(χ−W

0(a)χ−I) follow from propositions 4.7 and
4.8. Next we will prove that Ys,∞(χ+W

0(a)χ−I) = 0 and Ys,∞(χ−W
0(a)χ+I) = 0. Using

the identities in Lemma 4.4, we get

Rsχ+W
0(a)χ−Rs = Jχ−V−sχ+W

0(a)Jχ+Vsχ−

= χ+Vsχ−W
0(ã)χ+Vsχ−

= χ+Vsχ−VsW
0(ã)V−sχ+Vsχ−

= χ+Vsχ−VsW
0(ã)χ−Ps

= χ+Vsχ−VsQsW
0(ã)χ−Ps.

Multiplying on the left and right by Zτ and Z−1
τ , respectively, we obtain

ZτQsW
0(ã)χ−PsZ

−1
τ → 0 strongly,

while the operators Zτχ+Vsχ−VsZ
−1
τ are uniformly bounded. Thus the product converges

strongly to zero. Similarly, one obtains

Rsχ+W
0(a)χ−Ss = Jχ−V−sχ+V−sQsW

0(a)χ− ,

and the same reasoning applies. Regarding S−sχ+W
0(a)χ−Rs, we write

S−sχ+W
0(a)χ−Rs = χ+W

0(a)χ−QsV−sχ−V−sχ+J.

Because W 0(a) is an operator of local type, the operator χ+W
0(a)χ−Qs is compact. Thus

S−sχ+W
0(a)χ−Rs is compact, and the result follows from Lemma 4.5 by [11, Lemma 1.4.6].

A similar reasoning can be used for

S−sχ+W
0(a)χ−Ss = χ+V−sW

0(a)V−sχ−

= χ+V−sχ+QsW
0(a)Qsχ−V−sχ− .

Thus Ys,∞

(
χ+W

0(a)χ−I
)
= 0. The proof for Ys,∞

(
χ−W

0(a)χ+I
)
is the same.

The third identity is immediate, and the fourth is easily proved using Lemma 4.5 and [11,
Lemma 1.4.6].

We introduce now the Fourier image equivalents of the operators defined in (3) and (4).
For τ > 0, define

RF
τ := F−1RτF, SF

τ := F−1SτF and SF
−τ := F−1S−τF.

Proposition 4.10. The operators RF
τ , S

F
τ and SF

−τ are uniformly bounded on Lp(R), and
the results of Lemma 4.1, with exception of those related to the norms, remain true if Rτ , Sτ

and S−τ are substituted by their corresponding Fourier images.

Proof. Applying Lemma 4.4 one obtains

RF
τ = F−1RτF

= F−1(χ−Rτ + χ+Rτ )F

= F−1(Jχ+Vτχ− + Jχ−V−τχ+)F

= JF−1χ+F F−1VτF F−1χ−F + JF−1χ−F F−1V−τF F−1χ+F

= JW 0(χ+)U−τW
0(χ−) + JW 0(χ−)UτW

0(χ+).

10



Since all involved operators are bounded on Lp(R) and ‖Uτ‖ = 1, the result follows. The
proofs for SF

τ and SF
−τ are similar. The proof of the last assertion is straightforward.

Let A ∈ B(Lp(R)). If the strong limit

s-lim
τ→+∞

Z−1
τ

[
RF

t

SF
−t

]
A
[
RF

t SF
t

]
Zτ

exists for some t ∈ R, we denote it by Y∞,t(A).

