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Abstract

Several classes of C∗-algebras (for instance, AF-algebras and quasidi-
agonal algebras) are distinguished by intrinsic finiteness properties. These
properties can be used in principle to approximate the elements of the
algebra by finite-dimensional (or discrete) objects. N. Brown has pointed
out that this intrinsic or algebraic discretization works particularly well for
irrational rotation algebras, in which case the the discrete approximations
can not only be constructed effectively but also own excellent convergence
properties. At the other end of the scale there are C∗-algebras of infinity
type which resist any intrinsic discretization. This fact justifies to consider
another kind of approximation by finite rank operators, which we call spa-

tial discretization, and which is based on the finite sections method. We
shall discuss spatial discretizations for the Toeplitz algebra, Cuntz algebras,
and the algebra of band-dominated operators on l2(Z) (which appears as
a special crossed product). Special attention is paid to the properties of
stability, fractality and Fredholmness, which are borrowed from numeri-
cal analysis and which play a basic role in the analysis of the discretized
algebras.
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1 Introduction

Several classes of C∗-algebras are distinguished by intrinsic finiteness properties.
These properties can be used in principle to approximate the elements of the
algebra by finite-dimensional (or discrete) objects and, thus, to discretize the
algebra. Good candidates for a discretization in that sense are approximately
finite algebras (which are inductive limits of finite-dimensional algebras) and
quasi-diagonal algebras. N. Brown [7] has pointed out that the discretization
procedure works particularly well for irrational rotation algebras in which case
the discrete approximations can not only be constructed effectively but also own
excellent convergence properties (for example, the sequence of the approximations
is fractal in a sense which will be explained below). An excellent overview on
algebras with finiteness properties is Brown’s and Ozawa’s recent monograph [8].

In these lectures, we will consider a completely different kind of discretiza-
tion, called spatial discretization, the basic idea of which can be characterized as
follows: We represent a given (abstract) C∗-algebra A faithfully as an algebra A

of linear bounded operators on a separable Hilbert space. Then we choose a basis
{ei}i∈N of that space, let Pn stand for the orthogonal projection from H onto the
linear span of e1, . . . , en, and associate with each operator A ∈ A the sequence
(PnAPn) of its finite sections. The goal is to understand the C∗-algebra S(A)
which is generated by all sequences (PnAPn) with A ∈ A.

The idea of spatial discretization has its origins in numerical analysis, where
the numerical solution of an operator equation Au = f is a basic problem. Nu-
merical analysis provides a huge arsenal of methods to discretize this equation
for several classes of operators. The perhaps simplest (from the conceptual point
of view) and most universal (applicable to each operator) method is the finite
sections method which replaces the equation Au = f by the sequence of the
finite-dimensional linear systems PnAPnun = Pnf , n = 1, 2, . . .. The basic ques-
tion is if these systems are uniquely solvable for sufficiently large n and if their
solutions un tend to a solution of the original equation Au = f . The central as-
pect of this question is if the operators (= n× n-matrices) PnAPn are invertible
for sufficiently large n and if the norms of their inverses are uniformly bounded.
In this case, the sequence (PnAPn) is called stable.

A Neumann series argument shows that the sequence (PnAPn) with A ∈ A

is stable if and only if its coset is invertible in the quotient of the algebra S(A)
by the ideal of all sequences which tend to zero in the norm. This observation
due to Kozak brings numerical analysis into the realm of C∗-algebras (and con-
versely). It was soon realized that, for instance, Gelfand theory and its several
non-commutative generalizations provide effective tools to study stability prob-
lems for the finite sections method for convolution type equations; see [13] for
an overview. In the consequence, the algebras S(A) were examined for several
classes of operator algebras A. We will present some of these results in what
follows. The pioneering example, which will also play a prominent role in these
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lectures, is the Toeplitz algebra T(C) generated all Toeplitz operators on l2(N)
with continuous generating function. This algebra can be viewed as a faithful
representation of the universal C∗-algebra generated by one isometry (Coburn’s
theorem, [9]). The algebra S(T(C)) of the finite sections method is extremely
well understood now; for several aspects of finite sections of Toeplitz operators as
well as for the rich history of the field see [4, 5]. These results were later extended
to algebras generated by Toeplitz operators with piecewise continuous (and even
”more discontinuous”) symbols and to algebras of singular integral operators, see
[12]. The algebra S(BDO) of the finite sections of band-dominated operators was
subject of [18, 22] (note that the algebra BDO of the band-dominated operators is
a faithful representation of the reduced crossed product algebra l∞(Z)×αr Z), and
the algebra S(ON ) where ON is a concrete representation of the Cuntz algebra
ON was considered in [23].

Besides stability, these lectures will focus on two other basic notions, namely
fractality and Fredholmness. Fractality is a property of sequence algebras under
which the sequences in the algebra behave particulary well. For example, if (An)
is a bounded sequence of operators then the sequence (‖An‖) is also bounded.
But if (An) is a bounded sequence in a fractal algebra then the sequence (‖An‖)
is convergent. Fredholmness can be considered as a adaption of the notion of a
Fredholm operator to sequence algebras. Both notions will play a basic role in
the analysis of the discretized algebras.

The textbooks and review papers [3, 5, 12, 13, 22, 28] provide both an intro-
duction to the field and suggestions for further reading.

2 Stability

2.1 Algebras of matrix sequences

Let F denote the set of all bounded sequences A = (An) of matrices An ∈ Cn×n.
Equipped with the operations

(An) + (Bn) := (An +Bn), (An)(Bn) := (AnBn), (An)∗ := (A∗
n)

and the norm
‖A‖F := ‖An‖,

the set F becomes a C∗-algebra, and the set G of all sequences (An) ∈ F with
lim ‖An‖ = 0 forms a closed ideal of F . The relevance of the algebra F and
its ideal G in our context stems from the fact (following via a simple Neumann
series argument which is left as an exercise) that a sequence (An) ∈ F is stable
if, and only if, the coset (An) + G is invertible in the quotient algebra F/G. This
equivalence is also known as Kozak’s theorem. Thus, every stability problem is
equivalent to an invertibility problem in a suitably chosen C∗-algebra, and to
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understand stability means to understand subalgebras of the quotient algebra
F/G. Note in this connection that

lim sup ‖An‖ = ‖(An) + G‖F/G (1)

for each sequence (An) in F (a simple exercise again).
Let H be a separable Hilbert space with basis {ei}i∈N and let Pn stand for the

orthogonal projection from H onto the linear span of e1, . . . , en. Set P := (Pn).
Then we let FP stand for the set of all sequences A = (An) of operators An :
imPn → imPn with the property that the sequences (AnPn) and (A∗

nPn) converge
strongly. By the uniform boundedness principle, the quantity sup ‖AnPn‖ is finite
for every sequence A in FC . Thus, if we identify each operator An on imPn with
its matrix representation with respect to the basis e0, . . . , en−1 of imPn, we can
consider FP as a closed and symmetric subalgebra of F which contains G as its
ideal. Note that the mapping

W : FP → L(H), (An) 7→ s-limAnPn (2)

is a ∗-homomorphism.

2.2 Discretization of operator algebras

Let A be a C∗-subalgebra of the algebra L(H). We write D for the mapping of
spatial (= finite sections) discretization, i.e.,

D : L(H) → FP , A 7→ (PnAPn), (3)

and let SP(A) stand for the smallest closed subalgebra of the algebra FP which
contains all sequences D(A) with A ∈ A. Since (PnAPn)∗ = (PnA

∗Pn), SP(A) is
a C∗-subalgebra of FP , and the mapping W is a ∗-homomorphism from SP(A) to
A. Thus, the algebra A appears as a quotient of S(A) by the ideal of all sequences
tending strongly to zero. On this level, one cannot say much about algebra S(A).
The little one can say will follow easily from the following simple facts.

Proposition 2.1 Let A and B be C∗-algebras, D : A → B a linear contraction,
and W : B → A a C∗-homomorphism such that W (D(A)) = A for every A ∈ A.
Then

(a) D is an isometry, D(A) is a closed linear subspace of B, and algD(A), the
smallest closed C∗-subalgebra of B which contains D(A), splits into the direct sum

algD(A) = D(A) ⊕ (kerW ∩ algD(A)). (4)

Moreover, for every A ∈ A,

‖D(A)‖ = min
K∈ker W

‖D(A) +K‖. (5)
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(b) If B = algD(A), then kerW coincides with the quasicommutator ideal of
B, i.e., with the smallest closed ideal of B which contains all quasicommutators
D(A1)D(A2) −D(A1A2) with A1, A2 ∈ A.

Proof. (a) Let A ∈ A. The inequality

‖A‖ = ‖W (D(A))‖ ≤ ‖D(A)‖ ≤ ‖A‖

shows that D is an isometry; hence, D(A) is a closed subspace of B. Let B ∈
D(A) ∩ kerW . Write B = D(A) with A ∈ A. From W (B) = 0 we get A =
W (D(A)) = W (B) = 0, whence B = 0. Thus, D(A) ∩ kerW = {0}.

Let B ∈ algD(A). Then W (B −D(W (B))) = W (B) −W (B) = 0, hence

B = D(W (B)) + (B −D(W (B)) ∈ D(A) + kerW,

whence algD(A) = D(A) + (kerW ∩ algD(A)). This proves (4). To check (5),
let A ∈ A and K ∈ kerW . Then

‖A‖ = ‖W (D(A) +K)‖ ≤ ‖D(A) +K‖

which implies that ‖D(A)‖ ≤ ‖D(A) +K‖ since D is an isometry.

(b) Since W is a homomorphism and W ◦ D is the identity on A, one has
D(A1)D(A2) − D(A1A2) ∈ kerW for all A1, A2 ∈ A. Thus, kerW contains
the quasicommutator ideal. For the reverse inclusion, let K ∈ kerW and n a
positive integer. Since K ∈ algD(A), there are sums of products

Kn =
∑ ∏

D(A
(n)
ij ) with A

(n)
ij ∈ A

such that ‖K −Kn‖ ≤ 1/n. Clearly, Kn can be written as

Kn = D(
∑∏

A
(n)
ij ) +Qn

= D(W (Kn)) +Qn = D(W (Kn −K)) +Qn

with Qn in the quasicommutator ideal. Then

‖K −Qn‖ ≤ ‖K −Kn‖ + ‖Kn −Qn‖

≤ ‖K −Kn‖ + ‖D(W (Kn −K))‖

≤ 2‖K −Kn‖ ≤ 2/n.

Thus, K can be approximated as closely as desired by elements in the quasicom-
mutator ideal. Since the quasicommutator ideal is closed, the assertion follows.

We apply the preceding proposition in the following context:
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• A is a C∗-subalgebra of L(H),

• B = SP(A),

• D is the restriction of the discretization (3) to A, and

• W is the restriction of the homomorphism (2) to SP(A).

Then Proposition 2.1 specializes to the following.

Proposition 2.2 Let A be a C∗-subalgebra of L(H). Then the finite sections
discretization D : A → FP is an isometry, and D(A) is a closed subspace of
SP(A). The algebra SP(A) splits into the direct sum

SP(A) = D(A) ⊕ (kerW ∩ SP(A)), (6)

and one has
‖D(A)‖ = min

K∈ker W
‖D(A) +K‖

for every operator A ∈ A. Finally, kerW ∩SP(A) is equal to the quasicommutator
ideal of SP(A), i.e., to the smallest closed ideal of SP(A) which contains all
sequences (PnA1PnA2Pn − PnA1A2Pn) with operators A1, A2 ∈ A.

We denote the ideal kerW ∩SP(A) of SP(A) by J P(A) and agree to omit the P
in SP(A) and J P(A) if the dependence on the family P of projections is evident
from the context. Since the first item in the decomposition D(A)⊕J (A) of S(A)
is isomorphic (as a linear space) to A, a main part of the description of the algebra
S(A) is to identify the ideal J (A).

2.3 Discretization of the Toeplitz algebra

Unital C∗-algebras of infinite type typically contain non-unitary isometries, i.e.
elements s for which s∗s is the identity element e, but ss∗ 6= e. The perhaps
simplest example is the universal algebra C∗(s) generated by one isometry. The
universal property of C∗(s) means that whenever S is an isometry in a C∗-algebra
A, then there is a ∗-homomorphism from C∗(s) onto the smallest C∗-subalgebra
of A containing S which sends s to S. Coburn [9] showed that the algebra C∗(s) is
∗-isomorphic to the smallest closed ∗-subalgebra T(C) of L(l2(Z+)) which contains
the (isometric) operator

V : l2(Z+) → l2(Z+), (xk)k≥0 7→ (0, x0, x1, . . .)

of forward shift. The algebra T(C) is also known as the Toeplitz algebra, since
each of its elements is of the form T (c) + K where T (c) is a Toeplitz operator
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and K is a compact operator. To recall the definition of a Toeplitz operator, let
a be a function in L∞(T) with kth Fourier coefficient

ak :=
1

2π

∫ 2π

0

a(eiθ)e−ikθ dθ, k ∈ Z.

Then the Laurent operator L(a) on l2(Z), the Toeplitz operator T (a) on l2(Z+),
and the Hankel operator H(a) on l2(Z+) with generating function a are defined
via their matrix representations with respect to the standard bases of l2(Z) and
l2(Z+) by

L(a) = (ai−j)
∞
i,j=−∞, T (a) = (ai−j)

∞
i,j=0, and H(a) = (ai+j+1)

∞
i,j=0.

These operators are bounded, and

‖H(a)‖ ≤ ‖T (a)‖ = ‖L(a)‖ = ‖a‖∞.

It is also useful to know that L(a) and T (a) are compact if and only if a is the
zero function, whereas H(a) is compact for each continuous function a. With
these notations, one has

Theorem 2.3 T(C) = {T (a) +K : a ∈ C(T) and K ∈ K(l2(Z+))}.

To discretize the Toeplitz algebra T(C), consider the orthogonal projections

Pn : l2(Z+) → l2(Z+), (x0, x1, x2, . . . , ) 7→ (x0, x1, . . . , xn−1, 0, 0, . . .)

which converge strongly to the identity operator. Evidently, Pn projects onto the
linear span of the first n elements of the standard basis of l2(Z+). In accordance
with the previous notation, we set P = (Pn) and let S(T(C)) = SP(T(C)) stand
for the algebra of the finite sections discretization of the Toeplitz algebra. Thus,
S(T(C)) is the smallest closed subalgebra of FP which contains all sequences
(Pn(T (a) + K)Pn) with a ∈ C(T) and K compact. One can show that the
sequences (PnT (a)Pn) with a ∈ C(T) already generate S(T(C)).

It is a lucky circumstance that, as for the Toeplitz algebra T(C), the elements
of S(T(C)) can be described explicitly. For this description, we will need the
reflection operators

Rn : l2(Z+) → l2(Z+), (x0, x1, . . .) 7→ (xn−1, xn−2, . . . , x1, x0, 0, 0, . . .).

Theorem 2.4 The algebra S(T(C)) coincides with the set of all sequences

(PnT (a)Pn + PnKPn +RnLRn +Gn) (7)

where a ∈ C(T), K and L are compact on l2(Z+), and (Gn) ∈ G.

8



Proof. Denote the set of all sequences of the form (7) by S1 for a moment. In a
first step one shows that S1 is a symmetric algebra. This follows almost at once
if Widom’s identity

PnT (ab)Pn = PnT (a)PnT (b)Pn + PnH(a)H(b̃)Pn +RnH(ã)H(b)Rn, (8)

where ã(t) := a(t−1), and the compactness of Hankel operators with continuous
generating function are taken into account.

The proof that S1 is closed (hence, a C∗-algebra) proceeds in the standard
way if one employs the fact that the strong limits W (A) := s-limAnPn and

W̃ (A) := s-limRnARn exist for each sequence A := (An) ∈ S1 and that

W ((PnT (a)Pn + PnKPn +RnLRn + Gn)) = T (a) +K (9)

and
W̃ ((PnT (a)Pn + PnKPn +RnLRn +Gn)) = T (ã) + L. (10)

Since the generating sequences of S(T(C)) belong to S1 and S1 is a closed algebra,
we conclude that S(T(C)) ⊆ S1.

For the reverse inclusion we have to show that the sequence (RnLRn) belongs
to S(T(C)) for every compact operator L and that G ⊆ S(T(C)). Note that V ∗

is the operator of backward shift and that all non-negative powers of V and V ∗

are Toeplitz operators with polynomial generating function. Hence, the identities

(RnV
iP1(V

∗)jRn) = (Pn(V ∗)iPn)(RnP1Rn)(PnV
jPn)

and (RnP1Rn) = (Pn) − (PnV Pn)(PnV
∗Pn) imply that S(T(C)) contains all se-

quences (RnLRn) with L a finite linear combination of operators of the form
ViP1V−j with i, j ≥ 0. Since these operators form a dense subset of K(l2(Z+)),
the first claim follows. The inclusion G ⊆ S(T(C)) is a consequence of a more
general result which we formulate as a separate proposition.

The following proposition shows a close symbiosis between sequences of the form
(PnKPn) with K compact and sequences which tend to zero in the norm: each
algebra which contains all sequences (PnKPn) also contains all sequences tend-
ing to zero. The only (evidently necessary) obstruction is that no two of the Pn

coincide.

Proposition 2.5 Let P = (Pn) be a sequence of orthogonal projections of finite
rank on a Hilbert space H. Suppose that the Pn converge strongly to the identity
operator and that Pm 6= Pn whenever m 6= n. Then the ideal GP of all sequences
which tend to zero in the norm is contained in the smallest closed subalgebra J
of FP which contains all sequences (PnKPn) with K compact.

Proof. It is sufficient to show that, for each n0 ∈ N, there is a sequence (Gn)
in J such that Gn0 is a projection of rank 1 and Gn = 0 for all n 6= n0. Since

9



the matrix algebras Ck×k have no non-trivial ideals, this fact already implies that
each sequence (Gn) with arbitrarily prescribed Gn0 ∈ L(imPn0) and Gn = 0 for
n 6= n0 belongs to J . Since GP is generated (as a Banach space) by sequences of
this special form, the assertion follows.

Let n0 ∈ N, put

N< := {n ∈ N : imPn ∩ imPn0 is a proper subspace of imPn0},

and set N> := N \ ({n0} ∪ N<). The set N< is at most countable. If n ∈ N<,
then none of the closed linear spaces imPn ∩ imPn0 has interior points relative to
imPn0. By the Baire category theorem, ∪n∈N<(imPn ∩ imPn0) is a proper subset
of imPn0 . Choose a unit vector

f ∈ imPn0 \ ∪n∈N<(imPn ∩ imPn0).

Then ‖Pnf‖ < 1 for all n ∈ N< by the Pythagoras theorem. (Indeed, otherwise
‖Pnf‖ = 1, and the equality 1 = ‖f‖2 = ‖Pnf‖

2 + ‖f − Pnf‖
2 implies f = Pnf ,

whence f ∈ imPn.)
Let Qn := I−Pn. If n ∈ N>, then imPn∩ imPn0 = imPn0 by the definition of

N>. Thus, imPn0 ⊆ imPn, and since no two of the projections Pn coincide, this
implies that imPn0 is a proper subspace of imPn and imQn is a proper subspace
of imQn0 for n ∈ N>. Again by the Baire category theorem, ∪n∈N> imQn is a
proper subset of imQn0 . Choose a unit vector

g ∈ imQn0 \ ∪n∈N>imQn.

Then, as above, ‖Qng‖ < 1 for all n ∈ N>. Consider the operatorK : x 7→ 〈x, g〉f
on H . Its adjoint is K∗ : x 7→ 〈x, f〉g, and

PnKQnK
∗Pnx = 〈Pnx, f〉 〈Qng, g〉Pnf = 〈x, Pnf〉 ‖Qng‖

2Pnf.

If n ∈ N<, then ‖Pnf‖ < 1, and if n ∈ N>, then ‖Qng‖ < 1 by construction. In
both cases, ‖PnKQnK

∗Pn‖ < 1. In case n = n0,

PnKQnK
∗Pnx = 〈x, f〉f

is an orthogonal projection of rank 1, which we call P . The sequence K :=
(PnKQnK

∗Pn) belongs to the algebra J since

(PnKQnK
∗Pn) = (PnKK

∗Pn) − (PnKPn) (PnK
∗Pn).

As r → ∞, the powers Kr converge in the norm of FP to the sequence (Gn)
with Gn0 = P 6= 0 and Gn = 0 if n 6= n0. Indeed, since Pn → I strongly, one
has ‖Qng‖ < 1/2 for n large enough, whence ‖PnKQnK

∗Pn‖ < 1/2 for these n,
and for the remaining (finitely many) n one has ‖PnKQnK

∗Pn‖ < 1 as we have
seen above. Since Kr ∈ J and J is closed, the sequence (Gn) has the claimed
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properties.

With the explicit description of S(T(C)) given by Theorem 2.4 one has full control
on this algebra and its elements. From (9) it is evident that the kernel of the
mapping W (equivalently, the quasicommutator ideal of S(T(C))) is just the set
of all sequences of the form (RnLRn +Gn) with L compact and (Gn) ∈ G. Thus,

S(T(C)) = {(Pn(T (a) +K)Pn) : a ∈ C(T), K ∈ K(l2(Z+))}

⊕{(RnLRn +Gn) : L ∈ K(l2(Z+)), (Gn) ∈ G}

is just the specification of (6) to the present context.
The stability of a sequence in S(T(C)) is related with its coset modulo G. So

let us see what Theorem 2.4 tells us about the quotient algebra S(T(C))/G. Since

the ideal G lies in the kernel of the homomorphisms W and W̃ , the mapping

smb : S(T(C))/G → L(l2(Z+)) × L(l2(Z+)), A + G 7→ (W (A), W̃ (A)) (11)

is a well defined homomorphism. From Theorem 2.4 and from (9) and (10) we

derive that the intersection of the kernels of W and W̃ is just the ideal G, which
implies the following.

Theorem 2.6 The mapping smb is a ∗-isomorphism from S(T(C))/G onto the

C∗-subalgebra of L(l2(Z+))×L(l2(Z+)) which consists of all pairs (W (A), W̃ (A))
with A ∈ S(T(C)).

Corollary 2.7 A sequence A ∈ S(T(C)) is stable if and only if smb(A + G) is
invertible in L(l2(Z+)) × L(l2(Z+)).

Indeed, by the inverse closedness of C∗-algebras, the coset A + G ∈ S(T(C))/G
is invertible in F/G if and only if it is invertible in S(T(C))/G. So we arrived at
a classical result:

Corollary 2.8 Let a ∈ C(T) and K compact. The finite sections sequence A =
(Pn(T (a) +K)Pn) is stable if and only of the operator T (a) +K is invertible.

Indeed, using some special properties of Toeplitz operators it is easy to see that
the invertibility of W (A) = T (a)+K already implies the invertibility of W̃ (A) =
T (ã).

