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Abstract

We consider spatial discretizations by the finite section method of the

restricted group algebra of a finitely generated discrete group, which is

represented as a concrete operator algebra via its left-regular representa-

tion. Special emphasis is paid to the quasicommutator ideal of the algebra

generated by the finite sections sequences and to the stability of sequences

in that algebra. For both problems, the sequence of the discrete bound-

aries plays an essential role. Finally, for commutative groups and for free

non-commutative groups, the algebras of the finite sections sequences are

shown to be fractal.

1 Introduction

Approximately finite algebras and quasi-diagonal algebras are examples of C∗-
algebras which are distinguished by intrinsic finiteness properties. These prop-
erties can be used in principle to approximate the elements of the algebra by
finite-dimensional (or discrete) objects and, thus, to discretize the algebra in a
sense. In this paper we consider a completely different kind of discretization,
called spatial discretization, the main idea of which is as follows: We represent
a given C∗-algebra A faithfully as an algebra A of linear bounded operators on
a separable Hilbert space with basis {ei}i∈N. Then we let Pn stand for the or-
thogonal projection from H onto the linear span of e1, . . . , en, associate with
each operator A ∈ A the sequence (PnAPn) of its finite sections, and consider
the C∗-algebra S(A) which is generated by all sequences (PnAPn) with A ∈ A.
There is a natural homomorphism from S(A) onto A which associates with each
sequence in S(A) its strong limit. Thus, the algebra A appears as a quotient of
S(A) by the ideal of all sequences tending strongly to zero.

The idea of spatial discretization has its origins in numerical analysis, where
the numerical solution of an operator equation Au = f is a basic problem. Nu-
merical analysis provides a huge arsenal of methods to discretize this equation
for several classes of operators. The perhaps simplest (from the conceptual point
of view) and most universal (applicable to each operator) method is the finite
sections method which replaces the equation Au = f by the sequence of the
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finite-dimensional linear systems PnAPnun = Pnf , n = 1, 2, . . .. The basic ques-
tion is if these systems are uniquely solvable for sufficiently large n and if their
solutions un tend to a solution of Au = f . The central aspect of this question is if
the operators (= n×n-matrices) PnAPn are invertible for sufficiently large n and
if the norms of their inverses are uniformly bounded. In this case, the sequence
(PnAPn) is called stable.

A Neumann series argument shows that the sequence (PnAPn) with A ∈ A

is stable if and only if its coset is invertible in the quotient of the algebra S(A)
by the ideal of all sequences which tend to zero in the norm. This observation
due to Kozak brings numerical analysis into the realm of C∗-algebras (and con-
versely). It was soon realized that, for instance, Gelfand theory and its several
non-commutative generalizations provide effective tools to study stability prob-
lems for the finite sections method for convolution type equations; see [9] for
an overview. In the consequence, the algebras S(A) were examined for several
classes of operator algebras A. The pioneering example was the Toeplitz alge-
bra, T(C), generated all Toeplitz operators on l2(N) with continuous generating
function. This algebra can be viewed as a faithful representation of the univer-
sal C∗-algebra generated by one isometry (Coburn’s theorem, [6]). The algebra
S(T(C)) of the finite sections method is very well understood; for several aspects
of finite sections of Toeplitz operators as well as for the rich history of the field
see [3, 4]. These results were later extended to algebras generated by Toeplitz
operators with piecewise continuous (and even ”more discontinuous”) symbols
and to algebras of singular integral operators, see [8]. The algebra S(BDO) of
the finite sections of band-dominated operators was subject of [18, 15] (note that
the algebra BDO of the band-dominated operators is a faithful representation of
the reduced crossed product algebra l∞(Z)×αr Z), and the algebra S(ON ) where
ON is a concrete representation of the Cuntz algebra ON was considered in [19].

The present paper is devoted to the spatial discretization of restricted group
algebras C∗

r (Γ) where Γ is a finitely generated discrete and exact group. Basic
properties of group algebras can be found, e.g., in [2, 5, 7]. Restricted group alge-
bras come with a natural representation, the so-called left-regular representation,
which makes C∗

r (Γ) isomorphic to the algebra Sh(Γ) of shift operators on l2(Γ).
It is this algebra to which spatial discretization is applied in what follows.

The paper is organized as follows. In Section 2 we provide some preliminaries
on spatial discretization of represented C∗-algebras. Section 3 is devoted to the
spatial discretization of Sh(Γ). For we choose a family Y = (Yn) of finite subsets of
Γ and consider the sequence of the finite sections PYn

APYn
of A ∈ Sh(Γ). We show

that the algebra SY(Sh(Γ)) generated by these sequences splits into the direct sum
of Sh(Γ) and of an ideal which can be characterized as the quasicommutator ideal
of the algebra. A main result is that the sequence (P∂Yn

) of the discrete boundaries
always belongs to the algebra SY(Sh(Γ)), and that this sequence already generates
the quasicommutator ideal. This surprising fact has been already observed in
other settings, for example for the algebra S(T(C)) of the finite sections method

2



for the Toeplitz operators (a classical result, closely related to the present paper),
but also for the algebra S(ON ) related with Cuntz algebra (see [19]).

In Section 4 we derive a necessary and sufficient criterion for the stability of
sequences in SY(Sh(Γ)). The criterion is formulated of terms of limit operators
(see [14, 18]). It turns out that it is sufficient to consider limit operators with
respect to sequences η such that each ηn belongs to the boundary of some set Ykn

,
which gives another hint to the exceptional role of the discrete boundaries. In
two special settings (commutative groups and free non-commutative groups) we
show moreover that one can restrict to the case when η is an (inverse) geodesic
path, which implies the fractality of the algebra SY(Sh(Γ)) for these groups. We
will not present the details, but it should be at least mentioned here that one
consequence of fractality is the excellent convergence properties of certain spectral
quantities. For example, if a sequence (An) belongs to a fractal algebra, then the
sets of the singular values (the points in the ǫ-pseudospectrum, the points in the
numerical range, respectively) of the An converge with respect to the Hausdorff
metric. For these and other applications of fractality, see [9, 17, 18, 20].

2 Spatial discretization

2.1 Hilbert spaces and projections

For a non-empty finite or countable set X, let l2(X) stand for the Hilbert space
of all functions f : X → C with

‖x‖2 :=
∑

x∈X

|f(x)|2 < ∞.

For X = ∅, we define l2(X) as the space {0} consisting of the zero element only.
For each subset Y of X, we consider l2(Y ) as a closed subspace of l2(X) in a
natural way. The orthogonal projection from l2(X) to l2(Y ) will be denoted by
PY . Thus, PX and P∅ are the identity and the zero operator, respectively. For
x ∈ X, let δx be the function on X which is 1 at x and 0 at all other points. If
X is non-empty, then the family (δx)x∈X forms an orthonormal basis of l2(X), to
which we refer as the standard basis.

For each sequence (Yn)n≥1 of subsets of X, define its upper and lower limit as

lim sup Yn := ∩k≥1 ∪n≥k Yn and lim inf Yn := ∪k≥1 ∩n≥k Yn.

Thus, lim sup Yn is the set of all x ∈ X with x ∈ Yn for infinitely many n, whereas
lim inf Yn contains all x ∈ X such that x ∈ Yn for all but finitely many n. A set
sequence (Yn) is said to converge if lim sup Yn = lim inf Yn. In this case we denote
the upper and lower limit by lim Yn. The following assertions are easy to check.
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Proposition 2.1 (a) The sequence (PYn
) of projections converges strongly if and

only if the set sequence (Yn) converges. In this case, s-lim PYn
= PlimYn

.

(b) The sequence (PYn
) converges strongly to the identity operator if and only if

lim inf Yn = X.

Corollary 2.2 (a) If Yn ⊆ Yn+1 for all n, then the sequence (PYn
) converges

strongly to P∪n≥1Yn
.

(b) If Ym ∩Yn = ∅ for all m 6= n, then the sequence (PYn
) converges strongly to 0.

2.2 Algebras of matrix sequences

Let X be as before. Given a sequence Y := (Yn) of subsets of X, let FY denote
the set of all bounded sequences A = (An) of operators An : im PYn

→ im PYn
.

Equipped with the operations

(An) + (Bn) := (An + Bn), (An)(Bn) := (AnBn), (An)∗ := (A∗
n)

and the norm ‖A‖FY
:= ‖An‖, the set FY becomes a C∗-algebra with identity,

and the set GY of all sequences (An) ∈ FY with lim ‖An‖ = 0 forms a closed ideal
of FY . The relevance of the algebra FY and its ideal GY in our context stems
from the fact (following from a simple Neumann series argument) that a sequence
A ∈ FY is stable if, and only if, the coset A + GY is invertible in the quotient
algebra FY/GY . Thus, every stability problem is equivalent to an invertibility
problem in a suitably chosen C∗-algebra.

