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Abstract

Let Γ be a finitely generated discrete exact group. We consider op-
erators on l2(Γ) which are composed by operators of multiplication by a
function in l∞(Γ) and by the operators of left-shift by elements of Γ. These
operators generate a C∗-subalgebra of L(l2(Γ)) the elements of which we
call band-dominated operators on Γ. We study the stability of the finite
sections method for band-dominated operators with respect to a given
generating system of Γ. Our approach is based on the equivalence of the
stability of a sequence and the Fredholmness of an associated operator,
and on Roe’s criterion for the Fredholmness of a band-dominated operator
on a exact discrete group, which we formulate in terms of limit operators.
Special emphasis is paid to the quasicommutator ideal of the algebra gen-
erated by the finite sections sequences and to the stability of sequences in
that algebra. For both problems, the sequence of the discrete boundaries
plays an essential role.

1 Introduction

Let Γ be a countable (not necessarily commutative) discrete group. We write the
group operation as multiplication and let e stand for the identity element of Γ.
For each non-empty subset X of Γ, let l2(X) stand for the Hilbert space of all
functions f : X → C with

‖f‖2 :=
∑

x∈X

|f(x)|2 < ∞.

For X = ∅, we define l2(X) as the space {0} consisting of the zero element only.
We consider l2(X) as a closed subspace of l2(Γ) in a natural way. The orthogonal
projection from l2(Γ) to l2(X) will be denoted by PX . Thus, PΓ and P∅ are the
identity and the zero operator, respectively. For s ∈ Γ, let δs be the function on Γ
which is 1 at s and 0 at all other points. The family (δs)s∈Γ forms an orthonormal
basis of l2(Γ), to which we refer as the standard basis.

1



The left regular representation L : Γ → L(l2(Γ)) of Γ associates with every
group element r a unitary operator Lr such that Lrδs = δrs for s ∈ Γ. Since
δrs(t) = δs(r

−1t), one has (Lru)(t) = u(r−1t) for every u ∈ l2(Γ). Hence, r 7→ Lr

is a group isomorphism. Further, we associate with each function a ∈ l∞(Γ)
the operator aI of multiplication by a, i.e., (au)(t) = a(t)u(t) for u ∈ l2(Γ).
The smallest closed subalgebra of L(l2(Γ)) which contains all operators Lr with
r ∈ Γ and aI with a ∈ l∞(Γ) is called the algebra of the band-dominated opera-

tors on Γ. We denote it by BDO(Γ). Besides BDO(Γ) we consider the smallest
closed subalgebra Sh(Γ) of L(l2(Γ)) which contains all ”shift” operators Lr with
r ∈ Γ. Clearly, the algebras BDO(Γ) and Sh(Γ) are symmetric and, hence, C∗-
subalgebras of L(l2(Γ)).

Let Y = (Yn)∞n=1 be an increasing sequence of finite subsets of Γ with ∪n≥1Yn =
Γ. A sequence (An)∞n=1 of operators An : im PYn

→ im PYn
is called stable if there

is an n0 ≥ 1 such that the operators An are invertible for n ≥ n0 and the
norms of their inverses A−1

n are bounded uniformly with respect to n ≥ n0. Note
that stability is crucial for many questions in asymptotic numerical analysis. It
dominates topics like the approximate solution of operator equations and the
approximate spectral and pseudo-spectral theory. For a detailed overview see [5].

Let A ∈ L(l2(Γ)). The operators PYn
APYn

: im PYn
→ im PYn

are called the
finite sections of A with respect to Y . In this paper, we are interested in the
stability of the finite sections sequence (PYn

APYn
) when A ∈ BDO(Γ). The finite

sections method for band-dominated operators on the group Z of the integers is
quite well understood, see [10, 11, 12, 13]. Finite sections for operators in Sh(Γ)
with an arbitrary exact countable discrete group Γ were considered in [15].

Our approach to study the stability of the finite sections method for operators
in BDO(Γ) is close to that in [13, 15]. We make use of the fact that a sequence
(An) is stable if and only if an associated operator has the Fredholm property. In
case the An are the finite sections of a band-dominated operator, the associated
operator is a band-dominated operator again. So the desired stability result will
finally follow from Roe’s criterion for the Fredholm property of band-dominated
operators in [17]. We thus start with recalling Roe’s result in Section 2.

In Section 3, we provide an algebraic frame to study the stability of operator
sequences. We introduce the C∗-algebra SY(BDO(Γ)) generated by all finite
sections sequences (PYn

APYn
) with A ∈ BDO(Γ) and show that this algebra splits

into the direct sum of BDO(Γ) and of an ideal which can be characterized as the
quasicommutator ideal of the algebra. A main result is that the sequence (P∂Yn

)
of the discrete boundaries always belongs to the algebra SY(BDO(Γ)), and that
this sequence already generates the quasicommutator ideal. This surprising fact
has been already observed in other settings, for example for the algebras S(T(C))
of the finite sections method for the Toeplitz operators (a classical result, closely
related to the present paper) and SY(Sh(Γ)) (see [6] for the group Γ = Zn and
[15] for the general case), but also for the finite sections algebra S(ON ) related
with a concrete representation ON of the Cuntz algebra (see [14]).
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The final Section 4 is devoted to the prove of the stability theorem. We
employ Roe’s criterion using the limit operators language from [11]. The main
task is to compute all (or at least a sufficient number of) limit operators of the
band-dominated operator associated with a finite sections sequence.

The work on this paper was supported by CONACYT Project 81615 and
DFG Grant Ro 1100/8-1.

2 The algebra of the band-dominated operators

We start with some alternate characterizations of band-dominated operators and
the algebra generated by them. Consider functions k ∈ l∞(Γ × Γ) with the
property that there is a finite subset Γ0 of Γ such that k(t, s) = 0 whenever
ts−1 6∈ Γ0. Then

(Au)(t) :=
∑

s∈Γ

k(t, s) u(s), t ∈ Γ, (1)

defines a linear operator A on the linear space of all functions u : Γ → C, since
the occurring series is finite for every t ∈ G. We call operators of this form band

operators and the set Γ0 a band-width of A.