3 Fractality

3.1 Stability of subsequences

Clearly, a subsequence of a stable sequence is stable again. Does, conversely, the
stability of a certain (infinite) subsequence of a sequence A imply the stability
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of the full sequence? In general certainly not; but this implication holds indeed
if A belongs to the algebra S(T(C)) of the finite sections method for Toeplitz

operators. The argument is simple: The homomorphismsW and W̃ defined in the
previous section are given by certain strong limits. Thus, the operators W (A)

and W̃ (A) can be computed if only a subsequence of A is known. Moreover,

if this subsequence is stable, then the operators W (A) and W̃ (A) are already
invertible. This implies the stability of the full sequence A via Corollary 2.7.

Employing Theorem 2.6 instead of Corollary 2.7 we can state this observation
in a slightly different way: every sequence in S(T(C)) can be rediscovered from
each of its (infinite) subsequences up to a sequence tending to zero in the norm.
In that sense, the essential information on a sequence in S(T(C)) is stored in each
of its subsequences. Subalgebras of F with this property were called fractal in
[24] in order to emphasize exactly this self-similarity aspect. We will see some of
the remarkable properties of fractal algebras in the following sections. We start
with the general definition of fractal algebras.

3.2 Fractal algebras

Let η : N → N be a strongly monotonically increasing sequence. By Fη we denote
the set of all subsequences (Aη(n)) of sequences (An) in F . As in Section 2.1, one
can make Fη to a C∗-algebra in a natural way. The ∗-homomorphism

Rη : F → Fη, (An) 7→ (Aη(n))

is called the restriction of F onto Fη. It maps the ideal G of F onto a closed
ideal Gη of Fη. For every subset S of F , we abbreviate RηS by Sη.

Let S be a C∗-subalgebra of F . A ∗-homomorphism W from S into a C∗-
algebra B is called fractal if, for every strongly monotonically increasing sequence
η : N → N, there is a mapping Wη : Sη → B such that W = WηRη|S . It is easy
to see that Wη is necessarily a ∗-homomorphism again. A C∗-subalgebra S of F
is called fractal, if the canonical homomorphism

π : S → S/(S ∩ G), A 7→ A + (S ∩ G)

is fractal. Thus, if S is a fractal algebra, then every sequence in S is uniquely
determined by each of its subsequences up to a sequence in G. Finally, a sequence
A ∈ F is fractal if the smallest C∗-subalgebra of F which contains the sequence
A and the identity sequence is fractal. Note that is is not necessary for these
definitions and for the following results that F is a product of finite-dimensional
algebras.

The following result provides an equivalent characterization of fractal subal-
gebras of F .

12



Theorem 3.1 A C∗-subalgebra A of F is fractal if and only if the implication

Rη(A) ∈ Gη ⇒ A ∈ G (12)

holds for every sequence A ∈ A and every strongly monotonically increasing
sequence η : N → N.

Proof. Let A be fractal. Let A = (An) ∈ A and η : N → N be a strongly
monotonically increasing sequence such that Rη(A) ∈ Gη. Then, for each ε > 0,
there is an n0 such that ‖Aη(n)‖ ≤ ε for n ≥ n0. Set µ(n) := η(n + n0). Then
‖Rµ(A)‖ ≤ ε. The fractality of A implies that

‖π(A)‖ ≤ ‖πµRµ(A)‖ ≤ ‖πµ‖ ‖Rµ(A)‖ = ‖Rµ(A)‖ ≤ ε

for each ε > 0. Hence, A ∈ A ∩ G.
Conversely, suppose that the implication (12) holds for every sequence A ∈ A

and every strongly monotonically increasing sequence η : N → N. Let C be a
sequence in Rη(A), and let A1 and A2 be sequences in A such that Rη(A1) =
Rη(A2) = C. Then Rη(A1 − A2) ∈ Gη, whence A1 − A2 ∈ G by (12). One can
thus define a mapping πη : Rη(A) → A/(A∩G) by πη(C) := A + (A∩G) where
A is an arbitrarily chosen sequence in A with Rη(A) = C. Clearly, πηRη = π,
whence the fractality of A.

Corollary 3.2 (a) If A is a fractal C∗-subalgebra of F , then Aη ∩Gη = (A∩G)η

for each strongly monotonically increasing sequence η : N → N.

(b) C∗-subalgebras of fractal C∗-subalgebras of F are fractal.

(c) A C∗-subalgebra A of F is fractal if and only if the algebra A + G is fractal.

It is easy to see that the algebra S(T(C)) is a fractal subalgebra of F . Indeed,

the (evident) fractality of the homomorphisms W and W̃ implies that

smb(o) : S(T(C)) → L(l2(Z+)) × L(l2(Z+)), A 7→ (W (A), W̃ (A))

is a fractal mapping. Hence, for each monotonically increasing sequence η : N →
N, there is a mapping smb(o)

η such that smb(o) = smb(o)
η ◦ Rη. Further, from

Theorem 2.6 we know that the mapping

smb : S(T(C))/G → L(l2(Z+)) × L(l2(Z+)), A + G 7→ (W (A), W̃ (A))

is an isomorphism. Hence, smb−1 ◦ smb(o)
η ◦ Rη is the canonical homomorphism

from S(T(C)) onto S(T(C))/G.

3.3 Some consequences of fractality

The results in this section give a first impression of the power of fractality.
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Proposition 3.3 Let A be a unital fractal C∗-subalgebra of F . Then a sequence
in A is stable if and only if it possesses a stable subsequence.

Proof. Let A = (An) ∈ A, and let η : N → N be a strongly monotonically
increasing sequence such that the sequence Rη(A) = (Aη(n)) is stable. One can
assume without loss that Aη(n) is invertible for every n ∈ N (otherwise take a
subsequence of η). Due to the inverse closedness of Aη in Fη, there is a sequence
B ∈ A such that

Rη(A)Rη(B) = Rη(B)Rη(A) = Rη(I) (13)

with I the identity sequence. By hypothesis, the canonical homomorphism π :
A → A/(A∩G) factors into π = πηRη. Applying the homomorphism πη to (13),
we thus get the invertibility of π(A) = A + (A ∩ G) in A/(A ∩ G). Hence, A is
a stable sequence. The reverse implication is obvious.

Proposition 3.4 Let A ⊂ F be a fractal C∗-algebra and A = (An) ∈ A. Then,

(a) for each strongly monotonically increasing sequence η : N → N,

‖A + G‖F/G = ‖Rη(A) + Gη‖Fη/Gη .

(b) the limit limn→∞ ‖An‖ exists and is equal to ‖A + G‖.

Proof. (a) By the third isomorphy theorem,

‖A + G‖F/G = ‖A + G‖(A+G)/G = ‖A + (A ∩ G)‖A/(A∩G) (14)

for each sequence A in a (not necessarily fractal) C∗-subalgebra A of F . If A is
fractal and G ∈ A ∩ G, then

‖A + G‖F/G = ‖π(A + G)‖A/(A∩G) (by (14))

= ‖πηRη(A + G)‖A/(A∩G) (fractality of π)

≤ ‖Rη(A + G)‖A/(A∩G).

Taking the infimum over all sequences G ∈ A ∩ G, and applying Corollary 3.2
(a), we obtain

‖A + G‖F/G ≤ ‖Rη(A) + (A ∩ G)η‖Aη/(A∩G)η

= ‖Rη(A) + (Aη ∩ Gη)‖Aη/(Aη∩Gη)

= ‖Rη(A) + Gη‖Fη/Gη

where we used (14) again. The reverse estimate is a consequence of the lim sup-
formula (1):

‖(Aη(n)) + Gη‖Fη/Gη
= lim sup ‖Aη(n)‖ ≤ lim sup ‖An‖ = ‖(An) + G‖F/G.
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(b) Choose a strongly monotonically increasing sequence η : N → N such that
lim ‖Aη(n)‖ = lim inf ‖An‖. By part (a) of this proposition and by (1),

lim sup ‖An‖ = ‖(An) + G‖F/G = ‖(Aη(n)) + Gη‖Fη/Gη

= lim sup ‖Aη(n)‖ = lim ‖Aη(n)‖ = lim inf ‖An‖

which gives the assertion.

Our next goal is convergence properties of the spectra σ(An) for fractal self-
adjoint sequences (An). The results will hold for fractal normal sequences as
well, but there is no hope to say something substantial in case the sequence (An)
is not normal. We will need the following notions.

Let (Mn)n∈N be a sequence of non-empty subsets of a metric space X. The
limes superior lim supMn (also called the partial limiting set) resp. the limes
inferior lim inf Mn (or the uniform limiting set) of the sequence (Mn) consists of
all points x ∈ X which are a partial limit resp. the limit of a sequence (mn)
of points mn ∈ Mn. Observe that both lim supMn and lim infMn are closed
sets. In case X = C, the partial limiting set lim supMn is never empty if ∪nMn

is bounded, whereas the uniform limiting set of a bounded set sequence can be
empty.

The following is the analog of the limsup formula (1) for norms.

Proposition 3.5 Let (An) ∈ F be a normal sequence. Then

lim sup σ(An) = σF/G((An) + G).

Proof. Let λ ∈ σ((An) + G). Then (An − λIn) is a stable sequence. Since the
norm ‖M‖ and the spectral radius ρ(M) of a normal matrix coincide, there is an
n0 ∈ N such that

sup
n≥n0

ρ((An − λIn)
−1) =: m <∞.

Then, for all n ≥ n0,

m ≥ sup {|t| : t ∈ σ((An − λIn)−1)} = sup {|t|−1 : t ∈ σ(An − λIn)}

whence

1/m ≤ inf {|t| : t ∈ σ(An) − λ} = inf {|t− λ| : t ∈ σ(An)}

for all n ≥ n0. Hence, λ cannot belong to lim supσ(An).
For the reverse inclusion assume the sequence (An − λIn) fails to be stable.

Then either there is an infinite subsequence (Ank
− λInk

) which consists of non-
invertible matrices only, or all matrices An − λIn with sufficiently large n are
invertible, but ρ((Ank

− λInk
)−1) → ∞ as k → ∞ for a certain subsequence. In

the first case one has λ ∈ σ(Ank
) for every k, whence λ ∈ lim sup σ(An). In the
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second case one finds numbers tnk
∈ σ(Ank

) such that |tnk
− λ|−1 → ∞ resp.

|tnk
− λ| → 0 as k → ∞ which implies λ ∈ lim sup σ(An) also in this case.

In the context of fractal algebras one can say again more.

Proposition 3.6 Let A be a fractal unital C∗-subalgebra of F . If (An) ∈ A is
normal, then

lim sup σ(An) = lim inf σ(An) (= σF/G((An) + G)). (15)

Proof. Let λ ∈ C \ lim inf σ(An). Then there are a δ > 0 and a strongly
monotonically increasing sequence η : N → N such that dist (λ, σ(Aη(n))) ≥ δ for
all n. Thus, and since the An are normal,

sup
n

‖(Aη(n) − λIη(n))
−1‖ = sup

n
ρ((Aη(n) − λIη(n))

−1) < 1/δ.

This shows that the sequence (Aη(n) −λIη(n)) is stable. Then, by Proposition 3.3,
the sequence (An−λIn) itself is stable. Hence, λ 6∈ σ((An)+G) = lim sup σ(An) by
Proposition 3.5, which gives lim supσ(An) ⊆ lim inf σ(An). The reverse inclusion
is evident.

Results as in Propositions 3.4 and 3.6 can be derived also for other spectral
quantities, for example for the sequences of the condition numbers, the sets of
the singular values, the ǫ-pseudospectra, and the numerical ranges of the An. For
details see Chapter 3 in [13].

It is remarkable that for self-adjoint sequences, equality (15) is the only ob-
struction for being fractal.

Theorem 3.7 A self-adjoint sequence (An) ∈ F is fractal if and only if equality
(15) holds.

Proof. The ’only if’-part is Proposition 3.6. For the ’if’-part suppose that
(15) holds. Let A denote the smallest closed subalgebra of F which contains
the sequence (An) and the identity sequence (In). Further let η : N → N be a
monotonically increasing sequence and write Aη for RηA.

The algebras A/(A∩G) and Aη/(Aη ∩ Gη) are isomorphic to (A+ G)/G and
(Aη + Gη)/Gη, respectively. The latter algebras are (as unital algebras) singly
generated by their elements (An) + G and (Aη(n)) + Gη, the spectra of which are
lim sup σ(An) and lim sup σ(Aη(n)), respectively, due to Proposition 3.5. Assump-
tion (15) guarantees that these spectra coincide. Hence, by the Gelfand-Naimark
theorem for singly generated C∗-algebras, the algebra A/(A∩G) is ∗-isomorphic
to Aη/(Aη ∩ Gη) with the isomorphism given by

(Bn) + (A ∩ G) 7→ (Bη(n)) + (Aη ∩ Gη). (16)

Let π denote the canonical homomorphism from A onto A/(A ∩ G). Evidently,
π = ϕηψηRη where ψη is the canonical homomorphism from Aη onto Aη/(Aη∩Gη)
and where ϕη if the inverse of the isomorphism (16). Hence, π is fractal.
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3.4 Fractal restrictions of separable algebras

We are now in a position to formulate and prove the main result of this section.

Theorem 3.8 (Fractal restriction theorem) Let A be a separable unital C∗-
subalgebra of F . Then there exists a monotonically increasing sequence η : N → N

such that the subalgebra Aη = RηA of Fη is fractal.

We shall apply this result in case A is the algebra S(A) of the finite section
method for a separable C∗-algebra A. Recall that the mapping which associates
with every subalgebra A of L(H) the algebra S(A) generated by the finite sections
sequences does not mind the individual properties of A. If A is separable, this
fact can be compensated to some extent by passing to a fractal restriction Sη(A)
of S(A). Since the sequence η depends on A, the fractal restriction Sη(A) will
reflect the structure of A in a much higher and more precise extent than the full
algebra S(A) of the finite sections discretization. Enthusiastically formulated,
the passage from S(A) to a fractal restriction gives the finite sections algebras a
personality.

One cannot expect that Theorem 3.8 holds for arbitrary C∗-subalgebras of F ;
for example it is certainly not valid for l∞ (which we identify with the algebra of
all bounded sequences (αnIn) with complex numbers αn. On the other hand, non-
separable c∗-subalgebras of F can possess fractal refinements as well; the algebra
S(T(PC)) of the finite sections method for Toeplitz operators with piecewise
continuous generating function can serve as an example.

We will first prove Theorem 3.8 in case the algebra A is singly generated by
a self-adjoint sequence and the identity.

Theorem 3.9 Every self-adjoint sequence (An) ∈ F has a fractal subsequence.

For the proof, we need some more facts on set sequences. Let Ccomp denote the
set of all non-empty and compact subsets of the complex plane. The Hausdorff
distance of L, M ∈ Ccomp is defined by

h(L, M) := max{max
l∈L

dist (l, M), max
m∈M

dist (m, L)}

where dist (l, M) := minm∈M |l − m|. The mapping h : Ccomp × Ccomp → R

is called the Hausdorff metric. We denote the limit of a sequence (Mn) with
respect to h by h-limMn. It is well known that (Ccomp, h) is a complete metric
space. What we need in what follows is a compactness result which says that
the relatively compact subsets of the metric space (Ccomp, h) are precisely its
bounded subsets.

Proposition 3.10 (a) A set sequence (Mn) ⊂ Ccomp converges with respect to the
Hausdorff metric if and only if its partial and its uniform limiting sets coincide.
In that case, lim supMn = lim infMn = h-limMn.

(b) Every bounded sequence in (Ccomp, h) possesses a convergent subsequence.
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Proof of Theorem 3.9. Consider the sets Mn := σ(An). By Proposition 3.10
(b), there exists a subsequence (Mη(n))n∈N of (Mn) which converges with respect
to the Hausdorff metric. Hence, by Proposition 3.10 (a),

lim sup
n→∞

(Mη(n)) = lim inf
n→∞

(Mη(n)).

Theorem 3.7 implies the fractality of the sequence (Aη(n))n≥1.

Proof of Theorem 3.8. Let A be a separable C∗-subalgebra of F which contains
the identity sequence. Let (Ak)k∈N be a countable dense subset of A, and denote
by B2k and B2k−1 the real and the imaginary part of the sequence Ak, respectively.
Further, write B ⊆ A for the set of all sequences Bk with k ≥ 1 and D ⊆ A
for the set of all difference sequences Bk − Bl with k, l ≥ 1. The set B ∪ D is
countable, and each of its elements is self-adjoint.

Let (Dk)k∈N be any enumeration of the elements of B ∪ D. By Theorem
3.9, every sequence Dk possesses a fractal subsequence. We construct a strongly
monotonically increasing sequence η : N → N such that the sequence RηDk is
fractal for every k ∈ N. This can be done by a standard diagonalization process
as follows. Let η1 : N → N be a strongly monotonically increasing sequence such
that Rη1D1 is a fractal sequence. Then, for every k ≥ 2, choose a subsequence
ηk of ηk−1 such that Rηk

Dk is a fractal sequence. Define η by η(n) := ηn(n). The
sequence η coincides (with possible exception of at most finitely many entries)
with a subsequence of ηk for every k. Hence, every sequence in Dη := RηD is
fractal.

We claim that the algebra Aη := RηA is fractal. Thus, we have to verify that,
given a subsequence µ of η, there is a homomorphism π̂µ such that

π̂|Aη = π̂µRµ|Aη

where π̂ is the canonical homomorphism from Fη onto Fη/Gη. Notice that the
set of all sequences RηAk = RηB2k + i RηB2k−1 with k ∈ N is dense in Aη. Thus,
without loss of generality and to simplify the notation, we assume in what follows
that η is the identity mapping and write B and D in place of Bη and Dη and π
in place of π̂.

Let µ : N → N be a strongly monotonically increasing sequence. We start
with defining the mapping πµ on the set of the self-adjoint elements of Aµ. So
let A ∈ A and assume that RµA is a self-adjoint sequence.

Claim 1. There is a sequence (Ck)k≥1 in B such that

‖Rµ(A − Ck)‖Fµ → 0 as k → ∞. (17)

Indeed, decompose A into its real and imaginary part ℜA+ iℑA. Since (Ak)k≥1

is a dense subset of A, one can approximate the sequence ℜA as closely as desired
by sequences of the form ℜAk = B2k. Then, clearly, the sequence ℜRµA can be

18



approximated as closely as desired by sequences of the form RµB2k ∈ Bµ. Since
ℜRµA = RµA by hypothesis, this gives the claim.

Claim 2. The cosets Ck +G are independent of the choice of the ’representative’
Ck of the sequence RµCk, i.e., if C, D ∈ B are sequences with RµC = RµD,
then C + G = D + G.

Indeed, the sequence C − D =: (Cn −Dn) belongs to D and is, thus, fractal by
construction. By Proposition 3.4 (b), the limit lim ‖Cn −Dn‖ exists and is equal
to ‖C − D + G‖. Since infinitely many of the differences Cn − Dn are zero by
assumption, this limit is zero, whence C − D ∈ G.

Claim 3. The cosets Ck + G converge in F/G as k → ∞.

Indeed, the fractality of the sequences Ck−Cl ∈ D and Proposition 3.4 (a) imply

‖Ck − Cl + G‖F/G = ‖RµCk − RµCl + Gµ‖Fµ/Gµ

≤ ‖RµCk − RµCl‖Fµ . (18)

Since the sequences RµCk converge to RµA as k → ∞, (Ck + G)k≥1 is a Cauchy
sequence and thus convergent. This settles Claim 3. We denote the limit of the
cosets Ck + G by C + G.

Claim 4. The coset C + G does not depend on the choice of the sequence
(RµCk)k≥1 which approximates RµA.

Indeed, let (RµDk)k≥1 ⊆ Bµ a sequence which also converges to RµA and which
determines a coset D + G (in the same way as the sequence (RµCk) determines
the coset C + G). As in (18) one then has

‖C −D + G‖F/G = lim
k→∞

‖Ck −Dk + G‖F/G

≤ lim
k→∞

‖Rµ(Ck −Dk) + Gµ‖Fµ/Gµ

≤ lim sup
k→∞

‖RµCk − RµDk‖Fµ (19)

(recall that the sequence Ck−Dk is fractal by construction). Since both sequences
(RµCk)k≥1 and (RµCk)k≥1 have the same limit as k → ∞, the right hand side
of (19) tends to zero which gives the claim. Thus, every self-adjoint sequence
RµA ∈ Aµ determines a unique coset C + G which we denote by πµ(RµA).

Claim 5. For every self-adjoint sequence A ∈ A and every strongly monotoni-
cally increasing sequence µ : N → N,

πµ(RµA) = A + G. (20)

Indeed, there might be several sequences (RµCk)k≥1 which converge to RµA.
Among these sequences there is (by assumption) at least one such that Ck → A in
F . For this sequence, one has Ck+G → A+G in F/G. The limit limk→∞(Ck+G)
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is independent of the choice of the sequence (Ck) as we have seen in Claim 4.
Hence, πµ(RµA) = A + G, which settles the construction of πµ on the set of the
self-adjoint sequences in Aµ.

To finish the proof, let RµA be an arbitrary (not necessarily self-adjoint) sequence
in Aµ. Then define πµ(RµA) := πµ(ℜRµA) + i πµ(ℑRµA). By (20),

πµ(RµA) = (ℜA) + G + i ((ℑA) + G) = A + G,

whence πµRµ|A = π|A as desired.

4 Fredholmness

4.1 A distinguished ideal of S(T(C))

We come back to our running example, the algebra S(T(C)) of the finite sections
method for Toeplitz operators. There is an ideal hidden in the algebra S(T(C))
which did not appear explicitly in the previous considerations but which always
acted as a player in the background and which will play (together with its rela-
tives) an outstanding role in what follows. Let

J = {(PnKPn +RnLRn +Gn) : K, L compact, (Gn) ∈ G}. (21)

Theorem 4.1 (a) J is a closed ideal of S(T(C)).

(b) The quotient algebra S(T(C))/J is ∗-isomorphic to C(T), and the mapping
(PnT (a)Pn) + J 7→ a is a ∗-isomorphism between these algebras.

Proof. (a) First note that J ⊂ S(T(C)) by Theorem 2.4. The closedness of J
in S(T(C)) follows by standard arguments. To check that J is a left ideal, let
a ∈ C(T) and let K and L be compact. Then

PnT (a)Pn(PnKPn +RnLRn)

= PnT (a)PnKPn +Rn(RnT (a)Rn)LRn

= PnT (a)PnKPn +RnT (ã)PnLRn

= PnT (a)KPn +RnT (ã)LRn − PnT (a)QnKPn −RnT (ã)QnLRn

with Qn := I − Pn. The operators T (a)K and T (ã)L are compact. Since the
operators Qn converge strongly to zero and K and L are compact, the last two
operators converge to zero in the norm. Hence, (PnT (a)Pn) (PnKPn +RnLRn) ∈
J . Similarly one checks that J is a right ideal.

(b) Widom’s identity (8) together with the compactness of Hankel operators with
continuous generating function imply that the mapping a 7→ (PnT (a)Pn)+J is a
∗-homomorphism from C(T) into S(T(C))/J . This homomorphism is surjective
by Theorem 2.4. To get its injectivity, let (PnT (a)Pn) ∈ J for a continuous
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function a. Then there are compact operators K and L and a zero sequence (Gn)
such that

PnT (a)Pn = PnKPn +RnLRn +Gn for alln ∈ N.

