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1. Introdution

In this survey paper we disuss the theory of very weak solutions to the stationary and insta-

tionary (Navier-)Stokes system in a bounded domain of R

3

and show how this new notion of

solutions may be used to prove regularity loally or globally in spae and time of a given weak

solution.

Consider the instationary Navier-Stokes equations for a visous inompressible uid with

density � = 1, i.e.,

(1.1)

u

t

� ��u + div (uu) +rp = f in 
� (0; T )

div u = k in 
� (0; T )

u = g on �
 � (0; T )

u = u

0

at t = 0

for the unknown veloity u = (u

1

; u

2

; u

3

) and pressure p in a domain 
 � R

3

and a time interval

(0; T ); 0 < T � 1. Here f denotes the external fore (fore density), u

0

= u

0

(x) the initial value,

and � > 0 is the given visosity of the uid. In the physial model the divergene k = div u

is assumed to vanish. However, for mathematial reasons it will be onvenient in partiualar

for linear problems to onsider the more general ase of a presribed divergene k 6= 0; see also

Remark 1.9(1) below. Moreover, the boundary data g = u

j

�


is a generalization of the lassial

no-slip or adhesion ondition u

j

�


= 0. Obviously, for a bounded domain, k and g must satisfy

the neessary ompatibility ondition

(1.2)

Z




k dx =

Z

�


g �N do ;

here N = N(x) is the external normal vetor at x 2 �
, and do denotes the surfae measure on

�
.

This survey is organized as follows. In this Introdution (Setion 1) we disuss the notions

of weak, strong, regular and very weak solutions and summarize some well-known results and

important tools. Setion 2 deals with the theory of very weak solutions in the stationary and

instationary, linear and also nonlinear ase. Finally, in Setion 3 we onsider appliations of the

theory of very weak solutions to the question under whih additional assumptions a given weak

solution is regular, either loally in time and globally in spae or loally in time and spae. The

assumptions are either beyond the lassial Serrin riterion of regularity or use the kineti energy

as a funtion of time.

For further surveys on the instationary Navier-Stokes equations we refer to [34℄, [66℄.
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1.1. Weak Solutions in the Sense of Leray-Hopf. Let us test the Navier-Stokes system

(with k = 0, g = 0) formally with the solution u and use integration by parts in spae. Then,

sine div u = 0, div (uu) = u � ru and u = 0 on �
,

Z




rp � u dx = 0 and

Z




(u � ru) � u dx =

Z




u � r

�

1

2

juj

2

�

dx = 0

so that (1.1) yields the identity

1

2

d

dt

ku(t)k

2

2

+ � kru(t)k

2

2

= (f; u)(t);

here (�; �) denotes the L

2

-salar produt on 
. A further integration in time on the interval (s; t)

leads to the energy identity

(1.3)

1

2

ku(t)k

2

2

+ �

Z

t

s

kruk

2

2

d� =

1

2

ku(s)k

2

2

+

Z

t

s

(f; u) d�

for 0 � s < t � T . Assume that the external fore f has the form

(1.4) f = f

0

+ divF; f

0

2 L

1

�

0; T ;L

2

(
)

�

; F 2 L

2

�

0; T ;L

2

(
)

�

:

Then Young's inequality and Gronwall's Lemma yield the integrability properties

(1.5) u 2 L

1

�

0; T ;L

2

(
)

�

\ L

2

lo

�

[0; T );H

1

0

(
)

�

for every time interval (0; T ). Now (1.5) serves as starting point for the de�nition of a weak

solution.

Definition 1.1. Let 
 � R

3

be a domain, let the initial value u

0

belong to the spae

L

2

�

(
) = C

1

0;�

(
)

k�k

2

; C

1

0;�

(
) = fu 2 C

1

0

(
) : div u = 0g;

and let f satisfy (1.4). Then a solenoidal vetor �eld u satisfying (1.5) is alled a weak solution

in the sense of Leray-Hopf of the instationary Navier-Stokes system (1.1) with data f; u

0

(and

with k = 0, g = 0) if

�

Z

T

0

(u; '

t

)d� + �

Z

T

0

(ru;r')d� +

Z

T

0

(u � ru; ')d�

=

�

u

0

; '(0)

�

+

Z

T

0

hf; 'id�(1.6)

for all test funtions ' 2 C

1

0

�

[0; T ); C

1

0;�

(
)

�

.

In (1.6) h�; �i denotes the duality produt of H

�1

(
) = H

1

0

(
)

�

and H

1

0

(
), and (�; �) is used

for measurable funtions �;  on 
 in the sense (�;  ) =

R




� � dx provided � � 2 L

1

(
). Note

that the same symbol, say u 2 C

1

0

(
), is used for a funtion as well as for vetor �elds or even

matrix �elds.

By the Galerkin approximation method or by the theory of analyti semigroups in the spae

L

2

�

(
) using Yosida approximation arguments it is shown that the Navier-Stokes system (1.6) has

at least one weak solution in the sense of Leray-Hopf, see e.g. [24, xx2{3℄, [61, V.3℄. Moreover,

as a onsequene of (1.6),

(1.7) u : [0; T )! L

2

�

(
) is weakly ontinuous,

and the initial value u

0

is attained in the sense:

�

u(t); '

�

! (u

0

; ') as t! 0+ for all ' 2 L

2

�

(
)

and even for all ' 2 L

2

(
).
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However, due to the seletion of a weakly onvergent subsequene in the onstrution of the

weak solution it annot be guaranteed that u still satis�es the energy identity (1.3). The lower

semiontinuity of norms with respet to weak onvergenes implies only that u satis�es the energy

inequality

(1.8)

1

2

ku(t)k

2

2

+ �

Z

t

0

kruk

2

2

d� �

1

2

ku

0

k

2

2

+

Z

t

0

hf; uid�

rather than the energy identity (1.3). It is not lear whether any weak solution u aording

to De�nition 1.1 does satisfy the energy inequality. However, eah known onstrution method

yields a weak solution satisfying (1.8).

If the domain 
 � R

3

is bounded, the ompat embeddingH

1

0

(
) � L

2

(
) allows to onstrut

a weak solution u satisfying also the strong energy inequality

(1.9)

1

2

ku(t)k

2

2

+ �

Z

t

s

kruk

2

2

d� �

1

2

ku(s)k

2

2

+

Z

t

s

hf; ui d�

for almost all s 2 [0; T ) inluding s = 0 and for all t 2 [s; T ), see e.g. [61, Theorem V.3.6.2℄.

For unbounded domains the ompatness argument is no longer available and more sophistiated

tools based on maximal regularity, see x1.4 below, are needed to prove the existene of a weak

solution satisfying the strong energy inequality; see [40℄, [62℄ for exterior domains and [16℄ for

general unbounded domains with uniform C

2

-regularity of the boundary.

Using (1.5) and the embedding H

1

0

(
) � L

6

(
), we obtain for a weak solution u the spae-

time integrability u 2 L

s

�

0; T ;L

q

(
)

�

for the pairs of exponents s =1, q = 2 and s = 2, q = 6,

satisfying both the ondition

(1.10)

2

s

+

3

q

=

3

2

:

More generally, using the so-alled Serrin number

S = S(s; q) =

2

s

+

3

q

for s; q 2 [1;1℄;

H�older's inequality yields

(1.11) u 2 L

s

�

0; T ;L

q

(
)

�

when S =

3

2

; 2 < s; q <1;

see [61, Lemma V.1.2.1℄. However, it is an open problem whether a weak solution with S =

3

2

is

unique. But the uniqueness is known if S � 1:

Theorem 1.2. Let 
 � R

3

be any domain, and let u; v be weak solutions of the Navier-Stokes

system (1.1) with the same data f; u

0

(and with k = 0, g = 0). Assume that u satis�es the energy

inequality (1.8) and that

v 2 L

s

�

0; T ;L

q

(
)

�

where S(s; q) � 1; 2 < s <1; 3 < q <1:

Then u = v.

For a proof we refer to [58℄. The same result holds in the limit ase s = 1, q = 3 when


 � R

3

is a bounded or exterior domain with boundary of lass C

2

, see [35℄.
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1.2. Regular Solutions. One of the seven Millennium Problems of Clay Mathematis In-

stitute in 2000 is the question whether a weak solution of the Navier-Stokes equations in a

three-dimensional domain is smooth, i.e., whether u 2 C

1

�


 � (0; T )

�

when f = 0 or, more

generally, f 2 C

1

�


 � (0; T )

�

. The �rst step in this diretion is the question whether u is a

strong solution.

Definition 1.3. A weak solution u of the Navier-Stokes equations (with k = 0, g = 0) is

alled a regular solution if there exist exponents s; q suh that

(1.12) u 2 L

s

lo

�

[0; T );L

q

(
)

�

; S(s; q) � 1; 3 < q <1; 2 < s <1:

For short, we say that u is regular in the sense u 2 L

s

lo

�

[0; T );L

q

(
)

�

. Moreover, u is alled a

strong solution if

(1.13) u 2 L

1

lo

�

[0; T );H

1

0

(
)

�

\ L

2

lo

�

[0; T );H

2

(
)

�

:

Note that in (1.13), ompared to (1.5), the regularity in spae has been inreased by one.

Sine H

1

0

(
) � L

6

(
), we get u 2 L

1

lo

�

[0; T );L

6

(
)

�

with Serrin's number S =

1

2

so that u also

satis�es (1.12).

The next two theorems state the loal existene of a regular solution and the global regularity

of a given weak solution under an additional assumption.

Theorem 1.4. Let 
 � R

3

be any domain, u

0

2 D(A

1=4

2

), where A

2

denotes the Stokes oper-

ator on L

2

�

(
), see x1.4, and let f = f

0

+divF with f

0

2 L

4=3

�

0; T ;L

2

(
)

�

, F 2 L

4

�

0; T ;L

2

(
)

�

.

Then there exists T

0

= T

0

(�; u

0

; f

0

; F ) 2 (0; T ) suh that the Navier-Stokes equations (1.1) with

data u

0

; f (and with k = 0, g = 0) have a uniquely determined regular solution

u 2 L

8

�

0; T

0

;L

4

(
)

�

:

Proof. We refer to [24℄ for a proof of this result for a bounded domain 
 with �
 2 C

2

when f = 0 and u

0

2 H

1

0

(
). In this ase u even satis�es (1.13) in (0; T

0

). The more general

result an be found in [61, Theorem V.4.2.2℄. �

Theorem 1.5. Let 
 � R

3

be a bounded domain with �
 2 C

2

and let u be a weak solution

of (1.1) with data f 2 L

2

�

0; T ;L

2

(
)

�

, u

0

2 L

2

�

(
) \ H

1

0

(
), 0 < T � 1, (and with k = 0,

g = 0) satisfying

(1.14) u 2 L

s

lo

�

[0; T );L

q

(
)

�

; S(s; q) � 1; 2 < s � 1; 3 � q <1:

Then u is regular, uniquely determined by u

0

; f; and a strong solution.

If f 2 C

1

0

�


� (0; T )

�

and �
 2 C

1

, then u 2 C

1

�


� (0; T )

�

.

Proof. The lassial impliation from (1.14) when 2 < s <1, 3 < q <1, i.e. from (1.12),

to (1.13) an be found in [24℄, see also [61, Theorem V.1.8.1℄. The limit ase s =1, q = 3 was

proved more reently in [11℄, [39℄ [52℄, [53℄, [54℄, [55℄ starting from a result [41℄ on the �nite

number of singular points in time and spae for a weak solution u 2 L

1

�

0; T ;L

3

(
)

�

:

Interior regularity results in the sense u 2 C

1

�




0

� (0; T )

�

for every subdomain 


0

�� 


are proved in [57℄, [58℄, [64℄. Moreover, regularity up to the boundary �
 of 
 is shown [29℄,

[60℄. �

At this point, several remarks are in order, for later use in x 3 and for interest in its own.

Conerning the energy identity and the energy inequality (1.8) whih holds for every weak solution

onstruted so far in the literature, we note that every strong and every regular solution satis�es

the energy identity, see the following Lemma 1.6.
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Lemma 1.6. Let 
 � R

3

be any domain, and let u be a weak solution of (1.1) with data

u

0

2 L

2

�

(
), f = f

0

+ divF , where f

0

2 L

1

�

0; T ;L

2

(
)

�

, F 2 L

2

�

0; T ;L

2

(
)

�

(and with k = 0,

g = 0).

(1) Suppose additionally that

u 2 L

4

�

0; T ;L

4

(
)

�

or, more generally, that

(1.15) u 2 L

s

�

0; T ;L

q

(
)

�

; S(s; q) � 1; 2 � s � 1; 3 � q � 1:

Then u satis�es the energy identity and is strongly ontinuous from [0; T ) to L

2

�

(
).

(2) If also v satis�es the integrability ondition (1.5), then

u � rv 2 L

s

�

0; T ;L

q

(
)

�

; S(s; q) = 4; 1 � s; q < 2:

Proof. (1) The assumption u 2 L

4

�

0; T ;L

4

(
)

�

implies that uu 2 L

2

�

0; T ;L

2

(
)

�

so that

u � ru = div (uu) may be written on the right-hand side of the equation as part of the external

fore divF . Then u an be onsidered as the weak solution of a (linear) instationary Stokes

system, and linear theory shows that u satis�es the energy identity.

Under the seond assumption we may assume that

2

s

+

3

q

= 1. Sine the given weak solution

u also satis�es u 2 L

s

1

�

0; T ;L

q

1

(
)

�

where

2

s

1

+

3

q

1

=

3

2

, and sine

2

4

+

3

4

=

5

4

2 (1;

3

2

), H�older's

inequality easily implies that u 2 L

4

�

0; T ;L

4

(
)

�

, for details see [61, V.1.4℄

(2) The proof is based on embedding theorems and H�older's inequality, see [61, Lemma

V.1.2.1℄. �

Remark 1.7. The ondition (1.15) for u to satisfy the energy identity may be relaxed to the

ondition that u 2 L

s

�

0; T ;L

q

(
)

�

and

(1.16) S(s; q) � min

�

1 +

1

q

; 1 +

1

s

�

; 2 � s � 1; 3 � q � 1:

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

1

4

1

2

1

s

1

4

1

6

1

2

1

q

1

3

w

e

a

k

s

o

l

u

t

i

o

n

S

=

3

2

r

e

g

u

l

a

r

s

o

l

u

t

i

o

n

S

=

1

Fig 1.1. Weak and regular solutions represented by lines in the

�

1

q

;

1

s

�

-plane. The hathed

region indiates the set desribed by (1.16) where the energy identity holds.
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The proof follows the lines of [61, V.1.4℄; note that the region in the

�

1

q

;

1

s

�

-plane desribed by

(1.16) is the losed onvex hull of the line S = 1 and the point

�

1

4

;

1

4

�

in the �rst quadrant of the

�

1

q

;

1

s

�

-plane. Hene the point

�

1

4

;

1

4

�

an be written as a onvex ombination of any two points

of this region and of the line S(s; q) =

3

2

, respetively; see also Fig 1.1.

For a further disussion of the energy inequality, energy identity and regularity of a weak

solution we refer to the �rst paragraphs of x3 as well as x3.2 and to x3.2 in general.

1.3. The Conept of Very Weak Solutions. In ontrast to the de�nition of weak solu-

tions, see De�nition 1.1, where one integration by parts in spae was used, the onept of very

weak solutions allows all derivatives in spae and time to be applied to the test funtions. To

give a preise de�nition we will use the spaes of test funtions (vetor �elds)

C

2

0;�

(
) = fv 2 C

2

(
) : div v = 0; v

j

�


= 0g

suh that in general rv does not vanish on �
, and

C

1

0

�

[0; T ); C

2

0;�

(
)

�

of solenoidal vetor �elds w satisfying suppw � 
� [0; T ).

Given a suÆiently smooth solution u of the fully inhomogeneous Navier-Stokes system (1.1)

and test funtions w 2 C

1

0

�

[0; T ); C

2

0;�

(
)

�

we are led to the identity

Z

T

0

�

� (u; w

t

)� �(u;�w) + hg;N � rwi

�


� (uu;rw)

�

d� =

�

u

0

; w(0)

�

+

Z

T

0

hf; wi d�

where h�; �i and h�; �i

�


are pairings between orresponding spaes on 
 and �
, respetively,

see De�nition 1.8 below. The term hg;N � rwi

�


is due to the inhomogeneous boundary data

g = u

j

�


and the fat that in general the normal derivative N � rw of w on �
 does not vanish.

