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1. Introduction

In this survey paper we discuss the theory of very weak solutions to the stationary and insta-
tionary (Navier-)Stokes system in a bounded domain of R* and show how this new notion of
solutions may be used to prove regularity locally or globally in space and time of a given weak
solution.

Consider the instationary Navier-Stokes equations for a viscous incompressible fluid with
density p =1, i.e.,

u — vAu +div(uu) +Vp = f in Qx (0,7)
divu = k in Qx (0,7)
(1.1)
u = g on 02 x (0,T)
U = U att =0

for the unknown velocity u = (u1, u, u3) and pressure p in a domain 2 C R?® and a time interval
(0,7), 0 < T < oo. Here f denotes the external force (force density), ug = ug(z) the initial value,
and v > 0 is the given viscosity of the fluid. In the physical model the divergence k = divu
is assumed to vanish. However, for mathematical reasons it will be convenient in particualar
for linear problems to consider the more general case of a prescribed divergence k # 0; see also
Remark 1.9(1) below. Moreover, the boundary data g = U, is a generalization of the classical

no-slip or adhesion condition Ul = 0. Obviously, for a bounded domain, k£ and ¢ must satisfy
the necessary compatibility condition

(1.2) /kdx:/ g-Ndo;
Q 09

here N = N(z) is the external normal vector at x € 0S2, and do denotes the surface measure on
0.

This survey is organized as follows. In this Introduction (Section 1) we discuss the notions
of weak, strong, regular and very weak solutions and summarize some well-known results and
important tools. Section 2 deals with the theory of very weak solutions in the stationary and
instationary, linear and also nonlinear case. Finally, in Section 3 we consider applications of the
theory of very weak solutions to the question under which additional assumptions a given weak
solution is regular, either locally in time and globally in space or locally in time and space. The
assumptions are either beyond the classical Serrin criterion of regularity or use the kinetic energy
as a function of time.

For further surveys on the instationary Navier-Stokes equations we refer to [34], [66].



1.1. Weak Solutions in the Sense of Leray-Hopf. Let us test the Navier-Stokes system
(with £ = 0, g = 0) formally with the solution u and use integration by parts in space. Then,
since divu = 0, div (uu) = u - Vu and v = 0 on 09,

1
/Vp-ud:r:() and /(u-Vu)-uda::/u-V(—|u|2)dx:0
Q Q Q 2

so that (1.1) yields the identity
1d

5 7 13 + v IVu®)3 = (£, u)();

here (-, -) denotes the L-scalar product on €. A further integration in time on the interval (s, t)
leads to the energy identity

t t
(13) SO+ [ IVl dr = s+ [ (7 ar
for 0 < s <t <T. Assume that the external force f has the form
(1.4) f=fo+divFE, foeL'(0,T;L%(Q)), F e L*(0,T;L*Q)).
Then Young’s inequality and Gronwall’s Lemma yield the integrability properties
(1.5) u € L(0,T; L*(Q)) N Li ([0, T); Hy (2))
for every time interval (0,77). Now (1.5) serves as starting point for the definition of a weak

solution.

DEFINITION 1.1. Let  C R® be a domain, let the initial value uq belong to the space
L2(Q) = C (""", C5() = {ue C(Q) : divu =0},

and let f satisfy (1.4). Then a solenoidal vector field u satisfying (1.5) is called a weak solution
in the sense of Leray-Hopf of the instationary Navier-Stokes system (1.1) with data f,u (and
with k =0, g = 0) if

T T T
—/ (u, got)dT+1// (Vu, Vgo)d7+/ (u- Vu, )dr
0 0 0
T
(1.6) = (u0, ¢(0)) +/ (f,p)dr
0
for all test functions ¢ € C§°([0,7); C§5,(€2)).
In (1.6) (-,-) denotes the duality product of H='(Q) = H}(Q)* and H}(Q), and (-, ) is used
for measurable functions 7, ¢ on 2 in the sense (n,v) = [, n-1 dx provided n-¢ € L'(2). Note

that the same symbol, say u € C§°(£2), is used for a function as well as for vector fields or even
matrix fields.

By the Galerkin approximation method or by the theory of analytic semigroups in the space
L?(9)) using Yosida approximation arguments it is shown that the Navier-Stokes system (1.6) has
at least one weak solution in the sense of Leray-Hopf, see e.g. [24, §52-3], [61, V.3]. Moreover,
as a consequence of (1.6),

(1.7) w:[0,T)— L2(Q) is weakly continuous,

and the initial value ug is attained in the sense: (u(t), ) — (uo, ) as t — 0+ for all p € LZ(2)
and even for all p € L?(().



However, due to the selection of a weakly convergent subsequence in the construction of the
weak solution it cannot be guaranteed that u still satisfies the energy identity (1.3). The lower
semicontinuity of norms with respect to weak convergences implies only that u satisfies the energy
inequality

1 t 1 t
(1.9 S+ [ 19uldr < 5l + [ ¢ uar

rather than the energy identity (1.3). It is not clear whether any weak solution u according
to Definition 1.1 does satisfy the energy inequality. However, each known construction method
yields a weak solution satisfying (1.8).

If the domain 2 C R? is bounded, the compact embedding H}(Q) C L*(2) allows to construct
a weak solution u satisfying also the strong energy inequality

1 ! 1 ¢
(1.9) 5 @3 + v / IVull3dr < 5 llus)[3 + / (f,u) dr

for almost all s € [0,7) including s = 0 and for all ¢t € [s,T), see e.g. [61, Theorem V.3.6.2].
For unbounded domains the compactness argument is no longer available and more sophisticated
tools based on maximal regularity, see §1.4 below, are needed to prove the existence of a weak
solution satisfying the strong energy inequality; see [40], [62] for exterior domains and [16] for
general unbounded domains with uniform C2-regularity of the boundary.

Using (1.5) and the embedding Hj(Q) C L°(Q2), we obtain for a weak solution u the space-
time integrability v € L* (0, T, Lq(Q)) for the pairs of exponents s = 00, ¢ = 2 and s = 2, ¢ = 6,
satisfying both the condition

2 3 3

1.10 Syi=2
(1.10) st

More generally, using the so-called Serrin number

2 3
825(87Q):g+5 for 8,(]6[1,00],

Holder’s inequality yields

3
(1.11) u € LS(O,T; Lq(Q)) when S = 2 2< 8, q< 00,

see [61, Lemma V.1.2.1]. However, it is an open problem whether a weak solution with S = 2 is

2
unique. But the uniqueness is known if § < 1.

THEOREM 1.2. Let Q C R? be any domain, and let u,v be weak solutions of the Navier-Stokes
system (1.1) with the same data f,uy (and with k =0, g =0). Assume that u satisfies the energy
inequality (1.8) and that

vE LS(O,T; Lq(Q)) where  S(s,q) <1,2<s<00,3<¢q<o0.
Then u = v.

For a proof we refer to [58]. The same result holds in the limit case s = 0o, ¢ = 3 when
Q2 C R? is a bounded or exterior domain with boundary of class C?, see [35].



1.2. Regular Solutions. One of the seven Millennium Problems of Clay Mathematics In-
stitute in 2000 is the question whether a weak solution of the Navier-Stokes equations in a
three-dimensional domain is smooth, i.e., whether v € C* (Q X (O,T)) when f = 0 or, more
generally, f € C* (Q X (O,T)). The first step in this direction is the question whether u is a
strong solution.

DEFINITION 1.3. A weak solution u of the Navier-Stokes equations (with & = 0, g = 0) is
called a reqular solution if there exist exponents s, ¢ such that

(1.12) we L. ([0,T); LYRQ)), S(s,q) <1, 3<g<o00,2<s<o0.

For short, we say that u is regular in the sense u € Lj, ([0,T); L9(2)). Moreover, u is called a
strong solution if

(1.13) uwe L. ([0,T); Hy(Q2)) N L

loc loc([()?T);Hz(Q))'
Note that in (1.13), compared to (1.5), the regularity in space has been increased by one.
Since H}(Q2) C L8(Q), we get u € L§2 ([0,T); L5(2)) with Serrin’s number § = 1 so that u also

loc
satisfies (1.12).

The next two theorems state the local existence of a regular solution and the global regularity
of a given weak solution under an additional assumption.

THEOREM 1.4. Let Q C R? be any domain, uy € D(A;M), where Ay denotes the Stokes oper-
ator on L2(RY), see §1.4, and let f = fo+div F with fo € L*/3 (O,T; LQ(Q)), Felt (O,T; Lz(Q)).
Then there exists T' = T'(v, ug, fo, F) € (0,T) such that the Navier-Stokes equations (1.1) with
data ug, f (and with k =0, g = 0) have a uniquely determined regular solution

ue L¥0,T"; L*(Q)).

PROOF. We refer to [24] for a proof of this result for a bounded domain Q with 9Q2 € C?
when f = 0 and ug € H}(Q). In this case u even satisfies (1.13) in (0,7”). The more general
result can be found in [61, Theorem V.4.2.2]. O

THEOREM 1.5. Let  C R? be a bounded domain with 0Q) € C? and let v be a weak solution
of (1.1) with data f € L*(0,T;L*(Q)), ug € LA(Q) N H(Q), 0 < T < oo, (and with k = 0,
g = 0) satisfying
(1.14) we Ly ([0,7);LYRQ)), S(s,q) <1,2<s5<00,3<q< 00,

Then u is regular, uniquely determined by uy, f, and a strong solution.
If f e Ce (2% (0,T)) and 0Q € C*, then u € C* (2 x (0,T)).

PROOF. The classical implication from (1.14) when 2 < s < 00, 3 < ¢ < 00, i.e. from (1.12),
to (1.13) can be found in [24], see also [61, Theorem V.1.8.1]. The limit case s = 00, ¢ = 3 was
proved more recently in [11], [39] [52], [53], [54], [55] starting from a result [41] on the finite
number of singular points in time and space for a weak solution u € L*>® (0, T, L3(Q)).

Interior regularity results in the sense u € C*° (€ x (0,T’)) for every subdomain ' CC
are proved in [57], [58], [64]. Moreover, regularity up to the boundary 02 of € is shown [29],
[60]. O

At this point, several remarks are in order, for later use in § 3 and for interest in its own.
Concerning the energy identity and the energy inequality (1.8) which holds for every weak solution
constructed so far in the literature, we note that every strong and every regular solution satisfies
the energy identity, see the following Lemma 1.6.



LEMMA 1.6. Let Q C R be any domain, and let u be a weak solution of (1.1) with data
up € L2(Q), f = fo+divF, where fy € L'(0,T; L*(Q)), F € L*(0,T; L*(Q)) (and with k = 0,
g=0).
(1) Suppose additionally that

we L*(0,T; L))

or, more generally, that

(1.15) we L°(0,T;L9), S(s,q) <1, 2<s<o0, 3<g<oo.
Then u satisfies the energy identity and is strongly continuous from [0,T) to L2(£2).

(2) If also v satisfies the integrability condition (1.5), then

u-Vuv e LS(O,T;Lq(Q)), S(s,q) =4, 1<s,q<2.

PROOF. (1) The assumption u € L*(0,T; L*(2)) implies that uu € L?(0,T; L*(2)) so that
u - Vu = div (uu) may be written on the right-hand side of the equation as part of the external
force div F'. Then w can be considered as the weak solution of a (linear) instationary Stokes
system, and linear theory shows that u satisfies the energy identity.

Under the second assumption we may assume that % + % = 1. Since the given weak solution
u also satisfies u € L** (0,7 L”(Q)) where % + q% =2 and since 2 + 2 = 2 € (1,2), Holder’s
inequality easily implies that u € L*(0,T’; L*(Q2)), for details see [61, V.1.4]

(2) The proof is based on embedding theorems and Hélder’s inequality, see [61, Lemma
V.1.2.1]. !

REMARK 1.7. The condition (1.15) for u to satisfy the energy identity may be relaxed to the
condition that u € L*(0,T; L4(Q2)) and

1 1
(1.16) S(s,q)gmin(l—l——,l—i——), 2<s<o00, 3<g<o0.
q s

1
s

N[

=

1 1
3 2
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q

Fig 1.1. Weak and regular solutions represented by lines in the (% %)—plane. The hatched

)

region indicates the set described by (1.16) where the energy identity holds.



The proof follows the lines of [61, V.1.4]; note that the region in the (% 1)-plane described by

7S

(1.16) is the closed convex hull of the line § = 1 and the point (i, i) in the first quadrant of the
11

T Z) can be written as a convex combination of any two points

of this region and of the line S(s, q) = %, respectively; see also Fig 1.1.

