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Abstract. Let u be a weak solution of the Navier-Stokes equations in
an exterior domain Ω ⊂ R3 and a time interval [0, T [ , 0 < T ≤ ∞, with
initial value u0, external force f = divF , and satisfying the strong energy
inequality. It is well known that global regularity for u is an unsolved
problem unless we state additional conditions on the data u0 and f or
on the solution u itself such as Serrin’s condition ‖u‖Ls(0,T ;Lq(Ω)) < ∞
with 2 < s < ∞ , 2

s
+ 3

q
= 1. In this paper, we generalize results on

local in time regularity for bounded domains, see [2], [5], [6], to exterior
domains. If e.g. u fulfills Serrin’s condition in a left-side neighborhood
of t or if the norm ‖u‖Ls′ (t−δ,t;Lq(Ω)) converges to 0 sufficiently fast as
δ → 0+, where 2

s′ + 3
q
> 1, then u is regular at t. The same conclusion

holds when the kinetic energy 1
2
‖u(t)‖22 is locally Hölder continuous with

exponent α > 1
2
.

1. Introduction and main results

In this paper, Ω ⊂ R3 is an exterior domain, i.e. an open, connected subset
having a nonempty, compact complement in R3, with smooth boundary ∂Ω ∈
C2,1, and [0, T [ , 0 < T ≤ ∞, denotes the time interval. In [0, T [×Ω we
consider the instationary Navier-Stokes equations

ut − ν∆u+ u · ∇u+∇p = f in ]0, T [×Ω

div u = 0 in ]0, T [×Ω

u = 0 on ]0, T [×∂Ω

u = u0 at t = 0

(1.1)

with constant viscosity ν > 0 (fixed throughout this paper), external force
f = divF = (

∑3
i=1 ∂iFi,j)

3
j=1 and initial value u0. First we recall the defini-

tion of weak and strong solutions. The space of test functions is defined to
be

C∞0 ([0, T [;C∞0,σ(Ω)) := {u |[0,T [×Ω ;u ∈ C∞0 (]− 1, T [×Ω) ; div u = 0}.

Definition 1.1. Let Ω ⊂ R3 be an exterior domain and let u0 ∈ L2
σ(Ω),

f = divF with F ∈ L1
loc([0, T [;L2(Ω)) where 0 < T ≤ ∞. Then a vector

field u ∈ LHT , where LHT denotes the Leray-Hopf class

LHT := L∞loc([0, T [;L2
σ(Ω)) ∩ L2

loc([0, T [;W 1,2
0,σ (Ω)) , (1.2)
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is called weak solution (in the sense of Leray-Hopf ) of the instationary
Navier-Stokes system (1.1) with data f , u0, if the following identity is satis-
fied for all test functions w ∈ C∞0 ([0, T [;C∞0,σ(Ω)):∫ T

0

(
− 〈u,wt〉Ω + ν〈∇u,∇w〉Ω + 〈u · ∇u,w〉Ω

)
dt

= 〈u0, w(0)〉Ω −
∫ T

0
〈F,∇w〉Ω dt.

(1.3)

As a consequence of (1.2), (1.3), u : [0, T [→ L2
σ(Ω) is - after a possible

redefinition on a set of Lebesgue measure 0 - weakly continuous and the
initial value u0 is attained in the sense

〈u(t), φ〉 → 〈u0, φ〉 , t→ 0 + ∀φ ∈ L2
σ(Ω).

Moreover, there exists a distribution p, called an associated pressure, such
that the equality

ut − ν∆u+ u · ∇u+∇p = f

holds in the sense of distributions on ]0, T [×Ω, see [14, V.1.7].
A weak solution of (1.1) is called a strong solution if there exist exponents

s, q with 2 < s < ∞, 3 < q < ∞, 2
s + 3

q = 1 such that additionally Serrin’s
condition

u ∈ Ls(0, T ;Lq(Ω)) (1.4)

is satisfied. By Hölder’s inequality, such a strong solution u satisfies u ⊗ u ∈
L2

loc([0, T [;L2(Ω)). Moreover, by Serrin’s Uniqueness Theorem [14, V. The-
orems 1.5.1, 1.4.1], a weak solution with (1.4) is unique within the class of
weak solutions satisfying the energy inequality, i.e., fulfilling (1.5) below with
s = 0. Finally, u : [0, T [→ L2

σ(Ω) is strongly continuous and satisfies the
energy identity (1.15) below.

For sufficiently smooth Ω , f , u0 a strong solution u has the regularity
property

u ∈ C∞(]0, T [×Ω̄) , p ∈ C∞(]0, T [×Ω̄) ,

see [14, Theorem V.1.8.2], and therefore a strong solution is also called a
regular solution. We call a weak solution u of (1.1) regular at t, if there
exists a δ = δ(t) > 0 with u ∈ Ls(t − δ, t + δ;Lq(Ω)) where s , q satisfy
2
s + 3

q = 1.
Now let Ω ⊂ R3 be an exterior domain with smooth boundary. We know,

see [13], that there exists at least one weak solution u of (1.1) satisfying the
strong energy inequality

1

2
‖u(t)‖22 + ν

∫ t

s
‖∇u‖22 dτ ≤

1

2
‖u(s)‖22 −

∫ t

s
〈F,∇u〉Ω dτ (1.5)

for almost all s ∈ [0, T [ and all t ∈ [s, T [.
Our first main theorem states that if u fulfills the Serrin condition in

a left-side neighborhood of t then u is regular at t. Furthermore, it gives
conditions depending on ‖u‖Ls′ (0,T ;Lq(Ω)) with

2
s′ +

3
q > 1 to imply regularity

of u at t; note that in this case, the integrability of u is weaker than in
Serrin’s condition.
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Theorem 1.2. Let Ω ⊂ R3 be an exterior domain with ∂Ω ∈ C2,1, let
2 < s <∞, 2

s + 3
q = 1, 1

3 + 1
q = 1

r and let 1 ≤ s′ < s. Assume that f = divF

with F ∈ Ls(0, T ;Lr(Ω))∩L4(0, T ;L2(Ω)), u0 ∈ L2
σ(Ω), 0 < T <∞, and let

u ∈ LHT be a weak solution of the Navier-Stokes equations (1.1) satisfying
the strong energy inequality (1.5). Then we have:

(1) Left-side Ls(Lq)-condition. If for t ∈]0, T [

u ∈ Ls(t− δ, t;Lqσ(Ω)) for some 0 < δ = δ(t) < t , (1.6)

then u is regular at t.
(2) Left-side Ls′(Lq)-condition. The condition

lim inf
δ→0+

1

δ1− s′
s

∫ t

t−δ
‖u(τ)‖s′q dτ = 0 (1.7)

is necessary and sufficient for regularity of u at t.
(3) Global Ls′(Lq)-condition.There exists a constant ε∗ = ε∗(q, s

′,Ω)>0,
independent of f , u0 , T with the following property: If u0 ∈ L2

σ(Ω)∩
Lqσ(Ω), u ∈ Ls′(0, T ;Lqσ(Ω)) and the conditions∫ T

0
‖F (τ)‖sr dτ ≤ ε∗ν2s−1 and

∫ T

0
‖u(τ)‖s′q dτ ≤ ε∗

νs−1

‖u0‖s−s
′

q

(1.8)

are satisfied, then u ∈ Ls(0, T ;Lq(Ω)).

