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Abstract

We consider a class of pseudodifferential operators with operator-
valued symbols a(x, ξ) under the assumption that a(x, ξ) can be ana-
lytically extended with respect to ξ onto a tube domain R

n + iB where B

is a convex bounded domain in R
n containing the origin. The main result

of the paper is exponential estimates at infinity of solutions of pseudod-
ifferential equations Op(a)u = f . We apply this result to Schrödinger
operators with operator-valued potentials and give applications to spec-
tral properties of quantum waveguides. Our approach is based on the
construction of the local inverse operator at infinity and on formulas for
commutators of pseudodifferential operators with exponential weights.
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1 Introduction

We consider the class of pseudodifferential operators

(Op(a)u)(x) = (2π)−n

∫

Rn

∫

Rn

a(x, ξ)u(y)ei(x−y)·ξdydξ, u ∈ S(Rn, H1), (1)

with symbols a having values in the space of bounded operators acting from a
Hilbert space H1 into a Hilbert space H2 and satisfying additional estimates. In
(1), S(Rn,H) is the space of H-valued infinitely differentiable functions rapidly
decreasing with all their derivatives.

We suppose that the symbol a(x, ξ) can be analytically extended with re-
spect to ξ onto a tube domain Rn + iB where B is a convex bounded domain
in Rn containing the origin. The main result of the paper is exponential esti-
mates at infinity of solutions of pseudodifferential equations Op(a)u = f . We
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apply these estimates to Schrödinger operators with operator-valued potentials
and discuss applications to quantum waveguides. Our approach is based on the
construction of the local inverse operator at infinity and on results on commuta-
tors of pseudodifferential operators with exponential weights (see, for instance,
[21, 29, 30]).

It turns out that many problems in mathematical physics can reduced to the
study of associated pseudodifferential operators with operator-valued symbols.
In particular, this happens for problems of wave propagation in acoustic, electro-
magnetic and quantum waveguides (see, for instance, [3, 32] and the references
cited there).

Estimates of exponential decay are intensively studied in the literature. We
would like to emphasize Agmon’s monograph [1] where the exponential esti-
mates of the behavior of solutions of second order elliptic operators have been
obtained in terms of a special metric (now called the Agmon metric), but see
also [4, 12, 13, 15, 21, 22, 23, 26, 29, 30]. In [33, 34], the authors established
the relation between the essential spectrum of pseudodifferential operators and
exponential decay of their solutions at infinity. The recent paper [31] by one
of the authors is devoted to local exponential estimates of solutions of finite-
dimensional h-pseudodifferential operators with applications to the tunnel effect
for Schrödinger, Dirac and Klein-Gordon operators.

This paper is organized as follows. In Section 2 we present some auxiliary
facts on operator-valued pseudodifferential operators. Some standard references
for the theory of pseudodifferential operators are [18, 35, 37], whereas operator-
valued pseudodifferential operators have been studied in [19, 20]. The approach
in the latter books follows ideas by Hörmander and employs a special partition
of unity connected with a metric defining the class of pseudodifferential opera-
tors. We will follow here the approach of [28], which based on the notion of a
formal symbol. A main point is the representation of the symbol of a product
of pseudodifferential operators and of a double pseudodifferential operators in
form of an operator-valued double oscillatory integral. This approach allows us
to extend the theory of scalar pseudodifferential operators to pseudodifferential
operators with operator-valued symbols, and it provides us with an pseudodif-
ferential operator calculus which is convenient for applications

In Section 3 we examine the local invertibility at infinity of operator-valued
pseudodifferential operators in suitable functions spaces and discuss their Fred-
holm property. Section 4 is devoted to the exponential estimates at infinity
of solutions of operator-valued pseudodifferential operators. In the concluding
Section 5 we are going to study the Fredholm property of Schrödinger operators
and derive exponential estimates at infinity of solutions of Schrödinger equations
with operator-valued potentials. These general results are then applied to the
Fredholm property of Schrödinger operators for quantum waveguides, for which
we obtain exponential estimates of eigenfunctions of the discrete spectrum. Note
that spectral problems for quantum waveguides have attracted many attention
in the last time. See, for instance, [3, 8, 11, 7].

The work on this paper was supported by CONACYT Project 81615 and
DFG Grant Ro 1100/8-1.
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2 Calculus of pseudodifferential operators with

operator-valued symbols

2.1 Notations

• Given Banach spaces X, Y , we denote the Banach space of all bounded
linear operators acting from X in Y by L(X, Y ). In case X = Y , we
simply write L(X).

• Let x = (x1, . . . , xn) ∈ Rn. Then we denote by ξ = (ξ1, . . . , ξn) ∈ Rn

the points of the dual space with respect to the scalar product 〈x, ξ〉 =
x · ξ = x1ξ1 + . . .+ xnξn.

• For j = 1, . . . , n, let ∂xj := ∂
∂xj

and Dxj := −i ∂
∂xj

. More generally, given

a multi-index α = (α1, ..., αn), set |α| := α1 + . . .+ αn and

∂α
x := ∂α1

x1
. . . ∂αn

xn
and Dα

x := Dα1

x1
. . . Dαn

xn
.

For an operator-valued function (x, ξ) 7→ a(x, ξ) on Rn × Rn, we set

a
(β)
(α) := Dβ

x∂
α
ξ a.

• Let 〈ξ〉 := (1 + |ξ|2)1/2 for ξ ∈ Rn.

