
Runge-Kutta methods for
third order weak
approximation of SDEs with
multidimensional additive
noise
Kristian Debrabant
Technische Universität Darmstadt, Fachbereich Mathematik, Schloßgartenstr.7, D-64289 Darmstadt, Germany

debrabant@mathematik.tu-darmstadt.de

Research Group
Numerical Analysis and
Scientific Computing





Abstract

A new class of third order Runge-Kutta methods for stochastic differential equations with additive noise is introduced. In contrast

to Platen’s method, which to the knowledge of the author has been up to now the only known third order Runge-Kutta scheme

for weak approximation, the new class of methods affords less random variable evaluations and is also applicable to SDEs with

multidimensional noise. Order conditions up to order three are calculated and coefficients of a four stage third order method are

given. This method has deterministic order four and minimized error constants, and needs in addition less function evaluations than

the method of Platen. Applied to a simple example, the new method is compared numerically with Platen’s method and some well

known second order methods and yields very promising results.



1 Introduction

In many applications, e. g., in epidemiology and financial mathematics, taking stochastic effects into account when modelling

dynamical systems often leads to stochastic differential equations (SDEs). An important subclass of these are SDEs with additive

noise in the form

X(t) = x0 +
∫ t

t0

g0(s,X(s)) ds+
m

∑
i=1

gi(Wi(t)−Wi(t0)). (1)

Here, W (t) is an m-dimensional Wiener process defined on a probability space (Ω,A,P), the Borel-measurable drift g0 :Rd →Rd is

assumed to be sufficiently differentiable and to satisfy a Lipschitz and a linear growth condition, and gi ∈Rd , i = 1, . . . ,m. Then the

Existence and Uniqueness Theorem [10] applies. Examples of such systems arising in experimental psychology, turbulent diffusion,

radio-astronomy and blood clotting dynamics can be found in [11].

In recent years, the development of numerical methods for the approximation of SDEs has become a field of increasing interest, see

e. g. [11, 15] and references therein. Whereas strong approximation methods are designed to obtain good pathwise solutions, see

e. g. [3], weak approximation focuses on the expectation of functionals of the solution:

Let Cl
P(Rd ,R) denote the space of all g ∈Cl(Rd ,R) fulfilling a polynomial growth condition [11]. Further, let Ih = {t0, t1, . . . , tN}

with t0 < t1 < .. . < tN = T be a discretization of the time interval I = [t0,T ] with step sizes hn = tn+1 − tn for n = 0,1, . . . ,N −1.

Definition 1 (weak convergence). A time discrete approximation Y h = (Y h(t))t∈Ih converges weakly with order p to X as h → 0 at

time t ∈ Ih if for each f ∈C
2(p+1)
P (Rd ,R) there exist a constant C f and a finite δ0 > 0 such that

|E( f (Y h(t)))−E( f (X(t)))| ≤C f hp

holds for each h ∈ ]0,δ0[ .

Many approximation schemes for SDEs fall into the class of stochastic Runge-Kutta (SRK) methods. Second order SRK methods

for the weak approximation of SDEs were proposed by Kloeden and Platen [11], Komori [13], Mackevicius and Navikas [14],

Tocino and Vigo-Aguiar [21], Rößler [18, 19] and Debrabant and Rößler [7, 8, 9]. An explicit third order weak SRK method for

autonomous SDEs with additive scalar noise as well as its generalization to general scalar noise have been given in Kloeden and

Platen [11]. However, the authors state there that "it remains an open and challenging task to derive simpler derivative free order

3.0 weak schemes, at least for important classes of stochastic differential equations." The present article solves this problem in the

case of additive noise and overcomes also the restriction to scalar additive noise.

To do so, we consider the following class of s-stage SRK methods,

Yn+1 = Yn +hn

s

∑
i=1

αig0(t + cihn,Hi)+
√

hn

m

∑
l=1

glJl , (2a)

Hi = Yn +hn

s

∑
j=1

ai jg0(t + c jhn,H j)+
√

hn

m

∑
l=1

gl(b1,iJl +b2,iJm+l), (2b)

which defines a d-dimensional approximation process Y h with Y h(tn) = Yn. Here, Jk, k = 1, . . . ,2m, are independent random

variables which do not depend on hn and whose moments all exist. Further, α = (α1, . . . ,αs)
⊤, A = (ai j)i, j=1,...,s, c = (c1, . . . ,cs)

⊤,

b1 = (b1,1, . . . ,b1,s)
⊤ and b2 = (b2,1, . . . ,b2,s)

⊤ are the coefficients of the SRK method. In the following we choose c = A1l with

1l =(1, . . . ,1)⊤ ∈Rs. Consequently, from now on we can assume for the analysis of this methods that SDE (1) is given in autonomous

form, i. e., g0(t,X) ≡ g0(X). The analysis relies on the theory of stochastic B-series, which is shortly reviewed in Section 2 and

applied in Section 3 to derive order conditions for method (2) up to order three. Then, in Section 4 a concrete explicit third order

method is constructed by minimizing the error coefficients. Finally, in Section 5 we give a numerical example.