Letting n go to infinity yields the compactness of T (a). But then a is the zero
function.

The importance of the ideal J results from several facts:

• The algebra S(T(C))/J is commutative, hence subject to Gelfand-Naimark
theory. Similarly, factorization of a subalgebra A of F by J (or by an
ideal with similar properties; see below) often yields quotient algebras A/J
which can be effectively studied by tools like central localization or other
non-commutative generalizations of Gelfand theory.

• The algebra J /G has exactly two non-equivalent irreducible representations

which are given by the homomorphisms W and W̃ . These representations
extend to representations of S(T(C)) (of course, also given by W and W̃ )
which the property that a sequence A in S(T(C)) is stable if and only if

the operators W (A) and W̃ (A) are invertible. In this sense, the irreducible
representations of J yield a sufficient family of irreducible representations
of S(T(C)). Similar effects can be observed in numerous instances.

• Invertibility modulo J can be lifted in the following sense. Let FJ stand for
the largest subalgebra of F for which J is an ideal. Then the mappings W
and W̃ extend to irreducible representations of FJ , and a sequence A ∈ FJ

is stable if and only if the operators W (A) and W̃ (A) are invertible and if
the coset A + J is invertible in the quotient FJ /J . Again, such a lifting
result holds in a much more general context.

The ideal J is clearly related with compact operators. We will now introduce a
larger ideal K of sequences of compact type.

4.2 Compact sequences

A sequence (Kn) in the C∗-algebra F is a sequence of rank one matrices if every
matrix Kn has range dimension less than or equal to one. The smallest closed
ideal of F which contains all sequences of rank one matrices will be denoted by
K. Thus, a sequence (An) ∈ F belongs to K if and only if, for every ε > 0, there
is a sequence (Kn) ∈ F such that

sup
n

‖An −Kn‖ < ε and sup
n

rankKn <∞. (22)

We refer to the elements of K as compact sequences. The role of the ideal K in
numerical analysis can be compared with the role of the ideal of the compact
operators in operator theory.
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Notice that G ⊆ K. Indeed, given a sequence (Gn) ∈ G and an ε > 0, set
Kn := Gn if ‖Gn‖ ≥ ε and Kn := 0 otherwise. Then (22) is satisfied since there
are only finitely many operators Kn which are not zero.

An appropriate notion of the rank of a sequence in F can be introduced as
follows. We say that a sequence A ∈ F has finite essential rank if it is the sum
of a sequence (Gn) in G and of a sequence (Kn) with supn rankKn <∞. If A is
of finite essential rank, then there is a smallest integer r ≥ 0 such that A can be
written as (Gn)+(Kn) with (Gn) ∈ G and supn rankKn ≤ r. We call this integer
the essential rank of A and write ess rankA = r. If A is not of finite essential
rank, then we put ess rankA = ∞. Thus, the sequences of essential rank 0 are
just the sequences in G. Clearly, the sequences of finite essential rank form an
ideal of F which is dense in K, and

ess rank (A + B) ≤ ess rankA + ess rankB,

ess rank (AB) ≤ min {ess rankA, ess rankB}

for arbitrary sequences A,B ∈ F .
Consider our running example. It is not hard to see that the intersection of

the algebra S(T(C)) with the ideal K is just the distinguished ideal J which we
examined in the preceding section. Moreover, the essential rank of the sequence
(PnKPn +RnLRn +Gn) turns out to be rankK + rankL.

There are several equivalent characterizations of compact sequences. Since the
entries An of the sequences are n×n-matrices, a characterization of compactness
and of the essential rank via the singular values of the An will be particularly
useful for our purposes. Recall from linear algebra that the singular values of an
n× n matrix A are the non-negative square roots of the eigenvalues of A∗A. We
denote them by

‖A‖ = Σ1(A) ≥ Σ2(A) ≥ . . . ≥ Σn(A) ≥ 0 (23)

if they are ordered decreasingly and by

0 ≤ σ1(A) ≤ σ2(A) ≤ . . . ≤ σn(A) = ‖A‖ (24)

in case of increasing order. Thus, σk(A) = Σn−k+1(A). Notice that the matrices
A∗A and AA∗ are unitarily equivalent, whence Σk(A) = Σk(A

∗) for every k. We
will also need the fact that every n×nmatrix A has a singular value decomposition

A = E∗ diag (Σ1(A), . . . , Σn(A))F

with unitary matrices E and F . A second simple fact from linear algebra which
we will use several times is the following.

Lemma 4.2 Let A be an n×n matrix with rankA = r for some r ∈ {1, . . . , n}.
Then rankA′ ≥ r for each n× n matrix A′ with ‖A− A′‖ < Σr(A).
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The announced characterization of compact sequences in terms of singular values
reads as follows.

Theorem 4.3 The following conditions are equivalent for a sequence (Kn) ∈ F :

(a) limk→∞ supn≥k Σk(Kn) = 0;

(b) limk→∞ lim supn→∞ Σk(Kn) = 0;

(c) the sequence (Kn) is compact.

Since the sequence k 7→ supn≥k Σk(Kn) is monotonically decreasing, the lim in
(a) and (b) can be replaced by an inf.

Proof. The implication (a) ⇒ (b) is evident. Let (Kn) ∈ F be a sequence which
satisfies condition (b), and let

Kn = E∗
n diag (Σ1(Kn), . . . , Σn(Kn))Fn

be the singular value decomposition of Kn. For every n ∈ N and k ≥ 1, set

K(k)
n :=





E∗
n diag (Σ1(Kn) . . . , Σk−1(Kn), 0, . . . , 0)Fn if 1 < k ≤ n,

0 if 1 = k ≤ n,
Kn if n < k.

Then, for n > k,

‖Kn −K(k)
n ‖ = ‖E∗

n diag (0, . . . , 0, Σk(Kn), . . . , Σn(Kn))Fn‖ = Σk(Kn),

and the limsup formula (1) for the norm of a coset in F/G yields

‖(Kn) − (K(k)
n ) + G‖F/G = lim sup

n→∞
Σk(Kn).

Together with property (b), this implies that

lim
k→∞

‖(Kn) − (K(k)
n ) + G‖F/G = lim

k→∞
lim sup

n→∞
Σk(Kn) = 0.

Thus, for each k ∈ N, there is a sequence (C
(k)
n ) in G such that

lim
k→∞

‖(Kn) − (K(k)
n ) − (C(k)

n )‖F = 0,

i.e., the sequence (Kn) is the limit as k → ∞ of the sequences (K
(k)
n + C

(k)
n )n∈N.

Since rankK
(k)
n ≤ k − 1 by definition, each of these sequences belongs to K.

Hence, (Kn) is a compact sequence.
For the implication (c) ⇒ (a), take a compact sequence (Kn). The sequence

(supn≥k Σk(Kn))k≥1 is monotonically decreasing and bounded below (by zero)
and, hence, convergent. Assume that the limit of this sequence is positive. Then
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there is a C > 0 such that supn≥k Σk(Kn) > C for all k ≥ 1. Thus, there are
numbers nk ≥ k such that

Σk(Knk
) > C for all k ≥ 1. (25)

On the other hand, since the sequence (Kn) is compact, there is a sequence
(Rn) ∈ F with

sup
n

rankRn <∞ and sup
n

‖Kn − Rn‖ < C. (26)

In particular, for each k one has ‖Knk
− Rnk

‖ < C, which implies via Lemma
4.2 and (25) that rankRnk

≥ k. Since k can be chosen arbitrarily large, this
contradicts the first condition in (26). Hence, the sequence (supn≥k Σk(Kn))k≥1

cannot have a positive limit, whence condition (a).

In the same vein one can prove the following characterization of sequences of
essential rank r.

Corollary 4.4 A sequence (Kn) ∈ F is of essential rank r if and only if

lim sup
n→∞

Σr(Kn) > 0 and lim
n→∞

Σr+1(Kn) = 0.

One consequence is the lower semi-continuity of the essential rank function.

Corollary 4.5 If ess rank (Kn) = r, then ess rank (K ′
n) ≥ r for all sequences

(K ′
n) which are sufficiently close to (Kn).

Another corollary concerns the behavior of the small singular values of Kn.

Corollary 4.6 Let (Kn) ∈ K. Then the limit limn→∞ σk(Kn) exists and is equal
to 0 for every k.

Proof. Let ε > 0. By Theorem 4.3, there is a k0 such that supn≥k0
Σk0(Kn) < ε.

Then, for all n ≥ n0 := k0 + k − 1,

σk(Kn) = Σn−k+1(Kn) ≤ Σ
(n)
k0

≤ sup
n≥k0

Σk0(Kn) < ε,

which gives the assertion.

When thinking about how to introduce an appropriate ideal of compact se-
quences, one certainly has in mind that at least the constant sequence (P1) should
be compact. So one is lead to consider the smallest closed ideal of F which con-
tains this sequence, and this ideal is a minimal candidate of what might be called
an ideal of compact operators. At the other end of the scale, one might call a
sequence K = (Kn) ∈ F compact if W (K) is a compact operator for each irre-
ducible representation of F , yielding a maximal version of an ideal of compact
operators. Both versions coincide and lead to the ideal K.
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Theorem 4.7 K is the smallest closed ideal of F which contains the constant
sequence (P1).

Theorem 4.8 (a) A sequence K ∈ F belongs to the ideal K if and only if W (K)
is compact for every irreducible representation W of F .

(b) A coset K + G ∈ F/G belongs to the ideal K/G if and only if W (K + G) is
compact for every irreducible representation W of F/G.

A crucial step in the proof is to show that rankW (K) ≤ 1 for each sequence K ∈
F of rank one matrices and each irreducible representation W of F . For details
of the proofs of the preceding theorems as well as for further characterizations of
the preceding theorems, see [22]. Let me also mention that K/G is an essential
ideal of F/G.

4.3 Fredholm sequences

Corresponding to the ideal K we introduce an appropriate class of Fredholm
sequences by calling a sequence (An) ∈ F Fredholm if it is invertible modulo
the ideal K of the compact sequences. The following properties of Fredholm
sequences are obvious.

– Stable sequences are Fredholm.
– Adjoints of Fredholm sequences are Fredholm.
– Products of Fredholm sequences are Fredholm.
– The sum of a Fredholm and a compact sequence is Fredholm.
– The set of all Fredholm sequences is open in F .

For alternate characterizations of Fredholm sequences, let σ1(A) ≤ . . . ≤ σn(A)
denote the singular values of an n× n matrix A.

Theorem 4.9 The following conditions are equivalent for a sequence (An) ∈ F :

(a) The sequence (An) is Fredholm.

(b) There are sequences (Bn) ∈ F and (Jn) ∈ K with supn rank Jn <∞ such that

BnAn = In + Jn for all n ∈ N. (27)

(c) There is a k ∈ N such that

lim inf
n→∞

σk+1(An) > 0. (28)

Proof. (a) ⇒ (b): Let (An) ∈ F be a Fredholm sequence. Then there are
sequences (Cn) ∈ F and (Kn) ∈ K such that (Cn)(An) = (In) + (Kn). Choose a
sequence (Ln) ∈ K with ‖(Ln) − (Kn)‖F < 1/2 and sup rankLn <∞. Then

(Cn)(An) = (In) + (Kn − Ln) + (Ln).
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Since (In) + (Kn − Ln) is invertible in F , we obtain (27) with

Bn := (In +Kn − Ln)−1Cn and Jn := (In +Kn − Ln)−1Ln.

(b) ⇒ (c): Let the singular value decomposition of An be given by

An = E∗
nΣnFn := E∗

n diag (σ1(An), . . . , σn(An))Fn.

After multiplication by Fn and F ∗
n , the identity (27) becomes

(FnBnE
∗
n)(Σn) = (In) + (FnJnF

∗
n).

Abbreviating Cn := FnBnE
∗
n and Kn := FnJnF

∗
n we get

CnΣn = Cndiag (σ1(An), . . . , σn(An)) = In +Kn for all n ∈ N (29)

where still supn rankKn < ∞. Let k := lim supn→∞ rankKn. We claim that
lim infn→∞ σk+1(An) > 0. Contrary to what we want to show, assume that there
is an infinite subsequence (nl)l≥1 of N with liml→∞ σk+1(Anl

) = 0. Multiplying
(29) from both sides by Pk+1, we get

Pk+1Cnl
Σnl

Pk+1 = Pk+1 + Pk+1Knl
Pk+1.

Since

‖Σnl
Pk+1‖ = ‖diag (σ1(Anl

), . . . , σk+1(Anl
), 0, . . . , 0)‖ = σk+1(Anl

) → 0,

one has
lim
l→∞

‖Pk+1 + Pk+1Knl
Pk+1‖ = 0.

Thus, the matrices Pk+1Knl
Pk+1 ∈ C(k+1)×(k+1) are invertible for all sufficiently

large nl. But this is impossible since Pk+1 has rank k+ 1, whereas rankKnl
≤ k.

This proves the claim which, on its hand, implies assertion (c).

(c) ⇒ (a): As in the previous part of the proof, let An = E∗
nΣnFn refer to the

singular value decomposition of An, and let k be a non-negative integer such that

lim inf
n→∞

σk+1(An) > 0.

Then the sequence (Σn + Pk)n≥1 (with P0 := 0) is stable, and so is the sequence
(An +E∗

nPkFn)n∈N. Thus, there are sequences (Cn) ∈ F and (Gn), (Hn) ∈ G such
that

(Cn)(An + E∗
nPkFn) = (In) + (Gn) and (An + E∗

nPkFn)(Cn) = (In) + (Hn),

whence
(Cn)(An) = (In) + (Gn) − (CnE

∗
nPkFn)
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and
(An)(Cn) = (In) + (Hn) − (E∗

nPkFnCn).

The sequences (Gn)− (CnE
∗
nPkFn) and (Hn)− (E∗

nPkFnCn) are of finite essential
rank. Hence, (An) is invertible modulo K.

The preceding theorem suggests to introduce the α-number α(A) of a Fredholm
sequence A = (An) which corresponds to the kernel dimension of a Fredholm
operator. By definition, α(A) is the smallest non-negative integer k for which
(28) is true. Equivalently, α(A) is the smallest non-negative integer k for which
there exist a sequence (Bn) ∈ F and a sequence (Jn) ∈ K of essential rank k such
that BnA

∗
nAn = In + Jn for all n ∈ N. The latter fact follows easily from the

proof of the preceding theorem.
The index of a Fredholm sequence A is the integer

ind (A) := α(A) − α(A∗).

Observe that, in the case at hand, the index of a Fredholm sequence always zero.
This is a consequence of the fact that the operators An act on finite dimensional
spaces which implies that A∗

nAn and AnA
∗
n have the same eigenvalues, even with

respect to their multiplicity. So the more interesting quantity associated with a
Fredholm sequence seems to be its α-number. On the other hand, the vanishing
of the index of a Fredholm sequence allows one to make use of the index as a
conservation quantity.

If A is a Fredholm operator with index 0, then there is an operator K with
finite rank such that A + K is invertible. The analog for Fredholm sequences
reads as follows. Notice that there is no index obstruction since the index of a
Fredholm sequence is always 0.

Theorem 4.10 If A ∈ F is a Fredholm sequence, then there is a sequence K ∈ K
with ess rankK ≤ α(A) such that A + K is a stable sequence.

Proof. Let k denote the α-number of A =: (An), and let

An = E∗
n diag (σ1(An), . . . , σn(An))Fn

be the singular value decomposition of An. Set

Kn := E∗
n diag (σk+1(An) − σ1(An), . . . , σk+1(An) − σk(An), 0, . . . , 0)Fn

and K := (Kn). Then rankKn ≤ k for each n, hence ess rankK ≤ k, and the
sequence A + K is stable.
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5 Fractal algebras of compact sequences

In this section we consider compact and Fredholm sequences in fractal algebras.
The property of fractality has some striking consequences. For example, fractal
ideals in K are constituted of blocks which are isomorphic to the ideal of the
compact operators on a Hilbert space. There will be also a nice formula for the
alpha-number of a Fredholm sequence. We consider these results as interesting
and beautiful, and they are certainly worth to be mentioned here. On the other
hand, the main examples which we shall examine later are either not fractal (dis-
cretizations of band-dominated operators) or do not contain non-trivial compact
sequences (discretizations of Cuntz algebras). So we shall be very brief in this
section and omit many details and almost all proofs.

5.1 Fractality and large singular values

First we will see that the singular values of fractal compact sequences behave
as the singular values of compact operators on Hilbert space, i.e., the set of the
singular values is countable and has 0 as its only possible accumulation point.
Note that this does not hold for general compact sequences. For example, take
an enumeration (an) of the rational numbers in [0, 1] and set

Kn := anPnP1Pn = diag (an, 0, . . . , 0).

Then the sequence (Kn) is compact (it consists of rank one matrices), but the
spectrum of its coset (Kn) + G is the closed interval [0, 1].

Given an n × n-matrix A, let again Σ1(A) ≥ . . . ≥ Σn(A) ≥ 0 denote the
singular values of A, and write σ2(A) for the set of the singular values of A.
Since the singular values of A are the eigenvalues of self-adjoint matrix (A∗A)1/2,
it is an immediate consequence of Proposition 3.6 that, for each sequence (An) in
a fractal algebra, the sets σ2(An) converge with respect to the Hausdorff metric.
In particular,

lim sup σ2(An) = lim inf σ2(An) = σ2 ((An) + G) . (30)

If (An) ∈ F is a fractal sequence, then the sequence (Σ1(An)) of the largest
singular values of An converges. This fact follows immediately from Proposition
3.4 (b) and the identity Σ1(An) = ‖An‖. One cannot expect that the sequence of
the second singular values Σ2(An) converges, too. Indeed, the sequence defined
by

An :=

{
diag (1, 0, 0, . . . , 0) if n is odd
diag (1, 1, 0, . . . , 0) if n is even

is fractal by Theorem 3.7, but the sequence of its second singular values alternates
between 0 and 1 and has thus two accumulation points. In fact, one can show
that the sequence (Σ2(An)) can possess at most two limiting points, at most one
of which is different from lim Σ1(An). This fact holds more general.
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Proposition 5.1 If the sequence (An) ∈ F is fractal, then the set

lim sup
n→∞

{Σ1(An), . . . , Σk(An)}

contains at most k elements.

Proof. Write Πj for the set of all partial limits of the sequence (Σj(An))n∈N. We
first verify that

Π1 ∪ . . . ∪ Πk = lim sup
n→∞

{Σ1(An), . . . , Σk(An)} for every k ∈ N. (31)

The inclusion ⊆ is evident. Conversely, if λ belongs to the right-hand side of
(31), then there are strongly monotonically increasing sequence η : N → N and
numbers kn in {1, . . . , k} such that λ = limn→∞ Σkn(Aη(n)). Since kn can take
only finitely many values, there is a k0 between 1 and k and a subsequence µ of
η such that λ = limn→∞ Σk0(Aµ(n)). Hence, λ ∈ Πk0 .

We have already mentioned that Π1 is a singleton. Next we show that for
each j ≥ 1 the difference Πj+1 \ (Π1 ∪ . . . ∪ Πj) contains at most one element.
Assume there are points α and β in Πj+1 \ (Π1 ∪ . . . ∪ Πj) with α > β. Choose
a subsequence (Σj+1(Aη(n))) of (Σj+1(An)) which converges to β as n → ∞.
Then α cannot belong to the partial limiting set lim sup σ2(Aη(n)). Indeed, if
α ∈ lim sup σ2(Aη(n)) then

α ∈ lim sup
n→∞

{Σ1(Aη(n)), . . . , Σj(Aη(n))}

due to monotonicity reasons. Then

α ∈ lim sup
n→∞

{Σ1(An), . . . , Σj(An)} = Π1 ∪ . . . ∪ Πj

which was excluded. Hence, α ∈ lim sup σ2(An)\lim inf σ2(An), which contradicts
(30).

Here is the announced result on singular values of fractal compact sequences.

Theorem 5.2 Let (Kn) ∈ K be a fractal sequence. Then the set h-lim σ2(Kn) =
σ2((Kn) + G) is at most countable, it contains the point 0, and 0 is the only
accumulation point of this set.

Proof. Let ε > 0. By Theorem 4.3 (a), limk→∞ supn≥k Σk(Kn) = 0. Thus, there
is a k0 such that supn≥k Σk(Kn) ≤ ε for each k ≥ k0, whence

lim sup
n→∞

{Σk0(Kn), . . . , Σn(Kn)} ⊆ [0, ε].

Hence, every point in h-lim σ2(Kn) \ [0, ε] must lie in

lim sup
n→∞

{Σ1(Kn), . . . , Σk0−1(Kn)}

which is a finite set by Proposition 5.1. Consequently, h-limσ2(Kn) is at most
countable and has 0 as only possible accumulation point. That 0 indeed belongs
to this set is a consequence of Corollary 4.6.
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5.2 Compact elements in C∗-algebras

There is a notion of a compact element in a general C∗-algebra A. A non-
zero element k of A is said to be of rank one if, for each a ∈ A, there is a
complex number µ such that kak = µk. We let C(A) stand for the smallest
closed subalgebra of A which contains all elements of rank one. If such elements
do not exist, we set C(A) = {0}. Since the product of a rank one element with
an arbitrary element of A is zero or rank one again, C(A) is a closed ideal of
A. There are several equivalent descriptions of the ideal C(A). To state the
descriptions which are important in what follows, we need some more notation.

A C∗-algebra is called elementary if it is ∗-isomorphic to the ideal K(H) of
the compact operators on some Hilbert space H . A C∗-algebra J is called dual if
it is ∗-isomorphic to a direct sum of elementary algebras. Thus, there is an index
set T , for each t ∈ T there is an elementary algebra Jt, and J is ∗-isomorphic to
the C∗-algebra of all bounded functions a which are defined on T , take a value
a(t) in Jt at t ∈ T , and which are such that for each ε > 0, there are only finitely
many t ∈ T with ‖a(t)‖ > ε. An alternate way to think of dual algebras is the
following. Let {Jt}t∈T be a family of elementary ideals of a C∗-algebra A with
the property that JsJt is the zero ideal whenever s 6= t. Then the smallest closed
subalgebra of A which contains all algebras Jt is a dual algebra, and each dual
algebra is of this form.

Theorem 5.3 Let A be a unital C∗-algebra and J a closed ideal of A. The
following assertions are equivalent:

(a) J = C(J ).
(b) J is a dual algebra.
(c) The spectrum of every self-adjoint element of J is at most countable and has
0 as only possible accumulation point.

For each dual ideal of a C∗-algebra there is a lifting theorem as follows. For a
proof, see [13].

Theorem 5.4 (Lifting theorem for dual ideals) Let A be a unital C∗- alge-
bra. For every element t of a set T , let Jt be an elementary ideal of A such
that JsJt = {0} whenever s 6= t, and let Wt : A → L(Ht) denote the irreducible
representation of A which lifts Jt. Let further J stand for the smallest closed
ideal of A which contains all ideals Jt.