Proposition 2.1 A operator in L(l2(Γ)) is a band operator if and only if it can

be written as a finite sum
∑

biLti where bi ∈ l∞(Γ) and ti ∈ Γ.

Proof. Let A be an operator of the form (1) and let Γ0 := {t1, t2, . . . , tr} be a
finite subset of Γ such that k(t, s) = 0 if ts−1 6∈ Γ0 (or, equivalently, if s is not of
the form t−1

i t for some i). Thus,

(Au)(t) =

r
∑

i=1

k(t, t−1
i t) u(t−1

i t) for t ∈ Γ.

Set bi(t) := k(t, t−1
i t). The functions bi are in l∞(Γ), and one has

A =
r

∑

i=1

biLti . (2)

Conversely, one easily checks that each operator Lt with t ∈ Γ is a band operator
with band width {t} and that each operator bI with b ∈ l∞(Γ) is a band operator
with band width {e}. Since the band operators form an algebra, each finite sum
∑

biLti is a band operator.

It is easy to see that the representation of a band operator on Γ in the form (2)
with bi 6= 0 is unique. The functions bi are called the diagonals of the operator A.
In particular, operators in Sh(Γ) can be considered as band-dominated operators
with constant coefficients.
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It is easy to see that the band operators form a symmetric algebra of bounded
operators on l2(Γ). The norm closure of that algebra is just the algebra BDO(Γ),
and this is why we call the elements of that algebra band-dominated operators.

The algebras BDO(Γ) and Sh(Γ) occur at many places and under different
names in the literature. The algebra Sh(Γ) is ∗-isomorphic to the reduced group

C∗-algebra C∗
r (Γ) in a natural way (see Section 2.5 in [3]). It can thus be consid-

ered as a concrete faithful representation of C∗
r (Γ). Note also that the reduced

group C∗-algebra coincides with the universal group C∗-algebra C∗(Γ) if the
group Γ is amenable. For this and further characterizations of amenable groups,
see Theorem 2.6.8 in [3]. The algebra BDO(Γ) occurs in coarse geometry and is
known there as the uniform Roe algebra or the reduced translation algebra ([16]).
It can be identified with the reduced crossed product of the C∗-algebra l∞(Γ)
with the group Γ when the group action α : Γ → Aut l∞(Γ) is specified as

(αgf)(t) := f(g−1t)

for f ∈ l∞(Γ) and g, t ∈ Γ. Note that amenability of Γ is not needed for
the following result. But if Γ is amenable, then the reduced crossed product
l∞(Γ)×αr Γ coincides with the full crossed product l∞(Γ)×α Γ (see [7], Theorem
7.7.7 and [4], Corollary VII.2.2).

Theorem 2.2 The reduced crossed product l∞(Γ)×αr Γ of the C∗-dynamical sys-

tem (l∞(Γ), Γ, α) is ∗-isomorphic to BDO(Γ).

Proof. Let l2(Γ, l2(Γ)) stand for the Hilbert space of all functions x : Γ → l2(Γ)
with

∑

s∈Γ ‖x(s)‖2 < ∞. For a ∈ l∞(Γ), let π(a) denote the operator aI of
multiplication by a on l2(Γ) and define an operator π̃(a) on l2(Γ, l2(Γ)) by

(π̃(a)x)(s) := π(α−1
s (a))(x(s)).

For g ∈ Γ, let L̃g be the operator on l2(Γ, l2(Γ)) defined by

(L̃gx)(s) := x(t−1s).

The pair (π̃, L̃) constitutes a covariant representation of the C∗-dynamical system
(l∞(Γ), Γ, α) on l2(Γ, l2(Γ)). By the definition of the reduced crossed product (see
[2, 4, 7], for instance), l∞(Γ)×αr Γ is the smallest C∗-subalgebra of L(l2(Γ, l2(Γ)))
which contains all operators π̃(a) and L̃g with a ∈ l∞(Γ) and g ∈ Γ. One can
show ([7], Theorem 7.7.5) that each faithful representation (π′, H) of l∞(Γ) in
place of the representation (π, l2(Γ)) leads to the same algebra.

We identify l2(Γ, l2(Γ)) with l2(Γ × Γ) via the mappings

J : l2(Γ, l2(Γ)) → l2(Γ × Γ), (Jx)(s, n) := (x(s))(n),

J−1 : l2(Γ × Γ) → l2(Γ, l2(Γ)), ((J−1y)(s))(n) := y(s, n)
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and determine the corresponding operators

π̂(a) := Jπ̃(a)J−1 and L̂g := JL̃gJ
−1.

A straightforward calculation gives

(π̂(a)x)(s, n) = a(sn)x(s, n) and (L̂gx)(s, n) = x(g−1s, n). (3)

Let C refer to the smallest C∗-subalgebra of L(l2(Γ × Γ)) which contains all
operators π̂(a) and L̂g with a ∈ l∞(Γ) and g ∈ Γ, given by (3). For n ∈ Γ, let

Hn := {x ∈ l2(Γ × Γ) : x(s, m) = 0 whenever m 6= n}.

We identify l2(Γ × Γ) with the orthogonal sum ⊕n∈ΓHn such that x ∈ l2(Γ × Γ)
is identified with ⊕hn ∈ ⊕Hn where hn(s) = x(s, n). From (3) we conclude that
each space Hn is invariant with respect to each operator in C (i.e., AHn ⊆ Hn for
A ∈ C). Hence, each operator A ∈ C corresponds to a diagonal matrix operator
diag (. . . , An, An+1, . . .) with respect to the decomposition of l2(Γ × Γ) into the
orthogonal sum of its subspaces Hn. Thus, An is the restriction of A onto Hn.