• Let Ω be an open subset of Rn and X be a Banach space. We denote by

(i) C∞(Ω, X) the set of all infinitely differentiable functions from Ω to X ;

(ii) C∞
0 (Ω, X) the set of all functions in C∞(Ω, X) with a compact sup-

port in Ω;

(iii) C∞
b (Ω, X) the set of all functions a ∈ C∞(Ω, X) such that

sup
x∈Ω

∑

|α|≤k

‖(∂α
x a)(x)‖X <∞

for every k ∈ N0 := N ∪ {0};

(iv) S(Rn, X) the set of all functions a ∈ C∞(Rn, X) such that

sup
x∈Rn

〈x〉k
∑

|α|≤k

‖(∂α
x a)(x)‖X <∞

for every k ∈ N0.

In each case, we omit X whenever X = C.

• Let H be a Hilbert space and u ∈ S(Rn, H). Then we denote by

û(ξ) = (Fu)(ξ) :=

∫

Rn

u(x)e−ix·ξdx
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the Fourier transform of u. Note that F : S(Rn, H) → S(Rn, H) is an
isomorphism with inverse

(F−1û)(x) = (2π)−n

∫

Rn

û(ξ)eix·ξdξ.

We write S′(Rn, H) for the space of distributions over S(Rn, H) and define
the Fourier transform of distributions in S′(Rn, H) via duality. Note that
F : S′(Rn, H) → S′(Rn, H) is an isomorphism.

In what follows we consider separable Hilbert spaces H only.

2.2 Oscillatory vector-valued integrals

Let B be a Banach space, and let a be a function in C∞(Rn ×Rn, B) such that

|a|r,t :=
∑

|α|≤r, |β|≤t

sup
Rn×Rn

‖∂α
ξ ∂

β
xa(x, ξ)‖B 〈ξ〉−m <∞ (2)

for all r, l ∈ N0. Further let χ ∈ C∞
0 (Rn × Rn) be such that χ(x, ξ) = 1 for all

points (x, ξ) in a neighborhood of the origin. Let R > 0. In what follows we let
χR(x, ξ) := χ(x/R, ξ/R).

Proposition 1 Let a ∈ C∞(Rn × Rn, B) satisfy the estimates (2). Then the

limit

I(a) := lim
R→∞

∫∫

R2n

χR(x, ξ)a(x, ξ)e−ix·ξd(x, ξ)

exists in the norm topology of B and

I(a) = (2π)−n

∫∫

R2n

〈ξ〉−2k2〈Dx〉
2k2

{

〈x〉−2k1 〈Dξ〉
2k1a(x, ξ)

}

e−ix·ξd(x, ξ)

for all

2k1 > n, 2k2 > n+m. (3)

This limit is independent of k1, k2 satisfying (3) and of the choice of χ. More-

over,

‖I(a)‖B ≤ C
∑

|α|≤2k1, |β|≤2k2

sup
Rn×Rn

‖∂α
ξ ∂

β
xa(x, ξ)‖B〈ξ〉−m

= C|a|2k1, 2k2
. (4)

The element I(a) ∈ B is called the oscillatory integral of a. In what follows, we
use the notation

osc

∫∫

R2n

a(x, ξ)e−ix·ξdxdξ

for the oscillatory integral I(a).
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Proposition 2 Let a ∈ C∞
b (Rn, B). Then, for each x ∈ Rn,

(2π)−nosc

∫∫

R2n

a(x+ y)e−iy·ξdydξ = a(x). (5)

Propositions 1 and 2 are proved as in the scalar case by integrating by parts
(see for instance [28]).

2.3 Pseudodifferential operators with operator-valued

symbols

Let H and H′ be Hilbert spaces. A function p : Rn → L(H′,H) is said to be a
weight function in the class O(H, H′) if the operator p(η) is invertible for each
η ∈ Rn and if there are constants C > 0 and N ∈ R such that

max
{

‖p(η)−1p(ξ)‖L(H′), ‖p(ξ)p
−1(η)‖L(H)

}

≤ C(1 + |ξ − η|)N (6)

for arbitrary ξ, η ∈ Rn. Let now H1, H′
1, H2 and H′

2 be Hilbert spaces and
p1 ∈ O(H1, H

′
1) and p2 ∈ O(H2, H

′
2). We say that a function a : R

n × R
n →

L(H1, H2) belongs to S(p1, p2) if

|a|l :=
∑

|α+β|≤l

sup
(x, ξ)∈Rn×Rn

‖p−1
2 (ξ)∂β

x∂
α
ξ a(x, ξ)p1(ξ)‖L(H′

1
,H′

2
) <∞ (7)

for every l ∈ N0. The seminorms |a|l define a Frechet topology on S(p1, p2).
The (operator-valued) functions in S(p1, p2) are called symbols.

With each symbol a ∈ S(p1, p2), we associate the pseudodifferential operator
Op(a) which acts at u ∈ S(Rn, H1) by

(Op(a)u)(x) = (2π)−n

∫

Rn

a(x, ξ)û(ξ)eix·ξdξ (8)

= (2π)−n

∫

Rn

∫

Rn

a(x, ξ)u(y)ei(x−y)·ξdydξ.

We denote the set of all pseudodifferential operators with symbols in S(p1, p2)
by OPS(p1, p2).