Let further stand FC
Y for the set of all sequences A = (An) of operators An :

im PYn
→ im PYn

with the property that the sequences (AnPYn
) and (A∗

nPYn
) con-

verge strongly. By the uniform boundedness principle, the quantity sup ‖AnPYn
‖

is finite for every sequence (An) in FC
Y . Thus, FC

Y is a closed and symmetric
subalgebra of FY which contains G. Note that the mapping

W : FC
Y → L(l2(X)), A 7→ s-lim AnPYn

(1)

is a ∗-homomorphism.

2.3 Spatial discretization of represented algebras

Let A be a C∗-subalgebra of L(l2(X)) (i.e., a represented C∗-algebra), and let
Y := {Yn} be a sequence of subsets of X. Write D for the mapping of spatial (=
finite sections) discretization, i.e.,

D : L(l2(X)) → FY , A 7→ (PYn
APYn

), (2)

and let SY(A) stand for the smallest closed C∗-subalgebra of the algebra FY which
contains all sequences D(A) with A ∈ A. Clearly, SY(A) is contained in FC

Y , and
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the mapping W in (1) induces a ∗-homomorphism from SY(A) onto A. On this
level, one cannot say much about the algebra SY(A). The little one can say will
follow from the following simple facts. A proof is in [19].

Proposition 2.3 Let A and B be C∗-algebras, D : A → B a symmetric linear

contraction, and W : B → A a ∗-homomorphism such that W (D(A)) = A for

every A ∈ A. Then

(a) D is an isometry, D(A) is a closed linear subspace of B, and algD(A), the

smallest closed subalgebra of B which contains D(A), splits into the direct sum

algD(A) = D(A) ⊕ (ker W ∩ alg D(A)). (3)

Moreover, for every A ∈ A,

‖D(A)‖ = min
K∈ker W

‖D(A) + K‖. (4)

(b) If B = algD(A), then ker W coincides with the quasicommutator ideal of

B, i.e., with the smallest closed ideal of B which contains all quasicommutators

D(A1)D(A2) − D(A1A2) with A1, A2 ∈ A.

We shall apply this proposition in the following context: A is a C∗-subalgebra of
L(l2(X)), B is the algebra SY(A), D is the restriction of the discretization (2) to
A, and W is the restriction of the homomorphism (1) to SY(A). Then Proposition
2.3 specializes to the following.

Proposition 2.4 Let A be a C∗-subalgebra of L(l2(X)). Then the finite sections

discretization D : A → FY is an isometry, and D(A) is a closed subspace of the

algebra SY(A). This algebra splits into the direct sum

SY(A) = D(A) ⊕ (ker W ∩ SY(A)),

and for every operator A ∈ A one has

‖D(A)‖ = min
K∈ker W

‖D(A) + K‖.

Finally, ker W ∩ SY(A) is equal to the quasicommutator ideal of SY(A), i.e., to

the smallest closed ideal of SY(A) which contains all sequences (PYn
A1PYn

A2PYn
−

PYn
A1A2PYn

) with operators A1, A2 ∈ A.

We denote the ideal ker W ∩ SY(A) by J (A). Since the first item in the decom-
position D(A) ⊕ J (A) of SY(A) is isomorphic (as a linear space) to A, a main
part of the description of the algebra SY(A) is to identify the ideal J (A). Here
is a first result which describes J (A) in terms of generators of A. Abbreviate
I − PA =: QA.
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Proposition 2.5 Let A be a C∗-subalgebra of L(l2(X)) and let E be a subset of

A which generates A as a Banach algebra, i.e., the smallest closed subalgebra of

A which contains E is A. Then, for each m ≥ 2 and each choice of operators

Ai ∈ E, the sequence

(PYn
A1QYn

A2QYn
. . . QYn

AmPYn
)n≥1 (5)

belongs to J (A), and J (A) is the smallest closed ideal of SY(A) which contains

all sequences of the form (5).

Proof. First we show per induction that all sequences of the form (5) belong to
the quasicommutator ideal J (A). This is evident for m = 2:

(PYn
A1QYn

A2PYn
) = (PYn

A1A2PYn
) − (PYn

A1PYn
A2PYn

).

Suppose the assertion is proved for sequences (5) of length less than m. Then

(PYn
A1QYn

. . . QYn
Am−1QYn

AmPYn
)

= (PYn
A1QYn

. . . QYn
Am−1AmPYn

)

−(PYn
A1QYn

. . . QYn
Am−1PYn

) (PYn
AmPYn

).

The second sequence on the right-hand side of this equality is in J (A) by as-
sumption. Write the first sequence as

(PYn
A1QYn

. . . QYn
Am−2QYn

Am−1AmPYn
)

= (PYn
A1QYn

. . . QYn
Am−2Am−1AmPYn

)

−(PYn
A1QYn

. . . QYn
Am−2PYn

) (PYn
Am−1AmPYn

).

Again, the second sequence on the right-hand side is in J (A). We continue in
this way to arrive finally at

(PYn
A1QYn

A2A3 . . . AmPYn
) = (PYn

A1A2 . . . AmPYn
)

−(PYn
A1PYn

) (PYn
A2A3 . . . AmPYn

)

which is in J (A) by the definition of the quasicommutator ideal.
Conversely, we are going to show that the sequences (5) generate J (A) as a

closed ideal of SY(A). Let J refer to the smallest closed ideal of SY(A) which
contains all sequences (5). From the first part of this proof we infer that J ⊆
J (A). For the reverse inclusion it is sufficient to show that

(PYn
AQYn

BPYn
) ∈ J for all A, B ∈ A.

Since J is a closed linear space, it is sufficient to verify this claim in case A and
B are finite products of operators in E. Thus, we have to prove that

(PYn
A1 . . . AmQYn

B1 . . . BlPYn
) ∈ J (6)
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for arbitrary operators Ai, Bj ∈ E and integers l, m ≥ 1. Again we use induction.
The assertion is evident in case m = l = 1. For the general step we write

(PYn
A1 . . . AmQYn

B1 . . . BlPYn
)

= (PYn
A1PYn

) (PYn
A2 . . . AmQYn

B1 . . . BlPYn
)

+ (PYn
A1QYn

A2 . . . AmQYn
B1 . . . BlPYn

).

The first summand on the right-hand side is a product of a sequence in SY(A) and
a sequence of the form (6), but with less factors. By assumption, this summand
is in J . The second summand can be again written as a sum by inserting I =
PYn

+ QYn
after A2. We continue in this way and arrive finally at the sequence

(PYn
A1QYn

A2QYn
. . . QYn

Bl−1QYn
BlPYn

) which is in J by definition.

3 Spatial discretization of restricted group C∗-

algebras

3.1 Left regular representations

Let Γ be a (not necessarily commutative) discrete group. We write the group
operation as multiplication and let e stand for the identity element. With Γ we
associate the Hilbert space l2(Γ) with its canonical basis (δs)s∈Γ. The left regular

representation L : Γ → L(l2(Γ)) associates with every group element r a unitary
operator Lr such that Lrδs = δrs for s ∈ Γ.

Since δrs(t) = δs(r
−1t), one has (Lru)(t) = u(r−1t) for every u ∈ l2(Γ). Hence,

r 7→ Lr is a group isomorphism. We define Sh(Γ) as the smallest closed subalgebra
of L(l2(Γ)) which contains all operators Lt with t ∈ Γ. The algebra Sh(Γ) is ∗-
isomorphic to the restricted group C∗-algebra C∗

r (Γ) in a natural way (see Section
2.5 in [5]). It can thus be considered as a concrete representation of C∗

r (Γ). Note
also that the restricted group C∗-algebra coincides with the universal group C∗-
algebra C∗(Γ) if the group Γ is amenable. For this and further characterizations
of amenable groups, see Theorem 2.6.8 in [5].

We have seen above that every restricted group C∗-algebra C∗
r (Γ) comes with a

canonical faithful representation as the concrete operator algebra Sh(Γ) on l2(Γ).
We will take this representation as the basis for the spatial discretization of C∗

r (Γ)
by a finite sections method in the following sections.

The existence of a canonical representation is only one reason why we con-
sider spatial discretizations only for restricted group C∗-algebras in what fol-
lows. Another reason is that universal group C∗-algebras sometimes own intrinsic
finiteness properties which can be used to approximate their elements by finite
dimensional objects, but which are not shared by the associated restricted group
C∗-algebras. For example, if Γ is the free non-commutative group F2 of two gen-
erators, then the universal group C∗-algebra C∗(F2) is known to be quasidiagonal,
whereas C∗

r (F2) fails to have this property (see Sections VII.6 and VII.7 in [7]).
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3.2 Discretization of Sh(Γ)

To discretize the algebra Sh(Γ) by the finite sections method we choose a sequence
Y = (Yn) of finite subsets of Γ and consider the sequences (PYn

APYn
) of the finite

sections of A ∈ Sh(Γ). Usually we will assume that the set limit lim Yn exists and
is equal to Γ, in which case the PYn

converge strongly to the identity operator, but
some of the following results will hold without this assumption. In accordance
with earlier notation, let SY(Sh(Γ)) stand for the smallest closed C∗-subalgebra
of the algebra FY which contains all sequences (PYn

APYn
) with A ∈ Sh(Γ). The

associated quasicommutator ideal is denoted by J (Sh(Γ)).
In the next section, we shall present some characterizations of J (Sh(Γ)). For

we have to introduce some notions of topological type. Note that the standard
topology on Γ is the discrete one; so every subset of Γ is open with respect to
this topology.