Sine divw = 0 for all t 2 [0; T ), the term N � rw is purely tangential on �
; this fat is easily

heked when �
 is planar. Hene, the term hg;N � rwi

�


arries only the information of the

tangential omponent of g = u

j

�


. Seondly we test the equation div u = k in 
 � (0; T ) with

test funtions  2 C

0

0

�

(0; T );C

1

(
)

�

and get the identity

Z

T

0

(k;  )d� =

Z

T

0

�

� (u;r ) + hg �N; i

�


�

d�:

This identity may be rewritten in the pointwise form

div u = k in 
� (0; T ); u �N = g �N on �
 � (0; T )

giving information on div u and the normal omponent of u on �
. Summarizing the previous

reasoning we are led to

Definition 1.8. Let 
 � R

3

be a bounded domain with C

1;1

-boundary, let f = divF and

(1.17)

F 2 L

s

�

0; T ;L

r

(
)

�

; k 2 L

s

�

0; T ;L

r

(
)

�

g 2 L

s

�

0; T ;W

�1=q;q

(�
)

�

; u

0

2 J

q;s

�

(
)

where J

q;s

�

(
) is a spae of initial values to be de�ned below, see De�nition 2.10, k; g satisfy the

ompatibility ondition (1.2) in the sense

(1.18)

Z




k(t)dx = hg(t); Ni

�


for a.a. t 2 (0; T );
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and q; r; s satisfy the onditions

(1.19) S =

2

s

+

3

q

= 1;

1

3

+

1

q

=

1

r

; 2 < s <1; 1 < r < 3 < q <1:

Then a vetor �eld

u 2 L

s

�

0; T ;L

q

(
)

�

is alled a very weak solution of the instationary Navier-Stokes system (1.1) if

(1.20)

Z

T

0

�

� (u; w

t

)� �(u;�w) + hg;N � rwi

�


� (uu;rw)

�

d�

=

�

u

0

; w(0)

�

�

Z

T

0

(F;rw) d�

for all test �elds w 2 C

1

0

�

[0; T ); C

2

0;�

(
)

�

, and additionally

(1.21) div u = k in 
� (0; T ); u �N = g �N on �
� (0; T ):

Remark 1.9. (1) Note that in [12℄, [14℄, [19℄, [21℄, [26℄ the authors onsidered the variational

problem

(1.22)

Z

T

0

�

� (u; w

t

)� �(u;�w) + hg;N � rwi

�


� (uu;rw)� (ku; w)

�

d�

=

�

u

0

; w(0)

�

�

Z

T

0

(F;rw) d�

instead of (1.20). The additional term (ku; w) in (1.22) or equivalently �ku on the left-hand side

of the �rst equation of (1.1) is due to the identity

u � ru = div (uu)� ku; where k = div u:

The di�erene of these variational problems originates from the derivation of the Navier-Stokes

equations, see e.g. [48℄. On the one hand, onsidering ompressible uids with density � = �(x; t)

the term (�u)

t

+ div (�uu) appears in the equation for the balane of momentum; for onstant

� and in the time-independent ase we are left with the term div (uu) as in (1.1). On the other

hand, the term u

t

+ u � ru denotes the aeleration of partiles and leads to the additional term

�ku in (1.1). We note that both models are unphysial, sine the equation for the onservation

of mass �

t

+ div (�u) = 0 leads to div u = 0 when the density � is onstant. For the model (1.1)

the proofs of Theorems 2.9 and 2.18 below are shorter ompared to the proofs in [12℄, [14℄, [19℄,

[21℄, [26℄, although the assumptions on k = div u and the omplexity of the proofs are the same.

(2) The onditions (1.19) on q; r; s are needed to give eah term in (1.20) a well-de�ned

meaning, partiularly to de�ne the nonlinear term (uu;rw). The exponents q; r are hosen

suh that the embeddings W

1;r

(
) � L

q

, L

r

(
) � W

�1;q

(
) := W

1;q

0

0

(
)

�

(= the dual spae of

W

1;q

0

0

(
)

�

, q

0

=

q

q�1

) and L

q

0

(
) � W

�1;r

0

(
) hold.

(3) The information on div u an be reovered only from (1.21), but not from (1.20).

(4) Analogous de�nitions of very weak solutions will be given also for the stationary Stokes

and Navier-Stokes system, see x2. In these ases the onditions on q; r; s in (1.19) are more

general.

Before turning to theorems on existene in x2 let us disuss the main features of this onept.

� The onept of very weak solutions was introdued in a series of papers by H. Amann

[2℄, [3℄ in the setting of Besov spaes when k = 0.
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� More reently this onept was modi�ed by G.P. Galdi, C. Simader and the authors to

a setting in lassial L

q

-spaes inluding the inhomogeneous data k, see [12℄, [13℄, [14℄,

[19℄, [21℄, [26℄.

� By de�nition very weak solutions have no di�erentiability, neither in spae nor in time,

exept for the existene of the divergene k = div u 2 L

r

(
) for a.a. t.

� In general, a very weak solution does neither have a bounded kineti energy in

L

1

�

0; T ;L

2

(
)

�

nor a �nite dissipation energy in L

2

�

0; T ;H

1

(
)

�

. In partiular, a

very weak solution is not neessarily a weak solution.

� By de�nition, a very weak solution is ontained in Serrin's uniqueness lass

L

s

�

0; T ;L

q

(
)

�

with S = 1. Very weak solutions an be shown to be unique, see

x2. However, in general, the regularity of the data is too low to guarantee any kind of

regularity of the very weak solution.

� The onept of very weak solutions has been generalized by K. Shumaher to a setting

in weighted Lebesgue and Bessel potential spaes using arbitrary Mukenhoupt weights,

see [51℄.

� Although the data in De�nition 1.8 imply no regularity for a very weak solution, the

onept may be even further generalized so that neither boundary values nor initial

values of a very weak solution an be de�ned, see [51℄ and x2.

� The onept of very weak solutions is strongly based on duality arguments onerning

the theory of strong (or regular) solutions. Therefore, the boundary regularity required

in this theory is the same as for strong solutions.

� The boundary is usually assumed to be of lass C

2;1

. Due to a new smoothing argument

in the proof of an extension theorem, see [51℄, it suÆes to require that �
 2 C

1;1

.

1.4. Preliminaries. We summarize several auxiliary results on the Helmholtz projetion

and the Stokes operator introdued for later use only for bounded domains.

Lemma 1.10. Let 
 � R

3

be a bounded domain with C

1

-boundary and let 1 < q <1.

(1) There exists a bounded projetion

P

q

: L

q

(
)! L

q

�

(
)

from the spae of all L

q

-vetor �elds onto the subspae

L

q

�

(
) = C

1

0;�

(
)

k�k

q

of all solenoidal vetor �elds u suh that the normal omponent u �N of u vanishes on �


in the weak sense. In partiular,

R(P

q

) = L

q

�

(
); N (P

q

) = G

q

(
) := frp : p 2 W

1;q

(
)g:

Every vetor �eld u 2 L

q

(
) has a unique deomposition

u = u

0

+rp; u

0

2 L

q

�

(
); rp 2 G

q

(
);

satisfying

ku

0

k

q

+ krpk

q

� kuk

q

with a onstant  = (q;
) > 0.

(2) The adjoint operator (P

q

)

�

of P

q

equals P

q

0

, where q

0

=

q

q�1

, and the dual spae L

q

(
)

�

is

isomorphi to L

q

0

(
).

Proof. See e.g. [59℄. �
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Lemma 1.11. Let 
 � R

3

be a bounded domain with C

1;1

-boundary and let 1 < q <1.

(1) The Stokes operator, de�ned by

D(A

q

) = W

2;q

(
) \W

1;q

0

(
) \ L

q

�

(
); A

q

u = �P

q

�u;

is a losed bijetive operator from D(A

q

) � L

q

�

(
) onto L

q

�

(
). If u 2 D(A

q

) \ D(A

�

) for

1 < � <1, then A

q

u = A

�

u.

(2) For 0 � � � 1 the frational powers

A

�

q

: D(A

�

q

) � L

q

�

(
! L

q

�

(
)

are well-de�ned, losed, bijetive operators. In partiular, the inverses A

��

q

:= (A

�

q

)

�1

are

bounded operators on L

q

�

(
) with R(A

��

q

) = D(A

�

q

). The spae D(A

�

q

) endowed with the

graph norm kuk

q

+ kA

�

q

uk

q

, equivalent to kA

�

q

uk

q

for bounded domains, is a Banah spae.

Moreover, for 1 > � > � > 0,

D(A

q

) � D(A

�

q

) � D(A

�

q

) � L

q

�

(
)

with strit dense inlusions, and (A

�

q

)

�

= A

�

q

0

is the adjoint to A

�

q

.

(3) The norms kuk

W

2;q

and kA

q

uk

q

are equivalent for u 2 D(A

q

). Analogously, the norms

kruk

q

, kuk

W

1;q

and kA

1=2

q

uk

q

are equivalent for u 2 D(A

1=2

q

) = W

1;q

0

(
) \ L

q

�

(
). More

generally, the embedding estimate

(1.23) kuk

q

� kA

�



uk



1 <  � q; 2� +

3

q

=

3



holds for every u 2 D(A

�



); here  = (q; ;
) > 0.

(4) The Stokes operator A

q

generates a bounded analyti semigroup e

�tA

q

, t � 0, on L

q

�

(
).

Moreover, there exists a onstant Æ

0

= Æ

0

(q;
) > 0 suh that

(1.24) kA

�

q

e

�tA

q

uk

q

� e

�Æ

0

t

t

��

kuk

q

for u 2 L

q

�

(
); t > 0;

with  = (q; �;
) > 0.

Proof. See [1℄, [20℄, [27℄, [28℄, [30℄, [61℄. Usually these results are proved for bounded

domains with �
 2 C

2

or even C

2;�

, 0 < � < 1. However, a areful inspetion of the proofs

shows that C

1;1

-regularity is suÆient. �

We note that most of the results of Lemma 1.11 also hold for exterior domains 
 � R

3

.

However, some results are more restritive, sine the Poinar�e inequality on W

1;q

0

(
) does not

hold for an exterior domain.

The next auxiliary tool onerns the instationary Stokes system

(1.25)

u

t

� ��u+rp = f; div u = 0 in 
� (0; T )

u = 0 on �
� (0; T )

u(0) = u

0

at t = 0

for data f 2 L

s

�

0; T ;L

q

(
)

�

and u

0

2 L

q

�

(
), 1 < s; q <1:

Applying the Helmholtz projetion P

q

to (1.25) we get the abstrat evolution equation

(1.26) u

t

+ �A

q

u = P

q

f; u(0) = u

0

;
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where we are looking for a solution u with u(t) 2 D(A

q

). The variation of onstants formula

yields the solution

(1.27) u(t) = e

��tA

q

u

0

+

Z

t

0

e

��(t��)A

q

P

q

f(�) d�; 0 � t < T � 1:

Conversely, the solution of (1.26) yields P

q

(u

t

���u�f) = 0 so that by Lemma 1.10 there exists

a funtion p with u

t

� ��u� f = �rp, i.e., (u; p) solves (1.25). To estimate u given by (1.27)

(with u

0

= 0) and rp we introdue the notion of maximal regularity.

Lemma 1.12. Let 
 � R

3

be a bounded domain with C

1;1

-boundary, let 1 < s, q < 1,

f 2 L

s

�

0; T ;L

q

(
)

�

and u

0

= 0. Then the Stokes equation (1.26) has a unique solution u

satisfying the maximal regularity estimate

(1.28) ku

t

k

L

s

(0;T ;L

q

(
))

+ k�A

q

uk

L

s

(0;T ;L

q

(
))

� kfk

L

s

(0;T ;L

q

(
))

where  = (q; s;
) > 0 is independent of � and T . Moreover, there exists a funtion p 2

L

s

�

0; T ;W

1;q

(
)

�

suh that (u; p) satis�es (1.25) and the estimate

(1.29) k(u

t

;rp; �r

2

u)k

L

s

(0;T ;L

q

(
))

� kfk

L

s

(0;T ;L

q

(
))

:

Proof. The �rst proof of this result for s = q 2 (1;1) an be found in [63℄ and is based on

potential theory, the generalization to arbitrary s 2 (1;1) is a onsequene of abstrat theory,

see [1℄, [8℄, [30℄. Di�erent approahes are based on the theory of pseudodi�erential operators

[28℄, [31℄ and on the theory of weighted estimates, see A. Fr�ohlih [22℄, [23℄. �
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2. Theory of Very Weak Solutions

As already outlined in x1.3 the onept of very weak solutions introdues a new lass of solutions

to stationary and nonstationary Stokes and Navier-Stokes equations with data of very low reg-

ularity suh that solutions may have (almost) no di�erentiability and no �nite energy, but they

are unique even in the nonlinear ase.

2.1. The Stationary Stokes System. First we onsider the stationary Stokes problem

(2.1) ��u +rp = f = divF; div u = k in 
; u

j

�


= g

for suitable data f = divF , k and g in a bounded domain 
 � R

3

with �
 2 C

1;1

and { for

simpliity { with visosity � = 1. Let

C

2

0;�

(
) = fw 2 C

2

(
) : divw = 0; w

j

�


= 0g

denote the orresponding spae of test funtions.

Definition 2.1. Let 1 < r � q <1 and

1

3

+

1

q

�

1

r

. Given data

(2.2) F 2 L

r

(
); k 2 L

r

(
); g 2 W

�1=q;q

(�
)

satisfying the ompatibility ondition

(2.3)

Z




k dx = hg;Ni

�


;

a vetor �eld u 2 L

q

(
) is alled a very weak solution to (2.1) if

(2.4)

�(u;�w) = �hg;N � rwi

�


� (F;rw) 8w 2 C

2

0;�

(
)

div u = k in 
; u �N = g �N on �
:

Here (�;  ) :=

R




� dx for measurable funtions �;  on 
 provided � �  2 L

1

(
), and h�; �i

�


denotes the evaluation of the funtional g 2 W

�1=q;q

(�
) at the admissible test funtion N �rw =

�w

�N

2 W

1�1=q

0

;q

0

(�
); note that N 2 C

0;1

(�
) � W

1�1=q

0

;q

0

(�
) for every q 2 (1;1).

Sine N � rw is purely tangential on �
 for w 2 C

2

0;�

(
), the term hg;N � rwi

�


onerns

only the tangential omponent of g = u

j

�


on �
. Testing the equation div u = k with an

arbitrary salar-valued test funtion  2 C

1

(
), we get the seond and third identity in (2.4)

via the variational problem

(2.5) �(u;r ) = (k;  )� hg;  Ni

�


:

Now let us de�ne the funtionals

(2.6)

hF ; wi = �(F;rw)� hg;N � rwi

�


; w 2 Y

2;q

0

�

(
);

hK;  i = (k;  )� hg;  Ni

�


;  2 W

1;q

0

(
);

where

Y

2;q

0

�

(
) := D(A

q

0

) =W

2;q

0

(
) \W

1;q

0

0

(
) \ L

q

0

�

(
):

Then the embeddings

W

1;q

0

(
) � L

r

0

(
); Y

2;q

0

�

(
) � W

1;r

0

(
);

f. Remark 1.9 (2), and the trae estimate

k �Nk

W

1�1=q

0

;q

0

(�
)

�  k k

W

1�1=q

0

;q

0

(�
)

� k k

W

1;q

0

(
)
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imply that

(2.7)

F 2 Y

�2;q

�

(
) := Y

2;q

0

�

(
)

�

K 2 W

�1;q

0

(
) := W

1;q

0

(
)

�

:

However, the funtionals F and K are not distributions in the lassial sense on their respetive

spaes of test funtions, sine in eah ase C

1

0

(
) is not a dense subspae. Nevertheless, (2.6),

(2.7) leads to a further useful generalization of the onept of very weak solutions, see [51℄.

Definition 2.2. Let 1 < q < 1 and let F 2 Y

�2;q

�

(
), K 2 W

�1;q

0

(
) be given. Then

u 2 L

q

(
) is alled a very weak solution of the Stokes problem with data F ;K if

(2.8)

�(u;�w) = hF ; wi; w 2 Y

2;q

0

�

(
);

�(u;r ) = hK;  i;  2 W

1;q

0

(
):

The onept of De�nition 2.2 has the drawbak that any vetor �eld u 2 L

q

(
) is the very

weak solution of the Stokes problem for suitable data F 2 Y

�2;q

�

(
), K 2 W

�1;q

0

(
), namely,

hF ; wi := �(u;�w); hK;  i := �(u;r ):

Hene there is no possibility to de�ne boundary values of u in this very general setting. However,

this onept immediately leads to the existene of a unique very weak solution using duality

arguments.

Theorem 2.3. Let 
 � R

3

be a bounded domain with boundary �
 2 C

1;1

, let 1 < q < 1

and F 2 Y

�2;q

�

(
), K 2 W

�1;q

0

(
) be given. Then the Stokes problem (2.8) has a unique very

weak solution u 2 L

q

(
); moreover, u satis�es the estimate

(2.9) kuk

q

� 

�

kFk

Y

�2;q

�

(
)

+ kKk

W

�1;q

0

(
)

�

with a onstant  = (
; q) > 0.

Proof. Consider an arbitrary vetor �eld v 2 L

q

0

(
). Then there exists a unique strong

solution w 2 Y

2;q

0

�

(
),  2 W

1;q

0

(
) of the Stokes problem

(2.10) ��w �r = v; divw = 0 in 
; w

j

�


= 0;

Z




 dx = 0;

moreover, w;  linearly depend on v and

kwk

W

2;q

0

(
)

+ k k

W

1;q

0

(
)

�  kvk

q

0

with a onstant  = (
; q) > 0. Now, using the duality L

q

(
) = L

q

0

(
)

�

, de�ne u 2 L

q

(
) by

(u; v) = hF ; wi+ hK;  i

suh that

j(u; v)j � kFk

Y

�2;q

�

(
)

kwk

W

2;q

0

(
)

+ kKk

W

�1;q

0

(
)

k k

W

1;q

0

(
)

� 

�

kFk

Y

�2;q

�

(
)

+ kKk

W

�1;q

0

(
)

�

kvk

q

0

:

Hene u satis�es the a priori estimate (2.9).