Besides these “common” pseudodifferential operators, we will also need dou-
ble symbols and their associated double pseudodifferential operators. Let again
p1 ∈ O(H1, H

′
1) and p2 ∈ O(H2, H

′
2). A function a : Rn×Rn×Rn → L(H1, H2)

is said to belong to the class Sd(p1, p2) of double symbols if

|a|l :=
∑

|α+β+γ|≤l

sup
(x, y, ξ)∈R3n

‖p2(ξ)
−1∂β

x∂
γ
y ∂

α
ξ a(x, y, ξ)p1(ξ)‖L(H′

1
,H′

2
) <∞ (9)

for each l ∈ N0. We correspond to each double symbol a ∈ Sd(p1, p2) the double

pseudodifferential operator

(Opd(a)u)(x) := (2π)−n

∫

Rn

∫

Rn

a(x, y, ξ)u(y)ei(x−y)·ξdydξ, (10)
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u ∈ S(Rn, H1), and denote the class of all double pseudodifferential operators
by OPSd(p1, p2). Note that the estimates (6) and (7) imply that if a ∈ S(p1, p2)
or Sd(p1, p2) there exist M > 0 and constants Cαβ and Cαβγ such that

‖∂β
x∂

α
ξ a(x, ξ)‖L(H1,H2) ≤ Cαβ〈ξ〉

M (11)

and
‖∂β

x∂
γ
y ∂

α
ξ a(x, y, ξ)‖L(H1,H2) ≤ Cαβγ〈ξ〉

M (12)

for all multi-indeces α, β, γ.
Integrating by parts one can prove as in the scalar case that the pseudodif-

ferential operators (8) and (10) can be written of the form of double oscillatory
integrals depending on the parameter x ∈ R

n,

(Op(a)u)(x) = (2π)−nosc

∫∫

R2n

a(x, ξ)u(x+ y)e−iy·ξdξdy, (13)

(Opd(a)u)(x) = (2π)−nosc

∫∫

R2n

a(x, x+ y, ξ)u(x+ y)e−iy·ξdξdy, (14)

and that the operators Op(a) and Opd(a) in (13) and (14) can be extended to
bounded operators from C∞

b (Rn, H1) to C∞
b (Rn, H2).

The following definition of a formal symbol is crucial. For ξ ∈ Rn, define
eξ : Rn → C by eξ(x) := eix·ξ. Let now A be a continuous linear operator
from C∞

b (Rn, H1) to C∞
b (Rn, H2), and let (x, ξ) ∈ R

n × R
n. Then there is a

bounded linear operator σA(x, ξ) : H1 → H2 such that

e−ξ(x)[A(eξ ⊗ ϕ)](x) = σA(x, ξ)ϕ (15)

for every ϕ ∈ H1. The function σA : Rn × Rn → L(H1, H2) is then called the
formal symbol of A. It follows from this definition that there exists constants
C > 0 and N ∈ N0 such that

‖σA(x, ξ)‖L(H1,H2) ≤ C〈ξ〉N . (16)

Proposition 3 Let A : C∞
b (Rn, H1) → C∞

b (Rn, H2) be a continuous linear

operator with formal symbol σA. Then A acts at functions u ∈ S(Rn, H1) via

(Au)(x) = (2π)−n

∫

Rn

eix·ξσA(x, ξ)û(ξ)dξ. (17)

Proof. Let u ∈ S(Rn,H1). Then

u(x) = (2π)−n

∫

Rn

û(ξ)eξ(x)dξ.

Let {φj} be an orthonormal basis of H1 and write û(ξ) =
∑∞

j=1 ûj(ξ)φj with
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Fourier coefficients ûj(ξ) = 〈û(ξ), φj〉H1
. Hence,

(Au)(x) = (2π)−n

∫

Rn

∞
∑

j=1

ûj(ξ)(A(eξ ⊗ φj))(x)dξ (18)

= (2π)−n

∫

Rn

∞
∑

j=1

ûj(ξ)e
ix·ξσA(x, ξ)φjdξ

= (2π)−n

∫

Rn

eix·ξσA(x, ξ)û(ξ)dξ.

The last integral exists according to estimate (16).

Proposition 4 Let A = Op(a) ∈ OPS(p1, p2). Then A has a formal symbol

σA which coincides with a.

Proof. Let ξ ∈ Rn and ϕ ∈ H1. Then, by (13),

(A(eξ ⊗ ϕ))(x) = (2π)−nosc

∫∫

R2n

a(x, η)ϕei(x+y)·ξe−iy·ηdηdy

= eix·ξ(2π)−nosc

∫∫

R2n

a(x, ξ + η)ϕe−iy·ηdηdy. (19)

Using equality (5) we obtain from (19)

σA(x, ξ)ϕ = e−ix·ξA(eξ ⊗ ϕ)(x) = a(x, ξ)ϕ

which gives the assertion.

The next propositions describe the main properties of pseudodifferential opera-
tors with operator-valued symbols.

Proposition 5 Every operator in OPS(p1, p2) is bounded from S(Rn, H1) to

S(Rn, H2).

The proof makes use of estimates (11) and runs completely similar to the proof
for scalar pseudodifferential operators (see, for instance, [28]).

Hence, the composition of pseudodifferential operators is well defined. Next we
will see that the product of pseudodifferential operators is a pseudodifferential
operator again.

Proposition 6 (i) Let A1 = Op(a1) ∈ OPS(p1, p2) and A2 = Op(a2) ∈
OPS(p2, p3). Then A2A1 ∈ OPS(p1, p3), and the symbol of A2A1 is given

by

σA2A1(x, ξ) = (2π)−nosc

∫∫

R2n

a2(x, ξ + η)a1(x + y, ξ)ei(x−y)·ξdydξ. (20)

(ii) Let A = Opd(a) ∈ OPSd(p1, p2). Then A ∈ OPS(p1, p2), and the symbol

of A is given by

σA(x, ξ) = (2π)−nosc

∫∫

R2n

a(x, x+ y, ξ + η)ei(x−y)·ξdydξ. (21)
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Proof. The following proof mimics the proof for the scalar case (see [28]).

(i) Let ϕ ∈ H1. Then, applying formula (5) we obtain

σA2A1(x, ξ)φ = e−ix·ξA2[A1(eξφ)](x)

= e−ix·ξA2(a1(·, ξ)eξφ)(x)

= (2π)−nosc

∫∫

R2n

a2(x, η)a1(y, ξ)e
−i(x−y)·(ξ−η)φdydη

= (2π)−nosc

∫∫

R2n

a2(x, ξ + η)a1(x+ y, ξ)e−iy·ηφdydη.

