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1. Introdu
tion

In this survey paper we dis
uss the theory of very weak solutions to the stationary and insta-

tionary (Navier-)Stokes system in a bounded domain of R

3

and show how this new notion of

solutions may be used to prove regularity lo
ally or globally in spa
e and time of a given weak

solution.

Consider the instationary Navier-Stokes equations for a vis
ous in
ompressible 
uid with

density � = 1, i.e.,

(1.1)

u

t

� ��u + div (uu) +rp = f in 
� (0; T )

div u = k in 
� (0; T )

u = g on �
 � (0; T )

u = u

0

at t = 0

for the unknown velo
ity u = (u

1

; u

2

; u

3

) and pressure p in a domain 
 � R

3

and a time interval

(0; T ); 0 < T � 1. Here f denotes the external for
e (for
e density), u

0

= u

0

(x) the initial value,

and � > 0 is the given vis
osity of the 
uid. In the physi
al model the divergen
e k = div u

is assumed to vanish. However, for mathemati
al reasons it will be 
onvenient in parti
ualar

for linear problems to 
onsider the more general 
ase of a pres
ribed divergen
e k 6= 0; see also

Remark 1.9(1) below. Moreover, the boundary data g = u

j

�


is a generalization of the 
lassi
al

no-slip or adhesion 
ondition u

j

�


= 0. Obviously, for a bounded domain, k and g must satisfy

the ne
essary 
ompatibility 
ondition

(1.2)

Z




k dx =

Z

�


g �N do ;

here N = N(x) is the external normal ve
tor at x 2 �
, and do denotes the surfa
e measure on

�
.

This survey is organized as follows. In this Introdu
tion (Se
tion 1) we dis
uss the notions

of weak, strong, regular and very weak solutions and summarize some well-known results and

important tools. Se
tion 2 deals with the theory of very weak solutions in the stationary and

instationary, linear and also nonlinear 
ase. Finally, in Se
tion 3 we 
onsider appli
ations of the

theory of very weak solutions to the question under whi
h additional assumptions a given weak

solution is regular, either lo
ally in time and globally in spa
e or lo
ally in time and spa
e. The

assumptions are either beyond the 
lassi
al Serrin 
riterion of regularity or use the kineti
 energy

as a fun
tion of time.

For further surveys on the instationary Navier-Stokes equations we refer to [34℄, [66℄.
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1.1. Weak Solutions in the Sense of Leray-Hopf. Let us test the Navier-Stokes system

(with k = 0, g = 0) formally with the solution u and use integration by parts in spa
e. Then,

sin
e div u = 0, div (uu) = u � ru and u = 0 on �
,

Z




rp � u dx = 0 and

Z




(u � ru) � u dx =

Z




u � r

�

1

2

juj

2

�

dx = 0

so that (1.1) yields the identity

1

2

d

dt

ku(t)k

2

2

+ � kru(t)k

2

2

= (f; u)(t);

here (�; �) denotes the L

2

-s
alar produ
t on 
. A further integration in time on the interval (s; t)

leads to the energy identity

(1.3)

1

2

ku(t)k

2

2

+ �

Z

t

s

kruk

2

2

d� =

1

2

ku(s)k

2

2

+

Z

t

s

(f; u) d�

for 0 � s < t � T . Assume that the external for
e f has the form

(1.4) f = f

0

+ divF; f

0

2 L

1

�

0; T ;L

2

(
)

�

; F 2 L

2

�

0; T ;L

2

(
)

�

:

Then Young's inequality and Gronwall's Lemma yield the integrability properties

(1.5) u 2 L

1

�

0; T ;L

2

(
)

�

\ L

2

lo


�

[0; T );H

1

0

(
)

�

for every time interval (0; T ). Now (1.5) serves as starting point for the de�nition of a weak

solution.

Definition 1.1. Let 
 � R

3

be a domain, let the initial value u

0

belong to the spa
e

L

2

�

(
) = C

1

0;�

(
)

k�k

2

; C

1

0;�

(
) = fu 2 C

1

0

(
) : div u = 0g;

and let f satisfy (1.4). Then a solenoidal ve
tor �eld u satisfying (1.5) is 
alled a weak solution

in the sense of Leray-Hopf of the instationary Navier-Stokes system (1.1) with data f; u

0

(and

with k = 0, g = 0) if

�

Z

T

0

(u; '

t

)d� + �

Z

T

0

(ru;r')d� +

Z

T

0

(u � ru; ')d�

=

�

u

0

; '(0)

�

+

Z

T

0

hf; 'id�(1.6)

for all test fun
tions ' 2 C

1

0

�

[0; T ); C

1

0;�

(
)

�

.

In (1.6) h�; �i denotes the duality produ
t of H

�1

(
) = H

1

0

(
)

�

and H

1

0

(
), and (�; �) is used

for measurable fun
tions �;  on 
 in the sense (�;  ) =

R




� � dx provided � � 2 L

1

(
). Note

that the same symbol, say u 2 C

1

0

(
), is used for a fun
tion as well as for ve
tor �elds or even

matrix �elds.

By the Galerkin approximation method or by the theory of analyti
 semigroups in the spa
e

L

2

�

(
) using Yosida approximation arguments it is shown that the Navier-Stokes system (1.6) has

at least one weak solution in the sense of Leray-Hopf, see e.g. [24, xx2{3℄, [61, V.3℄. Moreover,

as a 
onsequen
e of (1.6),

(1.7) u : [0; T )! L

2

�

(
) is weakly 
ontinuous,

and the initial value u

0

is attained in the sense:

�

u(t); '

�

! (u

0

; ') as t! 0+ for all ' 2 L

2

�

(
)

and even for all ' 2 L

2

(
).
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However, due to the sele
tion of a weakly 
onvergent subsequen
e in the 
onstru
tion of the

weak solution it 
annot be guaranteed that u still satis�es the energy identity (1.3). The lower

semi
ontinuity of norms with respe
t to weak 
onvergen
es implies only that u satis�es the energy

inequality

(1.8)

1

2

ku(t)k

2

2

+ �

Z

t

0

kruk

2

2

d� �

1

2

ku

0

k

2

2

+

Z

t

0

hf; uid�

rather than the energy identity (1.3). It is not 
lear whether any weak solution u a

ording

to De�nition 1.1 does satisfy the energy inequality. However, ea
h known 
onstru
tion method

yields a weak solution satisfying (1.8).

If the domain 
 � R

3

is bounded, the 
ompa
t embeddingH

1

0

(
) � L

2

(
) allows to 
onstru
t

a weak solution u satisfying also the strong energy inequality

(1.9)

1

2

ku(t)k

2

2

+ �

Z

t

s

kruk

2

2

d� �

1

2

ku(s)k

2

2

+

Z

t

s

hf; ui d�

for almost all s 2 [0; T ) in
luding s = 0 and for all t 2 [s; T ), see e.g. [61, Theorem V.3.6.2℄.

For unbounded domains the 
ompa
tness argument is no longer available and more sophisti
ated

tools based on maximal regularity, see x1.4 below, are needed to prove the existen
e of a weak

solution satisfying the strong energy inequality; see [40℄, [62℄ for exterior domains and [16℄ for

general unbounded domains with uniform C

2

-regularity of the boundary.

Using (1.5) and the embedding H

1

0

(
) � L

6

(
), we obtain for a weak solution u the spa
e-

time integrability u 2 L

s

�

0; T ;L

q

(
)

�

for the pairs of exponents s =1, q = 2 and s = 2, q = 6,

satisfying both the 
ondition

(1.10)

2

s

+

3

q

=

3

2

:

More generally, using the so-
alled Serrin number

S = S(s; q) =

2

s

+

3

q

for s; q 2 [1;1℄;

H�older's inequality yields

(1.11) u 2 L

s

�

0; T ;L

q

(
)

�

when S =

3

2

; 2 < s; q <1;

see [61, Lemma V.1.2.1℄. However, it is an open problem whether a weak solution with S =

3

2

is

unique. But the uniqueness is known if S � 1:

Theorem 1.2. Let 
 � R

3

be any domain, and let u; v be weak solutions of the Navier-Stokes

system (1.1) with the same data f; u

0

(and with k = 0, g = 0). Assume that u satis�es the energy

inequality (1.8) and that

v 2 L

s

�

0; T ;L

q

(
)

�

where S(s; q) � 1; 2 < s <1; 3 < q <1:

Then u = v.

For a proof we refer to [58℄. The same result holds in the limit 
ase s = 1, q = 3 when


 � R

3

is a bounded or exterior domain with boundary of 
lass C

2

, see [35℄.
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1.2. Regular Solutions. One of the seven Millennium Problems of Clay Mathemati
s In-

stitute in 2000 is the question whether a weak solution of the Navier-Stokes equations in a

three-dimensional domain is smooth, i.e., whether u 2 C

1

�


 � (0; T )

�

when f = 0 or, more

generally, f 2 C

1

�


 � (0; T )

�

. The �rst step in this dire
tion is the question whether u is a

strong solution.

Definition 1.3. A weak solution u of the Navier-Stokes equations (with k = 0, g = 0) is


alled a regular solution if there exist exponents s; q su
h that

(1.12) u 2 L

s

lo


�

[0; T );L

q

(
)

�

; S(s; q) � 1; 3 < q <1; 2 < s <1:

For short, we say that u is regular in the sense u 2 L

s

lo


�

[0; T );L

q

(
)

�

. Moreover, u is 
alled a

strong solution if

(1.13) u 2 L

1

lo


�

[0; T );H

1

0

(
)

�

\ L

2

lo


�

[0; T );H

2

(
)

�

:

Note that in (1.13), 
ompared to (1.5), the regularity in spa
e has been in
reased by one.

Sin
e H

1

0

(
) � L

6

(
), we get u 2 L

1

lo


�

[0; T );L

6

(
)

�

with Serrin's number S =

1

2

so that u also

satis�es (1.12).

The next two theorems state the lo
al existen
e of a regular solution and the global regularity

of a given weak solution under an additional assumption.

Theorem 1.4. Let 
 � R

3

be any domain, u

0

2 D(A

1=4

2

), where A

2

denotes the Stokes oper-

ator on L

2

�

(
), see x1.4, and let f = f

0

+divF with f

0

2 L

4=3

�

0; T ;L

2

(
)

�

, F 2 L

4

�

0; T ;L

2

(
)

�

.

Then there exists T

0

= T

0

(�; u

0

; f

0

; F ) 2 (0; T ) su
h that the Navier-Stokes equations (1.1) with

data u

0

; f (and with k = 0, g = 0) have a uniquely determined regular solution

u 2 L

8

�

0; T

0

;L

4

(
)

�

:

Proof. We refer to [24℄ for a proof of this result for a bounded domain 
 with �
 2 C

2

when f = 0 and u

0

2 H

1

0

(
). In this 
ase u even satis�es (1.13) in (0; T

0

). The more general

result 
an be found in [61, Theorem V.4.2.2℄. �

Theorem 1.5. Let 
 � R

3

be a bounded domain with �
 2 C

2

and let u be a weak solution

of (1.1) with data f 2 L

2

�

0; T ;L

2

(
)

�

, u

0

2 L

2

�

(
) \ H

1

0

(
), 0 < T � 1, (and with k = 0,

g = 0) satisfying

(1.14) u 2 L

s

lo


�

[0; T );L

q

(
)

�

; S(s; q) � 1; 2 < s � 1; 3 � q <1:

Then u is regular, uniquely determined by u

0

; f; and a strong solution.

If f 2 C

1

0

�


� (0; T )

�

and �
 2 C

1

, then u 2 C

1

�


� (0; T )

�

.