To show that u is a very weak solution to the data F ;K, hoose arbitrary test funtions

w 2 Y

2;q

0

�

(
) and  2 W

1;q

0

(
) and de�ne v = ��w �r 2 L

q

0

(
). Then

(u;��w)� (u;r ) = (u; v) = hF ; wi+ hK;  i;

i.e., (2.8) is satis�ed.
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To prove uniqueness, let u 2 L

q

(
) satisfy (2.8) with F = 0, K = 0. Then for all v 2 L

q

0

(
)

and orresponding solutions w 2 Y

2;q

0

�

(
),  2 W

1;q

0

(
) of (2.10) we get

(u; v) = (u;��w)� (u;r ) = hF ; wi+ hK;  i = 0:

Thus u = 0. �

We note that the proof of Theorem 2.3 was based on duality arguments related to the (strong)

Stokes operator

A

q

0

: Y

2;q

0

�

(
)! L

q

0

�

(
)

where A

q

0

= �P

q

0

� is onsidered as a bounded bijetive operator from Y

2;q

0

�

(
) � W

2;q

0

(
),

equipped with the norm of W

2;q

0

(
), onto L

q

0

�

(
), and to its adjoint

(A

q

0

)

�

: L

q

�

(
)! Y

�2;q

�

(
);

whih de�nes an isomorphism as well.

To return to De�nition 2.1 of very weak solutions and to interpret their boundary values let

us introdue the notion of normal and tangential omponents of (R

3

-valued) traes on �
 and

of funtionals on �
. Given h = (h

1

; h

2

; h

3

) 2 W

1�1=q

0

;q

0

(�
) let

h

N

= (h �N)N and h

�

= h� h

N

for a.a. x 2 �


denote its normal and tangential omponent, respetively. Obviously

h

N

2 W

1�1=q

0

;q

0

N

(�
) := f' 2 W

1�1=q

0

;q

0

(�
) : 'kN on �
 a.e.g;

h

�

2 W

1�1=q

0

;q

0

�

(�
) := f' 2 W

1�1=q

0

;q

0

(�
) : ' �N = 0 on �
 a.e.g;

and

kh

N

k

1�1=q

0

;q

0

;�


+ kh

�

k

1�1=q

0

;q

0

;�


� khk

1�1=q

0

;q

0

;�


:

Atually,

W

1�1=q

0

;q

0

N

(�
) �W

1�1=q

0

;q

0

�

(�
) =W

1�1=q

0

;q

0

(�
)

as a topologial and algebrai diret deomposition.

For g = (g

1

; g

2

; g

3

) 2 W

�1=q;q

(�
), we de�ne the funtionals

g

N

2 W

�1=q;q

N

(�
) :=W

1�1=q

0

;q

0

N

(�
)

�

g

�

2 W

�1=q;q

�

(�
) :=W

1�1=q

0

;q

0

�

(�
)

�

by

hg

N

; h

N

i

�


:= hg; h

N

i

�


; h

N

2 W

1�1=q

0

;q

0

N

(�
);

and

hg

�

; h

�

i

�


:= hg; h

�

i

�


; h

�

2 W

1�1=q

0

;q

0

�

(�
);

respetively. Hene

kg

N

k

W

�1=q;q

N

(�
)

+ kg

�

k

W

�1=q;q

�

(�
)

� kgk

�1=q;q;�


:

Sine g 2 W

�1=q;q

(�
) is given, it is reasonable to extend g

N

from W

�1=q;q

N

(�
) to W

�1=q;q

(�
)

by de�ning hg

N

; h

�

i := 0 for all tangential traes h

�

2 W

1�1=q

0

;q

0

�

(�
) and to extend g

�

from

W

�1=q;q

�

(�
) to W

�1=q;q

(�
) by de�ning hg

�

; h

N

i := 0 for all normal traes h

N

2 W

1�1=q

0

;q

0

N

(�
).

That way, W

�1=q;q

N

(�
) and W

�1=q;q

�

(�
) may be onsidered as losed subspaes of W

�1=q;q

(�
).

Hene

(2.11) g = g

N

+ g

�

on W

1�1=q

0

;q

0

(�
);
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and we get the topologial and algebrai deomposition

(2.12) W

�1=q;q

N

(�
)�W

�1=q;q

�

(�
) = W

�1=q;q

(�
):

Finally, we de�ne the funtional g �N 2 W

�1=q;q

(�
) by

hg �N; i

�


:= hg;  Ni

�


;  2 W

1;1=q

0

;q

0

(�
);

satisfying kg �Nk

�1=q;q;�


�  kgk

�1=q;q;�


. Obviously, g �N = g

N

�N and g

�

�N = 0. Moreover,

g

N

= (g �N)N formally and also in the pointwise sense when g is a vetor �eld on �
.

Theorem 2.4. Let 
 � R

3

be a bounded domain with boundary of lass C

1;1

, and let 1 <

r � q <1 satisfy

1

3

+

1

q

�

1

r

.

(1) Given data F; k and g as in (2.2), (2.3) there exists a unique very weak solution u 2 L

q

(
)

of (2.4). This solution satis�es the a priori estimate

(2.13) kuk

q

� 

�

kFk

r

+ kkk

r

+ kgk

�1=q;q;�


�

with a onstant  = (q; r;
) > 0.

(2) The very weak solution u 2 L

q

(
) in (1) has a normal trae u �N = g �N 2 W

�1=q;q

(�
)

and a tangential trae omponent u

�

= g

�

2 W

�1=q;q

�

(�
) in the following sense: The

normal trae u �N = g �N exists via the identity

(2.14) hu �N; i

�


= (k;  ) + (u;r );  2 W

1;q

0

(
):

For the tangential omponent of the trae, u

�

, we use a bounded linear extension operator

E

�

: W

1�1=q

0

;q

0

�

(�
)! Y

2;q

0

�

(
)

suh that

h = N � rE

�

(h)

j

�


for all h 2 W

1�1=q

0

;q

0

�

(�
):

Then

(2.15) hu

�

; hi =

�

u;�E

�

(h)

�

�

�

F;rE

�

(h)

�

; h 2 W

1�1=q

0

;q

0

�

(�
);

is uniquely de�ned (not depending on the extension operator E

�

with the above proper-

ties). Moreover,

(2.16)

ku �Nk

�1=q;q;�


�  kg

N

k

W

�1=q;q

N

(�
)

;

ku

�

k

W

�1=q;q

�

(�
) �  kg

�

k

W

�1=q;q

�

(�
)

:

De�ning the funtional u

N

= (u �N)N 2 W

�1=q;q

N

(�
) by hu

N

; h

N

i

�


:= hu �N; h

N

�Ni

�


for h

N

2 W

1�1=q

0

;q

0

N

(�
), it holds in view of (2.11), (2.12)

(2.17) u = u

N

+ u

�

= g 2 W

�1=q;q

(�
)

and

(2.18) kuk

�1=q;q;�


� 

�

ku �Nk

�1=q;q;�


+ ku

�

k

W

�1=q;q

�

(�
)

�

:

(3) Assume that F 2 Y

�2;q

�

(
) and K 2 W

�1;q

0

(
) have the representations

(2.19)

hF ; wi = �(F;rw)� hg

�

; N � rwi

�


; w 2 Y

2;q

0

�

(
);

hK;  i = (k;  )� hĝ;  i

�


;  2 W

1;q

0

(
);
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respetively, with

F; k 2 L

r

(
) and g

�

2 W

�1=q;q

�

(�
); ĝ 2 W

�1=q;q

(�
):

Then F; g

�

and k; ĝ are uniquely determined by F and K, respetively; see the proof

below for details onerning the uniqueness of F .

Proof. (1) Given F; k; g as in (2.2), (2.3) de�ne F ;K as in (2.6), and let u 2 L

q

(
) be the

unique very weak solution of (2.8) due to Theorem 2.3. In view of (2.6), (2.9) u satis�es (2.13).

(2) Testing in (2.8)

2

with  2 C

1

0

(
) we see from (2.6)

2

that div u = k 2 L

r

(
) in the sense

of distributions. Sine u 2 L

q

(
) � L

r

(
), a lassial result implies that u has a normal trae

u �N 2 W

�1=r;r

(�
) whih by (2.6)

2

, (2.8)

2

oinides with g �N 2 W

�1=q;q

(�
).

Conerning the tangential trae we �rst onstrut the extension operator E

�

. Let h 2

W

1�1=q

0

;q

0

(�
). Then we �nd w

h

= E

1

(h) 2 W

2;q

0

(
) \W

1;q

0

0

(
) suh that

w

h

j

�


= 0 and N � rw

h

= h;

moreover, w

h

depends linearly and ontinuously on h. The existene of an extension operator E

1

with these porperties is well-known in the ase of bounded domains with boundary of lass C

2;1

,

see [47℄, [65℄. However, a molli�ation proedure, see [51℄, allows this extension even in the ase

when �
 2 C

1;1

only. Next, assume that h 2 W

1�1=q

0

;q

0

�

(�
). Then an easy alulation shows

that divw

h

j

�


= 0 so that divw

h

2 W

1;q

0

0

(
) and

R




divw

h

dx = 0. Next we need properties

of Bogovskii's operator onerning the divergene problem ([6℄, [61℄): There exists a bounded

linear operator

B :

�

f 2 W

1;q

0

0

(
) :

Z




f dx = 0

	

!W

2;q

0

0

(
)

suh that divBf = f for these f . Now we de�ne the extension operator E

�

= E

1

� B Æ E

1

.

Obviously, E

�

is a bounded operator from W

1�1=q

0

;q

0

�

(�
) to W

2;q

0

(
) suh that E

�

(h) = 0 on

�
 and divE

�

(h) = 0 in 
, i.e. E

�

(h) 2 Y

2;q

0

�

(
). Moreover, N � rE

�

(h) = N � rw

h

= h on �


due to the properties of B.

Let h 2 W

1�1=q

0

;q

0

�

(�
). Then we use w = E

�

(h) 2 Y

2;q

0

�

(
) as a test funtion in (2.8)

1

to see

that

�

�

u;�E

�

(h)

�

= hF ; E

�

(h)i

= �

�

F;rE

�

(h)

�

� hg;N � rE

�

(h)i

�


= �

�

F;rE

�

(h)

�

� hg

�

; hi

�


:

With u

�

:= g

�

the former identity oinides with (2.15) and does not depend on the partiular

hoie of the extension operator E

�

.

(3) It suÆes to onsider F; g

�

or k; ĝ suh that F = 0 or K = 0, respetively. If K = 0

so that 0 = (k;  ) � hĝ;  i

�


for all  2 W

1;q

0

(
), then k = 0 sine we may onsider the dense

subset C

1

0

(
) of L

r

0

(
) for the test funtions  . Hene 0 = hĝ;  i

�


for all  2 W

1;q

0

(
) and

onsequently ĝ = 0.

Now let F = 0 so that, using the notation f = divF ,

(2.20) 0 = hf; wi � hg

�

; N � rwi

�


for all w 2 Y

2;q

0

�

(
):

Hene

hf; wi = 0 for all w 2 C

1

0;�

(
);
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and a lassial theorem on weak solutions of the Stokes problem proves that f = rp with

p 2 L

r

(
). Therefore,

�(F;rw) = hf; wi = hrp; wi = �

Z




p divw dx = 0

for all w 2 Y

2;q

0

�

(
) and even for all w 2 W

1;r

0

0;�

(
) :=W

1;r

0

0

(
) \ L

r

0

�

(
). In this sense F = 0 and

f = 0, and (2.20) implies that

hg

�

; N � rwi

�


= 0 for all w 2 Y

2;q

0

�

(
):

Using the operator E

�

we get that hg

�

; hi

�


= 0 for all h 2 W

1�1=q

0

;q

0

�

(
) and hene g

�

= 0. �

Let us introdue a further notation for very weak solutions of the Stokes system whih will

be helpful in the analysis of nonstationary problems, see xx2.3 - 2.4.

Definition 2.5. For f 2 Y

�2;q

�

(
) let A

�1

q

P

q

f denote the unique vetor �eld in L

q

�

(
)

satisfying

(A

�1

q

P

q

f; v) = hf; A

�1

q

0

vi for all v 2 L

q

0

�

(
);

or, equivalently, with v = A

q

0

w,

(2.21) (A

�1

q

P

q

f; A

q

0

w) = hf; wi for all w 2 Y

2;q

0

�

(
):

Remark 2.6. (1) Formally, every gradient �eld rp, p 2 L

q

0

(
), vanishes when being onsid-

ered as an element of Y

�2;q

�

(
). In this sense we have to identify two elements f; f

0

2 Y

�2;q

�

(
)

when f � f

0

is a gradient �eld, or, formally, when P

q

f = P

q

f

0

. The notation P

q

f and A

�1

q

P

q

f in

De�nition 2.5 is formal and indiates that only solenoidal test funtions v are used.

(2) Sine A

�1

q

P

q

f 2 L

q

�

(
) for f 2 Y

�2;q

�

(
), (2.21) also reads

�(A

�1

q

P

q

f;�w) = hf; wi for all w 2 Y

2;q

0

�

(
):

Hene A

�1

q

P

q

f is the unique very weak solution of (2.8) with F = f and K = 0, i.e.,

A

�1

q

P

q

: Y

�2;q

�

(
)! L

q

�

(
)

is the orresponding bounded solution operator. In partiular,

(2.22) kA

�1

q

P

q

divFk

q

�  kFk

r

; F 2 L

r

(
);

by (2.6), (2.7), (2.13) when using F = f = divF .

(3) Let us disuss the relation of De�nition 2.5 to the weak Stokes problem. Given F 2 L

�

(
),

1 < � <1, there exists a unique weak solution u 2 W

1;�

0;�

(
) = D(A

1=2

�

) suh that

(ru;rv) = hdivF; vi = �(F;rv) for all W

1;�

0

0;�

(
)

(2.23) kruk

�

�  kFk

�

where  = (�;
) > 0. Using as a test funtion v 2 Y

2;�

0

�

(
) we get that

hdivF; vi = �(u;�vi = (u;A

�

0

v):

Hene u oinides with the unique very weak solution A

�1

�

P

�

divF 2 L

�

�

(
), and we onlude

that A

�1

�

P

q

divF 2 D(A

1=2

�

), and, from (2.23), that

(2.24) kA

1=2

�

A

�1

�

P

�

divFk

�

�  kFk

�
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where  = (�;
) > 0. For short, we will write A

�1=2

�

P

�

divF = A

1=2

�

A

�1

�

P

�

divF so that (2.24)

reads

kA

�1=2

�

P

�

divFk

�

�  kFk

�

2.2. The Stationary Navier-Stokes System.

Definition 2.7. Let 1 < r, q < 1 satisfy

2

q

�

1

r

�

1

3

+

1

q

and let the data F; k; g be given

as in (2.2), (2.3). Then u 2 L

q

(
) is alled a very weak solution of the stationary Navier-Stokes

system

���u + div (uu) +rp = f = divF; div u = k in 
; u

j

�


= g(2.25)

if for all w 2 C

2

0;�

(
)

��(u;�w)� (uu;rw) = �(F;rw)� �hg; N � rwi

�


(2.26)

and

div u = k in 
; u �N

j

�


= g �N:(2.27)

Remark 2.8. As already noted in Remark 1.9, the variational problem (2.26) is missing the

term (ku; w) ompared to the approah in [12℄, [14℄, [19℄, [21℄, [26℄ where the authors onsidered

the equation

��(u;�w)� (uu;rw)� (ku; w) = �(F;rw)� �hg;N � rwi

�


;

w 2 C

2

0;�

(
). The only reason for this hange is to keep the proofs shorter than for the model

inluding the term ku.

Theorem 2.9. There exists a onstant "

�

= "

�

(q; r;
) independent of the data F; k; g and

the visosity � > 0 with the following property:

(1) If

kFk

r

+ �kkk

r

+ �kgk

�1=q;q;�


� "

�

�

2

;(2.28)

then there exists a very weak solution u 2 L

q

(
) to the stationary Navier-Stokes system

(2.25). This solution satis�es the a priori estimate

�kuk

q

� 

�

kFk

r

+ �kkk

r

+ �kgk

�1=q;q;�


�

(2.29)

where  = (q; r;
) > 0.

(2) A very weak solution u to data F; k; g is unique in L

q

(
) under the smallness ondition

kuk

q

� "

�

�.

We note that in De�nition 2.7 and Theorem 2.9 we need the restritions 2r � q and q � 3

in ontrast to the linear ase. The proof of existene (and hene of loal uniqueness) is based

on Banah's Fixed Point Theorem, whereas the proof of uniqueness in all of L

q

(
) requires a

bootstrapping argument; the ase q = 3 needs a further approximation step and will be omitted.

Proof. (1) Sine 2r � q, every vetor �eld u 2 L

q

(
) satis�es the estimate

kuuk

r

�  kuk

2

2r

�  kuk

2

q

:(2.30)

Now, for arbitrary data F; k; g as in (2.2), (2.3), let u = S(F; k; g) 2 L

q

(
) denote the very weak

solution of the Stokes problem (2.1) with � = 1. Then, in view of (2.30) a very weak solution

u 2 L

q

(
) of the Navier-Stokes system (2.25) is a �xed point of the nonlinear map

N (u) = S

�

1

�

(F � uu); k; g

�

= S(

1

�

F; k; g)�

1

�

S(uu; 0; 0):
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To apply Banah's �xed Point Theorem we estimate N (u) by using (2.30) and the a priori

estimate (2.13) for the operator S as follows:

(2.31)

kN (u)k

q

� 

�

1

�

(kFk

r

+ kuk

2

q

) + kkk

r

+ kgk

�1=q;q;�


�

= akuk

2

q

+ b

where a =



�

and b = 

�

1

�

kFk

r

+ kkk

r

+ kgk

�1=q;q;�


�

. Moreover, for u; u

0

2 L

q

(
) we get the

estimate

(2.32)

kN (u)�N (u

0

)k

q

= k

1

�

S(uu� u

0

u

0

; 0; 0)k

q

�



�

ku� u

0

k

q

(kuk

q

+ ku

0

k

q

)

with the same onstant  > 0 as above. Now onsider the losed ball B

�

� L

q

(
) of radius � > 0

and enter 0 where � is the smallest positive root of the quadrati equation y = ay

2

+ b; for the

existene of � > 0 we need the smallness ondition

4 ab < 1

whih is equivalent to (2.28) with a suitable onstant "

�

= "

�

(q; r;
) > 0. Furthermore note that

� <

1

2a

so that by (2.32)

kN (u)�N (u

0

)k

q

� �ku� u

0

k

q

; u; u

0

2 B

�

;

with � = 2a� < 1. Sine N maps B

�

into B

�

by (2.31) and is a strit ontration on B

�

, Banah's

Fixed Point Theorem yields a unique �xed point u 2 B

�

of N . Finally the trivial bound � � 2b

yields the a priori estimate (2.29).