The following theorem states that Hölder continuity of the kinetic energy
with exponent α ∈]1

2 , 1[ implies regularity of u at t. In the case α = 1
2 we

need a smallness condition for the corresponding Hölder term under which
we can prove regularity of u at t.

Theorem 1.3. Let Ω ⊂ R3 be an exterior domain with boundary ∂Ω ∈ C2,1,
let 0 < T < ∞ and let u be a weak solution of the Navier-Stokes equa-
tions (1.1) satisfying the strong energy inequality (1.5) with initial value
u0 ∈ L2

σ(Ω) and external force f = divF which will be specified below. Fur-
thermore, we assume that the kinetic energy E(t) := 1

2‖u(t)‖22 is a continuous
function of t ∈ [0, T [. Then we have:

(1) Let α ∈]1
2 , 1[ , 2 < s′ < 4α , 3 < q < 6 , 2

s′ + 3
q = 3

2 ,
2
s + 3

q = 1,
f ∈ L

s
s′ (0, T ;L2(Ω)) and F ∈ L4(0, T ;L2(Ω)) ∩ Ls(0, T ;Lr(Ω)),

where 1
3 + 1

q = 1
r , and let u satisfy at t ∈]0, T [ the left-side condition

sup
t−µ<t′<t

|E(t)− E(t′)|
|t− t′|α

<∞ (1.9)

with a µ > 0. Then u is regular at t.
(2) (The case α = 1

2) Let f ∈ L2(0, T ;L2(Ω)), F ∈ L4(0, T ;L2(Ω)).
Then there exists a constant γ∗ = γ∗(Ω) such that the left-side con-
dition

sup
t−µ<t′<t

|E(t)− E(t′)|
|t− t′|

1
2

≤ γ∗ν
5
2 (1.10)

with a µ > 0 implies regularity of u at t.
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Remark. (1) The proof of Theorem 1.3, in particular see (4.8), will yield the
following regularity criteria using the dissipation energy: If

α ∈]
1

2
, 1[ and lim inf

δ→0+

1

δα

∫ t

t−δ
‖∇u(τ)‖22 dτ <∞ , (1.11)

or

lim inf
δ→0+

1

δ
1
2

∫ t

t−δ
‖∇u(τ)‖22 dτ ≤ γ∗ν

3
2 (1.12)

then u is regular at t.
(2) In the case α = 1

2 a smallness condition as in (1.10) and (1.12) is
necessary. Indeed, if f = 0 and ]0, t[ is a maximal regularity interval of u,
then

‖∇u(τ)‖2 ≥
c0

(t− τ)
1
4

, 0 < τ < t,

where c0 = c0(Ω) > 0, see [8]. Hence

lim inf
δ→0+

1

δ
1
2

∫ t

t−δ
‖∇u(τ)‖22 dτ ≥ 2c2

0 > 0 ,

and due to the strong energy inequality (1.5) it holds for all µ > 0

sup
t−µ<t′<t

|E(t)− E(t′)|
|t− t′|

1
2

≥ 2νc2
0 > 0.

The proofs of the regularity criteria formulated in this paper are based on
a local or global identification of a weak solution with a very weak solution,
a concept described in Definition 2.3 below. The following key result, The-
orem 1.4, gives conditions under which a given very weak solution is also a
weak solution in the sense of Leray-Hopf and, therefore, yields under certain
smallness conditions on the data f and u0 the existence of a unique strong
solution of (1.1) on [0, T [×Ω.

Theorem 1.4. Let Ω ⊂ R3 be an exterior domain with ∂Ω ∈ C2,1, let
2 < s <∞ , 2

s + 3
q = 1 and let 1

3 + 1
q = 1

q∗ . Then there exists a constant ε∗ =

ε∗(q,Ω) > 0 with the following property: Given 0 < T < ∞ and data u0 ∈
L2
σ(Ω) ∩ Lqσ(Ω) and f = divF with F ∈ Ls(0, T ;Lq∗(Ω)) ∩ L4(0, T ;L2(Ω))

satisfying the following two conditions:∫ T

0
‖F (τ)‖sq∗ dτ ≤ ε∗ν

2s−1 , (1.13)∫ T

0
‖e−ντAqu0‖sq dτ ≤ ε∗νs−1. (1.14)

In this case, there exists a unique weak solution u ∈ LHT of (1.1) satisfy-
ing the Serrin condition u ∈ Ls(0, T ;Lq(Ω)). After a possible redefinition
on a set of Lebesgue measure 0, we get that u : [0, T [→ L2

σ(Ω) is strongly
continuous and it holds the energy identity

1

2
‖u(t)‖22 + ν

∫ t

0
‖∇u‖22 dτ =

1

2
‖u0‖22 −

∫ t

0
〈F,∇u〉Ω dτ (1.15)

for all t ∈ [0, T [.
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The proof of this crucial result is the content of Section 3 and differs from
the case of bounded domains, see [4], [6], where the trivial inclusion Lq(Ω) ⊂
Lr(Ω), q > r, yielding also better embedding properties of fractional powers
of the Stokes operator, was used several times. The main idea of the proof is
to construct a very weak solution v ∈ Ls(0, T ;Lqσ(Ω)) for the given data u0, f
and to identify u and v by Serrin’s Uniqueness Theorem; for this reason, we
have to show that v lies in the Leray-Hopf class LHT .

After some preliminaries to be discussed in Section 2 we prove Theorem 1.4
in Section 3. Finally, Section 4 deals with the proofs of the main results
Theorem 1.2 and 1.3.

2. Preliminaries

Given 1 ≤ q ≤ ∞ , k ∈ N we need the usual Lebesgue and Sobolev spaces,
Lq(Ω) ,W k,q(Ω) with norm ‖ · ‖Lq(Ω) = ‖ · ‖q and ‖ · ‖Wk,q(Ω) = ‖ · ‖k,q,
respectively. For two measurable functions f , g with the property f · g ∈
L1(Ω), where f · g means the usual scalar product of vector or matrix fields,
we set

〈f, g〉Ω :=

∫
Ω
f(x) · g(x) dx.