Let Cn be the C∗-algebra of all restrictions of operators in C onto Hn. It is
clear that each of the spaces Hn is isometric to l2(Γ), with the isometry given by

Jn : Hn → l2(Γ), (Jnx)(s) := x(s, n),

J−1
n : l2(Γ) → Hn, (J−1

n x)(s, n) := x(s).

Then

(Jnπ̂(a)J−1
n x)(s) = (π̂(a)J−1

n x)(s, n) = (a(sn)(J−1x))(s, n)

= a(sn)x(s) = (Rnπ(a)R−1
n x)(s)

where (Rnf)(s) = f(sn) stands for the operator of the right-regular representa-
tion of Γ. Similarly,

(JnL̂gJ
−1
n x)(s) = (L̂gJ

−1
n x)(s, n) = (J−1x)(g−1s, n)

= x(g−1s) = (Lgx)(s).

Thus,

Jnπ̂(a)J−1
n = Rnπ(a)R−1

n and JnL̂gJ
−1
n = Lg = RnLgR

−1
n .

Consequently, the mapping

BDO(Γ) → C, A 7→ diag (. . . , J−1
n RnAR−1

n Jn, . . .)

is a ∗-isomorphism. Since C is evidently ∗-isomorphic to the reduced crossed
product l∞(Γ) ×αr Γ, the assertion follows.
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Our next goal is to recall Roe’s criterion [17] for the Fredholm property of band-
dominated operators on l2(Γ). We are going to formulate this criterion in the
language of limit operators.

Let h : N → Γ be a sequence tending to infinity in the sense that for each
finite subset Γ0 of Γ, there is an n0 ∈ N such that h(n) 6∈ Γ0 if n ≥ n0. Clearly,
if h tends to infinity, then the inverse sequence h−1 tends to infinity, too. We say
that an operator Ah ∈ L(l2(Γ)) is a limit operator of A ∈ L(l2(Γ)) defined by the

sequence h if

R−1
h(m)ARh(m) → Ah and R−1

h(m)A
∗Rh(m) → A∗

h

strongly as m → ∞ (as before, the Rr are given by the right-regular representa-
tion of Γ on l2(Γ)). Clearly, every operator has at most one limit operator with
respect to a given sequence h. Note that the generating function of the shifted
operator R−1

r ARr is related with the generating function of A by

kR−1
r ARr

(t, s) = kA(tr−1, sr−1) (4)

and that the generating functions of R−1
h(m)ARh(m) converge pointwise on Γ × Γ

to the generating function of the limit operator Ah (if the latter exists).
It is an important property of band-dominated operators that they always

possess limit operators. More general, the following result can be proved by a
standard Cantor diagonal argument (see [9, 10, 11]).

Proposition 2.3 Let A be a band-dominated operator on l2(Γ). Then every

sequence h : N → Γ which tends to infinity possesses a subsequence g such that

the limit operator Ag of A with respect to g exists.

Let A be a band-dominated operator and h : N → Γ a sequence tending to infinity
for which the limit operator Ah of A exists. Let B be another band-dominated
operator. By Proposition 2.3 we can choose a subsequence g of h such that the
limit operator Bg exists. Then the limit operators of A, A + B and AB with
respect to g exist, and

Ag = Ah, (A + B)g = Ag + Bg, (AB)g = AgBg.

Thus, the mapping A 7→ Ah acts, at least partially, as an algebra homomorphism.
The following theorem is due to Roe [17], see also [8]. Recall that a group Γ is

called exact, if its reduced translation algebra is exact as a C∗-algebra. The latter
algebra is defined as the reduced crossed product of l∞(Γ) by Γ and coincides
with the C∗-algebra of all band-dominated operators on l2(Γ) in our setting. The
class of exact groups is extremely rich. It includes all amenable groups (hence,
all solvable groups such as the discrete Heisenberg group and the commutative
groups) and all hyperbolic groups (in particular, all free groups with finitely many
generators) (see [16], Chapter 3).
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Theorem 2.4 (Roe) Let Γ be a finitely generated discrete and exact group, and

let A be a band-dominated operator on l2(Γ). Then the operator A is Fredholm

on l2(Γ) if and only if all limit operators of A are invertible and if the norms of

their inverses are uniformly bounded.

Note that this result holds as well if the left regular representation is replaced by
the right regular one and if, thus, the operators Ls and Rt change their roles. In
fact, the results of [8, 17] are presented in this symmetric setting. In [8] we showed
moreover that the uniform boundedness condition in Theorem 2.4 is redundant
for band operators if the group Γ has sub-exponential growth and if not every
element of Γ is cyclic in the sense that wn = e for some positive integer n. For
details see [8]. Note that the condition of sub-exponential growth is satisfied
by the abelian groups ZN , the discrete Heisenberg group and, more general, by
nilpotent groups (in fact, these groups have polynomial growth), whereas the
growth of the free group FN with N > 1 is exponential.

Theorem 2.5 Let Γ be a finitely generated discrete and exact group with sub-

exponential growth which possesses at least one non-cyclic element, and let A be

a band operator on l2(Γ). Then the operator A is Fredholm on l2(Γ) if and only

if all limit operators of A are invertible.

3 The algebra of the finite sections method

Given an increasing sequence Y := (Yn)n≥1 of finite subsets of Γ such that
∪n≥1Yn = Γ, let FY denote the set of all bounded sequences A = (An) of operators
An : im PYn

→ im PYn
. Equipped with the operations

(An) + (Bn) := (An + Bn), (An)(Bn) := (AnBn), (An)∗ := (A∗
n)

and the norm
‖A‖FY

:= ‖An‖,

the set FY becomes a C∗-algebra with identity I = (Yn), and the set GY of all
sequences (An) ∈ FY with lim ‖An‖ = 0 forms a closed ideal of FY . The relevance
of the algebra FY and its ideal GY in our context stems from the fact (following
by a simple Neumann series argument) that a sequence A ∈ FY is stable if, and
only if, its coset A+GY is invertible in the quotient algebra FY/GY . Thus, every
stability problem is equivalent to an invertibility problem in a suitably chosen
C∗-algebra.