Hence, formula (20) holds. Further we have to show that

sup
(x, ξ)∈Rn×Rn

‖p−1
3 (ξ)∂β

ξ ∂
α
x σA2A1(x, ξ)p1(ξ)‖L(H′

1
,H′

3
) <∞ (22)

for all multi-indices α, β. To prove these estimates, we use the representation
for σA2A1(x, ξ) as oscillatory operator-valued integral (20). Then the Leibnitz
formula and property (6) of weight function indeed imply the estimate (22).
Assertion (ii) can be proved in the same vein.

An operator A∗ is called the formal adjoint to the operator A ∈ OPS(p1, p2)
if, for arbitrary functions u ∈ S(Rn, H1) and v ∈ S(Rn, H2),

〈Au, v〉L2(Rn, H2) = 〈u, A∗v〉L2(Rn,H1). (23)

Proposition 7 Let A = Op(a) ∈ OPS(p1, p2). Then A∗ ∈ OPS(p∗2, p
∗
1), and

the symbol of A∗ is given by

σA∗(x, ξ) = (2π)−nosc

∫∫

R2n

a∗(x + y, ξ + η)ei(x−y)·ξdydξ (24)

where

〈a(x, ξ)u, v〉H2
= 〈u, a∗(x, ξ)v〉H1

for all u ∈ H1 and v ∈ H2.

By Proposition 7 and formula (23), one can think of operators in OPS(p1, p2)
as acting from S′(Rn, H1) to S′(Rn, H1).

Proposition 8 (Calderon-Villancourt) If A = Op(a) ∈ OPS(IH1
, IH2

),
then A is bounded as operator from L2(Rn, H1) to L2(Rn, H2), and there exists

constants C > 0 and 2k1, 2k2 > n such that

‖A‖L(L2(Rn,H1), L2(Rn,H2)) ≤ C
∑

|α|≤2k1, |β|≤2k2

sup
(x,ξ)∈R2n

‖a
(β)
(α)(x, ξ)‖L(H1,H2).

Proposition 9 (Beals) Let A = Op(a) ∈ OPS(IH1
, IH2

) be invertible as op-

erator from L2(Rn, H1) to L2(Rn, H2). Then A−1 ∈ OPS(IH2
, IH1

).
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We want to extend the previous results to weights p ∈ O(H,H′) which satisfy
the following additional condition: For every multi-index α there is a constant
Cα > 0 such that

max
{

‖∂α
ξ p(ξ)p

−1(ξ)‖L(H′, H′), ‖p
−1(ξ)∂α

ξ p(ξ)‖L(H,H)

}

≤ Cα. (25)

If p satisfies this condition, then p ∈ S(p, IH′) and p ∈ S(IH, p
−1).

For p as in (25), we denote by H(Rn, p) the Banach space which is the
closure of S(Rn, H) with respect to the norm

‖u‖H(Rn, p) := ‖Op(p)u‖L2(Rn,H′).

It turns out that then Op(p) : H(Rn, p) → L2(Rn, H′) is an isomorphism and
Op(p)−1 = Op(p−1). Using these facts one easily gets the following versions of
Proposition 8 and 9, respectively.

Proposition 10 Let p1, p2 satisfy (25) and A = Op(a) ∈ OPS(p1, p2). Then

A is bounded as operator from H(Rn, p1) to H(Rn, p2), and

‖A‖L(H(Rn, p1), H(Rn, p2)) ≤ C|a|l

where C > 0 and l ∈ N are independent on A.

Proposition 11 Let p1, p2 satisfy (25), and let A = Op(a) ∈ OPS(p1, p2) be

invertible as operator from H(Rn, p1) to H(Rn, p2). Then A−1 ∈ OPS(p2, p1).

Let a ∈ C∞
b (Rn) and H a separable Hilbert space. In what follows we write

aIH for the operator of multiplication by a acting on S′(RN , H). Note that this
operator is bounded on H(Rn, p) for every weight function p ∈ O(H, H′) which
satisfies condition (25).

We note one more import property of operators in OPS(p1, p2) which follows
easily from Propositions 6 (i) and 10.

Proposition 12 Let p1, p2 satisfy (25) and A = Op(a) ∈ OPS(p1, p2). Fur-

ther let ϕ ∈ C∞
b (Rn) and set ϕR(x) := ϕ(x/R). Then, with [A, ϕR] :=

AϕRIH1
− ϕRIH2

A,

lim
R→∞

‖[A, ϕR]‖L(H(Rn, p1), H(Rn, p2)) = 0. (26)

2.4 Pseudodifferential operators with slowly oscillating

symbols

We say that a symbol a ∈ S(p1, p2) is slowly oscillating if, for all multi-indices
α, β,

‖p−1
2 (ξ)∂β

x∂
α
ξ a(x, ξ)p1(ξ)‖L(H′

1
,H′

2
) ≤ Cαβ(x), (27)

and if
lim

x→∞
Cαβ(x) = 0 (28)
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for all multi-indices α, β with β 6= 0. We denote this class of symbols by
Ssl(p1, p2) and write OPSsl(p1, p2) for the corresponding class of pseudodiffer-
ential operators. Furthermore, let S0(p1, p2) refer to the subset of Ssl(p1, p2)
of all symbols such that (28) holds for all multi-indices α, β.