Note that the same symbol Lq(Ω) etc. will be used for spaces of scalar-,
vector or matrix-valued functions. Let Cm(Ω) ,m = 0, 1, . . . ,∞, denote the
usual space of functions for which all partial derivatives of order |α| ≤ m
exist and are continuous. As usual, Cm0 (Ω) is the set of all functions from
Cm(Ω) with compact support in Ω. Further we need the space of smooth
solenoidal vector fields

C∞0,σ(Ω) := { v ∈ C∞0 (Ω)3; div v = 0 }
and define the spaces

Lqσ(Ω) := C∞0,σ(Ω)
‖·‖q

, W 1,2
0,σ (Ω) := C∞0,σ(Ω)

‖·‖W1,2
.

For 1 ≤ q ≤ ∞ let q′ ∈ [1,∞] denote its dual exponent. It is well known that
Lqσ(Ω)′ = Lq

′
σ (Ω) using the standard pairing 〈·, ·〉Ω. Moreover, let us write

[d, v]Ω for the application of a distribution d ∈ C∞0 (Ω)′ on a test function
v ∈ C∞0 (Ω).

Given a Banach space X and an interval [0, T ], 0 < T ≤ ∞, we denote
by Lp(0, T ;X), 1 ≤ p ≤ ∞, the space of all equivalence classes of strongly
measurable functions f : [0, T )→ X such that

‖f‖p :=

(∫ T

0
‖f(t)‖pX dt

) 1
p

<∞

if p < ∞, and ‖f‖∞ := ess sup[0,T [ ‖f(·)‖X , if p = ∞. Moreover, we define
the set of locally integrable Lp-functions on [0, T [ as

Lploc([0, T [;X) := {u : [0, T [→ X strongly measurable,

u ∈ Lp(0, T ′;X) for all 0 < T ′ < T}.
When X = Lq(Ω), 1 ≤ q ≤ ∞, we denote the norm in Lp(0, T ;Lq(Ω)) by
‖ · ‖q,p,Ω;T . For 1 < p , q <∞ it holds

Lp(0, T ;Lq(Ω))′ = Lp
′
(0, T ;Lq

′
(Ω))
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and we define

〈f, g〉Ω,T :=

∫ T

0

∫
Ω
f(t, x) · g(t, x) dx dt

for f ∈ Lp(0, T ;Lq(Ω)) , g ∈ Lp′(0, T ;Lq
′
(Ω)).

Given an exterior domain Ω ⊂ R3 with ∂Ω ∈ C2,1 and 1 < q < ∞,
there exists a bounded, linear projection Pq : Lq(Ω)) → Lqσ(Ω) with range
R(Pq) = Lqσ(Ω) and nullspace N(Pq) = {∇p ∈ Lq(Ω) ; p ∈ Lqloc(Ω) }. The
operator Pq is called Helmholtz projection and is consistent in the sense that

Pqf = Prf ∀f ∈ Lq(Ω) ∩ Lr(Ω). (2.1)

Furthermore, we get P ′q = Pq′ for the dual operator, i.e.,

〈Pqf, g〉Ω = 〈f, Pq′g〉Ω ∀f ∈ Lq(Ω) ∀g ∈ Lq′(Ω). (2.2)

For 1 < q <∞ we define the Stokes operator Aq on Lqσ(Ω) by

D(Aq) = Lqσ(Ω) ∩W 1,q
0 (Ω) ∩W 2,q(Ω), (2.3)

Aqu := −Pq∆u , u ∈ D(Aq). (2.4)

The Stokes operator is consistent in the sense that for 1 < q, r <∞ it holds

Aqu = Aru ∀u ∈ D(Aq) ∩ D(Ar). (2.5)

In general, D(Aq) will be equipped with the graph norm ‖u‖D(Aq) := ‖u‖q +
‖Aq‖q for u ∈ D(Aq) which makes D(Aq) to a Banach space since the Stokes
operator is closed. For simplicity, we use the notation A = A2.

For α ∈ [−1, 1] the fractional power Aαq : D(Aαq ) → Lqσ(Ω) with dense
domain D(Aαq ) ⊆ Lqσ(Ω)) is a well defined, injective, closed operator such
that

(Aαq )−1 = A−αq , R(Aαq ) = D(A−αq ) and (Aαq )′ = Aαq′ .

It holds D(A
1/2
q ) = W 1,q

0 (Ω) ∩ Lqσ(Ω) for 1 < q < 3, and the estimate

‖∇u‖q,Ω ≤ c‖A1/2
q u‖q,Ω for 1 < q < 3, u ∈ D(A1/2

q ), (2.6)

with a constant c = c(Ω, q) > 0. Moreover,

‖u‖γ,Ω ≤ c‖Aαq u‖q,Ω where 0 ≤ α ≤ 1

2
, 1 < q < 3 , 2α+

3

γ
=

3

q
, (2.7)

for all u ∈ D(Aαq ) with a constant c = c(Ω, q, γ) > 0. It is well known that
−Aq generates a uniformly bounded analytic semigroup { e−tAq : t ≥ 0 } on
Lqσ(Ω) satisfying the decay estimate

‖Aαq e−tAq‖q ≤ ct−α ∀t > 0 , (2.8)

where α ≥ 0 , 1 < q <∞ and c = c(Ω, q, α) > 0.

Lemma 2.1. Let d ∈ C∞0 (Ω)′ be a distribution, well defined for all v ∈
D(Aαq′) where 1 < q < ∞ , 0 < α ≤ 1. We assume that there exists a
constant c ≥ 0, independent of v ∈ D(Aαq′), such that

|[d, v]Ω| ≤ c‖Aαq′v‖q′,Ω ∀v ∈ D(Aαq′). (2.9)

Then there exists a unique element d̃ ∈ Lqσ(Ω), to be denoted by A−αq Pqd,
with the properties

〈A−αq Pqd,A
α
q′v〉Ω = [d, v]Ω ∀v ∈ D(Aαq′) and ‖A−αq Pqd‖q ≤ c (2.10)
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with the constant c from (2.9). In particular, if F ∈ Lq(Ω), and 3
2 < q <∞,

then A
− 1

2
q PqdivF ∈ Lqσ(Ω) and

‖A−
1
2

q PqdivF‖q ≤ c‖F‖q . (2.11)

Proof. We define for w ∈ R(Aαq′)

[d̃, w]Ω := [d, v]Ω , where w = Aαq′v , v ∈ D(Aαq′).