(2) To prove uniqueness of a very weak solution u in L

q

(
) we start with the ase when q > 3.

Let u; v 2 L

q

(
) be �xed points of N . Then w = u� v is the unique very weak solution of the

linear Stokes system

���w +rp = �div (wu+ vw); divw = 0 in 
; w

j

�


= 0(2.33)

with "known" right-hand side �div (wu+ vw). Sine u; v 2 L

q

(
) and onsequently w 2 L

q

1

�

(
)

where q

1

= q, we get that

wu+ vw 2 L

�

1

(
);

1

�

1

=

1

q

+

1

q

1

:

Hene w oinides with the unique weak solution of the Stokes problem (2.33) and satis�es

w 2 D(A

1=2

�

1

) =W

1;�

1

0;�

(
) � L

q

1

�

(
);

1

q

1

=

1

�

1

�

1

3

=

1

q

+ (

1

q

�

1

3

):

If �

1

< 2, i.e., q < 4, we repeat this argument �nitely many times to get in the m-th step,

m = 1; 2; 3; : : :, that

w 2 L

q

m

�

(
);

1

q

m

=

1

q

+m(

1

q

�

1

3

):

Sine q > 3, we will arrive at the property

wu+ vw 2 L

�

m

(
);

1

�

m

=

1

q

+

1

q

m

=

2

q

+m(

1

q

�

1

3

) �

1

2
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for suÆiently large m 2 N . Now we see that wu + vw 2 L

2

(
), onsequently w 2 D(A

1=2

2

) =

W

1;2

0;�

(
), and that we may test in (2.33) with w. By these means we get that

�krwk

2

2

=

Z




u(w � rw) dx+

Z




w(v � rw) dx =

Z




u(w � rw) dx

� kuk

3

kwk

6

krwk

2

�  kuk

q

krwk

2

2

:

Hene, under the smallness ondition kuk

q

� "

�

� we may onlude that rw = 0 and u = v.

The limit ase q = 3, in whih the above iteration is stationary (q

m

= q for all m 2 N),

requires a ompliated approximation and smoothing argument. For details we refer to [21℄. �

2.3. The Instationary Stokes System. Looking at very weak solutions u 2

L

s

�

0; T ;L

q

(
)

�

, 1 < s; q < 1, of the initial-boundary value problem of the Stokes system

we arefully introdue the set of admissible initial values, J

q;s

�

(
), as a subset of Y

�2;q

�

(
). In

this subsetion we set � = 1 for simpliity.

Definition 2.10. Given 1 < s; q <1 let

J

q;s

�

(
) =

n

u

0

2 Y

�2;q

�

(
) :

Z

1

0

kA

q

e

��A

q

(A

�1

q

P

q

u

0

)k

s

q

d� <1

o

;

equipped with the norm

ku

0

k

J

q;s

�

:=

�

Z

1

0

kA

q

e

��A

q

(A

�1

q

P

q

u

0

)k

s

q

d�

�

1=s

:

Remark 2.11. (1) The term k � k

J

q;s

�

de�nes a norm on J

q;s

�

(
): If ku

0

k

J

q;s

�

= 0, then

A

q

e

�tA

q

(A

�1

q

P

q

u

0

) = 0 and onsequently e

�tA

q

A

�1

q

P

q

u

0

= 0 for a.a. t > 0; as t ! 0+, we

onlude that A

�1

q

P

q

u

0

= 0, i.e., u

0

= 0 as an element of Y

�2;q

�

(
). Note that ku

0

k

J

q;s

�

(
)

equals

the L

s

�

0; T ;L

q

(
)

�

-norm of Au(t) where u(t) denotes the strong solution of the homogeneous

instationary Stokes problem with initial value A

�1

q

P

q

u

0

2 L

q

�

(
).

(2) The spaes J

q;s

�

(
) an be onsidered as real interpolation spaes and identi�ed with

solenoidal subspaes of Besov spaes. Atually,

u

0

2 J

q;s

�

(
), A

�1

q

P

q

u

0

2

�

D(A

q

); L

q

�

(
)

�

1=s;s

and

ku

0

k

J

q;s

�

+ kA

�1

q

P

q

u

0

k

q

� kA

�1

q

P

q

u

0

k

(D(A

q

);L

q

�

(
))

1=s;s

in the sense of norm equivalene, see [30, (2.5)℄, [65℄. Moreover, onsider the solenoidal Besov

spaes B

2�2=s

q;s

(
) introdued in [3, (0.6)℄, with the property

B

2�2=s

q;s

(
) =

8

<

:

fu 2 B

2�2=s

q;s

(
) : div u = 0; u

j

�


= 0g;

1

q

< 2�

2

s

;

fu 2 B

2�2=s

q;s

(
) : div u = 0; u �N

j

�


= 0g;

1

q

> 2�

2

s

;

f. [65℄, where B

2�2=s

q;s

(
) are the usual Besov spaes. By [3, Proposition 3.4℄

u

0

2 J

q;s

�

(
), A

�1

q

P

q

u

0

2

�

D(A

q

); L

q

�

(
)

�

1=s;s

= B

2�2=s

q;s

(
):

(3) Consider u

0

2 Y

�2;q

�

(
) suh that

jhu

0

; wij �  kA

�1=s+"

q

0

wk

q

0

; w 2 Y

2;q

0

�

(
);
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where 0 < " <

1

s

. Then by (1.24) u

0

2 J

q;s

�

(
).

Definition 2.12. Let 1 < s; q < 1, 1 < r � q,

1

3

+

1

q

�

1

r

, 0 < T � 1, let the data F; k; g

satisfy

F 2 L

s

�

0; T ;L

r

(
)

�

; k 2 L

s

�

0; T ;L

r

(
)

�

; g 2 L

s

�

0; T ;W

�1=q;q

(�
)

�

(2.34)

R




k(t) dx = hg(t); Ni

�


for a.a. t 2 (0; T );(2.35)

and let u

0

2 J

q;s

�

(
). Then u 2 L

s

�

0; T ;L

q

(
)

�

is alled a very weak solution of the instationary

Stokes system

(2.36)

u

t

��u+rp = divF; div u = k in 
� (0; T )

u(0) = u

0

at t = 0; u = g on �
 � (0; T )

if

(2.37)

�(u; w

t

)


;T

� (u;�w)


;T

= hu

0

; w(0)i � (F;rw)


;T

� hg;N � rwi

�
;T

div u = k in 
� (0; T ); u �N = g �N on �
� (0; T )

for all test funtions w 2 C

1

0

�

[0; T );C

2

0;�

(
)

�

.

Remark 2.13. (1) As shown in Theorem 2.14 below the very weak solution u 2

L

s

�

0; T ;L

q

(
)

�

of (2.36), (2.37) has the property A

�1

q

P

q

u(�) 2 C

0

�

[0; T );L

q

(
)

�

or equivalently,

u 2 C

0

�

[0; T );Y

�2;q

�

(
)

�

. Hene the initial value u(0) = u

0

in (2.36)

2

is attained in Y

�2;q

�

(
), i.e.

hu(0); wi = hu

0

; wi for all w 2 Y

2;q

0

�

(
);

or equivalently (A

�1

q

P

q

u)(0) = A

�1

q

P

q

u

0

.

(2) De�nition 2.12 may be extended, orrespondingly to De�nition 2.2, to the problem

(2.38)

(u; w

t

)


;T

� (u;�w)


;T

= hF ; wi

�(u;r )


;T

= hK;  i

with data F 2 L

s

�

0; T ;Y

�2;q

�

(
)

�

and K 2 L

s

�

0; T ;W

�1;q

0

(
)

�

and for suitable test funtion w

and  , f. [51℄. Then existene and uniqueness of a very weak solution u 2 L

s

�

0; T ;L

q

(
)

�

to (2.38) is a diret onsequene of duality arguments and results on the strong instationary

Stokes system in L

s

0

�

0; T ;L

q

0

(
)

�

. As in x2.1, in this very general setting neither initial values

nor boundary values of u are well-de�ned. Atually, every u 2 L

s

�

0; T ;L

q

(
)

�

is the very weak

solution of (2.38) for ertain data F and K. However, in ontrast to our approah in x2.1, we

will follow a di�erent idea to solve (2.37).

Theorem 2.14. Suppose that the data F; k; g satisfy the onditions (2.34), (2.35), and that

u

0

2 J

q;s

�

(
) where 1 < s, q <1, 1 < r � q,

1

q

+

1

3

�

1

r

. Then there exists a unique very weak

solution u 2 L

s

�

0; T ;L

q

(
)

�

of (2.36), satisfying

u

t

2 L

s

�

0; T ;Y

�2;q

�

(
)

�

; u 2 C

0

�

[0; T );Y

�2;q

�

(
)

�

:

Moreover, there exists a onstant  = (q; r; s;
) > 0 independent of T > 0 suh that

kuk

L

s

(L

q

)

+ ku

t

k

L

s

(Y

�2;q

�

)

� 

�

kFk

L

s

(L

r

)

+ kkk

L

s

(L

r

)

+ kgk

L

s

(W

�1=q;q

(�
))

+ ku

0

k

J

q;s

�

�

:(2.39)
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Proof. For almost all t 2 (0; T ) let H(t) denote the solution of the weak Neumann problem

�H = k in 
; N � (rH � g) = 0 on �
:

Sine k(t) 2 L

r

(
) � W

�1;q

0

(
), we �nd a unique solution rH(t) 2 L

q

(
) satisfying

(2.40) rH(t) 2 L

s

�

0; T ;L

q

(
)

�

; krHk

L

s

(L

q

)

� 

�

kkk

L

s

(L

r

)

+ kgk

L

s

(W

�1=q;q

(�
))

�

:

Moreover, for almost all t 2 (0; T ) let (t) = 

F (t);k(t);g(t)

2 L

q

(
) denote the very weak solution

of the inhomogeneous Stokes problem

(2.41) �� +rp = divF; div  = k in 
; 

j

�


= g;

satisfying the estimate

kk

L

s

(L

q

)

� 

�

kFk

L

s

(L

r

)

+ kkk

L

s

(L

r

)

+ kgk

L

s

(W

�1=q;q

(�
))

�

:(2.42)

Assume that u 2 L

s

�

0; T ;L

q

(
)

�

is a very weak solution of (2.36). Obviously

P

q

u = u�rH and P

q

 =  �rH for a.a. t 2 (0; T );

where P

q

denotes the usual Helmholtz projetion on L

q

(
). Thus

û := P

q

u = u�rH = u�  + P

q

 2 L

s

�

0; T ;L

q

�

(
)

�

:

Next let us prove that U = A

�1

q

û 2 L

s

�

0; T ;D(A

q

)

�

is a strong solution of the Stokes system

U

t

+ A

q

U = P

q

 on (0; T ); U(0) = A

�1

q

P

q

u

0

:(2.43)

For this reason onsider any test funtion v 2 C

1

0

�

[0; T );L

q

0

�

(
)

�

and also w = A

�1

q

0

v 2

C

1

0

�

[0; T );Y

2;q

0

�

(
)

�

. Then

�(U; v

t

)


;T

+ (A

q

U; v)


;T

� (P

q

; v)


;T

= �(û; w

t

)


;T

+ (û; A

q

0

w)


;T

� (P

q

; A

q

0

w)


;T

= �(u; w

t

)


;T

� (u� ;�w)


;T

;

sine (rH;w

t

)


;T

= 0 and div (u� ) = 0. Due to (2.41) we know that

�(;�w)


;T

= �(F;rw)


;T

� hg;N � rwi

�
;T

;

so that we may proeed as follows:

�(U; v

t

)


;T

+ (A

q

U; v)


;T

� (P

q

; v)


;T

= �(u; w

t

)


;T

� (u;�w)


;T

+ (F;rw)


;T

+ hg;N � rwi

�
;T

= hu

0

; w(0)i

=

�

A

�1

q

P

q

u

0

; v(0)

�

:

This identity, valid for all v 2 C

1

�

[0; T );L

q

0

�

(
)

�

, proves that U satis�es (2.43) and that U(0) =

A

�1

q

P

q

u

0

. Moreover, by Lemma 1.12 on maximal regularity, the estimates (1.28), (2.42) and

the variation of onstants formula (1.27) we know that U

t

2 L

s

�

0; T ;L

q

�

(
)

�

, in partiular,

U 2 C

0

�

[0; T );L

q

�

(
)

�

,

U(t) = e

�A

q

t

(A

�1

q

P

q

u

0

) +

Z

t

0

e

�A

q

(t��)

P

q

(�) d�(2.44)
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and

kU

t

k

L

s

(L

q

)

+ kA

q

Uk

L

s

(L

q

)

� 

�

Z

T

0

kA

q

e

�A

q

t

(A

�1

q

P

q

u

0

)k

s

q

dt

�

1=s

+ kP

q

k

L

s

(L

q

)

(2.45)

� 

�

ku

0

k

J

q;s

�

+ kFk

L

s

(L

r

)

+ kkk

L

s

(L

r

)

+ kgk

L

s

(W

�1=q;q

(�
))

�

:

Sine u = û+rH = A

q

U +rH, we proved so far that u neessarily has the representation

u = rH + A

q

e

�A

q

t

(A

�1

q

P

q

u

0

) +

Z

t

0

A

q

e

�A

q

(t��)

P

q

(�) d�:(2.46)

Hene u is uniquely de�ned by the data F; k; g and u

0

and satis�es (2.36) in the very weak sense,

sine we may pass through the previous omputations in reverse order. Finally, (2.45) and (2.46)

imply (2.39). �

Remark 2.15. The very weak solution u 2 L

s

�

0; T ;L

q

(
)

�

onstruted in Theorem 2.14 has

a trae u

j

�


2 L

s

�

0; T ;W

�1=q;q

(�
)

�

. Atually, sine k = div u 2 L

s

�

0; T ;L

r

(
)

�

, we get that

u �N

j

�


2 L

s

�

0; T ;W

�1=r;r

(�
)

�

and even

u �N

j

�


= g �N 2 L

s

�

0; T ;W

�1=q;q

(�
)

�

:

Conerning the tangential omponent of u on �
 we onsider h 2 C

1

0

�

(0; T );W

1�1=q

0

;q

0

�

(�
)

�

and

w = E

�

(h) 2 C

1

0

�

(0; T );Y

2;q

0

�

(
)

�

satisfying h = N � rw

j

�


, f. Theorem 2.4. Inserting w in

(2.37) we obtain the formula

hg; hi

�
;T

= (u; w

t

)


;T

+ (u;�w)


;T

� (F;rw)


;T

:

This formula yields a well-de�ned expression for the tangential omponent g

�

= g � (g � N)N

of the boundary values. Obviously, if u is suÆiently smooth, integration by parts shows that

u

�

j

�


= g

�

.

2.4. The Instationary Navier-Stokes System. Let us onsider the instationary Navier-

Stokes system

(2.47)

u

t

� ��u+ div (uu) +rp = f; div u = k in 
� (0; T )

u(0) = u

0

at t = 0; u = g on �
� (0; T ):

Definition 2.16. Let the data F; k; g satisfy (2.34), (2.35) and let u

0

2 J

q;s

�

(
) where

2 < s <1; 3 < q <1;

2

s

+

3

q

= 1 and

1

3

+

1

q

�

1

r

�

2

q

:(2.48)

Then u 2 L

s

�

0; T ;L

q

(
)

�

is alled a very weak solution of (2.47) if for all test funtions w 2

C

1

0

�

[0; T );C

2

0;�

(
)

�

(2.49)

�(u; w

t

)


;T

� �(u;�w)


;T

� (uu;rw)


;T

= �(F;rw)


;T

� �hg;N � rwi

�
;T

+ hu

0

; w(0)i;

div u = k in 
� (0; T ); u �N

j

�


= g �N on �
� (0; T ):



24

Remark 2.17. (1) In (2.48) we added the ondition S(s; q) =

2

s

+

3

q

= 1 in order to allow an

estimate of the nonlinear term (uu;rw)


;T

. Compared to (1.19) in De�nition 1.8 the assumptions

on q; r; s are a little bit weaker in (2.48).

(2) Looking at [12℄, [19℄ we omitted the term (�k; uw)


;T

on the left-hand side of (2.49)

1

leading to some simpli�ations in the proof, f. Remarks 1.9 and 2.8.

Theorem 2.18. Given data F; k; g; u

0

as in De�nition 2.16 there exists some T

0

=

T

0

(�; F; k; g; u

0

) 2 (0; T ℄ and a unique very weak solution u 2 L

s

�

0; T

0

;L

q

(
)

�

of the Navier-

Stokes system (2.47). Moreover, u satis�es

u

t

2 L

s=2

lo

�

[0; T

0

);Y

�2;q

�

(
)

�

;

and the interval of existene, [0; T

0

), is determined by the ondition

�

Z

T

0

0

k�A

q

e

��tA

q

(A

�1

q

P

q

u

0

)k

s

q

dt

�

1=s

+ kFk

L

s

(0;T

0

;L

r

)

(2.50)

+k�kk

L

s

(0;T

0

;L

r

)

+ k�gk

L

s

(0;T

0

;W

�1=q;q

(�
))

� "

�

�

2�1=s

:

We note that the �rst term in (2.50) oinides with ku

0

k

J

s;q

�

exept for the interval of inte-

gration (0; T

0

) and the visosity � > 0. If T =1, the ase T

0

=1 is possible provided the data

F; k; g; u

0

are suÆiently small. Formally, (2.50) ontains the smallness ondition (2.28) in the

ase s =1 whih, however, is exluded by (2.48).