(a) An element a ∈ A is invertible if and only if the coset a + J is invertible in
A/J and if all elements Wt(a) are invertible in Bt.

(b) The separation property holds, i.e. Ws(Jt) = {0} whenever s 6= t.

(c) If j ∈ J , then Wt(j) is compact for every t ∈ T .

(d) If the coset a+J is invertible, then all operators Wt(a) ∈ L(Ht) are Fredholm,
and there are at most finitely many of these operators which are not invertible.
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Corollary 5.5 Let A be a unital and fractal C∗-subalgebra of F which contains
the ideal G. Then the ideal (A ∩K)/G of F/G is a dual algebra.

Indeed, this follows immediately from Theorem 5.2 and Theorem 5.3. As a con-
sequence we obtain that the algebra A/G and its ideal (A∩K)/G are subject to
the lifting theorem.

Next we are going to examine the consequences of the lifting theorem for
sequence algebras. We will do this in the slightly more general context of Sil-
bermann pairs. A Silbermann pair (A, J ) consists of a unital C∗-subalgebra A
of F which contains the ideal G and of a closed ideal J of A which contains G
properly and which consists of compact sequences only, and for which J /G is a
dual subalgebra of K/G. This property ensures that the lifting theorem applies
to Silbermann pairs. Every sequence in A which is invertible modulo J is called
an J -Fredholm sequence. Note that each J -Fredholm sequence is Fredholm in
sense of Section 4.3 (but, of course, a Fredholm sequence in A is not necessarily
J -Fredholm). Under the conditions of Corollary 5.5, (A,A∩K) is a Silbermann
pair, and in this setting a sequence in A is (A ∩ K)-Fredholm if and only if it is
Fredholm.

5.3 Weights of elementary algebras of sequences

Recall that a projection in a C∗-algebra is a self-adjoint element p with p2 = p.
Our starting point is a result on liftings of rank one projections. Let J be an
elementary C∗-subalgebra of F/G, i.e., J is ∗-isomorphic to the C∗-algebra K(H)
of the compact operators on a Hilbert space H .

Proposition 5.6 (a) Every projection p ∈ J lifts to a sequence (Πn) ∈ F of
orthogonal projections, i.e., (Πn) + G = p.

(b) If p and q are rank one projections in J which lift to sequences of projections
(Πp

n) and (Πq
n), respectively, then

dim im Πp
n = dim im Πq

n

for all sufficiently large n.

Thus, the entries of the sequence (dim im Πp
n)n≥1 for large n are uniquely deter-

mined by the algebra J ; they do neither depend on the choice of the rank one
projection p nor on its lifting.

For a precise formulation, we define an equivalence relation ∼ in the set of all
sequences of non-negative integers by calling two sequences (αn), (βn) equivalent
if αn = βn for all sufficiently large n. Then Proposition 5.6 states that the equiv-
alence class which contains the sequence (dim im Πp

n)n≥1 is uniquely determined
by the algebra J . We denote this equivalence class by αJ and call it the weight
of the elementary algebra J . The algebra J is said to be an algebra of positive
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weight if the equivalence class αJ contains a sequence consisting of positive num-
bers only, and J is an algebra of weight one if the equivalence class αJ contains
the constant sequence (1, 1, . . .). Note that the weight is bounded if J is in K/G,
since then (Πp

n) is a compact sequence and has finite essential rank.

5.4 Silbermann pairs and J -Fredholm sequences

Let (A, J ) be a Silbermann pair. Being dual, the algebra J /G is the direct sum
of a family (It)t∈T of elementary algebras with associated bijective representations
Wt : It → K(Ht). These representations extent to irreducible representations of
A into L(Ht) which we denote by Wt again. In this context, the Lifting theorem
5.4 specifies as follows.

Theorem 5.7 (Lifting theorem for Silbermann pairs) Let (A, J ) form a
Silbermann pair.

(a) A sequence A ∈ A is stable if and only if it is J -Fredholm and if the operators
Wt(A) are invertible for each t ∈ T .

(b) The separation property holds, i.e., Ws(It) = {0} whenever s 6= t.

(c) If J ∈ J , then Wt(J) is a compact operator for every t ∈ T .

(d) If the sequence A ∈ A is J -Fredholm, then all operators Wt(A) are Fredholm,
and there are at most finitely many of these operators which are not invertible.

For each t ∈ T , we choose and fix a representative (αt
n) of the weight αIt of the

elementary ideal It. Let the sequence A := (An) ∈ A be J -Fredholm. Assertion
(c) of the Lifting theorem 5.7 implies that the sum

αn(A) :=
∑

t∈T

αt
n dim kerWt(A) (32)

is finite. Evidently, this definition depends on the choice of the representatives
of the weight functions. But since only a finite number of items in the sum
(32) is not zero, the equivalence class of the sequence (αn(A)) modulo ∼ is
uniquely determined. Thus, the entries of that sequence are uniquely determined
for sufficiently large n.

The main result of the present section is the following splitting property of the
singular values of a J -Fredholm sequence. The numbers σk(An) with 1 ≤ k ≤ n
denote again the increasingly ordered singular values of An.

Theorem 5.8 Let (A, J ) be a Silbermann pair, and let the sequence A = (An)
be J -Fredholm. Then A is a Fredholm sequence, and

lim
n→∞

σαn(A)(An) = 0 whereas lim inf
n→∞

σαn(A)+1(An) > 0. (33)
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The proof makes use of results on lifting of families of mutually orthogonal pro-
jections and on generalized (or Moore-Penrose) invertibility. For details see [21].

Theorem 5.8 has some remarkable consequences. First note that the number

α(A) := lim sup
n→∞

αn(A) (34)

is well defined and finite for every J -Fredholm sequence A ∈ A. Since (αn(A))
is a sequence of non-negative integers, it possesses a constant subsequence the
entries of which are equal to α(A) given by (34). Together with (33), this shows
that

lim inf
n→∞

σα(A)(An) = 0 and lim inf
n→∞

σα(A)+1(An) > 0. (35)

Corollary 5.9 Let (A, J ) be a Silbermann pair and A ∈ A a J -Fredholm se-
quence. Then the α-number of the Fredholm sequence A is given by (34).

Let again A = (An) be J -Fredholm. Evidently, for large n, the singular values
of An are located in the union [0, εn] ∪ [d, ∞) where

εn := σαn(A)(An) and d := lim inf
n→∞

σαn(A)+1(An)/2.

From (33) one concludes that εn → 0 as n → ∞ and d > 0. Thus, the singular
values of the entries of J -Fredholm sequence own the splitting property.

Note that the number of the singular values of An which lie in [0, εn] depends
on n in general (it is just given by the quantity αn(A) in (32)). A concrete
instance where this dependence on n can be observed occurs will be examined
in Example 5.13 below. The idea used there allows one to construct Silbermann
pairs with arbitrarily prescribed weight sequences (αt

n). On the other hand, many
of the approximation methods used in practice have the property that every rank
one projection in J /G lifts to a sequence of projections of rank one. Thus, in
this case, the numbers αt

n are independent on n and can be chosen to be 1 for all
n. For Silbermann pairs with this property, Theorem 5.8 and its Corollary 5.9
specify as follows.

Corollary 5.10 Let (A, J ) be a Silbermann pair where all weight sequences (αt
n)

are identically equal to one, and let A ∈ A be a J -Fredholm sequence. Then

α(A) =
∑

t∈T

dim kerWt(A), (36)

and the sequence A has the α(A)-splitting property, i.e., the number of the sin-
gular values of An which tend to zero is α(A).

Let us consider a few examples.
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Example 5.11 The simplest Silbermann pairs (A, J ) arise when J /G is an ele-
mentary algebra. For a concrete model, let P = (Pn) be a sequence of orthogonal
projections of finite rank on a Hilbert space H which converge strongly to the
identity operator. Let FP denote the C∗-algebra of all sequences A = (An) of
operators An : imPn → imPn which converge C∗-strongly to an operators W (A).
The set

J P := {(PnKPn +Gn) : K ∈ K(H), (Gn) ∈ G}

forms a closed ideal of the algebra FP , and (FP , J P) is a Silbermann pair for
which J P/GP is ∗-isomorphic to K(H). Moreover, J P is an algebra of weight
one. In this setting, Theorems 5.7 and 5.8 and Corollary 5.10 specify as follows.

Corollary 5.12 Every J P-Fredholm sequence A ∈ FP owns the finite splitting
property, and its splitting number α(A) is equal to dim kerW (A) where W (A)
refers to the strong limit of the sequence A.

Example 5.13 Define sequences P = (Pn) and (Rn) as in Section 2.3. Consider
the set A of all sequences A = (An) in FP for which the strong limits

s-limAnPn, s-limA∗
nPn, s-limRnAnRn, s-limRnA

∗
nRn

exist. We denote the first and third of these strong limits by W (A) and W̃ (A),
respectively. One can straightforwardly check that A is a C∗-subalgebra of FP ,
that W and W̃ are ∗-homomorphisms on A, and that

J := {(PnKPn +RnLRn +Gn) : K, L ∈ K(l2(Z+)), (Gn) ∈ GP}

is a closed ideal of A for which (A, J ) becomes a Silbermann pair. Moreover,
the two involved weight sequences can be chosen to be identically one.

The algebra A contains all sequences (PnT (a)Pn) of the finite sections of
Toeplitz operators T (a) with generating function a ∈ L∞(T). Thus, Corollary
5.10 implies the following result which holds for arbitrary bounded Toeplitz op-
erators.

Corollary 5.14 Let a ∈ L∞(T). If the sequence A := (PnT (a)Pn) is invertible
modulo the ideal J , then A is a Fredholm sequence with α-number

α(A) = dim kerT (a) + dim ker T (ã)

where ã(t) = a(t−1).

Note that neither a criterion for the Fredholmness of the sequence (PnT (a)Pn)
with general a ∈ L∞(T) nor an explicit formula for their α-number is known.
We also do not know anything on the fractality of such sequences. Recall in this
connection that Treil constructed an invertible Toeplitz operator for which the
finite sections sequence (PnT (a)Pn) fails to be stable. It is not known if Treil’s
sequence is Fredholm.
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Example 5.15 Here we construct an example with non-constant weight. Let
the operators Pn and Rn be as in Example 5.13, and set P = (Pn)n≥1. Consider
the smallest closed subalgebra A of FP which contains the identity sequence (In),
the ideal G of the zero sequences and all sequences (Kn) of the form

Kn :=

{
PnKPn if n is odd
PnKPn +RnKRn if n is even

where K ∈ K(l2(Z+)). One easily checks that if (An) is a sequence in A then
every entry An is of the form

An :=

{
γIn + PnKPn +Gn if n is odd
γIn + PnKPn +RnKRn +Gn if n is even

(37)

where γ ∈ C, K is compact, and (Gn) ∈ G. Clearly, A is a unital C∗-subalgebra
of FP , and the mapping

W : A → L(l2(Z+)), (An) 7→ s-limAnPn

is a representation of A which maps the sequence (An) given by (37) to the
operator γI +K. We show that the invertibility of the operator γI +K implies
the stability of the sequence A defined by (37). Indeed, consider the strongly
monotonically increasing sequences µ, η : N → N given by µ(n) = 2n and η(n) =
2n + 1. By Theorem 2.4, the restricted sequences Aµ and Aη belong to the
corresponding restricted algebras S(T(C))µ and S(T(C))η of the finite sections
method for Toeplitz operators, respectively. Since

R2nA2nR2n → γI +K = W (A) strongly as n→ ∞,

we conclude from Corollary 2.8 that the invertibility of W (A) = γI +K implies
the stability of both Aµ and Aη and, hence of the sequence A.

It is further easy to check that the set J of all sequences of the form (37) with
γ = 0 forms a closed ideal of A and that the quotient algebra J /G is ∗-isometric
(via W ) to K(l2(Z+)). Set Πn := PnP1Pn if n is odd and Πn := PnP1Pn+RnP1Rn

if n is even. Then the sequence (Πn) belongs to J , the coset p := (Πn) + G is a
non-trivial minimal projection in J /G, and one has

dim im Πn =

{
1 if n is odd
2 if n is even.

Thus, the alternating sequence (1, 2, 1, 2, . . .) is a representative of the (only)
weight related with J , and the identity (32) specifies to

αn(A) =

{
dim kerWt(A) if n is odd
2 dim kerWt(A) if n is even

(which also could have been verified directly without effort).
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5.5 Complete Silbermann pairs

Let (A,J ) be a Silbermann pair. We call this pair complete if the ideal G is
properly contained in J and if the family {Wt}t∈T of the lifting homomorphisms
of (A,J ) is sufficient in the sense that a sequence A ∈ A is stable if and only if
the operators Wt(A) are invertible for every t ∈ T .

Theorem 5.16 Let (A, J ) be a complete Silbermann pair and let A ∈ A. Then

(a) A is stable if and only if all operators Wt(A) are invertible;
(b) ‖A + G‖F/G = maxt∈T ‖Wt(A)‖.

(c) A is J -Fredholm if and only if all operators Wt(A) are Fredholm and if there
are only finitely many of them which are not invertible;
(d) A ∈ J if and only if all operators Wt(A) are compact and if, for each ε > 0,
there are only finitely many of them with ‖Wt(A)‖ > ε.

Proof. Assertion (a) is a re-formulation of the sufficiency condition. assertion (b)
is an immediate consequence of (a) since every homomorphism between between
C∗-algebras which preserves spectra also preserves spectral radii, hence norms of
self-adjoint elements, hence the norm of every element.

(c) The ’only if’ part of assertion (c) follows from the Lifting theorem 5.7 (d).
Conversely, let A ∈ A be a sequence for which all operators Wt(A) are Fredholm
and for which there is a finite subset T0 of T which consists of all t such that
Wt(A) is not invertible. Then all operators Wt(A

∗A) are Fredholm, and they are
invertible if t /∈ T0. Let t ∈ T0. Then Wt(A

∗A) is a Fredholm operator of index
0. Hence, there is a compact operator Kt such that Wt(A

∗A) +Kt is invertible.
Choose a sequence Kt ∈ J with Wt(Kt) = Kt and Ws(Kt) = 0 for s 6= t (which
is possible by the separation property in Theorem 5.7), and set

K :=
∑

t∈T0

Kt.

Then K belongs to the ideal J , and all operators Wt(A
∗A + K) are invertible.

By assertion (a), the sequence A∗A+K is stable. Similarly, one finds a sequence
L ∈ J such that AA∗ + L is a stable sequence. Consequently, the sequence A is
invertible modulo J , whence the J -Fredholmness of that sequence.

(d) Let now K be a sequence in J . Since J /G is a dual algebra, the ’only if’
part follows from the Lifting theorem 5.7 (c). For the ’if’ part, let K ∈ A be
a sequence such that, for every ε > 0, there are only finitely many t ∈ T with
‖Wt(A)‖ > ε. For n ∈ N, let Tn stand for the (finite) subset of T which collects
all t with ‖Wt(K)‖ > 1/n. For each t ∈ Tn, choose a sequence Kt ∈ J with
Wt(K

t) = Wt(K) and Ws(K
t) = 0 for s 6= t (which can be done by the separation

property in Theorem 5.7 again), and set Kn :=
∑

t∈Tn
Kt. Then Wt(K−Kn) = 0
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for t ∈ Tn and Wt(Kn) = 0 for t /∈ Tn. Hence,

sup
t∈T

‖Wt(K − Kn)‖ ≤ 1/n for every n ∈ N.

By Theorem 5.16 (b), the left-hand side coincides with ‖K−Kn + G‖F/G . Being
the norm limit of a sequence in J , the sequence K belongs to J itself.

An example for a complete Silbermann pair is (S(T(C)), J ) consisting of the
algebra of the finite sections method for Toeplitz operators and its distinguished
ideal (21). A sequence in the algebra S(T(C)) is Fredholm if and only its strong
limit is a Fredholm operator (note that T (a) and T (ã) are Fredholm only simul-
taneously). Equivalently, the sequence A := (PnT (a)Pn +PnKPn +RnLRn +Gn)
with a ∈ C(T), K, L compact and (Gn) ∈ G is Fredholm if and only if T (a) is a
Fredholm operator. In this case,

α(A) = dim ker (T (a) +K) + dim ker (T (ã) + L). (38)

In particular, if K = L = 0, then

α(A) = dim ker T (a) + dim ker T (ã)

= max{dim kerT (a), dim kerT (ã)}

where the second equality holds by a theorem of Coburn which states that one of
the quantities dim kerT (a) and dim ker T (ã) for each non-zero Toeplitz operator.

In Figures 2 and 4 below, there are plotted the singular values of the Toeplitz
matrices PnT (a)Pn and PnT (b)Pn with n between 1 and 150 and with

a(t) = 5t−3 + t−2 + 3t−1 + 1 + 4t+ 7t2 + t3

and
b(t) = 0.7t+ t5

respectively. The generating functions a and b have winding numbers 1 and 5
(Figures 1 and 3), and Figures 2 and 4 show exactly the predicted splitting of the
singular values. These computations were done by Florian Meyer using standard
matlab.

Thus, the singular value splitting is an effect which can be observed numeri-
cally. On the other hand, the generating functions a and b are polynomials which
is the true reason for the excellent convergence in Figures 2 and 4. A detailed
analysis of the speed of the convergence of singular values for band Toeplitz
matrices can be found in [4].

The identity (38) remains valid if A is a piecewise continuous function and
(T (a) is Fredholm. There is an example due to Tyrtyshnikov of a piecewise
continuous function c such that the smallest singular value of PnT (c)Pn decays
to zero as (lnn)−1 (see also [4] for this fact and detailed references).
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Figure 1: Image of the unit circle under the generating function a.
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Figure 2: Singular values of PnT (a)Pn for n between 1 and 150.
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Figure 3: Image of the unit circle under the generating function b.
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Figure 4: Singular values of PnT (b)Pn for n between 1 and 150.
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6 Discretization of band-dominated operators

6.1 Band-dominated operators

We provide the Hilbert space l2(Z) with its standard basis (ei)i∈Z. An operator
A ∈ L(l2(Z)) with matrix representation (aij) with respect to the standard basis
is called a band operator if there is a number k such that aij = 0 whenever
|i − j| > k. The closure in L(l2(Z)) of the set of all band operators is a C∗-
subalgebra of L(l2(Z)) which we denote by BDO(Z). The elements of BDO(Z)
are called band-dominated operators.

The identity operator is a band operator, and every compact operator is band-
dominated (indeed, every compact operator K is the norm limit of the band
operators RnKRn where Rn refers to the orthogonal projection onto the linear
span of e−n, . . . , en−1). Needless to say that band-dominated operators also occur
at many other instances. A typical source of band operators are discretizations
and discrete versions of differential operators. For example, the tridiagonal (or
Jacobi) operator with matrix representation




. . .
. . .

. . . a−2 1
1 a−1 1

1 a0 1

1 a1
. . .

. . .
. . .




(39)

with a0 standing at the 00-position is considered as a discrete Schrödinger opera-
tor with potential a = (ak) ∈ l∞(Z). In the special case when ak = λ cos 2π(αk+
β) with real parameters α, β and λ this operator is known as the Almost Mathieu
operator.

One can think of BDO(Z) as a concrete representation of the crossed product
l∞(Z)×αZ of the C∗-dynamical system (l∞(Z), Z, α) consisting of the C∗-algebra
l∞(Z), the group Z, and the group homomorphism α : Z → Aut l∞(Z), where
αk acts at a ∈ l∞(Z) by (αk(a))(n) = a(n − k), n ∈ Z. In the case at hand, the
group Z is commutative; so the crossed product l∞(Z) ×α Z coincides with the
reduced crossed product l∞(Z) ×αr Z. I will not go into detail here and refer to
[11] and other textbooks on C∗-algebras for details, since we will work exclusively
with the concrete representation BDO(Z) of l∞(Z) ×αr Z in what follows.

One should also mention another spectacular arena where band-dominated
operators occur, namely coarse geometry. With every coarse geometry space X,
there is associated a certain C∗-algebra A(X) which exactly reflects the coarse
properties of X. In case X = Z, the algebra A(Z) is just the algebra of the band-
dominated operators introduced above. For detailed accounts of coarse geometry
consult the monographs [14, 25, 26].
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Every band operator is constituted by two kinds of special band operators:
the shift operators

Uk : l2(Z) → l2(Z), (Ukx)(m) := x(m− k)

with k ∈ Z, and the multiplication operators

aI : l2(Z) → l2(Z), (ax)(m) := a(m)x(m)

with a ∈ l∞(Z). For example, the discrete Schrödinger operator (39) is just
the band operator U−1 + aI + U1. More general, every finite sum

∑
akUk with

ak ∈ l∞(Z) is a band operator and, conversely, every band operator can be
uniquely written in this way. The functions ak are called the coefficients of the
operator.

Sometimes we will have to work on l2-spaces over the non-negative integers
Z

+ and over the negative integers Z
−. We identify l2(Z+) and l2(Z−) with closed

subspaces of l2(Z) in the obvious way, and we denote the orthogonal projections
from l2(Z) onto l2(Z+) and l2(Z−) by P and Q, respectively. Thus, P + Q = I
and PQ = QP = 0. Given a band-dominated operator A on l2(Z), we refer to
PAP and QAQ as band-dominated operators on l2(Z+) and l2(Z−), respectively.
The compression PUkP of the shift operator Uk to l2(Z+) will be denoted by Vk.

There is a Fredholm criterion for a general band-dominated operator A which
expresses the Fredholm property of A in terms of the limit operators of A. To
state this result, we have to introduce a few notations. Let H stand for the set
of all sequences h : N → Z which tend to infinity in the sense that given C > 0,
there is an n0 such that |h(n)| > C for all n ≥ n0. An operator Ah ∈ L(l2(Z))
is called a limit operator of A ∈ L(l2(Z)) with respect to the sequence h ∈ H
if U−h(n)AUh(n) tends ∗-strongly to Ah as n → ∞. Every operator possesses at
most one limit operator with respect to a given sequence h ∈ H. The set σop(A)
of all limit operators of a given operator A is the operator spectrum of A.

Further, an operator A ∈ L(l2(Z)) is said to be rich or to possess a rich
operator spectrum if every sequence h ∈ H possesses a subsequence g such that
the limit operatorAg with respect to g exists. Richness is a compactness property:
An operator is rich if and only if the set {U−nAUn : n ∈ Z} of all shifts of A
is relatively sequentially compact in the ∗-strong topology. We denote the set
of all rich operators on L(l2(Z)) by L$(l2(Z)). Further we agree upon calling an
operator A on l2(Z+) rich if the operator PAP thought of as acting on L(l2(Z))
is rich. The following is shown by a standard Cantor diagonal argument.

Proposition 6.1 L$(l2(Z)) is a C∗-subalgebra of L(l2(Z)) which contains all
band-dominated operators.

It is not hard to see that every limit operator of a compact operator is 0 and that
every limit operator of a Fredholm operator is invertible. A basic result of [17]
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claims that the operator spectrum of a band-dominated operator is rich enough
in order to guarantee the reverse implications. Here is a summary of the results
from [17, 18] needed in what follows.