(%, %)—plane. Hence the point (

For a further discussion of the energy inequality, energy identity and regularity of a weak
solution we refer to the first paragraphs of §3 as well as §3.2 and to §3.2 in general.

1.3. The Concept of Very Weak Solutions. In contrast to the definition of weak solu-
tions, see Definition 1.1, where one integration by parts in space was used, the concept of very
weak solutions allows all derivatives in space and time to be applied to the test functions. To
give a precise definition we will use the spaces of test functions (vector fields)

C5,(Q2) ={veC?*(Q) : divo =0, Vg = 0}
such that in general Vv does not vanish on 02, and
Co([0,7); CF,(2))
of solenoidal vector fields w satisfying suppw C Q x [0, T).

Given a sufficiently smooth solution u of the fully inhomogeneous Navier-Stokes system (1.1)
and test functions w € C§([0,T); CF,(€)) we are led to the identity
T T
/ (= (u,wy) — v(u, Aw) + (g, N - Vw)og — (uu, Vw)) dr = (uo, w(0)) +/ (f,w)dr
0 0

where (-,-) and (-,-)gq are pairings between corresponding spaces on € and 0f2, respectively,
see Definition 1.8 below. The term (g, N - Vw)yq is due to the inhomogeneous boundary data
g=u,, and the fact that in general the normal derivative N - Vw of w on 02 does not vanish.

Since divw = 0 for all ¢ € [0,T), the term N - Vw is purely tangential on 0€2; this fact is easily
checked when OS2 is planar. Hence, the term (g, N - Vw)gq carries only the information of the
tangential component of g = U ey Secondly we test the equation dive = & in £ x (0,7) with

test functions ¢ € Cf ((0,7'); C*(2)) and get the identity

T T
| kot = [ (= @0+ (g N w)an) dr.
0 0
This identity may be rewritten in the pointwise form
divu=4%k inQx(0,7); u-N=g-N ondQx(0,T)

giving information on divu and the normal component of v on 9. Summarizing the previous
reasoning we are led to

DEFINITION 1.8. Let  C R® be a bounded domain with C*!'-boundary, let f = div F' and
F e L*(0,T; L (), ke L#(0,T; L"(2))
g € L*(0,T; WYe4(09)),  up € TP()

where J%°(Q2) is a space of initial values to be defined below, see Definition 2.10, k, g satisfy the
compatibility condition (1.2) in the sense

(1.18) / k(f)dz = (g(t), N)oa for aa. £ € (0,7),

(1.17)



and ¢, r, s satisfy the conditions

2 3 1 1 1
(1.19) S=—-+-=1, —-+-=-, 2<s<o00,1<r<3<g<oo.
s q 3 q T

Then a vector field
uwe L’ (O,T; Lq(Q))

is called a very weak solution of the instationary Navier-Stokes system (1.1) if
T
/ (= (u,w) — v(u, Aw) + (g, N - Vw)po — (uu, Vw)) dr
0

T
= (o, w(0)) —/ (F,Vw)dr
0
for all test fields w € C5([0,T); C§ (), and additionally
(1.21) divu=k inQx(0,7), u-N=g-N ondQx(0,T).

REMARK 1.9. (1) Note that in [12], [14], [19], [21], [26] the authors considered the variational
problem

(1.20)

/0 ( — (u,wy) — v(u, Aw) + (g, N - Vw)gq — (uu, Vw) — (ku, w)) dr

= (uo, w(0)) —/0 (F,Vw)dr

instead of (1.20). The additional term (ku,w) in (1.22) or equivalently —ku on the left-hand side
of the first equation of (1.1) is due to the identity

(1.22)

u-Vu=div (vu) — ku, where k = divu.

The difference of these variational problems originates from the derivation of the Navier-Stokes
equations, see e.g. [48]. On the one hand, considering compressible fluids with density p = p(z,t)
the term (pu); + div (puu) appears in the equation for the balance of momentum; for constant
p and in the time-independent case we are left with the term div (uu) as in (1.1). On the other
hand, the term u; + u - Vu denotes the acceleration of particles and leads to the additional term
—ku in (1.1). We note that both models are unphysical, since the equation for the conservation
of mass p; + div (pu) = 0 leads to divu = 0 when the density p is constant. For the model (1.1)
the proofs of Theorems 2.9 and 2.18 below are shorter compared to the proofs in [12], [14], [19],
[21], [26], although the assumptions on k& = div u and the complexity of the proofs are the same.

(2) The conditions (1.19) on ¢, r,s are needed to give each term in (1.20) a well-defined
meaning, particularly to define the nonlinear term (uu, Vw). The exponents ¢,r are chosen
such that the embeddings W' (Q) C L9, L™(2) € W 14(Q) := W7 (Q)* (= the dual space of
Wy (Q)*, ¢ = %) and L7 (Q) € W~1(Q) hold.

(3) The information on div u can be recovered only from (1.21), but not from (1.20).

(4) Analogous definitions of very weak solutions will be given also for the stationary Stokes
and Navier-Stokes system, see §2. In these cases the conditions on ¢,r,s in (1.19) are more
general.

Before turning to theorems on existence in §2 let us discuss the main features of this concept.

e The concept of very weak solutions was introduced in a series of papers by H. Amann
[2], [3] in the setting of Besov spaces when k = 0.



e More recently this concept was modified by G.P. Galdi, C. Simader and the authors to
a setting in classical Li-spaces including the inhomogeneous data k, see [12], [13], [14],
19], [21], [26].

e By definition very weak solutions have no differentiability, neither in space nor in time,
except for the existence of the divergence k = divu € L"(Q2) for a.a. t.

e In general, a very weak solution does neither have a bounded kinetic energy in
L>=(0,T;L*(£2)) nor a finite dissipation energy in L?(0,7;H'(Q2)). In particular, a
very weak solution is not necessarily a weak solution.

e By definition, a very weak solution is contained in Serrin’s uniqueness class
Ls (O,T; Lq(Q)) with § = 1. Very weak solutions can be shown to be unique, see
§2. However, in general, the regularity of the data is too low to guarantee any kind of
regularity of the very weak solution.

e The concept of very weak solutions has been generalized by K. Schumacher to a setting
in weighted Lebesgue and Bessel potential spaces using arbitrary Muckenhoupt weights,
see [51].

e Although the data in Definition 1.8 imply no regularity for a very weak solution, the
concept may be even further generalized so that neither boundary values nor initial
values of a very weak solution can be defined, see [51] and §2.

e The concept of very weak solutions is strongly based on duality arguments concerning
the theory of strong (or regular) solutions. Therefore, the boundary regularity required
in this theory is the same as for strong solutions.

e The boundary is usually assumed to be of class C*!. Due to a new smoothing argument
in the proof of an extension theorem, see [51], it suffices to require that 9Q € C11.

1.4. Preliminaries. We summarize several auxiliary results on the Helmholtz projection
and the Stokes operator introduced for later use only for bounded domains.

LEMMA 1.10. Let Q C R® be a bounded domain with Ct-boundary and let 1 < q < co.
(1) There exists a bounded projection
P, : L1(Q) — L1()
from the space of all Li-vector fields onto the subspace
el
Lg () = G35 ()
of all solenoidal vector fields u such that the normal component u - N of u vanishes on OS2
in the weak sense. In particular,
R(Py) = LL(Q), N(P)=Gy(Q):={Vp: pe WH(Q)}.
FEvery vector field uw € L1(Q) has a unique decomposition
u=ug+ Vp, up€ LL(Q), Vpe GyQ),
satisfying
[uollg + IVPllg < cllullg
with a constant ¢ = c(q,$2) > 0.
(2) The adjoint operator (Py)* of Py equals Py, where ¢ = -4, and the dual space LU(Q)* is
isomorphic to L7 ().
PROOF. See e.g. [59]. O



LEMMA 1.11. Let Q C R? be a bounded domain with C%'-boundary and let 1 < g < co.
(1) The Stokes operator, defined by
D(A,) = W>(Q) N WU Q) N LL(Q), Au=—P,Au,
is a closed bijective operator from D(A,) C LZ(Q?) onto LL(QY). If u € D(A,) ND(A,) for
1 < p<oo, then Aju = Ayu.
(2) For 0 < a <1 the fractional powers
A7 D(A7) C LI(Q — LL(Q)
are well-defined, closed, bijective operators. In particular, the inverses A ¢ := (AZ‘)*1 are
bounded operators on L% (S2) with R(A,*) = D(Ay). The space D(AY) endowed with the

graph norm ||lull, + [[ASully, equivalent to ||Agull, for bounded domains, is a Banach space.
Moreover, for 1 >a > >0,

D(A,) C D(AY) C D(AD) C LL()
with strict dense inclusions, and (A3)* = Ag is the adjoint to Aj.

(3) The norms ||u|lw2q and ||Aqul|, are equivalent for v € D(A,). Analogously, the norms
|Vullg, |lullwie and ||Aé/2u||q are equivalent for u € D(AY?) = WHUQ) N LL(Q). More
generally, the embedding estimate

3
(1.23) |lully < c||A?;u||7 1<y <gq, 20+ 5 =—

holds for every u € D(AS); here c = c(q,7,$) > 0.

(4) The Stokes operator A, generates a bounded analytic semigroup e A« t > 0, on L1(Q).
Moreover, there exists a constant 6y = do(q,2) > 0 such that

(1.24) | A7 e My, < cem®t ||ul|, for u € LL(Q), t >0,
with ¢ = ¢(q, a, ) > 0.
PROOF. See [1], [20], [27], [28], [30], [61]. Usually these results are proved for bounded

domains with 92 € C? or even C?*, 0 < u < 1. However, a careful inspection of the proofs
shows that C'!-regularity is sufficient. O

We note that most of the results of Lemma 1.11 also hold for exterior domains Q C R?.
However, some results are more restrictive, since the Poincaré inequality on W,*?(€2) does not
hold for an exterior domain.

The next auxiliary tool concerns the instationary Stokes system

u —vAu+Vp = f, diveu=0 1in Q x (0,7)
(1.25) v = 0 on 02 x (0,7)
w(@0) = uy att=0

for data f € L*(0,77; L9(2)) and ug € LL(), 1 < 5, ¢ < oc.
Applying the Helmholtz projection P, to (1.25) we get the abstract evolution equation

(1.26) u +vAu =P, f, u(0) = uy,



where we are looking for a solution u with u(t) € D(A,). The variation of constants formula
yields the solution

t
(1.27) u(t) = e ey + / e VDA p f(r)ydr, 0<t<T < oo.
0

Conversely, the solution of (1.26) yields P,(u; —vAu— f) = 0 so that by Lemma 1.10 there exists
a function p with u, — vAu — f = —Vp, i.e., (u,p) solves (1.25). To estimate u given by (1.27)
(with up = 0) and Vp we introduce the notion of mazimal regularity.

LEMMA 1.12. Let Q C R?® be a bounded domain with CY'-boundary, let 1 < s, ¢ < o0,
f e L#(0,T;L9Q)) and ug = 0. Then the Stokes equation (1.26) has a unique solution u
satisfying the maximal regularity estimate

(1.28) [k

where ¢ = ¢(q,s,K2) > 0 is independent of v and T. Moreover, there exists a function p €
L#(0,T; Wh(Q)) such that (u,p) satisfies (1.25) and the estimate

(1.29) |[(us, Vp, IJVQU,)

PROOF. The first proof of this result for s = ¢ € (1,00) can be found in [63] and is based on
potential theory, the generalization to arbitrary s € (1,00) is a consequence of abstract theory,
see [1], [8], [30]. Different approaches are based on the theory of pseudodifferential operators
(28], [31] and on the theory of weighted estimates, see A. Frohlich [22], [23]. O

Le(o,riLa@)) + VAl s 05000y < el fllLso,r;La@)

Ls(0,1;L9()) < C||f| L#(0,T;L49(%2))-



2. Theory of Very Weak Solutions

As already outlined in §1.3 the concept of very weak solutions introduces a new class of solutions
to stationary and nonstationary Stokes and Navier-Stokes equations with data of very low reg-
ularity such that solutions may have (almost) no differentiability and no finite energy, but they
are unique even in the nonlinear case.