By the density of R(Aαq′) in Lq
′
σ (Ω), we extend d̃ to a functional defined on

Lq
′
σ (Ω). We use Lq

′
σ (Ω)′ = Lqσ(Ω) to obtain a unique element A−αq Pqd ∈

Lqσ(Ω) satisfying the identity in (2.10). For the proof of (2.11) we exploit
(2.6) with q replaced by q′ ∈]1, 3[. �

Theorem 2.2. Let Ω ⊂ R3 be an exterior domain with ∂Ω ∈ C2,1, let
1 < q , s < ∞ and 0 < T < ∞. Furthermore, let f ∈ Ls(0, T ;Lqσ(Ω)) and
u0 ∈ Lqσ(Ω) such that

∫∞
0 ‖Aqe

−tAqu0‖sq,Ω dt < ∞. Then the instationary
Stokes system

ut + νAqu = f in (0, T )

u(0) = u0
(2.12)

has a unique strong solution u ∈ Ls(0, T ;D(Aq)) with ut ∈ Ls(0, T ;Lqσ(Ω))
and u ∈ C([0, T [;Lqσ(Ω)). Moreover, u satisfies the maximal regularity esti-
mate

‖ut‖q,s,Ω;T+‖νAqu‖q,s,Ω;T ≤ c

(∫ T

0
‖νAqe−νtAqu0‖sq,Ω dt

) 1
s

+ ‖f‖q,s,Ω;T


(2.13)

with a constant c = c(Ω, q, s) independent of T und ν. It holds the represen-
tation

u(t) = e−νtAqu0 +

∫ t

0
e−ν(t−τ)Aqf(τ) dτ (2.14)

for all t ∈ [0, T [. In the case T = ∞ we get a unique strong solution
u ∈ Lsloc(0,∞;D(Aq)) of (2.12) satisfying ut ∈ Ls(0,∞;Lqσ(Ω)) and u ∈
C([0,∞[;Lqσ(Ω)) and it holds the estimate (2.13) and the representation (2.14)
for all t ∈ [0,∞[.

Proof. See [10, Theorem 4.2]. �

Amajor tool for the proof of Theorem 1.4 is the theory of very weak solutions.
In this context we refer to [3] for exterior domains and to [4] for bounded
domains. In the following definition let

C1
0 ([0, T [;C2

0,σ(Ω̄)) := {w |[0,T [×Ω̄ with w ∈ C1,2
0 (−]1, T [×R3); (2.15)

div w = 0, w |∂Ω= 0 for all t ∈ [0, T [ } (2.16)

denote the space of test functions and let

J q,s(Ω) := {u0 ∈ C∞0 (Ω)′; (2.17)

A−1
q Pqu0 ∈ Lqσ(Ω),

∫ ∞
0
‖Aqe−tAq(A−1

q Pqu0)‖sq,Ω dt <∞} (2.18)

denote the space of initial values.
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Definition 2.3. Let Ω ⊂ R3 be an exterior domain, let F ∈ Ls(0, T ;Lr(Ω))
and u0 ∈ J q,s(Ω) where 2 < s < ∞, 2

s + 3
q = 1 , 1

3 + 1
q = 1

r . Then u ∈
Ls(0, T ;Lqσ(Ω)) is called very weak solution of the instationary Navier-Stokes
equations (1.1) if∫ T

0
〈−u,wt〉Ω−ν〈u,∆w〉Ω−〈u⊗u,∇w〉Ω dt = [u0, w(0)]Ω−

∫ T

0
〈F,∇w〉Ω dt

(2.19)
holds for all test functions w ∈ C1

0 ([0, T [;C2
0,σ(Ω̄)) .

In the corresponding definition of very weak solutions to the linear, insta-
tionary Stokes system where the nonlinear term u · ∇u is absent, we may
omit in Definition 2.3 the restriction 2

s + 3
q = 1, and in (2.19) the term

〈u⊗ u,∇w〉Ω,T is absent. A proof of the following Theorem can be found in
[3], [12].

Theorem 2.4. Let Ω ⊂ R3 be an exterior domain with ∂Ω ∈ C2,1 and let
2 < s <∞ , 2

s+3
q = 1, 1

3+1
q = 1

r . Then there exists a constant c = c(q,Ω) > 0

with the following property: For data f = divF with F ∈ Ls(0, T ;Lr(Ω)) and
u0 ∈ J q,s(Ω), satisfying the condition(∫ T

0
‖νAqe−νtAq(A−1

q Pqu0)‖sq,Ω dt
) 1
s

+ ‖F‖r,s,Ω;T ≤ cν1+α (2.20)

with α := 3
2q + 1

2 = 1 − 1
s , there exists a unique very weak solution u ∈

Ls(0, T ;Lqσ(Ω)) of the instationary Navier-Stokes system (1.1). Moreover, u
has the representation u = E + ũ, where E ∈ Ls(0, T ;Lqσ(Ω)) is the unique
very weak solution of the linear Stokes system with data f , u0 and ũ is the
unique solution in Ls(0, T ;Lqσ(Ω)) of the nonlinear fixed point equation

ũ(t) = −
∫ t

0
Aαq e

−ν(t−τ)AqA−αq Pqdiv
(
(ũ(τ) + E(τ))⊗ (ũ(τ) + E(τ))

)
dτ

(2.21)
for almost all t ∈ [0, T [.

Finally we recall the Hardy-Littlewood inequality [14, II Lemma 3.3.2]. Let
0 < α < 1, 1 < r < q < ∞ with α + 1

q = 1
r and let f ∈ Lr(R). Then the

integral

u(t) :=

∫
R
|t− τ |α−1f(τ) dτ

converges absolutely for almost all t ∈ R and it holds

‖u‖Lq(R) ≤ c‖f‖Lr(R) (2.22)

with a constant c = c(α, q) > 0.

3. Proof of Theorem 1.4

Before proving Theorem 1.4 we discuss the nonlinear term arising in the
nonlinear fixed point problem (2.21). We denote by div(u⊗u) the functional
defined for suitable vector fields w by

[div(u⊗ u), w]Ω := −〈u⊗ u,∇w〉Ω.
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The following lemma is technical but essential for Lemma 3.2 below.

Lemma 3.1. Let Ω ⊂ R3 be an exterior domain with boundary ∂Ω ∈ C2,1,
let 3 < q <∞ , r ∈ [ q2 , q] and β := 3

q −
3
2r + 1

2 .

(1) There exists a constant c = c(Ω, q, r) > 0 such that for all u ∈ Lqσ(Ω)

‖A−βr Pr div(u⊗ u)‖r,Ω ≤ c‖u‖2q,Ω. (3.1)

(2) For 2 < s < ∞ , 3 < q < ∞ , 0 < T ≤ ∞ there exists a constant
c = c(Ω, q, r) > 0 such that for all u ∈ Ls(0, T ;Lqσ(Ω))

‖A−βr Pr div(u⊗ u)‖r, s
2
,Ω;T ≤ c‖u‖2q,s,Ω;T . (3.2)

Proof. The assumptions of the lemma imply

2(β − 1

2
) +

3( q
2

)′ =
3

r′
with 1 < r′ < 3 ,

1

2
≤ β < 1. (3.3)

Then we get for arbitrary w ∈ D(Aβr′) by (2.6) using 1 <
( q

2

)′
< 3, (2.7)

and (2.5) (applied to A1/2 instead of A)

|[div(u⊗ u), w]| = | − 〈u⊗ u,∇w〉|
≤ ‖u⊗ u‖ q

2
‖∇w‖( q2)

′

≤ c‖u‖2q ‖A
1/2

(q/2)′
w‖( q2)

′

≤ c‖u‖2q ‖A
(β− 1

2
)

r′ (A
1/2

(q/2)′
w)‖r′

≤ c‖u‖2q ‖A
β
r′w‖r′ .