Theorem 4.11. Let a ∈ PCp(Ṙ), c ∈ PC(Ṙ) and K a compact operator. Then the strong
limits Y∞,t(cI) and Y∞,t(W

0(a)) exist for all t > 0, and

Y∞,t(cI) =

[
χF

+
c̃∞χF

+
+ χF

−
c̃∞χF

−
χF

+
c̃∞χF

−
J + χF

−
c̃∞χF

+
J

χF
+
c∞χF

−
J + χF

−
c∞χF

+
J χF

+
c∞χF

+
+ χF

−
c∞χF

−

]
(8)

Y∞,t(W
0(a)) =

[
W 0

(
a(−t+)χ− + a(t−)χ+

)
0

0 W 0
(
a(−t−)χ− + a(t+)χ+

)
]

(9)

Y∞,t(J) =

[
J 0
0 J

]
, Y∞,t(K) = 0, (10)

where c∞ = c(−∞)χ− + c(+∞)χ+ and χF
±
:= F−1χ±F .

Proof. It is easy to check that Z−1
τ F−1 = F−1Zττ

1−2/p and FZτ = τ−1+2/pZ−1
τ F . Then

the proofs for the assertions can be obtained as in the proof of Theorem 4.9, taking into
account Lemma 4.3.

5 Localization

Let C̃(Ṙ) and C̃p denote the sets of all even functions in C(Ṙ) and Cp, respectively, and write
L for the set of all operators in B that commute with all operators fI and W 0(g) where
f ∈ C̃(Ṙ) and g ∈ C̃p modulo compact operators. Then L is a closed and inverse-closed
subalgebra of B, and L/K is a closed and inverse-closed subalgebra of the Calkin algebra
B/K, The cosets Φ(fI) := fI + K and Φ(W 0(g)) := W 0(g) + K with f ∈ C̃(Ṙ) and g ∈ C̃p

belong to the center of L/K. Let C denote the smallest closed (necessarily commutative)
subalgebra of L/K generated by these cosets.

Let R̄
+ denote the compactification of R+ by the point {∞}, i.e., R̄+ is homeomorphic

to [0, 1]. Then the maximal ideal space of C is homeomorphic to the subset MC := (R̄+ ×
{∞}) ∪ ({∞} × R̄

+) of the square R̄
+ × R̄

+, see [11, Section 5.7]. The value of the Gelfand
transform of an element Φ(fW 0(g)) ∈ C at the point (s, t) ∈ MC is f(s)g(t).

The elements of C can be explicitly described as follows.

Proposition 5.1. Every element of C can be uniquely written in the form Φ(γI+fI+W 0(g))
with γ ∈ C and f ∈ C̃(Ṙ) and g ∈ C̃p with f(∞) = g(∞) = 0. If γ 6= 0, then Φ(γI + fI +
W 0(g)) can be written as a product Φ(f ′W 0(g′)) with f ′ ∈ C̃(Ṙ) and g′ ∈ C̃p.
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Proof. Let C′ denote the set of all operators

γI + fI +W 0(g) +K (11)

where γ, f, g are as in the proposition and K is compact. Using Proposition 5.3.1 in [11] one
deduces that C′ is an algebra, whereas Lemma 5.4.2 in [11] can be used to show that C′ is
a closed algebra and that every element of that algebra has a unique representation in the
form (11) with γ, f, g, K as mentioned. The argument runs as follows, with the notation
from [11]: If A is an operator of the form (11), then the strong limit LU (A) of the sequence
UnAU−n exists and

LU(γI + fI +W 0(g) +K) = γI + fI.

Moreover, ‖LU (A)‖ ≤ ‖A‖. Thus, if (γnI + fnI +W 0(gn) +Kn) is a Cauchy sequence in C′,
then (γnI + fnI) is a Cauchy sequence in C̃(Ṙ), hence convergent. Using the shift operators
Vn from [11] in place of the Un one gets the convergence of the sequence (W 0(gn)), hence that
of (Kn). The limits γI + f , W 0(g) and K of these sequences belong to the corresponding
algebras; hence the limit γI + fI +W 0(g) +K of the sequence (γnI + fnI +W 0(gn) +Kn)
belongs to C′.

Consequently, every element of C′/K is of the form Φ(γI + fI +W 0(g)) with γ, f, g as
in the proposition. The first assertion follows since C′/K = C, as one easily checks.