Proof of Theorem 2.18. Let (t) = 

F (t);k(t);g(t);u

0

denote the unique very weak solution

in L

s

�

0; T ;L

q

(
)

�

of the linear system

�

�t

� �� +rp = divF; div  = k in 
� (0; T );

(0) = u

0

;  = g on �
 � (0; T );

as onstruted in x2.3 when � = 1. Obviously Theorem 2.14 extends to the ase of a general

visosity � > 0, and the a priori estimate (2.39) reads as follows:

(2.51)

k�k

L

s

(0;T

0

;L

q

)

� 

��

Z

T

0

0

k�A

q

e

���A

q

(A

�1

q

P

q

u

0

)k

s

q

d�

�

1=s

+kFk

L

s

(0;T

0

;L

r

)

+ k�kk

L

s

(0;T

0

;L

r

)

+ k�gk

L

s

(0;T

0

;W

�1=q;q

(�
))

�

for every T

0

2 (0; T ℄ with a onstant  = (q; r; s;
) > 0 independent of � > 0 and T

0

.

Assume that u 2 L

s

�

0; T

0

;L

q

(
)

�

is a very weak solution of (2.47). Then ~u = u�  is a very

weak solution of the system

(2.52)

~u

t

� ��~u+rp = �div (uu); div ~u = 0 in 
� (0; T

0

)

~u = 0 at t = 0; ~u = 0 on �
� (0; T

0

)

with the right-hand side �div (uu) = �div

�

(~u+ )(~u + )

�

. Sine 2r � q, we get k(~u+ )(~u+

)(t)k

r

�  k~u+ k

2

q

for a.a t 2 (0; T

0

) and onsequently (~u+ )(~u+ ) 2 L

s=2

�

0; T

0

;L

r

(
)

�

, f.

(2.30). Hene by Theorem 2.14, ~u in (2.52) is the unique very weak solution in L

s=2

�

0; T

0

;L

q

(
)

�

and

(2.53) ~u(t) = N (~u)(t) := �

Z

t

0

A

q

e

��A

q

(t��)

A

�1

q

P

q

div (~u+ )(~u+ )(�) d�

for a.a. t 2 (0; T

0

), f. (2.46).
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To �nd ~u as the �xed point of the nonlinear map N in L

s

�

0; T

0

;L

q

(
)

�

we estimate N (~u).

Let � =

1

2

�

1

s

so that 2� +

3

q

=

3

q=2

sine

2

s

+

3

q

= 1. Then by Lemma 1.11 (4), (3) and (2.24)

kN (~u)(t)k

q

� 

Z

t

0

1

�

�(t� �)

�

1=2+�

kA

1=2��

q

A

�1

q

P

q

div (uu)(�)k

q

d�

� 

Z

t

0

1

�

�(t� �)

�

1�1=s

kA

1=2

q=2

A

�1

q=2

P

q=2

div (uu)(�)k

q=2

d�

� 

Z

t

0

1

�

�(t� �)

�

1�1=s

ku(�)k

2

q

d�:

Next we use the Hardy-Littlewood inequality, see [61, p. 103℄,

�

Z

T

0

�

�

�

Z

t

0

1

(t� �)

1�1=s

h(�) d�

�

�

�

s

dt

�

1=s

�  khk

L

s=2

(0;T )

where  = (s) > 0 is independent of T . Hene there exists a onstant  = (q; r; s;
) > 0

independent of T

0

suh that

kN (~u)k

L

s

(0;T

0

;L

q

)

�



�

1�1=s

kuk

2

L

s

(0;T

0

;L

q

)

�



�

1�1=s

�

k~uk

2

L

s

(0;T

0

;L

q

)

+ kk

2

L

s

(0;T

0

;L

q

)

�

:

By analogy, we prove for u

0

2 L

s

�

0; T

0

;L

q

(
)

�

and ~u

0

= u

0

�  that

kN (~u)�N (~u

0

)k

L

s

(0;T

0

;L

q

)

(2.54)

�



�

1�1=s

k~u� ~u

0

k

L

s

(0;T

0

;L

q

)

�

kuk

L

s

(0;T

0

;L

q

)

+ ku

0

k

L

s

(0;T

0

;L

q

)

�

:

Now we may proeed as in the proof of Theorem 2.9. Let a =



�

1�1=s

and b =



�

1�1=s

kk

2

L

2

(0;T

0

;L

q

)

.

The smallness ondition 4ab < 1 is equivalent to the estimate k�k

L

s

(0;T

0

:L

q

)

� "

�

�

2�1=s

, so that

in view of (2.51) the ondition (2.50) is suÆient to guarantee that 4ab < 1. Sine (2.51) holds

for T

0

2 (0; T ) suÆiently small (or even for T

0

= T =1), Banah's Fixed Point Theorem proves

the existene of a unique solution to the equation ~u = N (~u) in a suÆiently small losed ball of

L

s

�

0; T

0

;L

q

(
)

�

.

Let us write (2.53) in the form

A

�1

q

~u(t) = �

Z

t

0

e

��(t��)A

q

A

�1

q

P

q

div (uu)(�) d�; 0 � t � T

0

:

Then by the maximal regularity estimate (1.28) and (2.22)

k

�

A

�1

q

~u(�)

�

t

k

L

s=2

(0;T

0

;L

q

)

�  kA

�1

q

P

q

div (uu)k

L

s=2

(0;T

0

;L

q

)

�  kuuk

L

s=2

(0;T

0

;L

r

)

� 

�

k~uk

2

L

s=2

(0;T

0

;L

q

)

+ kk

2

L

s=2

(0;T

0

;L

q

)

�

so that ~u

t

2 L

s=2

�

0; T

0

;Y

�2;q

�

(
)

�

. Sine by Theorem 2.14 

t

2 L

s

�

0; T ;Y

�2;q

�

(
)

�

, we onlude

that u

t

2 L

s=2

�

0; T

0

;Y

�2;q

�

(
)

�

. Moreover, it is easily seen that u = ~u+  is a very weak solution

of the Navier-Stokes system (2.47).
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Finally we prove that u is the unique very weak solution of (2.47) in all of L

s

�

0; T

0

;L

q

(
)

�

.

Assume that v 2 L

s

�

0; T

0

;L

q

(
)

�

is also a very weak solution to (2.47). Then U = u � v 2

L

s

�

0; T

0

;L

q

(
)

�

is a very weak solution to the system

U

t

� ��U +rP = �div (Uu+ vU); divU = 0 in 
� (0; T

0

)

U = 0 at t = 0; U = 0 on �
� (0; T

0

):

Using similar estimates as in the derivation of (2.54) we get that for all T

00

2 (0; T

0

)

kUk

L

s

(0;T

00

;L

q

)

�



�

1�1=s

kUk

L

s

(0;T

00

;L

q

)

�

kuk

L

s

(0;T

00

;L

q

)

+ kvk

L

s

(0;T

00

;L

q

)

�

(2.55)

with a onstant  > 0 independent of T

00

. Hene there exists some T

00

2 (0; T

0

) depending

on u; v suh that (2.55) is redued to the inequality kUk

L

s

(0;T

00

;L

q

)

�

1

2

kUk

L

s

(0;T

00

;L

q

)

and that

onsequently U = 0, u = v holds on [0; T

00

℄. This argument may be repeated �nitely many times

with the same T

00

on the intervals (T

00

; 2T

00

), (2T

00

; 3T

00

) et. and �nally leads to u = v on [0; T

0

).

Now the proof of Theorem 2.18 is omplete. �
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3. Regularity of Weak Solutions

Let u be a weak solution of the instationary Navier-Stokes system

(3.1)

u

t

� ��u + u � ru+rp = f; div u = 0 in 
� (0; T )

u

j

�


= 0; u(0) = u

0

at t = 0;

in the bounded domain 
 � R

3

. Besides the lassial Serrin ondition

(3.2) u 2 L

s

�

0; T ;L

q

(
)

�

; S(s; q) � 1; 2 < s � 1; 3 � q <1;

f. (1.14) in Theorem 1.5, there are numerous other assumptions of onditional regularity imposed

on spei� omponents of u, ru or ! = rotu to imply regularity of u. Most of these onditions

are related to (3.2) with a di�erent upper bound for S, f. [9℄, [42℄, [43℄, [49℄, [50℄; other

onditions have a more geometri harater, see [4℄, [10℄, [44℄, [45℄, [46℄, or are related to the

pressure [5℄, [56℄, [68℄. In the following we desribe new results of Serrin's type, i.e., we assume

u 2 L

r

�

0; T ;L

q

(
)

�

where

2

r

+

3

q

is allowed to be larger than 1 suh that u is regular loally or globally in time or

loally in spae and time. The proofs are based on a loal or global identi�ation of the weak

solution u with a very weak solution v having the same initial value at t

0

� 0 and the same

boundary value as u.

3.1. Loal in Time Regularity. In addition to the de�nition of the global regularity in

(0; T ), see (1.12), we say that u is regular at t 2 (0; T ) if there exists 0 < Æ

0

< min(t; T � t), suh

that

(3.3) u 2 L

s

�

�

t� Æ

0

; t+ Æ

0

;L

q

�

(
)

�

; S(s

�

; q

�

) = 1; 2 < s

�

<1; 3 < q

�

<1:

By analogy, u is regular in (a; b) � (0; T ), if u is regular at every t 2 (a; b). Note that in xx3.1 {

3.3 we will use the notation s

�

; q

�

for exponents satisfying S(s

�

; q

�

) = 1, but s; q if S(s; q) � 1 is

allowed.

Now our �rst result, see also [17℄, [18℄, reads as follows:

Theorem 3.1. Let 
 � R

3

be a bounded domain with boundary �
 2 C

1;1

, and let

(3.4) 2 < s

�

<1; 3 < q

�

<1; S(s

�

; q

�

) = 1;

1

3

+

1

q

�

=

1

�

; 1 � s � s

�

:

Given data

(3.5) f = divF; F 2 L

2

�

0; T ;L

2

(
)

�

\ L

s

�

�

0; T ;L

�

(
)

�

and u

0

2 L

2

�

(
);

let u be a weak solution of the Navier-Stokes system (3.1) satisfying the strong energy inequality

(1.9) on [0; T ), where 0 < T � 1.

(1) Left-side L

s

�

(L

q

�

)-ondition: If for t 2 (0; T )

(3.6) u 2 L

s

�

�

t� Æ; t;L

q

�

(
)

�

for some 0 < Æ = Æ(t) < t;

then u is regular at t.

(2) Left-side L

s

(L

q

�

)-ondition: If at t 2 (0; T )

(3.7) lim inf

Æ!0+

1

Æ

Z

t

t�Æ

ku(�)k

s

q

�

d� <1;
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then u is regular at t. Assumption (3.7) may be replaed by the essentially weaker ondition

(3.8) lim inf

Æ!0+

1

Æ

1�s=s

�

Z

t

t�Æ

ku(�)k

s

q

�

d� = 0;

whih inludes (3.6) when s = s

�

. Moreover, (3.8) is even a neessary ondition for regularity

of u at t.

(3) Global L

s

(L

q

�

)-ondition. There exists a onstant "

�

= "

�

(q

�

; s;
) > 0 independent of

u; u

0

; f and � with the following property: If u

0

2 L

q

�

�

(
), u 2 L

s

�

0; T ;L

q

�

(
)

�

,

(3.9)

Z

T

0

kF (�)k

s

�

�

d� � "

�

�

2s

�

�1

and

Z

T

0

ku(�)k

s

q

�

d� < "

�

�

s

�

�1

ku

0

k

s

�

�s

q

�

;

then u is regular in the sense u 2 L

s

�

�

0; T ;L

q

�

(
)

�

.

The proof of Theorem 3.1 is based on a key lemma, see Lemma 3.2, ombining the notions of

weak and very weak solutions, and on a tehnial lemma, see Lemma 3.4, from whih the results

of Theorem 3.1 and also of x3.2 will follow easily.

Lemma 3.2. In addition to the assumptions of Theorem 3.1 assume u

0

2 L

q

�

�

(
). Then there

exists a onstant "

�

= "

�

(q

�

;
) > 0 independent of u

0

; f and � with the following property: If

(3.10)

Z

T

0

kFk

s

�

�

d� � "

�

�

2s

�

�1

and

Z

T

0

ke

���A

q

�

u

0

k

s

�

q

�

d� � "

�

�

s

�

�1

;

then the Navier-Stokes system (3.1) has a unique weak solution u in the sense of Leray and Hopf

satisfying Serrin's ondition u 2 L

s

�

�

0; T ;L

q

�

(
)

�

and moreover the energy inequality (1.8).

We note that the weak solution u 2 L

s

�

�

0; T ;L

q

�

(
)

�

onstruted in Lemma 3.2 even satis�es

the energy identity (1.3), see Lemma 1.6 (1).

Proof of Lemma 3.2. Given the smallness ondition (3.10) Theorem 2.18 yields a unique

very weak solution u 2 L

s

�

�

0; T ;L

q

�

(
)

�

of (3.1). Moreover,

u(t) = (t) + ~u(t)

where  solves the instationary Stokes system with data u

0

; f in 
� (0; T ), i.e.

(3.11) (t) = e

��t A

q

�

u

0

+

Z

t

0

A

q

�

e

��(t��)A

q

�

A

�1

q

�

P

q

�

divF (�) d� ;

and where ~u solves the nonlinear equation

(3.12) ~u(t) = �

Z

t

0

A

1=2

q

�

=2

e

��(t��)A

q

�

=2

A

�1=2

q

�

=2

P

q

�

=2

div (uu) d�:

Sine F 2 L

2

�

0; T ;L

2

(
)

�

and u

0

2 L

2

�

(
), we see that  is the weak solution of the instationary

Stokes system; in partiular,

 2 L

1

�

0; T ;L

2

(
)

�

\ L

2

�

0; T ;H

1

0

(
)

�

:

The major part of the proof onerns the property

(3.13) ~u 2 L

1

�

0; T ;L

2

(
)

�

\ L

2

�

0; T ;H

1

0

(
)

�

so that u =  + ~u 2 L

s

�

�

0; T ;L

q

�

(
)

�

is a weak solution in the sense of Leray and Hopf. Hene

u satis�es the energy (in-)equality, and Serrin's Uniqueness Theorem 1.2 shows that u is the

unique weak solution with these properties.
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To prove (3.13) we reall from (2.24) that

(3.14) kA

�1=2

q

�

=2

P

q

�

div (uu)k

q

�

=2

� kuuk

q

�

=2

� kuk

2

q

�

for a.a. t 2 (0; T ):

Consequently, (3.12) implies the identity

(3.15) A

1=2

q

�

=2

~u(t) = �A

q

�

=2

�

Z

t

0

e

��(t��)A

q

�

=2

A

�1=2

q

�

=2

P

q

�

=2

div (uu) d�

�

:

Now the maximal regularity estimate (1.28), Lemma 1.11 (3) and (3.14) yield the estimate

�kr~uk

L

s

�

=2

(L

q

�

=2

)

� �kA

1=2

q

�

=2

~uk

L

s

�

=2

(L

q

�

=2

)

� kuuk

L

s

�

=2

(L

q

�

=2

)

� kuk

2

L

s

�

(L

q

�

)

(3.16)

and partiularly the result

(3.17) r~u 2 L

s

�

=2

�

0; T ;L

q

�

=2

(
)

�

:

We will onsider four ases onerning the exponent s

�

, starting with the ase 2 < s

�

< 4

(and q

�

> 6). Let s

1

= s

�

, q

1

= q

�

. Then (3.12) and (1.24) (with � =

1

2

) imply that

k~u(t)k

q

1

=2

�



p

�

Z

t

0

1

(t� �)

1=2

kuuk

q

1

=2

d�;

where kuu(�)k

q

1

=2

2 L

s

1

=2

(0; T ). Hene the Hardy-Littlewood inequality proves with

1

s

2

=

1

s

1

=2

�

1

2

; q

2

=

q

1

2

that

~u 2 L

s

2

�

0; T ;L

q

2

(
)

�

:

Here

2

s

2

+

3

q

2

= 1 sine

2

s

1

+

3

q

1

= 1, and s

2

> s

1

, q

2

< q

1

. To get the same result for , note that



1

(t) := e

��tA

q

�

u

0

2 L

1

�

0; T ;L

q

�

(
)

�

� L

s

2

�

0; T ;L

q

2

(
)

�

:

Conerning 

2

(t) = (t)� 

1

(t), the seond term on the right-hand side of (3.11), we use (1.23)

with � =

1

s

1

and onlude, sine A

�1=2

�

P

�

divF 2 L

�

(
), see (2.24), that

v := A

�1=s

1

�

A

�1=2

�

P

�

divF 2 L

s

1

�

0; T ;L

q

2

(
)

�

:

Hene 

2

(t) satis�es the estimate

k

2

(t)k

q

2

� 

�

Z

t

0

1

(t� �)

1=2+1=s

1

kv(�)k

q

2

d�;

from whih we dedue by the Hardy-Littlewood inequality that 

2

2 L

s

2

�

0; T ;L

q

2

(
)

�

; here we

used that

1

2

+

1

s

1

= 1�

�

1

s

1

�

1

s

2

�

:

Summarizing the results for 

1

and 

2

we get that  2 L

s

2

�

0; T ;L

q

2

(
)

�

so that also u 2

L

s

2

�

0; T ;L

q

2

(
)

�

and

r~u 2 L

s

2

=2

�

0; T ;L

q

2

=2

(
)

�

;

f. (3.17). Repeating this step �nitely many times, we �nally arrive at exponents s

k

2 [4;1),

q

k

2 (3; 6℄. The problem of exponents s � 4, q � 6 will be onsidered in the following three

ases.
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Now let s

�

= 4, q

�

= 6. In this speial ase (3.16) yields r~u 2 L

2

�

0; T ;L

2

(
)

�

. Sine by

(3.14)

A

�1=2

q

�

=2

P

q

�

=2

div (uu) 2 L

s

�

=2

�

0; T ;L

q

�

=2

(
)

�

� L

2

�

0; T ;L

2

(
)

�

;

we may onsider A

�1=2

q

�

=2

~u as the strong solution of the instationary Stokes system with an external

fore in L

2

�

0; T ;L

2

(
)

�

and vanishing initial value. Hene

~u = A

1=2

q

�

=2

A

�1=2

q

�

=2

~u 2 L

1

�

0; T ;L

2

(
)

�

and r~u 2 L

2

�

0; T ;L

2

(
)

�

so that u =  + ~u satis�es

u 2 L

1

�

0; T ;L

2

(
)

�

\ L

2

�

0; T ;H

1

0

(
)

�

:

Moreover, sine u 2 L

s

�

�

0; T ;L

q

�

(
)

�

, we see that uu 2 L

2

�

0; T ;L

2

(
)

�

. An elementary alula-

tion shows that u is not only a very weak solution, but also a weak one in the sense of Leray and

Hopf. Hene u is even a regular solution by Theorem 1.5 and satis�es the energy (in-)equality.