Proof. The 
lassi
al impli
ation from (1.14) when 2 < s <1, 3 < q <1, i.e. from (1.12),

to (1.13) 
an be found in [24℄, see also [61, Theorem V.1.8.1℄. The limit 
ase s =1, q = 3 was

proved more re
ently in [11℄, [39℄ [52℄, [53℄, [54℄, [55℄ starting from a result [41℄ on the �nite

number of singular points in time and spa
e for a weak solution u 2 L

1

�

0; T ;L

3

(
)

�

:

Interior regularity results in the sense u 2 C

1

�




0

� (0; T )

�

for every subdomain 


0

�� 


are proved in [57℄, [58℄, [64℄. Moreover, regularity up to the boundary �
 of 
 is shown [29℄,

[60℄. �

At this point, several remarks are in order, for later use in x 3 and for interest in its own.

Con
erning the energy identity and the energy inequality (1.8) whi
h holds for every weak solution


onstru
ted so far in the literature, we note that every strong and every regular solution satis�es

the energy identity, see the following Lemma 1.6.
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Lemma 1.6. Let 
 � R

3

be any domain, and let u be a weak solution of (1.1) with data

u

0

2 L

2

�

(
), f = f

0

+ divF , where f

0

2 L

1

�

0; T ;L

2

(
)

�

, F 2 L

2

�

0; T ;L

2

(
)

�

(and with k = 0,

g = 0).

(1) Suppose additionally that

u 2 L

4

�

0; T ;L

4

(
)

�

or, more generally, that

(1.15) u 2 L

s

�

0; T ;L

q

(
)

�

; S(s; q) � 1; 2 � s � 1; 3 � q � 1:

Then u satis�es the energy identity and is strongly 
ontinuous from [0; T ) to L

2

�

(
).

(2) If also v satis�es the integrability 
ondition (1.5), then

u � rv 2 L

s

�

0; T ;L

q

(
)

�

; S(s; q) = 4; 1 � s; q < 2:

Proof. (1) The assumption u 2 L

4

�

0; T ;L

4

(
)

�

implies that uu 2 L

2

�

0; T ;L

2

(
)

�

so that

u � ru = div (uu) may be written on the right-hand side of the equation as part of the external

for
e divF . Then u 
an be 
onsidered as the weak solution of a (linear) instationary Stokes

system, and linear theory shows that u satis�es the energy identity.

Under the se
ond assumption we may assume that

2

s

+

3

q

= 1. Sin
e the given weak solution

u also satis�es u 2 L

s

1

�

0; T ;L

q

1

(
)

�

where

2

s

1

+

3

q

1

=

3

2

, and sin
e

2

4

+

3

4

=

5

4

2 (1;

3

2

), H�older's

inequality easily implies that u 2 L

4

�

0; T ;L

4

(
)

�

, for details see [61, V.1.4℄

(2) The proof is based on embedding theorems and H�older's inequality, see [61, Lemma

V.1.2.1℄. �

Remark 1.7. The 
ondition (1.15) for u to satisfy the energy identity may be relaxed to the


ondition that u 2 L

s

�

0; T ;L

q

(
)

�

and

(1.16) S(s; q) � min

�

1 +

1

q

; 1 +

1

s

�

; 2 � s � 1; 3 � q � 1:

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

1

4

1

2

1

s

1

4

1

6

1

2

1

q

1

3

w

e

a

k

s

o

l

u

t

i

o

n

S

=

3

2

r

e

g

u

l

a

r

s

o

l

u

t

i

o

n

S

=

1

Fig 1.1. Weak and regular solutions represented by lines in the

�

1

q

;

1

s

�

-plane. The hat
hed

region indi
ates the set des
ribed by (1.16) where the energy identity holds.
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The proof follows the lines of [61, V.1.4℄; note that the region in the

�

1

q

;

1

s

�

-plane des
ribed by

(1.16) is the 
losed 
onvex hull of the line S = 1 and the point

�

1

4

;

1

4

�

in the �rst quadrant of the

�

1

q

;

1

s

�

-plane. Hen
e the point

�

1

4

;

1

4

�


an be written as a 
onvex 
ombination of any two points

of this region and of the line S(s; q) =

3

2

, respe
tively; see also Fig 1.1.

For a further dis
ussion of the energy inequality, energy identity and regularity of a weak

solution we refer to the �rst paragraphs of x3 as well as x3.2 and to x3.2 in general.

1.3. The Con
ept of Very Weak Solutions. In 
ontrast to the de�nition of weak solu-

tions, see De�nition 1.1, where one integration by parts in spa
e was used, the 
on
ept of very

weak solutions allows all derivatives in spa
e and time to be applied to the test fun
tions. To

give a pre
ise de�nition we will use the spa
es of test fun
tions (ve
tor �elds)

C

2

0;�

(
) = fv 2 C

2

(
) : div v = 0; v

j

�


= 0g

su
h that in general rv does not vanish on �
, and

C

1

0

�

[0; T ); C

2

0;�

(
)

�

of solenoidal ve
tor �elds w satisfying suppw � 
� [0; T ).

Given a suÆ
iently smooth solution u of the fully inhomogeneous Navier-Stokes system (1.1)

and test fun
tions w 2 C

1

0

�

[0; T ); C

2

0;�

(
)

�

we are led to the identity

Z

T

0

�

� (u; w

t

)� �(u;�w) + hg;N � rwi

�


� (uu;rw)

�

d� =

�

u

0

; w(0)

�

+

Z

T

0

hf; wi d�

where h�; �i and h�; �i

�


are pairings between 
orresponding spa
es on 
 and �
, respe
tively,

see De�nition 1.8 below. The term hg;N � rwi

�


is due to the inhomogeneous boundary data

g = u

j

�


and the fa
t that in general the normal derivative N � rw of w on �
 does not vanish.

Sin
e divw = 0 for all t 2 [0; T ), the term N � rw is purely tangential on �
; this fa
t is easily


he
ked when �
 is planar. Hen
e, the term hg;N � rwi

�



arries only the information of the

tangential 
omponent of g = u

j

�


. Se
ondly we test the equation div u = k in 
 � (0; T ) with

test fun
tions  2 C

0

0

�

(0; T );C

1

(
)

�

and get the identity

Z

T

0

(k;  )d� =

Z

T

0

�

� (u;r ) + hg �N; i

�


�

d�:

This identity may be rewritten in the pointwise form

div u = k in 
� (0; T ); u �N = g �N on �
 � (0; T )

giving information on div u and the normal 
omponent of u on �
. Summarizing the previous

reasoning we are led to

Definition 1.8. Let 
 � R

3

be a bounded domain with C

1;1

-boundary, let f = divF and

(1.17)

F 2 L

s

�

0; T ;L

r

(
)

�

; k 2 L

s

�

0; T ;L

r

(
)

�

g 2 L

s

�

0; T ;W

�1=q;q

(�
)

�

; u

0

2 J

q;s

�

(
)

where J

q;s

�

(
) is a spa
e of initial values to be de�ned below, see De�nition 2.10, k; g satisfy the


ompatibility 
ondition (1.2) in the sense

(1.18)

Z




k(t)dx = hg(t); Ni

�


for a.a. t 2 (0; T );
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and q; r; s satisfy the 
onditions

(1.19) S =

2

s

+

3

q

= 1;

1

3

+

1

q

=

1

r

; 2 < s <1; 1 < r < 3 < q <1:

Then a ve
tor �eld

u 2 L

s

�

0; T ;L

q

(
)

�

is 
alled a very weak solution of the instationary Navier-Stokes system (1.1) if

(1.20)

Z

T

0

�

� (u; w

t

)� �(u;�w) + hg;N � rwi

�


� (uu;rw)

�

d�

=

�

u

0

; w(0)

�

�

Z

T

0

(F;rw) d�

for all test �elds w 2 C

1

0

�

[0; T ); C

2

0;�

(
)

�

, and additionally

(1.21) div u = k in 
� (0; T ); u �N = g �N on �
� (0; T ):

Remark 1.9. (1) Note that in [12℄, [14℄, [19℄, [21℄, [26℄ the authors 
onsidered the variational

problem

(1.22)

Z

T

0

�

� (u; w

t

)� �(u;�w) + hg;N � rwi

�


� (uu;rw)� (ku; w)

�

d�

=

�

u

0

; w(0)

�

�

Z

T

0

(F;rw) d�

instead of (1.20). The additional term (ku; w) in (1.22) or equivalently �ku on the left-hand side

of the �rst equation of (1.1) is due to the identity

u � ru = div (uu)� ku; where k = div u:

The di�eren
e of these variational problems originates from the derivation of the Navier-Stokes

equations, see e.g. [48℄. On the one hand, 
onsidering 
ompressible 
uids with density � = �(x; t)

the term (�u)

t

+ div (�uu) appears in the equation for the balan
e of momentum; for 
onstant

� and in the time-independent 
ase we are left with the term div (uu) as in (1.1). On the other

hand, the term u

t

+ u � ru denotes the a

eleration of parti
les and leads to the additional term

�ku in (1.1). We note that both models are unphysi
al, sin
e the equation for the 
onservation

of mass �

t

+ div (�u) = 0 leads to div u = 0 when the density � is 
onstant. For the model (1.1)

the proofs of Theorems 2.9 and 2.18 below are shorter 
ompared to the proofs in [12℄, [14℄, [19℄,

[21℄, [26℄, although the assumptions on k = div u and the 
omplexity of the proofs are the same.

(2) The 
onditions (1.19) on q; r; s are needed to give ea
h term in (1.20) a well-de�ned

meaning, parti
ularly to de�ne the nonlinear term (uu;rw). The exponents q; r are 
hosen

su
h that the embeddings W

1;r

(
) � L

q

, L

r

(
) � W

�1;q

(
) := W

1;q

0

0

(
)

�

(= the dual spa
e of

W

1;q

0

0

(
)

�

, q

0

=

q

q�1

) and L

q

0

(
) � W

�1;r

0

(
) hold.

(3) The information on div u 
an be re
overed only from (1.21), but not from (1.20).

(4) Analogous de�nitions of very weak solutions will be given also for the stationary Stokes

and Navier-Stokes system, see x2. In these 
ases the 
onditions on q; r; s in (1.19) are more

general.

Before turning to theorems on existen
e in x2 let us dis
uss the main features of this 
on
ept.

� The 
on
ept of very weak solutions was introdu
ed in a series of papers by H. Amann

[2℄, [3℄ in the setting of Besov spa
es when k = 0.
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� More re
ently this 
on
ept was modi�ed by G.P. Galdi, C. Simader and the authors to

a setting in 
lassi
al L

q

-spa
es in
luding the inhomogeneous data k, see [12℄, [13℄, [14℄,

[19℄, [21℄, [26℄.

� By de�nition very weak solutions have no di�erentiability, neither in spa
e nor in time,

ex
ept for the existen
e of the divergen
e k = div u 2 L

r

(
) for a.a. t.

� In general, a very weak solution does neither have a bounded kineti
 energy in

L

1

�

0; T ;L

2

(
)

�

nor a �nite dissipation energy in L

2

�

0; T ;H

1

(
)

�

. In parti
ular, a

very weak solution is not ne
essarily a weak solution.

� By de�nition, a very weak solution is 
ontained in Serrin's uniqueness 
lass

L

s

�

0; T ;L

q

(
)

�

with S = 1. Very weak solutions 
an be shown to be unique, see

x2. However, in general, the regularity of the data is too low to guarantee any kind of

regularity of the very weak solution.

� The 
on
ept of very weak solutions has been generalized by K. S
huma
her to a setting

in weighted Lebesgue and Bessel potential spa
es using arbitrary Mu
kenhoupt weights,

see [51℄.

� Although the data in De�nition 1.8 imply no regularity for a very weak solution, the


on
ept may be even further generalized so that neither boundary values nor initial

values of a very weak solution 
an be de�ned, see [51℄ and x2.