Let now γ 6= 0 and f, g as above. Set f ′ := γ−1(f + γ) and g′ := g + γ. Then

f ′W 0(g′) = γ−1(f+γ)W 0(g+γ) = γ−1(γ2I+γfI+γW 0(g)+fW 0(g)) = γI+fI+W 0(g)+K

with a compact operator K due to Proposition 5.3.1 in [11] again. This settles the second
assertion.

Given (s, t) ∈ (R̄+ × {∞}) ∪ ({∞} × R̄
+), let Is,t denote the smallest closed two-sided

ideal of the quotient algebra L/K which contains the maximal ideal corresponding to the
point (s, t), and let ΦK

s,t refer to the canonical homomorphism from L/K onto the quotient

algebra LK
s,t := (L/K)/Is,t.

One cannot expect that the local algebras LK
s,t can be identified completely. But we will be

able to identify the smallest closed subalgebra AK
s,t of L

K
s,t which contains all cosets (aI)+Is,t

with a ∈ PC(Ṙ), (W 0(b)) + Is,t with b ∈ PCp and (J) + Is,t, and this identification will be
sufficient for our purposes.

We will identify the algebras AK
s,t by means of the family of the Y-homomorphisms. Note

that, by (7) and (10), the operators Y∞,y(A) and Yx,∞(A) depend only on the coset of the
operator A modulo K. Thus, the quotient homomorphisms

A+K 7→ Y∞,t(A) and A+K 7→ Ys,∞(A)

are well defined. We denote them again by Y∞,t and Ys,∞, respectively.
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6 Identification of the local algebras

6.1 The algebras AK
0,∞, AK

∞,0 and AK
∞,∞

The identification of the subalgebras AK
0,∞ and AK

∞,0 can be made as in [11, Section 5.7],
using the homomorphisms

Y0,∞(A) := s-lim
τ→∞

ZτAZ
−1
τ ;

Y∞,0(A) := s-lim
τ→∞

Z−1
τ AZτ .

Thus, the following descriptions of these algebras follow immediately from Propositions 5.7.2
and 5.7.3 in [11], whereas the identification of the algebra AK

∞,∞ comes from Proposition
5.7.8 in [11].

Proposition 6.1. The local algebra AK
0,∞ is isometrically isomorphic to the closed subalgebra

alg{I, χ+I, PR, J} of L(Lp(R+)), with the isomorphism given by ΦK
0,∞(A) 7→ Y0,∞(A). In

particular, for a ∈ PC(Ṙ) and b ∈ PCp,

ΦK
0,∞(aI) 7→ a(0−)χ−I + a(0+)χ+I,

ΦK
0,∞ (W (b)) 7→ b(−∞)W 0(χ−) + b(+∞)W 0(χ+),

ΦK
0,∞(J) 7→ J.

Proposition 6.2. The local algebra AK
∞,0 is isometrically isomorphic to the closed subalgebra

alg{I, χ+I, PR, J} of L(Lp(R+)), and the isomorphism is given by ΦK
∞,0(A) 7→ Y∞,0(A). In

particular, for a ∈ PC(Ṙ) and b ∈ PCp,

ΦK
∞,0(aI) 7→ a(−∞)χ−I + a(+∞)χ+I,

ΦK
∞,0 (W (b)) 7→ b(0−)W 0(χ−) + b(0+)W 0(χ+),

ΦK
∞,0(J) 7→ J.

Proposition 6.3. The local algebra AK
∞,∞ is generated by the commuting projections p =

ΦK
∞,∞(χ+I) and r = ΦK

∞,∞(W 0(χ+)) and by the flip j = ΦK
∞,∞(J). There is a symbol mapping

which assigns with e, p, j and r a matrix-valued function on {0, 1} by

(smb e)(x) =

[
1 0
0 1

]
, (smb p)(x) =

[
1 0
0 0

]
,

(smb j)(x) =

[
0 1
1 0

]
, (smb r)(x) =

[
x 0
0 1− x

]
.