2 Stochastic B-series

Order conditions for method (2) can be calculated using the colored rooted tree theories derived for the weak approximation of Itô

respectively Stratonovich SDEs by SRK methods, compare [16, 17, 12]. Here, we will follow the more general approach developed

in [6], which is based on the work in [1, 2, 17] and applicable both for Itô- and Stratonovich SDEs as well as strong and weak

approximation. For more details and proofs, see [6].
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First, we introduce the set of colored, rooted trees related to the SDE (1), as well as the elementary differentials associated with each

of these trees. We adapt these definitions to the special case of additive noise by neglecting all terms which are related to derivatives

of gl , l = 1, . . . ,m.

Definition 2 (trees). The set of m+1-colored, rooted trees

T add = { /0}∪T0 ∪{•1, . . . ,•m}

related to additive noise is recursively defined as follows:

(a) The graph •0 = [ /0]0 with only one vertex of color 0 belongs to T0.

Let τ = [τ1,τ2, . . . ,τκ ]0 be the tree formed by joining the subtrees τ1,τ2, . . . ,τκ each by a single branch to a common root of color 0.

(b) If τ1,τ2, . . . ,τκ ∈ T add , then τ = [τ1,τ2, . . . ,τκ ]0 ∈ T0.

Thus, T0 is the set of trees with a 0-colored root. •0 will be called deterministic node, •l for l > 0 stochastic node of color l.

Definition 3 (elementary differentials). For a tree τ ∈ T add the elementary differential is a mapping F(τ) : Rd → Rd defined

recursively by

(a) F( /0)(x0) = x0,

(b) F(•0)(x0) = g0(x0), F(•l)(x0) = gl for l = 1, . . . ,m,

(c) If τ = [τ1,τ2, . . . ,τκ ]0 ∈ T0, then

F(τ)(x0) = g
(κ)
0 (x0) (F(τ1)(x0),F(τ2)(x0), . . . ,F(τκ)(x0)) .

To simplify the presentation, we neglect in the following the index n of hn and write only h. Further, we denote by Ξ the set of

families of Borel measurable mappings

Ξ :=
{

{ϕ(h)}h≥0 : ϕ(h) : Ω → R is A-B-measurable ∀h ≥ 0
}

.

Both the solution of (1) and its approximation by method (2) can formally be written in terms of B-series.

Definition 4 (B-series). Given a mapping φ : T add → Ξ satisfying

φ( /0) ≡ 1 and φ(τ)(0) = 0, ∀τ ∈ T add\{ /0}.

A (stochastic) B-series is then a formal series of the form

B(φ ,x0;h) = ∑
τ∈Tadd

α(τ) ·φ(τ)(h) ·F(τ)(x0),

where α : T add → Q is given by

α( /0) = 1, α(•l) = 1, α(τ = [τ1, . . . ,τκ ]l) =
1

r1!r2! · · ·rq!

κ

∏
j=1

α(τ j),

where r1,r2, . . . ,rq count equal trees among τ1,τ2, . . . ,τκ .

For multidimensional φ : T add → Ξs, s ∈ N, we define

B(φ ,x0;h) = [B(φ1,x0;h), . . . ,B(φs,x0;h)]⊤.

If Z(h) can be written as a B-series, then f (Z(h)) can be written as a similar series, where the sum is taken over trees with a root of

color f and subtrees in T add :
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Lemma 1. If Z(h) = B(φ ,x0;h) is some B-series and f ∈C∞(Rd ,Rd̂), then f (Z(h)) can be written as a formal series of the form

f (Z(h)) = ∑
u∈Uadd

f

β (u) ·ψφ (u)(h) ·G(u)(x0), (3)

where Uadd
f is a set of trees derived from T add , by

(a) [ /0] f ∈Uadd
f , and if τ1,τ2, . . . ,τκ ∈ T add , then [τ1,τ2, . . . ,τκ ] f ∈Uadd

f .