� The 
on
ept of very weak solutions is strongly based on duality arguments 
on
erning

the theory of strong (or regular) solutions. Therefore, the boundary regularity required

in this theory is the same as for strong solutions.

� The boundary is usually assumed to be of 
lass C

2;1

. Due to a new smoothing argument

in the proof of an extension theorem, see [51℄, it suÆ
es to require that �
 2 C

1;1

.

1.4. Preliminaries. We summarize several auxiliary results on the Helmholtz proje
tion

and the Stokes operator introdu
ed for later use only for bounded domains.

Lemma 1.10. Let 
 � R

3

be a bounded domain with C

1

-boundary and let 1 < q <1.

(1) There exists a bounded proje
tion

P

q

: L

q

(
)! L

q

�

(
)

from the spa
e of all L

q

-ve
tor �elds onto the subspa
e

L

q

�

(
) = C

1

0;�

(
)

k�k

q

of all solenoidal ve
tor �elds u su
h that the normal 
omponent u �N of u vanishes on �


in the weak sense. In parti
ular,

R(P

q

) = L

q

�

(
); N (P

q

) = G

q

(
) := frp : p 2 W

1;q

(
)g:

Every ve
tor �eld u 2 L

q

(
) has a unique de
omposition

u = u

0

+rp; u

0

2 L

q

�

(
); rp 2 G

q

(
);

satisfying

ku

0

k

q

+ krpk

q

� 
kuk

q

with a 
onstant 
 = 
(q;
) > 0.

(2) The adjoint operator (P

q

)

�

of P

q

equals P

q

0

, where q

0

=

q

q�1

, and the dual spa
e L

q

(
)

�

is

isomorphi
 to L

q

0

(
).

Proof. See e.g. [59℄. �
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Lemma 1.11. Let 
 � R

3

be a bounded domain with C

1;1

-boundary and let 1 < q <1.

(1) The Stokes operator, de�ned by

D(A

q

) = W

2;q

(
) \W

1;q

0

(
) \ L

q

�

(
); A

q

u = �P

q

�u;

is a 
losed bije
tive operator from D(A

q

) � L

q

�

(
) onto L

q

�

(
). If u 2 D(A

q

) \ D(A

�

) for

1 < � <1, then A

q

u = A

�

u.

(2) For 0 � � � 1 the fra
tional powers

A

�

q

: D(A

�

q

) � L

q

�

(
! L

q

�

(
)

are well-de�ned, 
losed, bije
tive operators. In parti
ular, the inverses A

��

q

:= (A

�

q

)

�1

are

bounded operators on L

q

�

(
) with R(A

��

q

) = D(A

�

q

). The spa
e D(A

�

q

) endowed with the

graph norm kuk

q

+ kA

�

q

uk

q

, equivalent to kA

�

q

uk

q

for bounded domains, is a Bana
h spa
e.

Moreover, for 1 > � > � > 0,

D(A

q

) � D(A

�

q

) � D(A

�

q

) � L

q

�

(
)

with stri
t dense in
lusions, and (A

�

q

)

�

= A

�

q

0

is the adjoint to A

�

q

.

(3) The norms kuk

W

2;q

and kA

q

uk

q

are equivalent for u 2 D(A

q

). Analogously, the norms

kruk

q

, kuk

W

1;q

and kA

1=2

q

uk

q

are equivalent for u 2 D(A

1=2

q

) = W

1;q

0

(
) \ L

q

�

(
). More

generally, the embedding estimate

(1.23) kuk

q

� 
kA

�




uk




1 < 
 � q; 2� +

3

q

=

3




holds for every u 2 D(A

�




); here 
 = 
(q; 
;
) > 0.

(4) The Stokes operator A

q

generates a bounded analyti
 semigroup e

�tA

q

, t � 0, on L

q

�

(
).

Moreover, there exists a 
onstant Æ

0

= Æ

0

(q;
) > 0 su
h that

(1.24) kA

�

q

e

�tA

q

uk

q

� 
e

�Æ

0

t

t

��

kuk

q

for u 2 L

q

�

(
); t > 0;

with 
 = 
(q; �;
) > 0.

Proof. See [1℄, [20℄, [27℄, [28℄, [30℄, [61℄. Usually these results are proved for bounded

domains with �
 2 C

2

or even C

2;�

, 0 < � < 1. However, a 
areful inspe
tion of the proofs

shows that C

1;1

-regularity is suÆ
ient. �

We note that most of the results of Lemma 1.11 also hold for exterior domains 
 � R

3

.

However, some results are more restri
tive, sin
e the Poin
ar�e inequality on W

1;q

0

(
) does not

hold for an exterior domain.

The next auxiliary tool 
on
erns the instationary Stokes system

(1.25)

u

t

� ��u+rp = f; div u = 0 in 
� (0; T )

u = 0 on �
� (0; T )

u(0) = u

0

at t = 0

for data f 2 L

s

�

0; T ;L

q

(
)

�

and u

0

2 L

q

�

(
), 1 < s; q <1:

Applying the Helmholtz proje
tion P

q

to (1.25) we get the abstra
t evolution equation

(1.26) u

t

+ �A

q

u = P

q

f; u(0) = u

0

;
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where we are looking for a solution u with u(t) 2 D(A

q

). The variation of 
onstants formula

yields the solution

(1.27) u(t) = e

��tA

q

u

0

+

Z

t

0

e

��(t��)A

q

P

q

f(�) d�; 0 � t < T � 1:

Conversely, the solution of (1.26) yields P

q

(u

t

���u�f) = 0 so that by Lemma 1.10 there exists

a fun
tion p with u

t

� ��u� f = �rp, i.e., (u; p) solves (1.25). To estimate u given by (1.27)

(with u

0

= 0) and rp we introdu
e the notion of maximal regularity.

Lemma 1.12. Let 
 � R

3

be a bounded domain with C

1;1

-boundary, let 1 < s, q < 1,

f 2 L

s

�

0; T ;L

q

(
)

�

and u

0

= 0. Then the Stokes equation (1.26) has a unique solution u

satisfying the maximal regularity estimate

(1.28) ku

t

k

L

s

(0;T ;L

q

(
))

+ k�A

q

uk

L

s

(0;T ;L

q

(
))

� 
kfk

L

s

(0;T ;L

q

(
))

where 
 = 
(q; s;
) > 0 is independent of � and T . Moreover, there exists a fun
tion p 2

L

s

�

0; T ;W

1;q

(
)

�

su
h that (u; p) satis�es (1.25) and the estimate

(1.29) k(u

t

;rp; �r

2

u)k

L

s

(0;T ;L

q

(
))

� 
kfk

L

s

(0;T ;L

q

(
))

:

Proof. The �rst proof of this result for s = q 2 (1;1) 
an be found in [63℄ and is based on

potential theory, the generalization to arbitrary s 2 (1;1) is a 
onsequen
e of abstra
t theory,

see [1℄, [8℄, [30℄. Di�erent approa
hes are based on the theory of pseudodi�erential operators

[28℄, [31℄ and on the theory of weighted estimates, see A. Fr�ohli
h [22℄, [23℄. �



12

2. Theory of Very Weak Solutions

As already outlined in x1.3 the 
on
ept of very weak solutions introdu
es a new 
lass of solutions

to stationary and nonstationary Stokes and Navier-Stokes equations with data of very low reg-

ularity su
h that solutions may have (almost) no di�erentiability and no �nite energy, but they

are unique even in the nonlinear 
ase.

2.1. The Stationary Stokes System. First we 
onsider the stationary Stokes problem

(2.1) ��u +rp = f = divF; div u = k in 
; u

j

�


= g

for suitable data f = divF , k and g in a bounded domain 
 � R

3

with �
 2 C

1;1

and { for

simpli
ity { with vis
osity � = 1. Let

C

2

0;�

(
) = fw 2 C

2

(
) : divw = 0; w

j

�


= 0g

denote the 
orresponding spa
e of test fun
tions.

Definition 2.1. Let 1 < r � q <1 and

1

3

+

1

q

�

1

r

. Given data

(2.2) F 2 L

r

(
); k 2 L

r

(
); g 2 W

�1=q;q

(�
)

satisfying the 
ompatibility 
ondition

(2.3)

Z




k dx = hg;Ni

�


;

a ve
tor �eld u 2 L

q

(
) is 
alled a very weak solution to (2.1) if

(2.4)

�(u;�w) = �hg;N � rwi

�


� (F;rw) 8w 2 C

2

0;�

(
)

div u = k in 
; u �N = g �N on �
:

Here (�;  ) :=

R




� dx for measurable fun
tions �;  on 
 provided � �  2 L

1

(
), and h�; �i

�


denotes the evaluation of the fun
tional g 2 W

�1=q;q

(�
) at the admissible test fun
tion N �rw =

�w

�N

2 W

1�1=q

0

;q

0

(�
); note that N 2 C

0;1

(�
) � W

1�1=q

0

;q

0

(�
) for every q 2 (1;1).

Sin
e N � rw is purely tangential on �
 for w 2 C

2

0;�

(
), the term hg;N � rwi

�



on
erns

only the tangential 
omponent of g = u

j

�


on �
. Testing the equation div u = k with an

arbitrary s
alar-valued test fun
tion  2 C

1

(
), we get the se
ond and third identity in (2.4)

via the variational problem

(2.5) �(u;r ) = (k;  )� hg;  Ni

�


:

Now let us de�ne the fun
tionals

(2.6)

hF ; wi = �(F;rw)� hg;N � rwi

�


; w 2 Y

2;q

0

�

(
);

hK;  i = (k;  )� hg;  Ni

�


;  2 W

1;q

0

(
);

where

Y

2;q

0

�

(
) := D(A

q

0

) =W

2;q

0

(
) \W

1;q

0

0

(
) \ L

q

0

�

(
):

Then the embeddings

W

1;q

0

(
) � L

r

0

(
); Y

2;q

0

�

(
) � W

1;r

0

(
);


f. Remark 1.9 (2), and the tra
e estimate

k �Nk

W

1�1=q

0

;q

0

(�
)

� 
 k k

W

1�1=q

0

;q

0

(�
)

� 
k k

W

1;q

0

(
)
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imply that

(2.7)

F 2 Y

�2;q

�

(
) := Y

2;q

0

�

(
)

�

K 2 W

�1;q

0

(
) := W

1;q

0

(
)

�

:

However, the fun
tionals F and K are not distributions in the 
lassi
al sense on their respe
tive

spa
es of test fun
tions, sin
e in ea
h 
ase C

1

0

(
) is not a dense subspa
e. Nevertheless, (2.6),

(2.7) leads to a further useful generalization of the 
on
ept of very weak solutions, see [51℄.

Definition 2.2. Let 1 < q < 1 and let F 2 Y

�2;q

�

(
), K 2 W

�1;q

0

(
) be given. Then

u 2 L

q

(
) is 
alled a very weak solution of the Stokes problem with data F ;K if

(2.8)

�(u;�w) = hF ; wi; w 2 Y

2;q

0

�

(
);

�(u;r ) = hK;  i;  2 W

1;q

0

(
):

The 
on
ept of De�nition 2.2 has the drawba
k that any ve
tor �eld u 2 L

q

(
) is the very

weak solution of the Stokes problem for suitable data F 2 Y

�2;q

�

(
), K 2 W

�1;q

0

(
), namely,

hF ; wi := �(u;�w); hK;  i := �(u;r ):

Hen
e there is no possibility to de�ne boundary values of u in this very general setting. However,

this 
on
ept immediately leads to the existen
e of a unique very weak solution using duality

arguments.

Theorem 2.3. Let 
 � R

3

be a bounded domain with boundary �
 2 C

1;1

, let 1 < q < 1

and F 2 Y

�2;q

�

(
), K 2 W

�1;q

0

(
) be given. Then the Stokes problem (2.8) has a unique very

weak solution u 2 L

q

(
); moreover, u satis�es the estimate

(2.9) kuk

q

� 


�

kFk

Y

�2;q

�

(
)

+ kKk

W

�1;q

0

(
)

�

with a 
onstant 
 = 
(
; q) > 0.