Define the homomorphism Y∞,∞ as the composition smb ◦ ΦK
∞,∞.

6.2 The algebras AK
s,∞ for s > 0

We continue with describing the generators of the local algebras AK
s,∞ for s > 0.
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Proposition 6.4. The algebra AJ
s,∞ is generated by the identity e, by the projections p1 :=

ΦJ
s,∞(χ

]−s,0[
I), p2 := ΦJ

s,∞(χ
]0,s[

I), p3 := ΦJ
s,∞(χ

]s,∞[
I), r := ΦJ

s,∞(W 0(χ+)), and by the flip

j := ΦJ
s,∞(J).

Proof. For c ∈ PC(Ṙ), set

c′ := c(−s−) +
(
c(−s+)− c(−s−)

)
χ

]−s,0[
+

(
c(s−)− c(−s−)

)
χ

]0,s[
+

(
c(s+)− c(−s−)

)
χ

]s,+∞[
.

The function c− c′ is continuous at the points −s and s and takes the value 0 there. Given
ǫ > 0, choose a function fs,ǫ ∈ C̃(Ṙ) which takes the value 1 at the points −s, s and has its
support in ]−s − ǫ,−s + ǫ [ ∪ ] s − ǫ, s + ǫ [ . Then ΦJ

s,∞(fs,ǫI) is the identity in the local
algebra and

ΦJ
s,∞(cI − c′I) = ΦJ

s,∞(cI − c′I)ΦJ
s,∞(fs,ǫI) = ΦJ

s,∞

(
(cI − c′I)fs,ǫI

)
.

The norm of the latter expression can be made arbitrarily small by taking epsilon close to
zero. It follows that ΦJ

s,∞(cI) = ΦJ
s,∞(c′I) and

ΦJ
s,∞(c′I) = c(−s−)e+

(
c(−s+)− c(−s−)

)
p1 +

(
c(s−)− c(−s−)

)
p2 +

(
c(s+)− c(−s−)

)
p3.

For a ∈ PCp(Ṙ) one gets similarly ΦJ
s,∞(W 0(a)) = a(−∞)(e − r) + a(+∞)r.

In order to use the homomorphisms Ys,∞ to identify the local algebras, it is necessary to
characterize their image and to prove that they are invertible. Let Y represent the set of all
matrices [

A11A12

A21A22

]
where

A11, A22 ∈ Ep + EpJ + JEp + JEpJ,

A12, A21 ∈ Np +NpJ + JNp + JNpJ.
(12)

It is easy to check that Y is an algebra and that its generators are in the image of the the
homomorphism Ys,∞.

Proposition 6.5. The algebra Y is inverse-closed in B2×2.

Proof. We identify Lp
2(R) with Lp

4(R
+) via the mapping

(u, v) 7→ (χ+u, χ+Ju, χ+v, χ+Jv).

The above mapping defines an isomorphism between B2×2 and L
(
Lp
4(R

+)
)
, which induces

an isomorphism between the algebra Y and the algebra Y1 of all 4 × 4 matrices with the
structure 



E E N N
E E N N
N N E E
N N E E




with E representing elements in Ep and N elements in Np. Because Ep is inverse-closed in
L
(
Lp(R+)

)
(the generators have thin spectra, see [11, Corollary 1.2.32]), the algebra E4×4

p is
inverse-closed in L

(
Lp
4(R

+)
)
by [11, Proposition 1.2.35]. That the algebra Y1 is inverse-closed
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in E4×4
p can then be shown by employing the explicit formula for the inverse of a matrix with

commuting entries via determinants.

We proceed with finding an inverse for the homomorphism Ys,∞. A natural candidate for
this inverse is the mapping

Y
′
s : Y → B, A 7→

[
Rs Ss

]
A

[
Rs

S−s

]
,

but it is not clear, a priori, if even the definition makes sense, because we are not dealing
with an homomorphism. The next two results, prove that indeed this is the right choice.