(b) G([ /0] f )(x0) = f (x0) and

G(u = [τ1, . . . ,τκ ] f )(x0) = f (κ)(x0)
(

F(τ1)(x0), . . . ,F(τκ)(x0)
)

.

(c) β ([ /0] f ) = 1 and β (u = [τ1, . . . ,τκ ] f ) = 1
r1!r2!...rq! ∏κ

j=1 α(τ j), where r1,r2, . . . ,

rq count equal trees among τ1,τ2, . . . ,τκ .

(d) ψφ ([ /0] f ) ≡ 1 and ψφ (u = [τ1, . . . ,τκ ] f )(h) = ∏κ
j=1 φ(τ j)(h).

Remark 1. To simplify the presentation, we assume throughout this article that all derivatives of f and g0 exist. Otherwise, one

had to consider truncated B-series with a remainder term.

Theorem 2. The solution X(t0 +h) of (1) can be written as a B-series B(ϕ ,x0;h) with

ϕ( /0) ≡ 1, ϕ(•0)(h) = h, ϕ(•l)(h) = Wl(h), l = 1, . . . ,m,

ϕ(τ = [τ1, . . . ,τκ ]0)(h) =
∫ h

0

κ

∏
j=1

ϕ(τ j)(s) ds.

The following definition of the order of the tree, ρ(τ), is motivated by the fact that EWl(h)2 = h for l ≥ 1.

Definition 5 (order). The order of a tree τ ∈ T add respectively u ∈Uadd
f is defined by

ρ( /0) = 0, ρ(•l) =
1

2
, l = 1, . . . ,m, ρ(u = [τ1, . . . ,τκ ] f ) =

κ

∑
i=1

ρ(τi)

and

ρ(τ = [τ1, . . . ,τκ ]l) =
κ

∑
i=1

ρ(τi)+

{

1 for l = 0,
1
2

otherwise.

In the following we define the product of vectors by componentwise multiplication.

Theorem 3. The numerical approximation Y1 as well as the stage values can be written in terms of B-series

H = B(ΦH ,x0;h) , Y1 = B(Φ,x0;h)

with

ΦH( /0) ≡ 1l, ΦH(•l)(h) =
√

h(b1Jl +b2Jm+l), l = 1, . . . ,m, (4a)

ΦH(τ = [τ1, . . . ,τκ ]0)(h) = hA∏κ
j=1 ΦH(τ j)(h) (4b)

and

Φ( /0) ≡ 1, Φ(•l)(h) =
√

hJl , l = 1, . . . ,m, (5a)

Φ(τ = [τ1, . . . ,τκ ]0)(h) = hα⊤ ∏κ
j=1 ΦH(τ j)(h). (5b)

To determine the weak order we will also need the B-series of the function f , evaluated at the exact solution and the numerical

approximation. From Theorems 2 and 3 and Lemma 1 we obtain

f (X(t0 +h)) = ∑
u∈Uadd

f

β (u) ·ψϕ(u)(h) ·G(u)(x0), (6)
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f (Y1) = ∑
u∈Uadd

f

β (u) ·ψΦ(u)(h) ·G(u)(x0), (7)

with

ψϕ([ /0] f ) ≡ 1, ψϕ(u = [τ1, . . . ,τκ ] f )(h) =
κ

∏
j=1

ϕ(τ j)(h) (8)

and

ψΦ([ /0] f ) ≡ 1, ψΦ(u = [τ1, . . . ,τκ ] f )(h) =
κ

∏
j=1

Φ(τ j)(h). (9)

3 Derivation of order conditions

With all the B-series in place, we can now present the order conditions for the weak convergence.

Let le f (h; t,x) be the weak local error of the method starting at the point (t,x) with respect to the functional f and step size h, i. e.

le f (h; t,x) = E
(

f (Y h(t +h))− f (X(t +h))|Y h(t) = X(t) = x
)

.

Inserting (6) and (7), it follows

le f (h; t,x) = ∑
u∈Uadd

f

β (u) ·E
[

ψΦ(u)(h)−ψϕ(u)(h)
]

·G(u)(x). (10)

Thus, we have weak consistency of order p (and thus, due to the Milstein theorem [15], also weak convergence) if and only if

EψΦ(u)(h) = Eψϕ(u)(h)+O(hp+1) ∀u ∈Uadd
f with ρ(u) ≤ p+

1

2
. (11)

Note that (11) slightly weakens conditions given in [17].