Let Ω be a finite subset of Γ which contains the identity element e and which
generates Γ as a semi-group, i.e., if Ωn denotes the set of all words of length at
most n with letters in Ω, then ∪n≥0Ωn = Γ. By convention, Ω0 := {e}. Note also
that the sequence (Ωn) is increasing; so the operators PΩn

can play the role of the
finite sections projections PYn

, and in fact we will obtain some of the subsequent
results exactly for this sequence.

With respect to Ω, we define the following ”algebro-topological” notions. Let
A ⊆ Γ. A point a ∈ A is called an Ω-inner point of A if Ωa := {ωa : ω ∈ Ω} ⊆ A.
The set intΩA of all Ω-inner points of A is called the Ω-interior of A, and the
set ∂ΩA := A \ intΩA is the Ω-boundary of A. Note that by this definition, the
Ω-boundary of a set is always a part of that set. (In this point, the present
definition of a boundary differs from other definitions used in the literature, see,
e.g., [1].)

One easily checks that the Ω-interior and the Ω-boundary of a set are invariant
with respect to multiplication from the right-hand side:

(intΩA)s = intΩ(As) and (∂ΩA)s = ∂Ω(As)

for s ∈ Γ. One also has

Ωn−1 ⊆ intΩΩn ⊆ Ωn for each n ≥ 1, (7)

whence
∂ΩΩn ⊆ Ωn \ Ωn−1 for each n ≥ 1. (8)

In many concrete settings, one has equality in (8).

3.3 The structure of the quasicommutator ideal

Let Ω and Y := (Yn) be as in the previous section. We will derive two results on
the structure of the quasicommutator ideal J (Sh(Γ)).

8



Theorem 3.1 J (Sh(Γ)) is the smallest closed ideal of SY(Sh(Γ)) which contains

all sequences

(PYn
Lω−1QYn

LωPYn
)n≥1 with ω ∈ Ω. (9)

Proof. First note that, for arbitrary ω ∈ Ω and A ⊆ Γ,

QALωPA = QALωPALω−1QALωPA. (10)

Indeed,

QALωPA = QALωPALω−1LωPA

= QALωPALω−1QALωPA + QALωPALω−1PALωPA.

The second summand on the right-hand side vanishes since LωPALω−1 = PωA

commutes with PA.
Let now, for a moment, J denote the smallest closed ideal of SY(Sh(Γ)) which

contains all sequences (9). Clearly, J ⊆ J (Sh(Γ)). The reverse implication will
follow via Proposition 2.5 once we have shown that each sequence

(PYn
Lω1QYn

Lω2QYn
. . . QYn

Lωm
PYn

)n≥1 (11)

with m ≥ 2 and ωi ∈ Ω belongs to J . Write the sequence (11) as (AnQYn
Lωm

PYn
).

By (10),

(AnQYn
Lωm

PYn
) = (AnQYn

Lωm
PYn

) (PYn
Lω−1QYn

Lωm
PYn

).

Since the sequence (11) belongs to SY(Sh(Γ)) and J is an ideal of that algebra,
the sequence (11) is in J .

Lemma 3.2 Let A ⊆ Γ. Then ∩ω∈Ω(A ∩ ω−1A) = intΩA.

Proof. Let a ∈ intΩA. Then, for each ω ∈ Ω,

a = ω−1ωa ∈ ω−1Ωa ⊆ ω−1A ⊆ A ∩ ω−1A,

whence the inclusion ⊇. For the reverse inclusion, let a ∈ A \ intΩA = ∂ΩA.
By definition of the Ω-boundary, there is an ω0 ∈ Ω such that ω0a 6∈ A. Hence,
a 6∈ A ∩ ω−1

0 A, which implies a 6∈ ∩ω∈Ω(A ∩ ω−1A).

Lemma 3.3 Let A be a subalgebra of L(l2(Γ)) and A ⊆ Γ. If the operators

PALω−1PALωPA belong to A for each ω ∈ Ω, then the operators PA, PintΩA and

P∂ΩA belong to A, too.

Proof. Since e ∈ Ω, the assertion is evident for PA. Further we have

PALω−1PALωPA = PAPω−1A = PA∩ω−1A ∈ A
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for each ω ∈ Ω. Since A is an algebra, this implies

∏

ω∈Ω

PA∩ω−1A = P∩ω∈Ω(A∩ω−1A) ∈ A.

By Lemma 3.2, this is the assertion for PintΩA. The assertion for P∂ΩA follows
since PA = PintΩA + P∂ΩA.

We call (P∂ΩYn
)n≥1 the sequence of the discrete boundaries of the finite section

method with respect to (Yn). Note that the assumptions in the following theorem
are satisfied if Yn = Ωn due to (7).

Theorem 3.4 Assume that Yn−1 ⊆ intΩYn ⊆ Yn for all n ≥ 2 and that lim Yn =
Γ. Then the sequence (P∂ΩYn

)n≥1 of the discrete boundaries belongs to the algebra

SY(Sh(Γ)), and the quasicommutator ideal is generated by this sequence, i.e.,

J (Sh(Γ)) is the smallest closed ideal of SY(Sh(Γ)) which contains (P∂ΩYn
)n≥1.

Proof. By definition, the sequence (PYn
Lω−1PYn

LωPYn
)n≥1 is in SY(Sh(Γ)) for

each ω ∈ Ω. From Lemma 3.3 we then conclude that the sequence (P∂ΩYn
) is in

SY(Sh(Γ)), too. That this sequence is even in the quasicommutator ideal, is a
consequence of the assumptions. Indeed, from Yn−1 ⊆ intΩYn ⊆ Yn we conclude
that

lim
n→∞

intΩYn = lim
n→∞

Yn = Γ

whence s-limP∂ΩYn
= 0. By Proposition 2.4, this implies (P∂ΩYn

) ∈ J (Sh(Γ)).
It remains to show that the sequence (P∂ΩYn

) generates J (Sh(Γ)). Let J
denote the smallest closed ideal of SY(Sh(Γ)) which contains the sequence (P∂ΩYn

).
By what we have just seen, J ⊆ J (Sh(Γ)). The reverse inclusion will follow from
Theorem 3.1 once we have shown that

(PYn
Lω−1QYn

LωPYn
)n≥1 ∈ J for each ω ∈ Ω. (12)

Note that

PYn
Lω−1QYn

LωPYn
= PYn

− PYn
Lω−1PYn

LωPYn
= PYn\(Yn∩ω−1Yn).

From Lemma 3.2 we know that intΩYn ⊆ Yn ∩ ω−1Yn. Hence,

Yn \ (Yn ∩ ω−1Yn) ⊆ Yn \ intΩYn = ∂ΩYn

which implies that

PYn
Lω−1QYn

LωPYn
= PYn\(Yn∩ω−1Yn) = PYn\(Yn∩ω−1Yn) P∂ΩYn

.

This verifies (12) and finishes the proof of the theorem.

10



4 Stability

In this section, we are going to study the stability of sequences in SY(Sh(Γ)) via
the finite sections method. The key ingredients are the facts that the stability
of a sequence A in that algebra is equivalent to the Fredholmness of a certain
associated operator and that the Fredholmness of that operator can be studied
by means of its limit operators due to a result of Roe.

4.1 Fredholmness vs. stability

Let Y := (Yn) be a sequence of finite subsets of Γ. A sequence (vn) ⊆ Γ is called
an inflating sequence for Y if Ymv−1

m ∩ Ynv
−1
n = ∅ for m 6= n. The existence of

inflating sequences is a consequence of the following lemma.

Lemma 4.1 Let A, B ⊂ Γ be finite and V ⊂ Γ be infinite. Then there is a

v ∈ V such that A ∩ Bv−1 = ∅.

Indeed, let A∩Bv−1 6= ∅ for every v ∈ V . Then, for each v ∈ V , there is a bv ∈ B
such that bvv

−1 =: av ∈ A. Thus, v = bva
−1
v . But since A and B are finite, there

are only finitely many products bva
−1
v . Hence V is finite, a contradiction.

Corollary 4.2 Let Y = (Yn) be a sequence of finite subsets of Γ and V an infinite

subset of Γ. Then there is an inflating sequence for Y in V .