Proof. Consider an arbitrary ve
tor �eld v 2 L

q

0

(
). Then there exists a unique strong

solution w 2 Y

2;q

0

�

(
),  2 W

1;q

0

(
) of the Stokes problem

(2.10) ��w �r = v; divw = 0 in 
; w

j

�


= 0;

Z




 dx = 0;

moreover, w;  linearly depend on v and

kwk

W

2;q

0

(
)

+ k k

W

1;q

0

(
)

� 
 kvk

q

0

with a 
onstant 
 = 
(
; q) > 0. Now, using the duality L

q

(
) = L

q

0

(
)

�

, de�ne u 2 L

q

(
) by

(u; v) = hF ; wi+ hK;  i

su
h that

j(u; v)j � kFk

Y

�2;q

�

(
)

kwk

W

2;q

0

(
)

+ kKk

W

�1;q

0

(
)

k k

W

1;q

0

(
)

� 


�

kFk

Y

�2;q

�

(
)

+ kKk

W

�1;q

0

(
)

�

kvk

q

0

:

Hen
e u satis�es the a priori estimate (2.9).

To show that u is a very weak solution to the data F ;K, 
hoose arbitrary test fun
tions

w 2 Y

2;q

0

�

(
) and  2 W

1;q

0

(
) and de�ne v = ��w �r 2 L

q

0

(
). Then

(u;��w)� (u;r ) = (u; v) = hF ; wi+ hK;  i;

i.e., (2.8) is satis�ed.
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To prove uniqueness, let u 2 L

q

(
) satisfy (2.8) with F = 0, K = 0. Then for all v 2 L

q

0

(
)

and 
orresponding solutions w 2 Y

2;q

0

�

(
),  2 W

1;q

0

(
) of (2.10) we get

(u; v) = (u;��w)� (u;r ) = hF ; wi+ hK;  i = 0:

Thus u = 0. �

We note that the proof of Theorem 2.3 was based on duality arguments related to the (strong)

Stokes operator

A

q

0

: Y

2;q

0

�

(
)! L

q

0

�

(
)

where A

q

0

= �P

q

0

� is 
onsidered as a bounded bije
tive operator from Y

2;q

0

�

(
) � W

2;q

0

(
),

equipped with the norm of W

2;q

0

(
), onto L

q

0

�

(
), and to its adjoint

(A

q

0

)

�

: L

q

�

(
)! Y

�2;q

�

(
);

whi
h de�nes an isomorphism as well.

To return to De�nition 2.1 of very weak solutions and to interpret their boundary values let

us introdu
e the notion of normal and tangential 
omponents of (R

3

-valued) tra
es on �
 and

of fun
tionals on �
. Given h = (h

1

; h

2

; h

3

) 2 W

1�1=q

0

;q

0

(�
) let

h

N

= (h �N)N and h

�

= h� h

N

for a.a. x 2 �


denote its normal and tangential 
omponent, respe
tively. Obviously

h

N

2 W

1�1=q

0

;q

0

N

(�
) := f' 2 W

1�1=q

0

;q

0

(�
) : 'kN on �
 a.e.g;

h

�

2 W

1�1=q

0

;q

0

�

(�
) := f' 2 W

1�1=q

0

;q

0

(�
) : ' �N = 0 on �
 a.e.g;

and

kh

N

k

1�1=q

0

;q

0

;�


+ kh

�

k

1�1=q

0

;q

0

;�


� 
khk

1�1=q

0

;q

0

;�


:

A
tually,

W

1�1=q

0

;q

0

N

(�
) �W

1�1=q

0

;q

0

�

(�
) =W

1�1=q

0

;q

0

(�
)

as a topologi
al and algebrai
 dire
t de
omposition.

For g = (g

1

; g

2

; g

3

) 2 W

�1=q;q

(�
), we de�ne the fun
tionals

g

N

2 W

�1=q;q

N

(�
) :=W

1�1=q

0

;q

0

N

(�
)

�

g

�

2 W

�1=q;q

�

(�
) :=W

1�1=q

0

;q

0

�

(�
)

�

by

hg

N

; h

N

i

�


:= hg; h

N

i

�


; h

N

2 W

1�1=q

0

;q

0

N

(�
);

and

hg

�

; h

�

i

�


:= hg; h

�

i

�


; h

�

2 W

1�1=q

0

;q

0

�

(�
);

respe
tively. Hen
e

kg

N

k

W

�1=q;q

N

(�
)

+ kg

�

k

W

�1=q;q

�

(�
)

� 
kgk

�1=q;q;�


:

Sin
e g 2 W

�1=q;q

(�
) is given, it is reasonable to extend g

N

from W

�1=q;q

N

(�
) to W

�1=q;q

(�
)

by de�ning hg

N

; h

�

i := 0 for all tangential tra
es h

�

2 W

1�1=q

0

;q

0

�

(�
) and to extend g

�

from

W

�1=q;q

�

(�
) to W

�1=q;q

(�
) by de�ning hg

�

; h

N

i := 0 for all normal tra
es h

N

2 W

1�1=q

0

;q

0

N

(�
).

That way, W

�1=q;q

N

(�
) and W

�1=q;q

�

(�
) may be 
onsidered as 
losed subspa
es of W

�1=q;q

(�
).

Hen
e

(2.11) g = g

N

+ g

�

on W

1�1=q

0

;q

0

(�
);
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and we get the topologi
al and algebrai
 de
omposition

(2.12) W

�1=q;q

N

(�
)�W

�1=q;q

�

(�
) = W

�1=q;q

(�
):

Finally, we de�ne the fun
tional g �N 2 W

�1=q;q

(�
) by

hg �N; i

�


:= hg;  Ni

�


;  2 W

1;1=q

0

;q

0

(�
);

satisfying kg �Nk

�1=q;q;�


� 
 kgk

�1=q;q;�


. Obviously, g �N = g

N

�N and g

�

�N = 0. Moreover,

g

N

= (g �N)N formally and also in the pointwise sense when g is a ve
tor �eld on �
.

Theorem 2.4. Let 
 � R

3

be a bounded domain with boundary of 
lass C

1;1

, and let 1 <

r � q <1 satisfy

1

3

+

1

q

�

1

r

.

(1) Given data F; k and g as in (2.2), (2.3) there exists a unique very weak solution u 2 L

q

(
)

of (2.4). This solution satis�es the a priori estimate

(2.13) kuk

q

� 


�

kFk

r

+ kkk

r

+ kgk

�1=q;q;�


�

with a 
onstant 
 = 
(q; r;
) > 0.

(2) The very weak solution u 2 L

q

(
) in (1) has a normal tra
e u �N = g �N 2 W

�1=q;q

(�
)

and a tangential tra
e 
omponent u

�

= g

�

2 W

�1=q;q

�

(�
) in the following sense: The

normal tra
e u �N = g �N exists via the identity

(2.14) hu �N; i

�


= (k;  ) + (u;r );  2 W

1;q

0

(
):

For the tangential 
omponent of the tra
e, u

�

, we use a bounded linear extension operator

E

�

: W

1�1=q

0

;q

0

�

(�
)! Y

2;q

0

�

(
)

su
h that

h = N � rE

�

(h)

j

�


for all h 2 W

1�1=q

0

;q

0

�

(�
):

Then

(2.15) hu

�

; hi =

�

u;�E

�

(h)

�

�

�

F;rE

�

(h)

�

; h 2 W

1�1=q

0

;q

0

�

(�
);

is uniquely de�ned (not depending on the extension operator E

�

with the above proper-

ties). Moreover,

(2.16)

ku �Nk

�1=q;q;�


� 
 kg

N

k

W

�1=q;q

N

(�
)

;

ku

�

k

W

�1=q;q

�

(�
) � 
 kg

�

k

W

�1=q;q

�

(�
)

:

De�ning the fun
tional u

N

= (u �N)N 2 W

�1=q;q

N

(�
) by hu

N

; h

N

i

�


:= hu �N; h

N

�Ni

�


for h

N

2 W

1�1=q

0

;q

0

N

(�
), it holds in view of (2.11), (2.12)

(2.17) u = u

N

+ u

�

= g 2 W

�1=q;q

(�
)

and

(2.18) kuk

�1=q;q;�


� 


�

ku �Nk

�1=q;q;�


+ ku

�

k

W

�1=q;q

�

(�
)

�

:

(3) Assume that F 2 Y

�2;q

�

(
) and K 2 W

�1;q

0

(
) have the representations

(2.19)

hF ; wi = �(F;rw)� hg

�

; N � rwi

�


; w 2 Y

2;q

0

�

(
);

hK;  i = (k;  )� hĝ;  i

�


;  2 W

1;q

0

(
);
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respe
tively, with

F; k 2 L

r

(
) and g

�

2 W

�1=q;q

�

(�
); ĝ 2 W

�1=q;q

(�
):

Then F; g

�

and k; ĝ are uniquely determined by F and K, respe
tively; see the proof

below for details 
on
erning the uniqueness of F .

Proof. (1) Given F; k; g as in (2.2), (2.3) de�ne F ;K as in (2.6), and let u 2 L

q

(
) be the

unique very weak solution of (2.8) due to Theorem 2.3. In view of (2.6), (2.9) u satis�es (2.13).

(2) Testing in (2.8)

2

with  2 C

1

0

(
) we see from (2.6)

2

that div u = k 2 L

r

(
) in the sense

of distributions. Sin
e u 2 L

q

(
) � L

r

(
), a 
lassi
al result implies that u has a normal tra
e

u �N 2 W

�1=r;r

(�
) whi
h by (2.6)

2

, (2.8)

2


oin
ides with g �N 2 W

�1=q;q

(�
).

Con
erning the tangential tra
e we �rst 
onstru
t the extension operator E

�

. Let h 2

W

1�1=q

0

;q

0

(�
). Then we �nd w

h

= E

1

(h) 2 W

2;q

0

(
) \W

1;q

0

0

(
) su
h that

w

h

j

�


= 0 and N � rw

h

= h;

moreover, w

h

depends linearly and 
ontinuously on h. The existen
e of an extension operator E

1

with these porperties is well-known in the 
ase of bounded domains with boundary of 
lass C

2;1

,

see [47℄, [65℄. However, a molli�
ation pro
edure, see [51℄, allows this extension even in the 
ase

when �
 2 C

1;1

only. Next, assume that h 2 W

1�1=q

0

;q

0

�

(�
). Then an easy 
al
ulation shows

that divw

h

j

�


= 0 so that divw

h

2 W

1;q

0

0

(
) and

R




divw

h

dx = 0. Next we need properties

of Bogovskii's operator 
on
erning the divergen
e problem ([6℄, [61℄): There exists a bounded

linear operator

B :

�

f 2 W

1;q

0

0

(
) :

Z




f dx = 0

	

!W

2;q

0

0

(
)

su
h that divBf = f for these f . Now we de�ne the extension operator E

�

= E

1

� B Æ E

1

.

Obviously, E

�

is a bounded operator from W

1�1=q

0

;q

0

�

(�
) to W

2;q

0

(
) su
h that E

�

(h) = 0 on

�
 and divE

�

(h) = 0 in 
, i.e. E

�

(h) 2 Y

2;q

0

�

(
). Moreover, N � rE

�

(h) = N � rw

h

= h on �


due to the properties of B.