2.1. The Stationary Stokes System. First we consider the stationary Stokes problem
(2.1) —Au+Vp=f=divF, divu =k in Q, Ul =9

for suitable data f = div F, k and ¢ in a bounded domain Q C R* with 9Q € C%' and — for
simplicity — with viscosity v = 1. Let

Ci,(Q) = {w € C*(Q) : divw = 0, W, = 0}
denote the corresponding space of test functions.
DEFINITION 2.1. Let 1 <7 < ¢ < oo and 1 +% > 1. Given data
(2.2) FelL(Q), keL (), ge WY HQ)
satisfying the compatibility condition

(2.3) /dex = (g, N)oa,

a vector field u € L(Q) is called a very weak solution to (2.1) if
—(u, Aw) = —(g,N-Vw)sg — (F,Vw) Yw e C’g,g(ﬁ)
dive = kinQ, u-N =g-N on 0f2.
Here (1,) := [, n dx for measurable functions 7,% on Q provided 7 - ¢ € L'(Q), and (-, -)sq

denotes the evaluation of the functional g € W~/99(9Q) at the admissible test function N-Vw =
9w e W=14:7(9Q); note that N € C%'(0Q) C W'=7-4(9Q) for every ¢ € (1, 00).

(2.4)

Since N - Vw is purely tangential on 9Q for w € Cf ,(Q), the term (g, N - Vw)aq concerns
only the tangential component of g = Uy, O1 0€). Testing the equation divu = k with an

arbitrary scalar-valued test function 1 € C'(Q), we get the second and third identity in (2.4)
via the variational problem

(25) —(U, Vw) = (ka w) - <ga ¢N>an
Now let us define the functionals
(2.6) (F,wy = —(F,Vw)—{(g9,N-Vuw)sn, weE Yf’q'(Q),
' (K,w) = (k,9) = (9,9 N)an, Y e W (Q),
where

Y2(Q) = D(Ay) = W (Q) N (@) 1 L ().
Then the embeddings
WH(Q) € L7 (Q), Y (Q) € W (@),
cf. Remark 1.9 (2), and the trace estimate

19 Nllwi-1w w00y < clUllwirae oy < clldllre o



imply that

FeY,29Q) = Y27(Q)

Kew, M Q) = Wh'(Q)

However, the functionals F and K are not distributions in the classical sense on their respective

spaces of test functions, since in each case C§°(2) is not a dense subspace. Nevertheless, (2.6),
(2.7) leads to a further useful generalization of the concept of very weak solutions, see [51].

DEFINITION 2.2. Let 1 < ¢ < oo and let F € Y, 29(Q), K € W, "Y(Q2) be given. Then
u € L1(Q) is called a very weak solution of the Stokes problem with data F,IC if
—(U, A’IU) = <f7w>7 w e ngq,(Q)a
—(u, Vi) = (K,9), e W (Q).
The concept of Definition 2.2 has the drawback that any vector field v € L1(2) is the very
weak solution of the Stokes problem for suitable data F € Y;724(Q), K € W, “%(£2), namely,
(Fow) = —(u, Aw), (K, ¢) = —(u, Vi)).

Hence there is no possibility to define boundary values of u in this very general setting. However,
this concept immediately leads to the existence of a unique very weak solution using duality
arguments.

(2.7)

(2.8)

THEOREM 2.3. Let Q C R? be a bounded domain with boundary 00 € CHt, let 1 < ¢ < o0
and F € Y, 29(Q), K € Wy (Q) be given. Then the Stokes problem (2.8) has a unique very
weak solution u € L1(Q); moreover, u satisfies the estimate

(2.9) lully < ¢ (IF1ly2a0) + [1Kllyzro))
with a constant ¢ = ¢(£2,¢q) > 0.

Proor. Consider an arbitrary vector field v € L7 (). Then there exists a unique strong
solution w € Y27 (Q), ¢» € WH7(Q) of the Stokes problem

(2.10) —Aw - V¢ =v, divw =0 in Q, w|8Q:0,/wda;:O;
Q
moreover, w, ¢ linearly depend on v and
[wllwze @) + 19 llwrar@) < cllvfly
with a constant ¢ = ¢(Q, q) > 0. Now, using the duality L4(Q) = L7 (Q2)*, define u € LI(Q) by
(u,v) = (F,w) + (K, ¥)
such that
[(w,v)| < ||7'—||y;2’q(9)||w||W2,q’(Q) + ||’C||WO—1"1(Q)||¢||W1,q’(sz)
< c(IIFllyr2a) + 1K) 10y

Hence u satisfies the a priori estimate (2.9).

To show that u is a very weak solution to the data F, K, choose arbitrary test functions
w € Y29 (Q) and o € W () and define v = —Aw — Vip € L7 (). Then

(v, =Aw) = (u, Vi) = (u,v) = (F,w) + (K, 1),
i.e., (2.8) is satisfied.



To prove uniqueness, let u € L9(Q) satisfy (2.8) with F =0, K = 0. Then for all v € L (Q)
and corresponding solutions w € Y27 (Q), ¢» € WH7'(Q) of (2.10) we get
(u,v) = (u, —Aw) — (u, Vi) = (F,w) + (K, ) = 0.
Thus u = 0. U

We note that the proof of Theorem 2.3 was based on duality arguments related to the (strong)
Stokes operator

Ag 1 Y20 (Q) = LE(9Q)
where Ay = —P,A is considered as a bounded bijective operator from Y4 (Q) C W27 (),
equipped with the norm of W2 (Q), onto L (Q2), and to its adjoint
(Ag)": L3(Q) = Y, 1(Q),
which defines an isomorphism as well.

To return to Definition 2.1 of very weak solutions and to interpret their boundary values let
us introduce the notion of normal and tangential components of (R3-valued) traces on 92 and
of functionals on 9. Given h = (hy, ho, hs) € W'=17:94(9Q) let

hxy =(h-N)N and h, =h—hy fora.a. z € o)
denote its normal and tangential component, respectively. Obviously
hy € W99 (00) := {p € W99 (9Q) : ¢||N on 0 ae.},
h, € WY1 (9Q) = {p € W'TVIC(0Q) : o - N =0 on 0Q ae.},
and
1hnlli-1/q 000 + [helli-1/q 0,00 < cllhlli-yqg.q 00-
Actually,
Wy (@9) @ W (00) = W (00)
as a topological and algebraic direct decomposition.
For g = (g1, 92, g3) € W/%9(982), we define the functionals

gy € ng/q,q(ag) — W;f—l/q’,q’(ag)*
g € W H09(90) = W (90"
by
(g, h)on = (g, hx)an, hy € Wy Y7 (00),
and
<gT7 hT>8Q = <g7 hT>8Q7 hT € Wrrlil/q 4 (89)7
respectively. Hence
||gN||W];1/q,q(3Q) + ||gT||W;1/q,q(3Q) < CHg“—l/q,q,@Q-

Since g € W1/94(9Q) is given, it is reasonable to extend gy from Wy"/*?(9) to W~ /94(5()

by defining (gy, h,) := 0 for all tangential traces h, € W}‘I/‘I"q'(ag) and to extend ¢, from

W, Y%9(00) to W=1/99(9Q) by defining (g, hy) := 0 for all normal traces hy € Wx 97 (9).

That way, Wy "/*%(8Q) and W, /*%(9Q)) may be considered as closed subspaces of W=1/91(5().
Hence

(2.11) g=gn+g- on W7 (9Q),



and we get the topological and algebraic decomposition

(2.12)

Wy e1(00) @ W, Ye1(90) = WH19(5Q).

Finally, we define the functional g - N € W=1/%9(9Q) by

<g . N: 1/)>3Q = <ga wN>8Q7 1/) € Wl,l/q’,q’(aQ),

satisfying ||g - N||-1/q,q.00 < ¢llg]l-1/¢,¢,00. Obviously, g+ N = gy - N and g, - N = 0. Moreover,
gy = (g - N)N formally and also in the pointwise sense when ¢ is a vector field on 0.

THEOREM 2.4. Let Q C R3 be a bounded domain with boundary of class CY', and let 1 <
r<q<oo satisfy 3 ++ > 1

(1)

(2.13)

(2)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)
(3)

(2.19)

qg = r’
Given data F, k and g asin (2.2), (2.3) there ezists a unique very weak solution u € L1((2)
of (2.4). This solution satisfies the a priori estimate

lully < e(IE + 1l + llgl-1/400)

with a constant ¢ = ¢(q,r,2) > 0.
The very weak solution u € LI(Y) in (1) has a normal trace u- N = g-N € W~1/94(9Q)

and a tangential trace component u, = g, € W;l/q’q((ﬂﬂ) in the following sense: The
normal trace u - N = g - N exists via the identity

(us N, Yoo = (k,9) + (u, Vi), v € WH(Q),
For the tangential component of the trace, u,, we use a bounded linear extension operator
E, : WV14(00) — V29 (Q)

such that
h=N-VE.(h),, foralhe WiYa7 (9Q).

Then
(ur, h) = (u, AE,(h)) = (F,VE.(h)), h € W7 (0Q),

is uniquely defined (not depending on the extension operator E, with the above proper-
ties). Moreover,

[t N -1/g,0,00
el 170 (05)
Defining the functional uy = (u-N)N € W];”""f(aQ) by (un, hn)oa == (u-N,hy - N)oq
for hy € W 97 (09), it holds in view of (2.11), (2.12)
u=uy+u,=gcW Q)

S c||gN||W1;1/q7Q(8Q)7
<

c ||g7—||WT_1/QaQ(aQ)

and
lll-t/anon < (1 Nl-samon + s ly-rnaan, )
Assume that F € Y;29(Q) and K € W, (Q) have the representations
(Fow) = —(F,Vw) = (g:,N-Vw)pa, we Y} (),
(K,v) = (k) = (9,¥)oq, Y € WH(Q),



respectively, with
FkeL'(Q) and g, € W7V9(0Q), g € WY29(9Q).

Then F, g, and k,g are uniquely determined by F and IC, respectively; see the proof
below for details concerning the uniqueness of F'.

Proor. (1) Given F.k,g as in (2.2), (2.3) define F, K as in (2.6), and let u € L(2) be the
unique very weak solution of (2.8) due to Theorem 2.3. In view of (2.6), (2.9) u satisfies (2.13).

(2) Testing in (2.8), with ¢ € C§°(Q2) we see from (2.6), that divu = k € L"(€2) in the sense
of distributions. Since u € L9(€2) C L"(2), a classical result implies that u has a normal trace
u-N € W=/r(9) which by (2.6),, (2.8)y coincides with g - N € W~1/24(9Q).

Concerning the tangential trace we first construct the extension operator E,. Let h €
W=1/44 (9Q). Then we find wy, = Ey(h) € W27 (Q) N W7 () such that

wh|m:0 and N -Vuw, = h;

moreover, wy depends linearly and continuously on h. The existence of an extension operator £
with these porperties is well-known in the case of bounded domains with boundary of class C%1,
see [47], [65]. However, a mollification procedure, see [51], allows this extension even in the case
when 09 € C! only. Next, assume that » € W, 777 (99). Then an easy calculation shows
that divwy|, = 0 so that divw, € W (€) and Jodivw, dz = 0. Next we need properties
of Bogovskii’s operator concerning the divergence problem ([6], [61]): There exists a bounded
linear operator

B:{fe Wl (Q) : /Qfd:r =0} — w2 ()

such that div Bf = f for these f. Now we define the extension operator £, = E; — B o Fj.
Obviously, E, is a bounded operator from W, "9 (9Q) to W2« (Q) such that E,(h) = 0 on
0 and div E,(h) = 0 in , i.e. E.(h) € Y7 (Q). Moreover, N - VE,(h) = N - Vw, = h on 0
due to the properties of B.

Let h € W;_l/q,’q’(GQ). Then we use w = E,(h) € Y7 () as a test function in (2.8); to see
that

—(u, AE-(h)) = (F,E-(h))

= —(F,VE;(h)) = {(g,N - VE.(h))sq

- _(F7 VET(h)) - <g7'7 h>8Q
With u, := g, the former identity coincides with (2.15) and does not depend on the particular
choice of the extension operator F;.

(3) It suffices to consider F, g, or k,g such that F = 0 or K = 0, respectively. If £ = 0

so that 0 = (k, ) — (,1)aq for all 1p € W4 (Q), then k = 0 since we may consider the dense
subset C$°(Q) of L™ (Q) for the test functions . Hence 0 = (§,)aq for all ¢ € W (Q) and

consequently g = 0.
Now let F = 0 so that, using the notation f = div F',

(2.20) 0= (f,w) — (g, N - Vw)yo for all w € Y>7(Q).