It is possible to choose the constant c > 0 in the above estimate depending
only on Ω , q and r. For the second assertion we use (3.1), which holds for
almost all t ∈ [0, T [, and integrate over [0, T ]. �

Lemma 3.2. Let Ω ⊂ R3 be an exterior domain with ∂Ω ∈ C2,1, let 0 <
T ≤ ∞, 2 < s < ∞ , 2

s + 3
q = 1 and let u ∈ Ls(0, T ;Lq(Ω)). We define for

r ∈ [ q2 , q] and β := 3
q −

3
2r + 1

2 the term Λr(u) by

Λru(t) := −
∫ t

0
Aβr e

−ν(t−τ)ArA−βr Prdiv(u(τ)⊗ u(τ)) dτ . (3.4)

Then the following statements are satisfied.
(1) For almost all t ∈ [0, T [ we get∫ t

0
‖Aβr e−ν(t−τ)ArA−βr Prdiv(u(τ)⊗ u(τ))‖r dτ <∞ (3.5)

and

−Aβr
∫ t

0
e−ν(t−τ)ArA−βr Prdiv(u(τ)⊗ u(τ)) dτ

= −
∫ t

0
Aβr e

−ν(t−τ)ArA−βr Prdiv(u(τ)⊗ u(τ)) dτ.

(3.6)
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(2) For all r1 , r2 ∈ [ q2 , q] with β1 := 3
q −

3
2r1

+ 1
2 , β2 := 3

q −
3

2r2
+ 1

2 it
holds

Λr1u(t) = Λr2u(t) for almost all t ∈ [0, T [. (3.7)

Therefore, we can denote the expression in (3.4), independently of
r ∈ [ q2 , q], by Λ(u).

(3) For all q1 ∈ [ q2 , q] with 3 < q1 <∞ and s1 > 2 defined by 2
s1

+ 3
q1

= 1

we have
Λu ∈ Ls1(0, T ;Lq1(Ω)) . (3.8)

(4) If q ∈]3, 6[ then

Λu ∈ L
s
2 (0, T ;Lq2(Ω)) (3.9)

where q2 > 3 satisfies 1
3 + 1

q2
= 1

( q2)
and consequently 2

( s2)
+ 3

q2
= 1.

Proof. (1) By (2.8) and (3.1) we know that for all t ∈ [0, T [∫ t

0
‖Aβr e−ν(t−τ)ArA−βr Pr div (u(τ)⊗ u(τ))‖r dτ

≤ c(Ω, q, r)ν−β
∫ T

0
|t− τ |−β‖u(τ)‖2q dτ.

(3.10)

Moreover, as for almost all t ∈ [0, T [ the integral in (3.10) is finite (see the
application of the Hardy-Littlewood inequality (2.22) in the proof of part (3)
below) and∫ t

0
‖e−ν(t−τ)ArA−βr Prdiv(u⊗ u)‖r dτ ≤ c

∫ t

0
‖A−βr Prdiv(u⊗ u)‖r dτ <∞ ,

the closedness of the operator Aβr yields the identity (3.6).
(2) To prove (3.7) for t ∈ (0, T [ as in (1) let

f rt (τ) := Aβr e
−ν(t−τ)ArA−βr Prdiv(u(τ)⊗ u(τ)) for almost all τ ∈]0, t[ ,

where β = β(r) = 3
q −

3
2r + 1

2 . Since for all φ ∈ C∞0,σ(Ω)∫ t

0
〈f r1t (τ), φ〉Ω dτ = −

∫ t

0
〈u(τ)⊗ u(τ),∇e−ν(t−τ)Ar′φ〉Ω dτ ,

we see that ∫ t

0
〈f r1t (τ), φ〉Ω dτ =

∫ t

0
〈f r2t (τ), φ〉Ω dτ ;

for details of the proof we refer to [12]. A density argument finishes the proof
of (3.7).

(3) We consider (3.10) and use the Hardy-Littlewood inequality (2.22)
with (1− β) + 1

s1
= 1

( s2)
to conclude with Λq1u = Λu and (3.2) that

‖Λu‖q1,s1,Ω;T

≤

(∫ T

0

(
cν−β

∫ T

0
|t− τ |−β‖A−βq1 Pq1div(u(τ)⊗ u(τ))‖q1 dτ

)s1
dt

) 1
s1

≤ cν−β‖A−βq1 Pq1div(u(τ)⊗ u(τ))‖q1, s2 ,Ω;T

≤ c(q, q1,Ω)ν−β‖u‖2q,s,Ω;T <∞.
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(4) From 21
2 + 3

q2
= 3

( q2)
and (2.7) it follows with (3.6) and β = 1

2 , r = q
2 ,

for almost all t ∈ [0, T [

‖Λq2u(t)‖q2 ≤ ‖A
1/2
q
2

Λu(t)‖ q
2

= ‖A q
2

∫ t

0
e
−ν(t−τ)A q

2A
−1/2
q
2

P q
2
div(u(τ)⊗ u(τ)) dτ‖ q

2
.

(3.11)

Since by (3.2)

A
−1/2
q
2

P q
2
div(u⊗ u) ∈ L

s
2 (0, T ;L

q
2 (Ω)) , (3.12)

the maximal regularity estimate (2.13) yields the last statement of the lemma.
�

Proof of Theorem 1.4. Given the smallness conditions (1.13) and (1.14),
Theorem 2.4 implies the existence of a unique very weak solution u ∈
Ls(0, T ;Lqσ(Ω)) of (1.1). Moreover, we know the representation u = E + ũ,
where the linear part E satisfies

E(t) = e−νtAqu0 +Aq

∫ t

0
e−ν(t−τ)Aq(A−1

q Pq div F (τ)) dτ (3.13)

in [0, T [ and the nonlinear part ũ ∈ Ls(0, T ;Lqσ(Ω)) solves the fixed point
equation

ũ(t) = −
∫ t

0
Aαq e

−ν(t−τ)AqA−αq Pqdiv
(
(ũ(τ) + E(τ))⊗ (ũ(τ) + E(τ))

)
dτ

(3.14)
with α := 3

2q + 1
2 for almost all t ∈ [0, T [. Since F ∈ L2(0, T ;L2(Ω)) and

u0 ∈ L2
σ(Ω) it follows with (2.5) that

E(t) = E1(t) + E2(t) := e−νtAu0 +A1/2

∫ t

0
e−ν(t−τ)AA−1/2P divF (τ) dτ

(3.15)

almost everywhere. We use [14, IV Theorems 2.3.1, 2.4.1] to obtain that
E lies in the Leray-Hopf class (1.2) and is a weak solution of the linear
stationary Stokes system with data f , u0. To finish the proof, we want to
show that

u ∈ L8(0, T ;L4(Ω)). (3.16)
The validity of the above property implies

u⊗ u ∈ L2(0, T ;L2(Ω)). (3.17)

As a consequence of (3.14) and (3.17) we conclude that ũ lies in the Leray-
Hopf class (1.2) and ũ is the unique weak solution of the linear, stationary
Stokes system with the external force div(u⊗ u) and vanishing initial value,
see [14, IV Theorems 2.3.1, 2.4.1]. Furthermore, from these two Theorems
and 〈u⊗u,∇u〉(τ) = 0 almost everywhere, it follows that u is, after a possible
redefinition on a set of Lebesgue measure 0, strongly continuous and satisfies
the energy equality (1.15).