Furthermore, the uniqueness assertion follows from Theorem 1.2.

Next let 4 < s

�

� 8 (and 4 � q

�

< 6) so that (3.17) immediately yields r~u 2 L

2

�

0; T ;L

2

(
)

�

and ~u 2 L

2

�

0; T ;H

1

0

(
)

�

. Applying (1.24) and (3.14) to (3.12), H�older's inequality implies the

estimate

k~u(t)k

2

�



p

�

Z

t

0

1

(t� �)

1=2

e

��Æ(t��)

kuuk

2

d�

�



p

�

Z

t

0

1

(t� �)

1=2

e

��Æ(t��)

kuuk

q

�

=2

d�

� �

�1+2=s

�

kuuk

L

s

�

=2

(0;T ;L

q

�

=2

(
))

� �

�1+2=s

�

kuk

2

L

s

�

(0;T ;L

q

�

(
))

:

Consequently, ~u and even u belong to L

1

�

0; T ;L

2

(
)

�

. Now we omplete the proof as in the

previous ase.

Finally assume that 8 < s

�

< 1 (and 3 < q

�

< 4). Now we need �nitely many steps to

redue this ase to the former one. Let s

1

= s

�

and q

1

= q

�

. Then r~u 2 L

s

1

=2

�

0; T ;L

q

1

=2

(
)

�

by

(3.17). De�ning s

2

< s

1

, q

2

> q

1

by

s

2

=

s

1

2

;

1

3

+

1

q

2

=

2

q

1

we get by Sobolev's embedding theorem that ~u 2 L

s

2

�

0; T ;L

q

2

(
)

�

. By Lemma 1.11 we onlude

that also  2 L

s

2

�

0; T ;L

q

2

(
)

�

so that

u 2 L

s

2

�

0; T ;L

q

2

(
)

�

where again

2

s

2

+

3

q

2

= 1. Repeating this step �nitely many times, if neessary, we arrive at

exponents s

k

2 (4; 8℄, q

k

2 [4; 6), i.e. in the previous ase.

Now Lemma 3.2 is ompletely proved. �
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Corollary 3.3. In the situation of Lemma 3.2 assume that T = 1. Then there exists a

onstant "

�

= "

�

(q

�

;
) > 0 with the following property: If

Z

1

0

kFk

s

�

�

d� � "

�

�

2s

�

�1

and ku

0

k

q

�

� "

�

�;

then the Navier-Stokes system (3.1) has a unique weak solution u in 
 � (0;1) satisfying u 2

L

s

�

�

0;1;L

q

�

(
)

�

and the energy inequality.

Proof. From (1.24) with � = 0 we obtain that

Z

1

0

ke

��t A

q

�

u

0

k

s

�

q

�

dt � ku

0

k

s

�

q

�

Z

1

0

e

��s

�

Æ

0

t

dt �



�

ku

0

k

s

�

q

�

:

Now the result follows from Lemma 3.2 when using a di�erent onstant "

�

= "

�

(q

�

;
) > 0. �

The next lemma has a tehnial harater, but will immediately imply the assertions of

Theorem 3.1. We will use the notation

�

Z

b

a

h(�) d� =

1

b� a

Z

b

a

h(�) d�

for the mean value of an integral.

Lemma 3.4. Under the assumptions of Theorem 3.1 there exists a onstant "

�

= "

�

(q

�

; s;
) >

0 with the following property:

If 0 < t

0

< t � t

1

< T , 0 � � �

s

s

�

and if

(3.18)

Z

t

1

t

0

kFk

s

�

�

d� � "

�

�

2s

�

�1

and �

Z

t

t

0

(t

1

� �)

�

kuk

s

q

�

d� � "

�

�

s��

;

then u is regular in the interval (t�Æ; t

1

) for some Æ > 0 in the sense that u 2 L

s

�

�

t�Æ; t

1

;L

q

�

(
)

�

.

In partiular, if t

1

> t, then t is a regular point of u. If � = 0, then t

1

= T � 1 is allowed.

Proof. From the seond ondition in (3.18) and the fat that u satis�es the strong energy

inequality we �nd a null set N � (t

0

; t) suh that for �

0

2 (t

0

; t)nN

(3.19)

1

2

ku(�

1

)k

2

2

+ �

Z

�

1

�

0

kruk

2

2

d� �

1

2

ku(�

0

)k

2

2

+

Z

�

1

�

0

hf; uid�; �

0

< �

1

< T;

and u(�

0

) 2 L

q

�

�

(
). Now, if we �nd �

0

2 (t

0

; t)nN suh that

(3.20)

Z

t

1

��

0

0

ke

���A

q

�

u(�

0

)k

s

�

q

�

d� � "

�

�

s

�

�1

;

Lemma 3.2 will yield a unique weak solution v 2 L

s

�

([�

0

; t

1

); L

q

�

�

(
)

�

to the Navier-Stokes system

(3.1) with initial value v(�

0

) = u(�

0

) at �

0

. Then (3.19) and Serrin's Uniqueness Theorem 1.2

show that

u = v 2 L

s

�

�

�

0

; t

1

;L

q

�

�

(
)

�

and omplete the proof.

To prove (3.20) note that the seond ondition in (3.18) yields the existene of �

0

2 (t

0

; t)nN

suh that

(3.21) (t

1

� �

0

)

�

ku(�

0

)k

s

q

�

� �

Z

t

t

0

(t

1

� �)

�

ku(�)k

s

q

�

d� � "

�

�

s��

;
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otherwise (t

1

� �)

�

ku(�)k

s

q

�

is stritly larger than �

R

t

t

0

(t

1

� �)

�

kuk

s

q

�

d� for every � 2 (t

0

; T )nN ,

and we are led to a ontradition. Now, by Lemma 1.11, H�older's inequality and (3.21),

Z

t

1

��

0

0

ke

���A

q

�

u(�

0

)k

s

�

q

�

d� �

Z

t

1

��

0

0

e

�Æ

0

�s

�

�

d� ku(�

0

)k

s

�

q

�

� (t

1

� �

0

)

�s

�

=s

�

�1+�s

�

=s

ku(�

0

)k

s

�

q

�

�  "

s

�

=s

�

�

s

�

�1

:

Hene, with a new onstant "

�

= "

�

(q

�

; s;
) > 0, (3.20) is proved. If � = 0, then t

1

= T � 1 is

admitted. �

Proof of Theorem 3.1. (1) Assuming (3.6) we hoose s = s

�

, � =

s

s

�

= 1. Furthermore,

let t

0

= t� Æ, t

1

= t + Æ where Æ > 0 is hosen so small that

�

Z

t

t�Æ

(t

1

� �)kuk

s

q

�

d� � 2

Z

t

t�Æ

kuk

s

q

�

d� � "

�

�

s��

and

Z

t

t�Æ

kFk

s

�

�

d� � "

�

�

2s

�

�1

:

Then Lemma 3.4 implies that u is regular at t.

(2) Given (3.8) let t

0

= t� Æ, t

1

= t + Æ suh that with � =

s

s

�

�

Z

t

t�Æ

(t

1

� �)

�

kuk

s

q

�

d� � 2

�

1

Æ

1��

Z

t

t�Æ

kuk

s

q

�

d�:

By (3.8) we �nd Æ > 0 suh that the seond ondition of (3.18) is satis�ed. Obviously, the

ondition on F in (3.18) an be ful�lled as well. Then Lemma 3.4 proves the suÆieny of (3.8)

to imply regularity of u at t. The neessity of (3.8) is a simple onsequene of H�older's inequality.

(3) Given the initial value u

0

2 L

q

�

�

(
), Lemma 3.2 yields a unique weak solution v 2

L

s

�

�

0; Æ

1

;L

q

�

�

(
)

�

for some Æ

1

> 0 whih oinides with u on [0; Æ

1

) by Theorem 1.2. Moreover,

the elementary estimate

Z

Æ

1

0

ke

���A

q

�

u

0

k

s

�

q

�

d� �  Æ

1

ku

0

k

s

�

q

�

and (3.10) imply that we may hoose

Æ

1

=

"

�

�

s

�

�1

ku

0

k

s

�

q

�

:

In Lemma 3.4 let � =

s

s

�

, t

0

= t�

Æ

1

2

and t

1

= t+

Æ

1

2

where t � Æ

1

is arbitrary. Then

�

Z

t

t

0

(t

1

� �)

�

kuk

s

q

�

d� �

2

Æ

1��

1

Z

T

0

kuk

s

q

�

d�

whih by (3.9) is smaller than

2

�

"

�

�

s

�

�1

ku

0

k

s

�

q

�

�

s

s

�

�1

� "

�

�

s

�

�1

ku

0

k

s

�

�s

q

�

=  "

s=s

�

�

�

s�s=s

�

:
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Rede�ning "

�

, we see that (3.18) is ful�lled. Hene u is regular at every t 2 [Æ

1

; T ) by Lemma

3.4; more preisely, u is regular in

�

t � Æ(t); t +

Æ

1

2

�

. This argument ompletes the proof when

T <1.

If T = 1, applying the previous result for eah �nite interval we obtain that u 2

L

s

�

lo

�

[0;1);L

q

�

�

(
)

�

: Due to (3.9) we �nd a suÆiently large �

0

satisfying ku(�

0

)k

q�

� "

�

� and

the energy inequality (3.19). Then Corollary 3.3 yields the existene of a unique weak solution

v 2 L

s

�

�

�

0

;1;L

q

�

�

(
)

�

with v(�

0

) = u(�

0

) whih must oinide with u on [�

0

;1). This argument

proves (3). �

Corollary 3.5. Under the assumptions of Theorem 3.1 we have the following results:

(1) There exists "

�

= "

�

(q

�

; s;
) > 0 suh that u is regular for all t � T

1

where

(3.22) T

1

>

1

"

�

�

s

kuk

s

L

s

(0;1;L

q

�

(
))

provided that u 2 L

s

�

0;1;L

q

�

�

(
)

�

and

R

1

0

kFk

s

�

�

d� � "

�

�

2s

�

�1

.

(2) Assume that t 2 (0; T ) is a singular point of the weak solution u in the sense that u 62

L

s

�

�

t� Æ; t+ Æ;L

q

�

(
)

�

for any Æ > 0. Then

(3.23) lim inf

Æ!0+

1

Æ

1��

Z

t

t�Æ

kuk

s

q

�

d� > 0 for all � 2

�

0;

s

s

�

�

and even

(3.24) lim

Æ!0+

�

Z

t

t�Æ

kuk

s

q

�

d� =1:

The set of singular points of u is either empty or at least a set of Lebesgue measure zero, if

u 2 L

s

�

0; T ;L

q

�

(
)

�

.

Proof. (1) Let � = 0 in Lemma 3.4. Then by assumption

lim

t

0

!0+

�

Z

T

1

t

0

kuk

s

q

�

d� < "

�

�

s

;

and Lemma 3.4 yields the regularity of u for t � T

1

.

(2) Let t 2 (0; T ) be a singular point of u and assume that the left hand side of (3.23) is zero.

Then, setting t

0

= t � Æ; t

1

= t + Æ we onlude that there exists some suÆiently small Æ > 0

suh that (3.18) is satis�ed. Hene we get the ontradition that u is regular at t. If (3.24) does

not hold, then lim inf

Æ!0+

�

R

t

t�Æ

kuk

s

q

�

d� <1 and onsequently lim inf

Æ!0+

1

Æ

1��

R

t

t�Æ

kuk

s

q

�

d� = 0

for � 2

�

0;

s

s

�

�

whih is a ontradition to (3.23).

It is a simple onsequene of Leray's Struture Theorem, see [24℄, that the Lebesgue mea-

sure of the set of singular points in time vanishes. Here we may also argue as follows if

u 2 L

s

�

0; T ;L

q

�

�

(
)

�

. By Lebesgue's Di�erentiation Theorem

lim

Æ!0+

�

Z

t

t�Æ

kuk

s

q

�

d� = ku(t)k

s

q

�

for almost all t 2 (0; T ):

Hene (3.24) an hold only on a Lebesgue null set. �
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3.2. Energy-Based Criteria for Regularity. Let u be a weak solution in the sense of

Leray and Hopf satisfying the energy inequality. Assume that f = 0 and 0 6= u

0

2 H

1

0

(
)\L

2

�

(
)

so that there exists an interval [0; T ) on whih u is a strong solution and satis�es even the energy

identity (1.3). Then the kineti energy

E(t) =

1

2

ku(t)k

2

2

is a stritly dereasing ontinuous funtion of t 2 [0; T ). However, at t = T the energy identity

ould loose its validity; either the kineti energy has a jump disontinuity downward at t = T or

E(t) will be stritly less than the ontinuously dereasing funtion

��

Z

t

0

kru(�)k

2

2

d� + E(0)

for ertain t > T lose to T . In the �rst ase the jump must be downward sine ku(t)k

2

is lower

semiontinuous by (1.7). Assuming that ku(t)k

2

is ontinuous and dereasing in an open interval

to the right of T , there are three possibilities: E(T+) := lim

t!T+

E(t) equals either E(T ) or

E(T ) < E(T+) < E(T�);

where E(T�) := lim

t!T�

E(t), or E(T+) = E(T�). The fourth possibility E(T+) > E(T�)

is exluded sine u satis�es the energy inequality for t � T as well; if we want to exlude this

possibility at a further jump disontinuity

~

T > T , we have to use the strong energy inequality.

If u satis�es the strong energy inequality and T is an initial point in time where the energy

inequality holds (T = s in (1.9)), then neessarily E(T+) = E(T ); otherwise the other two

possibilities annot be ruled out.

E(t)

T

t

Fig 3.1 The kineti energy E(t) in the neighborhood of a jump disontinuity T

In the following assume that E(�) is ontinuous in time, so that (1.7) implies u 2

C

0

�

[0; T );L

2

�

(
)

�

rather than only u 2 L

1

�

0; T ;L

2

�

(
)

�

. Nevertheless we are not allowed to

onlude that u is a regular solution. Atually, this onlusion is related to the modulus of on-

tinuity of the funtion E(t) (or to that of the funtion t 7! ku(t)k

2

sine u 2 L

1

�

0; T ;L

2

�

(
)

�

).
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Theorem 3.6. Let 
 � R

3

be a bounded domain with boundary �
 2 C

1;1

and let u be a weak

solution of the instationary Navier-Stokes system (3.1) satisfying the strong energy inequality

on (0; T ). The data u

0

; f satisfy u

0

2 L

2

�

(
) and f 2 L

s

�

=s

�

0; T ;L

2

(
)

�

, f = divF , F 2

L

2

�

0; T ;L

2

(
)

�

\ L

s

�

�

(0; T ;L

�

(
)

�

where �; s; s

�

will be given in (3.29) below.

(1) Let � 2 (

1

2

; 1) and let u satisfy at t 2 (0; T ) the ondition

sup

t

0

6=t

jE(t)� E(t

0

)j

jt� t

0

j

�

<1

or only

(3.25) lim inf

Æ!0+

1

Æ

�

jE(t)� E(t� Æ)j <1;

where E(�) denotes the kineti energy. Then u is regular at t.

(2) (The ase � =

1

2

) There exists a onstant "

�

= "

�

(
) > 0 suh that if

sup

t

0

6=t

jE(t)� E(t

0

)j

jt� t

0

j

1=2

� "

�

�

5=2

or only

(3.26) lim inf

Æ!0+

1

Æ

1=2

jE(t)� E(t� Æ)j � "

�

�

5=2

;

then u is regular at t 2 (0; T ).

Remark 3.7. (1) By Theorem 3.6 (1), H�older ontinuity of the kineti energy E(�) from the

left at t implies regularity at t if the H�older exponent � is larger than

1

2

. In the ase � =

1

2

the

orresponding H�older seminorm (from the left) is assumed to be suÆiently small. In both ases

the funtion E(�) may be replaed by the funtion ku(�)k

2

.