Let h 2 W

1�1=q

0

;q

0

�

(�
). Then we use w = E

�

(h) 2 Y

2;q

0

�

(
) as a test fun
tion in (2.8)

1

to see

that

�

�

u;�E

�

(h)

�

= hF ; E

�

(h)i

= �

�

F;rE

�

(h)

�

� hg;N � rE

�

(h)i

�


= �

�

F;rE

�

(h)

�

� hg

�

; hi

�


:

With u

�

:= g

�

the former identity 
oin
ides with (2.15) and does not depend on the parti
ular


hoi
e of the extension operator E

�

.

(3) It suÆ
es to 
onsider F; g

�

or k; ĝ su
h that F = 0 or K = 0, respe
tively. If K = 0

so that 0 = (k;  ) � hĝ;  i

�


for all  2 W

1;q

0

(
), then k = 0 sin
e we may 
onsider the dense

subset C

1

0

(
) of L

r

0

(
) for the test fun
tions  . Hen
e 0 = hĝ;  i

�


for all  2 W

1;q

0

(
) and


onsequently ĝ = 0.

Now let F = 0 so that, using the notation f = divF ,

(2.20) 0 = hf; wi � hg

�

; N � rwi

�


for all w 2 Y

2;q

0

�

(
):

Hen
e

hf; wi = 0 for all w 2 C

1

0;�

(
);
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and a 
lassi
al theorem on weak solutions of the Stokes problem proves that f = rp with

p 2 L

r

(
). Therefore,

�(F;rw) = hf; wi = hrp; wi = �

Z




p divw dx = 0

for all w 2 Y

2;q

0

�

(
) and even for all w 2 W

1;r

0

0;�

(
) :=W

1;r

0

0

(
) \ L

r

0

�

(
). In this sense F = 0 and

f = 0, and (2.20) implies that

hg

�

; N � rwi

�


= 0 for all w 2 Y

2;q

0

�

(
):

Using the operator E

�

we get that hg

�

; hi

�


= 0 for all h 2 W

1�1=q

0

;q

0

�

(
) and hen
e g

�

= 0. �

Let us introdu
e a further notation for very weak solutions of the Stokes system whi
h will

be helpful in the analysis of nonstationary problems, see xx2.3 - 2.4.

Definition 2.5. For f 2 Y

�2;q

�

(
) let A

�1

q

P

q

f denote the unique ve
tor �eld in L

q

�

(
)

satisfying

(A

�1

q

P

q

f; v) = hf; A

�1

q

0

vi for all v 2 L

q

0

�

(
);

or, equivalently, with v = A

q

0

w,

(2.21) (A

�1

q

P

q

f; A

q

0

w) = hf; wi for all w 2 Y

2;q

0

�

(
):

Remark 2.6. (1) Formally, every gradient �eld rp, p 2 L

q

0

(
), vanishes when being 
onsid-

ered as an element of Y

�2;q

�

(
). In this sense we have to identify two elements f; f

0

2 Y

�2;q

�

(
)

when f � f

0

is a gradient �eld, or, formally, when P

q

f = P

q

f

0

. The notation P

q

f and A

�1

q

P

q

f in

De�nition 2.5 is formal and indi
ates that only solenoidal test fun
tions v are used.

(2) Sin
e A

�1

q

P

q

f 2 L

q

�

(
) for f 2 Y

�2;q

�

(
), (2.21) also reads

�(A

�1

q

P

q

f;�w) = hf; wi for all w 2 Y

2;q

0

�

(
):

Hen
e A

�1

q

P

q

f is the unique very weak solution of (2.8) with F = f and K = 0, i.e.,

A

�1

q

P

q

: Y

�2;q

�

(
)! L

q

�

(
)

is the 
orresponding bounded solution operator. In parti
ular,

(2.22) kA

�1

q

P

q

divFk

q

� 
 kFk

r

; F 2 L

r

(
);

by (2.6), (2.7), (2.13) when using F = f = divF .

(3) Let us dis
uss the relation of De�nition 2.5 to the weak Stokes problem. Given F 2 L

�

(
),

1 < � <1, there exists a unique weak solution u 2 W

1;�

0;�

(
) = D(A

1=2

�

) su
h that

(ru;rv) = hdivF; vi = �(F;rv) for all W

1;�

0

0;�

(
)

(2.23) kruk

�

� 
 kFk

�

where 
 = 
(�;
) > 0. Using as a test fun
tion v 2 Y

2;�

0

�

(
) we get that

hdivF; vi = �(u;�vi = (u;A

�

0

v):

Hen
e u 
oin
ides with the unique very weak solution A

�1

�

P

�

divF 2 L

�

�

(
), and we 
on
lude

that A

�1

�

P

q

divF 2 D(A

1=2

�

), and, from (2.23), that

(2.24) kA

1=2

�

A

�1

�

P

�

divFk

�

� 
 kFk

�
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where 
 = 
(�;
) > 0. For short, we will write A

�1=2

�

P

�

divF = A

1=2

�

A

�1

�

P

�

divF so that (2.24)

reads

kA

�1=2

�

P

�

divFk

�

� 
 kFk

�

2.2. The Stationary Navier-Stokes System.

Definition 2.7. Let 1 < r, q < 1 satisfy

2

q

�

1

r

�

1

3

+

1

q

and let the data F; k; g be given

as in (2.2), (2.3). Then u 2 L

q

(
) is 
alled a very weak solution of the stationary Navier-Stokes

system

���u + div (uu) +rp = f = divF; div u = k in 
; u

j

�


= g(2.25)

if for all w 2 C

2

0;�

(
)

��(u;�w)� (uu;rw) = �(F;rw)� �hg; N � rwi

�


(2.26)

and

div u = k in 
; u �N

j

�


= g �N:(2.27)

Remark 2.8. As already noted in Remark 1.9, the variational problem (2.26) is missing the

term (ku; w) 
ompared to the approa
h in [12℄, [14℄, [19℄, [21℄, [26℄ where the authors 
onsidered

the equation

��(u;�w)� (uu;rw)� (ku; w) = �(F;rw)� �hg;N � rwi

�


;

w 2 C

2

0;�

(
). The only reason for this 
hange is to keep the proofs shorter than for the model

in
luding the term ku.

Theorem 2.9. There exists a 
onstant "

�

= "

�

(q; r;
) independent of the data F; k; g and

the vis
osity � > 0 with the following property:

(1) If

kFk

r

+ �kkk

r

+ �kgk

�1=q;q;�


� "

�

�

2

;(2.28)

then there exists a very weak solution u 2 L

q

(
) to the stationary Navier-Stokes system

(2.25). This solution satis�es the a priori estimate

�kuk

q

� 


�

kFk

r

+ �kkk

r

+ �kgk

�1=q;q;�


�

(2.29)

where 
 = 
(q; r;
) > 0.

(2) A very weak solution u to data F; k; g is unique in L

q

(
) under the smallness 
ondition

kuk

q

� "

�

�.

We note that in De�nition 2.7 and Theorem 2.9 we need the restri
tions 2r � q and q � 3

in 
ontrast to the linear 
ase. The proof of existen
e (and hen
e of lo
al uniqueness) is based

on Bana
h's Fixed Point Theorem, whereas the proof of uniqueness in all of L

q

(
) requires a

bootstrapping argument; the 
ase q = 3 needs a further approximation step and will be omitted.

Proof. (1) Sin
e 2r � q, every ve
tor �eld u 2 L

q

(
) satis�es the estimate

kuuk

r

� 
 kuk

2

2r

� 
 kuk

2

q

:(2.30)

Now, for arbitrary data F; k; g as in (2.2), (2.3), let u = S(F; k; g) 2 L

q

(
) denote the very weak

solution of the Stokes problem (2.1) with � = 1. Then, in view of (2.30) a very weak solution

u 2 L

q

(
) of the Navier-Stokes system (2.25) is a �xed point of the nonlinear map

N (u) = S

�

1

�

(F � uu); k; g

�

= S(

1

�

F; k; g)�

1

�

S(uu; 0; 0):
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To apply Bana
h's �xed Point Theorem we estimate N (u) by using (2.30) and the a priori

estimate (2.13) for the operator S as follows:

(2.31)

kN (u)k

q

� 


�

1

�

(kFk

r

+ kuk

2

q

) + kkk

r

+ kgk

�1=q;q;�


�

= akuk

2

q

+ b

where a =




�

and b = 


�

1

�

kFk

r

+ kkk

r

+ kgk

�1=q;q;�


�

. Moreover, for u; u

0

2 L

q

(
) we get the

estimate

(2.32)

kN (u)�N (u

0

)k

q

= k

1

�

S(uu� u

0

u

0

; 0; 0)k

q

�




�

ku� u

0

k

q

(kuk

q

+ ku

0

k

q

)

with the same 
onstant 
 > 0 as above. Now 
onsider the 
losed ball B

�

� L

q

(
) of radius � > 0

and 
enter 0 where � is the smallest positive root of the quadrati
 equation y = ay

2

+ b; for the

existen
e of � > 0 we need the smallness 
ondition

4 ab < 1

whi
h is equivalent to (2.28) with a suitable 
onstant "

�

= "

�

(q; r;
) > 0. Furthermore note that

� <

1

2a

so that by (2.32)

kN (u)�N (u

0

)k

q

� �ku� u

0

k

q

; u; u

0

2 B

�

;

with � = 2a� < 1. Sin
e N maps B

�

into B

�

by (2.31) and is a stri
t 
ontra
tion on B

�

, Bana
h's

Fixed Point Theorem yields a unique �xed point u 2 B

�

of N . Finally the trivial bound � � 2b

yields the a priori estimate (2.29).

(2) To prove uniqueness of a very weak solution u in L

q

(
) we start with the 
ase when q > 3.

Let u; v 2 L

q

(
) be �xed points of N . Then w = u� v is the unique very weak solution of the

linear Stokes system

���w +rp = �div (wu+ vw); divw = 0 in 
; w

j

�


= 0(2.33)

with "known" right-hand side �div (wu+ vw). Sin
e u; v 2 L

q

(
) and 
onsequently w 2 L

q

1

�

(
)

where q

1

= q, we get that

wu+ vw 2 L

�

1

(
);

1

�

1

=

1

q

+

1

q

1

:

Hen
e w 
oin
ides with the unique weak solution of the Stokes problem (2.33) and satis�es

w 2 D(A

1=2

�

1

) =W

1;�

1

0;�

(
) � L

q

1

�

(
);

1

q

1

=

1

�

1

�

1

3

=

1

q

+ (

1

q

�

1

3

):

If �

1

< 2, i.e., q < 4, we repeat this argument �nitely many times to get in the m-th step,

m = 1; 2; 3; : : :, that

w 2 L

q

m

�

(
);

1

q

m

=

1

q

+m(

1

q

�

1

3

):

Sin
e q > 3, we will arrive at the property

wu+ vw 2 L

�

m

(
);

1

�

m

=

1

q

+

1

q

m

=

2

q

+m(

1

q

�

1

3

) �

1

2
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for suÆ
iently large m 2 N . Now we see that wu + vw 2 L

2

(
), 
onsequently w 2 D(A

1=2

2

) =

W

1;2

0;�

(
), and that we may test in (2.33) with w. By these means we get that

�krwk

2

2

=

Z




u(w � rw) dx+

Z




w(v � rw) dx =

Z




u(w � rw) dx

� kuk

3

kwk

6

krwk

2

� 
 kuk

q

krwk

2

2

:

Hen
e, under the smallness 
ondition kuk

q

� "

�

� we may 
on
lude that rw = 0 and u = v.

The limit 
ase q = 3, in whi
h the above iteration is stationary (q

m

= q for all m 2 N),

requires a 
ompli
ated approximation and smoothing argument. For details we refer to [21℄. �

2.3. The Instationary Stokes System. Looking at very weak solutions u 2

L

s

�

0; T ;L

q

(
)

�

, 1 < s; q < 1, of the initial-boundary value problem of the Stokes system

we 
arefully introdu
e the set of admissible initial values, J

q;s

�

(
), as a subset of Y

�2;q

�

(
). In

this subse
tion we set � = 1 for simpli
ity.