Since in the case q = 4 (and s = 8) there is nothing left to be proved, we
may assume in the proof of (3.16) that q 6= 4.
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Assertion 1: E = E1 + E2 ∈ L8(0, T ;L4(Ω)).
Proof. In the case 4 < q <∞ it is easily seen since L2

σ(Ω) ∩ Lqσ(Ω) ⊂ L4
σ(Ω)

that E1(t) = e−νtAu0 = e−νtAqu0 ∈ L8(0, T ;L4(Ω)). If 3 < q < 4 we use [11,
Theorem 1.2 (ii)] to find a constant c > 0, independent of t, such that

‖e−νtA4u0‖4 ≤ c t−
3
2

( 1
q
− 1

4
)‖u0‖q

for all t > 0. The estimate∫ T

0
‖e−νtA4u0‖84 dt ≤ c‖u0‖8q

∫ T

0
t
−12( 1

q
− 1

4
)
dt <∞

implies E1 ∈ L8(0, T ;L4(Ω)). To get the property E2 ∈ L8(0, T ;L4(Ω)) we
estimate for almost all t ∈ [0, T [, using (2.7), (2.8) and (2.11), that

‖E2(t)‖4 ≤ c‖A3/8E2(t)‖2

= c

∥∥∥∥∫ t

0
A7/8e−ν(t−τ)AA−1/2Pdiv F (τ) dτ

∥∥∥∥
2

≤ cν−7/8

∫ T

0
|t− τ |−7/8‖F (τ)‖2 dτ .

(3.18)

Then an application of the Hardy-Littlewood inequality (2.22) yields

‖E2‖4,8,Ω;T ≤ cν−
7
8 ‖F‖2,4,Ω;T <∞.

Assertion 2: Let 3 < q < 4. Then ũ ∈ L8(0, T ;L4(Ω)).
Proof. We use an iterative argument to improve the regularity in space
step by step. Assume that for almost all t ∈ [0, T [ with certain parameters
sk , rk , βk

ũ(t) = −
∫ t

0
Aβkrk e

−ν(t−τ)ArkA−βkrk
Prkdiv((ũ+ E)⊗ (ũ+ E)) dτ , (3.19)

ũ , E ∈ Lsk(0, T ;Lrk(Ω)) with 3 < rk < 4 ,
2

sk
+

3

rk
= 1 , βk ∈ [

1

2
, 1]. (3.20)

For k = 1 the iteration starts with s1 := s, r1 := q and β1 := 3
2q + 1

2 = α,
see (3.14). We denote by rk+1 > rk the unique element satisfying 1

3 + 1
rk+1

=
1

rk/2
and set sk+1 := sk

2 . Then (3.9) implies that

ũ ∈ Lsk+1(0, T ;Lrk+1(Ω)). (3.21)

We define βk+1 := 3
rk+1
− 3

2rk+1
+ 1

2 = 3
2rk+1

+ 1
2 and get with (3.7)

ũ(t) = −
∫ t

0
A
βk+1
rk+1 e

−ν(t−τ)Ark+1A
−βk+1
rk+1 Prk+1

div((ũ+E)⊗(ũ+E)) dτ. (3.22)

From the first step of the proof we know that E ∈ L8(0, T ;L4(Ω)). There can
occur two different possibilities. If 4 ≤ rk+1 <∞ we get by an interpolation
argument ũ , E ∈ L8(0, T ;L4(Ω)). Otherwise, if 3 < rk+1 < 4, an interpola-
tion argument yields E ∈ Lsk+1(0, T ;Lrk+1(Ω)). Looking at (3.21), (3.22), we
see that (3.19) and (3.20) are satisfied with the parameters sk+1 , rk+1 , βk+1.
Therefore, we can start a new step of this iterative argument. Repeating
this step finitely many times, we get ũ ∈ L8(0, T ;L4(Ω)) which finishes the
proof of Assertion 2.
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Assertion 3: Let 4 < q <∞. Then ũ ∈ L8(0, T ;L4(Ω)).
Proof. Assume that we have for almost all t ∈ [0, T [ with certain parameters
sk , rk , βk

ũ(t) = −
∫ t

0
Aβkrk e

−ν(t−τ)ArkA−βkrk
Prkdiv((ũ+ E)⊗ (ũ+ E)) dτ , (3.23)

ũ , E ∈ Lsk(0, T ;Lrk(Ω)) with 4 < rk <∞ ,
2

sk
+

3

rk
= 1 , βk ∈ [

1

2
, 1].

(3.24)

Again, for k = 1, the iteration starts with s1 := s, r1 := q and β1 := 3
2q + 1

2 =

α, see (3.14). We set rk+1 := 3
4rk and βk+1 := 3

rk
− 3

2rk+1
+ 1

2 = 1
rk

+ 1
2 . Let

sk+1 > 2 be the unique element which satisfies the relation 2
sk+1

+ 3
rk+1

=

1. Then (3.7) implies that ũ has the representation (3.22) with the new
parameters sk+1 , rk+1 , βk+1. From (3.22) we conclude with (3.8) that

ũ ∈ Lsk+1(0, T ;Lrk+1(Ω)). (3.25)

From the first step of the proof we know that E ∈ L8(0, T ;L4(Ω)). There can
occur two different possibilities. If 3 < rk+1 ≤ 4 we get by an interpolation
argument ũ , E ∈ L8(0, T ;L4(Ω)). Otherwise, if 4 < rk+1 < ∞, we use
an interpolation argument to get E ∈ Lsk+1(0, T ;Lrk+1(Ω)). If we look
at (3.22), (3.25) we see that the equations (3.23) and (3.24) are satisfied
with the parameters sk+1 , rk+1 , βk+1. Therefore, we can start a new step
of this iterative argument. Repeating this step finitely many times, we get
ũ ∈ L8(0, T ;L4(Ω)) which finishes the proof of Assertion 3.

Now the claim (3.16) for u = ũ+E follows, and the proof of this theorem
is complete. �

4. Proof of Regularity Results

Before proving Theorems 1.2 and 1.3 we need a useful, but technical lemma.
In this lemma we assume that u satisfies the strong energy inequality (1.5)
to consider the term u(t) for almost all t ∈ [0, T ] as initial value of a local
strong solution which can be identified locally with u. Therefore, the proof
will be based on Theorem 1.4. We will use the notation

−
∫ b

a
f(x) dx :=

1

b− a

∫ b

a
f(x) dx

for the mean value of an integral.