(2) The proof of Theorem 3.6, see (3.30), (3.31) below, will yield the following regularity

riterion using kruk

2

instead of kuk

2

. If

� 2 (

1

2

; 1) and lim inf

Æ!0+

1

Æ

�

Z

t

t�Æ

kru(�)k

2

2

d� <1(3.27)

or

� =

1

2

and lim inf

Æ!0+

1

Æ

1=2

Z

t

t�Æ

kru(�)k

2

2

d� � "

�

�

5=2

;(3.28)

then u is regular at t.

(3) In the ase � =

1

2

a smallness ondition as in (3.26) or (3.28) is neessary. Indeed, if

f = 0 and (0; t), 0 < t <1; is a maximal regularity interval of u, then

kru(�)k

2

�



0

(t� �)

1=4

; 0 < � < t;

where 

0

= 

0

(
) > 0, see [24℄. Hene

lim inf

Æ!0+

1

Æ

1=2

Z

t

t�Æ

kruk

2

2

d� � 2 

2

0

> 0;
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and due to the strong energy inequality,

lim inf

Æ!0+

E(t� Æ)� E(t)

Æ

1=2

� 2 � 

2

0

> 0:

Proof of Theorem 3.6. (see also [15℄ for the proof of (1)). The proof is based on Lemma

3.4 with t

0

= t� Æ, t

1

= t+ Æ and the exponents

(3.29)

(

if � >

1

2

: s = 4�� " > 2;

2

s

+

3

q

�

=

3

2

;

2

s

�

+

3

q

�

= 1; � =

s

s

�

;

if � =

1

2

: s = 2; " = 0; q

�

= 6; s

�

= 4; � =

1

2

:

In both ases the weak solution u satis�es u 2 L

s

�

0; T ;L

q

�

(
)

�

, f. (1.11), and 1 �

s

s

�

=

s

4

. To

ontrol the seond term in (3.18) we will use the interpolation inequality

kuk

q

�

�  kuk

1�2=s

2

kruk

2=s

2

;  =  (q

�

;
) > 0;

and get that

I(Æ) := �

Z

t

t

0

(t

1

� �)

�

kuk

s

q

�

d� � 2

�

Æ

��1

Z

t

t�Æ

kuk

s

q

�

d�

�  Æ

�s=4

Z

t

t�Æ

kruk

2

2

kuk

s�2

2

d�(3.30)

�  kuk

s�2

L

1

(L

2

)

Æ

�s=4

Z

t

t�Æ

kruk

2

2

d� :

Sine u is supposed to satisfy the strong energy inequality, we may proeed for almost all Æ > 0

as follows:

I(Æ) �



�

Æ

�s=4

�

jE(t� Æ)� E(t)j+

�

�

�

Z

Æ

t�Æ

(f; u) d�

�

�

�

�

=



�

Æ

"=4

�

jE(t� Æ)� E(t)j

Æ

�

+

�

�

�

1

Æ

�

Z

t

t�Æ

(f; u) d�

�

�

�

�

;(3.31)

where the onstant  depends on ku

0

k

2

when � >

1

2

:

First onsider the ase � >

1

2

in whih " > 0. Then

�

�

�

1

Æ

s=4

Z

t

t�Æ

(f; u) d�

�

�

�

�



Æ

s=4

Z

t

t�Æ

kfk

2

d� � 

�

Z

t

t�Æ

kfk

4=(4�s)

2

d�

�

(4�s)=4

:

Hene, if f 2 L

4=(4�s)

�

0; T ;L

2

(
)

�

, the left-hand term in the previous inequality onverges to 0

as Æ ! 0+. Moreover, due to the assumption (3.25), the term

(3.32)



�

Æ

"=4

�

jE(t� Æ)� E(t)j

Æ

�

in (3.31) onverges to 0 as Æ ! 0+. Hene the right-hand side in (3.31) onverges to 0 as Æ ! 0+,

and the ontinuity of I(Æ) for Æ > 0 implies that the ondition (3.18)

2

an be ful�lled for some

Æ

0

> 0. Finally, the assumption F 2 L

s

�

�

0; T ;L

�

(
)

�

shows that also (3.18)

1

an be satis�ed.

Seondly, in the ase � =

1

2

(and " = 0), the assumption f 2 L

2

�

0; T ;L

2

(
)

�

implies as above

that

1

Æ

�

Z

t

t�Æ

(f; u) d� ! 0 as Æ ! 0 + :
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Moreover, the term (3.32) is bounded by 2  "

�

�

3=2

for a sequene (Æ

j

), 0 < Æ

j

! 0 as j ! 1,

due to the assumption (3.26). Hene the ontinuity of I(Æ), Æ > 0, proves that (3.18)

2

an be

satis�ed. Conerning (3.18)

1

we proeed as before.

Now Theorem 3.6 is ompletely proved. �

3.3. Loal in Spae-Time Regularity. Consider a weak solution u of the Navier-Stokes

system (3.1) in a general domain 
 � R

3

. In this subsetion we are looking for onditions

on u loally in spae and time to guarantee that u is regular loally in spae and time. The

fundamental result in this diretion is due to L. Ca�arelli, R. Kohn and L. Nirenberg [7℄ and

requires the de�nition of a suitable weak solution.

Definition 3.8. A weak solution u to (3.1) is alled a suitable weak solution if the assoiated

pressure term satis�es

(3.33) rp 2 L

q

lo

�

0;1;L

q

lo

(
)

�

with q =

5

4

and the loalized energy inequality

1

2

k'u(t)k

2

2

+ �

Z

t

t

0

k'ruk

2

2

d� �

1

2

k'u(t

0

)k

2

2

+

Z

t

t

0

('f; 'u) d�

�

1

2

Z

t

t

0

(rjuj

2

;r'

2

) d� +

Z

t

t

0

�

1

2

juj

2

+ p; u � r'

2

�

d�(3.34)

holds for almost all t

0

� 0, all t � t

0

and all ' 2 C

1

0

(R

3

).

Using a standard molli�ation proedure we obtain from (3.34) the inequality

Z


�(0;T )

jruj

2

� dx dt �

Z


�(0;T )

u � f� dx d�

+

1

2

Z


�(0;T )

juj

2

(�

t

+��) dx dt+

Z


�(0;T )

�

1

2

juj

2

+ p; u � r�

�

dx dt(3.35)

for all non-negative test funtions � 2 C

1

0

�


 � (0; T )

�

. This version of the loalized energy

inequality was used in [7℄. However, note that (3.34) is a stronger ondition than (3.35) in the

sense that the test funtions in (3.34) are not assumed to vanish in a neighborhood of �
. The

existene of a suitable weak solution satisfying (3.35) has been proved, under ertain smoothness

assumptions on the boundary �
, for a bounded domain in [7℄, for an exterior domain in [25℄,

and for a general uniform C

2

-domain in [16℄, with (3.34) instead of (3.35).

To desribe the loal regularity result from [7℄ we introdue the spae-time ylinder

Q

r

= Q

r

(x

0

; t

0

) = B

r

(x

0

)� (t

0

� r

2

; t

0

); B

r

(x

0

) = fx 2 R

3

: jx� x

0

j < rg;

for (x

0

; t

0

) 2 
� (0; T ) suh that Q

r

� 
� (0; T ). The following result is a simpli�ed version of

the loal results in [7℄, [36℄, [37℄.

Theorem 3.9. Let u be a suitable weak solution of (3.1) and let Q

r

= Q

r

(x

0

; t

0

) � 
�(0; T ),

r > 0. There exists an absolute onstant "

�

> 0 with the following property:

(1) If

(3.36) kuk

3

L

3

(Q

r

)

+ kpk

3=2

L

3=2

(Q

r

)

� "

�

r

2

;

then u 2 L

1

(Q

r=2

).
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(2) If

(3.37) lim sup

�!0

1

�

kruk

2

L

2

(Q

�

)

� "

�

then there exists r

0

> 0 with Q

r

0

� 
� (0; T ) suh that u 2 L

1

(Q

r

0

).

Remark 3.10. (1) The ondition (3.36) requires the existene of a suitable radius r > 0 and

information on u as well as on the pressure p. However, (3.37) needs information for ru only,

but on all paraboli ylinders Q

r

, r > 0 suÆiently small.

(2) The main ondition on u in (3.36), i.e. kuk

3

L

3

(Q

r

)

� "

�

r

2

, may be rewritten in the integral

mean form

�

Z

t

0

t

0

�r

2

�

Z

B

r

(x

0

)

jruj

3

dx d� � "

�

:

Obviously this ondition is satis�ed when ju(x; t)j �

"

�

r

in Q

r

. By analogy, the other terms

in (3.36) and (3.37) may be treated. Conversely, if u is not regular at (x

0

; t

0

), then we are

heuristially led to the blow-up rate

ju(x; t)j �



0

�

jx� x

0

j

2

+ jt� t

0

j

�

1=2

;



0

> 0; in a neighborhood of (x

0

; t

0

), see [7℄.

(3) The onlusion u 2 L

1

(Q

r=2

) in Theorem 3.9 does not imply that u 2 C

1

(Q

r=2

) even if

f 2 C

1

or f = 0. However, u is of lass C

1

in x, but not neessarily in t, see [57℄, [64℄. In

[36℄ it is proved that a suitable weak solution satisfying (3.37) is H�older ontinuous in spae and

time loally.

(4) In (3.37) the term ru may be replaed by its symmetri part

1

2

�

ru + (ru)

T

�

or its

skew-symmetri part

1

2

�

ru� (ru)

T

�

, i.e. by the vortiity ! = url u, see [38℄, [67℄.

(5) More general results onerning regularity riteria for suitable weak solutions using loal

smallness onditions on u;ru; urlu or r

2

u without any ondition on the pressure an be found

in [33℄. If e.g. 1 �

2

s

+

3

q

� 2 and

(3.38) lim sup

r!0

r

�(

2

s

+

3

q

�1)

kuk

L

s

(t

0

�r

2

;t

0

;L

q

(B

r

(x

0

))

� "

�

for some smallness onstant "

�

> 0, then u is regular at (x

0

; t

0

) in the sense that u is essentially

bounded in a spae time ylinder Q

r

0

(x

0

; t

0

) � 
 � (0; T ), 0 < r

0

< r. For similar results near

the boundary of 
 see [32℄.

To desribe our main result on loal spae-time regularity of suitable weak (or only weak)

solutions we use the short notation

kuk

L

s

L

q

(Q

r

)

= kuk

L

s

(t

0

�r

2

;t

0

;L

q

(B

r

(x

0

))

when Q

r

= Q

r

(x

0

; t

0

) = B

r

(x

0

) � (t

0

� r

2

; t

0

). Note that the ondition (3.39) in Theorem 3.11

below does not use the lim sup

r!0

, but requires the existene of a single suÆiently small radius

r > 0, and only norms of u, but not of ru or the pressure.

Theorem 3.11. Let 
 � R

3

be an arbitrary domain and let u be a suitable weak solution of

the Navier-Stokes system in 
� (0; T ) where for simpliity f = 0. Let 2 < s < 1, 3 < q <1

satisfy the onditions

2

s

+

3

q

� 1 +

1

q

and q � 4:
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Then there exists an absolute onstant "

�

= "

�

(s; q) > 0 independent of � > 0, x

0

2 
, t

0

2 (0; T )

and r > 0 with Q

r

(x

0

; t

0

) � 
� (0; T ) and of u with the following property: If

(3.39) kuk

L

s

L

q

(Q

r

)

� "

�

min

�

�; �

1�

1

s

�

r

2

s

+

3

q

�1

;

then u is regular in Q

r=2

in the sense

u 2 L

s

�

�

t

0

� (r=2)

2

; t

0

;L

q

�

�

B

r=2

(x

0

)

��

;

2

s

�

+

3

q

�

= 1:

Here, s

�

= 4, q

�

= 6 if s � 4; in this ase, it suÆes to assume that u is a weak solution only.

If 2 < s < 4, then s

�

; q

�

are de�ned by

2

s

�

+

3

q

= 1 +

1

q

and

2

s

�

+

3

q

�

= 1.
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1

s

1

4

1

2

S

=

3

2

S

=

1

1

q

1

4

1

3

1

2

1

6

Fig 3.2 In the hathed region (s < 4) the loalized energy inequality is needed

to prove loal regularity, in the doubly hathed region (s � 4; q � 4)

no loal version of an energy inequality is needed.

Proof. Rewriting (3.39) in the integral mean form

�

�

Z

t

0

t

0

�r

2

�

�

Z

B

r

(x

0

)

jruj

q

dx

�

s=q

ds

�

1=s

� "

�

min

�

�; �

1�

1

s

�

where "

�

from (3.39) must be replaed by

"

�

jB

1

(0)j

1=q

, H�older's inequality shows that we may replae

s; q in (3.39) by any smaller s and smaller q, respetively. In partiular, when s � 4 and q � 4,

we may assume that s = s

�

= 4; q = 4. When 2 < s < 4, then let s = s

�

satisfy

2

s

�

+

3

q

= 1 +

1

q

.

In both ases we get

(3.40) s = s

�

� q;

2

s

�

+

3

q

= 1 +

1

q

;

2

s

�

+

3

q

�

= 1;

sine q � 4. As a seond step we may assume after a shift of oordinates in spae and time that

x

0

= 0 and t

0

= 0. Next we use a saling argument and onsider

(3.41) u

r

(y; �) = ru(ry; r

2

�); p

r

(y; �) = r

2

p(ry; r

2

�)
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on Q

1

= B

1

(0)� (�1; 0) instead of (u; p) on Q

r

. Note that u

r

; p

r

solve the Navier-Stokes system

with the same visosity � and that u

r

satis�es (3.39) in the form

(3.42) ku

r

k

L

s

L

q

(Q

1

)

� "

�

min

�

�; �

1�1=s

�

:

Hene, without loss of generality, we assume that u satis�es (3.39) on Q

1

with r = 1 and s = s

�

.

The idea of the proof is to onstrut with the help of Theorem 2.18 a very weak solution v

in Q

0

= B

r

0

� (t

0

; 0) for suitable r

0

2 (

1

2

; 1) and t

0

2 (�1;�

1

2

) with data

v(t

0

) = u(t

0

); v

j

�B

r

0

= u

j

�B

r

0

and to identify v with u on Q

0

; hene

v = u 2 L

s

�

L

q

�

(Q

0

) and v = u in L

s

�

L

q

�

�

B

1=2

� (�

1

2

; 0)

�

:

t

�1

B

r

0

Q

0

B

r

0

B

1

0

�

1

2

t

0

Fig 3.3 The spae-time ylinders Q

1

and Q

0

.

For this purpose we have to �nd r

0

2 (

1

2

; 1) and t

0

2 (�1;�

1

2

) suh that the smallness onditions

Z

�t

0

0

kA

q

�

e

���A

q

�

A

�1

q

�

P

q

�

u(t

0

)k

s

�

q

�

d� � "

s

�

�

�

s

�

�1

(3.43)

Z

0

t

0

ku

j

�B

r

0

k

s

�

W

�1=q

�

;q

�

(�B

r

0

)

d� � "

s

�

�

�

s

�

�1

;(3.44)

f. (2.50), are ful�lled; here A

q

�

and P

q

�

denote the Stokes operator and the Helmholtz projetion,

respetively, on B

r

0

.
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Conerning (3.43) we �nd t

0

2 (�1;�

1

2

) satisfying

ku(t

0

)k

s

L

q

(B

1

)

� �

Z

�1=2

�1

kuk

s

L

q

(B

1

)

d� � 2 kuk

s

L

s

L

q

(Q

1

)

� 2"

s

�

�

s

:

Then Lemma 1.11 (3), (4) with � =

1

2q

,

1

q

+

3

q

�

=

3

q

, and the property

s

�

2q

=

1

q�2

< 1 imply that

Z

�t

0

0

kA

q

�

e

���A

q

�

A

�1

q

�

P

q

�

u(t

0

)k

s

�

q

�

d�

=

Z

�t

0

0

kA

1=2q

q

e

���A

q

A

�1=2q

q

P

q

u(t

0

)k

s

�

q

�

d�

� 

Z

�t

0

0

e

��Æ

0

s

�

�

(��)

s

�

=2q

ku(t

0

)k

s

�

q

d�

�



�

ku(t

0

)k

s

�

q

�  "

s

�

�

�

s�1

:

Hene (3.43) is satis�ed for a suÆiently small onstant "

�

in (3.42).

Now onsider the problem of �nding r

0

2 (

1

2

; 1) suh that (3.44) is satis�ed. By the mean

value argument as before, there exists r

0

2 (

1

2

; 1) suh that

kuk

s

�

L

s

�

(�1;0;L

q

(�B

r

0

))

=

Z

0

�1

kuk

s

�

L

q

(�B

r

0

)

d�

� �

Z

1

1=2

�

Z

0

�1

kuk

s

�

L

q

(�B

r

)

�

d� dr

= 2

Z

0

�1

�

Z

1

1=2

kuk

s

�

L

q

(�B

r

)

dr

�

d�:

Sine s

�

� q, see (3.40), we apply H�older's inequality to the inner integral and get from (3.42)

that

kuk

s

�

L

s

�

(�1;0;L

q

(�B

r

0

))

� 2

Z

0

�1

�

Z

1

1=2

kuk

q

L

q

(�B

r

)

dr

�

s

�

=q

d�

� 2

Z

0

�1

kuk

s

�

L

q

(B

1

)

d�

� 2"

s

�

�

�

s

�

�1

:

Finally, using the embedding L

q

(�B

r

0

) � W

�1=q

�

;q

�

(�B

r

0

) with an embedding onstant uniformly

bounded in r

0

2

�

1

2

; 1

�

, we get that (3.44) is satis�ed for a slightly di�erent onstant "

�

> 0.