Theorem 6.2 Let A ∈ BDO(Z). Then

(a) A is compact if and only if σop(A) = {0}.

(b) A is Fredholm if and only if each of its limit operators is invertible and if the
norms of their inverses are uniformly bounded.

(c) if A is a band operator, then A is Fredholm if and only if each of its limit
operators is invertible.

An elegant proof of Theorem 6.2 which also works for band-dominated operators
on discrete groups different from Z is due to Roe [27].

We turn over to the Fredholm index. Let A ∈ BDO(Z). Then the operators
PAQ and QAP are compact (they are of finite rank if A is a band operator), and
so are the operators A− (PAP +Q)(P +QAQ) and A− (P +QAQ)(PAP +Q).
Hence, a band-dominated operator A is Fredholm if and only if both PAP + Q
and P + QAQ are Fredholm operators, and the Fredholm index of A is the
sum of the Fredholm indices of PAP + Q and P + QAQ. We call ind+(A) :=
ind (PAP+Q) and ind−(A) := ind (P+QAQ) the plus-index and the minus-index
of A. Evidently,

indA = ind+(A) + ind−(A) (40)

for every Fredholm band-dominated operator A. Notice further that the operator
spectrum of A splits into σop(A) = σ+(A)∪σ−(A) where σ+(A) and σ−(A) collect
the limit operators of A which correspond to sequences tending to +∞ and to
−∞, respectively.

Theorem 6.3 Let A ∈ L(l2(Z)) be a Fredholm band-dominated operator. Then

(a) for all B+ ∈ σ+(A) and B− ∈ σ−(A),

ind+(B+) = ind+(A) and ind−(B−) = ind−(A).

(b) all operators in σ+(A) have the same plus-index, and all operators in σ−(A)
have the same minus-index.

(c) for arbitrarily chosen operators B+ ∈ σ+(A) and B− ∈ σ−(A),

indA = ind+(B+) + ind−(B−). (41)

If A is Fredholm, then all operators in σ+(A) also have the same minus-index,
which follows from (b), from the invertibility of all limit operators of A, and from
(40). It is also evident that (b) and (c) are immediate consequences of (a).

A natural approach to the Fredholm index of an operator is via K-theory for
C∗-algebras. Indeed, the original proof of Theorem 6.3 in [16] is heavily based
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upon calculations of the K-groups of the C∗-algebra BDO(Z) and of its related
ideals. Below we will present a completely different proof of the index formula
(41) which is exclusively based on ideas and results from asymptotic numerical
analysis.

6.2 Stability of the finite sections method for BDO

As before, let F denote the algebra of matrix sequences and G the ideal of all
sequences in F which tend to zero in the norm. We associate to each sequence
A = (An) ∈ F the block diagonal operator

Op (A) := diag (A1, A2, A3, . . .) (42)

considered as acting on l2(N) = C1 ⊕ C2 ⊕ C3 ⊕ . . .. The mapping Op implies a
∗-homomorphic embedding of the algebra F into L(l2(N)), which allows one to
think of F as a closed ∗-subalgebra of L(l2(N)). Moreover, Op (F)∩K(l2(N)) =
Op (G).

Theorem 6.4 A sequence A ∈ F is stable if and only if the operator Op (A) ∈
L(l2(N)) is Fredholm.

Proof. Let A ∈ F be a sequence for which Op (A) is a Fredholm operator, i.e.,
the coset Op (A)+K(l2(N)) is invertible in the Calkin algebra L(l2(N))/K(l2(N)).
Then this coset is already invertible in (Op (F) + K(l2(N)))/K(l2(N)) due to
inverse closedness of C∗-algebras. The canonical isomorphisms

(Op (F) +K(l2(N)))/K(l2(N))
∼= Op (F)/(Op (F) ∩K(l2(N))) ∼= Op (F)/Op (G) ∼= F/G

imply that the coset A + G is invertible in F/G. Thus, the sequence A is stable.
Conversely, let A be a stable sequence. Choose n0 ∈ N such that the matrices

An are invertible for n ≥ n0 and consider the sequence B = (Bn) with Bn := 0
for n < n0 and Bn = A−1

n for n ≥ n0. The operator Op (B) is a two-sided inverse
of Op (A) modulo compact operators. Hence, Op (A) is a Fredholm operator.

In general, the stability criterion stated in Theorem 6.4 seems to be of less use.
But if one starts with the sequence A = (PnAPn) of the finite sections of a
band-dominated operator A, then one ends up with the band-dominated operator
Op (A), and Theorem 6.2 applies to study the Fredholmness of Op (A). Basically,
one has to compute the limit operators of Op (A). This will be done in the
following theorem in the more general context of rich operators.

Note that simple examples show that the sequence (PnAPn) of the finite sec-
tions of a band-dominated operator A is not fractal in general. It will be therefore
of vital importance to examine not only the stability of the sequence (PnAPn)
itself, but also of each of its infinite subsequences. Thus, we choose and fix a
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strongly monotonically increasing sequence η : N → N. Further, we write Hη for
the set of all (infinite) subsequences of η and σop,η(A) for the collection of all limit
operators of A with respect to subsequences of η.

Theorem 6.5 Let A ∈ L(l2(Z+)) be a rich operator and η : N → N a strongly
monotonically increasing sequence, and set Aη := (Pη(n)APη(n))n≥1. Then the
operator Op (Aη) is rich, and its operator spectrum σop(Op (Aη)) is equal to

σ+(A) ∪ {U−κ(QAhQ+ PAP )Uκ : κ ∈ Z, Ah ∈ σop,η(A)}. (43)

Note that only limit operators of A with respect to subsequences of η appear.

Proof. Let h : N → N be a sequence which tends to infinity. We call numbers of
the form η(1)+ η(2) + . . .+ η(n) η-triangular and distinguish between two cases:
Either there is a subsequence g of h such that the distance from g(n) to the set
of all η-triangular numbers tends to infinity as n → ∞, or there are a κ ∈ Z

and a subsequence g of h such that g(n) + κ is η-triangular for all n. The figures
below illustrate the shifted operator U−g(n)Op (Aη)Ug(n) in the neighborhood of
its 00-entry (marked by 0).

Case 1 Case 2

Pη(n+1)APη(n+1)Pη(n+1)APη(n+1)

Pη(n)APη(n) Pη(n)APη(n)
l(n)l(n)

0
κ

κ

→ ∞→ ∞

0

In the first case, we let ∆n denote the largest η-triangular number which is less
than g(n). Then the sequence l defined by l(n) := g(n)−∆n still tends to infinity.
Since A is rich, there is a strongly monotonically increasing sequence k : N → N

such that the limit operator Al◦k of A exists. Then g ◦ k is a subsequence of h
for which the limit operator Op (Aη)g◦k exists, and this limit operator coincides
with the limit operator Al◦k of A.

Let now g be a subsequence of h and κ an integer such that each g(n) + κ is
η-triangular. Let d(n) be the (uniquely determined) positive integer such that

g(n) + κ = η(1) + η(2) + . . .+ η(d(n)).
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Since g is strongly monotonically increasing, the sequence d is strongly monoton-
ically increasing, too. Thus, the sequence η ◦ d is a subsequence of η and tends
to infinity. Since A is rich, there is a strongly monotonically increasing sequence
k : N → N such that the limit operator Aη◦d◦k of A with respect to the subse-
quence η ◦ d ◦ k of η exists. It is now clear that the limit operator of Op (Aη)
with respect to the sequence (g ◦ k) + κ exists and that

Op (Aη)(g◦k)+κ = QAη◦d◦kQ+ PAP.

This fact finally implies that the limit operator of Op (Aη) with respect to the
subsequence g ◦ k of h exists and that

Op (Aη)g◦k = UκOp (Aη)(g◦k)+κU−κ

= Uκ(QAη◦d◦kQ+ PAP )U−κ.

Thus, the operator Op (Aη) is rich, and every limit operator of Op (Aη) is either
a limit operator of A or of the form

Uκ(QAη◦dQ+ PAP )U−κ with κ ∈ Z and Aη◦d ∈ σop,η(A). (44)

Conversely, we are now going to show that each limit operator of A and each
operator of the form (44) appears as a limit operator of Op (Aη). Let Al be
a limit operator of A with respect to a sequence l ∈ H. Choose a strongly
monotonically increasing sequence d : N → N such that η(d(n) + 1) − l(n) → ∞
and set

h(n) := (η(1) + η(2) + . . .+ η(d(n))) + l(n).

Then h ∈ H, the limit operator Op (Aη)h exists, and this limit operator is equal
to Al. Let now d : N → N be a strongly monotonically increasing sequence such
that the limit operator Aη◦d of A exists, and let κ ∈ Z. Consider

h(n) := (η(1) + η(2) + . . .+ η(d(n))) + κ.

Again, h ∈ H, the limit operator Op (Aη)h exists, but now this limit operator is
U−κ(QAη◦dQ+PAP )Uκ. Thus, the operator spectrum of Op (Aη) coincides with
(43).

Now we combine Theorems 6.2, 6.4 and 6.5 to obtain a stability result for the
finite sections method for band-dominated operators. In order to avoid operators
acting on the negative integers, it is convenient to introduce the flip operator
J : l2(Z) → l2(Z), (Jx)i := x−i−1. Note that the operators JQAhQJ on l2(Z+)
and U−κ(QAhQ+ P )Uκ on l2(Z) are invertible only simultaneously and that the
norms of their inverses can differ at most by 1.
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Theorem 6.6 Let A ∈ L(l2(Z+)) be a band-dominated operator and η : N → N

a strongly monotonically increasing sequence. Then the sequence (Pη(n)APη(n)) is
stable if and only if the operator A and all operators

JQAhQJ with Ah ∈ σop,η(A)

are invertible on l2(Z+) and if the norms of their inverses are uniformly bounded.

Corollary 6.7 Let A ∈ L(l2(Z+)) be a band-dominated operator, and let η : N →
N be a strongly monotonically increasing sequence for which the limit operator Aη

exists. Then the sequence (Pη(n)APη(n))n≥1 is stable if and only if the operators
A and JQAηQJ are invertible on l2(Z+).

Indeed, under the conditions of the corollary, the set σop,η(A) is a singleton.

The main result of the present section is the following. It says that the (in concrete
situations quite nasty) condition of the uniform boundedness in Theorem 6.6 is
redundant. This result came as a big surprise since it is still an open question
whether the uniform boundedness condition in Theorem 6.2 (c) is redundant.

Theorem 6.8 Let A ∈ L(l2(Z+)) be a band-dominated operator and η : N → N

a strongly monotonically increasing sequence. Then the sequence (Pη(n)APη(n)) is
stable if and only if the operator A and all operators

JQAhQJ with Ah ∈ σop,η(A)

are invertible on l2(Z+).

Proof. The necessity of invertibility of the mentioned operators follows from
Theorem 6.6. Conversely, let A and all operators JQAhQJ with Ah ∈ σop,η(A) be
invertible on l2(Z+). Contrary to what we want to show, assume that the sequence
Aη = (Pη(n)APη(n)) fails to be stable. Then there is a strongly monotonically
increasing sequence d : N → N such that

‖(Pη(d(n))APη(d(n)))
−1‖ ≥ n for all n ∈ N

where we agree upon writing ‖A−1
n ‖ = ∞ if the matrix An fails to be invertible.

Thus, no subsequence of the sequence Aη◦d is stable.
Let g be a subsequence of η ◦ d for which the limit operator Ag exists. (The

existence of a sequence d with these properties follows from Theorem 6.2 (a).)
Then Ag ∈ σop,η(A), and the operators A and JQAgQJ are invertible on l2(Z+)
by hypothesis. Corollary 6.7 implies the stability of the subsequence Ag of Aη◦d.
Contradiction.

The l2(Z)-versions of the previous results can be proved in the same vein. Here
we consider the orthogonal projections

P Z

n : l2(Z) → l2(Z), (P Z

n x)(m) :=

{
x(m) if − n ≤ m < n
0 otherwise
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and are interested in the stability of the finite sections sequences (P Z

nAP
Z

n ) when
A is an operator on l2(Z).

Theorem 6.9 Let A ∈ L(l2(Z)) be a band-dominated operator. Then the finite
sections sequence (P Z

nAP
Z

n )n≥1 is stable if and only if the operator A, all operators

QAhQ+ P with Ah ∈ σ+(A)

and all operators
PAhP +Q with Ah ∈ σ−(A)

are invertible on l2(Z).

The results in this section remain valid for operators on lp with 1 < p < ∞. We
would further like to mention that the stability of the finite sections sequence
for band-dominated operators on l∞ can be studied as well. This involves some
technical subtleties (when working with adjoint sequences, for instance), but it
is easier with respect to one main concern of the present section: For p = ∞,
already the uniform boundedness condition in Theorem 6.2 (b) is redundant. For
much more on this topic, consult the textbook [15].

6.3 The C∗-algebra of the finite sections method

The goal of this section is to examine the smallest closed subalgebra S(BDO(N))
of FP which contains all sequences (PnAPn) with a band-dominated operator
A ∈ BDO(N). The results hold - with obvious modifications - for the algebra
S(BDO(Z)) as well.

Our first goal is a stability criterion for sequences in S(BDO(N)). For each
sequence A = (An) ∈ S(BDO(N)) and each strongly monotonically increasing
sequence η : N → N, we write σop, η(A) for the set of all ∗-strong limits of sub-
sequences of the sequence (U−η(n)Aη(n)Uη(n))n≥1. Further we let W denote the
homomorphism which associates with every sequence in S(BDO(N)) its strong
limit. The following theorem can be proved in the same way as its predecessor
Theorem 6.8.

Theorem 6.10 Let A = (An) ∈ S(BDO(N)) and η : N → N a strongly mono-
tonically increasing sequence. Then the sequence Aη := (Aη(n)) is stable if and
only if the operator W (A) and all operators in σop, η(A) are invertible.

We know from Proposition 2.2 that the algebra S(BDO(N)) splits into the direct
sum of the linear space {(PnAPn) : A ∈ BDO(N)} and the quasicommutator
ideal J (BDO(N)) and that the latter is just the kernel of the (restriction of
the) homomorphism W . We would like to mention a further characterization of
sequences in J (BDO(N)) which will be needed in what follows.
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Theorem 6.11 The following conditions are equivalent for a sequence (Kn) ∈
S(BDO(N)) :

(a) (Kn) ∈ J (BDO(N));

(b) (Kn) tends strongly to zero;

(c) (Kn) is localized at the right-hand end of the interval {0, 1, . . . , n− 1} in the
sense that, given ε > 0, there are non-negative integers n0 and l0 such that

sup
n≥n0

‖Pn−l0KnPn−l0‖ < ε. (45)

(d) (Kn) is localized at the right-hand end of the interval {0, 1, . . . , n−1} in the
sense that, given ε > 0, there are non-negative integers n0 and l0 such that

sup
n≥n0

‖Kn − (Pn − Pn−l0)Kn(Pn − Pn−l0)‖ < ε. (46)

n − l0 l0 n − l0 l0

Pn−l0 Kn Pn−l0 Kn − (Pn − Pn−l0)Kn(Pn − Pn−l0)

The proof can be found in [22]. Let me only mention here that the localization
effect is well known for sequences in the quasicommutator ideal of the algebra
S(T(C)) of the finite sections method for Toeplitz operators (note that the latter
can be viewed as band-dominated operators with constant coefficients). Indeed,
in this case a sequence is in J (T(C)) is and only if it is of the form (RnLRn)+(Gn)
with L compact and (Gn) ∈ G. Approximate L by an operator of the form
Pn0LPn0 as closely as desired. Then (RnLRn) + (Gn) can be written as the
sum of the ”small” sequence (Rn(L − Pn0LPn0)Rn) + (Gn) and the sequence
(Rn(Pn0LPn0)Rn) each entry of which has its non-vanishing entries in the right
lower corner.

6.4 Compact and Fredholm sequences in S(BDO(N))

Here we are going to look at compact sequences and Fredholm sequences in the
algebras S(BDO(N)). Again, all results will hold with evident modifications for
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the algebra S(BDO(Z)) as well. Recall that K refers to the ideal of all compact
sequences in the algebra F .

Theorem 6.12 The intersection S(BDO(N))∩K consists of all sequences (An) ∈
S(BDO(N)) which converge ∗-strongly to a compact operator. Equivalently, a
sequence in S(BDO(N)) is compact if and only if it is of the form (PnKPn)+(Kn)
with a compact operator K and a sequence (Kn) ∈ J (BDO(N)).

Proof. It is a general fact that if a sequence (Kn) ∈ K converges ∗-strongly, then
its strong limit is compact (cp. Theorem 4.8). Conversely, if (An) ∈ S(BDO(N))
is a sequence with compact strong limit K then, by the direct sum decomposition,

(An) = (PnKPn) + (Kn) with (Kn) ∈ J (BDO(N)).

Evidently, the sequence (PnKPn) is compact. It remains to verify the compact-
ness of the sequences in the quasicommutator ideal J (BDO(N)). Let A and B
be band operators, and let r ≥ 0 be the band width of B, i.e., the entries bij
in the matrix representation of B with respect to the standard basis vanish for
|i− j| > r. We have to verify the compactness of

(PnABPn) − (PnAPn)(PnBPn) = (PnAQnBPn).

Looking at the matrix representation of QnBPn, one easily realizes that this
operator has rank at most r for each n ∈ N. Thus, the sequence (PnAQnBPn) is
of essential rank not greater than r, whence its compactness.

n

n

B Qn B Pn

The following result determines the essential rank of a compact sequence
in S(BDO(N)) in terms of the ranks of its limit operators. For each sequence
A := (An) in S(BDO(N)) and each strongly monotonically increasing sequence
η : N → N, we define the operator spectrum σop, η(A) as the set of all ∗-strong limits
of subsequences of the sequence (U−η(n)Aη(n)Uη(n))n≥1. In case A is a compact
sequence in S(BDO(N)), all operators in σop, η(A) are compact.
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Theorem 6.13 Let K ∈ l2(N) be a compact operator and let K := (Kn) ∈
J (BDO(N)). Then the sequence (Pη(n)KPη(n)+Kη(n)) ∈ S(BDO(N))η is compact,
and

ess rank (Pη(n)KPη(n) +Kη(n))

= rankK + max {rankKh : Kh ∈ σop, η(K)}. (47)

We split the proof into several lemmas which we formulate and prove only for
the identity sequence η(n) = n.

Lemma 6.14 Let K ∈ L(l2(N)) be compact and (Kn) ∈ J (BDO(N)). Then

ess rank (PnKPn +Kn) = ess rank (PnKPn) + ess rank (Kn). (48)

The idea of the proof is as follows. We infer from Theorem 6.11 (d) that, up
to a small sequence, the matrices Kn are localized at the right-hand end of the
interval {0, 1, . . . , n− 1} whereas the PnKPn are localized at the left-hand end
of that interval. Thus, the non-vanishing entries of these matrices sit in different
corners, which implies that the rank of their sum is the sum of their ranks. For
details, see [22].

Lemma 6.15 If K ∈ L(l2(N)) is compact, then (PnKPn) is a compact sequence,
and ess rank (PnKPn) = rankK.

Indeed, this is easy to see. The next lemma completes the proof of Theorem 6.13.

Lemma 6.16 Let K := (Kn) ∈ J (BDO(N)). Then

ess rankK = max {rankKh : Kh ∈ σop, 1(K)}. (49)

Proof. Let ess rankK =: r. One can show that the strong limit of operators of
rank r has rank at most r. This settles the estimate rankKh ≤ r for each limit
operator Kh ∈ σop, 1(K). It remains to establish the existence of a limit operator
of K for which rankKh ≥ r.

By Theorem 6.11 (d) and Corollary 4.5 (lower semi-continuity of the essential

rank), there is an n0 such that the sequence K(1) = (K
(1)
n ) with

K(1)
n := (Pn − Pn−n0)Kn(Pn − Pn−n0)

has essential rank l ≥ r. In fact K(1) has essential rank r since it is a product
of the essential rank r sequence K by other sequences. Moreover, we can choose
n0 > r. Since K(1) has essential rank r, there is a monotonically increasing
sequence h : N → N such that

Σr(K
(1)
h(n)) > C > 0 for all n ∈ N (50)
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whereas
Σr+1(K

(1)
n ) → 0 as n→ ∞. (51)

Let K
(1)
n = E∗

ndiag (Σ1(K
(1)
n ), . . . , Σn(K

(1)
n ))Fn be the singular value decompo-

sition of K
(1)
n which can be chosen in such a way that Pn−n0E

∗
nPrEn = 0 and

Pn−n0F
∗
nPrFn = 0. Write K

(1)
n as K

(2)
n +K

(3)
n with

K(2)
n := E∗

nPrEnK
(1)
n F ∗

nPrFn.

Then Pn−n0K
(2)
n = K

(2)
n Pn−n0 = 0 for all n and limn→∞ ‖K

(3)
n ‖ = 0 by (51).

Consider the sequence (U−h(n)Kh(n)Uh(n))n∈N. One can assume that this se-
quence tends ∗-strongly to a limit operator Kh of the sequence K (otherwise
pass to a suitable subsequence of h). Then, since Pn0 is compact, the sequence
(Pn0JU−h(n)Kh(n)Uh(n)JPn0) tends in the operator norm to Pn0JKhJPn0 . The
entries of that sequence can be written as

Pn0JU−h(n)(Ph(n) − Ph(n)−n0)Kh(n)(Ph(n) − Ph(n)−n0)Uh(n)JPn0

= Pn0JU−h(n)K
(1)
h(n)Uh(n)JPn0 = Pn0JU−h(n)K

(2)
h(n)Uh(n)JPn0 +Gn

with a sequence (Gn) tending to zero in the norm. Consequently,

Pn0JU−h(n)K
(2)
h(n)Uh(n)JPn0 → Pn0JKhJPn0 in the norm as n→ ∞.

Write the operators on the left hand side as

Pn0JU−h(n)K
(2)
h(n)Uh(n)JPn0

= Pn0JU−h(n)E
∗
h(n)PrEh(n)K

(2)
h(n)F

∗
h(n)PrFh(n)Uh(n)JPn0

= Pn0JU−h(n)E
∗
h(n)PrEh(n)Uh(n)JPn0

× Pn0JU−h(n)K
(2)
h(n)Uh(n)JPn0

× Pn0JU−h(n)F
∗
h(n)PrFh(n)Uh(n)JPn0

(recall that the matrices E∗
nPrEn and F ∗

nPrFn both commute with Pn − Pn−n0),
and abbreviate the operators

Pn0JU−h(n)E
∗
h(n)PrEh(n)Uh(n)JPn0 and Pn0JU−h(n)F

∗
h(n)PrFh(n)Uh(n)JPn0

to PE,r
n and P F,r

n , respectively. Each of the operators PE,r
n is an orthogonal

projection which acts of the range of Pn0 , i.e., on a finite dimensional space with
a dimension independent of n. Thus, one can choose a subsequence of (PE,r

n )
which converges in the norm to an operator PE,r. For simplicity we will assume
that the sequence (PE,r

n ) itself enjoys this property. Then PE,r is an orthogonal
projection, and being the norm limit of orthogonal projections of rank r, the rank
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of PE,r is also r. Similarly, one can assume that the sequence (P F,r
n ) tends in the

norm to an orthogonal projection P F,r of rank r. Thus,

Pn0JU−h(n)K
(2)
h(n)Uh(n)JPn0 → PE,rPn0JKhJPn0P

F,r in the norm as n→ ∞.