Proof. Let v1 ∈ V . Then Y1v
−1
1 is finite. By the lemma, there is a v2 ∈ V such

that Y1v
−1
1 ∩ Y2v

−1
2 = ∅. Further, since Y1v

−1
1 ∪ Y2v

−1
2 is finite, there is a v3 ∈ V

such that
(
Y1v

−1
1 ∪ Y2v

−1
2

)
∩ Y3v

−1
3 = ∅.

We proceed in this way to find the desired inflating sequence.

In what follows let Y as above and choose and fix an inflating sequence (vn) for
Y . Further set

Γ′ := Γ \ ∪∞
n=1Ynv

−1
n . (13)

For s ∈ Γ, let Rs : l2(Γ) → l2(Γ) refer to the operator (Rsf)(t) := f(ts). Evi-
dently, the mapping R : s 7→ Rs is a group isomorphism from Γ into the group of
the unitary operators on l2(Γ). Moreover, RsLt = LtRs for s, t ∈ Γ. The proof
of the following theorem is adapted from [18].

Theorem 4.3 Let A = (An) ∈ FY . Then

(a) the series
∞∑

n=1

Rvn
AnR−1

vn
(14)

converges strongly on l2(Γ). The sum of this series is denoted by Op (A).

11



(b) the sequence (An) is stable if and only if the operator Op (A)+PΓ′ is Fredholm

on l2(Γ).

(c) The mapping Op is a continuous homomorphism from FY to L(l2(Γ)).

Proof. (a) It is convenient to identify the operator An acting on im PYn
with the

operator PYn
AnPYn

acting on all of l2(Γ). Since Rvn
PYn

R−1
vn

= PYnv−1
n

, one can
then identify the operator

Rvn
AnR−1

vn
: im PYnv−1

n
→ im PYnv−1

n

with the operator PYnv−1
n

Rvn
AnR−1

vn
PYnv−1

n
on l2(Γ). Thus, for x ∈ l2(Γ), the

inflating property ensures that the vectors Rvn
AnR

−1
vn

x form an orthogonal system
in l2(Γ). Consequently, the series

∑∞
n=1 Rvn

AnR
−1
vn

x converges if and only if the
series

∞∑

n=1

‖Rvn
AnR

−1
vn

x‖2 (15)

converges. Set M := sup ‖An‖. Employing the orthogonality of the vectors
PYnv−1

n
x, we get

∞∑

n=1

‖Rvn
AnR

−1
vn

x‖2 ≤ M2
∞∑

n=1

‖PYnv−1
n

x‖2 ≤ M2‖x‖2.

Thus, the series (15) converges for every x, whence assertion (a).

(b) Let A = (An) be a stable sequence, i.e., there is an n0 ∈ N such that the
operators An : im PYn

→ im PYn
are invertible for n ≥ n0 and that the norms of

their inverses are uniformly bounded. Then the operator

B :=

n0−1∑

n=1

PYnv−1
n

+

∞∑

n=n0

Rvn
AnR−1

vn
+ PΓ′

is invertible with inverse

B−1 =

n0−1∑

n=1

PYnv−1
n

+

∞∑

n=n0

Rvn
A−1

n R−1
vn

+ PΓ′ .

Since Op (A) + PΓ′ is a compact perturbation of B, Op (A) + PΓ′ is a Fredholm
operator (with Fredholm index 0).

Let, conversely, Op (A) + PΓ′ be a Fredholm operator. Then there are an
operator B ∈ L(l2(Γ)) and a compact operator K on l2(Γ) such that

B · (Op (A) + PΓ′) = I + K.

12



Since the projections PYnv−1
n

commute with Op (A), and since Ynv
−1
n ∩Γ′ = ∅, we

find

PYnv−1
n

BPYnv−1
n

· Rvn
AnR−1

vn
= PYnv−1

n
BPYnv−1

n
· PYnv−1

n
Op (A)PYnv−1

n

= PYnv−1
n

BOp (A)PYnv−1
n

= PYnv−1
n

B(Op (A) + PΓ′)PYnv−1
n

= PYnv−1
n

+ PYnv−1
n

KPYnv−1
n

,

whence

R−1
vn

PYnv−1
n

BPYnv−1
n

Rvn
· An = PYn

+ R−1
vn

PYnv−1
n

KPYnv−1
n

Rvn
. (16)

Since PYnv−1
n

→ 0 strongly by the inflating property and by Corollary 2.2 (b) and
since K is compact and ‖Rvn

‖ = 1, we further conclude

‖R−1
vn

PYnv−1
n

KPYnv−1
n

Rvn
‖ → 0 as n → ∞.

Hence, the operators on the right-hand side of (16) (considered as acting on
im PYn

) are invertible for n large enough, and the norms of their inverses are
uniformly bounded with respect to n. This implies the uniform boundedness of
the operators

Bn :=
(
PYn

+ R−1
vn

PYnv−1
n

KPYnv−1
n

Rvn

)−1
R−1

vn
PYnv−1

n
BPYnv−1

n
Rvn

,

also considered as acting on im PYn
. Since BnAn = PYn

for all sufficiently large n
and the An act on a finite-dimensional space, the stability of the sequence (An)
follows. Assertion (c) is an immediate consequence of the inflating property.

4.2 Band-dominated operators

Theorem 4.3 translates the stability problem for a bounded sequence of finite-
rank operators into a Fredholm problem for an associated operator. In case of
the finite sections sequence of an operator in Sh(Γ), the associated operator is a
band-dominated operator in the sense defined below. Since there is an effective
criterion to verify the Fredholm property (which we will recall in the subsequent
section) of band-dominated operators, this observation offers a way to study the
stability of the finite sections method for operators in Sh(Γ).

Consider functions k ∈ l∞(Γ × Γ) with the property that there is a finite
subset Γ0 of Γ such that k(t, s) = 0 whenever ts−1 6∈ Γ0. Then

(Au)(t) :=
∑

s∈Γ

k(t, s) u(s), t ∈ Γ, (17)

defines a linear operator A on the linear space of all functions u : Γ → C, since
the occurring series is finite for every t ∈ G. We call operators of this form band

13



operators and the set Γ0 a band-width of A. It is not hard to see that the band
operators form a symmetric algebra of bounded operators on l2(Γ). Operators in
the norm closure of that algebra are called band-dominated operators. Thus, the
band-dominated operators form a C∗-subalgebra BDO(Γ) of L(l2(Γ)).

It turns out that band operators on Γ are constituted by two kinds of ”ele-
mentary” band operators: the unitary operators Lt of left shift by t ∈ Γ, and the
operators bI of multiplication by a function b ∈ l∞(G),

bI : l2(Γ) → l2(Γ), (bu)(s) = b(s) u(s).

Proposition 4.4 A operator in L(l2(Γ)) is a band operator if and only if it can

be written as a finite sum
∑

biLti where bi ∈ l∞(Γ) and ti ∈ Γ.

Proof. Let A be an operator of the form (17) and let Γ0 := {t1, t2, . . . , tr} be a
finite subset of Γ such that k(t, s) = 0 if ts−1 6∈ Γ0 or, equivalently, if s is not of
the form t−1

i t for some i. Thus,

(Au)(t) =

r∑

i=1

k(t, t−1
i t) u(t−1

i t) for all t ∈ Γ.

Set bi(t) := k(t, t−1
i t). The functions bi are in l∞(Γ), and one has

A =

r∑

i=1

biLti . (18)

Conversely, one easily checks that each operator Lt with t ∈ Γ is a band operator
with band width {t} and that each operator bI with b ∈ l∞(Γ) is a band operator
with band width {e}. Since the band operators form an algebra, each finite sum
∑

biLti is a band operator.

It is easy to see that the representation of a band operator on Γ in the form
(18) is unique. The functions bi are called the diagonals of the operator A. In
particular, operators in Sh(Γ) can be considered as band-dominated operators
with constant coefficients.

As before, let Y := (Yn) be a sequence of finite subsets of Γ and (vn) an
associated inflating sequence. Note that the following proposition remains valid
if the algebra Sh(Γ) is replaced by the C∗-algebra BDO(Γ) of all band-dominated
operators.

Proposition 4.5 Let A = (An) be a sequence in the finite sections algebra

SY(Sh(Γ)). Then Op (A) is a band-dominated operator.

Proof. First let A ∈ Sh(Γ) be a band operator (i.e., A is a linear combination
of a finite number of the Lt) and let Γ0 be a band width of A. It is easy to check
that then Rvn

PYn
APYn

R−1
vn

is a band operator with the same band width for every

14



n. The inflating property ensures that Op ((PYn
APYn

)) is a band operator with
band width Γ0, too. Now Theorem 4.3 (c) yields the assertion.