Let further stand FC
Y for the set of all sequences A = (An) of operators An :

im PYn
→ im PYn

with the property that the sequences (AnPYn
) and (A∗

nPYn
) con-

verge strongly. By the uniform boundedness principle, the quantity sup ‖AnPYn
‖

is finite for every sequence (An) in FC
Y . Thus, FC

Y is a closed and symmetric
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subalgebra of FY which contains GY , and the mapping

W : FC
Y → L(l2(X)), (An) 7→ s-lim AnPYn

(5)

is a ∗-homomorphism. Note that I ∈ FC
Y and that W (I) is the identity operator

I on L2(Γ).
For each C∗-subalgebra A of L(l2(Γ)), write D for the mapping of finite sec-

tions (or spatial) discretization, i.e.,

D : L(l2(γ)) → FY , A 7→ (PYn
APYn

), (6)

and let SY(A) stand for the smallest closed C∗-subalgebra of the algebra FY which
contains all sequences D(A) with A ∈ A. Clearly, SY(A) is contained in FC

Y , and
the mapping W in (5) induces a ∗-homomorphism from SY(A) onto A. On this
level, one cannot say much about the algebra SY(A). The simple proof of the
following is in [14].

Proposition 3.1 Let A be a C∗-subalgebra of L(l2(Γ)). Then the finite sections

discretization D : A → FY is an isometry, and D(A) is a closed subspace of the

algebra SY(A). This algebra splits into the direct sum

SY(A) = D(A) ⊕ (ker W ∩ SY(A)),

and for every operator A ∈ A one has

‖D(A)‖ = min
K∈ker W

‖D(A) + K‖.

Finally, ker W ∩ SY(A) is equal to the quasicommutator ideal of SY(A), i.e., to

the smallest closed ideal of SY(A) which contains all sequences (PYn
A1PYn

A2PYn
−

PYn
A1A2PYn

) with operators A1, A2 ∈ A.

We denote the ideal ker W ∩ SY(A) by JY(A). Since the first item in the decom-
position D(A) ⊕ JY(A) of SY(A) is isomorphic (as a linear space) to A, a main
part of the description of the algebra SY(A) is to identify the ideal JY(A).

We are going to present two alternate descriptions of the quasicommutator
ideal JY(BDO(Γ)) of the finite sections algebra SY(BDO(Γ)). For we have to
introduce some notions of topological type. Note that the standard topology on
Γ is the discrete one; so every subset of Γ is open with respect to this topology.

Let Ω be a finite subset of Γ which contains the identity element e and which
generates Γ as a semi-group, i.e., if we set Ω0 := {e} and if we let Ωn denote the
set of all words of length at most n with letters in Ω for n ≥ 1, then ∪n≥0Ωn = Γ.
Note also that the sequence (Ωn) is increasing; so the operators PΩn

can play the
role of the finite sections projections PYn

, and in fact we will obtain some of the
subsequent results exactly for this sequence.
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With respect to Ω, we define the following ”algebro-topological” notions. Let
A ⊆ Γ. A point a ∈ A is called an Ω-inner point of A if Ωa := {ωa : ω ∈ Ω} ⊆ A.
The set intΩA of all Ω-inner points of A is called the Ω-interior of A, and the set
∂ΩA := A\ intΩA is the Ω-boundary of A. Note that we consider the Ω-boundary
of a set always as a part of that set. (In this point, the present definition of a
boundary differs from other definitions in the literature; see [1] for instance.)

One easily checks that the Ω-interior and the Ω-boundary of a set are invariant
with respect to multiplication from the right-hand side:

(intΩA)s = intΩ(As) and (∂ΩA)s = ∂Ω(As)

for s ∈ Γ. One also has

Ωn−1 ⊆ intΩΩn ⊆ Ωn for each n ≥ 1, (7)

whence
∂ΩΩn ⊆ Ωn \ Ωn−1 for each n ≥ 1. (8)

Here is a first result which describes JY(BDO(Γ)) in terms of generators of Γ.
Abbreviate I − PA =: QA.

Theorem 3.2 JY(BDO(Γ)) is the smallest closed ideal of SY(BDO(Γ)) which

contains all sequences

(PYn
Lω−1QYn

LωPYn
)n≥1 with ω ∈ Ω. (9)

We call (P∂ΩYn
)n≥1 the sequence of the discrete boundaries of the finite section

method with respect to (Yn). Note that the assumptions in the following theorem
are satisfied if Yn = Ωn due to (7).

Theorem 3.3 Assume that Yn−1 ⊆ intΩYn ⊆ Yn for all n ≥ 2 and that ∪n≥1Yn =
Γ. Then the sequence (P∂ΩYn

)n≥1 of the discrete boundaries belongs to the alge-

bra SY(BDO(Γ)), and the quasicommutator ideal is generated by this sequence,

i.e., JY(BDO(Γ)) is the smallest closed ideal of SY(BDO(Γ)) which contains

(P∂ΩYn
)n≥1.

Both results were proved in [15] for the ideal JY(Sh(Γ)) of SY(Sh(Γ)) in place of
JY(BDO(Γ)). The above theorems follow from these results since every multipli-
cation operator aI commutes with every projection PY where Y ⊆ Γ.

4 Stability

We are now going to study the stability of sequences in SY(BDO(Γ)) via the
limit operators method. The key observations are that the stability of a sequence
in that algebra is equivalent to the Fredholm property of a certain associated
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operator, which is band-dominated, such that the Fredholm property of that
operator can be studied by means of its limit operators via Roe’s result.

Let again Y := (Yn) be an increasing sequence of finite subsets of Γ with
∪n≥1Yn = Ω. A sequence (vn) ⊆ Γ is called an inflating sequence for Y if
Ymv−1

m ∩Ynv
−1
n = ∅ for m 6= n. The existence of inflating sequences is easy to see.