Moreover, by the definition of K
(2)
h(n), each operator

Pn0JU−h(n)K
(2)
h(n)Uh(n)JPn0 = PE,r

n Pn0JU−h(n)K
(2)
h(n)Uh(n)JPn0P

F,r
n , (52)

thought of as acting from imP F,r
n to imPE,r

n is invertible, and the norm of its

inverse is Σn(K
(1)
h(n))

−1, which is less than 1/C due to (50). Thus, the inverses of

the operators (52) are uniformly bounded. This implies the norm convergence of
these inverses from which one concludes that the norm limit of the operators (52),
i.e. the operator PE,rPn0JKhJPn0P

F,r, is invertible when considered as acting
from imP F,r to imPE,r. Since both ranges have dimension r, this implies that
the rank of Kh is at least r.

In order to get an identity for the essential rank of a compact sequence in S(Z)
in terms of limit operators, one has to guarantee that both ends of the inter-
val {−n, −n + 1, . . . , n − 1} are treated simultaneously. This can be done by
identifying a sequence (Kn) ∈ S(Z) with the 2 × 2-matrix of sequences

(
(PKnP ) (PKnQJ)
(JQLnP ) (JQKnQJ)

)
(53)

which belongs to S(N)2×2, and which is in K2×2 if (Kn) ∈ K(Z). The essential
rank of the sequence (53) can be determined by the (evident analogue of) identity
(47), i.e., as a sum of two terms corresponding to the points 0 and 1 again.

Next we turn to the Fredholmness of sequences in S(BDO(N)). The invert-
ibility of the band-dominated operator A is a necessary condition for the stability
of the sequence (PnAPn), but it is by no means sufficient. Indeed, Theorem 6.8
involves a bulk of extra conditions (the invertibility of all limit operators) which,
together with the invertibility of A, imply the stability. In contrast to this obser-
vation, the Fredholmness of A implies the Fredholmness of the sequence (PnAPn)
without any additional ingredients.

Theorem 6.17 (a) Let A ∈ BDO(N). The sequence (PnAPn) of the finite sec-
tions is Fredholm if and only if the operator A is Fredholm.

(b) A sequence A = (An) ∈ S(BDO(N)) is Fredholm if and only if its strong limit
W (A) is a Fredholm operator.

(c) The mapping BDO(N)/K(l2(N)) → S(BDO(N))/(S(BDO(N)) ∩ K),

A+K(l2(N)) 7→ (PnAPn) + S(N) ∩ K, (54)

is a ∗-isomorphism.
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Proof. We only prove assertion (a). Let A be a Fredholm operator, and let R
be a regularizer of A, i.e., the operators Kr := I − RA and Kl := I − AR are
compact. Then

PnRPnAPn = PnRAPn − PnRQnAPn = Pn − PnKrPn − PnRQnAPn

with Qn := I − Pn. The sequence (PnKrPn) belongs to the ideal K since the
compact operator Kr can be approximated as closely as desired by finite rank
operators. We claim that the sequence (PnRQnAPn) is compact, too. Since A
can be approximated as closely as desired by band operators, it is sufficient to
check this claim for a band operator A. This has already been done in the proof
of Theorem 6.12. So we get (PnRPn)(PnAPn) − (Pn) ∈ K and, analogously,
(PnAPn)(PnRPn) − (Pn) ∈ K. Thus, (PnAPn) is a Fredholm sequence.

Conversely, if (PnAPn) is a Fredholm sequence, then the coset (PnAPn) + K
is invertible in F/K. By inverse closedness of C∗-algebras, this coset is also
invertible in (FC + K)/K where FC refers to the C∗-subalgebra of F consisting
of all ∗-strongly convergent sequences. Further, the ∗-isomorphy

(FC + K)/K ∼= FC/(FC ∩ K)

implies that the coset (PnAPn) + (FC ∩K) is invertible in FC/(FC ∩ K). Thus,
there are a sequence (Bn) ∈ FC as well as sequences (Kn), (Ln) ∈ FC ∩ K with
strong limits B, K and L, respectively, such that

(Bn)(PnAPn) = (Pn) + (Kn) and (PnAPn)(Bn) = (Pn) + (Ln).

Passing to the strong limit as n→ ∞ yields BA = I +K and AB = I + L with
compact operators K and L. Hence, A is compact.

Our next goal are the α-numbers of the finite sections sequence (PnAPn) for
Fredholm band-dominated operators A on l2(N). The main result of this section
reads as follows. We formulate this result also for subsequences of (PnAPn).

Theorem 6.18 Let A ∈ l2(Z+) be a Fredholm band-dominated operator and η :
N → N a strongly monotonically increasing sequence. Then (Pη(n)APη(n)) is a
Fredholm sequence, and

α(Pη(n)APη(n))

= dim kerA+ max {dim ker(QAhQ+ P ) : Ah ∈ σop,η(A)}. (55)

The proof is based on the formula (47) for the essential rank of compact sequences
in S(BDO(N)). We omit the details.

A situation of particular interest arises if the sequence η in Theorem 6.18 is
chosen such that the limit operator Aη exists. In this case, the operator spectrum
σop,η(A) consists of exactly one operator, namely Aη.
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Corollary 6.19 Let A ∈ L(l2(Z+)) be a Fredholm band-dominated operator, and
let h : N → N be a strongly monotonically increasing sequence for which the limit
operator Ah exists. Then (Ph(n)APh(n)) is a Fredholm sequence, and

α(Ph(n)APh(n)) = dim kerA+ dim ker(QAhQ+ P ). (56)

6.5 The index formula for band-dominated operators

Now we are in a position to settle the announced finite sections proof of the index
formula (41) for band-dominated operators. Its main ingredients are Theorem
6.18 and its Corollary 6.19.

Let A ∈ L(l2(Z+)) be a Fredholm band-dominated operator. Then its adjoint
A∗ has the same property. Moreover, if the limit operator of A with respect to the
sequence h exists, then the limit operator (A∗)h exists as well, and (A∗)h = (Ah)

∗.
Applying Corollary 6.19 to the sequence (Ph(n)A

∗Ph(n)) we find

α(Ph(n)A
∗Ph(n)) = dim kerA∗ + dim ker(Q(A∗)hQ+ P )

= dim kerA∗ + dim ker(Q(Ah)
∗Q+ P ). (57)

We have already mentioned that

α(Ph(n)APh(n)) = α(Ph(n)A
∗Ph(n)).

Thus, subtracting (57) from (56) and taking into account that indA = dim kerA−
dim kerA∗ for every Fredholm operator A one gets

indA = −ind (QAhQ+ P ) (58)

for every Fredholm band-dominated operator A on l2(Z+) and every strongly
monotonically sequence h for which the limit operator Ah exists. Notice that the
”ind” on the left-hand side of (58) refers to the Fredholm index of an operator
on l2(Z+), whereas the ”ind” on the right-hand side stands for the index of an
operator acting on l2(Z). Further, since Ah is invertible and by (40), one has

0 = indAh = ind (PAhP +Q) + ind (QAhQ+ P ).

Thus, (58) can be written in the more symmetric form

ind (PAP +Q) = ind (PAhP +Q). (59)

Similar arguments apply to Fredholm band-dominated operator on l2(Z−) and
give

ind (QAQ+ P ) = ind (QAhQ+ P ). (60)
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Finally, let A be a Fredholm band-dominated operator on l2(Z). Then PAP and
QAQ are Fredholm band-dominated operators on l2(Z+) and l2(Z−), respectively,
and from (59) and (60) one gets

indA = ind (PAP +Q) + ind (QAQ+ P )

= ind (PAhP +Q) + ind (QAgQ+ P ),

which is the assertion (41).

6.6 Fractality of subalgebras of S(BDO(N))

It is evident that the algebra S(BDO(N)) is not fractal. A simple example is
provided by the sequence of the finite sections of the unitary band operator

A := diag

((
0 1
1 0

)
,

(
0 1
1 0

)
, . . .

)
.

Then (P2nAP2n) is a stable sequence (consisting of unitary matrices) whereas
no entry of the sequence (P2n+1AP2n+1) is invertible. Also no restriction of
S(BDO(N)) is fractal (note that this algebra is not separable; so Theorem 3.8
does not apply). It is, thus, of vital importance to single out restrictions of sub-
algebras of S(BDO(N)) which are fractal. The following constructions yields, for
every band-dominated operator A, a restricted subalgebra of S(BDO(N)) which
is fractal and contains the restricted sequence of the finite sections of A.

Let η : N → N be a strongly monotonically increasing sequence and let
BDO(η)(N) denote the set of all operators A ∈ BDO(N) for which the strong
limits

s-limU−η(n)AUη(n) and s-limU−η(n)A
∗Uη(n)

exist. Then BDO(η)(N) is a closed C∗-subalgebra of BDO(N), and the mapping
A 7→ s-limU−η(n)AUη(n) is a ∗-homomorphism on BDO(η)(N). Let Sη(BDO(η)(N))
stand for the smallest closed ∗-subalgebra of FP

η which contains all sequences

(Pη(n)APη(n)) with A ∈ BDO
(η)(N).

Theorem 6.20 The algebra Sη(BDO
(η)(N)) is fractal.

Proof. Let A := (Aη(n)) ∈ Sη(BDO(η)(N)). Then the strong limit

Wη(A) := s-limU−η(n)Aη(n)Uη(n)

exists, and the mapping Wη is a ∗-homomorphism on Sη(BDO(η)(N)). From
Theorem 6.10 we infer that the sequence A is stable if and only if the operators
W (A) and Wη(A) are invertible. Since both homomorphisms W and Wη are
fractal, the algebra Sη(BDO

(η)(N)) is fractal.

55



6.7 Irrational rotation algebras

Let θ ∈ (0, 1) be irrational. The irrational rotation algebra Aθ is the universal
C∗-algebra generated by two unitary elements u, v with the relation

uv = e2πiθvu. (61)

Since each irrational rotation algebra is simple, every C∗-algebra which is gen-
erated by two unitary elements which satisfy (61) is naturally ∗-isomorphic to
Aθ. Nice introductions to irrational rotation algebras are [2, 11]. For a concrete
model, consider the unitary operators

U : (xn) 7→ (xn−1) and V : (xn) 7→ (e−2πinθxn)

on l2(Z). One easily checks that UV = e2πiθV U , hence, Aθ is naturally ∗-
isomorphic to the smallest C∗-subalgebra of L(l2(Z)) which contains U and V .
We denote this algebra by Aθ. Evidently, Aθ is a subalgebra of BDO(Z).

We consider the smallest closed subalgebra S(Aθ) of FPZ

which contains all
sequences (P Z

nAP
Z

n ) of finite sections where A ∈ Aθ and where the projections P Z

n

are defined as before. Since the algebra Aθ is separable, Theorem 3.8 guarantees
the existence of a strongly monotonically increasing sequence η : N → N such that
the restricted algebra Sη(Aθ) is fractal. Theorem 6.20 offers a way to construct a
sequence η with this property. The Z-version of this theorem states that we have
to choose η such that the strong limits

s-limU−η(n)AUη(n) and s-limUη(n)AU−η(n) (62)

exist for each operator A ∈ Aθ. Taking into account that each operator A ∈ Aθ

is band-dominated one easily checks that A can be approximated as closely as
desired by finite sums

∑
arUr with coefficients ar in the C∗-subalgebra of l∞(Z)

generated by the functions1 U−kV Uk with k ∈ Z. Since U−nUUn = U for every n,
we have thus to choose η such that the limits (62) exist for the operators U−kV Uk

in place of A. For this goal, we compute

U−η(n)U−kV UkUη(n) = e−2πiη(n)θU−kV Uk

for each k ∈ Z from which we infer that

U−η(n)AUη(n) = e−2πiη(n)θA for each A ∈ Aθ. (63)

We will see now that if θ is irrational, then there is strongly monotonically in-
creasing sequence η such that e2πiη(n)θ → 1 as n → ∞. Indeed, develop θ into a

1Note that each operator U
−kV Uk acts on l2(Z) as the operator of multiplication by a

bounded function.
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continued fraction

θ = lim
n→∞

1

b1 +
1

b2 +
1

. . .

bn−1 +
1

bn

with uniquely determined positive integers bi. Write this continued fraction as
pn/qn with positive and relatively prime integers pn, qn. These integers satisfy
the recursions

pn = bnpn−1 + pn−2, qn = bnqn−1 + qn−2 (64)

with p0 = 0, p1 = 1, q0 = 1 and q1 = b1, and one has
∣∣∣∣θ −

pn

qn

∣∣∣∣ <
1

qnqn+1
<

1

q2
n

(65)

for every n ≥ 1. (These facts can be found in every textbook on continued
fractions.) From (65) we conclude that

|θqn − pn| ≤ qn

∣∣∣∣α−
pn

qn

∣∣∣∣ ≤
1

qn
→ 0,

whence e2πiθqn = e2πi(θqn−pn) → 1. Since moreover q1 < q2 < . . . due to the
recursion (64), this shows that the sequence η(n) := qn has the desired properties.
Thus, if η is specified in this way, then we can not only conclude via (63) that the
strong limits (62) exist for every A ∈ Aθ; moreover, they exist even with respect
to norm convergence, and the operators U∓η(n)AU±η(n) converge in the norm to
A.

Having these facts at our disposal, we can prove the following theorem of
the structure of the algebra Sη(Aθ) in full analogy to the proof of Theorem 2.4.
Details can be found in [19].

Theorem 6.21 Let θ ∈ (0, 1) be irrational and specify η as above. Then the
algebra Sη(Aθ) consists exactly of all sequences of the form

(P Z

η(n)AP
Z

η(n) + P Z

η(n)U−nKUnP
Z

η(n) + P Z

η(n)UnJLJU−nP
Z

η(n) +Gη(n)) (66)

with A ∈ Aθ, K, L ∈ L(l2(Z)) are compact and ‖Gη(n)‖ → 0 as n→ ∞, and each
sequence in Sη(Aθ) can be written in the form (66) in a unique way. Moreover,
the quasicommutator ideal of Sη(Aθ) consists of all sequences

(P Z

η(n)U−nKUnP
Z

η(n) + P Z

η(n)UnJLJU−nP
Z

η(n) +Gη(n))

with K, L and Gη(n) as before.
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This theorem gives us full control over discretized irrational rotation algebras.
Here are some more or less immediate consequences.

Corollary 6.22 Let A = (Aη(n)) ∈ Sη(Aθ). Then the strong limits

W±1(A) := s-limn→∞U∓η(n)Aη(n)U±η(n)

exist, and A is a stable sequence if and only if the operators W1(A) and W−1(A)
are invertible on l2(Z−) and l2(Z+), respectively.

In particular, if the sequence A is written as in (66), then W1(A) = QAQ+QLQ
and W−1(A) = PAP + PKP .

Corollary 6.23 The algebra Sη(Aθ) is fractal.

Corollary 6.24 The compact sequences in Sη(Aθ) are exactly the sequences in
the quasicommutator ideal.

Corollary 6.25 A sequence A in Sη(Aθ) is Fredholm if and only if W1(A) and
W−1(A) are Fredholm operators on l2(Z−) and l2(Z+), respectively. In this case,

α(A) = dim kerW1(A) + dim kerW−1(A).

In case A is written as in (66), this sequence is Fredholm if and only if PAP +
PKP and QAQ + QLQ are Fredholm operators. Clearly, this happens if and
only if PAP and QAQ are Fredholm operators. Employing the special properties
of A (more precisely: employing that the coefficients of A are almost periodic
functions) one can show that PAP is Fredholm if and only if QAQ is Fredholm
if and only if A is invertible.

Corollary 6.26 A sequence A in Sη(Aθ) is Fredholm if and only if its strong
limit W (A) is invertible on l2(Z).

7 Spatial discretization of Cuntz algebras

Our running example, the Toeplitz algebra T(C), is (isomorphic to) the universal
algebra generated by one isometry. Here we go one step further and consider
the spatial discretization of algebras which are generated by a finite number of
non-commuting non-unitary isometries, namely the Cuntz algebras.

Let N ≥ 2. The Cuntz algebra ON is the universal C∗-algebra generated by
N isometries s0, . . . , sN−1 with the property that

s0s
∗
0 + . . .+ sN−1s

∗
N−1 = I. (67)

Cuntz algebras cannot be obtained as inductive limits of type I C∗-algebras. In
particular, they cannot be approximated by finite dimensional algebras in the
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sense of AF -algebras. (For these and other facts, consult Cuntz’ pioneering pa-
per [10]. A nice introduction is also in [11].) The importance of Cuntz algebras
in theory and applications cannot be overestimated. Let me only mention Kirch-
berg’s deep result that a separable C∗-algebra is exact if and only if it embeds in
the Cuntz algebra O2, and the role that representations of Cuntz algebras play
in wavelet theory and signal processing (see [1, 6] and the references therein).

To discretize the Cuntz algebra ON by the finite sections method, we represent
this algebra as an algebra of operators on l2(Z+). Since Cuntz algebras are simple,
every C∗-algebra which is generated by N isometries S0, . . . , SN−1 which fulfill
(67) in place of the si is ∗-isomorphic to ON . Thus, ON is ∗-isomorphically to the
smallest C∗-subalgebra of L(l2(Z+)) which contains the operators

Si : (xk)k≥0 7→ (yk)k≥0 with yk :=

{
xr if k = rN + i
0 else

(68)

for i = 0, . . . , N − 1. We denote the (concrete) Cuntz algebra generated by the
operators Si in (68) by ON . It is this concrete Cuntz algebra for which we will
examine the sequence algebra S(ON ) (modulo zero sequences) in what follows.

One should mention that the abstract Cuntz algebra ON has an uncount-
able set of equivalence classes of irreducible representations. Representations of
ON different from (68) will certainly lead to sequence algebras different from
S(ON ). The relation between these algebras is not yet understood. The chosen
representation of ON is distinguished by the fact that it is both irreducible and
permutative in the sense that every isometry Si maps elements of the standard
basis to elements of the standard basis.

Coburn’s already mentioned result suggests to consider the Toeplitz algebra
T(C) as the Cuntz algebra O1. But one should have in mind that the main
properties of O1 and of ON for N > 1 are quite different from each other. For
example, the compact operatorsK(l2(Z+)) form a closed ideal of O1, and the quo-
tient O1/K(l2(Z+)) is isomorphic to C(T), whereas ON is simple if N ≥ 2. These
differences continue to the corresponding sequence algebras S(O1) and S(ON ) for
N > 1. A main point is that S(O1)/G contains an ideal which is constituted of
two exemplars of the ideal K(l2(Z+)), and the irreducible representations, W1

and W2 say, of S(O1) which come from this ideal are sufficient in the sense that
a sequence A = (An) in S(O1) is stable if and only if W1(A) and W2(A) are
invertible. We have seen that this fact implies an effective criterion to check the
stability of a sequence in S(O1). In contrast to this, if N > 1, then S(ON) has
only one non-trivial ideal. We will construct an injective representation of this
ideal, and will then observe that this representation extends to a representation,
W say, of S(ON ) which is injective on all of S(ON ). Thus, roughly speaking,
our stability result will say that a sequence A in S(ON ) is stable if and only if
the operator W (A) is invertible. At the first glance, this result might seem to
be useless since the stability of A is not easier to check than the invertibility
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of W (A). So why this effort, if many canonical homomorphisms on S(ON ) own
the same property as W : the identical mapping and the faithful representation
via the GNS-construction, for example. What is important is the concrete form
of the mapping W constructed below: it is defined by means of strong limits of
operator sequences, and this special form implies immediately the fractality of
(some restriction of) the algebra S(ON ).

7.1 The full algebra S(ON )

In accordance with earlier notations, let F be the C∗-algebra of all bounded
sequences A = (An) of matrices An ∈ Cn×n, and let S(ON ) denote the small-
est closed subalgebra of F which contains all sequences (PnAPn) with A in
the concrete Cuntz algebra ON . Since (PnAPn)∗ = (PnA

∗Pn), S(ON ) is a C∗-
algebra. The isometries Si are defined as in (68). We further abbreviate Ω :=
{0, 1, . . . , N − 1}.

Lemma 7.1 S(ON ) is the smallest C∗-subalgebra of F which contains all se-
quences (PnSjPn) with j ∈ Ω.

Proof. Let S ′ denote the smallest C∗-subalgebra of F which contains all se-
quences (PnSjPn) with j ∈ Ω. Evidently, S ′ ⊆ S(ON ). For the reverse inclusion,
note that

S∗
i Sj = 0 whenever i 6= j. (69)

Indeed, this follows by straightforward calculation, but it also a consequence of
the Cuntz axiom (67): Multiply (67) from the left by S∗

i and from the right by Si

and take into account that a sum of positive elements in a C∗-algebra is zero if
and only if each of the elements is zero. From (69) we conclude that every finite
word with letters in the alphabet {S1, . . . , SN , S

∗
1 , . . . , S

∗
N} is of the form

Si1Si2 . . . SikS
∗
j1S

∗
j2 . . . S

∗
jl

with is, jt ∈ Ω (70)

(Lemma 1.3 in [10]). Further one easily checks that

PnSj = PnSjPn and S∗
jPn = PnS

∗
jPn (71)

for every j ∈ Ω and every n ∈ N. Thus, if A is any word of the form (70), then

PnAPn = PnSi1Pn · PnSi2Pn . . . PnSikPn · PnS
∗
j1
Pn · PnS

∗
j2
Pn . . . PnS

∗
jl
Pn ∈ S ′.

Since the set of all linear combinations of the words (70) is dense in ON , it follows
that S(ON ) ⊆ S ′.

Recall that an element S of a C∗-algebra is called a partial isometry if SS∗S = S.
If S is a partial isometry, then SS∗ and S∗S are projections (i.e., self-adjoint idem-
potents), called the range projection and the initial projection of S, respectively.
Conversely, if S∗S (or SS∗) is a projection for an element S, then S is a partial
isometry. Recall also that projections P and Q are called orthogonal if PQ = 0.
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Lemma 7.2 Every sequence (PnSiPn), i ∈ Ω, is a partial isometry in F , and
the corresponding range projections are orthogonal if i 6= j. Moreover,

PnS
∗
i PnSjPn = 0 if i 6= j, (72)

and
PnS0PnS

∗
0Pn + . . .+ PnSN−1PnS

∗
N−1Pn = Pn. (73)

Proof. The identities (71) imply that PnSiS
∗
i Pn = PnSiPnS

∗
i Pn for every i ∈

Ω and every n ∈ Z+. The operators SiS
∗
i are projections, and their matrices

with respect to the standard basis of l2(Z+) are of diagonal form. Hence, the
projections SiS

∗
i and Pn commute, which implies that PnSiS

∗
i Pn is a projection.