By Theorems 2 and 3, (8) and (9) we can now evaluate the order conditions (11) and obtain the following theorem.

Theorem 4. For a p-th order method choose the independent random variables Jk of the SRK method (2) such that their moments

coincide with those of N(0,1) up to the (2p+1)-th moment for k=1,. . . ,m and up to the (2p−1)-th moment for k=m+1,. . . ,2m. If

in addition the coefficients of the SRK method (2) fulfill

1. α⊤1l = 1,

then the method is of weak order p = 1. If also the equations

2. α⊤A1l = 1
2
, 3. α⊤(b2

1 +b2
2) = 1

2
, 4. α⊤b1 = 1

2

are fulfilled, then the SRK method is of weak order p = 2. Finally, if additionally

5. α⊤A21l = 1
6
, 6. α⊤(A1l)2 = 1

3
, 7. α⊤A(b2

1 +b2
2) = 1

6
,

8. α⊤(b1(Ab1)+b2(Ab2)) = 1
6
, 9. α⊤Ab1 = 1

6
,

10. α⊤((A1l)(b2
1 +b2

2)) = 1
3
, 11. α⊤((A1l)b1) = 1

3
,

12. α⊤(b2
1 +b2

2)
2 = 1

3
, 13. α⊤(b3

1 +b1b2
2) = 1

3
, 14. α⊤b2

1 = 1
3
,

15. (α⊤b2)
2 = 1

12

are fulfilled, then the SRK method is of weak order p = 3.
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Table 1: Relevant second order trees and derivation of corresponding order conditions

u
ψΦ(u)

EψΦ(u)

ψϕ(u)

Eψϕ(u)
ord. cond.

f

j j j j
h2J4

j

3h2

W j(h)4

3h2 by assumption

f

0

0

h2α⊤A1l

h2α⊤A1l

∫ h
0 s ds

h2

2

2.

f

0

j j

h2α⊤(b1J j +b2Jm+ j)
2

h2α⊤(b2
1 +b2

2)

∫ h
0 W j(s)

2 ds
h2

2

3.

f

j 0

j

h2J jα⊤(b1J j +b2Jm+ j)

h2α⊤b1

W j(h)
∫ h

0 W j(s) ds
h2

2

4.

Proof. First, we note that Eψϕ (u) = 0 for all trees u ∈Uadd
f which have an odd number of stochastic nodes of one color, see [5] or

also [4, 16]. For those of these trees which have an order ρ(u) ≤ p + 1
2
, by construction of the method and due to the assumptions

on Jk, k = 1, . . . ,2m, it holds also EψΦ(u) = 0. Thus, in the following we only have to consider trees with an even number of each

kind of stochastic nodes, in particular only trees of integer order. Consequently, there are only two kinds of trees of order one to

consider:

u1 =
f

j j

, j = 1, . . . ,m, and u2 =
f

0

.

Theorems 2 and 3, (8) and (9) yield

ψΦ(u1) = hJ2
j , ψϕ(u1) = W j(h)2, ψΦ(u2) = hα⊤1l and ψϕ(u2) = h.

Thus, by the assumptions on J j, EψΦ(u1)(h) = Eψϕ(u1)(h) is fulfilled automatically, whereas EψΦ(u2)(h) = Eψϕ(u2)(h) yields

order condition 1.

If u ∈Uadd
f with u = [τ1, . . . ,τκ ] f can be split into two trees u1 = [τi1 , . . . ,τiκ1

] f , u2 = [τ j1 , . . . ,τ jκ2
] f with disjoint stochastic nodes,

i. e. such that κ1,κ2 > 0, κ1 + κ2 = κ , {i1, . . . , iκ1
, j1, . . . , jκ2

} = {1, . . . ,κ} and the sets of colors of the stochastic nodes of u1 and

u2 are disjoint, then

EψΦ(u)(h) = EψΦ(u1)(h)EψΦ(u2)(h) = Eψϕ(u1)(h)Eψϕ(u2)(h) = Eψϕ(u)(h),

provided that the order conditions of orders lower than ρ(u) are fulfilled. Thus, in the following we only have to consider trees of

second and third order which cannot be decomposed into two trees with disjoint stochastic nodes. The relevant second order trees

together with the derivation of the corresponding order conditions are given in Table 1, the ones of order three in Tables 2a-2c,

which completes the proof.