Hence
(fyw)y=0 forall we CF, (),



and a classical theorem on weak solutions of the Stokes problem proves that f = Vp with
p € L7(Q). Therefore,

—(F,Vw) = (f,w) = (Vp,w) = —/p divwdr =0
0
for all w € Y7 (2) and even for all w € WOI;J(Q) = W (Q) N LY (Q). In this sense F =0 and
f =0, and (2.20) implies that
(grs N - Vo =0 for all w € Y7 ().
Using the operator E, we get that (g,,h)aq = 0 for all h € Wffl/q,’ql(ﬂ) and hence g, =0. O

Let us introduce a further notation for very weak solutions of the Stokes system which will
be helpful in the analysis of nonstationary problems, see §§2.3 - 2.4.

DEFINITION 2.5. For f € Y729(Q) let A;'P,f denote the unique vector field in LZ()

satisfying
(A;'P,f.v) = (f,A'v) for all v e LL(Q),

or, equivalently, with v = Ay w,
(2.21) (A" Pf, Agw) = (f,w) for allw € Y27(Q).

REMARK 2.6. (1) Formally, every gradient field Vp, p € L7 (), vanishes when being consid-
ered as an element of Y,7%9((2). In this sense we have to identify two elements f, f' € Y724(Q)
when f — f'is a gradient field, or, formally, when P,f = P,f'. The notation P,f and A/ 'P,f in

Definition 2.5 is formal and indicates that only solenoidal test functions v are used.
(2) Since A, 'P,f € L%(Q) for f € Y,729(Q2), (2.21) also reads

—(A;'P,f, Aw) = (f,w) for all w € Y27 (Q).
Hence Aq_quf is the unique very weak solution of (2.8) with F = f and K =0, i.e.,
A;qu Y, 2(Q) — L)
is the corresponding bounded solution operator. In particular,
(2.22) |A, ' Pdiv Fl, < c||F|l,, F e L (),

by (2.6), (2.7), (2.13) when using F = f =div F.
(3) Let us discuss the relation of Definition 2.5 to the weak Stokes problem. Given F' € L?((2),

1 < p < 00, there exists a unique weak solution u € W()l(f(Q) = D(A,l/z) such that
(Vu, Vo) = (div F,v) = —(F, Vv) for all Wy7 (Q)
(2.23) IVull, <cllE],
where ¢ = ¢(p, ) > 0. Using as a test function v € Y>*'(Q2) we get that
(div F,v) = —(u, Av) = (u, Ayv).

Hence u coincides with the unique very weak solution A P, div F' € L/ (Q), and we conclude
that A;'P, div F € D(A}/%), and, from (2.23), that

(2.24) |AY2 471 P, div F|, < c|[F|l,



where ¢ = ¢(p,2) > 0. For short, we will write A;1/2Pp div F' = A;/2A;1Pp div F' so that (2.24)
reads
14,2 P, div F, < c||F],
2.2. The Stationary Navier-Stokes System.

DEFINITION 2.7. Let 1 < r, ¢ < oo satisfy % < % < % + % and let the data Fk, g be given

as in (2.2), (2.3). Then u € L(Q) is called a very weak solution of the stationary Navier-Stokes
system

(2.25) —vAu +div (uu) + Vp=f =divF, divu=Fkin Q, Ul =Y
if for all w € CF ()

(2.26) —v(u, Aw) — (uu, Vw) = —(F,Vw) — v{g, N - Vw)gsq

and

(2.27) divu=kinQ, u-N| =g-N.

REMARK 2.8. As already noted in Remark 1.9, the variational problem (2.26) is missing the
term (ku,w) compared to the approach in [12], [14], [19], [21], [26] where the authors considered
the equation

—I/(U, A’U)) - (uua V’U)) - (ku,w) = _(F7 V’U)) o V<ga N- vw>8ﬂa
w € C’g,g(ﬁ). The only reason for this change is to keep the proofs shorter than for the model

including the term ku.

THEOREM 2.9. There exists a constant e, = £.(q,r,$2) independent of the data F,k,g and
the viscosity v > 0 with the following property:

(1) If
(2.28) 1F [l + vI[Ell: + vllgll-1/gq00 < e,
then there exists a very weak solution u € L1(QY) to the stationary Navier-Stokes system
(2.25). This solution satisfies the a priori estimate
(2.29) viully < eIl + vllEll + vllgll-1/q000)

where ¢ = ¢(q,r,€) > 0.
(2) A very weak solution u to data F,k, g is unique in L1(Q) under the smallness condition
lull, < ev.

We note that in Definition 2.7 and Theorem 2.9 we need the restrictions 2r < ¢ and ¢ > 3
in contrast to the linear case. The proof of existence (and hence of local uniqueness) is based
on Banach’s Fixed Point Theorem, whereas the proof of uniqueness in all of L?({2) requires a
bootstrapping argument; the case ¢ = 3 needs a further approximation step and will be omitted.

PRrROOF. (1) Since 2r < ¢, every vector field u € L7((2) satisfies the estimate
(2.30) luully < e lulls, < ellully.

Now, for arbitrary data F,k, g as in (2.2), (2.3), let w = S(F, k,g) € LI(Q) denote the very weak
solution of the Stokes problem (2.1) with v = 1. Then, in view of (2.30) a very weak solution

u € L9(Q2) of the Navier-Stokes system (2.25) is a fixed point of the nonlinear map
1 1 1
N(u) = S(;(F — uu),k‘,g) = S(;F,k,g) — ;S(uu,0,0).



To apply Banach’s fixed Point Theorem we estimate A (u) by using (2.30) and the a priori
estimate (2.13) for the operator S as follows:

V@l < e(GUEN + ull?) + 1kl + lgll-1/0.0.00)

(2.31)
a||u||§ +b

where a = < and b = ¢(L||F||, + |||l + |g]|-1/g.0.00). Moreover, for u,u’ € L1(Q) we get the
estimate

IV () = N@)ll, = 1158w —u'v',0,0)],

(2.32) .
< pllu=dllg(llully + [lwll)

with the same constant ¢ > 0 as above. Now consider the closed ball B, C L4(Q2) of radius p > 0
and center 0 where p is the smallest positive root of the quadratic equation y = ay? + b; for the
existence of p > 0 we need the smallness condition

4ab< 1

which is equivalent to (2.28) with a suitable constant ¢, = €,(q,r, ) > 0. Furthermore note that
p < 5= so that by (2.32)

IV (u) = N (u)lg < sllu—u'llg, u,u’ € By,

with k£ = 2ap < 1. Since N maps B, into B, by (2.31) and is a strict contraction on B,, Banach’s
Fixed Point Theorem yields a unique fixed point v € B, of N. Finally the trivial bound p < 2b
yields the a priori estimate (2.29).

(2) To prove uniqueness of a very weak solution u in L7(€2) we start with the case when ¢ > 3.
Let u,v € L1(Q) be fixed points of N. Then w = u — v is the unique very weak solution of the
linear Stokes system

(2.33) —vAw + Vp = —div (wu + vw), divw =0 in Q, wl,, =0

with ”known” right-hand side —div (wu + vw). Since u,v € LI(2) and consequently w € LI (£2)
where ¢q; = q, we get that

11 1
wu +ovw € LPH(Q), —=—-+ —.
pPrL 4 Q1
Hence w coincides with the unique weak solution of the Stokes problem (2.33) and satisfies
1 1 1 1 1 1
w € D(AY?) = Wy (Q) C LE(Q), — = — — ==+ (= — =)
(A2 = Wi (@ C L), == 5=+ (=)

If p < 2, ie., g < 4, we repeat this argument finitely many times to get in the m-th step,
m=1,2,3,..., that

weL™Q), —=-+4+m(-—2).

Since ¢ > 3, we will arrive at the property

1 1 1 2 1 1 1
wu+ow € L), —=-+—=="+m(-—=) <=
() Pmn 4 Gm q q 3 2



for sufficiently large m € N. Now we see that wu + vw € L*(2), consequently w € D(A;/Z) =

Wolf(Q), and that we may test in (2.33) with w. By these means we get that

v|Vwl? = /Qu(w-Vw)daJﬂL/

Q

w(v-Vw)de = / u(w - Vw) dz

Q

VAN

[ulls [[wlls [IVwl]ls

< cllully [Vl

Hence, under the smallness condition [|u||, < e,v we may conclude that Vw = 0 and u = v.
The limit case ¢ = 3, in which the above iteration is stationary (¢, = ¢ for all m € N),
requires a complicated approximation and smoothing argument. For details we refer to [21]. O

2.3. The Instationary Stokes System. Looking at very weak solutions u €
L? (O,T; Lq(Q)), 1 < s,q¢ < oo, of the initial-boundary value problem of the Stokes system
we carefully introduce the set of admissible initial values, J%*({2), as a subset of Y, %¢(Q). In
this subsection we set v = 1 for simplicity.

DEFINITION 2.10. Given 1 < s,q < 00 let
J(Q) = {uo €Y, 29(Q) : / | Age ™ (A, ' Pyuo) ||z dr < oo},
0

equipped with the norm

o0 . B s 1/s
Juallase = ([ NAge ™4, P )

REMARK 2.11. (1) The term || - || 72+ defines a norm on J2°(Q2): If [lugl|2s = 0, then
Aqe*tAQ(Aq*quuo) = 0 and consequently e*tAqu*quuo = 0 for a.a. t > 0; as t — 04, we
conclude that A" Pyug = 0, i.e., up = 0 as an element of Y;7>7(€2). Note that [[ug|| 72+ ) equals
the L*(0,7; L9(€2))-norm of Au(t) where u(t) denotes the strong solution of the homogeneous
instationary Stokes problem with initial value A ' Pyu, € LZ(9Q).

(2) The spaces J2*(£2) can be considered as real interpolation spaces and identified with
solenoidal subspaces of Besov spaces. Actually,

Uy € qu’S(Q) = A;lpqlbo € (D(Aq),Lg(Q))

1/s,s
and
ol zes + (|45 Pyrollg ~ (145" Pottoll(p(ag) Lo,

in the sense of norm equivalence, see [30, (2.5)], [65]. Moreover, consider the solenoidal Besov
spaces B.,*/* (2) introduced in [3, (0.6)], with the property

{ue BSY*(Q): divu =0, Ul = 0},
{ue B (Q) :divu=0, u- N|o = 0},

<2-2
BQ—Q/S (Q) —

a,5

Q= Q=

>2—2
cf. [65], where Bg;ws(ﬂ) are the usual Besov spaces. By [3, Proposition 3.4]

up € I (Q) < A, 'Pug € (D(A,), LL(Q)),,. . = B2 (Q).
(3) Consider uy € Y, %4(2) such that

(g, w)| < el| A wlly, we Y2I(Q),

1/s,s



where 0 < e < 1. Then by (1.24) uy € J2*(Q).

DEFINITION 2.12. Let 1 < s,¢ < 00,1 <r <gq, 3+ > 1,0<T < oo, let the data F,k, g
satisty

(2.34) FeL*(0,T;L7(Q)), ke L(0,T;L"(Q)), g € L*(0,T; W Y21(5¢2))
(2.35) Jo k() do = (g(t), N)aq for a.a. t € (0,T),

and let ug € J2*(2). Then u € L*(0,T; L%(2)) is called a very weak solution of the instationary
Stokes system

(2.36) u; — Au+Vp = divF, divu = kinQ x (0,7)
u(0) = wupatt=0, u = gond2x(0,T)
if
(2.37) —(u, wr)or — (v, Aw)or = (uo, w(0)) — (F, Vw)ar — (9, N - Vw)aor

divu=Fkin Qx (0,7), u-N=g-N on 0dQ x (0,7)
for all test functions w € C§([0,T); C§ ().

REMARK 2.13. (1) As shown in Theorem 2.14 below the very weak solution u €
L#(0,T; L)) of (2.36), (2.37) has the property A7'Pyu(-) € C°([0,T); LI(Q)) or equivalently,
ue C°([0,7);Y, >1(Q)). Hence the initial value u(0) = ug in (2.36), is attained in Y, 27(Q), i.e.

(u(0), w) = (ug, w) for all w € Y7 (Q),
or equivalently (A, ' Pyu)(0) = A ' Pyuq.