Theorem 6.6. The image of Y under the mapping Y
′
s is in L.

Proof. Let A be an element of the form (12). Then

Y
′
s(A) = RsA11Rs +RsA12S−s + SsA21Rs + SsA22S−s. (13)

We show that each of those four terms commutes with fI for f ∈ C̃(Ṙ) and with W 0(g) for
g ∈ C̃p modulo compact operators.

First consider the commutator [fI,RsA11Rs]. For f ∈ C̃(Ṙ) and s > 0, define

f̂s(x) :=





f(s− x) if x ∈ [0, s],

f(−s− x) if x ∈ [−s, 0[,

f(0) if x > s.

Clearly, f̂s ∈ C̃(Ṙ) and
RsfI = f̂sRs, Rsf̂sI = fsRs.

Because each of the terms in A11 is a operator that commutes modulo compact operators
with functions in C̃(Ṙ) one has

fRsA11Rs = Rsf̂sA11Rs = RsA11f̂sRs +K = RsA11Rsf +K

where K is a compact operator.

For the commutator [fI, SsA22S−s], define

f̌s(x) :=

{
f(x+ s) if x ≥ 0,

f(x− s) if x < 0

where f ∈ C̃(Ṙ) and s > 0. Then f̌s ∈ C̃(Ṙ) and

S−sfI = f̌sS−s, Ssf̌sI = fsSs.

Hence, as above, fSsA22S−s − SsA22S−sf+ compact.

It remains to consider the “middle” terms in (13). For symmetry reasons it is sufficient
to consider one of them, say the commutator [fI, SsA21Rs]. Write f as f(±s) + f̆ with
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f̆(±s) = 0. Since f(±s)I commutes with every operator, we can assume without loss of

generality that f satisfies f(±s) = 0. Then, writing f̂s as above, RsfI = f̂sRs =
̂̂
fsRs, where

̂̂
fs(x) :=





f̂s(x) if x ∈ [−s, s],

f̂s(s)(2s − |x|)/s if |x| ∈ ]s, 2s],

0 if |x| > 2s.

In particular,
̂̂
fs(0) =

̂̂
fs(x)(±∞) = 0. From [11, Proposition 5.3.2(i)] we then infer that

̂̂
fsM

0(b) and M0(b)
̂̂
fs are compact when M0(b) is a Mellin convolution with symbol b ∈ C̃p

and b(±∞) = 0, hence when M0(b) is an arbitrary element of Np (see [11, Proposition
4.2.17(i)]). Consequently, if f(±s) = 0, then

SsA21RsfI ∈ K. (14)

We will show that if f(±s) = 0 then

fSsA21Rs ∈ K

also. Indeed, as above, fSs = Ssf̌sI. Write f̌s as a sum f̌ o
s + f̌ oo

s where f̌ o
s has a compact

support and the support of f̌ oo
s is contained in ]−∞−2s]∪[2s,+∞[. Then f̌ o

s (0) = f̌ o
s (±∞) =

0, and the same argument used for (14) gives

Ssf̌
o
sA21Rs ∈ K.

For f̌ oo
s we argue as follows. By [11, Proposition 5.3.2(ii)-2],

Ssf̌
oo
s A21Rs − SsA21f̌

oo
s Rs ∈ K.

But f̌ oo
s Rs = 0, since supp f̌ oo

s ⊆ R \ [−2s, 2s] and supp Rsu ⊆ [−s, s] for every u ∈ Lp(R).
Hence,

fISsA21Rs = Ssf̌
o
sA21Rs + Ssf̌

oo
s A21Rs

is compact. We have thus so far proved that [Y(A), fI] ∈ K.
Now we consider the commutators with the Fourier convolution W 0(g). First we show

RsW
0(g) −W 0(g̃)Rs ∈ K, (15)

where g̃(x) = g(−x). Write

RsW
0(g) = RsW

0(g)RsRs +RsW
0(g)SsS−s. (16)