Lemma 4.1. Let Ω , q , s , f , u0 , T satisfy the assumptions of Theorem 1.4,
let 1 ≤ s′ ≤ s, and let u be a weak solution of (1.1) satisfying the strong
energy inequaltiy (1.5). Then there exists a constant ε∗ = ε∗(q, s

′,Ω) > 0
with the following property: If 0 < t0 < t ≤ t1 ≤ T , and if∫ t1

t0

‖F (τ)‖sq∗ dτ ≤ ε∗ν2s−1 , (4.1)

−
∫ t

t0

(t1 − τ)
s′
s ‖u(τ)‖s′q dτ ≤ ε∗νs

′− s
′
s , (4.2)

then there exists a δ = δ(t) > 0 such that u ∈ Ls(t − δ, t1;Lq(Ω)). In
particular, if t1 > t, then t is a regular point of u.
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Proof. We may assume that u(τ) ∈ L2(Ω) for all τ ∈ [0, T [. From (4.2)
and the fact that u satisfies the strong energy inequality we find a null set
N ⊂]t0, t[ such that for τ0 ∈]t0, t[\N it holds u(τ0) ∈ Lqσ(Ω) and

1

2
‖u(τ1)‖22 + ν

∫ τ1

τ0

‖∇u‖22 dτ ≤
1

2
‖u(τ0)‖22 −

∫ τ1

τ0

〈F,∇u〉Ω dτ (4.3)

for all τ1 mit τ0 ≤ τ1 < T . Moreover, the condition (4.2) yields the existence
of τ0 ∈]t0, t[\N which fulfills the inequality

(t1 − τ0)
s′
s ‖u(τ0)‖s′q ≤ −

∫ t

t0

(t1 − τ)
s′
s ‖u(τ)‖s′q dτ ≤ ε∗νs

′− s
′
s .

It follows with a constant c = c(Ω, q) > 0 that∫ t1−τ0

0
‖e−ντAqu(τ0)‖sq dτ ≤

∫ t1−τ0

0
c‖u(τ0)‖sq dτ

= c(t1 − τ0)‖u(τ0)‖sq ≤ c ε
s
s′
∗ ν

s−1.

Hence with a new constant ε̃∗ := ( ε∗c )
s′
s , where ε∗ is the constant from The-

orem 1.4, the conditions of Theorem 1.4 are satisfied. We get the existence
of a unique weak solution v ∈ Ls([τ0, t1[;Lqσ(Ω)) to the Navier-Stokes sys-
tem (1.1) with initial value v(τ0) = u(τ0). Considering u as a weak solution
to the Navier-Stokes system with initial value u(τ0) on [0, t1 − τ0], we use
Serrin’s Uniqueness Theorem to get that u = v ∈ Ls(τ0, t1;Lqσ(Ω)). The
proof is complete. �

Proof of Theorem 1.2. (1) Let s := s′ , t0 := t − δ , t1 := t + δ where
δ > 0 is chosen so small that, see (1.6),

−
∫ t

t−δ
(t1 − τ)‖u(τ)‖sq dτ ≤ 2

∫ t

t−δ
‖u(τ)‖sq dτ ≤ ε∗νs−1 ,∫ t+δ

t−δ
‖F (τ)‖sr dτ ≤ ε∗ν2s−1.

The assertion follows with Lemma 4.1.
(2) Because of (1.7) it is possible to choose a δ > 0 such that with t0 :=

t− δ , t1 := t+ δ the estimate

−
∫ t

t−δ
(t1 − τ)

s′
s ‖u(τ)‖s′q dτ ≤

1

δ

∫ t

t−δ
(2δ)

s′
s ‖u(τ)‖s′q dτ

=
2
s′
s

δ1− s′
s

∫ t

t−δ
‖u(τ)‖s′q dτ ≤ ε∗νs

′− s
′
s

holds. This shows (4.2). Furthermore, condition (4.1) on F can be fulfilled
as well. Then Lemma 4.1 proves the sufficiency of (1.7) to imply regularity
of u at t. Since by Hölder’s inequaltiy

1

δ1− s′
s

∫ t

t−δ
‖u(τ)‖s′q dτ ≤

(∫ t

t−δ
‖u(τ)‖sq dτ

) s′
s

we get that the condition (1.7) is also necessary for regularity of u at t.
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(3) The constant ε∗ = ε∗(q,Ω) > 0 will be determined in the proof; there-
fore, we begin with considering ε∗ as an arbitrary, fixed positive number. Let
ε1 = ε1(q,Ω) > 0 denote the constant from Theorem 1.4 which in (1.13),
(1.14) is called ε∗, and let ε2 = ε2(s′,Ω) be the constant in Lemma 1.5 called
ε∗ in (4.1), (4.2). We assume ε∗ ≤ ε1 and u0 6= 0. It holds∫ δ1

0
‖e−ντAqu0‖sq dτ ≤ cδ1‖u0‖sq, c = c(Ω, q) > 0.

We define

δ1 := min
(ε1ν

s−1

c‖u0‖sq
, T
)
. (4.4)

If δ1 = T , we already know that u ∈ Ls(0, T ;Lq(Ω)). So let us assume
that δ1 = ε1νs−1

c‖u0‖sq
. With this choice of δ1, Theorem 1.4 yields the existence

of a unique weak solution v ∈ Ls(0, δ1;Lq(Ω)) of (1.1), which coincides by
Serrin’s Uniqueness with u on [0, δ1[. For an arbitrary t ∈

[
δ1
2 , T −

δ1
2

]
, we

get with t0 := t− δ1
2 , t1 := t+ δ1

2

−
∫ t

t0

(t1 − τ)
s′
s ‖u(τ)‖s′q dτ ≤

2

δ
1− s′

s
1

∫ T

0
‖u(τ)‖s′q dτ

≤ 2

(
ε1ν

s−1

c‖u0‖sq

) s′
s
−1

ε∗
νs−1

‖u0‖s−s
′

q

= 2
(ε1

c

) s′
s
−1
ε∗ν

s′− s
′
s .

(4.5)

From this estimate it follows that we may define

ε∗ := min
(ε2

2

(ε1

c

)1− s′
s , ε1, ε2

)
. (4.6)

We see that ε∗ depends only on Ω, q, s′. Using Lemma 4.1 we find a δ =
δ(t) > 0 such that

u ∈ Ls(t− δ(t), t+
δ1

2
;Lq(Ω)). (4.7)

With (4.7) and u ∈ Ls(0, δ1;Lq(Ω)) we obtain due to the compactness of the
interval [0, T ] that u ∈ Ls(0, T ;Lq(Ω)).