Moreover, the following lemma was shown in [15].

Lemma 4.1 Let Y = (Yn) be as above and V an infinite subset of Γ. Then there

is an inflating sequence for Y in V .

In what follows we choose and fix an inflating sequence (vn) for Y and set

Γ′ := Γ \ ∪∞
n=1Ynv

−1
n . (10)

For s ∈ Γ, let again Rs : l2(Γ) → l2(Γ) refer to the operator (Rsf)(t) := f(ts).
Evidently, RsLt = LtRs for s, t ∈ Γ. The proof of the following theorem is in
[15].

Theorem 4.2 Let A = (An) ∈ FY . Then

(a) the series
∞

∑

n=1

Rvn
AnR−1

vn
(11)

converges strongly on l2(Γ). The sum of this series is denoted by Op (A).

(b) the sequence (An) is stable if and only if the operator Op (A)+PΓ′ is Fredholm

on l2(Γ).

(c) The mapping Op is a continuous homomorphism from FY to L(l2(Γ)).

The applicability of Roe’s result to the study the stability of the finite section
method for band-dominated operators rests of the following fact.

Proposition 4.3 Let A be a sequence in SY(BDO(Γ)). Then Op (A) is a band-

dominated operator.

Proof. First let A ∈ BDO(Γ) be a band operator and let Γ0 be a band width of A.
It is easy to check that then Rvn

PYn
APYn

R−1
vn

is a band operator with the same
band width for every n. The inflating property ensures that Op ((PYn

APYn
))

is a band operator with band width Γ0, too. Now Theorem 4.2 (c) yields the
assertion.

In order to verify the stability of a sequence A ∈ SY(BDO(Γ)) via the above
results, we thus have to compute the limit operators of Op (A) + PΓ′ , which will
be our next goal. Note that the exactness of Γ is not relevant in this computation.
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Let Ω be a finite subset of Γ with e ∈ Ω which generates Γ as a semi-group
and define Ωn as above. By Theorem 4.2, the Fredholm property of an opera-
tor Op (A) is independent of the concrete choice of the inflating sequence. For
technical reasons, we choose an inflating sequence (vn) for the sequence

(

(Yn ∪ Ωn)(Yn ∪ Ωn)−1(Yn ∪ Ωn)
)

n≥1

instead of (Yn)n≥1. Since

Yn ∪ Ωn ⊂ (Yn ∪ Ωn)(Yn ∪ Ωn)−1 ⊂ (Yn ∪ Ωn)(Yn ∪ Ωn)−1(Yn ∪ Ωn),

(vn) is also an inflating sequence for (Yn). Moreover, since s-lim PΩn
= PΓ = I,

one also has
s-lim P(Yn∪Ωn)(Yn∪Ωn)−1 = PΓ = I. (12)

Let now A = (An) ∈ SY(BDO(Γ)), set as before

Op (A) =
∞

∑

n=1

Rvn
AnR

−1
vn

and Γ′ = Γ \ ∪∞
n=1Ynv

−1
n ,

and let h : N → Γ be a sequence tending infinity for which the limit operator

(Op (A) + PΓ′)h := s-limn→∞R−1
h(n)(Op (A) + PΓ′)Rh(n)

exists. Then the limit operator (Op (A)+PΓ′)g exists for every subsequence g of h,
and it coincides with (Op (A)+PΓ′)h. So we can freely pass to subsequences of h
if necessary. By a first passage to a suitable subsequence of h we can arrange that
one of the following two situations happens; so we can restrict the computation
of the limit operator to these cases:

Case 1: All elements h(n) belong to ∪k≥1 vkY
−1
k .

Case 2: No element h(n) belongs to ∪k≥1 vkY
−1
k .

We start with Case 1. Passing again to a subsequence of h, if necessary, we
can further suppose that each h(n) belongs to one of the sets vkY

−1
k , say to

vkn
Y −1

kn
, and that vkn

Y −1
kn

contains no other element of the sequence h besides
h(n). For each n, let rn denote the smallest non-negative integer such that
h(n) ∈ vkn

(∂ΩYkn
)−1Ωrn

. Thus, rn measures the distance of h(n) to the Ω-
boundary of vkn

Y −1
kn

. Set r∗ := lim infn→∞ rn. Again we can distinguish two
cases.

Case 1.1: r∗ is finite. Then there are infinitely many n ∈ N such that rn = r∗.
Thus, there is a subsequence of h (denoted by h again) such that

h(n) ∈ vkn
Y −1

kn
∩ vkn

(∂ΩYkn
)−1Ωr∗ for all n.

Further, for each n there is an w∗
n ∈ Ωr∗ such that h(n) ∈ vkn

(∂ΩYkn
)−1w∗

n. Since
Ωr∗ is a finite set, one of the elements w∗

n of Ωr∗ occurs for infinitely many n. Let

11



w∗ be an element of Ωr∗ with this property. Consider the subsequence of h which
contains all elements h(n) with w∗

n = w∗. We denote this subsequence by h again
and can hence assume that

h(n) ∈ vkn
Y −1

kn
∩ vkn

(∂ΩYkn
)−1w∗ for n ≥ 1. (13)

With respect to a sequence h as in (13) we obtain

R−1
h(n)(Op (A) + PΓ′)Rh(n)

=

∞
∑

k=1

R−1
h(n)Rvk

AkR
−1
vk

Rh(n) + R−1
h(n)PΓ′Rh(n)

=
∑

k 6=kn

R−1
h(n)Rvk

AkR
−1
vk

Rh(n) + R−1
h(n)PΓ′Rh(n) + R−1

h(n)Rvkn
Akn

R−1
vkn

Rh(n) (14)

with Γ′ as in (10). By (13), h(n) = vkn
ηkn

w∗ with ηkn
∈ (∂ΩYkn

)−1. Thus, the
last item in (14) becomes

Rw−1
∗

Rη−1
kn

Akn
Rηkn

Rw∗
. (15)

Set Πn := P(Ykn
∪Ωkn

)(Ykn
∪Ωkn

)−1w∗
. By (12), Πn → I strongly. Since Akn

acts on
im PYkn

, the operator (15) acts on imPYkn
ηkn

w∗
. The evident inclusion

Ykn
ηkn

w∗ ⊆ (Ykn
∪ Ωkn

)(Ykn
∪ Ωkn

)−1w∗

implies that

ΠnR−1
h(n)Rvkn

AkR
−1
vkn

Rh(n) = R−1
h(n)Rvkn

AkR
−1
vkn

Rh(n)Πn = R−1
h(n)Rvkn

AkR
−1
vkn

Rh(n).