Now decompose the part RsW
0(g)Rs as

RsW
0(g)Rs = Rsχ+W

0(g)χ+Rs +Rsχ+W
0(g)χ−Rs

+Rsχ−W
0(g)χ+Rs +Rsχ−W

0(g)χ−Rs.
(17)

The operators χ±W
0(g)χ∓ = χ±W

0(g)Jχ± are Hankel type operators with a continuous

generating function in C̃p and thus compact. So

RsW
0(g)Rs = Rsχ+W

0(g)χ+Rs +Rsχ−W
0(g)χ−Rs + compact

= Psχ+W
0(g̃)χ+Ps + Psχ−W

0(g̃)χ−Ps + compact.
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Using a decomposition as in (17) again, one finally obtains

RsW
0(g)Rs − PsW

0(g̃)Ps ∈ K. (18)

Next consider the operators RsW
0(g)Ss,

RsW
0(g)Ss = Rsχ+W

0(g)χ+Ss +Rsχ−W
0(g)χ−Ss

+Rsχ−W
0(g)χ+Ss +Rsχ+W

0(g)χ−Ss.

The operators in the second line are compact again. For the operators in the first line one
has

Rsχ+W
0(g)χ+Ss = RsW (g)Ss = PsH(g̃),

which again is compact. Hence, RsW
0(g)Ss is compact. So, from (16) and (18) we conclude

that
RsW

0(g)− PsW
0(g̃)Rs ∈ K. (19)

Moreover, multiplying (16) by Qs = I − Ps, we get that RsW
0(g)Qs is compact, whence

RsW
0(g) = RsW

0(g)Ps + compact. As everything works in Lp(R) for every 1 < p < ∞, one
can take adjoints and obtain

W 0(g)Rs − PsW
0(g)Rs ∈ K,

in particular
PsW

0(g̃)Rs −W 0(g̃)Rs ∈ K.

Together with (19), this gives (15).
Finally, consider W 0(g)Ss. We claim that

W 0(g)Ss − SsW
0(g) ∈ K. (20)

Write
W 0(g)Ss = RsRsW

0(g)Ss + SsS−sW
0(g)Ss.

The operator RsW
0(g)Ss is compact, as seen above. For the second term we get (using

similar arguments from above)

SsS−sW
0(g)Ss = SsS−sχ+W

0(g)χ+Ss + SsS−sχ−W
0(g)χ−Ss + compact

= Ssχ+W
0(g)χ+ + Ssχ−W

0(g)χ− + compact

= SsW
0(g) + compact.

So we proved (20), and by taking adjoints we obtain

W 0(g)S−s − S−sW
0(g) ∈ K. (21)

Consider now Y
′
s(A) as in (13). The identities (15), (20) and (21) allow to commute W 0(g)

Rs, Ss and S−s when g ∈ C̃p. Hence it remains to show thatW 0(g) commutes with the entries
of the matrix A. This follows from the fact that the commutators [χ+W

0(g)χ+ ,M
0(b)] are

compact for g ∈ C̃p and b ∈ Cp(R) by [11, Proposition 5.3.4 (ii)].
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Theorem 6.7. Let s > 0. The homomorphism Ys,∞ is an isomorphism between AK
s,∞ and

the algebra Y.

Proof. The mapping Y
′
s : Y → L is not an homomorphism. In fact, it easy to see that

Y
′
s,∞(A)Y′

s,∞(B)− Ys,∞(AB)

= RsEQsERs +RsEQsNS−s + SsNQsERs + SsNQsNS−s (22)

where, in each appearance, E and N represent (possibly different) elements in Ep + EpJ +
JEp + JEpJ and Np + NpJ + JNp + JNpJ , respectively. We prove next that the above
operators are in the ideal Is,∞ +K.