Hence, (PnSiPn) is a partial isometry in F , and (PnSiS
∗
i Pn) is the associated

range projection.
Let i 6= j be in Ω. The fact that Pn and SiS

∗
i commute further implies together

with (69) that

(PnSiS
∗
i Pn)(PnSjS

∗
jPn) = PnSiS

∗
i SjS

∗
jPn = 0.

Multiplying PnSiS
∗
i PnSjS

∗
jPn = 0 from the left by PnS

∗
i Pn and from the right by

PnSjPn yields (72). Finally, (73) follows by summing up the equalities (72) over
i ∈ Ω and from axiom (67).

Thus, the generating sequences (PnSiPN), i ∈ Ω, are still subject of the Cuntz ax-
iom (67), but note they are partial isometries only and no longer isometries. The
result of the preceding lemma holds more general. For i = (i1, i2, . . . , ik) ∈ Ωk,
abbreviate Si := Si1Si2 . . . Sik . Further, for every real number x, let {x} denote
the smallest integer which is greater than or equal to x. The first assertion of the
following proposition follows as in Lemma 7.2, the second one by straightforward
calculation.

Proposition 7.3 Let i = (i1, i2, . . . , ik) ∈ Ωk. Each sequence

(PnSi1PnSi2Pn . . . PnSikPn)

is a partial isometry in F . The corresponding range projection is given by

PnS
∗
i PnSiPn = P{(n−vi,k)/Nk}, (74)

where vi,k := i1 + i2N + . . .+ ikN
k−1.

We specialize the result of Proposition 7.3 to the case k = 1 and consider two
examples. If n = jN is a multiple of N , then {(n − i)/N} = {(jN − i)/N} =
{j − i/N} = j, whence

PjNS
∗
i PjNSiPjN = Pj for all i ∈ Ω. (75)
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On the other hand, one has

PnS
∗
0PnS0Pn − PnS

∗
1PnS1Pn =

{
Pj+1 − Pj if n = jN + 1,
0 else.

(76)

Thus, the sequence

(PnS
∗
0PnS0Pn − PnS

∗
1PnS1Pn)n≥1 (77)

possesses both a subsequence consisting of zeros only (take η(n) := nN) and a
subsequence consisting of non-zero projections (if η(n) := nN + 1). This shows
that the algebra S(ON ) cannot be fractal. Moreover, a similar argument shows
that also the restricted algebra Sη(ON), with η(n) := nN , cannot be fractal. We
will see later on (and, in some sense, this is our main goal in this section) that

η(n) := Nn (78)

is the correct choice for the restriction η, since it will indeed guarantee the frac-
tality of the restricted algebra Sη(ON).

A first hint that the choice (78) is a natural one is given by the following lemma
which states that, up to sequences in the ideal Gη, the initial projections of the
partial isometries (Pη(n)SiPη(n)) with i ∈ Ωk only depend on the length k of the
multi-index, not on the multi-index i itself. The proof is again a straightforward
calculation.

Lemma 7.4 Let i ∈ Ωk and n = N j with j ∈ Z+. Then

PnS
∗
i PnSiPn =





0 if j < k and N j ≤ vi,k,
P1 if j < k and N j > vi,k,
PNj−k if j ≥ k.

7.2 The finite sections algebra SN and its ideal JN

In what follows we will exclusively deal with the restricted algebra Sη(ON) where
η(n) = Nn.

Proposition 7.5 The algebra Sη(ON) contains the ideal Gη.

We skip the proof since it is not needed in what follows. But note that we cannot
refer to Proposition 2.5 since ON does not contain non-zero compact operators.

By Proposition 7.5, the quotient algebra SN := Sη(ON)/Gη is well defined. Recall
that SN is generated by the partial isometries

si := (PNnSiPNn)n≥0 + Gη, i ∈ Ω
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and contains the identity element e of Fη/Gη. More general, for each multi-
index i ∈ Ωk we set si := si1si2 . . . sik . These elements are partial isometries by
Proposition 7.3 and the initial projection of si does only depend on the length of
i by Lemma 7.4. We denote the length of the multi-index i by |i| and write pk

for the joint initial projection of all partial isometries si with length k. Further
we write Ω∞ for the set of all multi-indices (of arbitrary length). The following
axioms collect the basic properties of these elements.

(A1) for every i ∈ Ω∞, the coset si is a partial isometry, the initial projection of
which depends on |i| only: s∗i si = p|i|.

(A2) s0s
∗
0 + s1s

∗
1 + . . .+ sN−1s

∗
N−1 = e.

All results in this section will follow from these axioms. For later reference we
list some relations between partial isometries si and the projections pk.

Lemma 7.6 Let k, l positive integers and i ∈ Ωk. Then

(a) si = sipk and s∗i = pks
∗
i .

(b) s∗i plsi = pk+l.
(c) pkpl = pk if k ≥ l.
(d) plsi = sipk+l.
(e) The generalized Cuntz condition

∑
i∈Ωk sis

∗
i = e holds for every k ≥ 1.

Proof. The first three assertions follow immediately from the definitions. Asser-
tions (b) and (c) imply that

(plsi − sipk+l)
∗(plsi − sipk+l) = (s∗i pl − pk+ls

∗
i )(plsi − sipk+l)

= s∗i plsi − s∗i plsipk+l − pk+ls
∗
i plsi + pk+ls

∗
i sipk+l

= pk+l − pk+l − pk+l + pk+lpkpk+l = 0,

whence (d) via the C∗-axiom. Finally, assertion (e) follows easily by induction.

Let k a positive integer. By axiom (A1), every partial isometry si of length k
is an isometry modulo the smallest closed ideal J (k) of SN which contains the
projection e− pk. Note that, by Lemma 7.4,

e− p1 = (0, PN − P1, PN2 − PN , PN3 − PN2, . . .) + Gη.

We claim that J (k) = J (1) for every k. Indeed, by Lemma 7.6 (c),

(e− pk)(e− p1) = e− pk − p1 + pkp1 = e− p1.

Hence, e− p1 ∈ J (k), whence J (1) ⊆ J (k). For the reverse inclusion recall from
Lemma 7.6 (b) that (s∗0)

l(e − p1)s
l
0 = pl − pl+1 for every l ∈ Z+. Adding these

identities for l between 0 and k − 1 gives e− pk on the right-hand side, whereas
the element of the left-hand side belongs to J (1). Thus, e − pk ∈ J (1), whence
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J (k) ⊆ J (1). In what follows we write JN for the ideal J (1) of SN . Note that
every partial isometry si with i ∈ Ω∞ is an isometry modulo JN .

The following property of the pn will be needed later.

Lemma 7.7 For each j ∈ JN , one has limn→∞ ‖pnj‖ = 0.

Proof. If j is of the form

sis
∗
k(e− p1)sls

∗
m with |i| ≤ |k| (79)

then the assertion holds since

pnsis
∗
k(e− p1) = sis

∗
kpn+|i|−|k|(e− p1) = 0

for n > |k| − |i|. Hence, the assertion also holds if j is a linear combination of
elements of the form (79). Since these linear combinations form a dense subset
of JN and ‖pn‖ = 1 for each n, the assertion holds for every j ∈ JN .

Our further analysis of the algebra SN is based on the following elementary fact.
It settles a condition which guarantees than every element which is invertible
modulo an ideal can be lifted to an invertible element.

Proposition 7.8 Let A be a unital C∗-algebra and I a closed ideal of A. Further
suppose there is a unital ∗-homomorphism π from A into a unital C∗-algebra B
such that the restriction of π onto I is injective. Then the following assertions
are equivalent for every element a ∈ A:

(a) a is invertible in A.
(b) The coset a+I is invertible in the quotient algebra A/I, and π(a) is invertible
in B.

We shall apply this result with A := SN and I := JN . By Proposition 7.8, the
problem to derive a criterion for the invertibility of elements of SN (and thus, for
the stability of sequences in Sη(ON)) splits into two separate tasks:

• to describe the quotient algebra SN/JN , and

• to construct an injective ∗-homomorphism on JN .

The solution of the first task is evident: The quotient algebra SN/JN is generated
by the cosets si + JN with i ∈ Ω. These cosets are isometries and they satisfy
the Cuntz axiom

(s0 + JN)(s0 + JN)∗ + . . .+ (sN−1 + JN)(sN−1 + JN)∗ = e+ JN .

By the universal property of Cuntz algebras, SN/JN is ∗-isomorphic to the (ab-
stract) Cuntz algebra ON . It is also not hard to construct an explicit isomorphism
from SN/JN onto the (concrete) Cuntz algebra ON . Let Wη denote the mapping
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which associates with each sequence in Sη(On) its strong limit. Since the ideal
Gη lies in the kernel of Wη, there is a correctly defined quotient homomorphism

W G
η : Fη/Gη → L(l2(Z+)), A + Gη 7→ Wη(A). (80)

Applying this homomorphism to both sides of the equality s∗0s0 = p1 we get
S∗

0S0 = W G
η (p1), whence W G

η (p1) = I. Hence, the ideal JN lies in the kernel of
W G

η , which implies that the quotient homomorphism

(Sη(ON)/Gη)/JN → L(l2(Z+)), (A + Gη) + JN 7→ W G
η (A + G) (81)

is correctly defined, too; we denote it by WJ . The ∗-homomorphism WJ maps
the generating cosets si + JN , i ∈ Ω, to the generating operators Si of ON ,
respectively. Since both sets of generators consist of isometries which satisfy the
(same) Cuntz axiom, the following is a consequence of the universal property of
Cuntz algebras.

Theorem 7.9 WJ is a ∗-isomorphism from SN/JN onto ON .

Corollary 7.10 The kernel of the restriction of the homomorphism W G
η defined

by (80) to the algebra SN coincides with JN .

Indeed, this follows since ON is a simple algebra. The following fact sheds a first
light on our second task.

Theorem 7.11 Every proper closed ideal of SN lies in JN .

Proof. Let J̃ be a proper closed ideal of SN . Then JN + J̃ is a closed ideal of
SN with JN ⊆ JN + J̃ ⊆ SN . Since the quotient SN/JN is ∗-isomorphic to ON

and, hence, a simple algebra, one has either

• Case A: JN + J̃ = SN , or

• Case B: JN + J̃ = JN , i.e. J̃ ⊆ JN .

We wish to exclude case A. Suppose we are in the situation of case A. Consider
the ideals I1 := JN/(JN ∩ J̃ ) and I2 := J̃ /(JN ∩ J̃ ) of B := SN/(JN ∩ J̃ ).
These ideals have a trivial intersection, their sum is B, and the algebra

B/I1 =
(
SN/(JN ∩ J̃ )

)
/
(
JN/(JN ∩ J̃ )

)
∼= SN/JN

is still simple. Let W stand for the canonical homomorphism from B onto B/I2

and write â for the coset of a ∈ SN modulo JN ∩ J̃ . Since W (B) = W (I1), there
is an element π̂ ∈ I1 such that W (π̂) = W (ê). From

W (π̂2 − π̂) = W (ê2 − ê) = 0 and W (π̂∗ − π̂) = W (ê∗ − ê) = 0
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we conclude that both π̂2− π̂ and π̂∗− π̂ belong to I1∩I2. Since this intersection
is trivial, the element π̂ is a (self-adjoint) projection. Moreover, since

W (âπ̂ − π̂â) = W (â)W (ê) −W (ê)W (â) = 0

for every element â ∈ B we conclude as above that π̂ lies in the commutant of B.
A similar reasoning shows finally that π̂ is the identity element for I1. Similarly,
ê− π̂ belongs to I2 and is the identity element for I2.

Let π ∈ JN be a representative of the coset π̂. From Lemma 7.7 we infer
that ‖(e − pn)π − π‖ → 0 whence ‖(ê − p̂n)π̂ − π̂‖ → 0 as n → ∞. Since π̂
is the identity element of I1 and ê − p̂n ∈ I1, this implies ‖ê − p̂n − π̂‖ → 0.
The elements ê− p̂n and π̂ are commuting projections. Thus, ê− p̂n = π̂ for all
sufficiently large n, say n ≥ k. Consequently, for n ≥ k, one has p̂n = ê− π̂ ∈ I2,
whence pn ∈ J̃ . Since si = sipk for all i ∈ Ωk by Lemma 7.6, this implies si ∈ J̃
and, thus, the smallest closed ideal of SN which contains all partial isometries si

with |i| = k lies in J̃ . By Lemma 7.6 (e), this finally implies e ∈ J̃ . Thus, J̃ is

not a proper ideal of J̃ . This contradiction excludes case A.

Corollary 7.12 Every ∗-homomorphism on SN which is injective on JN is in-
jective on all of SN .

Indeed, if W is a ∗-homomorphism on SN which is injective on JN , then its kernel
is a proper ideal of SN . By Theorem 7.11, kerW ⊂ JN . But JN ∩ kerW = {0}
by assumption. Hence, the kernel of W is trivial, and W is injective on SN .

In Section 7.5 we are going to construct an injective homomorphism on JN . We
prepare this construction by a closer look at the Cuntz algebra and a related
Toeplitz algebra in Sections 7.3 and 7.4.

7.3 Block Toeplitz operators

We will have to work with block Toeplitz operators. Let l2(Z+, l2(Z+)) denote
the Hilbert space of all sequences x = (xn)n≥0 with values in l2(Z+) such that

‖x‖2 :=
∑

n≥0

‖xn‖
2 <∞.

We think of a bounded linear operator A on l2(Z+, l2(Z+)) as an infinite matrix
(Aij)i,j≥0 where Aij ∈ L(l2(Z+)) is the operator which maps the ith component
of x to the jth component of Ax. It will be convenient to identify the algebra of
all bounded linear operators on l2(Z+, l2(Z+)) with the minimal tensor product
L(l2(Z+))⊗L(l2(Z+)). The closure in L(l2(Z+, l2(Z+))) of the set of all matrices
with only finitely non-vanishing entries forms a closed ideal of this algebra which
we identify with K(l2(Z+)) ⊗ L(l2(Z+)) in a natural way.
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Let a be a function in C(T, L(l2(Z+))) with kth Fourier coefficient

ak :=

∫

T

a(λ)λ−k dλ ∈ L(l2(Z+)), k ∈ Z.

Then the (infinite) Toeplitz matrix T (a) := (ai−j)i,j≥0 defines a bounded opera-
tor on l2(Z+, l2(Z+)) which is called a block Toeplitz operator and denoted by
T (a) again. Moreover, ‖T (a)‖ = ‖a‖∞. The Toeplitz operator T (a) is invert-
ible modulo K(l2(Z+)) ⊗ L(l2(Z+)) if and only if the function a is invertible in
C(T, L(l2(Z+))).

For i ∈ Ω, consider the infinite matrix

Σi :=




0 Si

0 Si

0 Si
. . .

. . .


 (82)

with all entries left empty being zero, and for each multi-index i ∈ Ωk, let Σi :=
Σi1 . . .Σik . Clearly, every Σi is a Toeplitz matrix with continuous generating
function. Let TN refer to the smallest closed subalgebra of L(l2(Z+, l2(Z+)))
which contains all operators Σi and Σ∗

i with i ∈ Ω. One easily checks that the
operators Σi are partial isometries which satisfy the Cuntz axiom

∑

i∈Ω

ΣiΣ
∗
i =

∑

i∈Ω

diag (SiS
∗
i , SiS

∗
i , . . .) = diag (I, I, . . .).

Moreover, for each multi-index i, the initial projection Σ∗
i Σi is equal to I − Π|i|

where
Πk := diag (I, . . . , I︸ ︷︷ ︸

k

, 0, 0, . . .) ∈ TN (83)

for k ≥ 1. Thus, the algebra TN contains the identity operator I and all projec-
tions Πk, and the partial isometries Σi satisfy the axioms (A1) and (A2) in Section
7.2 in place of the si. Thus, all results of this section will remain valid for the
algebra TN in place of SN and for its ideal CN , which is the smallest closed ideal
of TN which contains the projection Π1, in place of JN . In particular, Πn ∈ CN

for each n ≥ 1, and TN/CN
∼= ON .

Our next goal is a description of the ideal CN of TN . Let O
par
N refer to the

smallest closed subalgebra of ON which contains all products SiS
∗
j with multi-

indices i and j of the same length |i| = |j|. Here we allow multi-indices of length
0 and set S∅ := I. Thus, O

par
N is a unital algebra. One easily checks that ON is

the closed span of the set of all products SiS
∗
j , whereas O

par
N is the closed span of

all products SiS
∗
j with |i| = |j|. The algebra O

par
N is known to be isomorphic to

the UHF-algebra of type N∞, which is the inductive limit

C → C
N×N → C

N2×N2

→ C
N3×N3

→ . . .
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with connecting maps a 7→ diag (a, a, . . . , a). Being an inductive limit of simple
algebras, the algebra O

par
N is simple. For details see [10, 11].

We shall further make use of the following elementary observation. Let A be
a C∗-subalgebra of a unital C∗-algebra B and let Σ be an isometry in B. Then
the mapping

A → B, A 7→ ΣAΣ∗ (84)

is an injective ∗-homomorphism. We apply this observation to the algebras A :=
CN and B := L(l2(Z+, l2(Z+))) and with Σ := diag (I, S0, S

2
0 , S

3
0 , . . .). Thus, CN

is ∗-isomorphic to ΣCNΣ∗. The latter algebra can be described as follows where
we let Π := ΣΣ∗ be the image of the identity operator under the mapping (84).

Theorem 7.13 ΣCNΣ∗ = Π (K(l2(Z+)) ⊗ O
par
N )Π.

Proof. Since the algebra TN is generated by the partial isometries Σi, the algebra
ΣTNΣ∗ is generated by the operators

ΣΣiΣ
∗ =




0 SiS
∗
0

0 S0Si(S
∗
0)

2

0 S2
0Si(S

∗
0)

3

. . .
. . .


 .

All entries of this matrix belong to O
par
N . Hence,

ΣTNΣ∗ ⊆ Π
(
L(l2(Z+)) ⊗ O

par
N

)
Π.

Further, the mapping (84) sends the generator Π1 of the ideal CN to itself. Since
Π1Π = ΠΠ1, one has

ΣΠ1Σ
∗ = Π1 ∈ Π

(
K(l2(Z+)) ⊗ O

par
N

)
Π,

whence the inclusion ΣCNΣ∗ ⊆ Π (K(l2(Z+)) ⊗ O
par
N )Π.

The reverse inclusion will follow once we have shown that for each n × n-
matrix A := (Aij) with entries in O

par
N , which we identify with an operator on

the range of Πn in the obvious way, the operator ΠAΠ belongs to ΣCNΣ∗. Due
to linearity we can assume that only one of the entries of A, say Aij, is different
from 0. Finally, since O

par
N is spanned by products SlS

∗
r with multi-indices of

the same length, we can assume that only the ijth entry of A is different from
zero and that this entry is SlS

∗
r with |r| = |l|. Then ΠAΠ is a matrix the only

non-vanishing entry of which stands at the ijth position, and this entry is

Si
0(S

∗
0)

i SlS
∗
r S

j
0(S

∗
0)

j. (85)

Let B := (Πi+1 −Πi)(Σ
∗
0)

iΣlΣ
∗
rΣ

j
0(Πj+1 −Πj). This operator is in CN , all entries

in the matrix representation of ΣBΣ∗ with exception of the ijth entry vanish,
and the ijth entry coincides with (85). Thus, ΣBΣ∗ = ΠAΠ, which finishes the
proof.
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Theorem 7.14 The ideal CN of TN is simple.

Proof. Let R be a closed ideal of CN . Then Π1RΠ1 is a closed ideal of Π1CNΠ1.
From Theorem 7.13 we infer that Π1CNΠ1 is ∗-isomorphic to the algebra O

par
N ,

which is simple as already mentioned. Hence, either Π1RΠ1 = Π1CNΠ1 or
Π1RΠ1 = {0}. In the first case, Π1 ∈ Π1RΠ1 ⊆ R. Since Π1 generates CN

as an ideal, we conclude R = CN .
Assume now that Π1RΠ1 = {0}. Let R = (Rij)ij≥0 ∈ R. Then, for arbitrary

subscripts i0, j0 ≥ 0, the matrix (Πi0+1−Πi0)R(Πj0+1−Πj0) has the entry Ri0j0 at
the i0j0th position whereas all other entries are zero. Let k and l be multi-indices
with |k| = i0 and |l| = j0. Then the matrix

Σk(Πi0+1 − Πi0)R(Πj0+1 − Πj0)Σ
∗
l

has the entry SkRi0j0S
∗
l at the 00th position whereas all other entries are zero.

Thus, this matrix belongs to Π1RΠ1, whence SkRi0j0S
∗
l = 0 by assumption. Since

the Si are isometries, this implies Ri0j0 = 0, and since i0 and j0 were arbitrarily
chosen, R is the zero matrix. Thus, R is the zero ideal.

Corollary 7.15 CN is the only non-trivial closed ideal of TN .

7.4 Expectations on ON and Toeplitz operators

There are at least two ways to associate with every element of the Cuntz algebra
ON a Toeplitz operator in TN . For facts cited without proof see [10, 11].

The first way is via a special expectation. Recall that the operators Si and S∗
j

with i, j ∈ Ω generate a dense subalgebra of ON . Each operator A in this algebra
can be uniquely written as a finite sum

A =
∑

k<0

(S∗
0)

−kAk + A0 +
∑

k>0

AkS
k
0 (86)

with coefficients Ak ∈ O
par
N . For k ∈ Z and A as in (86), define Φk(A) := Ak.

Then ‖Φk(A)‖ ≤ ‖A‖, thus the Φk extend by continuity to bounded mappings
from ON onto O

par
N . These mappings own the following properties:

• Φ0 : ON → O
par
N is an expectation, i.e. Φ2

0 = Φ0,

• Φk+1(A) = Φk(AS
∗
0) if k ≥ 0, and

• Φk−1(A) = Φk(S0A) if k < 0.

We associate with each operator A ∈ ON a matrix of operators on l2(Z+) by

Ψ(A) :=
(
(S∗

0)
iΦ0(S

i
0A(S∗

0)
j)Sj

0

)
i,j≥0

. (87)
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We will see in a moment that the formal matrix Ψ(A) defines a bounded operator
on l2(Z+, l2(Z+)) and that this operator is a Toeplitz operator in TN .

A second way to associate with every operator in ON a Toeplitz operator in
TN is via continuous functions. Let λ ∈ T. Then the mapping ρλ : Si 7→ λ̄Si

extends to an automorphism of ON . Here, as usual, λ̄ stands for the complex
conjugate of λ; note that the mapping ρλ is defined in [11] without the bar. For
each operator A ∈ ON , consider the function

fA : T → ON , λ 7→ ρλ(A). (88)

Lemma 7.16 The function fA is continuous for each A ∈ ON , and ‖fA‖∞ =
‖A‖.

Proof. For each λ ∈ T, one has ‖fA(λ)‖ = ‖ρλ(A)‖ ≤ ‖A‖, whence ‖fA‖∞ ≤
‖A‖. Since fA(1) = A, equality holds in this estimate. Since A 7→ fA is a linear
mapping, this implies that ‖fA − fB‖∞ = ‖A − B‖ for all A, B ∈ ON . Choose
operators Bn in the dense subalgebra of ON generated by the isometries Si such
that ‖A− Bn‖ → 0 as n → ∞. Then ‖fA − fBn‖ → 0. Being a uniform limit of
the continuous functions fBn , the function fA is continuous.