(2) Definition 2.12 may be extended, correspondingly to Definition 2.2, to the problem
(w, wp)ar — (u, Aw)or = (F,w)

_(ua vw)Q,T - (’C777b>
with data F € L*(0,T;Y,;21(Q2)) and K € L*(0, T; Wofl’q(Q)) and for suitable test function w
and 1, cf. [61]. Then existence and uniqueness of a very weak solution u € L? (O,T; Lq(Q))
to (2.38) is a direct consequence of duality arguments and results on the strong instationary
Stokes system in L® (0, T L"’(Q)). As in §2.1, in this very general setting neither initial values
nor boundary values of u are well-defined. Actually, every u € L* (O, T; Lq(Q)) is the very weak

solution of (2.38) for certain data F and K. However, in contrast to our approach in §2.1, we
will follow a different idea to solve (2.37).

(2.38)

THEOREM 2.14. Suppose that the data F,k,g satisfy the conditions (2.34), (2.35), and that
up € J*(Q) where 1 < s, ¢ < oo, 1 <r <g, % + % > % Then there exists a unique very weak

solution u € L* (0, T, Lq(Q)) of (2.36), satisfying
w € L°(0,T;Y,2Q)), ue C°([0,T); Y, ().

Moreover, there exists a constant ¢ = ¢(q,r, s,€) > 0 independent of T > 0 such that

[P A [—

(2.39) < c(||1F|lpsery + Nkl ory + 19| poqw-1/aagany) + luoll 2+)-



ProoOF. For almost all ¢t € (0,7T) let H(t) denote the solution of the weak Neumann problem
AH=FkinQ, N-(VH —g)=0on 0.
Since k(t) € L™(Q) C W, "%(Q2), we find a unique solution VH(t) € LI(Q) satisfying
(2.40) VH(t) € L*(0, T3 L)), [VH]|zswo) < c ([[kllzewr) + llg

LS(W—l/q’q(é’Q))) :

Moreover, for almost all ¢ € (0,7") let v(t) = Vi) kw),g) € LI(§2) denote the very weak solution
of the inhomogeneous Stokes problem

(2.41) —Avy+Vp=divF, divy =k in (, Vg = 9
satisfying the estimate
(2.42) VN ze ey < c(1F |zswry + 1EllLszry + gl o170 (a0))) -
Assume that u € L*(0,7; L)) is a very weak solution of (2.36). Obviously
Pu=u—VH and Py=v-VH foraa.te(0,T),
where P, denotes the usual Helmholtz projection on L4(€2). Thus
i:=Pu=u—VH=u—~+ Py € L*(0,T;LL(Q)).
Next let us prove that U = A;lﬂ eLs (0, T, D(Aq)) is a strong solution of the Stokes system
(2.43) Uy 4+ AU = Pyy on (0,T), U(0) = A, ' Pyuy.

For this reason consider any test function v € C§([0,7);LZ(Q)) and also w = A;lv €
Ct([0,7); Y27 (<2)). Then

—(U,v)ar + (AU, v)ar — (Pyy,v)ar
= —(@w)ar + (@, Agw)or — (Byy, Agw)or
= —(U, wt)Q,T - (U -7 Aw)Q,T;
since (VH, w;)or = 0 and div (u — ) = 0. Due to (2.41) we know that
(v, Aw)ar = —(F,Vw)ar — (9, N - Vw)sar,

so that we may proceed as follows:
— (U, v)ar + (AU, v)ar — (Pyy,v)ar
= —(u,w)ar — (v, Aw)or + (F,Vw)or + (9, N - Vw)sar
= (uo, w(0))
= (A;quuo, U(O)).

This identity, valid for all v € C*([0,T); LZ (12)), proves that U satisfies (2.43) and that U(0) =
A;'Pyuy. Moreover, by Lemma 1.12 on maximal regularity, the estimates (1.28), (2.42) and
the variation of constants formula (1.27) we know that U, € L*(0,7;L%(Q)), in particular,
U eC([0,T); LL(Q)),

¢
(2.44) U(t) = e_Aqt(Aq_IPqUO) +/ e~ A=) Py (1) dr
0



and

Uil s(zay + [|AqU|| s 2oy

T 1/s
(2.45) < o[ e g Py de) P e
0

< c(lluollges + 1F |zswry + Nkllzaery + llg

LS(W—l/q’q(OQ))) .

Since u = 4+ VH = AU + VH, we proved so far that « necessarily has the representation
t
(2.46) u=VH+ Age " (A Pyug) + /0 Age= =D Py (7) dr.

Hence u is uniquely defined by the data F) k, g and ug and satisfies (2.36) in the very weak sense,
since we may pass through the previous computations in reverse order. Finally, (2.45) and (2.46)
imply (2.39). O

REMARK 2.15. The very weak solution u € L*(0,7; L7($)) constructed in Theorem 2.14 has
a trace u|, € L? (O,T; W‘l/q’q(aQ)). Actually, since k = divu € L* (O,T; L’“(Q)), we get that
u-Nj €L (0, T; W=/r7(5€2)) and even

u-N| =g-NeL (0,75 WH21(09)).

Concerning the tangential component of u on 9 we consider h € C§((0,7T); Wffl/ql’q,(aQ)) and
w = E;(h) € C’&((O,T);Yf’q'(Q)) satisfying h = N - Vw|m, cf. Theorem 2.4. Inserting w in
(2.37) we obtain the formula

(9, Moo = (u, w)or + (u, Aw)or — (F, Vw)ar.

This formula yields a well-defined expression for the tangential component g, = g — (¢ - N)N
of the boundary values. Obviously, if u is sufficiently smooth, integration by parts shows that

Urloq = 97

2.4. The Instationary Navier-Stokes System. Let us consider the instationary Navier-
Stokes system

u — vAu+div (uu) + Vp = f, divu =k in Q x (0,7)

(2.47)
u(0) =ug at t =0, uw=gondQx (0,7).

DEFINITION 2.16. Let the data F\ k, g satisfy (2.34), (2.35) and let uy € J2°(€2) where

2 3 1 1_1

(2.48) 2<s5<00,3<qg<00, —+—-—=1 and —-+-2> -
s q r

2
> -2 —.
3 q q

Then w € L*(0,T; L9(Q)) is called a very weak solution of (2.47) if for all test functions w €
o ([0,7); G5, ()

—(U; wt)Q,T - V(U, Aw)Q,T - (UU, Vw)Q,T
(2.49) = —(F,Vw)or —v(g, N - Vw)oqar + (uo, w(0)),
divu =k in Q x (0,7), u-N|aQ =g¢-N on 9Q x (0,7).



REMARK 2.17. (1) In (2.48) we added the condition S(s,q) = 2 + % =1 in order to allow an

estimate of the nonlinear term (uu, Vw)q . Compared to (1.19) in Definition 1.8 the assumptions
on q,r,s are a little bit weaker in (2.48).

(2) Looking at [12], [19] we omitted the term (—k,uw)qr on the left-hand side of (2.49),
leading to some simplifications in the proof, cf. Remarks 1.9 and 2.8.

THEOREM 2.18. Given data F,k,g,uy as in Definition 2.16 there exists some T’ =
T'(v,F,k,g,up) € (0,T] and a unique very weak solution u € L? (O,T’;Lq(Q)) of the Navier-
Stokes system (2.47). Moreover, u satisfies

u € L0, 7 V2(9),

loc

and the interval of existence, [0,T"), is determined by the condition

v —vtA, -1 s s
(2.50) (/0 lvdge (A, Py dr) 4 | F

L*(017;L7)

+||Vk||LS(0,T’;U) + |lvgl L0175 W =104 (8)) = R

We note that the first term in (2.50) coincides with ||ugl| s« except for the interval of inte-
gration (0,7") and the viscosity v > 0. If T' = oo, the case T" = o is possible provided the data
F,k,g,up are sufficiently small. Formally, (2.50) contains the smallness condition (2.28) in the
case s = oo which, however, is excluded by (2.48).

PROOF OF THEOREM 2.18. Let v(t) = vp()k(t),9(t)uo denote the unique very weak solution
in L*(0,T; L9(2)) of the linear system
& —vAy+Vp=divF, divy =kinQx (0,7),
v(0) = wy, v =g ondQ x(0,7T),

as constructed in §2.3 when v = 1. Obviously Theorem 2.14 extends to the case of a general
viscosity v > 0, and the a priori estimate (2.39) reads as follows:

T 1/s
Il < e (( / v Age™ ™ (A7 Pyuo Il dr )
0

N E s o250y + |[VE| s 07507) + ||VQHLS(O,T';W%/q,q(aQ))

(2.51)

for every T" € (0,T] with a constant ¢ = ¢(q,r,s,) > 0 independent of v > 0 and T".
Assume that u € L*(0,1"; L9(Q2)) is a very weak solution of (2.47). Then & = u — v is a very
weak solution of the system
i —vAu+Vp = —div(uu), dive = 0in Q x (0,7")

(2.52) ; N
u = Oatt=0, o = 0on 00 x (0,1

with the right-hand side —div (vu) = —div ((@ +7)(@ +7)). Since 2r < ¢, we get ||(@+ 7)(@ +
Y (E)|lr < ¢l + 7|2 for a.a t € (0,1") and consequently (@ + ) (@ +) € L*/(0,77; L"(Q)), cf.
(2.30). Hence by Theorem 2.14, @ in (2.52) is the unique very weak solution in L?*/? (0, T’ Lq(Q))
and

(2.53) a(t) = N(a)(t) :== — /0 t Agem M AT P div (G4 ) (@ + ) (1) dT

for a.a. t € (0,7"), cf. (2.46).



To find @ as the fixed point of the nonlinear map N in L*(0,7"; L9(2)) we estimate N (a).

Let @ = £ — 1 so that 2a + % = q/% since 2 + % = 1. Then by Lemma 1.11 (4), (3) and (2.24)

V@@, < ¢ |4,/ A Py div (uu) (1) ] dr

/ot (v(t —i))”“‘“|

t
1 1/2 41 .
< c/ ALCAT P e div (uu) (T dr
. (l/(t—T))l_l/SH q/2%%q/21 4/2 ( )( )||q/2

’ /o (v(t - j_))l—l/s [u(T)||; dr.

Next we use the Hardy-Littlewood inequality, see [61, p. 103],

T t 1 s /s
(/0 ‘/0 mh(T) dT‘ dt) S (& ||h’||LS/2(0,T)

where ¢ = ¢(s) > 0 is independent of 7. Hence there exists a constant ¢ = ¢(q,r,s,) > 0
independent of 7" such that

~ C
N @llzsran < ol

2
L5(0,17;1,9)

& -
< i/ (HU’H%S(O,T’;LG) + ||7||%S(O,T';Lq)) .

By analogy, we prove for u’ € L* (O, T’ Lq(Q)) and o' = u' — v that
(2.54) V(@) = N (@) || s 0,77519)
< i = @l (lull sz + 14 o)
pi-1/

Now we may proceed as in the proof of Theorem 2.9. Let a = =7 and b = ,,1——Cl/s||7||%2(o,Tr;Lq)-

The smallness condition 4ab < 1 is equivalent to the estimate ||y||rso77:ra) < €% /%, so that
in view of (2.51) the condition (2.50) is sufficient to guarantee that 4ab < 1. Since (2.51) holds
for " € (0, T') sufficiently small (or even for 7" = T' = o0), Banach’s Fixed Point Theorem proves
the existence of a unique solution to the equation & = N (@) in a sufficiently small closed ball of
£2(0, 7' L9(Q)).

Let us write (2.53) in the form

t
Ajta(t) = — /0 e /DA A TP div (wu)(r)dr, 0 <t < T,

Then by the maximal regularity estimate (1.28) and (2.22)

(
||(Aq_la('))t||LS/2(0,T’,LQ) < C||Aq_1quiV (UU)HLSN(O,T';M)
<

¢ [luwl| psr2o201m)

IN

¢ (NalZer200;00) T IV Zer20220))

so that @, € L¥/2(0,1";Y, 24((2)). Since by Theorem 2.14 ~, € L*(0,T;Y, %(2)), we conclude
that u, € L/? (O, T'; YU_Q"I(Q)). Moreover, it is easily seen that u = @ + 7 is a very weak solution
of the Navier-Stokes system (2.47).