Possible discrete choices for the random variables Jk, k = 1, . . . ,2m, can be found in Table 3.
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Table 2a: Relevant third order trees and derivation of corresponding order conditions, part 1

u
ψΦ(u)

EψΦ(u)

ψϕ(u)

Eψϕ (u)
ord. cond.

f

j j j j j j
h3J6

j

15h2

W j(h)6

15h2 by assumption

f

0

0

0

h3α⊤A21l

h3α⊤A21l

∫ h
0

∫ s1
0 s2 ds2 ds1

h3

6

5.

f

0

0 0

h3α⊤(A1l)2

h3α⊤(A1l)2

∫ h
0 s2 ds

h3

3

6.

f

0

0

j j

h3α⊤A(b1J j +b2Jm+ j)
2

h3α⊤A(b2
1 +b2

2)

∫ h
0

∫ s1
0 W j(s2)

2 ds2 ds1

h3

6

7.

4 A concrete explicit third order SRK method

Based on Theorem 4, we now calculate the coefficients of an explicit third order SRK method. The coefficients will be arranged in

an extended Butcher array of the form

c A b1 b2

αT

.

Whereas in the deterministic case we would only need three stages to construct an explicit third order method, here we need four

stages to fulfill the 15 order conditions of Theorem 4. Therefore, we consider s = 4 in (2), but require in addition that the method

fulfills also the deterministic order four conditions. The remaining degrees of freedom are then eliminated by minimizing the vector

lec of the order four coefficients of the local error (10) in the Euclidean norm assuming two dimensional noise (m = 2), i. e. by

minimizing ‖lec‖2 where

lec =
(

β (u) ·E
[

ψΦ(u)(h)−ψϕ(u)(h)
])

u∈Uadd
f

,ρ(u)=4
.

Using again the B-series analysis, a tedious calculation (one obtains 52 non automatically vanishing terms) and a subsequent

attempt of numerical optimization yield the scheme AN3D1 presented in Table 4. AN3D1 needs two random variable and four drift

evaluations per step, and thus two random variable and three drift evaluations less than Platen’s third order method.

5 Numerical example

In the following, the SRK scheme AN3D1 presented in the last section is applied to compute the second moment of the solution of

a simple test equation,

X(t) =
1

10
+

3

2

∫ t

0
X(s) ds+

1

10
W (t), t ∈ I = [0,2]. (12)
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Table 2b: Relevant third order trees and derivation of corresponding order conditions, part 2

u
ψΦ(u)

EψΦ(u)

ψϕ(u)

Eψϕ(u)

ord.

cond.

f

0

j 0

j

h3α⊤((b1J j +b2Jm+ j)(A(b1J j +b2Jm+ j)))

h3α⊤(b1(Ab1)+b2(Ab2))

∫ h
0 W j(s1)

∫ s1
0 W j(s2) ds2 ds1

h3

6

8.

f

j 0

0

j

h3J jα⊤A(b1J j +b2Jm+ j)

h3α⊤Ab1

W j(h)
∫ h

0

∫ s1
0 W j(s2) ds2 ds1

h3

6

9.

f

0

0 j j

h3α⊤((A1l)(b1J j +b2Jm+ j)
2)

h3α⊤((A1l)(b2
1 +b2

2))

∫ h
0 sW j(s)

2 ds
h3

3

10.

f

j 0

0 j

h3J jα⊤((A1l)(b1J j +b2Jm+ j))

h3α⊤((A1l)b1)

W j(h)
∫ h

0 sW j(s) ds
h3

3

11.

f

0

j j k k
h3α⊤((b1J j +b2Jm+ j)

2(b1Jk +b2Jm+k)
2)

{

h3α⊤(3b4
1 +6b2

1b2
2 +3b4

2) j = k

h3α⊤(b2
1 +b2

2)
2 j 6= k

∫ h
0 W j(s)

2Wk(s)
2 ds

{

h3 j = k

h3

3
j 6= k

12.
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Table 2c: Relevant third order trees and derivation of corresponding order conditions, part 3

u
ψΦ(u)

EψΦ(u)

ψϕ(u)

Eψϕ(u)

ord.

cond.

f

k 0

j j k
h3Jkα⊤((b1J j +b2Jm+ j)

2(b1Jk +b2Jm+k))
{

h3α⊤(3b3
1 +3b1b2

2) j = k

h3α⊤(b3
1 +b1b2

2) j 6= k

Wk(h)
∫ h

0 W j(s)
2Wk(s) ds

{

h3 j = k

h3

3
j 6= k

13.

f

j k 0

j k
h3J jJkα⊤((b1J j +b2Jm+ j)(b1Jk +b2Jm+k))