Similarly, a double symbol a ∈ Sd(p1, p2) is called slowly oscillating if, for
all multi-indices α, β, γ,

‖p−1
2 (ξ)∂β

x∂
γ
y ∂

α
ξ a(x, y, ξ)p1(ξ)‖L(H′

1
,H′

2
) ≤ Cαβγ(x, y)

where
lim

x→∞
sup
y∈Rn

Cαβγ(x, y) = 0

for all α, β, γ with β 6= 0 and

lim
y→∞

sup
x∈Rn

Cαβγ(x, y) = 0

for all α, β, γ with γ 6= 0. We denote the set of all slowly oscillating double
symbols by Sd,sl(p1, p2) and write OPSd,sl(p1, p2) for the corresponding class
of double pseudodifferential operators.

The next proposition describes some properties of pseudodifferential oper-
ators with operator-valued slowly oscillating symbols which will be needed in
what follows.

Proposition 13 (i) Let A1 = Op(a1) ∈ OPSsl(p1, p2) and A2 = Op(a2) ∈
OPSsl(p2, p3). Then A2A1 ∈ OPSsl(p1, p3), and

σA2A1(x, ξ) = a2(x, ξ)a1(x, ξ) + r(x, ξ)

where r ∈ S0(p1, p3).

(ii) Let A = Opd(a) ∈ OPSd,sl(p1, p2). Then A ∈ OPSsl(p1, p2), and

σA(x, ξ) = a(x, x, ξ) + r(x, ξ)

where r ∈ S0(p1, p2).

(iii) Let A = Op(a) ∈ OPS(p1, p2). Then A∗ ∈ OPS(p∗2, p
∗
1), and

σA∗(x, ξ) = a∗(x, x, ξ) + r(x, ξ)

where r ∈ S0(p∗2, p
∗
1).

2.5 Invertibility at infinity and Fredholm property of

pseudodifferential operators

Let χ ∈ C∞
0 (Rn) be a function such that χ(x) = 1 if |x| ≤ 1 and χ(x) = 0 if

|x| ≥ 2. Set φ := 1−χ and, for R > 0, χR(x) := χ(x/R) and φR(x) := φ(x/R).
Further let BR := {x ∈ Rn : |x| < R} and B′

R := {x ∈ Rn : |x| > R}.

10



We say that an operator A : H(Rn, p1) → H(Rn, p2) is locally invertible at

infinity if there is an R0 > 0 such that, for every R > R0, there are operators
LR and RR such that

LRAφRIH1
= φRIH1

and φRARR = φRIH2
. (29)

Operators LR and RR with these properties are called locally left and right

inverses of A, respectively.

Theorem 14 Let A = Opd(a) ∈ OPSd,sl(p1, p2). Assume there is a constant

R0 > 0 such that the operator a(x, x, ξ) : H1 → H2 is invertible for every

(x, ξ) ∈ B′
R0

× Rn and that

sup
(x, ξ)∈B′

R0
×Rn

∥

∥p−1
1 (x, ξ)a(x, x, ξ)−1p2(x, ξ)

∥

∥

L(H′

2
,H′

1
)
<∞.

Then the operator A : H(Rn, p1) → H(Rn, p2) is locally invertible at infinity.

Proof. Given φ as above, choose ϕ ∈ C∞
b (Rn) such that ϕφ = φ, and

set ϕR(x) := ϕ(x/R) for R > R0. Condition (29) implies that the function
bR(x, ξ) := ϕR(x)a(x, x, ξ)−1 belongs to S(p2, p1). Hence, and by Proposition
13 (i),

Op(bR)Op(a)φRIH1
= (IH1

+Op(qR)ψRIH1
)φRIH1

where qR ∈ S0(p1, p2). Moreover, one can prove that, for all multi-indices α, β,

lim
x→∞

sup
ξ∈Rn

‖p−1
1 (ξ)∂β

x∂
α
ξ qR(x, ξ)p1(ξ)‖L(H′

1
) = 0

uniformly with respect to R > R0. It follows from Proposition 10 that there
exists an R′ > R0 such that

‖Op(qR)ψRIH1
‖L(H(Rn, p1)) < 1

for every R > R′. Hence,

(IH1
+Op(qR)ψRIH1

)−1Op(bR)Op(a)φRIH1
= φRIH1

, (30)

and Op(a) is locally invertible from the left at infinity, with a local left inverse
operator given by

LR := (IH1
+Op(qR)ψRIH1

)−1Op(bR) ∈ OPS(p2, p1).

In the same way, a local right inverse operator RR ∈ OPS(p2, p1) can be
constructed.

It follows from the definition of the operators LR and RR that

sup
R>R′

‖LR‖L(H(Rn, p2), H(Rn, p1)) <∞, (31)

sup
R>R′

‖RR‖L(H(Rn, p2), H(Rn, p1)) <∞

11



which finishes the proof.

We say that a linear operator A : H(Rn, p1) → H(Rn, p2) is locally Fredholm

if, for every R > 0, there exist bounded linear operators BR, DR : H(Rn, p2) →
H(Rn, p1) and compact operators T ′

R : H(Rn, p1) → H(Rn, p1) and T ′′
R :

H(Rn, p2) → H(Rn, p2) such that

BRAφRIH1
= φRIH1

+ T ′
R and φRADR = φRIH2

+ T ′′
R. (32)

Theorem 15 Let A = Opd(a) ∈ OPSd,sl(p1, p2) an operator which satisfies

the conditions of Theorem 14. If A is a locally Fredholm operator, then A is has

the Fredholm property as operator from H(Rn, p1) to H(Rn, p2).

Proof. Let R0 be such that for every R > R0 there exist local inverse operators
LR, RR ∈ OPS(p2, p1) of A. Set ΛR := BRφRIH2

+ LRχRIH2
. Then ΛRA =

IH1
+T ′

R+QR whereQR := BR[φR, A]+BR[χR, A] and where T ′
R : H(Rn, p1) →

H(Rn, p1) is compact. Proposition 6 implies that

lim
R→0

‖[φR, A]‖L(H(Rn, p1), H(Rn, p2)) = lim
R→0

‖[χR, A]‖L(H(Rn, p1), H(Rn, p2)) = 0.