Finally we prove that u is the unique very weak solution of (2.47) in all of L*(0,7"; L9(£2)).
Assume that v € L*(0,77; L9((2)) is also a very weak solution to (2.47). Then U = u — v €
L#(0,T"; L4(Q2)) is a very weak solution to the system

Uy —vAU + VP = —div (Uu+vU), divU =0in Q x (0,7")
U=0att=0, U =0 ondQ x (0,1).
Using similar estimates as in the derivation of (2.54) we get that for all 7" € (0,7")

C
(2.55) 1Tl 0,500) < =7 11U

Ls(0,17;19) (||U Ls(0,17;L9) T || Ls(o,T";Lq))

with a constant ¢ > 0 independent of 7”. Hence there exists some 7" € (0,7") depending
on u,v such that (2.55) is reduced to the inequality ||U||ps,r;00) < %HU Le(o,r;ne) and that
consequently U = 0, u = v holds on [0, 7"]. This argument may be repeated finitely many times
with the same 7" on the intervals (7", 27"), (21",3T") etc. and finally leads to u = v on [0,717).
Now the proof of Theorem 2.18 is complete. O




3. Regularity of Weak Solutions

Let u be a weak solution of the instationary Navier-Stokes system
uy—vAu+u-Vu+Vp = f, dive = 0 inQx(0,7)

3.1
(3:1) 0, u(0) = up att=0,

u|6Q
in the bounded domain Q C R3. Besides the classical Serrin condition

(3.2) uwe L*(0,T; L)), S(s,q) <1,2<s<o00,3<q< o0,

cf. (1.14) in Theorem 1.5, there are numerous other assumptions of conditional reqularity imposed
on specific components of u, Vu or w = rot u to imply regularity of u. Most of these conditions
are related to (3.2) with a different upper bound for S, cf. [9], [42], [43], [49], [60]; other
conditions have a more geometric character, see [4], [10], [44], [45], [46], or are related to the
pressure [5], [56], [68]. In the following we describe new results of Serrin’s type, i.e., we assume

we L(0,T; LI())

where % + % is allowed to be larger than 1 such that u is regular locally or globally in time or

locally in space and time. The proofs are based on a local or global identification of the weak
solution u with a very weak solution v having the same initial value at t; > 0 and the same
boundary value as wu.

3.1. Local in Time Regularity. In addition to the definition of the global regularity in
(0,T), see (1.12), we say that u is reqular at t € (0,7T) if there exists 0 < ¢’ < min(¢,7 —t), such
that

(3.3) ue L (t—0,t+05L"(Q), S(se,q)=1,2<s, <00, 3<q <oo.

By analogy, u is reqular in (a,b) C (0,7, if u is regular at every ¢ € (a,b). Note that in §§3.1 —
3.3 we will use the notation s,, g. for exponents satisfying S(s.,q.) = 1, but s,q if S(s,q) > 1 is
allowed.

Now our first result, see also [17], [18], reads as follows:

THEOREM 3.1. Let Q C R?® be a bounded domain with boundary 00 € O, and let

1 1 1
(3.4) 2 <5, <00, 3<q <00, S(84q) =1, §+—:—, 1<s<s,.
4+ P
Given data
(3.5) f=divF, FeL*0,T;L*)) N L*(0,T;L7(Q)) and wuo € L2(Q),

let u be a weak solution of the Navier-Stokes system (3.1) satisfying the strong energy inequality
(1.9) on [0,T), where 0 < T < 0.

(1) Left-side L*+(L%)-condition: If fort € (0,T)
(3.6) u € L (t— 0, L*(Q)) for some 0 < §=46(t) <t,
then u is reqular at t.

(2) Left-side L*(L%)-condition: If att € (0,7T)

1 t
(3.7) lim inf g/ lu()Il, dr < oo,
t

0—0+ -5



then u is reqular at t. Assumption (3.7) may be replaced by the essentially weaker condition

1 t
(3.8) lim inf 7/ |u(7)]];. dm =0,
t—5

550+ OLl—s/s«

which includes (3.6) when s = s,. Moreover, (3.8) is even a necessary condition for reqularity
of u at t.

(3) Global L*(L%)-condition. There ezists a constant €, = £.(qs,s,2) > 0 independent of
w, ug, f and v with the following property: If ug € LT (), u € L? (O,T; Lq*(Q)),

Ssx—1

1%
||U0

Sx—s8"

T
Sdr < et and /0 u(7)|l;, dT < &
qx

(3.9) / IF(r)

then w is reqular in the sense u € L*~(0,T; L% (12)).

The proof of Theorem 3.1 is based on a key lemma, see Lemma 3.2, combining the notions of
weak and very weak solutions, and on a technical lemma, see Lemma 3.4, from which the results
of Theorem 3.1 and also of §3.2 will follow easily.

LEMMA 3.2. In addition to the assumptions of Theorem 3.1 assume ug € L% (S2). Then there
exists a constant €, = £,(qx, ) > 0 independent of ug, f and v with the following property: If

(3.10) /OT lVa

then the Navier-Stokes system (3.1) has a unique weak solution u in the sense of Leray and Hopf
satisfying Serrin’s condition u € L~ (0, T; Lq*(Q)) and moreover the energy inequality (1.8).

1

T
dr < e and / lle v Ay adr <eawt
0

We note that the weak solution u € L** (0, T L9~ (Q)) constructed in Lemma 3.2 even satisfies
the energy identity (1.3), see Lemma 1.6 (1).

PrOOF OF LEMMA 3.2. Given the smallness condition (3.10) Theorem 2.18 yields a unique
very weak solution u € L**(0,T; L% (Q)) of (3.1). Moreover,

u(t) = ~(t) + al?)
where 7y solves the instationary Stokes system with data ug, f in € x (0,7), i.e.

t
(3.11) Y(t) = e ey + /0 Ay et e AP, divF(r)dr
and where @ solves the nonlinear equation

t
(3.12) i(t) = — /0 AL e DAz A YEP, odiv (uu) dr.

Since F' € L?(0,T; L*(Q)) and ug € L2(2), we see that v is the weak solution of the instationary
Stokes system; in particular,

v € L>(0,T;L*(Q2)) N L*(0,T; Hy(2)).
The major part of the proof concerns the property
(3.13) @€ L*®(0,T; L*(Q)) N L*(0,T; Hy(2))

so that u =~y +u € L* (0, T, Lq*(Q)) is a weak solution in the sense of Leray and Hopf. Hence
u satisfies the energy (in-)equality, and Serrin’s Uniqueness Theorem 1.2 shows that u is the
unique weak solution with these properties.



To prove (3.13) we recall from (2.24) that
(3.14) 14, 5P, div (uu)llg. 2 < clluully.2 < clul2, for aa. t € (0,T).

Consequently, (3.12) implies the identity
t
/2 - (-7 ~1/2 :
(3.15) Aqf/zu(t) = —Aq*/g(/o e )A‘I*/2Aq*/2 Py, /2 div (uu) dT).
Now the maximal regularity estimate (1.28), Lemma 1.11 (3) and (3.14) yield the estimate

v||Va|
(3.16) < cflul|peer2(paerzy < cflu

1/2 ~
Ls*/2(Lq*/2) S CV||Aq*/2U| Ls*/Z(Lq*/2)

2
LS*(LLZ*)
and particularly the result
(3.17) Vi € L*/2(0,T; L/*(2)).

We will consider four cases concerning the exponent s,, starting with the case 2 < s, < 4
(and g, > 6). Let s; = s., i = ¢.. Then (3.12) and (1.24) (with o = %) imply that

N c [* 1
[a()llgr/2 < N [uwllg, /2 dr,
where [Juu(7)||q, /2 € L*+/?(0,T). Hence the Hardy-Littlewood inequality proves with
1 1 1 ¢

w2 2 2T

that
@€ L*(0,T; L=(1)).

Here % + ;’-2 = 1 since % + q% =1, and s5 > 51, ¢» < q;. To get the same result for v, note that
Yi(t) i= e Maug € L(0, 75 L% () € L*2(0,T; L%(€2)).

Concerning v2(t) = v(t) — 71(t), the second term on the right-hand side of (3.11), we use (1.23)
with o = i and conclude, since A;l/sz div F' € L*(2), see (2.24), that

vi=AJVSATIPP, div F e L (0,T; L(Q)).
Hence 7(t) satisfies the estimate

t
1
Ol < 6 | Gz Il

from which we deduce by the Hardy-Littlewood inequality that v, € L*?(0,T; L%(£2)); here we
used that %+i:1— (i—i)

Summarizing the results for 7, and v we get that v € L*2(0,7; L%(2)) so that also u €
L*2(0,T; L%(€2)) and

Vi € L*/2(0,T; L%/*()),

cf. (3.17). Repeating this step finitely many times, we finally arrive at exponents s € [4, 00),
¢t € (3,6]. The problem of exponents s > 4, ¢ < 6 will be considered in the following three
cases.



Now let s, = 4, ¢, = 6. In this special case (3.16) yields Va € L? (O,T; Lz(Q)). Since by
(3.14)

A2 Py jadiv (uu) € L*/2(0,T; L/2(Q)) < L2(0, T; L*(R)),

7= /2
we may consider A u as the strong solution of the instationary Stokes system with an external
force in L?(0,T; Lz(Q)) and vanishing initial value. Hence
a=AN A2 e 10, T; L*(Q)

4</277qx/2
and Va € L*(0,T; L*(2)) so that u = v + @ satisfies
we L>(0,T; L*(Q)) N L*(0,T; Hy(2)).

Moreover, since u € L* (0, T; L% (R)), we see that uu € L*(0,T; L*(2)). An elementary calcula-
tion shows that u is not only a very weak solution, but also a weak one in the sense of Leray and
Hopf. Hence u is even a regular solution by Theorem 1.5 and satisfies the energy (in-)equality.
Furthermore, the uniqueness assertion follows from Theorem 1.2.

Next let 4 < s, < 8 (and 4 < ¢, < 6) so that (3.17) immediately yields V& € L*(0,T’; L*())
and @ € L*(0,T; Hy(2)). Applying (1.24) and (3.14) to (3.12), Holder’s inequality implies the
estimate

0l < = [ e e fuulade
< \/—/ 1/2 7V6t g ||uu q«/2 dr
S 1+2/S* uu LS*/2(0TL41*/2( ))

IN

e ||U'||%S*(0,T;Lq* Q)

Consequently, o and even u belong to L™ (O,T; LQ(Q)). Now we complete the proof as in the
previous case.

Finally assume that 8 < s, < 0o (and 3 < ¢. < 4). Now we need finitely many steps to
reduce this case to the former one. Let s; = s, and ¢; = ¢,. Then Vi € L*/2(0,T; L%/?(2)) by
(3.17). Defining sy < s1, g2 > q1 by

51 1 1 2
S2=—, Zz+—=—
2 3 ¢ ¢
we get by Sobolev’s embedding theorem that @ € L*2 (0, T, L‘IZ(Q)). By Lemma 1.11 we conclude
that also y € L*2(0,T; L%()) so that

u e L (0,T; L=(<))

where again % + q% = 1. Repeating this step finitely many times, if necessary, we arrive at

exponents s; € (4,8], ¢z € [4,6), i.e. in the previous case.
Now Lemma 3.2 is completely proved. 0]



COROLLARY 3.3. In the situation of Lemma 3.2 assume that T = oo. Then there exists a
constant £, = £,(qs, 2) > 0 with the following property: If

|
0

then the Navier-Stokes system (3.1) has a unique weak solution u in  x (0,00) satisfying u €
L*(0,00; L% (2)) and the energy inequality.

;) dr < et and  ugll, < e,

PRrOOF. From (1.24) with v = 0 we obtain that

o0 o0 c
e el e < clually [ et < S ol
Now the result follows from Lemma 3.2 when using a different constant ¢, = €,(¢q,,Q2) > 0. O

The next lemma has a technical character, but will immediately imply the assertions of
Theorem 3.1. We will use the notation

]{bh(T)dT: bia/abh(T)dT

for the mean value of an integral.

LEMMA 3.4. Under the assumptions of Theorem 3.1 there exists a constant e, = €,(q., s,€) >
0 with the following property:
If0<t0<t§t1<T,O§B§i and if

t1 t
(3.18) / \F|ls dr < ™" and ][ (ty — 1) Julls, dr < ear?,

to to

then u is reqular in the interval (t—0,t,) for some § > 0 in the sense that u € L (t—6,t1; LT ().
In particular, if t; > t, then t is a reqular point of u. If B =0, then t; =T < 0o is allowed.