Let now k 6= kn. Then, by the inflating property,

(Yk ∪ Ωk)(Yk ∪ Ωk)
−1(Yk ∪ Ωk)v

−1
k

∩(Ykn
∪ Ωkn

)(Ykn
∪ Ωkn

)−1(Ykn
∪ Ωkn

)v−1
kn

= ∅. (16)

Since Ykv
−1
k ⊆ (Yk ∪ Ωk)(Yk ∪ Ωk)

−1(Yk ∪ Ωk)v
−1
k and

(Ykn
∪ Ωkn

)(Ykn
∪ Ωkn

)−1η−1
kn

v−1
kn

⊆ (Ykn
∪ Ωkn

)(Ykn
∪ Ωkn

)−1(Ykn
∪ Ωkn

)v−1
kn

we conclude from (16) that

Ykv
−1
k ∩ (Ykn

∪ Ωkn
)(Ykn

∪ Ωkn
)−1η−1

kn
v−1

kn
= ∅

whence
Ykv

−1
k vkn

ηkn
w∗ ∩ (Ykn

∪ Ωkn
)(Ykn

∪ Ωkn
)−1w∗ = ∅.

12



Since R−1
h(n)Rvk

AkR
−1
vk

Rh(n) is an operator living on imPYkv−1
k

vkn
ηkn

w∗
, we further

conclude that

R−1
h(n)Rvk

AkR
−1
vk

Rh(n)Πn = ΠnR
−1
h(n)Rvk

AkR
−1
vk

Rh(n) = 0

for k 6= kn. Hence,

R−1
h(n)(Op (A) + PΓ′)Rh(n)

=
∑

k 6=kn

R−1
h(n)Rvk

AkR
−1
vk

Rh(n)(I − Πn) + R−1
h(n)PΓ′Rh(n)

+ R−1
w∗

R−1
ηkn

Akn
Rηkn

Rw∗
Πn. (17)

Since Πn → I strongly, the first summand on the right-hand side of (17) converges
strongly (and even ∗-strongly since Πn commutes with that sum) to zero. Thus,

s-lim R−1
h(n)(Op (A) + PΓ′)Rh(n)

= s-lim R−1
w∗

R−1
ηkn

Akn
Rηkn

Rw∗
Πn + s-lim R−1

h(n)PΓ′Rh(n),

provided that the strong limits on the right-hand side exist. The existence of the
second strong limit can always be forced by passing to a suitable subsequence of
h. Collecting these facts, we arrive at the following.

Theorem 4.4 Let A ∈ SY(BDO(Γ)), and let h be a sequence such that the limit

operator Op (A)+PΓ′ exists. In Case 1.1, there is a subsequence g of h such that

the limit operator (PΓ′)g exists, and there are a monotonically increasing sequence

(kn) in N, a vector ηkn
∈ (∂ΩYkn

)−1 for each n ≥ 1, and a w∗ ∈ Γ such that

(Op (A) + PΓ′)h = s-lim R−1
w∗

R−1
ηkn

Akn
Rηkn

Rw∗
+ (PΓ′)g.

Thus, the operator Akn
living on im PYkn

is shifted by a vector ηkn
∈ (∂ΩYkn

)−1

and by another vector w∗ independent of n. It is only a matter of taste to
consider Akn

as shifted by the vector η−1
kn

belonging to the Ω-boundary of Ykn
.

In particular, every limit operator of Op (A) is a shift by some vector w∗ of a
strong limit of operators Akn

, shifted by vectors in the Ω-boundary of Ykn
. This

fact is well known for the group Z and intervals Yk = [−k, k] ∩ Z (and has been
employed in [12] to get rid of the uniform boundedness condition in this case),
and it was observed by Lindner [6] in case Γ = ZN and Yk = Ωk is a convex
polygon with integer vertices.

Before turning to the other cases, let us specify Theorem 4.4 to pure finite
sections sequences for operators in BDO(Γ). The existence of the limit operator
(PΓ′)h is guaranteed if the strong limit

s-lim R−1
w∗

R−1
ηkn

PYkn
Rηkn

Rw∗
= s-lim PYkn

ηkn
w∗

(18)

13



exists. In this case, there is a subset Y (h) of Γ such that

s-lim PYkn
ηkn

w∗
= PY(h) (19)

and, thus, (PΓ′)g = I − PY(h). We claim that the sequence (ηkn
w∗)n≥1 tends

to infinity. For this goal, it is sufficient to show that every sequence (µn) with
µn ∈ ∂ΩYkn

tends to infinity. Let Γ0 be a finite subset of Γ. Choose n0 such that
Γ0 ⊆ Ωn0−1 and n∗ such that Ωn0 ⊆ Ykn

for all n ≥ n∗. Then intΩΩn0 ⊆ intΩYkn
,

and from (7) we conclude that

Γ0 ⊆ Ωn0−1 ⊆ intΩΩn0 ⊆ intΩYkn
.

Hence, ∂ΩYkn
∩ Γ0 = ∅ for all n ≥ n∗, whence the claimed convergence.