Definition 2.10. Given 1 < s; q <1 let

J

q;s

�

(
) =

n

u

0

2 Y

�2;q

�

(
) :

Z

1

0

kA

q

e

��A

q

(A

�1

q

P

q

u

0

)k

s

q

d� <1

o

;

equipped with the norm

ku

0

k

J

q;s

�

:=

�

Z

1

0

kA

q

e

��A

q

(A

�1

q

P

q

u

0

)k

s

q

d�

�

1=s

:

Remark 2.11. (1) The term k � k

J

q;s

�

de�nes a norm on J

q;s

�

(
): If ku

0

k

J

q;s

�

= 0, then

A

q

e

�tA

q

(A

�1

q

P

q

u

0

) = 0 and 
onsequently e

�tA

q

A

�1

q

P

q

u

0

= 0 for a.a. t > 0; as t ! 0+, we


on
lude that A

�1

q

P

q

u

0

= 0, i.e., u

0

= 0 as an element of Y

�2;q

�

(
). Note that ku

0

k

J

q;s

�

(
)

equals

the L

s

�

0; T ;L

q

(
)

�

-norm of Au(t) where u(t) denotes the strong solution of the homogeneous

instationary Stokes problem with initial value A

�1

q

P

q

u

0

2 L

q

�

(
).

(2) The spa
es J

q;s

�

(
) 
an be 
onsidered as real interpolation spa
es and identi�ed with

solenoidal subspa
es of Besov spa
es. A
tually,

u

0

2 J

q;s

�

(
), A

�1

q

P

q

u

0

2

�

D(A

q

); L

q

�

(
)

�

1=s;s

and

ku

0

k

J

q;s

�

+ kA

�1

q

P

q

u

0

k

q

� kA

�1

q

P

q

u

0

k

(D(A

q

);L

q

�

(
))

1=s;s

in the sense of norm equivalen
e, see [30, (2.5)℄, [65℄. Moreover, 
onsider the solenoidal Besov

spa
es B

2�2=s

q;s

(
) introdu
ed in [3, (0.6)℄, with the property

B

2�2=s

q;s

(
) =

8

<

:

fu 2 B

2�2=s

q;s

(
) : div u = 0; u

j

�


= 0g;

1

q

< 2�

2

s

;

fu 2 B

2�2=s

q;s

(
) : div u = 0; u �N

j

�


= 0g;

1

q

> 2�

2

s

;


f. [65℄, where B

2�2=s

q;s

(
) are the usual Besov spa
es. By [3, Proposition 3.4℄

u

0

2 J

q;s

�

(
), A

�1

q

P

q

u

0

2

�

D(A

q

); L

q

�

(
)

�

1=s;s

= B

2�2=s

q;s

(
):

(3) Consider u

0

2 Y

�2;q

�

(
) su
h that

jhu

0

; wij � 
 kA

�1=s+"

q

0

wk

q

0

; w 2 Y

2;q

0

�

(
);
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where 0 < " <

1

s

. Then by (1.24) u

0

2 J

q;s

�

(
).

Definition 2.12. Let 1 < s; q < 1, 1 < r � q,

1

3

+

1

q

�

1

r

, 0 < T � 1, let the data F; k; g

satisfy

F 2 L

s

�

0; T ;L

r

(
)

�

; k 2 L

s

�

0; T ;L

r

(
)

�

; g 2 L

s

�

0; T ;W

�1=q;q

(�
)

�

(2.34)

R




k(t) dx = hg(t); Ni

�


for a.a. t 2 (0; T );(2.35)

and let u

0

2 J

q;s

�

(
). Then u 2 L

s

�

0; T ;L

q

(
)

�

is 
alled a very weak solution of the instationary

Stokes system

(2.36)

u

t

��u+rp = divF; div u = k in 
� (0; T )

u(0) = u

0

at t = 0; u = g on �
 � (0; T )

if

(2.37)

�(u; w

t

)


;T

� (u;�w)


;T

= hu

0

; w(0)i � (F;rw)


;T

� hg;N � rwi

�
;T

div u = k in 
� (0; T ); u �N = g �N on �
� (0; T )

for all test fun
tions w 2 C

1

0

�

[0; T );C

2

0;�

(
)

�

.

Remark 2.13. (1) As shown in Theorem 2.14 below the very weak solution u 2

L

s

�

0; T ;L

q

(
)

�

of (2.36), (2.37) has the property A

�1

q

P

q

u(�) 2 C

0

�

[0; T );L

q

(
)

�

or equivalently,

u 2 C

0

�

[0; T );Y

�2;q

�

(
)

�

. Hen
e the initial value u(0) = u

0

in (2.36)

2

is attained in Y

�2;q

�

(
), i.e.

hu(0); wi = hu

0

; wi for all w 2 Y

2;q

0

�

(
);

or equivalently (A

�1

q

P

q

u)(0) = A

�1

q

P

q

u

0

.

(2) De�nition 2.12 may be extended, 
orrespondingly to De�nition 2.2, to the problem

(2.38)

(u; w

t

)


;T

� (u;�w)


;T

= hF ; wi

�(u;r )


;T

= hK;  i

with data F 2 L

s

�

0; T ;Y

�2;q

�

(
)

�

and K 2 L

s

�

0; T ;W

�1;q

0

(
)

�

and for suitable test fun
tion w

and  , 
f. [51℄. Then existen
e and uniqueness of a very weak solution u 2 L

s

�

0; T ;L

q

(
)

�

to (2.38) is a dire
t 
onsequen
e of duality arguments and results on the strong instationary

Stokes system in L

s

0

�

0; T ;L

q

0

(
)

�

. As in x2.1, in this very general setting neither initial values

nor boundary values of u are well-de�ned. A
tually, every u 2 L

s

�

0; T ;L

q

(
)

�

is the very weak

solution of (2.38) for 
ertain data F and K. However, in 
ontrast to our approa
h in x2.1, we

will follow a di�erent idea to solve (2.37).

Theorem 2.14. Suppose that the data F; k; g satisfy the 
onditions (2.34), (2.35), and that

u

0

2 J

q;s

�

(
) where 1 < s, q <1, 1 < r � q,

1

q

+

1

3

�

1

r

. Then there exists a unique very weak

solution u 2 L

s

�

0; T ;L

q

(
)

�

of (2.36), satisfying

u

t

2 L

s

�

0; T ;Y

�2;q

�

(
)

�

; u 2 C

0

�

[0; T );Y

�2;q

�

(
)

�

:

Moreover, there exists a 
onstant 
 = 
(q; r; s;
) > 0 independent of T > 0 su
h that

kuk

L

s

(L

q

)

+ ku

t

k

L

s

(Y

�2;q

�

)

� 


�

kFk

L

s

(L

r

)

+ kkk

L

s

(L

r

)

+ kgk

L

s

(W

�1=q;q

(�
))

+ ku

0

k

J

q;s

�

�

:(2.39)
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Proof. For almost all t 2 (0; T ) let H(t) denote the solution of the weak Neumann problem

�H = k in 
; N � (rH � g) = 0 on �
:

Sin
e k(t) 2 L

r

(
) � W

�1;q

0

(
), we �nd a unique solution rH(t) 2 L

q

(
) satisfying

(2.40) rH(t) 2 L

s

�

0; T ;L

q

(
)

�

; krHk

L

s

(L

q

)

� 


�

kkk

L

s

(L

r

)

+ kgk

L

s

(W

�1=q;q

(�
))

�

:

Moreover, for almost all t 2 (0; T ) let 
(t) = 


F (t);k(t);g(t)

2 L

q

(
) denote the very weak solution

of the inhomogeneous Stokes problem

(2.41) ��
 +rp = divF; div 
 = k in 
; 


j

�


= g;

satisfying the estimate

k
k

L

s

(L

q

)

� 


�

kFk

L

s

(L

r

)

+ kkk

L

s

(L

r

)

+ kgk

L

s

(W

�1=q;q

(�
))

�

:(2.42)

Assume that u 2 L

s

�

0; T ;L

q

(
)

�

is a very weak solution of (2.36). Obviously

P

q

u = u�rH and P

q


 = 
 �rH for a.a. t 2 (0; T );

where P

q

denotes the usual Helmholtz proje
tion on L

q

(
). Thus

û := P

q

u = u�rH = u� 
 + P

q


 2 L

s

�

0; T ;L

q

�

(
)

�

:

Next let us prove that U = A

�1

q

û 2 L

s

�

0; T ;D(A

q

)

�

is a strong solution of the Stokes system

U

t

+ A

q

U = P

q


 on (0; T ); U(0) = A

�1

q

P

q

u

0

:(2.43)

For this reason 
onsider any test fun
tion v 2 C

1

0

�

[0; T );L

q

0

�

(
)

�

and also w = A

�1

q

0

v 2

C

1

0

�

[0; T );Y

2;q

0

�

(
)

�

. Then

�(U; v

t

)


;T

+ (A

q

U; v)


;T

� (P

q


; v)


;T

= �(û; w

t

)


;T

+ (û; A

q

0

w)


;T

� (P

q


; A

q

0

w)


;T

= �(u; w

t

)


;T

� (u� 
;�w)


;T

;

sin
e (rH;w

t

)


;T

= 0 and div (u� 
) = 0. Due to (2.41) we know that

�(
;�w)


;T

= �(F;rw)


;T

� hg;N � rwi

�
;T

;

so that we may pro
eed as follows:

�(U; v

t

)


;T

+ (A

q

U; v)


;T

� (P

q


; v)


;T

= �(u; w

t

)


;T

� (u;�w)


;T

+ (F;rw)


;T

+ hg;N � rwi

�
;T

= hu

0

; w(0)i

=

�

A

�1

q

P

q

u

0

; v(0)

�

:

This identity, valid for all v 2 C

1

�

[0; T );L

q

0

�

(
)

�

, proves that U satis�es (2.43) and that U(0) =

A

�1

q

P

q

u

0

. Moreover, by Lemma 1.12 on maximal regularity, the estimates (1.28), (2.42) and

the variation of 
onstants formula (1.27) we know that U

t

2 L

s

�

0; T ;L

q

�

(
)

�

, in parti
ular,

U 2 C

0

�

[0; T );L

q

�

(
)

�

,

U(t) = e

�A

q

t

(A

�1

q

P

q

u

0

) +

Z

t

0

e

�A

q

(t��)

P

q


(�) d�(2.44)
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and

kU

t

k

L

s

(L

q

)

+ kA

q

Uk

L

s

(L

q

)

� 


�

Z

T

0

kA

q

e

�A

q

t

(A

�1

q

P

q

u

0

)k

s

q

dt

�

1=s

+ kP

q


k

L

s

(L

q

)

(2.45)

� 


�

ku

0

k

J

q;s

�

+ kFk

L

s

(L

r

)

+ kkk

L

s

(L

r

)

+ kgk

L

s

(W

�1=q;q

(�
))

�

:

Sin
e u = û+rH = A

q

U +rH, we proved so far that u ne
essarily has the representation

u = rH + A

q

e

�A

q

t

(A

�1

q

P

q

u

0

) +

Z

t

0

A

q

e

�A

q

(t��)

P

q


(�) d�:(2.46)

Hen
e u is uniquely de�ned by the data F; k; g and u

0

and satis�es (2.36) in the very weak sense,

sin
e we may pass through the previous 
omputations in reverse order. Finally, (2.45) and (2.46)

imply (2.39). �

Remark 2.15. The very weak solution u 2 L

s

�

0; T ;L

q

(
)

�


onstru
ted in Theorem 2.14 has

a tra
e u

j

�


2 L

s

�

0; T ;W

�1=q;q

(�
)

�

. A
tually, sin
e k = div u 2 L

s

�

0; T ;L

r

(
)

�

, we get that

u �N

j

�


2 L

s

�

0; T ;W

�1=r;r

(�
)

�

and even

u �N

j

�


= g �N 2 L

s

�

0; T ;W

�1=q;q

(�
)

�

:

Con
erning the tangential 
omponent of u on �
 we 
onsider h 2 C

1

0

�

(0; T );W

1�1=q

0

;q

0

�

(�
)

�

and

w = E

�

(h) 2 C

1

0

�

(0; T );Y

2;q

0

�

(
)

�

satisfying h = N � rw

j

�


, 
f. Theorem 2.4. Inserting w in

(2.37) we obtain the formula

hg; hi

�
;T

= (u; w

t

)


;T

+ (u;�w)


;T

� (F;rw)


;T

:

This formula yields a well-de�ned expression for the tangential 
omponent g

�

= g � (g � N)N

of the boundary values. Obviously, if u is suÆ
iently smooth, integration by parts shows that

u

�

j

�


= g

�

.