Consider first E = χ+I. In this case we immediately obtain

RsEQs = 0 and QsERs = 0. (23)

For E = W (sgn), let fs ∈ C̃(Ṙ) denote a function which takes the value 1 at the points
{−s, s} and the value 0 in a neighborhood of 0, with fs = f+

s + f−
s where f±

s have sup-
port in the positive/negative half-axis, respectively. The multiplication operator fsI belongs
to the identity coset in the local algebra LK

s,∞. It is also well known that RsW (a)Qs =
PsRsχ+W

0(a)χ+SsS−s = Psχ+W
0(a)χ−JS−s for a ∈ Mp (see for instance [3]). Then

fsRsW (sgn)Qs = fsPsχ+W
0(sgn)χ−JS−s

= Psfsχ+W
0(sgn)χ−JS−s

= Psχ+f
+
s W 0(sgn)χ−JS−s

= Psχ+W
0(sgn)f+

s χ−JS−s +K = K

(24)

with K a compact operator. Thus, by (23) and (24), RsEQs is in the ideal Is,∞ + K
for any E ∈ Ep. Because J commutes with Rs and Qs, the result also holds for E ∈
Ep + EpJ + JEp + JEpJ .

Now we turn our attention to the operator QsNS−s. We consider the more general
operator QsES−s with E ∈ Ep + EpJ + JEp + JEpJ . It is necessary that the function fs,
besides the properties above, satisfies fs(x) = 0 for |x| ≥ 2s. Then

QsES−sfs = QsEf̃sS−s = Qsf̃sES−s +K = K

with K a compact operator.
We have thus proved that elements of the form (22) with E and N substituted by gener-

ators of the algebra Ep belong to the ideal Is,∞ + K. Note now that, for any A,B ∈ Ep one
has

RsABQs = RsA(RsRs +Qs)BQs = RsARs(RsBQs) + (RsAQs)BQs

QsABS−s = QsAS−sSsBS−s = (QsAS−s)SsBS−s.

By induction the result is valid for any polynomial of the generators. As any element E ∈ Ep
can be approximated by polynomials of the generators and the ideal is closed, the result is
true for any element of the form (22).

Let us denote by the same symbol Y′
s the composition of Y′

s : Y → L with the canonical
homomorphism L → LK

s,∞. We proved the mapping Y
′
s : Y → LK

s,∞ is an homomorphism.

It is easy to see that Y′
s indeed maps the generators of Y to the generators of AK

s,∞. Then

Y
′
s (Ys,∞(A)) = A for any A ∈ AK

s,∞, and the result is proved.
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6.3 The algebras AK
∞,t for t > 0

The structure of this section is similar to the previous one, and many results in this section
can be proved as their counterparts. So we often omit the details.

We start with describing the generators of the local algebras. The proof runs parallel to
that of Proposition 6.4.

Proposition 6.8. The algebra AJ
∞,t is generated by the identity e, the projections p :=

ΦJ
∞,t(χ+I), r1 := ΦJ

∞,t(W
0(χ

]−t,0[
)), r2 := ΦJ

∞,t(W
0(χ

]0,t[
)), r3 := ΦJ

∞,t(W
0(χ

]t,∞[
)) and the

flip j := ΦJ
∞,t(J).

The image of the homomorphism Y∞,t can be characterized as follows. Consider the
algebras EF

p introduced in Section 2, and let YF represent the set of all matrices

[
A11A12

A21A22

]
where

A11, A22 ∈ EF
p + EF

p J + JEF
p + JEF

p J,

A12, A21 ∈ N F
p +N F

p J + JN F
p + JN F

p J.
(25)

It is easy to check that YF is an algebra and that its generators are in the image of the
homomorphism Y∞,t. By Theorem 3.1 and its corollary, the algebra YF is isomorphic to the
algebra Y studied in the previous section.

Our next goal is to find the inverse of the homomorphism Y∞,t. The natural candidate
for this inverse is the mapping

X
F
t : YF → B, A 7→

[
RF

t SF
t

]
A

[
RF

t

SF
−t

]

Theorem 6.9. Let t > 0. Then the image of the mapping X
F
t is in L.