Given a sequence h such that the limit (18) exists and a band-dominated
operator A, let σop, h(A) denote the set of all limit operators of A with respect to
subsequences of the sequence (ηkn

w∗)n≥1. This set is not empty by Proposition
2.3.

Proposition 4.5 Let A ∈ BDO(Γ), and let h be a sequence such that the limit

operator Op (A)h for the sequence (PYn
APYn

) exists. In Case 1.1, there are kn,

ηkn
and w∗ as in Theorem 4.4 such that the limit (18) exists. Then there is a

limit operator Ag ∈ σop, h(A) of A such that

(Op (A) + PΓ′)h = PY(h)AgPY(h) + (I − PY(h)). (20)

Conversely, if the limit (18) exists for a certain choice of kn, ηkn
and w∗ as in

Theorem 4.4 and if Ag is a limit operator of A with respect to a certain sub-

sequence g = (ηknr
w∗)r≥1 of the sequence (ηkn

w∗)n≥1, then the limit operator

Op (A)h exists for the sequence h = (vknr
gr)r≥1, and (20) holds.

Proof. The proof of the first assertion follows easily from Theorem 4.4. Indeed,

Rw−1
∗ η−1

kn

PYkn
APYkn

Rηkn
w∗

= (Rw−1
∗ η−1

kn

PYkn
Rηkn

w∗
) · (Rw−1

∗ η−1
kn

ARηkn
w∗

) · (Rw−1
∗ η−1

kn

PYkn
Rηkn

w∗
).

The sequences in the outer parentheses converge strongly to PY(h). If now g
is a subsequence of (ηkn

w∗)n≥1 such that the limit operator Ag exists, then we
conclude that

Rw−1
∗ η−1

kn

PYkn
APYkn

Rηkn
w∗

→ PY(h)AgPY(h)

∗-strongly as n → ∞. The second assertion is evident.

Case 1.2: r∗ is infinite. Recall that

h(n) ∈ vkn
Y −1

kn
and h(n) 6∈ vkn

(∂ΩYkn
)−1Ωrn−1 (21)

14



for all n ∈ N. The second assertion in (21) implies that

h(n)Ω−1
rn−1 ∩ vkn

(∂ΩYkn
)−1 = ∅.

Hence, we can rewrite (21) as

e ∈ Ykn
v−1

kn
h(n) and Ωrn−1 ∩ (∂ΩYkn

)v−1
kn

h(n) = ∅. (22)

We claim that this implies that

Ωrn−1 ⊆ Ykn
v−1

kn
h(n). (23)

Suppose (23) is wrong. Then Ωrn−1 has at least one point outside Ykn
v−1

kn
h(n),

say a, but it also has points inside this set, for example the point e due to the
first assumption of (22). Write a as a product a = wrn−1 . . . w1w0 of elements
wi ∈ Ω with w0 := e, and let 0 ≤ j < rn − 1 be the smallest integer such that

wj . . . w1w0 ∈ Ykn
v−1

kn
h(n), but wj+1wj . . . w1w0 6∈ Ykn

v−1
kn

h(n).

Then Ωwj . . . w1w0 6⊆ Ykn
v−1

kn
h(n), hence

wj . . . w1w0 ∈ ∂Ω(Ykn
v−1

kn
h(n)).

Since wj . . . w1w0 ∈ Ωrn−1, this contradicts the second assertion of (22), and the
claim (23) follows. Roughly speaking, we used the fact that Ω-boundaries do not
have gaps. Since PΩn

→ I strongly, we conclude from (23) that

PYkn
v−1

kn
h(n) → I strongly. (24)

Theorem 4.6 Let A ∈ SY(BDO(Γ)) and A := s-limAnPYn
, and let h be a se-

quence such that the limit operator Op (A)h exists. Then, in Case 1.2, either

Op (A)h = R−1
v∗ ARv∗ with a fixed v∗ ∈ Γ, or there is a limit operator Ag of A

such that Op (A)h = Ag. Conversely, each operator R−1
v∗ ARv∗ with v∗ ∈ Γ and

each limit operator Ag of A occur as limit operators of Op (A).

Proof. It is sufficient to verify the assertion for pure finite sections sequences
A = (PYn

APYn
) with A ∈ BDO(Γ). For these sequences, one has

R−1
h(n)(Op (A) + PΓ′)Rh(n)

=
∑

k 6=kn

R−1
h(n)Rvk

PYk
APYk

R−1
vk

Rh(n)(I − PYkn
v−1

kn
h(n))

+ R−1
h(n)PΓ′Rh(n)(I − PYkn

v−1
kn

h(n))

+ PYkn
v−1

kn
h(n)(R

−1
h(n)Rvkn

AR−1
vkn

Rh(n))PYkn
v−1

kn
h(n).

Consider the sequence (v−1
kn

h(n)), which is either finite or contains a subsequence
which tends to infinity. In the first case, there is a v∗ ∈ Γ which is met by

15



this sequence infinitely often, whence Op (A)h = Rv∗AR−1
v∗ due to (24). In the

second case, Proposition 2.3 implies the existence of a subsequence g of (v−1
kn

h(n))
which tends to infinity and for which the limit operator Ag exists. In this case,
Op (A)h = Ag.

Conversely, given v∗ ∈ Γ and a limit operator Ag of A, one can choose h(n) :=
vkn

v∗ and h(n) := vkn
g(n) in order to obtain the limit operators R−1

v∗ ARv∗ and
Ag of Op (A), respectively.

Note that, in Case 1.2, the invertibility of all limit operators of Op (A) as well as
the uniform boundedness of the norms of their inverses follows already from the
invertibility of A.

Now consider Case 2, i.e., suppose that none of the h(n) belongs to ∪vkY
−1
k .

For n ∈ N, let rn stand for the smallest non-negative integer such that there is a
kn ∈ N with h(n) ∈ vkn

(∂ΩYkn
)−1Ωrn

. Consequently,

h(n) 6∈ vkn
(∂ΩYkn

)−1Ωrn−1 for all n.