2.4. The Instationary Navier-Stokes System. Let us 
onsider the instationary Navier-

Stokes system

(2.47)

u

t

� ��u+ div (uu) +rp = f; div u = k in 
� (0; T )

u(0) = u

0

at t = 0; u = g on �
� (0; T ):

Definition 2.16. Let the data F; k; g satisfy (2.34), (2.35) and let u

0

2 J

q;s

�

(
) where

2 < s <1; 3 < q <1;

2

s

+

3

q

= 1 and

1

3

+

1

q

�

1

r

�

2

q

:(2.48)

Then u 2 L

s

�

0; T ;L

q

(
)

�

is 
alled a very weak solution of (2.47) if for all test fun
tions w 2

C

1

0

�

[0; T );C

2

0;�

(
)

�

(2.49)

�(u; w

t

)


;T

� �(u;�w)


;T

� (uu;rw)


;T

= �(F;rw)


;T

� �hg;N � rwi

�
;T

+ hu

0

; w(0)i;

div u = k in 
� (0; T ); u �N

j

�


= g �N on �
� (0; T ):
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Remark 2.17. (1) In (2.48) we added the 
ondition S(s; q) =

2

s

+

3

q

= 1 in order to allow an

estimate of the nonlinear term (uu;rw)


;T

. Compared to (1.19) in De�nition 1.8 the assumptions

on q; r; s are a little bit weaker in (2.48).

(2) Looking at [12℄, [19℄ we omitted the term (�k; uw)


;T

on the left-hand side of (2.49)

1

leading to some simpli�
ations in the proof, 
f. Remarks 1.9 and 2.8.

Theorem 2.18. Given data F; k; g; u

0

as in De�nition 2.16 there exists some T

0

=

T

0

(�; F; k; g; u

0

) 2 (0; T ℄ and a unique very weak solution u 2 L

s

�

0; T

0

;L

q

(
)

�

of the Navier-

Stokes system (2.47). Moreover, u satis�es

u

t

2 L

s=2

lo


�

[0; T

0

);Y

�2;q

�

(
)

�

;

and the interval of existen
e, [0; T

0

), is determined by the 
ondition

�

Z

T

0

0

k�A

q

e

��tA

q

(A

�1

q

P

q

u

0

)k

s

q

dt

�

1=s

+ kFk

L

s

(0;T

0

;L

r

)

(2.50)

+k�kk

L

s

(0;T

0

;L

r

)

+ k�gk

L

s

(0;T

0

;W

�1=q;q

(�
))

� "

�

�

2�1=s

:

We note that the �rst term in (2.50) 
oin
ides with ku

0

k

J

s;q

�

ex
ept for the interval of inte-

gration (0; T

0

) and the vis
osity � > 0. If T =1, the 
ase T

0

=1 is possible provided the data

F; k; g; u

0

are suÆ
iently small. Formally, (2.50) 
ontains the smallness 
ondition (2.28) in the


ase s =1 whi
h, however, is ex
luded by (2.48).

Proof of Theorem 2.18. Let 
(t) = 


F (t);k(t);g(t);u

0

denote the unique very weak solution

in L

s

�

0; T ;L

q

(
)

�

of the linear system

�


�t

� ��
 +rp = divF; div 
 = k in 
� (0; T );


(0) = u

0

; 
 = g on �
 � (0; T );

as 
onstru
ted in x2.3 when � = 1. Obviously Theorem 2.14 extends to the 
ase of a general

vis
osity � > 0, and the a priori estimate (2.39) reads as follows:

(2.51)

k�
k

L

s

(0;T

0

;L

q

)

� 


��

Z

T

0

0

k�A

q

e

���A

q

(A

�1

q

P

q

u

0

)k

s

q

d�

�

1=s

+kFk

L

s

(0;T

0

;L

r

)

+ k�kk

L

s

(0;T

0

;L

r

)

+ k�gk

L

s

(0;T

0

;W

�1=q;q

(�
))

�

for every T

0

2 (0; T ℄ with a 
onstant 
 = 
(q; r; s;
) > 0 independent of � > 0 and T

0

.

Assume that u 2 L

s

�

0; T

0

;L

q

(
)

�

is a very weak solution of (2.47). Then ~u = u� 
 is a very

weak solution of the system

(2.52)

~u

t

� ��~u+rp = �div (uu); div ~u = 0 in 
� (0; T

0

)

~u = 0 at t = 0; ~u = 0 on �
� (0; T

0

)

with the right-hand side �div (uu) = �div

�

(~u+ 
)(~u + 
)

�

. Sin
e 2r � q, we get k(~u+ 
)(~u+


)(t)k

r

� 
 k~u+ 
k

2

q

for a.a t 2 (0; T

0

) and 
onsequently (~u+ 
)(~u+ 
) 2 L

s=2

�

0; T

0

;L

r

(
)

�

, 
f.

(2.30). Hen
e by Theorem 2.14, ~u in (2.52) is the unique very weak solution in L

s=2

�

0; T

0

;L

q

(
)

�

and

(2.53) ~u(t) = N (~u)(t) := �

Z

t

0

A

q

e

��A

q

(t��)

A

�1

q

P

q

div (~u+ 
)(~u+ 
)(�) d�

for a.a. t 2 (0; T

0

), 
f. (2.46).
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To �nd ~u as the �xed point of the nonlinear map N in L

s

�

0; T

0

;L

q

(
)

�

we estimate N (~u).

Let � =

1

2

�

1

s

so that 2� +

3

q

=

3

q=2

sin
e

2

s

+

3

q

= 1. Then by Lemma 1.11 (4), (3) and (2.24)

kN (~u)(t)k

q

� 


Z

t

0

1

�

�(t� �)

�

1=2+�

kA

1=2��

q

A

�1

q

P

q

div (uu)(�)k

q

d�

� 


Z

t

0

1

�

�(t� �)

�

1�1=s

kA

1=2

q=2

A

�1

q=2

P

q=2

div (uu)(�)k

q=2

d�

� 


Z

t

0

1

�

�(t� �)

�

1�1=s

ku(�)k

2

q

d�:

Next we use the Hardy-Littlewood inequality, see [61, p. 103℄,

�

Z

T

0

�

�

�

Z

t

0

1

(t� �)

1�1=s

h(�) d�

�

�

�

s

dt

�

1=s

� 
 khk

L

s=2

(0;T )

where 
 = 
(s) > 0 is independent of T . Hen
e there exists a 
onstant 
 = 
(q; r; s;
) > 0

independent of T

0

su
h that

kN (~u)k

L

s

(0;T

0

;L

q

)

�




�

1�1=s

kuk

2

L

s

(0;T

0

;L

q

)

�




�

1�1=s

�

k~uk

2

L

s

(0;T

0

;L

q

)

+ k
k

2

L

s

(0;T

0

;L

q

)

�

:

By analogy, we prove for u

0

2 L

s

�

0; T

0

;L

q

(
)

�

and ~u

0

= u

0

� 
 that

kN (~u)�N (~u

0

)k

L

s

(0;T

0

;L

q

)

(2.54)

�




�

1�1=s

k~u� ~u

0

k

L

s

(0;T

0

;L

q

)

�

kuk

L

s

(0;T

0

;L

q

)

+ ku

0

k

L

s

(0;T

0

;L

q

)

�

:

Now we may pro
eed as in the proof of Theorem 2.9. Let a =




�

1�1=s

and b =




�

1�1=s

k
k

2

L

2

(0;T

0

;L

q

)

.

The smallness 
ondition 4ab < 1 is equivalent to the estimate k�
k

L

s

(0;T

0

:L

q

)

� "

�

�

2�1=s

, so that

in view of (2.51) the 
ondition (2.50) is suÆ
ient to guarantee that 4ab < 1. Sin
e (2.51) holds

for T

0

2 (0; T ) suÆ
iently small (or even for T

0

= T =1), Bana
h's Fixed Point Theorem proves

the existen
e of a unique solution to the equation ~u = N (~u) in a suÆ
iently small 
losed ball of

L

s

�

0; T

0

;L

q

(
)

�

.

Let us write (2.53) in the form

A

�1

q

~u(t) = �

Z

t

0

e

��(t��)A

q

A

�1

q

P

q

div (uu)(�) d�; 0 � t � T

0

:

Then by the maximal regularity estimate (1.28) and (2.22)

k

�

A

�1

q

~u(�)

�

t

k

L

s=2

(0;T

0

;L

q

)

� 
 kA

�1

q

P

q

div (uu)k

L

s=2

(0;T

0

;L

q

)

� 
 kuuk

L

s=2

(0;T

0

;L

r

)

� 


�

k~uk

2

L

s=2

(0;T

0

;L

q

)

+ k
k

2

L

s=2

(0;T

0

;L

q

)

�

so that ~u

t

2 L

s=2

�

0; T

0

;Y

�2;q

�

(
)

�

. Sin
e by Theorem 2.14 


t

2 L

s

�

0; T ;Y

�2;q

�

(
)

�

, we 
on
lude

that u

t

2 L

s=2

�

0; T

0

;Y

�2;q

�

(
)

�

. Moreover, it is easily seen that u = ~u+ 
 is a very weak solution

of the Navier-Stokes system (2.47).
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Finally we prove that u is the unique very weak solution of (2.47) in all of L

s

�

0; T

0

;L

q

(
)

�

.

Assume that v 2 L

s

�

0; T

0

;L

q

(
)

�

is also a very weak solution to (2.47). Then U = u � v 2

L

s

�

0; T

0

;L

q

(
)

�

is a very weak solution to the system

U

t

� ��U +rP = �div (Uu+ vU); divU = 0 in 
� (0; T

0

)

U = 0 at t = 0; U = 0 on �
� (0; T

0

):

Using similar estimates as in the derivation of (2.54) we get that for all T

00

2 (0; T

0

)

kUk

L

s

(0;T

00

;L

q

)

�




�

1�1=s

kUk

L

s

(0;T

00

;L

q

)

�

kuk

L

s

(0;T

00

;L

q

)

+ kvk

L

s

(0;T

00

;L

q

)

�

(2.55)

with a 
onstant 
 > 0 independent of T

00

. Hen
e there exists some T

00

2 (0; T

0

) depending

on u; v su
h that (2.55) is redu
ed to the inequality kUk

L

s

(0;T

00

;L

q

)

�

1

2

kUk

L

s

(0;T

00

;L

q

)

and that


onsequently U = 0, u = v holds on [0; T

00

℄. This argument may be repeated �nitely many times

with the same T

00

on the intervals (T

00

; 2T

00

), (2T

00

; 3T

00

) et
. and �nally leads to u = v on [0; T

0

).