To define limit operators, let h : N → Γ be a sequence tending to infinity in the
sense that for each finite subset Γ0 of Γ, there is an n0 ∈ N such that h(n) 6∈ Γ0

if n ≥ n0. Clearly, if h tends to infinity, then the inverse sequence h−1 tends
to infinity, too. We say that an operator Ah ∈ L(l2(Γ)) is a limit operator of

A ∈ L(l2(Γ)) defined by the sequence h if

R−1
h(m)ARh(m) → Ah and R−1

h(m)A
∗Rh(m) → A∗

h

strongly as m → ∞. Clearly, every operator has at most one limit operator with
respect to a given sequence h. Note that the generating function of the shifted
operator R−1

r ARr is related with the generating function of A by

kR−1
r ARr

(t, s) = kA(tr−1, sr−1) (19)

and that the generating functions of R−1
h(m)ARh(m) converge pointwise on Γ × Γ

to the generating function of the limit operator Ah (if the latter exists).
It is an important property of band-dominated operators that they always

possess limit operators. More general, the following result can be proved by a
standard Cantor diagonal argument (see [12, 13, 14]).

Proposition 4.6 Let A be a band-dominated operator on l2(Γ). Then every

sequence h : N → Γ which tends to infinity possesses a subsequence g such that

the limit operator Ag of A with respect to g exists.

Let A be a band-dominated operator and h : N → Γ a sequence tending to infinity
for which the limit operator Ah of A exists. Let B be another band-dominated
operator. By Proposition 4.6 we can choose a subsequence g of h such that the
limit operator Bg exists. Then the limit operators of A, A + B and AB with
respect to g exist, and

Ag = Ah, (A + B)g = Ag + Bg, (AB)g = AgBg.

Thus, the mapping A 7→ Ah acts, at least partially, as an algebra homomorphism.
The following theorem is due to Roe [22], see also [11]. Recall in this connec-

tion that a group Γ is said to be exact, if its reduced translation algebra is an
exact C∗-algebra. The latter is defined as the reduced crossed product of l∞(Γ)
by Γ and coincides in our setting with the C∗-algebra of all band-dominated
operators on l2(Γ). The class of exact groups is extremely rich. It includes all
amenable groups (hence, all solvable groups such as the discrete Heisenberg group
and the commutative groups) and all hyperbolic groups (in particular, all free
groups with finitely many generators) (see [21], Chapter 3).
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Theorem 4.7 (Roe) Let Γ be a finitely generated discrete and exact group, and

let A be a band-dominated operator on l2(Γ). Then the operator A is Fredholm

on l2(Γ) if and only if all limit operators of A are invertible and if the norms of

their inverses are uniformly bounded.

Note that this result holds as well if the left regular representation is replaced
by the right regular one and if, thus, the operators Ls and Rt change their roles.
In fact, in [11, 22] the results are presented in this symmetric setting. In [11]
we showed moreover that the uniform boundedness condition in Theorem 4.7 is
redundant for band operators if the group Γ has subexponential growth and if not
every element of Γ is cyclic in the sense that wn = e for some positive integer n.
For details see [11]. Note that the condition of sub-exponential growth is satisfied
by the abelian groups ZN , the discrete Heisenberg group and, more general, by
nilpotent groups (in fact, these groups have polynomial growth), whereas the
growth of the free groups FN is exponential.

Theorem 4.8 Let Γ be a finitely generated discrete and exact group with subex-

ponential growth which possesses at least one non-cyclic element, and let A be a

band operator on l2(Γ). Then the operator A is Fredholm on l2(Γ) if and only if

all limit operators of A are invertible.

4.3 Limit operators and stability

Let Y = (Yn) be a sequence of finite subsets of Γ. To verify the stability of
a sequence A = (An) in SY(Sh(Γ)) via the results of the previous section, we
have to choose an inflating sequence for Y and to compute the limit operators of
Op (A) + PΓ′. Note that the exactness of Γ is not relevant in this computation.
Note also that large parts of this computation hold for sequences in SY(BDO(Γ)),
too. We will consider the finite sections method for operators in BDO(Γ) in detail
in a forthcoming paper.

Let Ω be a finite subset of Γ with e ∈ Ω which generates Γ as a semi-group.
Let Ωn denote the set of all words with letters in Ω of length at most n. Thus
Γ = ∪n≥1Ωn = limn→1 Ωn.

By Theorem 4.3, the Fredholmness of the operator Op (A) is independent of
the concrete choice of the inflating sequence. For technical reasons, we choose an
inflating sequence (vn) for the sequence

(
(Yn ∪ Ωn)(Yn ∪ Ωn)−1(Yn ∪ Ωn)

)

n≥1

instead of (Yn). Since

Yn ∪ Ωn ⊂ (Yn ∪ Ωn)(Yn ∪ Ωn)−1 ⊂ (Yn ∪ Ωn)(Yn ∪ Ωn)−1(Yn ∪ Ωn),

(vn) is also an inflating sequence for (Yn). Moreover, since lim Ωn = Γ, one also
has

lim (Yn ∪ Ωn)(Yn ∪ Ωn)−1 = Γ. (20)
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Let now A = (An) ∈ SY(BDO(Γ)), set as before

Op (A) =

∞∑

n=1

Rvn
AnR

−1
vn

and Γ′ = Γ \ ∪∞
n=1Ynv

−1
n ,

and let h : N → Γ be a sequence tending infinity for which the limit operator

(Op (A) + PΓ′)h := s-limn→∞R−1
h(n)(Op (A) + PΓ′)Rh(n)

exists. Then the limit operator (Op (A) + PΓ′)g exists for every subsequence of
h, and it coincides with (Op (A) + PΓ′)h. So we can pass freely to subsequences
of h. By passing to subsequences, we can restrict the computation of the limit
operator to the following cases:

Case 1: All elements h(n) belong to ∪k≥1 vkY
−1
k .

Case 2: No element h(n) belong to ∪k≥1 vkY
−1
k .

Consider Case 1. Passing again to a subsequence of h we can further suppose
that each h(n) belongs to one of the sets vkY

−1
k , say to vkn

Y −1
kn

, and that vkn
Y −1

kn

contains no other element of the sequence h besides h(n). For each n, let rn denote
the smallest non-negative integer such that h(n) ∈ vkn

(∂ΩYkn
)−1Ωrn

. Thus, rn

measures the distance of h(n) to the Ω-boundary of vkn
Y −1

kn
. Finally, let r∗ :=

lim infn→∞ rn. Again we distinguish two cases.

Case 1.1: r∗ is finite. Then there are infinitely many n ∈ N such that rn = r∗.
Thus, there is a subsequence of h (denoted by h again) such that

h(n) ∈ vkn
Y −1

kn
∩ vkn

(∂ΩYkn
)−1Ωr∗ for all n.

Further, for each n there is an w∗
n ∈ Ωr∗ such that h(n) ∈ vkn

(∂ΩYkn
)−1w∗

n. Since
Ωr∗ is a finite set, one of its elements w∗

n occurs for infinitely many n. Let w∗

be an element of Ωr∗ with this property. Consider the subsequence of h which
contains all elements h(n) with w∗

n = w∗. Denoting this subsequence by h again,
we can hence assume that

h(n) ∈ vkn
Y −1

kn
∩ vkn

(∂ΩYkn
)−1w∗ (21)

for all n. With respect to this sequence h we obtain

R−1
h(n)(Op (A) + PΓ′)Rh(n)

=
∞∑

k=1

R−1
h(n)Rvk

AkR
−1
vk

Rh(n) + R−1
h(n)PΓ′Rh(n)

=
∑

k 6=kn

R−1
h(n)Rvk

AkR
−1
vk

Rh(n) + R−1
h(n)PΓ′Rh(n) + R−1

h(n)Rvkn
Akn

R−1
vkn

Rh(n) (22)
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with Γ′ as in (13). By (21), h(n) = vkn
ηkn

w∗ with ηkn
∈ (∂ΩYkn

)−1. Thus, the
last item in (22) becomes

Rw−1
∗

Rη−1
kn

Akn
Rηkn

Rw∗
. (23)

Set Πn := P(Ykn∪Ωkn)(Ykn∪Ωkn)−1w∗
. By (20), Πn → I strongly. Since Akn

acts on
im PYkn

, the operator (23) acts on imPYknηknw∗
. The evident inclusion

Ykn
ηkn

w∗ ⊆ (Ykn
∪ Ωkn

)(Ykn
∪ Ωkn

)−1w∗

implies that

ΠnR−1
h(n)Rvkn

AkR
−1
vkn

Rh(n) = R−1
h(n)Rvkn

AkR
−1
vkn

Rh(n)Πn = R−1
h(n)Rvkn

AkR
−1
vkn

Rh(n).