(33)
From (33) and (31) we conclude that ‖QR‖L(H(Rn, p1)) < 1 for large enough
R > 0. Hence, Λ′

R := (IH1
+QR)−1ΛR is a left regularizator of A whenever R0

is large enough. In the same way, a regularizator from the right-hand side can
be found.

3 Pseudodifferential operators with analytical

symbols and local exponential estimates

3.1 Operators and weight spaces

Let B ⊂ Rn be a convex bounded domain containing the origin. We say that a
double symbol a belongs to Sd(p1, p2, B) if

• the operator-valued function ξ 7→ a(x, y, ξ) can be extended analytically
with respect to ξ into the tube domain Rn + iB for every (x, y) ∈ Rn×Rn,
and

• for arbitrary multi-indices α, β, γ, there exists a constant Cαβγ such that

‖p−1
2 (ξ)∂β

x∂
γ
y ∂

α
ξ a(x, y, ξ + iη)p1(ξ)‖L(H′

1
,H′

2
) ≤ Cαβγ

for all (x, y, ξ + iη) ∈ Rn × Rn × (Rn + iB).

We write OPSd(p1, p2,B) for the corresponding class of pseudodifferential oper-
ators with symbols in Sd(p1, p2, B). Further we say that a positive C∞-function
w(x) = ev(x) is a weight in the class R(B) if

∂v

∂xj
∈ C∞

b (Rn), lim
x→∞

∂2v(x)

∂xi∂xj
= 0,

and ∇v(x) ∈ B for every point x ∈ Rn.

12



Proposition 16 Let a ∈ Sd,sl(p1, p2,B) := Sd(p1, p2, B) ∩ Sd,sl(p1, p2) and

w ∈ R(B). Then

w−1Opd(a)wI = Op(ãw) +Q (34)

where Q ∈ OPS0(p1, p2) and the symbol ãw(x, ξ) = a(x, x, ξ + i∇v(x)) is in

Ssl(p1, p2).

Proof. Let a ∈ Sd(p1, p2, B) and w = exp v ∈ R(B). It has been proved in [30]
for the scalar case that w−1Opd(a)wI = Op(aw) where

aw(x, y, ξ) = a(x, y, ξ + iθw(x, y))

is a function in S(p1, p2) and

θw(x, y) =

∫ 1

0

(∇v)((1 − t)x+ ty) dt.

The proof for pseudodifferential operators with operator-valued symbols pro-
ceeds in the same way. Let now a ∈ Ssl(p1, p2, B). Then aw belongs to
Sd,sl(p1, p2). Hence, formula (34) is a consequence of Proposition 13 (ii).

3.2 Exponential estimates

For a C∞-weight w, let H(Rn, p, w) denote the space of distributions with norm

‖u‖H(Rn, p, w) := ‖wu‖H(Rn, p) <∞. (35)

In this section we are going to consider local exponential estimates for solutions
of pseudodifferential equations with analytical symbols. Each equation Au = f
considered on a space with weight w = ev is equivalent to an equation Awψ = ϕ
where ψ := wu ∈ H(Rn, p1), ϕ := wf , and Aw := wAw−1I. Note that the
main symbol of the operator Aw is a(x, x, ξ + i∇v(x)).

Theorem 17 Let A = Op(a) ∈ OPSd,sl(p1, p2, B) and let w = exp v ∈ R(B)
be a weight with limx→∞ v(x) = ∞. Assume that there is an R0 such that

the operators a(x, x, ξ + it∇v(x)) are invertible for all (x, ξ) ∈ B′
R0

× Rn and

t ∈ [−1, 1] and that

sup
(x,ξ,t)∈B′

R0
×Rn×[−1,1]

‖p−1
1 (ξ)a−1(x, x, ξ + it∇v(x))p2(ξ)‖L(H′

2
,H′

1
) <∞. (36)

Finally, let A be locally Fredholm as operator from H(Rn, p1) to H(Rn, p2). If

f ∈ H(Rn, p2, w), then every solution of the equation Au = f , which a priori

belongs to H(Rn, p1, w
−1), a posteriori belongs to H(Rn, p1, w).

Proof. Condition (36) implies that the operators Awt are locally invertible
at infinity, and the local Fredholm property of A moreover implies that these
operators are locally Fredholm for each t ∈ [−1, 1]. Hence, by Theorem 15, each

13



operator Awt : H(Rn, p1) → H(Rn, p2) has the Fredholm property. Note that
the symbol of Awt is given by

σAwt (x, ξ) = (2π)−n

∫ ∫

R2n

a(x, y, ξ + itθw(x, y))e−iy·ξdydξ. (37)

This formula shows that the mapping [−1, 1] → S(p1, p2), t 7→ σAwt is contin-
uous. Thus, and by Proposition 10, the mapping

[−1, 1] → L(H(Rn, p1), H(Rn, p2)), t 7→ Awt

is continuous. This shows that the Fredholm index of the operator Awt :
H(Rn, p1) → H(Rn, p2) does not depend on t ∈ [−1, 1]. Hence, the operator A,
considered as operator fromH(Rn, p1, w) to H(Rn, p2, w), and the same opera-
tor A, but now considered as operator from H(Rn, p1, w

−1) to H(Rn, p2, w
−1),

are Fredholm with the same Fredholm indices.
Further, since H(Rn, pj , w) is a dense subset of H(Rn, pj, w

−1) for j = 1, 2,
we conclude that the kernel of A, considered as operator from H(Rn, p1, w)
to H(Rn, p2, w)), coincides with the kernel of A, now considered as operator
from H(Rn, p1, w

−1) to H(Rn, p2, w
−1)). Finally, if u ∈ H(Rn, p1, w

−1) is a
solution of the equation Au = f with f ∈ H(Rn, p2, w), then u ∈ H(Rn, p1, w)
(see, for instance, [14], p. 308).