Now Theorem 2.18 yields a unique very weak solution v in L

s

�

L

q

�

(Q

0

) with data v(t

0

) = u(t

0

)

and v = u on �B

r

0

� (t

0

; 0). For this argument it is important to note that the smallnes onstant

"

�

in the appliation of Theorem 2.18 in the spae-time domain Q

0

may be hosen independently

of r

0

2 (

1

2

; 1) and t

0

2 (�1;�

1

2

); for its proof we have to refer to the saling argument (3.41).

As the �nal step of the proof it suÆes to show that v = u on Q

0

. First onsider the ase

s � 4 in whih s

�

= 4, q

�

= 6, v 2 L

4

L

6

(Q

0

) and u 2 L

4

L

4

(Q

0

). Let  denote the very weak
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solution of the Stokes system



t

� �� +rp = 0; div  = 0 in Q

0

;

(t

0

) = u(t

0

); 

j

�B

r

0

= u

j

�B

r

0

:

By Theorem 2.14  2 L

4

L

6

(Q

0

) � L

4

L

4

(Q

0

) so that v� and u� solve the instationary Stokes

system

U

t

� ��U +rp = �div (vv) and = �div (uu) in Q

0

;

divU = 0 in Q

0

; U(t

0

) = 0; U

j

�B

r

0

= 0;

respetively. Sine vv 2 L

2

L

2

(Q

0

) and uu 2 L

2

L

2

(Q

0

), in both ases the very weak solution U

is even a weak solution satisfying the energy identity. Hene u� v = u�  � (v � ) is a weak

solution of the Stokes system

(3.45)

U

t

� ��U +rp = �div (Uu+ vU); divU = 0 in Q

0

;

U(t

0

) = 0; u

j

�B

r

0

= 0;

where Uu; vU 2 L

2

L

2

(Q

0

). Let k�k

[�;t℄

; � < t; denote the norm

kwk

[�;t℄

=

�

kwk

2

L

1

(�;t;L

2

(B

r

0

))

+ �krwk

2

L

2

(�;t;L

2

(B

r

0

))

�

1=2

:

Testing (3.45) in B

r

0

� [t

0

; t

0

+ "℄, " > 0, with U we get the estimate

(3.46) kUk

2

[t

0

;t

0

+"℄

� kUk

2

[t

0

;t

0

+"℄

kvk

L

4

(t

0

;t

0

+";L

6

(B

r

0

))

with a onstant  > 0 independent of t

0

and " > 0 as well as of U; u and v; here we used that

R

B

r

0

Uu � rU dx = 0 and that

�

�

�

Z

B

r

0

vU � rU dx

�

�

�

� krUk

2

kUk

3

kvk

6

� krUk

3=2

2

kUk

1=2

2

kvk

6

:

Sine v 2 L

4

L

6

(Q

0

), we may hoose " > 0 suÆiently small so that (3.46) yields U � 0 on

[t

0

; t

0

+ "℄. Repeating this argument a �nite number of times with the same " > 0 we onlude

that U � 0 on [t

0

; 0℄, i.e., u = v 2 L

4

L

6

(Q

0

). This proves Theorem 3.11 in the ase s � 4. Note

that u was not assumed to be a suitable weak solution in this ase.

Seondly, let 2 < s = s

�

< 4 and onsequently q > 4. In this ase an approximation proedure

is used to apply the loalized energy inequality in a similar way as in Serrin's uniqueness riterion

onerning the usual energy inequality. Moreover, regularity results for v allow to onlude that

U = u� v satis�es the inequality

1

2

kU(t)k

2

2

+ �

Z

t

t

0

krUk

2

2

d� �

Z

t

t

0

(U � rU; v) d� ;

we omit further details of these tehnial arguments. Sine v 2 L

s

�

L

q

�

(Q

r

0

), the absorption

priniple may be used to get in a �nite number of steps on onseutive intervals t

0

= t

1

< t

2

<

: : : < t

m

= 0 that u = v in Q

0

, f. (3.46). �
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Professor at Tôhoku University in Sendai from August to Otober 2007.



Bibliography

[1℄ H. Amann. Linear and Quasilinear Paraboli Equations. Birkh�auser Verlag, Basel, 1995.

[2℄ H. Amann. On the strong solvability of the Navier-Stokes equations. J. Math. Fluid Meh., 2:1{98, 2000.

[3℄ H. Amann. Nonhomogeneous Navier-Stokes equations with integrable low-regularity data. In Nonlinear prob-

lems in mathematial physis and related topis, II, pages 1{28. Kluwer/Plenum, New York, Int. Math. Ser.,

2002.

[4℄ H. Beir~ao da Veiga. On the smoothness of a lass of weak solutions to the Navier-Stokes equations. J. Math.

Fluid Meh., 2:315{323, 2000.

[5℄ H. Beir~ao da Veiga. A suÆient ondition on the pressure for the regularity of weak solutions to the Navier-

Stokes equations. J. Math. Fluid Meh., 2:99{106, 2000.

[6℄ M.E. Bogovskii. Solution of the �rst boundary value problem for the equation of ontinuity of an inom-

pressible medium. Soviet Math. Dokl., 20:1094{1098, 1979.

[7℄ L. Ca�arelli, R. Kohn, and L. Nirenberg. Partial regularity of suitable weak solutions of the Navier-Stokes

equation. Comm. Pure Appl. Math., 35:771{831, 1982.

[8℄ P. Cannarsa and V. Vespri. On maximal L

p

regularity for the abstrat Cauhy problem. Boll. Un. Mat. Ital.,

(6) 5:165{175, 1986.

[9℄ D. Chae and H.J. Choe. Regularity of solutions to the Navier-Stokes equations. Eletron. J. Di�erential

Equations, 5:1{7, 1999.

[10℄ P. Constantin and C. Fe�erman. Diretion of vortiity and the problem of global regularity for the Navier-

Stokes equations. Indiana Univ. Math. J., 42:775{789, 1993.

[11℄ L. Esauriaza, G. Seregin, and V.

�

Sver�ak. Bakward uniqueness for the heat operator in half spae. IMA

Preprint Series (Minneapolis), 1878, 2002.

[12℄ R. Farwig, G.P. Galdi, and H. Sohr. Very weak solutions of stationary and instationary Navier-Stokes

equations with nonhomogeneous data. Progress in Nonlinear Di�erential Equations and Their Appliations,

Birkh�auser Verlag Basel, 64:113{136, 2005.

[13℄ R. Farwig, G.P. Galdi, and H. Sohr. A new lass of weak solutions of the Navier-Stokes equations with

nonhomogeneous data. J. Math. Fluid Meh., 8:423{444, 2006.

[14℄ R. Farwig, G.P. Galdi, and H. Sohr. Very weak solutions and large uniqueness lasses of stationary Navier-

Stokes equations in bounded domains of R

2

. J. Di�erential Equations, 227:564{580, 2006.

[15℄ R. Farwig, Kozono H., and H. Sohr. Energy-based regularity riteria for the Navier-Stokes equations. Preprint,

FB Mathematik, TU Darmstadt, 2521, 2007.

[16℄ R. Farwig, H. Kozono, and H. Sohr. An L

q

-approah to Stokes and Navier-Stokes equations in general

domains. Ata Math., 195:21{53, 2005.

[17℄ R. Farwig, H. Kozono, and H. Sohr. Criteria of loal in time regularity of the Navier-Stokes equations beyond

Serrin's ondition. To appear in: Banah Center Publ., Warszawa, 2007.

[18℄ R. Farwig, H. Kozono, and H. Sohr. Loal in time regularity properties of the Navier-Stokes equations.

Indiana Univ. Math. J., 56:2111{2132, 2007.

[19℄ R. Farwig, H. Kozono, and H. Sohr. Very weak solutions of the Navier-Stokes equations in exterior domains

with nonhomogeneous data. J. Math. So. Japan, 59:127{150, 2007.

[20℄ R. Farwig and H. Sohr. Generalized resolvent estimates for the Stokes system in bounded and unbounded

domains. J. Math. So. Japan, 46:607{643, 1994.

[21℄ R. Farwig and H. Sohr. Existene, uniqueness and regularity of stationary solutions to inhomogeneous Navier-

Stokes equations in R

n

. To appear in: Czehoslovak Math. J., 2007.

[22℄ A. Fr�ohlih. The Stokes operator in weighted L

q

-spaes. I. Weighted estimates for the Stokes resolvent

problem in a half spae. J. Math. Fluid Meh., 5:166{199, 2003.

43



44 BIBLIOGRAPHY

[23℄ A. Fr�ohlih. The Stokes operator in weighted L

q

-spaes. II. Weighted resolvent estimates and maximal L

p

-

regularity. Math. Ann., 339:287{316, 2007.

[24℄ G.P. Galdi. An introdution to the Navier-Stokes initial value problem. In G.P. Galdi, editor, Fundamental

diretions in mathematial uid mehanis, pages 1{70. Birkh�auser Verlag, Basel, 2000.

[25℄ G.P. Galdi and P. Maremonti. Monotoni dereasing and asymptoti behavior of the kineti energy for weak

solutions of the Navier-Stokes equations in exterior domains. Arh. Rational Meh. Anal., 94:253{266, 1986.

[26℄ G.P. Galdi, Chr. Simader, and H. Sohr. A lass of solutions to stationary Stokes and Navier-Stokes equations

with boundary data in

^

W

�1=q;q

. Math. Ann., 331:41{74, 2005.

[27℄ Y. Giga. Analytiity of the semigroup generated by the Stokes operator in L

r

spaes. Math. Z., 178:297{329,

1981.

[28℄ Y. Giga. Domains of frational powers of the Stokes operator in L

r

spaes. Arh. Rational Meh. Anal.,

89:251{265, 1985.

[29℄ Y. Giga. Solutions of semilinear paraboli equations in L

p

and regularity of weak solutions of the Navier-

Stokes system. J. Di�. Equ., 62:186 { 212, 1986.

[30℄ Y. Giga and H. Sohr. Abstrat L

p

estimates for the Cauhy problem with appliations to the Navier-Stokes

equations in exterior domains. J. Funt. Anal., 102:72{94, 1991.

[31℄ G. Grubb and V.A. Solonnikov. Boundary value problems for the nonstationary Navier-Stokes equations

treated by pseudo-di�erential methods. Math. Sand., 69:217{290, 1991.

[32℄ S. Gustafson, K. Kang, and T.-P. Tsai. Regularity riteria for suitable weak solutions of the Navier-Stokes

equations near the boundary. J. Di�erential Equations, 226:594{618, 2006.

[33℄ S. Gustafson, K. Kang, and T.-P. Tsai. Interior regularity riteria for suitable weak solutions of the Navier-

Stokes equations. Commun. Math. Phys., 273:161{176, 2007.

[34℄ H. Kozono. On well-posedness of the Navier-Stokes equations. In J. Neustupa and P. Penel, editors, Mathe-

matial Fluid Mehanis. Reent results and open questions, pages 207{236. Birkh�auser, 2001.

[35℄ H. Kozono and H. Sohr. Remark on uniqueness of weak solutions to the Navier-Stokes equations. Analysis,

16:255{271, 1996.

[36℄ O.A. Ladyzhenskaya and G.A. Seregin. On partial regularity of suitable weak solutions in the three dimen-

sional Navier-Stokes equations. J. Math. Fluid Meh., 1:356{387, 1999.

[37℄ F.-H. Lin. A new proof of the Ca�arelli-Kohn-Nirenberg theorem. Comm. Pure Appl. Math., 51:241{257,

1998.

[38℄ A. Mahalov, B. Niolaenko, and G.A. Seregin. New suÆient onditions of loal regularity for solutions to

the Navier-Stokes equations. J. Math. Fluid Meh., DOI 10.1007/S00021-006-0220-z, 2006.

[39℄ A. Mikhailov and T. Shilkin. L

3;1

-solutions to the 3D-Navier-Stokes system in the domain with a urved

boundary. Zap. Nauhn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 336:133{152, 2006.

[40℄ T. Miyakawa and H. Sohr. On energy inequality, smoothness and large time behavior in L

2

for weak solutions

of the Navier-Stokes equations in exterior domains. Math. Z., 199:455{478, 1988.

[41℄ J. Neustupa. Partial regularity of weak solutions to the Navier-Stokes equations in the lass L

1

(0; T ;L

3

(
)

3

).

J. Math. Fluid Meh., 1:309{325, 1999.

[42℄ J. Neustupa, A. Novotn�y, and P. Penel. Regularity of a suitable weak solution to the Navier-Stokes equa-

tions as a onsequene of regularity of one veloity omponent, pages 391{402. Applied Nonlinear Analysis.

Kluwer/Plenum Publ. New York, 1999.

[43℄ J. Neustupa, A. Novotn�y, and P. Penel. An interior regularity of a weak solution to the Navier-Stokes

equations in dependene on one omponent of veloity. Quad. Mat., Seonda Univ. Napoli, Caserta, 10:163{

183, 2002.

[44℄ J. Neustupa and P. Penel. Anisotropi and geometri riteria for interior regularity of weak solutions to the

3D Navier-Stokes equations, pages 237{265. Adv. Math. Fluid Meh.,. Birkh�auser, 2001.

[45℄ J. Neustupa and P. Penel. The role of eigenvalues and eigenvetors of the symmetrized gradient in the theory

of the Navier-Stokes equations. C. R. Math. Aad. Si. Paris, 336:805{810, 2003.

[46℄ J. Neustupa and P. Penel. Regularity of a weak solution to the Navier-Stokes equations in dependene on

eigenvalues and eigenvetors of the rate of deformation tensor. Trends in partial di�erential equations in

mathematial physis. Progr. Nonlinear Di�erential Equations Appl., 61:197{212, 2005. Birkh�auser Basel.

[47℄ J. Ne�as. Les M�ethodes Diretes on Th�eorie des Equations Elliptiques. Aademia, Prag, 1967.

[48℄ A. Novotn�y and I. Stra�skraba. Introdution to the Mathematial Theory of Compressible Flow. Oxford Uni-

versity Press, 2004.



BIBLIOGRAPHY 45

[49℄ P. Penel and M. Pokorn�y. Some new regularity riteria for the Navier-Stokes equations ontaining gradient

of the veloity. Appl. Math., 49:483{493, 2004.

[50℄ M. Pokorn�y. A short note on regularity riteria for the Navier-Stokes equations ontaining the veloity

gradient. Regularity and other aspets of the Navier-Stokes equations, Banah Center Publ. Warsaw, 70:199{

207, 2005.

[51℄ K. Shumaher. The Navier-Stokes equations with low regularity data in weighted funtion spaes. PhD thesis,

FB Mathematik, TU Darmstadt, 2007. Online: http://elib.tu-darmstadt.de/diss/000815/.

[52℄ G.A. Seregin. Loal regularity of suitable weak solutions to the Navier-Stokes equations near the boundary.

J Math. Fluid Meh., 4:1{29, 2002.

[53℄ G.A. Seregin. On smoothness of L

3;1

-solutions to the Navier-Stokes equations up to boundary. Math. Ann.,

332:219{238, 2005.

[54℄ G.A. Seregin, T.N. Shilkin, and V.A. Solonnikov. Boundary partial regularity for the Navier-Stokes equations.

Zap. Nauhn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov (POMI), 310:158{190, 2004.

[55℄ G.A. Seregin and V.

�

Sver�ak. The Navier-Stokes equations and bakward uniqueness. IMA Preprint Series

(Minneapolis), 1852, 2002.

[56℄ G.A. Seregin and V.

�

Sver�ak. Navier-Stokes equations with lower bounds on the pressure. Arh. Rational

Meh. Anal., 163:65{86, 2002.

[57℄ J. Serrin. On the interior regularity of weak solutions of the Navier-Stokes equations. Arh. Rational Meh.

Anal., 9:187 { 195, 1962.

[58℄ J. Serrin. The initial value problem for the Navier-Stokes equations. In R.E. Langer, editor, Nonlinear

problems, pages 69{98. Univ. of Wisonsin, Madison, 1963.

[59℄ C.G. Simader and H. Sohr. A new approah to the Helmholtz deomposition and the Neumann problem

in L

q

�spaes for bounded and exterior domains. Adv. Math. Appl. Si., 11, 1992. World Sienti� Publ.,

Singapore.

[60℄ H. Sohr. Zur Regularit�atstheorie der instation�aren Gleihungen von Navier-Stokes. Math. Z., 184:359 { 375,

1983.

[61℄ H. Sohr. The Navier-Stokes Equations. An Elementary Funtional Analyti Approah. Birkh�auser Verlag,

Basel, 2001.

[62℄ H. Sohr, W. von Wahl, and M. Wiegner. Zur Asymptotik der Gleihungen von Navier-Stokes. Nahr. Akad.

Wiss. G�ott., Math.-Phys. Kl., II:45{49, 1986.

[63℄ V.A. Solonnikov. Estimates for solutions of nonstationary Navier-Stokes equations. J. Soviet Math., 8:467{

529, 1977.

[64℄ M. Struwe. On partial regularity results for the Navier-Stokes equations. Comm. Pure Appl. Math., 41:437{

458, 1988.

[65℄ H. Triebel. Interpolation Theory, Funtion Spaes, Di�erential Operators. North-Holland, Amsterdam, 1978.

[66℄ M. Wiegner. The Navier-Stokes equations: a neverending hallenge. Jber. d. Dt. Math.-Verein., 101:1{25,

1999.

[67℄ J. Wolf. A diret proof of the Ca�arelli-Kohn-Nirenberg theorem. Preprint, 2006.

[68℄ Y. Zhou. Regularity riteria in terms of the pressure for the 3-D Navier-Stokes equations in a generi domain.

Math. Ann., 328:173{192, 2004.