PROOF. From the second condition in (3.18) and the fact that u satisfies the strong energy
inequality we find a null set N C (tp,t) such that for 7o € (¢, 1)\N

1 n 1 ™
319) g+ [ IValEdr < Slu@)E+ [adn w<n<T,

70 70

and u(r) € LZ(2). Now, if we find 79 € (to,t)\V such that

t1—T7o0
(3.20) / e ()
0

Lemma 3.2 will yield a unique weak solution v € L**([7o, t1); L% (2)) to the Navier-Stokes system
(3.1) with initial value v(ry) = u(r) at 79. Then (3.19) and Serrin’s Uniqueness Theorem 1.2
show that

s Sx—1
q:dTge*u* ,

U=v¢c Ls* (Tg, tl, Lg* (Q))
and complete the proof.

To prove (3.20) note that the second condition in (3.18) yields the existence of 7y € (¢y, 1)\ N
such that

t
(3:21) (6= ()l < f (0= 7P Ju(r) . dr < o

to



otherwise (t; — 7)7 |Ju(7)||3, is strictly larger than ftf) (ty — 7)° ||ulls, dr for every T € (to, T)\N,
and we are led to a contradiction. Now, by Lemma 1.11, Hélder’s inequality and (3.21),

t1—7o
[ et
0

AN

t1—7o
adr < / g dovs«T dr ||u(7o) o
0

C(t1 o 7_0)65*/5 l/_1+’65*/s||u(7'0)

Sx
qx

IN

< cei*/s vl

Hence, with a new constant ¢, = £.(q., s, Q2) > 0, (3.20) is proved. If 3 =0, then t; =T < 0o is
admitted. 0

PrOOF OF THEOREM 3.1. (1) Assuming (3.6) we choose s = s., # = 2 = 1. Furthermore,
let to =t —0,t, =t+ 0 where 6 > 0 is chosen so small that

t t
][ (tr — 7)[Jul];, dr < 2/ Jul|}, dr < e P
t t—6

)
t

| e
t—4§

Then Lemma 3.4 implies that u is regular at t.
(2) Given (3.8) let tp =t — d, t; =t + ¢ such that with § = >

S

t 1 t
|yl ar <2 | Al o
t

and

f,* dr < e /L

By (3.8) we find 6 > 0 such that the second condition of (3.18) is satisfied. Obviously, the
condition on F' in (3.18) can be fulfilled as well. Then Lemma 3.4 proves the sufficiency of (3.8)
to imply regularity of u at . The necessity of (3.8) is a simple consequence of Holder’s inequality.

(3) Given the initial value uy € L% (2), Lemma 3.2 yields a unique weak solution v €
L#(0,61; LE(Q)) for some d; > 0 which coincides with u on [0,4d;) by Theorem 1.2. Moreover,
the elementary estimate

01
/ ||€7I/TAL1* i
0

and (3.10) imply that we may choose

Zi dr S 651“160

Sx
qx

g5t

- c|luo

1

Sx
qx

In Lemma 3.4 let g = i, to=1— %1 and t; =t + 52—1 where t > ¢; is arbitrary. Then

t
]{ (t, — 7)°|u 5. dT <
0

9 [T
u
<qzs )
which by (3.9) is smaller than

Se—1\ 3.1 Sx—1
E*V * Sx o _
2 <7> CEy———— = csi/s*ys s/sx

Sx—S
qx

S
7 dr




Redefining e,, we see that (3.18) is fulfilled. Hence u is regular at every ¢ € [§;,7) by Lemma
3.4; more precisely, u is regular in (¢t — 6(t),t + 52—1) This argument completes the proof when
T < 0.

If T = oo, applying the previous result for each finite interval we obtain that u €
Ly ([0,00); L& (). Due to (3.9) we find a sufficiently large 7y satisfying ||u(7o)|q« < £.v and
the energy inequality (3.19). Then Corollary 3.3 yields the existence of a unique weak solution
v € L** (79, 00; LI (€2)) with v(79) = u(79) which must coincide with u on [rp, 00). This argument
proves (3). O

COROLLARY 3.5. Under the assumptions of Theorem 3.1 we have the following results:
(1) There exists e, = £.(qx, 5,K2) > 0 such that u is regular for all t > Ty where

(322) Tl > e 18 ||u||zs(0,oo;Lq*(Q))

provided that u € L* (0, 00; L& () and [;°[|F

ordr < g 251

(2) Assume that t € (0,T) is a singular point of the weak solution w in the sense that u ¢
L (t — 0,t + 6; L(Q)) for any § > 0. Then

o 1 ! s s
(3.23) hargt}ilfél—*ﬂ /t—6 ulls.dr >0 for all 5 € |0, 3_*]
and even
¢
(3.24) 61_1}1% - |ullj. dT = oo.

The set of singular points of u is either empty or at least a set of Lebesque measure zero, if
we L*(0,T; LT ().

ProoF. (1) Let f =0 in Lemma 3.4. Then by assumption

T
lim ull;,dr < &7,
to—0+ to
and Lemma 3.4 yields the regularity of u for ¢t > T}.

(2) Let t € (0,T) be a singular point of 4 and assume that the left hand side of (3.23) is zero.
Then, setting tg =t — 0, t; =t + 0 we conclude that there exists some sufficiently small § > 0
such that (3.18) is satisfied. Hence we get the contradiction that u is regular at t. If (3.24) does
not hold, then liminfs .o, ft':é |ulls.dr < oo and consequently lim infs_o; 57 J;ftfé ul|;.dr =0
for B € (0, si] which is a contradiction to (3.23).

It is a simple consequence of Leray’s Structure Theorem, see [24], that the Lebesgue mea-

sure of the set of singular points in time vanishes. Here we may also argue as follows if
u e L*(0,T; L% (2)). By Lebesgue’s Differentiation Theorem

t

513& . ull;. dr = |lu(t)||;. for almost all t € (0,T).

Hence (3.24) can hold only on a Lebesgue null set. O



3.2. Energy-Based Criteria for Regularity. Let u be a weak solution in the sense of
Leray and Hopf satisfying the energy inequality. Assume that f = 0 and 0 # vy € H} (Q)NLA(Q)
so that there exists an interval [0,7) on which u is a strong solution and satisfies even the energy
identity (1.3). Then the kinetic energy

1
E(t) = 5 llu(@®)]3
is a strictly decreasing continuous function of ¢t € [0,7'). However, at t = T the energy identity
could loose its validity; either the kinetic energy has a jump discontinuity downward at ¢ =T or
E(t) will be strictly less than the continuously decreasing function

_y/o IV u(n)|2 dr + E(0)

for certain ¢ > T close to T'. In the first case the jump must be downward since ||u(t)||2 is lower
semicontinuous by (1.7). Assuming that ||u(t)||2 is continuous and decreasing in an open interval
to the right of 7', there are three possibilities: E(7+) := lim;_,r E(t) equals either E(T') or

E(T) < E(T+) < E(T-),

where E(T—) := limy,,p_ E(t), or E(T+) = E(T—). The fourth possibility E(T+) > E(T—)
is excluded since u satisfies the energy inequality for ¢ > T as well; if we want to exclude this
possibility at a further jump discontinuity 7" > 7', we have to use the strong energy inequality.
If u satisfies the strong energy inequality and 1" is an initial point in time where the energy
inequality holds (1" = s in (1.9)), then necessarily E(T+) = E(T); otherwise the other two
possibilities cannot be ruled out.

E(t)

T t

Fig 3.1 The kinetic energy E(t) in the neighborhood of a jump discontinuity T

In the following assume that FE(-) is continuous in time, so that (1.7) implies u €
C°([0,7); L2(2)) rather than only u € L*°(0,T;L%(Q2)). Nevertheless we are not allowed to
conclude that u is a regular solution. Actually, this conclusion is related to the modulus of con-
tinuity of the function E(t) (or to that of the function ¢ — |[u(t)||, since u € L>(0,T; LZ(12))).



THEOREM 3.6. Let Q C R? be a bounded domain with boundary 0Q € CH' and let u be a weak

solution of the instationary Navier-Stokes system (3.1) satisfying the strong energy inequality
n (0,T). The data ug, f satisfy ug € L2(Y) and f € L=/*(0,T;L*(2)), f = divF, F €
L2(0,T5 L*(2)) N L* ((0,T5 LP(Q2)) where p, s, s, will be given in (3.29) below.

(1) Let a € (3,1) and let u satisfy at ¢ € (0,T) the condition

_ !
O =B _
Z Ay
or only
(3.25) lim 1nf— |E(t) — E(t —0)| < oo,

60+ 0%

where E(-) denotes the kinetic energy. Then u is reqular at t.
(2) (The case a = 5) There exists a constant ¢, = £,(Q) > 0 such that if

_ !
o (B =EON _ s
Vot |t—t’|1/2
or only
(3.26) liminf — |E(t) — E(t — 0)| < &, Vo2,

0—0+ (51/2

then w is reqular at t € (0,T).

REMARK 3.7. (1) By Theorem 3.6 (1), Holder continuity of the kinetic energy E(7) from the
left at ¢ implies regularity at ¢ if the Holder exponent « is larger than % In the case a = % the
corresponding Holder seminorm (from the left) is assumed to be sufficiently small. In both cases
the function E(7) may be replaced by the function ||u(7)||2.

(2) The proof of Theorem 3.6, see (3.30), (3.31) below, will yield the following regularity

criterion using ||Vul|, instead of [|ul]y. If

1 1
2 -1 d liminf — >dr < o0
(3.27) a € (2, ) an im inf /taHVU(T)H2 T <
or
1 e 2 5/2
(3.28) a=g and hm 1nf 51/ ||Vu(T)||2 dr < e, v’’?,

then wu is regular at ¢.
(3) In the case @ = 3 a smallness condition as in (3.26) or (3.28) is necessary. Indeed, if
f=0and (0,%), 0 <t < o0, is a marimal regularity interval of u, then

Co
|Vu(r)|]2 > m ,0 <1<,

where ¢y = ¢o(€2) > 0, see [24]. Hence

1 t
hargt}ﬂf 51/ / Vul|5dr > 2c5 >0,



and due to the strong energy inequality,

_B(t-9) - E()
=i

>2vch > 0.

PROOF OF THEOREM 3.6. (see also [15] for the proof of (1)). The proof is based on Lemma
3.4 with to =t — 0, t; =t + 0 and the exponents

(3.29) ifa>%:s:4a—5>2,%—l—q%:%,%qu%:l,ﬂ:i,
| ifa=1:5=2¢:=0¢=6 s5=4 =1
In both cases the weak solution u satisfies uw € L*(0,T; L% (Q)), cf. (1.11), and 1 — =1 To

control the second term in (3.18) we will use the interpolation inequality

1-2/s 2/s
o <cllulls 2 [ Vully, ¢ = e(g., Q) >0,

and get that
t t
1(0) ;:][ (b — )l dr < 2° 551/ lulls, dr
to t—0

t
(3.30 < oo [ vululy ar
t—

t
< el 67 [ 9l
tf

Since u is supposed to satisfy the strong energy inequality, we may proceed for almost all § > 0
as follows:

v

(3:31) _ 556/4<|E(t_fs)a_ E(t)|+‘5ia/t;(f7“)d7‘>’

where the constant ¢ depends on ||u||> when o > 1.
First consider the case o > % in which € > 0. Then

1 ! t i) (4=s)/4
[ i <55 [t <e ([ e

Hence, if f € LY/ (O,T; Lz(Q)), the left-hand term in the previous inequality converges to 0
as 0 — 04. Moreover, due to the assumption (3.25), the term

(332) E 55/4 . |E(t B 6) B E(t)|
v 0
in (3.31) converges to 0 as  — 0+. Hence the right-hand side in (3.31) converges to 0 as § — 0+,
and the continuity of I(§) for 6 > 0 implies that the condition (3.18), can be fulfilled for some
0’ > 0. Finally, the assumption F' € L** (O, T, LP(Q)) shows that also (3.18); can be satisfied.
Secondly, in the case a = % (and & = 0), the assumption f € L? (O, T; L2(Q)) implies as above
that

16) < Sol(1B@-6) - B +| t:(f,u)dTD

1

60‘/ (fyu)dr - 0asd — 0+.



Moreover, the term (3.32) is bounded by 2ce,v¥? for a sequence (d;), 0 < §; — 0 as j — oo,
due to the assumption (3.26). Hence the continuity of 1(4), § > 0, proves that (3.18), can be
satisfied. Concerning (3.18); we proceed as before.

Now Theorem 3.6 is completely proved. O

3.3. Local in Space-Time Regularity. Consider a weak solution u of the Navier-Stokes
system (3.1) in a general domain Q@ C R®. In this subsection we are looking for conditions
on u locally in space and time to guarantee that u is regular locally in space and time. The
fundamental result in this direction is due to L. Caffarelli, R. Kohn and L. Nirenberg [7] and
requires the definition of a suitable weak solution.