Let now k 6= kn. Then, by the inflating property,

(Yk ∪ Ωk)(Yk ∪ Ωk)
−1(Yk ∪ Ωk)v

−1
k

∩(Ykn
∪ Ωkn

)(Ykn
∪ Ωkn

)−1(Ykn
∪ Ωkn

)v−1
kn

= ∅. (24)

Since Ykv
−1
k ⊆ (Yk ∪ Ωk)(Yk ∪ Ωk)

−1(Yk ∪ Ωk)v
−1
k and

(Ykn
∪ Ωkn

)(Ykn
∪ Ωkn

)−1η−1
kn

v−1
kn

⊆ (Ykn
∪ Ωkn

)(Ykn
∪ Ωkn

)−1(Ykn
∪ Ωkn

)v−1
kn

we conclude from (24) that

Ykv
−1
k ∩ (Ykn

∪ Ωkn
)(Ykn

∪ Ωkn
)−1η−1

kn
v−1

kn
= ∅

whence
Ykv

−1
k vkn

ηkn
w∗ ∩ (Ykn

∪ Ωkn
)(Ykn

∪ Ωkn
)−1w∗ = ∅.

Since R−1
h(n)Rvk

AkR
−1
vk

Rh(n) is an operator living on imPYkv−1
k

vknηknw∗
, we conclude

that
R−1

h(n)Rvk
AkR

−1
vk

Rh(n)Πn = ΠnR
−1
h(n)Rvk

AkR
−1
vk

Rh(n) = 0

for k 6= kn. Hence,

R−1
h(n)(Op (A) + PΓ′)Rh(n)

=
∑

k 6=kn

R−1
h(n)Rvk

AkR
−1
vk

Rh(n)(I − Πn) + R−1
h(n)PΓ′Rh(n)

+ R−1
w∗

R−1
ηkn

Akn
Rηkn

Rw∗
Πn. (25)

Since Pn → I strongly, the first summand on the right-hand side of (25) converges
strongly (and even ∗-strongly since Πn commutes with that sum) to zero. Thus,

s-lim R−1
h(n)(Op (A) + PΓ′)Rh(n)

= s-lim R−1
w∗

R−1
ηkn

AkRηkn
Rw∗

Πn + s-lim R−1
h(n)PΓ′Rh(n),

provided that the strong limits on the right-hand side exist. The existence of the
second strong limit can always be forced by passing to a suitable subsequence of
h. Collecting these facts, we arrive at the following.
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Theorem 4.9 Let h be a sequence such that the limit operator Op (A) + PΓ′

exists. In Case 1.1, there is a subsequence g of h such that the limit operator

(PΓ′)g exists, and there are a monotonically increasing sequence (kn) in N, for

each n a vector ηkn
∈ (∂ΩYkn

)−1, and a w∗ ∈ Γ such that

(Op (A) + PΓ′)h = s-lim R−1
w∗

R−1
ηkn

Akn
Rηkn

Rw∗
+ (PΓ′)g.

Thus, the operator Akn
living on im PYkn

is shifted by a vector ηkn
∈ (∂ΩYkn

)−1

and by another vector w∗ independent of n. It is only a matter of taste to
consider Akn

as shifted by the vector η−1
kn

belonging to the Ω-boundary of Ykn
.

In particular, every limit operator of Op (A) is a shift by some vector w∗ of a
strong limit of operators Akn

, shifted by vectors in the boundary of Ykn
. This is

well known for the group Z and intervals Yk = [−k, k] ∩ Z, and it was observed
by Lindner [10] in case Γ = Z

N and Yk = Ωk is a polygon with integer vertices.
Before turning to the other cases, let us specify Theorem 4.9 to pure finite

sections sequences for operators in Sh(Γ). The existence of the limit operator
(PΓ′)h is guaranteed if the strong limit

s-lim R−1
w∗

R−1
ηkn

PYkn
Rηkn

Rw∗
= s-lim PYknηknw∗

exists, i.e., if the set limit

lim Ykn
ηkn

w∗ =: Y (h) (26)

exists. In this case, (PΓ′)g = PY(h).

Corollary 4.10 Let A ∈ Sh(Γ), and let h be a sequence such that the limit

operator Op (A)h for the sequence (PYn
APYn

) exists. In Case 1.1, there are kn,

ηkn
and w∗ as in Theorem 4.9 such that the set limit (26) exists. Then

(Op (A) + PΓ′)h = PY(h)APY(h) + (I − PY(h)). (27)

Conversely, if the limit (26) exists for a certain choice of kn, ηkn
and w∗ as in

Theorem 4.9, then the limit operator Op (A)h exists for the sequence h(n) :=
vkn

ηkn
w∗, and (27) holds.

The proof of the first assertion follows immediately from Theorem 4.9 and from
the shift invariance of the operator A:

Rw−1
∗ η−1

kn

PYkn
APYkn

Rηknw∗
= Rw−1

∗ η−1
kn

PYkn
Rηknw∗

· A · Rw−1
∗ η−1

kn

PYkn
Rηknw∗

.

The second assertion is evident.

Case 1.2: r∗ is infinite. Recall that

h(n) ∈ vkn
Y −1

kn
and h(n) 6∈ vkn

(∂ΩYkn
)−1Ωrn−1 (28)
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for all n ∈ N. The second assertion in (28) implies that

h(n)Ω−1
rn−1 ∩ vkn

(∂ΩYkn
)−1 = ∅.

Hence, we can rewrite (28) as

e ∈ Ykn
v−1

kn
h(n) and Ωrn−1 ∩ (∂ΩYkn

)v−1
kn

h(n) = ∅. (29)

We claim that this implies that

Ωrn−1 ⊆ Ykn
v−1

kn
h(n). (30)

Suppose (30) is wrong. Then Ωrn−1 has at least one point outside Ykn
v−1

kn
h(n),

say a, but it also has points inside this set, for example the point e due to the
first assumption of (29). Write a as a product a = wrn−1 . . . w1w0 of elements
wi ∈ Ω with w0 := e, and let 0 ≤ j < rn − 1 be the smallest integer such that

wj . . . w1w0 ∈ Ykn
v−1

kn
h(n), but wj+1wj . . . w1w0 6∈ Ykn

v−1
kn

h(n).

Then Ωwj . . . w1w0 6⊆ Ykn
v−1

kn
h(n), hence

wj . . . w1w0 ∈ ∂Ω(Ykn
v−1

kn
h(n)).

Since wj . . . w1w0 ∈ Ωrn−1, this contradicts the second assertion of (29), and the
claim (30) follows. Roughly speaking, we used the fact that Ω-boundaries do not
have gaps. Since PΩn

→ I strongly, we conclude from (30) that

PYknv−1
kn

h(n) → I strongly. (31)

Theorem 4.11 Let A ∈ SY(Sh(Γ)), and let h be a sequence such that the limit

operator Op (A)h exists. Then in Case 1.2,

Op (A)h = A with A := s-limAnPYn
. (32)

Proof. It is sufficient to prove (32) for pure finite sections sequences A =
(PYn

APYn
) with A ∈ Sh(Γ). For these sequences, one has

R−1
h(n)(Op (A) + PΓ′)Rh(n) =

∑

k 6=kn

R−1
h(n)Rvk

PYk
APYk

R−1
vk

Rh(n)(I − PYknv−1
kn

h(n))

+ R−1
h(n)PΓ′Rh(n)(I − PYknv−1

kn
h(n))

+ PYknv−1
kn

h(n)APYknv−1
kn

h(n).

Letting n go to infinity the assertion follows due to (31).

Thus, in Case 1.2, the invertibility of the limit operators follows already from the
invertibility of A.
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Now consider Case 2, i.e., suppose that none of the h(n) belongs to ∪vkY
−1
k .

For n ∈ N, let rn stand for the smallest non-negative integer such that there is a
kn ∈ N with h(n) ∈ vkn

(∂ΩYkn
)−1Ωrn

. Consequently,

h(n) 6∈ vkn
(∂ΩYkn

)−1Ωrn−1 for all n.

Again we set r∗ := lim inf rn and distinguish two cases.

Case 2.1: r∗ is finite. We proceed as in Case 1.1 and find a subsequence of h
(denoted by h again) and an element w∗ ∈ Γ such that h(n) ∈ vkn

(∂ΩYkn
)−1w∗.

Since the inclusion h(n) ∈ vkn
Y −1

kn
in (21) had not been used in Case 1.1 we can

continue exactly as in that case to obtain that Theorem 4.9 and its corollary hold
verbatim in the case at hand, too.

Case 2.2: r∗ is infinite. As in Case 1.2, we choose the sequence (rn) as strongly
monotonically increasing. Then we have

h(n) 6∈ vkY
−1
k for all k, n, (33)

h(n) 6∈ vk(∂ΩYk)
−1Ωrn−1 for all k, n. (34)

We claim that these two facts imply that

Ωrn−1 ∩ Ykv
−1
k h(n) = ∅ for all k, n. (35)

Indeed, from (33) we conclude that e 6∈ Ykv
−1
k h(n). Thus, for each k and n,

Ωrn−1 contains points from the complement of Ykv
−1
k h(n), for instance the point

e. Suppose that Ωrn−1 also contains points in Ykv
−1
k h(n). Then the arguments

from Case 1.2 imply that Ωrn−1 contains points in the Ω-boundary of Ykv
−1
k h(n).