Again we set r∗ := lim inf rn and distinguish two cases.

Case 2.1: r∗ is finite. We proceed as in Case 1.1 and find a subsequence of h
(denoted by h again) and an element w∗ ∈ Γ such that h(n) ∈ vkn

(∂ΩYkn
)−1w∗.

Since the inclusion h(n) ∈ vkn
Y −1

kn
in (13) had not been used in Case 1.1 we can

continue exactly as in that case to obtain that Theorem 4.4 and its corollary hold
verbatim in the case at hand, too.

Case 2.2: r∗ is infinite. As in Case 1.2, we choose the sequence (rn) as strongly
monotonically increasing. Then we have

h(n) 6∈ vkY
−1
k for all k, n, (25)

h(n) 6∈ vk(∂ΩYk)
−1Ωrn−1 for all k, n. (26)

We claim that these two facts imply that

Ωrn−1 ∩ Ykv
−1
k h(n) = ∅ for all k, n. (27)

Indeed, from (25) we conclude that e 6∈ Ykv
−1
k h(n). Thus, for each k and n,

Ωrn−1 contains points from the complement of Ykv
−1
k h(n), for instance the point

e. Suppose that Ωrn−1 also contains points in Ykv
−1
k h(n). Then the arguments

from Case 1.2 imply that Ωrn−1 contains points in the Ω-boundary of Ykv
−1
k h(n).

But (26) implies that Ωrn−1 ∩ (∂ΩYk)v
−1
k h(n) = ∅. Thus, Ωrn−1 is completely

located in the complement of Ykv
−1
k h(n), whence (27).

Since the operator R−1
h(n)Rvk

AkR
−1
vk

Rh(n) lives on im PYkv−1
k

h(n), we obtain from

(27)

R−1
h(n)(Op (A) + PΓ′)Rh(n) =

∑

k≥1

R−1
h(n)Rvk

AkR
−1
vk

Rh(n)(I − PΩrn−1)

+ R−1
h(n)PΓ′Rh(n)(I − PΩrn−1) + PΩrn−1 .
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The first two summands on the right-hand side of this equality tend strongly to
zero as n → ∞, whereas the third one tends strongly to the identity. Thus, the
identity operator is the only limit operator of Op (A) + PΓ′ in Case 2.2. The
following theorem summarizes the results from Cases 1.1 - 2.2.

Theorem 4.7 Let A ∈ SY(BDO(Γ)) and A := s-lim AnPYn
. Then the limit

operators of Op (A) + PΓ′ are the identity operator I, all shifts R−1
v∗ ARv∗ of the

operator A, all limit operators of A, and all operators of the form

s-lim R−1
w∗

R−1
ηkn

Akn
Rηkn

Rw∗
+ (PΓ′)g

with a suitable subsequence g of h and with elements ηkn
∈ (∂ΩYkn

)−1 and w∗ ∈ Γ.

Combining this theorem with Theorems 4.2 (b) , 2.4 and 2.5 we arrive at the
following stability results.

Theorem 4.8 Let Γ be a finitely generated exact discrete group, and let (An) ∈
SY(BDO(Γ)). The sequence (An) is stable if and only if the operator

A := s-lim AnPYn

and all operators of the form

s-lim R−1
ηkn

Akn
Rηkn

+ Rw∗
(PΓ′)gR

−1
w∗

with a suitable subsequence g of h and with elements ηkn
∈ (∂ΩYkn

)−1 and w∗ ∈ Γ
are invertible and if the norms of their inverses are uniformly bounded.

Theorem 4.9 Let Γ be an exact discrete group, and let A ∈ BDO(Γ). The

sequence A = (PYn
APYn

) is stable if and only if the operator A and all operators

PY(h)AgPY(h) : im PY(h) → im PY(h)

where h is a sequence such that the limit (18) exists and Y (h) is as in (19) and

where g is in σop, h(A) are invertible and if the norms of their inverses are uni-

formly bounded.

Theorem 4.10 Let Γ be a finitely generated discrete and exact group with sub-

exponential growth which possesses at least one non-cyclic element, and let A be

a band operator on l2(Γ). Then the sequence A = (PYn
APYn

) is stable if and only

if the operators mentioned in the previous theorem are invertible.

There are special sequences Y = (Yn) and η : N → Γ for which the existence of
the limit (19) can be guaranteed. Let again Ωn refer to the set of all products
of at most n elements of Ω and set Ω0 := {e}. A sequence (νn) in Γ is called a
geodesic path (with respect to Ω) if there is a sequence (wn) in Ω \ {e} such that
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νn = w1w2 . . . wn and νn ∈ Ωn \ Ωn−1 for each n ≥ 1. Note that this condition
implies that each νn is in the right Ω-boundary of Ωn, which is the set of all
w ∈ Ωn for which wΩ is not a subset of Ωn.

We will see now that the lim Ωnηn exists if η is an inverse geodesic path, i.e.,
if ηn = ν−1

n for a geodesic path ν.

Lemma 4.11 Let (wn)n≥1 be a sequence in Ω and set ηn := w−1
n w−1

n−1 . . . w−1
1 for

n ≥ 1. Then the strong limit s-lim PΩnηn
exists, and

s-lim PΩnηn
= P∪n≥1Ωnηn

. (28)

Proof. For n ≥ 1, one has Ωnηn = Ωnwn+1w
−1
n+1w

−1
n . . . w−1

1 ⊆ Ωn+1ηn+1. These
inclusions imply the existence of the strong limit and the equality (28).

The natural question arises whether every sequence η : N → Γ for which the
set limit (19) exists has a subsequence which is a subsequence of an inverse
geodesic path. If the answer is affirmative, then it would prove sufficient to
consider strong limits with respect to inverse geodesic paths in Theorem 4.8
and its corollary. Under some conditions, this question was answered in [15] for
commutative groups Γ and for the free (non-commutative) groups FN with N
generators.
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