DEFINITION 3.8. A weak solution u to (3.1) is called a suitable weak solution if the associated
pressure term satisfies

(3.33) Vp e Lt

loc

(0,00; LL ()  with ¢ = Z

loc

and the localized energy inequality

1 ! 1 '
Sl +o [ evulgar < Sleut)lp+ [ (of.ou)dr
to

to

1 [ !
(3.34) - —/ (V|u|2,V902)dT+/ <§|u|2+p, u-ng)z) dr

2 to to
holds for almost all ¢y > 0, all ¢ > ¢, and all p € C3°(R?).

Using a standard mollification procedure we obtain from (3.34) the inequality

/ \Vul? pdrdt < / w- fodrdr
Qx(0,7)

2x(0,7)

1 1
(3.35) +—/ (6, + Ad) du dt+/ (G102 + p. u- Vo) dud
Qx(0,T) 2

2 Qx(0,T)

for all non-negative test functions ¢ € C§°(€2 x (0,7))). This version of the localized energy
inequality was used in [7]. However, note that (3.34) is a stronger condition than (3.35) in the
sense that the test functions in (3.34) are not assumed to vanish in a neighborhood of 0€2. The
existence of a suitable weak solution satisfying (3.35) has been proved, under certain smoothness
assumptions on the boundary 0€2, for a bounded domain in [7], for an exterior domain in [25],
and for a general uniform C?-domain in [16], with (3.34) instead of (3.35).

To describe the local regularity result from [7] we introduce the space-time cylinder

Qr - Qr(xﬂatO) - Br(xO) X (tO - 7'2,?50)7 Br(@"o) = {x € R?’ : |x - ‘T0| < T'},

for (xg,to) € Q2 x (0,T) such that Q, C Q2 x (0,7). The following result is a simplified version of
the local results in [7], [36], [37].

THEOREM 3.9. Let u be a suitable weak solution of (3.1) and let Q, = Q,(xo,to) C 2x(0,T),
r > 0. There exists an absolute constant e, > 0 with the following property:

(1) If
3/2
(336) ||u||i3(QT) + ||p||L/3/2(Qr) < 6*T27
then u € L>®(Qy/2).



(2) 1If

i 1
(3.37) lim sup — ||Vu||%2(Qp) < g,
p—0 P

then there exists ro > 0 with Q,, C 2 x (0,T") such that uw € L*>®(Q,,).

REMARK 3.10. (1) The condition (3.36) requires the existence of a suitable radius r > 0 and
information on u as well as on the pressure p. However, (3.37) needs information for Vu only,
but on all parabolic cylinders @),., » > 0 sufficiently small.

(2) The main condition on u in (3.36), i.e. ||u||i3(Qr) < .72, may be rewritten in the integral

to
f f lrul*do dr < e, .
to—r2 T(xo)

Obviously this condition is satisfied when [u(x,t)] < = in @Q,. By analogy, the other terms
in (3.36) and (3.37) may be treated. Conversely, if u is not regular at (zo,%;), then we are
heuristically led to the blow-up rate

mean form

Co
(|x — o2+ |t — t0|)

co > 0, in a neighborhood of (zg, ty), see [7].

(3) The conclusion v € L*(Q,/2) in Theorem 3.9 does not imply that u € C*°(Q),2) even if
f e C®or f=0. However, u is of class C* in x, but not necessarily in ¢, see [57], [64]. In
[36] it is proved that a suitable weak solution satisfying (3.37) is Hélder continuous in space and
time locally.

(4) In (3.37) the term Vu may be replaced by its symmetric part 1 (Vu + (Vu)') or its
skew-symmetric part %(Vu - (Vu)T), i.e. by the vorticity w = curl u, see [38], [67].

(5) More general results concerning regularity criteria for suitable weak solutions using local
smallness conditions on u, Vu, curlu or V2u without any condition on the pressure can be found
in [33]. Ifeg. 1 <2+ 2 <2and

ju(z, )] =

1/2°

(3.38) lim supr7(§+§71)||u|

r—0

Lo (to—12,to; L9(By (z0)) < Ex

for some smallness constant €, > 0, then u is regular at (zg,tp) in the sense that u is essentially
bounded in a space time cylinder @, (xq,to) C Q x (0,7), 0 < 7" < r. For similar results near
the boundary of € see [32].

To describe our main result on local space-time regularity of suitable weak (or only weak)
solutions we use the short notation

[ullozac@ny = [lll oo —r2 to:Le(B, (o)
when Q, = Q,(zo,ty) = B.(x) X (ty — r*,t9). Note that the condition (3.39) in Theorem 3.11
below does not use the lim sup, _,,, but requires the existence of a single sufficiently small radius
r > 0, and only norms of u, but not of Vu or the pressure.

THEOREM 3.11. Let Q C R® be an arbitrary domain and let u be a suitable weak solution of
the Navier-Stokes system in Q x (0,T) where for simplicity f = 0. Let 2 < s < 00, 3 < ¢ < 00

satisfy the conditions
2 3 1
—+-<14+- and q>4.
s q q



Then there exists an absolute constant €, = €,(s,q) > 0 independent of v > 0, xy € Q, ty € (0,7)
and r > 0 with Q,(zo,ty) C Q2 x (0,T) and of u with the following property: If

(3.39) ullzera(g,) < €+ min (v, 1/175) reta!

Y

then u is reqular in Q2 in the sense

2 3
UGLS*(tO— (T/2)2,t0;Lq*(BT/Q(ZE[)))), 8_+q_ =1.
Here, s, =4, q. = 6 if s > 4; in this case, it suffices to assume that u s a weak solution only.

If 2 < s < 4, then s., q. aredeﬁnedby%ﬂL%:l—i-%and%—i—q%:l.

@ =

[

N

1
q

1
2

SN

|
1 1
6 1

Fig 3.2 In the hatched region (s < 4) the localized energy inequality is needed

to prove local regularity, in the doubly hatched region (s > 4,q > 4)
no local version of an energy inequality is needed.

PROOF. Rewriting (3.39) in the integral mean form

to s/q 1/s . 11
(f (f |7 |? d:z:) ds) < e, min (v, ¥)
t BT(.’L‘())

072

where ¢, from (3.39) must be replaced by UBIW , Holder’s inequality shows that we may replace
s,q in (3.39) by any smaller s and smaller ¢, respectively. In particular, when s > 4 and ¢ > 4,
we may assume that s = s, =4,¢ =4. When 2 < s < 4, then let s = s, satisfy sl + % = 1+%.

In both cases we get

2 3 1 2 3
(3.40) s=s.<q —4+-=1+-, —+==1,

— Y

S« g q S« G«

since ¢ > 4. As a second step we may assume after a shift of coordinates in space and time that
xo = 0 and ty = 0. Next we use a scaling argument and consider

(3.41) ur(y,7) = ru(ry,rQT), pr(y,7) = sz(Ty,T‘zT)



on () = B1(0) x (—1,0) instead of (u,p) on @,. Note that u,, p, solve the Navier-Stokes system
with the same viscosity v and that u, satisfies (3.39) in the form

(3.42) |tr||LsLa(0,) < €« min (l/, Vl_l/s).

Hence, without loss of generality, we assume that u satisfies (3.39) on @; with r =1 and s = s,.
The idea of the proof is to construct with the help of Theorem 2.18 a very weak solution v
in Q' = By x (#,0) for suitable ' € (3,1) and ¢’ € (=1, —3) with data

v(t') = u(t),

and to identify v with u on @’'; hence

U|8BT/ - u|8BT/

1
v=u€L”L*(Q) and v=wuinL* L% (B x (—5,0)).

Fig 3.3 The space-time cylinders ); and @)’.

For this purpose we have to find 7' € (3,1) and ¢ € (=1, —3) such that the smallness conditions

—t
(3.43) | e A Pt dr < et
0

dr < et

0
(3.44) /t ],

cf. (2.50), are fulfilled; here A,, and P, denote the Stokes operator and the Helmholtz projection,
respectively, on B, .

Sx
W —1/ax,qx (0B,1)



Concerning (3.43) we find ¢’ € (—1, —1) satisfying

—1/2
() Lags,) < ][1 [ullLogsy) AT < 2 ||ullispoq,) < 26207

Then Lemma 1.11 (3), (4) with a = ﬁ, % + q% = ¢, and the property 3 = 12 < 1 imply that

—t
/0 1Ay e AP u(t)

Sx
o dr

—t
= /0 | AL/ A2 P () |15 dr

< SJu@)|F < cet vt

Hence (3.43) is satisfied for a sufficiently small constant ¢, in (3.42).
Now consider the problem of finding 7' € (3, 1) such that (3.44) is satisfied. By the mean
value argument as before, there exists 1’ € (3, 1) such that

0
L“’*( 1,0;L4(9B,1)) — /1
1 0
£,
0 1
2/ </ (aBT)dT> dr.
1 MJ1/2

Since s, < g, see (3.40), we apply Holder’s inequality to the inner integral and get from (3.42)

that
0 1 5./q
2/ (/ ol yir) e
-1 MJ1y2
0
JNCE

< 2e l/s**1

— *

dr

4(9B,)

IN

) dr dr

IN

LS*( 1,0;L4(8B,1))

IN

dr

)

Finally, using the embedding L(0B,.) C W ~Y/%%(9B,) with an embedding constant, uniformly
bounded in 7' € (1, 1), we get that (3.44) is satisfied for a slightly different constant , > 0.

Now Theorem 2.18 yields a unique very weak solution v in L** L% (Q') with data v(t') = u(t")
and v = w on 0B, x (t',0). For this argument it is important to note that the smallnes constant
¢, in the application of Theorem 2.18 in the space-time domain (' may be chosen independently
of r' € (3,1) and ¢’ € (—1, —3); for its proof we have to refer to the scaling argument (3.41).

As the final step of the proof it suffices to show that v = u on @'. First consider the case
s > 4 in which s, = 4, ¢, = 6, v € L*L5(Q’) and u € L*L*(Q'). Let v denote the very weak



solution of the Stokes system
Y — vAy + Vp =0, divy =01in @',
n __ / —
() = u(t), 7|aBr, N u|aBr,'

By Theorem 2.14 v € L*L%(Q') € L*L*(Q') so that v —~ and u — y solve the instationary Stokes
system

U, — vAU + Vp = —div (vv) and = —div (uu) in Q',
divU =0inQ, U(t)=0, U, =0,

respectively. Since vv € L?L*(Q') and uu € L*L*(Q'), in both cases the very weak solution U
is even a weak solution satisfying the energy identity. Hence v — v =u — v — (v — ) is a weak
solution of the Stokes system

U —vAU +Vp = —div(Uu+oU), divU =0in @',

0B,
where Uu, vU € L*L*(Q'). Let ||-||;4, T < t, denote the norm

1/2

Hw“[T,t} = (“wH%OO(T,t;L?(BT,)) + V”VwH%?(T,t;L?(BT/)))

Testing (3.45) in By x [t',t' +¢], € > 0, with U we get the estimate
(3.46) O e < U o4y 10l e 4ei2008,0))

with a constant ¢ > 0 independent of ¢ and € > 0 as well as of U, u and v; here we used that
fB,Uu-Vde = 0 and that

[ wv-vuds| < UL Ul ol < AATUI> 01 ol

Since v € L*L5(Q"), we may choose ¢ > 0 sufficiently small so that (3.46) yields U = 0 on
[t',t" 4+ €]. Repeating this argument a finite number of times with the same ¢ > 0 we conclude
that U = 0 on [/, 0], i.e., u = v € L*L5(Q"). This proves Theorem 3.11 in the case s > 4. Note
that u was not assumed to be a suitable weak solution in this case.

Secondly, let 2 < s = s, < 4 and consequently ¢ > 4. In this case an approximation procedure
is used to apply the localized energy inequality in a similar way as in Serrin’s uniqueness criterion
concerning the usual energy inequality. Moreover, regularity results for v allow to conclude that
U = u — v satisfies the inequality

1 t t
IO+ [ IVUgar < [ (- vU.0)ar;

we omit further details of these technical arguments. Since v € L% L% (Q,/), the absorption
principle may be used to get in a finite number of steps on consecutive intervals t' = t; < ty <
... <ty =0that w =vin @', cf. (3.46). O
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