{

h3α⊤(3b2
1 +b2

2) j = k

h3α⊤b2
1 j 6= k

W j(h)Wk(h)
∫ h

0 W j(s)Wk(s) ds
{

7h3

6
j = k

h3

3
j 6= k

due

to 3.

equiv.

to 14.

f

j j j 0

j

h3J3
j α⊤(b1J j +b2Jm+ j)

3h3α⊤b1

W j(h)3
∫ h

0 W j(s) ds
3h3

2

4.

f

0

j

0

j

h3(α⊤(b1J j +b2Jm+ j))
2

h3((α⊤b1)
2 +(α⊤b2)

2)

(
∫ h

0 W j(s) ds)2

h3

3

due

to 4.

equiv.

to 15.

Table 3: Some discrete random variables corresponding up to the ith moment to N(0,1)

i distribution

1 P(Jk = 0) = 1

3 P(Jk = 1) = P(Jk = −1) = 1
2

5 P(Jk =
√

3) = P(Jk = −
√

3) = 1
6
, P(Jk = 0) = 2

3

7 P(Jk =
√

6) = P(Jk = −
√

6) = 1
30

, P(Jk = 1) = P(Jk = −1) = 3
10

, P(Jk = 0) = 1
3

Table 4: Coefficients of AN3D1

0 0 0 0 0

b1 b2
1 1 0 0 0

1/2 3/8 1/8 0 0

1 −0.4526683126055039 −0.4842227708685013 1.9368910834740051 0

1/6 −0.005430430675258792 2/3 0.1720970973419255

with

b1 = (−0.01844540496323970,0.8017012756521233,0.5092227024816198,0.9758794209767762)⊤

b2 = (−0.1866426386543421,−0.8575745885712401,−0.4723392695015512,0.3060354860326548)⊤
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Figure 1: Computational effort per simulation path versus precision

The second moment of the solution can be calculated as

E(X2(t)) =
2

9

(

397

200
− 23

5
e3/2t +

133

50
e3t

)

. (13)

For this example, we compare the performance of AN3D1 (with N(0,1)-distributed random variables) with some well known

schemes, namely the third and the second order SRK schemes due to Platen [11], denoted here by PL3 and PL2, respectively,

DRI1 due to Debrabant and Rößler [9], and the extrapolated Euler-Maruyama scheme EXEM (cp. [20]) also attaining order two,

which is given by 2E(
(

Zh/2(t)
)2

)−E(
(

Zh(t)
)2

), based on the Euler-Maruyama approximations Zh/2(t) and Zh(t) calculated with

step sizes h/2 and h.

In each case, the functional u(t) = E(X2(t)) is approximated by a Monte Carlo simulation. The sample average uM,h(t) =
1
M ∑M

k=1

(

Y h(t,ωk)
)2

, ωk ∈ Ω, of M independent simulated realizations of the considered approximation Y h(t) is calculated in order

to estimate the expectation. In the following, we denote by µ̂ = uM,h(T )−u(T) the mean error at time T and by σ̂ 2
µ the empirical

variance of the mean error. Further, we calculate the confidence interval with boundaries a and b to the level of 90% for the estimated

error µ̂ (see [11] for details).

The solution value E(X2(T)) is approximated with step sizes 21, . . . ,2−4, and M = 109 simulations are performed in order to

determine the systematic error of the considered schemes at time T = 2. The results for the applied schemes are presented in Ta-

ble 5. Of course, these results have to be related to the computational effort of the schemes which we take in the following as sum

of the number of evaluations of the drift function a as well as the number of random variables that have to be simulated. Then we

can oppose the computational efforts to the errors of the analyzed schemes. The results are presented in Figure 1. Although being

of different order, the two Platen schemes yield comparable results. This is due to the much higher computational costs of PL3.

Both methods are better than the extrapolated Euler method, but perform worse than DRI1, which has optimized coefficients [9] and

behaves therefore nearly like an order three method. Our new method AN3D1 performs best.

6 Conclusion

We have presented a general class of SRK methods for the weak approximation of SDEs with additive noise, together with the

corresponding order conditions up to order three. A concrete explicit third order method has been derived, for which a numerical

comparison with some well known other methods regarding its performance yielded very promising results. In contrast to the

method of Platen, it needs only two random variables and four drift evaluations per step and is also applicable to SDEs driven by

a multidimensional Wiener process. Future research may be done by constructing implicit methods with good stability properties,

i. e. which are suitable for stiff problems, and by developing methods for more general noise.
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