But (34) implies that Ωrn−1 ∩ (∂ΩYk)v
−1
k h(n) = ∅. Thus, Ωrn−1 is completely

located in the complement of Ykv
−1
k h(n), whence (35).

Since the operator R−1
h(n)Rvk

AkR
−1
vk

Rh(n) lives on im PYkv−1
k

h(n), we obtain from

(35)

R−1
h(n)(Op (A) + PΓ′)Rh(n) =

∑

k≥1

R−1
h(n)Rvk

AkR
−1
vk

Rh(n)(I − PΩrn−1)

+ R−1
h(n)PΓ′Rh(n)(I − PΩrn−1) + PΩrn−1 .

The first two summands on the right-hand side of this equality tend strongly to
zero as n → ∞, whereas the third one tends strongly to the identity. Thus, the
identity operator is the only limit operator of Op (A) + PΓ′ in Case 2.2. The
following theorem summarizes the results from Cases 1.1 - 2.2.

Theorem 4.12 Let A ∈ SY(Sh(Γ)). Then the limit operators of Op (A) + PΓ′

are the identity operator I, the operator A := s-lim AnPYn
, and all operators of

the form

s-lim R−1
w∗

R−1
ηkn

Akn
Rηkn

Rw∗
+ (PΓ′)g

with a suitable subsequence g of h and with elements ηkn
∈ (∂ΩYkn

)−1 and w∗ ∈ Γ.
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Combining this theorem with Theorems 4.3 (b) and 4.7 we arrive at the following
stability results.

Theorem 4.13 Let Γ be an exact discrete group, and let A ∈ SY(Sh(Γ)). The

sequence A is stable if and only if the operator A := s-lim AnPYn
and all operators

of the form

s-lim R−1
ηkn

Akn
Rηkn

+ Rw∗
(PΓ′)gR

−1
w∗

with a suitable subsequence g of h and with elements ηkn
∈ (∂ΩYkn

)−1 and w∗ ∈ Γ
are invertible and if the norms of their inverses are uniformly bounded.

Corollary 4.14 Let Γ be an exact discrete group, and let A ∈ Sh(Γ). The se-

quence A = (PYn
APYn

) is stable if and only if the operator A and all operators

PY(h)APY(h) : im PY(h) → im PY(h)

where

Y (h) := lim Ykn
ηkn

(36)

with certain elements ηkn
∈ (∂ΩYkn

)−1 are invertible and if the norms of their

inverses are uniformly bounded.

4.4 Geodesic paths

Now we turn to special sequences Y = (Yn) and η : N → Γ for which the
existence of the set limits (36) can be guaranteed. Let again Ωn refer to the set
of all products of at most n elements of Ω and set Ω0 := {e}. A sequence (νn)
in Γ is called a geodesic path (with respect to Ω) if there is a sequence (wn) in
Ω \ {e} such that νn = w1w2 . . . wn and νn ∈ Ωn \Ωn−1 for each n ≥ 1. Note that
this condition implies that each νn is in the right Ω-boundary of Ωn, which is the
set of all w ∈ Ωn for which wΩ is not a subset of Ωn.

We will see now that the lim Ωnηn exists if η is an inverse geodesic path, i.e.,
if ηn = ν−1

n for a geodesic path ν.

Lemma 4.15 Let (wn)n≥1 be a sequence in Ω and set ηn := w−1
n w−1

n−1 . . . w−1
1 for

n ≥ 1. Then the set limit lim Ωnηn exists, and

lim Ωnηn = ∪n≥1Ωnηn. (37)

Proof. For n ≥ 1, one has Ωnηn = Ωnwn+1w
−1
n+1w

−1
n . . . w−1

1 ⊆ Ωn+1ηn+1. These
inclusions imply the existence of the set limit and the equality (37).

The natural question arises whether every sequence η : N → Γ for which the set
limit (36) exists has a subsequence which is a subsequence of an inverse geodesic
path. If the answer is affirmative, then it would prove sufficient to consider strong
limits with respect to inverse geodesic paths in Theorem 4.13 and its corollary.
We are going to answer this question for two special families of groups.
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4.5 Commutative groups

Let Γ be a commutative group which is generated, as a semi-group, by the finite
set Ω with e ∈ Ω. Define Ωn as in the previous section.

Proposition 4.16 Let Γ be commutative, and let µ = (µn)n∈N be a sequence in

Γ which has a subsequence (µn)n∈N0 with µn ∈ Ωn \ Ωn−1 for each n ∈ N0. Then

(µn)n∈N0 has a subsequence which is a subsequence of a geodesic path.

Proof. Let Ω = {e, ω1, . . . , ωk}. Each µn can be written as ωe1n

1 ωe2n

2 . . . ωekn

k

where e1n + e2n + . . . + ekn = n for n ∈ N0. (We do not claim that this repre-
sentation of µn is unique.) Consider the sequence (e1n)n∈N0 . This sequence has
a constant subsequence or a strongly monotonically increasing subsequence. Let
(e1n)n∈N1 with an infinite subset N1 of N0 be a subsequence of (e1n)n∈N0 which
owns one of these properties. Then consider (e2n)n∈N1 and choose a subsequence
(e2n)n∈N2 which is constant or strongly monotonically increasing. We proceed in
this way. After k steps we arrive at a subsequence (µn)n∈Nk

of (µn)n∈N0 with
µn = ωf1n

1 ωf2n

2 . . . ωfkn

k and f1n + f2n + . . . + fkn = n for n ∈ Nk and where each
of the sequences (fin) is either constant or strongly monotonically increasing.

For n ∈ Nk let νn := µn, and set ν0 := e. Let (kn) be the enumeration of
the elements of Nk in increasing order, and set k0 := 0. In order to define νn for
kr < n < kr+1 we proceed as follows. Let i1 be the smallest positive integer such
that fi1kr

< fi1kr+1. For l = 1, . . . , fi1kr+1 − fi1kr
, set

νkr+l := ω
f1kr

1 . . . ω
fi1−1,kr

i1−1 ω
fi1,kr+l

i1
ω

fi1+1,kr

i1+1 . . . ω
fkkr

k .

Now we are looking for the next subscript, say i2, for which the exponents at ωi2

of νkn
and νkn+1 are different and proceed in the same way. After a finite number

of steps, we arrive at a sequence ν = (νn)n∈N with νn ∈ Ωn for each n ∈ N.
It remains to show that the sequence ν is a geodesic path, i.e. that νn ∈

Ωn \ Ωn−1 for each n. Suppose that νk 6∈ Ωk \ Ωk−1 for some k ≥ 2. Then νk is
a product of l < k elements from Ω \ {e}. Choose n such that kn > k and let
a ∈ Ωkn−k such that µkn

= aνk. Then

µkn
∈ Ωkn−kΩl = Ωkn−k+l with kn − k + l < kn,

a contradiction to the hypothesis that µkn
∈ Ωkn

\ Ωkn−1 for each n.

Since commutative groups are exact, one has the following consequences.

Corollary 4.17 Let Γ be a commutative discrete group, and let Ω be a finite

subset of Γ which generates Γ as a semi-group. Set Yn := Ωn, and let A ∈
SY(Sh(Γ)). The sequence A is stable if and only if the operator A := s-lim AnPΩn

and, for each inverse geodesic path η, the operator

s-lim R−1
ηn

AnRηn
: im P∪Ωnηn

→ im P∪Ωnηn
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are invertible and if the norms of the inverses of these operators are uniformly

bounded.

Corollary 4.18 Let Γ and Ω be as in Corollary 4.17, and let A ∈ Sh(Γ). The

sequence A = (PΩn
APΩn

) is stable if and only if the operator A and, for each

inverse geodesic path η, the operator

P∪Ωnηn
AP∪Ωnηn

: im P∪Ωnηn
→ im P∪Ωnηn

are invertible and if the norms of their inverses are uniformly bounded.

In many cases, there will be only finitely many different set limits lim Ωnηn; then
the uniform boundedness condition in the previous corollaries is redundant. The
same happens if A is a band operator by Theorem 4.8.

The perhaps most important consequence of Corollary 4.17 is that the finite
sections method for operators in Sh(Γ) is fractal. More general, one has the
following.

Corollary 4.19 Let Γ, Ω and Y be as in Corollary 4.17. Then the algebra

SY(Sh(Γ)) is fractal.

Roughly saying, an algebra of matrix sequences is fractal if each sequence in the
algebra can be reconstructed from each of its (infinite) subsequences modulo a
sequence tending to zero in the norm. For an exact definition and some properties
of sequences in fractal algebras, see [9, 17]. The proof of Corollary 4.19 follows
immediately from Corollary 4.17. See Theorem 1.69 in [9] and its corollary for
the argument.