As in Section 6.1, we associate with the continuous function fA the sequence of
its Fourier coefficients and consider the associated Toeplitz operator T (fA) on
l2(Z+, l2(Z+)). From ‖T (a)‖ = ‖a‖∞ and Lemma 7.16 we conclude that

‖T (fA)‖ = ‖fA‖∞ = ‖A‖ for every A ∈ ON . (89)

Since the products SlS
∗
m span a dense subalgebra of ON and since the mapping

A 7→ T (fA) is an isometry, we conclude that T (fA) is a Toeplitz operator in TN

for every A ∈ ON .
We will see now that the two ways lead to the same goal.

Theorem 7.17 The mapping Ψ is a linear contraction from ON into TN . It
coincides with the mapping A 7→ T (fA).

Proof. It is not hard to check that T (fA) = Ψ(A) for A = SlS
∗
m. Since these

products span a dense subalgebra of ON and A 7→ T (fA) and Ψ are linear map-
pings, this implies that T (fA) = Ψ(A) ∈ TN for all A in a dense subalgebra of
ON . Since the mapping A 7→ T (fA) is an isometry, we further conclude that
‖Ψ(A)‖ = ‖T (fA)‖ = ‖A‖ for all A in a dense subalgebra of ON . Thus, the
mapping Ψ can be continued to a linear contraction from ON into TN (which, of
course, coincides with the mapping A 7→ T (fA)). Since each entry of the matrix
(87) depends continuously on A, this contractive continuation coincides with the
formal matrix in (87).

The classical Toeplitz algebra decomposes into the direct sum of the linear space
{T (f) : f ∈ C(T)} and the ideal of the compact operators. A similar decompo-
sition holds for the algebra TN .
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Theorem 7.18 TN = {T (fA) : A ∈ ON} ⊕ CN = {Ψ(A) : A ∈ ON} ⊕ CN .

Proof. We reify Proposition 2.1 with the following algebras and mappings: A is
the smallest closed subalgebra of L(l2(Z, l2(Z+))) which contains all operators of
Laurent type represented by the two-sided infinite matrix




. . .
. . .

0 Si

0 Si
. . .

. . .




with the zeros standing on the main diagonal, B is the algebra TN , D is the map-
ping A → B, A 7→ PAP where P is the orthogonal projection from l2(Z, l2(Z+))
onto l2(Z+, l2(Z+)), and W is the mapping B → A, B 7→ s-limn→+∞V

∗
nBVn

where V is the operator of forward shift on l2(Z, l2(Z+)) and Vn := V n for n ≥ 0,
and where s-lim refers to the limit in the strong operator topology.

Then Proposition 2.1 implies that TN = {T (fA) : A ∈ ON} ⊕ kerW , and it
remains to verify that

CN (:= closidTN
{Π1}) = kerW. (90)

Evidently, Π1 ∈ kerW , whence the inclusion CN ⊆ kerW . To get the reverse
implication, we show that the quasicommutator ideal of TN lies in CN . Since the
products SlS

∗
m with multi-indices l, m span a dense subalgebra of ON , this fact

will follow once we have shown that

Ψ(SlS
∗
m)Ψ(SnS

∗
r ) − Ψ(SlS

∗
mSnS

∗
r ) ∈ CN (91)

for each choice of multi-indices l, m, n and r. A straightforward calculation gives

Ψ(SlS
∗
m) Ψ(SnS

∗
r ) − Ψ(SlS

∗
mSnS

∗
r )

=

{
−Π|m|−|l| Ψ(SlS

∗
mSnS

∗
r ) if |m| − |l| > 0

0 if |m| − |l| ≤ 0.

Since Πn ∈ CN for every n ≥ 1, the inclusion (91) follows.

7.5 The algebra (e− p1)SN(e− p1)

In order to define the desired lifing homomorphism we will need some facts on
the algebra (e− p1)SN (e− p1). To derive them, it will be convenient to compare
and to operate with multi-indices. Given multi-indices i = (i1, . . . , ik) ∈ Ωk and
j = (j1, . . . , jl) ∈ Ωl we define their sum as the multi-index

i+ j := (i1, . . . , ik, j1, . . . , jl) ∈ Ωk+l.
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Differences of multi-indices can be defined if one of the multi-indices is a part
of the other. Since addition of multi-indices is not commutative, we consider
differences from the left and from the right. More precisely, we write i ≺ k if
there is a multi-index j such that i+ j = k and k ≻ j if there is a multi-index i
with i+j = k. The multi-indices j and i are uniquely determined, and we denote
them by j := (−i)+ k and i := k− j, respectively. Note that it follows from (72)
that the product s∗i sj is not zero only if i ≺ j or j ≺ i. The following lemmas
show how to simplify certain products in the si and pk. The simple proofs are
omitted.

Lemma 7.19 Let i, j, k, l be multi-indices (not necessarily of the same length).
Then the product (e−p1)sis

∗
jsks

∗
l can be written as (e−p1)srs

∗
t with multi-indices

r and t such that |r| ≥ |t|, or this product is zero.

Repeated application of this lemma gives the following.

Corollary 7.20 Let i, j, k, l, . . . , m, n be multi-indices (not necessarily of the
same length). Then the product (e−p1)sis

∗
jsks

∗
l . . . sms

∗
n(e−p1) can be written as

(e− p1)srs
∗
t (e− p1) with multi-indices r and t of the same length, or this product

is zero.

Corollary 7.21 Let a ∈ SN . Then (e − p1)a(e − p1) can be approximated as
closely as desired by linear combinations of elements of the form (e−p1)srs

∗
t (e−p1)

with multi-indices r and t of the same length.

Let Spar
N stand for the smallest closed subalgebra of SN which contains all products

sis
∗
j with multi-indices i, j of the same length. Again we allow multi-indices of

length zero, for which we set s∅ := e.

Lemma 7.22 Spar
N = clos span {sis

∗
j : |i| = |j|}.

Proof. Let i, j, k, l be multi-indices with |i| = |j| and |k| = |l|. We have to
show that the product (sis

∗
j) (sks

∗
l ) can be written as srs

∗
t with multi-indices r, t

of the same length. This product is zero if not j ≺ k or k ≺ j. For instance, if
j ≺ k, then sis

∗
jsks

∗
l = si+((−j)+k)s

∗
l with |i+ ((−j) + k)| = |i| + |k| − |j| = |l|.

Thus, another way to state the assertion of Corollary 7.21 is the following:

If a ∈ SN then (e− p1)a(e− p1) ∈ (e− p1)S
par
N (e− p1). (92)

The mapping
SN → Spar

N , a 7→ (e− p1)a(e− p1) (93)

is an expectation which is related with the expectation Φ0 : ON → O
par
N .
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Proposition 7.23 Let A ∈ ON , a := (PNnAPNn)n≥0 + Gη, and i, j ∈ Z+. Then

(e− p1)s
i
0a(s

∗
0)

j(e− p1)

= (e− p1)
(
(PNnΦ0(S

i
0A(S∗

0)
j)PNn)n≥0 + Gη

)
(e− p1). (94)

Proof. Because of

si
0a(s

∗
0)

j = (PNnSi
0PNn) (PNnAPNn) (PNn(S∗

0)
jPNn) + Gη

= (PNnSi
0PNnAPNn(S∗

0)
jPNn) + Gη

= (PNnSi
0A(S∗

0)
jPNn) + Gη,

it is sufficient to prove the assertion for i = j = 0. Thus, we have to show that

(e− p1)a(e− p1) = (e− p1) ((PNnΦ0(A)PNn)n≥0 + Gη) (e− p1). (95)

Both sides of this equality depend linearly and continuously on A. It is thus
sufficient to verify (95) for A = SkS

∗
l with multi-indices k, l of arbitrary length.

If k and l are of the same length, then A ∈ O
par
N , whence Φ0(A) = A, whereas

otherwise Φ0(A) = 0. Thus, the right-hand side of (95) is equal to (e−p1)a(e−p1)
if |k| = |l| and zero otherwise. Since

PNnSkS
∗
l PNn = PNnSkPNn · PNnS∗

l PNn ,

the left-hand side of (95) is also zero whenever |k| 6= |l|.

The desired lifting homomorphism will be defined explicitly by means of strong
limits which involve the following reflection operators. For n ≥ 1, let

Rn : l2(Z+) → l2(Z+), (xk)k≥0 7→ (xn−1, xn−2, . . . , x0, 0, 0, . . .).

Proposition 7.24 Let a ∈ SN and write (e− p1)a(e− p1) as (ANn) + Gη. Then
the strong limit

s-limn→∞RNnANnRNn (96)

exists, and the limit is independent of the choice of the representative of the coset
(e− p1)a(e− p1).

Sketch of the proof. Evidently, the limit (96) is independent of the choice of
the representative. By Corollary 7.21, it is sufficient to prove the existence of
the strong limit (96) for sequences (ANn) which belong to the coset e− p1 or to
the coset sis

∗
j with multi-indices i, j of the same length. Choose the sequence

(PNn) − (PNnS∗
0PNn) (PNnS0PNn) as representative of the coset e− p1. It is not

hard to check that

RNn(PNn − PNnS∗
0PNnS0PNn)RNn → I strongly (97)
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Next we choose (PNnSiS
∗
jPNn) as representative of the coset sis

∗
j . To state the

result, let V denote the shift operator

V : l2(Z+) → l2(Z+), (xk)k≥0 7→ (0, x0, x1, . . .),

set Vn := V n and V−n := (V ∗)n for every positive integer n, and define V0 := I.
Further, let

Πk := diag (1, 0, . . . , 0,︸ ︷︷ ︸
Nk−1

1, 0, . . . , 0,︸ ︷︷ ︸
Nk−1

. . .).

and recall that vi,k := i1 + i2N + . . . + ikN
k−1. Then a somewhat tedious but

straightforward calculation shows

RNnPNnSiS
∗
jPNnRNn → Vvj,k−vi,k

VNk−vj,k−1ΠkV
∗
Nk−vj,k−1

= VNk−vi,k−1ΠkV
∗
Nk−vj,k−1 (98)

where the latter equality holds since Nk − vj,k − 1 ≥ 0.

It will be useful to write the operator (98) in a different form. Note that

SiS
∗
j = Vvi,k

V−vj,k
SjS

∗
j = Vvi,k

V−vj,k
Vvj,k

ΠkV
∗
vj,k

= Vvi,k
ΠkV

∗
vj,k
.

A comparison with (98) suggests to introduce the dual index î of a multi-index
i = (i1, i2, . . . , ik) by î := (N − 1 − i1, N − 1 − i2, . . . , N − 1 − ik). Evidently,
|̂i| = |i| = k, and one easily checks that

vî,k = (N − 1 − i1) + (N − 1 − i2)N + . . .+ (N − 1 − ik)N
k−1 = Nk − 1 − vi,k.

Hence,
VNk−vi,k−1ΠkV

∗
Nk−vj,k−1 = Vv

î,k
ΠkV

∗
v

ĵ,k
= SîS

∗
ĵ
.

For each i ∈ Ω we set S♯
i := Sî = SN−1−i. Due to the universal property of ON ,

the mapping ♯ : Si 7→ SN−1−i can be continued to an automorphism of ON .

Corollary 7.25 If i and j are multi-indices of the same length then

RNnPNnSiS
∗
jPNnRNn → (SiS

∗
j )

♯ strongly as n→ ∞. (99)

7.6 The lifting homomorphism

We denote the strong limit (96) by W00(a) and consider W00 as a mapping from
SN into L(l2(Z+)). More general, for i, j ∈ Z+, let Wij : SN → L(l2(Z+)) refer
to the operator

a 7→ (S∗
N−1)

iW00((e− p1)s
i
0a(s

∗
0)

j(e− p1))S
j
N−1
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which is consistent with the previous definition. With every element a ∈ SN , we
associate the infinite matrix

W̃ (a) := (Wij(a))i, j≥0 (100)

the entries of which are operators on L(l2(Z+)). For example,

W̃ (sr) = ΣN−1−r, W̃ (s∗r) = Σ∗
N−1−r, and W̃ (p1) = I − Π1. (101)

We are going to show that the matrix (100) defines a linear bounded operator on

l2(Z+, l2(Z+)) and that the mapping W̃ is the desired injective lifting homomor-
phism. The following is the main result of this section.

Theorem 7.26 The mapping W̃ defined by (100) is a ∗-isomorphism from SN

onto TN which maps the ideal JN onto CN .

Corollary 7.27 JN is the only non-trivial closed ideal of SN .

Indeed, this follows immediately from Theorem 7.26 and Corollary 7.15.

Sketch of the proof of Theorem 7.26. It is not too hard to verify that the
mapping W̃ acts as a ∗-homomorphism on a dense subalgebra of SN . That it
acts as a ∗-homomorphism on the whole algebra would easily follow from this
fact if one would know that W̃ is bounded. Conversely, the boundedness of W̃
comes as a simple consequence of the fact that W̃ acts as a ∗-homomorphism on
SN . Unfortunately, neither the boundedness of W̃ nor the homomorphy of W̃
on all of SN could be shown directly. Rather we have to prove both properties
simultaneously by climbing step by step from small substructures of SN to the
whole algebra. I will not present each detail of this quite cumbersome (but mainly
straightforward) way and only mark the essential steps.

We will make use of the fact that the algebra SN splits into the direct sum

{(PNnAPNn)n≥0 + Gη : A ∈ ON} ⊕ JN . (102)

Proposition 7.28 The mapping W̃ acts as a linear contraction on the first sum-
mand of (102), and it maps this summand into TN .

For a proof note that the mapping

a = (PNnAPNn) + Gη 7→ A = s-limPNnAPNn

is a linear contraction by the Banach-Steinhaus theorem. Further, as already
mentioned, the mapping A 7→ A♯ is a linear contraction (and even an isometry)
on ON . Finally, from Theorem 7.17 we infer that the mapping A♯ 7→ Ψ(A♯) is

a linear contraction with range in TN . It remains to show that Ψ(A♯) = W̃ (a)
which follows by direct computation.

75



Now we consider the second summand in (102). Abbreviate e−pn to πn and recall

the definition (83) of Πn. Our starting point is the action of W̃ on πnJNπn. The
calculations are quite lengthy but, since we are dealing with n×n-block matrices,
purely algebraic.

Proposition 7.29 The mapping W̃ is a ∗-homomorphism from πnJNπn into
ΠnCNΠn for every n ≥ 1.

Consequently, W̃ is a contraction on πnJNπn for every n. Next extend this
property to all of JN .

Corollary 7.30 The mapping W̃ : JN → CN is a linear contraction.

To see this, let j ∈ JN . From Lemma 7.7 we infer that limn→∞ ‖j−πnjπn‖ = 0 for

each j ∈ JN . Hence, (πnjπn)n≥1 is a Cauchy sequence. Since W̃ is a contraction
on πnJNπn for each n and πnjπn ∈ πmJNπm for m ≥ n, we conclude that

‖W̃ (πnjπn) − W̃ (πmjπm)‖ ≤ ‖πnjπn − πmjπm‖

whenever m ≥ n. Hence, (W̃ (πnjπn))n≥1 is a Cauchy sequence. Let J denote

its limit. Further, since the entries of the matrix mapping W̃ are continuous,
we conclude from ‖W̃ (πnjπn) − J‖ → 0 that J = W̃ (j). Now it is clear that

W̃ (j) ∈ CN and ‖W̃ (j)‖ ≤ ‖j‖ for every j ∈ JN .

Corollary 7.31 The mapping W̃ : JN → CN is a ∗-homomorphism.

Indeed, having now the boundedness of W̃ at our disposal, we can argue as
follows to get that W̃ is a multiplicative on JN . Let j1, j2 ∈ JN . By Lemma 7.7,
j1j2 = lim πnj1πnj2πn. Since W̃ is continuous on JN ,

W̃ (j1j2) = lim W̃ (πnj1πnj2πn).

Now the multiplicativity of W̃ on πnJNπn entails

W̃ (j1j2) = lim W̃ (πnj1πn) W̃ (πnj2πn) = W̃ (j1)W̃ (j2),

whence the assertion.

Corollary 7.32 The mapping W̃ is bounded on all of SN .

This can be seen as follows. Let (An) + Gη ∈ SN . In accordance with (102), we
write this coset as

(An) + Gη = ((PNnAPNn) + Gη) + ((Jn) + Gη) =: a+ j (103)

with A := s-limAnPNn and j = (Jn) + Gη ∈ JN . Then

‖a‖ = ‖(PNnAPNn) + Gη‖ ≤ ‖A‖ ≤ ‖(An) + Gη‖,
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i.e., the first summand in (103) depends continuously on (An) + Gη. From ‖a‖ ≤
‖a+ j‖ we obtain ‖j‖ ≤ ‖a+ j‖ + ‖a‖ ≤ 2 ‖a+ j‖, whence

‖W̃ (a+ j)‖ ≤ ‖W̃ (a)‖ + ‖W̃ (j)‖ ≤ ‖a‖ + ‖j‖ ≤ 3 ‖a+ j‖

due to Proposition 7.28 and Corollary 7.30.

Proposition 7.33 The mapping W̃ is a ∗-homomorphism from SN into TN .

It is clearly sufficient to verify that W̃ is multiplicative on SN . The proof starts
with a partial multiplicativity result,

W̃ (aπk) = W̃ (a)Πk for each a ∈ SN , (104)

which is shown be simple calculation. For the proof of the general assertion,
let a, b ∈ SN . Since πk ∈ JN for every k and W̃ is multiplicative on JN , we
get W̃ (aπmbπk) = W̃ (aπm) W̃ (bπk) for all k, m ≥ 0. By (104), W̃ (aπmbπk) =

W̃ (a)Πm W̃ (b)Πk. For m → ∞ we have aπmbπk → abπk by Lemma 7.7 (recall

that πk ∈ JN) and Πm → I strongly. Thus, due to the continuity of W̃ ,

W̃ (abπk) = W̃ (a) W̃ (b)Πk.

Invoking (104) again and letting k tend to infinity, we arrive at the assertion.

Proposition 7.34 The mapping W̃ is injective on JN .

The assertion will follow once we have shown that

W̃ is injective on πnJNπn for every n ≥ 1. (105)

Indeed, let (105) be satisfied, and let j ∈ JN be an element with W̃ (j) = 0. Then

ΠnW̃ (j)Πn = 0 for every n. By (104), this implies W̃ (πnjπn) = 0 for every n.
From (105) we infer that πnjπn = 0 for every n. Passage to the limit n → ∞
yields j = 0, which implies the desired injectivity.

Further, (105) will follow once we have shown that

W̃ is injective on π1JNπ1 = (e− p1)JN(e− p1). (106)

The reason is that, roughly speaking, πnJNπn is constituted by a finite number
of shifted copies of π1JNπ1.

So it remains to prove (106). Let j ∈ JN and W̃ ((e− p1)j(e− p1)) = 0. One
can show easily that (e− p1)j(e− p1) can be written as

(e− p1) ((PNnCPNn)n≥0 + Gη) (e− p1) with C ∈ O
par
N .

Consequently, 0 = W00((e−p1)j(e−p1)) = Φ0(C
♯) = C♯ since Φ is an expectation

from ON onto O
par
N and C belongs to the latter subalgebra. Thus, C = 0, which
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implies that (e− p1)j(e− p1). The injectivity of W̃ on π1JNπ1 follows.

Now we can finish the proof of Theorem 7.26 as follows. The mapping W̃ is an
injective ∗-homomorphism on JN as we have just seen. Hence, by Corollary 7.12,
W̃ is an injective ∗-homomorphism on SN . The range of this homomorphism
contains the generating operators Σk of TN ; thus, W̃ maps SN onto TN . Since W̃
maps the generating element e− p1 of the ideal JN to the generating element Π1

of CN , it is further clear that W̃ maps JN onto CN .

7.7 Some consequences

Stability and fractality. The assertion of Theorem 7.26 is equivalent to the
following stability criterion.

Theorem 7.35 A sequence A = (An) in Sη(ON) is stable if and only if the

operator W̃ (A + Gη) is invertible.

Specifying this result to finite sections sequences for operators in the Cuntz al-
gebra yields

Corollary 7.36 Let A ∈ ON . Then the sequence (PNnAPNn)n≥0 is stable if
and only if the block Toeplitz operator Ψ(A♯) = T (fA♯) ∈ L(l2(Z+, l2(Z+))) is
invertible.

The following is certainly the most important consequence of Theorem 7.26. It
can also serve as a perfect illustration to Theorem 3.8. The proof will follow
directly from the special form of the homomorphism W̃ .

Corollary 7.37 The algebra Sη(ON ) is fractal.

Proof. Recall that the entries of the matrix operator W̃ ((An)+Gη) are defined by
strong limits. Consequently, if only an (infinite) subsequence of (An) is known,

one can nevertheless determine the operator W̃ ((An) + Gη) ∈ TN . Since W̃ :
SN → TN is an isomorphism one can, thus, reconstruct the coset of (An) modulo
Gη from each subsequence of (An).

Spectral approximation. As already mentioned, sequences in fractal algebras
are distinguished by their excellent convergence properties. To mention only a
few of them, let σ(a) denote the spectrum of an element a of a C∗-algebra with
identity element e, write σ2(a) for the set of the singular values of a, i.e., σ2(a)
is the set of all non-negative square roots of elements in the spectrum of a∗a and
finally, for ε > 0, let σ(ε)(a) refer to the ε-pseudospectrum of a, i.e. to the set of
all λ ∈ C for which a− λe is not invertible or ‖(a− λe)−1‖ ≥ 1/ε.
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Theorem 7.38 Let (An) be a sequence in Sη(ON ) and set a := (An)+Gη. Then
the following set-sequences converge with respect to the Hausdorff metric as n→
∞ :

(a) σ(An) → σ(W̃ (a)) if a is self-adjoint;

(b) σ2(An) → σ2(W̃ (a));

(c) σ(ε)(An) → σ(ε)(W̃ (a)).

The proof follows immediately from the stability criterion in Theorem 7.26 above
and from Theorems 3.20, 3.23 and 3.33 in [13]. Let us emphasize that in general
one cannot remove the assumption a = a∗ in assertion (a), whereas (c) holds
without any assumption.

Compactness and Fredholm properties. Recall the definition of the algebra
F of all bounded sequences of matrices and of its ideal K ideal of the compact
sequences from Section 4.3 and let Fη and Kη denote the corresponding restricted
algebras.

Proposition 7.39 The only compact sequences in Sη(ON ) are the sequences in
Gη.

Proof. By Corollary 7.27, JN is the only non-trivial closed ideal of SN . Thus,
the intersection SN ∩(Kη/Gη) is either SN , JN , or {0}. Since already JN contains
cosets of non-compact sequences (e.g., the coset e− p1), the assertion follows.

Corollary 7.40 Every Fredholm sequence in Sη(ON) is stable.
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