Now the theorem is completely proved. �

Proof of Theorem 1.3. By interpolation, in both cases the weak solution
u satisfies u ∈ Ls′(0, T ;Lq(Ω)). The idea of the proof is to use Lemma 4.1. To
control the term in (4.2) we use the interpolation inequality, see [1, Theorem
4.3.1],

‖v‖q ≤ c‖v‖
1− 2

s′
2 ‖∇v‖

2
s′
2 , v ∈ H1

0 (Ω),
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where c = c(Ω, q) > 0. For δ ∈]0, δ0[ with a small δ0 > 0 we get with
t0 := t− δ , t1 := t+ δ the estimate

I(δ) := −
∫ t

t−δ
(t1 − τ)

s′
s ‖u(τ)‖s′q dτ

≤ cδ
s′
s
−1

∫ t

t−δ

(
‖u(τ)‖1−

2
s′

2 ‖∇u(τ)‖
2
s′
2

)s′
dτ

≤ cδ
s′
s
−1‖u‖s′−2

2,∞;T

∫ t

t−δ
‖∇u(τ)‖22 dτ

(4.8)

with a constant c = c(Ω, q) > 0. Since u is supposed to satisfy the strong
energy inequality (1.5), we may proceed for almost all δ ∈]0, δ0[ as follows:

I(δ) ≤ c

ν
δ
s′
s
−1

(
|E(t− δ)− E(t)|+

∣∣∣∣∫ t

t−δ
〈f, u〉 dτ

∣∣∣∣) (4.9)

where the constant c depends on ‖u‖2,∞;T in the case α > 1
2 and c = c(Ω) if

α = 1
2 . By Hölder’s inequality we get that

∣∣∣∣ 1

δ
s′
4

∫ t

t−δ
〈f(τ), u(τ)〉 dτ

∣∣∣∣ ≤ ‖u‖2,∞;T

(∫ t

t−δ
‖f‖

4
4−s′
2 dτ

) 4−s′
4

. (4.10)

As s
s′ = 4

4−s′ and consequently f ∈ L
4

4−s′ (0, T ;L2(Ω)), the left-hand side in
the previous inequality converges to 0 as δ → 0+.

First consider the case α > 1
2 and choose ε > 0 with s′ = 4α − ε. Due to

the assumption (1.9) we get with 1− s′

s = s′

4 = α− ε
4

lim
δ→0+

c

ν
δ−

s′
4 |E(t− δ)− E(t)| = lim

δ→0+

c

ν
δ
ε
4
|E(t− δ)− E(t)|

δα
= 0. (4.11)

Consequently the right hand side of (4.9) converges to 0 as δ → 0+. Hence
we can fulfill (4.2) and, due to the assumption F ∈ Ls(0, T ;Lr(Ω)), it is also
possible to satisfy (4.1). Altogether, Lemma 4.1 yields regularity of u at t.

Secondly, consider the case α = 1
2 in which s′ = 2, s = 4. We will choose

the constant γ∗ = γ∗(Ω) > 0 below. Let ε∗ = ε∗(q) > 0 denote the constant
from Lemma 4.1. The assumption (1.10) implies that for all 0 < δ < µ

1

ν

|E(t− δ)− E(t)|
δ

1
2

≤ γ∗ν
3
2 . (4.12)

Then by (4.9), (4.10) and (4.12) we get with a constant c = c(Ω) > 0 for
almost all δ ∈]0, δ0[ that

I(δ) ≤ cγ∗ν
3
2 +

c

ν
‖u‖2,∞;T

(∫ t

t−δ
‖f‖22 dτ

) 1
2

.

Now with γ∗ := ε∗
2c we find 0 < δ < µ such that I(δ) ≤ ε∗ν

3
2 , cf. (4.2), and

that (4.1) is satisfied. Hence Lemma 4.1 implies regularity of u at t. �



REGULARITY OF WEAK SOLUTIONS IN EXTERIOR DOMAINS 17

References

[1] R. Adams and J. Fournier: Sobolev Spaces. Academic Press, New York, 2003
[2] R. Farwig, H. Kozono and H. Sohr: Local in time regularity properties of the Navier-

Stokes equations. Indiana Univ. Math. J. 56 (2007), 2111-2131
[3] R. Farwig, H. Kozono and H. Sohr: Very weak solutions of the Navier-Stokes equations

in exterior domains with nonhomogeneous data. J. Math. Soc. Japan 59 (2007), 127-
150

[4] R. Farwig, H. Kozono and H. Sohr: Very weak, weak and strong solutions to
the Navier-Stokes system. Topics on partial differential equations, P. Kaplický, Š.
Nečasová, eds., J. Nečas Center Math. Modelling, Prague, Lecture Notes Vol. 2
(2007), 1-54

[5] R. Farwig, H. Kozono and H. Sohr: Energy-based regularity criteria for the Navier-
Stokes equations. J. Math. Fluid Mech. 11 (2008), 1-14

[6] R. Farwig, H. Kozono and H. Sohr: Criteria of local in time regularity of the Navier-
Stokes equations beyond Serrin’s condition. Banach Center Publ., Warszawa, 81
(2008), 175-184

[7] R. Farwig and H. Sohr: Generalized resolvent estimates for the Stokes system in
bounded and unbounded domains. J. Math. Soc. Japan 46 (1994), 607-643

[8] G. P. Galdi: An introduction to the Navier-Stokes initial value problem. In G. P.
Galdi, ed., Fundamental directions in mathematical fluid mechanics, 1-70. Birkhäuser
Verlag, Basel, 2000

[9] Y. Giga and H. Sohr: On the Stokes operator in exterior domains. J. Fac. Sci. Univ.
Tokyo, Sec. IA 36 (1989), 103-130

[10] Y. Giga and H. Sohr: Abstract Lp estimates for the Cauchy problem with applications
to the Navier-Stokes equations in exterior domains. J. Funct. Anal. 102 (1991), 72-94

[11] H. Iwashita: Lq −Lr estimates for solutions of the nonstationary Stokes equations in
an exterior domain and the Navier-Stokes initial value problems in Lq spaces. Math.
Ann. 285 (1989), 265-288

[12] C. Komo: Regularität von schwachen Lösungen der Navier-Stokes-Gleichungen im
Außengebiet, Diploma Thesis, Darmstadt University of Technology, Darmstadt, 2009

[13] T. Miyakawa and H. Sohr: On energy inequality, smoothness and large time behavior
in L2 for weak solutions of the Navier-Stokes equations in exterior domains. Math.
Z., 199 (1988), 455-478

[14] H. Sohr: The Navier-Stokes-Equations: An elementary functional analytic approach.
Birkhäuser Verlag, Basel, 2001

Reinhard Farwig, Darmstadt University of Technology, Department of
Mathematics, 64283 Darmstadt, Germany

Email address: farwig@mathematik.tu-darmstadt.de

Christian Komo, Darmstadt University of Technology, Department of
Mathematics, 64283 Darmstadt, Germany

Email address: komo@mathematik.tu-darmstadt.de