4.6 The free non-commutative group FN

Proposition 4.16 does certainly not hold for all discrete groups. For example, let
Γ = F2 with generators u and v, set Ω := {e, u±1, v±1}, and let Ωn stand for the
set of all products of at most n elements of Ω. Consider ηn := vun−1. It is easy
to see (indeed, drawing pictures will help a lot in what follows) that the set limit
lim Ωnηn exists, but the sequence η has no subsequence which is a subsequence
of an inverse geodesic path. On the other hand, a simple calculation gives

lim Ωnηn = lim Ωn−1u
n−1;

thus, the set limit lim Ωnηn coincides with another set limit which is taken with
respect to an inverse geodesic path. We will see now that this observation is
archetypal for the free non-commutative groups FN .

Still for a moment, let Γ be a general discrete group with a finite set Ω of
generators. Let (ηkn

) be a sequence with ηkn
∈ (Ωkn

\Ωkn−1)
−1 for each n. Write

η−1
kn

as

η−1
kn

= ω
(n)
1 ω

(n)
2 . . . ω

(n)
kn

with ω
(n)
i ∈ Ω \ {e} (38)
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for each i = 1, . . . , kn. Again, we do not claim that this representation is unique.
Since Ω is finite, there is an ω̃1 ∈ Ω such that ω

(n)
1 = ω̃1 for infinitely many n ∈ N,

say for all n ∈ N1. By the same argument, there is an ω̃2 ∈ Ω such that ω
(n)
2 = ω̃2

for infinitely many n ∈ N1, say for all n ∈ N2. We proceed in that way to obtain
a sequence (ω̃n)n∈N in Ω \ {e} having the property that, for each r ∈ N, there are
infinitely many elements ηkn

with

η−1
kn

= ω̃1ω̃2 . . . ω̃r ω
(n)
r+1 . . . ω

(n)
kn

. (39)

For r ≥ 1, set
η̃r := (ω̃1ω̃2 . . . ω̃r)

−1. (40)

By Lemma 4.15, the set limit lim Ωrη̃r exists.

Lemma 4.20 Let ηkn
and η̃r be as in (38) and (40), respectively. Then

lim
r→∞

Ωrη̃r ⊆ lim sup
n→∞

Ωkn
ηkn

. (41)

Proof. Let x ∈ Ωrη̃r for some r, and let η−1
kn

be as in (39). Then

x ∈ Ωrη̃r = Ωrω
(n)
r+1 . . . ω

(n)
kn

(ω
(n)
kn

)−1 . . . (ω
(n)
r+1)

−1ω̃−1
r . . . ω̃−1

1 ⊆ Ωkn
ηkn

.

Since there are infinitely many elements as in (39), this inclusion implies that
x ∈ lim sup Ωkn

ηkn
, whence ∪r≥1Ωrη̃r ⊆ lim sup Ωkn

ηkn
. This is the assertion.

It is one consequence of the lemma that the set limits lim Ωkn
ηkn

cannot be too
small. In particular, they contain a shifted copy of Ωr for each r and are, thus,
growing sets in the sense of Shteinberg (see [23] and Definition 2.4.8 in [14]).

In general, one cannot expect that equality holds in (41). For example, let
Γ be the (additively written) group Z2 with Ω = {(0, 0), (±1, 0), (0, ±1)} and
consider the sequence η2n = (−n, −n). If we write −η2n as

−η2n = (1, 0) + . . . + (1, 0) + (0, 1) + . . . + (0, 1)

with each summand occurring n times, then the above construction yields η̃r :=
(−r, 0). In this setting, both set limits lim Ω2nη2n and lim Ωrη̃r exist, but they do
not coincide (the first one is the intersection of Z

2 with a half plane, the second
one with a quadrant).

It turns out that, in case of the free non-commutative groups FN , equality
holds in (41).

Theorem 4.21 For N > 1, let FN be the free group generated by its elements

ω1, . . . , ωN , set Ω := {e, ω±1
1 , . . . , ω±1

N }, and let Ωn be the set of all products of

elements of Ω of length at most n. Further let (ηkn
) be a sequence with

ηkn
∈ (Ωkn

\ Ωkn−1)
−1
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which we write as in (39) and let (η̃r) be the associated sequence as in (40). Then

lim inf
n→∞

Ωkn
ηkn

⊆ lim
r→∞

Ωrη̃r. (42)

In particular, if the set limit limn→∞ Ωkn
ηkn

exists, then

lim
n→∞

Ωkn
ηkn

= lim
r→∞

Ωrη̃r. (43)

Proof. Let x ∈ lim inf Ωkn
ηkn

. Then there is an n0 such that x ∈ Ωkn
ηkn

for
n ≥ n0. Thus, for each n ≥ n0,

x ∈ Ωkn
(ω

(n)
kn

)−1 . . . (ω
(n)
n+1)

−1 ω̃−1
n . . . ω̃−1

1 .

Choose elements ν
(n)
i in Ω such that

x = ν
(n)
1 . . . ν

(n)
kn

︸ ︷︷ ︸

(∗∗)

(ω
(n)
kn

)−1 . . . (ω
(n)
n+1)

−1 ω̃−1
n . . . ω̃−1

1
︸ ︷︷ ︸

(∗)

. (44)

The assumption ηkn
∈ (Ωkn

\ Ωkn−1)
−1 guarantees that there is no cancelation

possible inside part (∗) of the representation (44) but, of course, there might be
cancelation inside part (∗∗) as well as between the most right of the ν and the
most left of the ω−1.

For each n ≥ n0, we cancel the representation (44) of x as far as possible.

Suppose that, after complete cancelation, at least one factor (ω
(n)
k )−1 remains in

each representation. Then, for each n ≥ 1, we can represent x as a word without
further cancelation which starts from the right-hand side with . . . ω̃−1

n . . . ω̃−1
1

and, hence, has length at most n. This is impossible since each x ∈ FN can be
uniquely represented as a reduced word of finite length. This contradiction shows
that there is at least one n ≥ n0 such that all factors (ω

(n)
k )−1 in the representation

(44) can be canceled. Thus, x ∈ Ωk ω̃−1
k . . . ω̃−1

1 = Ωk η̃k for some k ≥ n0. Since
the set sequence (Ωk η̃k) is monotonically increasing, this implies

x ∈ ∪k≥1 Ωk η̃k = lim Ωk η̃k

whence the first assertion. Combining this result with Lemma 4.20, the second
assertion follows.

Thus, each set limit lim Ωkn
ηkn

can be obtained as a set limit along an inverse
geodesic path. Since free groups are exact, this leads to the same consequences
as for commutative groups.

Corollary 4.22 Let Γ = FN and Ω and Ωn as in Theorem 4.21. Set Yn := Ωn,

and let (An) ∈ SY(Sh(FN)). The sequence (An) is stable if and only if the operator

A := s-lim AnPΩn
and, for each inverse geodesic path η, the operator

s-lim R−1
ηn

AnRηn
: im P∪Ωnηn

→ im P∪Ωnηn

are invertible and if the norms of the inverses of these operators are uniformly

bounded.
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Corollary 4.23 Let Ω be as in Corollary 4.22 and let A ∈ Sh(FN). The sequence

A = (PΩn
APΩn

) is stable if and only if the operators A and, for each inverse

geodesic path η,

P∪Ωnηn
AP∪Ωnηn

: im P∪Ωnηn
→ im P∪Ωnηn

are invertible and if the norms of their inverses are uniformly bounded.

Corollary 4.24 Let Ω, Y be as in Corollary 4.22. Then the algebra SY(Sh(FN))
is fractal.
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Theory: Adv. Appl. 121, Birkhäuser, Basel 2001, 471 – 497.

[18] S. Roch, Finite sections of band-dominated operators. – Memoirs AMS Vol.
191, 895, Providence, R.I., 2008.

[19] S. Roch, Spatial discretization of Cuntz algebras. – Houston Math. J., to
appear.

[20] S. Roch, B. Silbermann, C∗-algebra techniques in numerical analysis. –
J. Oper. Theory 35(1996), 2, 241 – 280.

[21] J. Roe, Lectures on Coarse Geometry. Univ. Lecture Ser. 31, Amer. Math.
Soc., Providence, R. I., 2003.

[22] J. Roe, Band-dominated Fredholm operators on discrete groups. – Integral
Equations Oper. Theory 51(2005), 3, 411 – 416.

[23] B. Ya. Shteinberg, Compactification of locally compact groups and Fred-
holmness of convolution operators with coefficients in factor groups. – Tr.
St-Peterbg. Mat. Obshch. 6(1998), 242 – 260 (Russian).

28



Author’s address:

Steffen Roch, Technische Universität Darmstadt, Fachbereich Mathematik, Schloss-

gartenstrasse 7, 64289 Darmstadt, Germany.

E-mail: roch@mathematik.tu-darmstadt.de

29