Proof. Let A be an element of the form (25). Then

X
F
t (A) = RF

t A11R
F
t +RF

t A12S
F
−t + SF

t A21R
F
t + SF

t A22S
F
−t.

We have to show that each of the four terms in this sum commutes with fI for f ∈ C̃(Ṙ)
and with W 0(g) for g ∈ C̃p modulo compact operators. Consider first the case p = 2. Then

X
F
t (A) = F−1

(
RtFA11F

−1Rt +RtFA12F
−1S−t + StFA21F

−1Rt + StFA22F
−1S−t

)
F,

with each element FAijF
−1 belonging to E2. But these operators are then the same that

appear in the proof of Theorem 6.6. And because C̃2 = C̃(Ṙ), the operators fI andW 0(fI) =
F−1fF are Fourier images of one another. So one can use the same proofs as in Theorem 6.6
to show that the commutators are compact and the result for p = 2 follows. Consider now
1 < p < ∞. Let g be a piecewise linear function on Ṙ with bounded variation. Then the
commutators

fXF
t (A)− X

F
t (A)fI and W 0(g)XF

t (A)− X
F
t (A)W

0(g)

are bounded for any p and compact for p = 2. Then, by the Krasnoselskii interpolation
theorem (see [8, Section 3.4]), these commutators are compact for any p. As any function
g ∈ PCp can be approximated in the Mp-norm by piecewise linear functions, the result
follows.

The following result can be proved in the same spirit by referring to Theorem 6.7 and
employing Krasnoselskii’s interpolation theorem.
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Theorem 6.10. Let t > 0. The homomorphism Y∞,t is an isomorphism between AK
∞,t and

the algebra YF .

7 Discussion and Conclusions

Let 1 < p < ∞ and A be the smallest closed subalgebra of L (Lp(R)) containing all operators
of multiplication aI with a ∈ PC(Ṙ), all convolution operators W 0(b) with b ∈ PCp and the
flip J . We proved the following result:

Theorem 7.1. If A ∈ A, then A is Fredholm on Lp(R) if and only if all operators Ys,t(A),
(s, t) ∈ ([0,∞] × {∞}) ∪ ({∞} × [0,∞]), are invertible.

In [11, Propositions 5.7.5 and 5.7.6] it was proved that the local algebras AK
s,∞ and

AK
∞,t are isomorphic to the matrix algebra [alg{I, χ+I, PR}]

2×2. This was done by using
homomorphisms that are not well defined on the algebra containing the flip J , and then the
flip was included by doubling the dimension. The new homomorphisms introduced in the
present paper, which are compatible with the flip, could thus be argued to give nothing new,
regarding the analysis of the Calkin algebra A. In fact, the homomorphisms presented and
studied here are a new tool that can be used to study more involved algebras. So we hope
that this paper can provide a solid basis for some future work.

In addition, in the present study of the Banach algebra A, we have discussed isomorphisms
between the following pairs of algebras: Ep and EF

p , AK
s,∞ and Y, and AK

∞,t and YF . Joining
these results to [11, Propositions 5.7.5 and 5.7.6], we arrive at the following Corollary.

Corollary 7.2. The matrix algebras Y, YF and [alg{I, χ+I, PR}]
2×2 are isomorphic.
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equations. Birkhäuser-Verlag, Basel, 1991.

[10] S. Roch, P.A. Santos, and B. Silbermann. A sequence algebra of finite sections, convolu-
tion and multiplication operators on Lp(R). Numer. Funct. Anal. Optim., 31(1):45–77,
2010.

[11] S. Roch, P.A. Santos, and B. Silbermann. Non-commutative Gelfand theories. Springer,
2011.

[12] E.C. Titchmarsh. Introduction to the theory of Fourier integrals. Oxford University
Press, Oxford, 1967. (first edition, 1948).

Authors’ addresses:

Steffen Roch, Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgarten-
strasse 7, 64289 Darmstadt, Germany
roch@mathematik.tu-darmstadt.de
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