4 Schrödinger operators with operator-valued

potentials

4.1 Fredholm property

Let T be a positive self-adjoint operator on a separable Hilbert space H with
dense domain DT . We suppose that

〈Tϕ, ϕ〉 ≥ ε‖ϕ‖2 for ϕ ∈ H

with a certain ε > 0. Let T =
∫∞

ε
λdEλ refer to the spectral decomposition

of T . For s ∈ R, define the fractional powers T s of T by T s =
∫∞

ε
λsdEλ and

consider T s as unbounded operator with domain

DT s = {f ∈ H :

∫ ∞

ε

λ2sd‖Eλf‖
2 <∞}.

We provide DT s with the scalar product

〈u, v〉DT s :=

∫ ∞

ε

λ2s d〈Eλu, v〉H

which makes DT s to a Hilbert space.

14



Suppose that, for each x ∈ Rn, we are given a bounded linear operator
L(x) : DT 1/2 → DT−1/2 which is symmetric on DT 1/2 , i.e.,

〈L(x)ϕ, ψ〉H = 〈ϕ,L(x)ψ〉H for all ϕ, ψ ∈ DT 1/2 .

We assume that the function x 7→ L(x) is strongly differentiable and that

sup
x∈Rn

‖T−1/2∂β
xL(x)T−1/2‖L(H) <∞ (38)

for every multi-index β. Moreover, we suppose that

lim
x→∞

‖T−1/2∂xjL(x)T−1/2‖L(H) = 0 for j = 1, . . . , n. (39)

We consider the Schrödinger operator

(Hu)(x) := −∂xjρ
jk(x)∂xk

u(x) + L(x)u(x), x ∈ R
n, (40)

on the Hilbert space L2(Rn, H) of vector-functions with values in H. In (40)
and in what follows, we make use of the Einstein summation convention. We
will assume that ρjk ∈ C∞

b (Rn, L(H)) and

lim
x→∞

∂xl
ρjk(x) = 0 for i = 1, . . . , n, (41)

and that ρkj = (ρjk)∗, and there is a C > 0 such that, for every ϕ ∈ H,

〈ρjk(x)ξjξkϕ, ϕ〉H ≥ C|ξ|2‖ϕ‖2
H. (42)

Let p(ξ) := (|ξ|2 + T )1/2, and write H(Rn, p) for the Hilbert space with norm

‖u‖H(Rn, p) := ‖(−∆ + T )1/2u‖L2(Rn,H).

The estimates (38), (39) and (41) imply that H is a pseudodifferential operator
in the class OPSsl(p, p) with symbol

σH(x, ξ) = ρjk(x)ξjξk + i
∂ρjk(x)

∂xj
ξk + L(x).

The following theorem states conditions for the Fredholmness of the operator
H : H(Rn, p) → H(Rn, p−1).

Theorem 18 Let conditions (38) − (42) hold, and assume there are constants

R > 0 and C > 0 such that

R〈L(x)ϕ, ϕ〉H ≥ C〈Tϕ, ϕ〉H (43)

for every x ∈ B′
R and every vector ϕ ∈ DT 1/2 . If the operator H : H(Rn, p) →

H(Rn, p−1) is locally Fredholm, then it is already a Fredholm operator.
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Proof. Conditions (42) and (43) imply that there exist C > 0 and R > 0 such
that, for every x ∈ B′

R and every ϕ ∈ DT 1/2 ,

R〈σH(x, ξ)ϕ, ϕ〉H ≥ C〈(|ξ|2I + T )ϕ, ϕ〉H. (44)

It follows from estimate (44) that, for every x ∈ B′
R and every ψ ∈ H,

R〈(|ξ|2I + T )−1/2σH(x, ξ)(|ξ|2I + T )−1/2ψ, ψ〉H ≥ C‖ψ‖2
H. (45)

This estimate yields that the operator (|ξ|2I +T )−1/2σH(x, ξ)(|ξ|2I +T )−1/2 is
invertible on H for every x ∈ B′

R and every ξ ∈ Rn and that

sup
(x,ξ)∈B′

R×Rn

‖(|ξ|2I + T )1/2σ−1
H

(x, ξ)(|ξ|2I + T )1/2‖L(H) ≤ C−1. (46)

Hence, the conditions of Theorem 15 are satisfied, and H has the Fredholm
property as operator from H(Rn, p) to H(Rn, p−1).

4.2 Exponential estimates

The following theorem gives exponential estimates at infinity for solution of the
Schrödinger equation Hu = f . These estimates van be viewed as an operator-
valued analog of Agmon’s estimates ([1]). We will use the notation

|∇v(x)|2ρ(x) := ρjk(x)
∂v(x)

∂xj

∂v(x)

∂xk
.

Theorem 19 Let the ρjk be scalar real-valued functions such that

ρjk(x)ξjξk ≥ C|ξ|2 for all ξ ∈ R
n

and conditions (38)−(41) hold. Let w = exp v be a weight in R(B) (with B ⊂ Rn

a convex bounded domain containing the origin) such that limx→∞ v(x) = +∞
and there exist R > 0 and C > 0 with

R〈(−|∇v(x)|2ρ(x)IH − L(x))ϕ, ϕ〉H ≥ C〈Tϕ, ϕ〉H (47)

for every x ∈ B′
R and every ϕ ∈ DT 1/2 . If H : H(Rn, p) → H(Rn, p−1)

is a locally Fredholm operator, then every solution of the equation Hu = f
with right-hand side f ∈ H(Rn, p−1, w), which a priori belongs to the space

H(Rn, p, w−1), a posteriori belongs to the space H(Rn, p, w).

Proof. We have

R〈σH(x, ξ + it∇v(x))ϕ, ϕ〉 = R

〈

(ρjk(x)ξjξk − t2|∇v(x)|2ρ(x) + L(x))ϕ, ϕ
〉

.

Condition (47) implies that, for every x ∈ B′
R, ϕ ∈ DT 1/2 , and t ∈ [−1, 1],

R 〈σH(x, ξ + it∇v(x))ϕ, ϕ〉H ≥ C〈(|ξ|2I + T )ϕ, ϕ〉H. (48)

As in the proof of Theorem 18, we conclude from (48) that

sup
(x,ξ,t)∈B′

R×Rn×[−1,1]

∥

∥

∥
(|ξ|2I + T )1/2σ−1

H
(x, ξ + it∇v(x))(|ξ|2I + T )1/2

∥

∥

∥

L(H)

is finite. Thus, all conditions of Theorem 17 are satisfied.
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4.3 Quantum waveguides

Let D be a bounded domain in Rn with a sufficiently regular boundary, and let
Φ ∈ C(1)(D̄)⊗C∞

b (R) be real-valued potential slowly oscillating with respect to

the second variable, i.e., limy→∞
∂Φ(x,y)

∂y = 0 uniformly with respect to x ∈ D̄.
We consider the spectral problem for the Schrödinger equation in the quan-

tum waveguide, i.e.,

((H − λI)u)(x, y) =

(

−
∂2

∂y2
− ∆x + Φ(x, y) − λI

)

u(x, y) = 0 (49)

for (x, y) ∈ D × R =: Π, and
u|∂D = 0. (50)

This equation describes the bound states of the quantum system on the config-
urarion space Π.

The operator H − λI can be realized as a pseudodifferential operator with
operator-valued symbol σH−λI(y, ξ) = ξ2 + Lλ(y) where

(Lλ(y)ϕ)(x) = (−∆x + Φ(x, y) − λI)ϕ(x) for x ∈ D,

ϕ|∂D = 0

is the operator of the Dirichlet problem in D depending on the parameter y ∈ R.
Let T be the operator of the Dirichlet problem for the Laplacian −∆x in the

domain D, considered as an unbounded operator on H = L2(D) with domain
DT = {ϕ ∈ H2(D) : ϕ|∂D = 0} where H2(D) is the standard Sobolev space on
D. It is well-known that T is a positive definit operator. Then we can write
Lλ(y) = T + Φ̃(y) − λI with (Φ̃(y)u)(x) := Φ(x, y)u(x) for x ∈ D. One can
show that condition (38) is satisfied.

As above we set p(ξ) = ξ2I + T for ξ ∈ R, and we denote by H(R, p) the
closure of C∞

0 (Π) in the norm

‖u‖H(R, p) :=

∥

∥

∥

∥

∥

(

−
d2

dy2
+ T

)1/2

u

∥

∥

∥

∥

∥

L2(Π)

.

Then, with the standard Sobolov space notation,

H(R, p) = H̊1(Π) = {u ∈ H1(Π) : u|∂Π = 0}

and H(R, p−1) = (H̊1(Π))∗ = H−1(Π). First we consider the problem of Fred-
holmness of the operator

H − λIH : H̊1(Π) → H−1(Π).

Set Φinf := limR→∞ inf(x,y)∈D×B′

R
Φ(x, y).

Theorem 20 If λ < Φinf, then H − λIH : H̊1(Π) → H−1(Π) is a Fredholm

operator.
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Proof. It follows from standard locally elliptic estimates for the Dirichlet prob-
lem in bounded domains that the operator H−λIH : H̊1(Π) → H−1(Π) is locally
Fredholm. The assumption λ < Φinf implies that condition (43) of Theorem 18
is satisfied. Hence, H − λIH is a Fredholm operator.

Corollary 21 The part of the spectrum of H which lies in (−∞, Φinf) is dis-

crete.

Proof. It is clear that if λ < inf(x, y)∈Π Φ(x, y) < Φinf , then

〈(H − λIH)ϕ, ϕ〉H ≥ C‖ϕ‖2
H

for every ϕ ∈ H2(Π) ∩ H̊1(Π). Since every generalized solution of the Dirichlet
problem belongs to H2(Π) ∩ H̊1(Π), we obtain that the kernel of H − λIH in
H̊1(Π) is trivial. Because (H − λIH)∗ = H − λIH, the cokernel of H − λIH
is trivial, too. Hence, if λ < inf(x,y)∈Π Φ(x, y), then the operator H − λIH is

invertible. Thus, for all λ < Φinf , the operator H− λIH is Fredholm with index
zero. But then H−λIH is invertible for all λ < Φinf , with possible exception of
a discrete set of eigenvalues of finite multiplicity.

Theorem 22 Let λ < Φinf and w = exp v ∈ R(B) for a convex bounded domain

B ⊂ Rn containing the origin. Suppose that limy→∞ v(y) = +∞ and that

lim
R→∞

inf
(x,y)∈D×B′

R

(

Φ(x, y) − λI −

(

dv(y)

dy

)2
)

> 0. (51)

Then every solution uλ ∈ H̊1(Π) = H(R, p) of the equation (H − λIH)uλ = 0
belongs to the space H(R, p, w) = H̊1(Π, w).

Proof. It is easy to check that condition (51) provides the fulfillment of condi-
tion (47) of Theorem 19.
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