Now the proof of Theorem 2.18 is 
omplete. �
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3. Regularity of Weak Solutions

Let u be a weak solution of the instationary Navier-Stokes system

(3.1)

u

t

� ��u + u � ru+rp = f; div u = 0 in 
� (0; T )

u

j

�


= 0; u(0) = u

0

at t = 0;

in the bounded domain 
 � R

3

. Besides the 
lassi
al Serrin 
ondition

(3.2) u 2 L

s

�

0; T ;L

q

(
)

�

; S(s; q) � 1; 2 < s � 1; 3 � q <1;


f. (1.14) in Theorem 1.5, there are numerous other assumptions of 
onditional regularity imposed

on spe
i�
 
omponents of u, ru or ! = rotu to imply regularity of u. Most of these 
onditions

are related to (3.2) with a di�erent upper bound for S, 
f. [9℄, [42℄, [43℄, [49℄, [50℄; other


onditions have a more geometri
 
hara
ter, see [4℄, [10℄, [44℄, [45℄, [46℄, or are related to the

pressure [5℄, [56℄, [68℄. In the following we des
ribe new results of Serrin's type, i.e., we assume

u 2 L

r

�

0; T ;L

q

(
)

�

where

2

r

+

3

q

is allowed to be larger than 1 su
h that u is regular lo
ally or globally in time or

lo
ally in spa
e and time. The proofs are based on a lo
al or global identi�
ation of the weak

solution u with a very weak solution v having the same initial value at t

0

� 0 and the same

boundary value as u.

3.1. Lo
al in Time Regularity. In addition to the de�nition of the global regularity in

(0; T ), see (1.12), we say that u is regular at t 2 (0; T ) if there exists 0 < Æ

0

< min(t; T � t), su
h

that

(3.3) u 2 L

s

�

�

t� Æ

0

; t+ Æ

0

;L

q

�

(
)

�

; S(s

�

; q

�

) = 1; 2 < s

�

<1; 3 < q

�

<1:

By analogy, u is regular in (a; b) � (0; T ), if u is regular at every t 2 (a; b). Note that in xx3.1 {

3.3 we will use the notation s

�

; q

�

for exponents satisfying S(s

�

; q

�

) = 1, but s; q if S(s; q) � 1 is

allowed.

Now our �rst result, see also [17℄, [18℄, reads as follows:

Theorem 3.1. Let 
 � R

3

be a bounded domain with boundary �
 2 C

1;1

, and let

(3.4) 2 < s

�

<1; 3 < q

�

<1; S(s

�

; q

�

) = 1;

1

3

+

1

q

�

=

1

�

; 1 � s � s

�

:

Given data

(3.5) f = divF; F 2 L

2

�

0; T ;L

2

(
)

�

\ L

s

�

�

0; T ;L

�

(
)

�

and u

0

2 L

2

�

(
);

let u be a weak solution of the Navier-Stokes system (3.1) satisfying the strong energy inequality

(1.9) on [0; T ), where 0 < T � 1.

(1) Left-side L

s

�

(L

q

�

)-
ondition: If for t 2 (0; T )

(3.6) u 2 L

s

�

�

t� Æ; t;L

q

�

(
)

�

for some 0 < Æ = Æ(t) < t;

then u is regular at t.

(2) Left-side L

s

(L

q

�

)-
ondition: If at t 2 (0; T )

(3.7) lim inf

Æ!0+

1

Æ

Z

t

t�Æ

ku(�)k

s

q

�

d� <1;
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then u is regular at t. Assumption (3.7) may be repla
ed by the essentially weaker 
ondition

(3.8) lim inf

Æ!0+

1

Æ

1�s=s

�

Z

t

t�Æ

ku(�)k

s

q

�

d� = 0;

whi
h in
ludes (3.6) when s = s

�

. Moreover, (3.8) is even a ne
essary 
ondition for regularity

of u at t.

(3) Global L

s

(L

q

�

)-
ondition. There exists a 
onstant "

�

= "

�

(q

�

; s;
) > 0 independent of

u; u

0

; f and � with the following property: If u

0

2 L

q

�

�

(
), u 2 L

s

�

0; T ;L

q

�

(
)

�

,

(3.9)

Z

T

0

kF (�)k

s

�

�

d� � "

�

�

2s

�

�1

and

Z

T

0

ku(�)k

s

q

�

d� < "

�

�

s

�

�1

ku

0

k

s

�

�s

q

�

;

then u is regular in the sense u 2 L

s

�

�

0; T ;L

q

�

(
)

�

.

The proof of Theorem 3.1 is based on a key lemma, see Lemma 3.2, 
ombining the notions of

weak and very weak solutions, and on a te
hni
al lemma, see Lemma 3.4, from whi
h the results

of Theorem 3.1 and also of x3.2 will follow easily.

Lemma 3.2. In addition to the assumptions of Theorem 3.1 assume u

0

2 L

q

�

�

(
). Then there

exists a 
onstant "

�

= "

�

(q

�

;
) > 0 independent of u

0

; f and � with the following property: If

(3.10)

Z

T

0

kFk

s

�

�

d� � "

�

�

2s

�

�1

and

Z

T

0

ke

���A

q

�

u

0

k

s

�

q

�

d� � "

�

�

s

�

�1

;

then the Navier-Stokes system (3.1) has a unique weak solution u in the sense of Leray and Hopf

satisfying Serrin's 
ondition u 2 L

s

�

�

0; T ;L

q

�

(
)

�

and moreover the energy inequality (1.8).

We note that the weak solution u 2 L

s

�

�

0; T ;L

q

�

(
)

�


onstru
ted in Lemma 3.2 even satis�es

the energy identity (1.3), see Lemma 1.6 (1).

Proof of Lemma 3.2. Given the smallness 
ondition (3.10) Theorem 2.18 yields a unique

very weak solution u 2 L

s

�

�

0; T ;L

q

�

(
)

�

of (3.1). Moreover,

u(t) = 
(t) + ~u(t)

where 
 solves the instationary Stokes system with data u

0

; f in 
� (0; T ), i.e.

(3.11) 
(t) = e

��t A

q

�

u

0

+

Z

t

0

A

q

�

e

��(t��)A

q

�

A

�1

q

�

P

q

�

divF (�) d� ;

and where ~u solves the nonlinear equation

(3.12) ~u(t) = �

Z

t

0

A

1=2

q

�

=2

e

��(t��)A

q

�

=2

A

�1=2

q

�

=2

P

q

�

=2

div (uu) d�:

Sin
e F 2 L

2

�

0; T ;L

2

(
)

�

and u

0

2 L

2

�

(
), we see that 
 is the weak solution of the instationary

Stokes system; in parti
ular,


 2 L

1

�

0; T ;L

2

(
)

�

\ L

2

�

0; T ;H

1

0

(
)

�

:

The major part of the proof 
on
erns the property

(3.13) ~u 2 L

1

�

0; T ;L

2

(
)

�

\ L

2

�

0; T ;H

1

0

(
)

�

so that u = 
 + ~u 2 L

s

�

�

0; T ;L

q

�

(
)

�

is a weak solution in the sense of Leray and Hopf. Hen
e

u satis�es the energy (in-)equality, and Serrin's Uniqueness Theorem 1.2 shows that u is the

unique weak solution with these properties.
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To prove (3.13) we re
all from (2.24) that

(3.14) kA

�1=2

q

�

=2

P

q

�

div (uu)k

q

�

=2

� 
kuuk

q

�

=2

� 
kuk

2

q

�

for a.a. t 2 (0; T ):

Consequently, (3.12) implies the identity

(3.15) A

1=2

q

�

=2

~u(t) = �A

q

�

=2

�

Z

t

0

e

��(t��)A

q

�

=2

A

�1=2

q

�

=2

P

q

�

=2

div (uu) d�

�

:

Now the maximal regularity estimate (1.28), Lemma 1.11 (3) and (3.14) yield the estimate

�kr~uk

L

s

�

=2

(L

q

�

=2

)

� 
�kA

1=2

q

�

=2

~uk

L

s

�

=2

(L

q

�

=2

)

� 
kuuk

L

s

�

=2

(L

q

�

=2

)

� 
kuk

2

L

s

�

(L

q

�

)

(3.16)

and parti
ularly the result

(3.17) r~u 2 L

s

�

=2

�

0; T ;L

q

�

=2

(
)

�

:

We will 
onsider four 
ases 
on
erning the exponent s

�

, starting with the 
ase 2 < s

�

< 4

(and q

�

> 6). Let s

1

= s

�

, q

1

= q

�

. Then (3.12) and (1.24) (with � =

1

2

) imply that

k~u(t)k

q

1

=2

�




p

�

Z

t

0

1

(t� �)

1=2

kuuk

q

1

=2

d�;

where kuu(�)k

q

1

=2

2 L

s

1

=2

(0; T ). Hen
e the Hardy-Littlewood inequality proves with

1

s

2

=

1

s

1

=2

�

1

2

; q

2

=

q

1

2

that

~u 2 L

s

2

�

0; T ;L

q

2

(
)

�

:

Here

2

s

2

+

3

q

2

= 1 sin
e

2

s

1

+

3

q

1

= 1, and s

2

> s

1

, q

2

< q

1

. To get the same result for 
, note that




1

(t) := e

��tA

q

�

u

0

2 L

1

�

0; T ;L

q

�

(
)

�

� L

s

2

�

0; T ;L

q

2

(
)

�

:

Con
erning 


2

(t) = 
(t)� 


1

(t), the se
ond term on the right-hand side of (3.11), we use (1.23)

with � =

1

s

1

and 
on
lude, sin
e A

�1=2

�

P

�

divF 2 L

�

(
), see (2.24), that

v := A

�1=s

1

�

A

�1=2

�

P

�

divF 2 L

s

1

�

0; T ;L

q

2

(
)

�

:

Hen
e 


2

(t) satis�es the estimate

k


2

(t)k

q

2

� 


�

Z

t

0

1

(t� �)

1=2+1=s

1

kv(�)k

q

2

d�;

from whi
h we dedu
e by the Hardy-Littlewood inequality that 


2

2 L

s

2

�

0; T ;L

q

2

(
)

�

; here we

used that

1

2

+

1

s

1

= 1�

�

1

s

1

�

1

s

2

�

:

Summarizing the results for 


1

and 


2

we get that 
 2 L

s

2

�

0; T ;L

q

2

(
)

�

so that also u 2

L

s

2

�

0; T ;L

q

2

(
)

�

and

r~u 2 L

s

2

=2

�

0; T ;L

q

2

=2

(
)

�

;


f. (3.17). Repeating this step �nitely many times, we �nally arrive at exponents s

k

2 [4;1),

q

k

2 (3; 6℄. The problem of exponents s � 4, q � 6 will be 
onsidered in the following three


ases.
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Now let s

�

= 4, q

�

= 6. In this spe
ial 
ase (3.16) yields r~u 2 L

2

�

0; T ;L

2

(
)

�

. Sin
e by

(3.14)

A

�1=2

q

�

=2

P

q

�

=2

div (uu) 2 L

s

�

=2

�

0; T ;L

q

�

=2

(
)

�

� L

2

�

0; T ;L

2

(
)

�

;

we may 
onsider A

�1=2

q

�

=2

~u as the strong solution of the instationary Stokes system with an external

for
e in L

2

�

0; T ;L

2

(
)

�

and vanishing initial value. Hen
e

~u = A

1=2

q

�

=2

A

�1=2

q

�

=2

~u 2 L

1

�

0; T ;L

2

(
)

�

and r~u 2 L

2

�

0; T ;L

2

(
)

�

so that u = 
 + ~u satis�es

u 2 L

1

�

0; T ;L

2

(
)

�

\ L

2

�

0; T ;H

1

0

(
)

�

:

Moreover, sin
e u 2 L

s

�

�

0; T ;L

q

�

(
)

�

, we see that uu 2 L

2

�

0; T ;L

2

(
)

�

. An elementary 
al
ula-

tion shows that u is not only a very weak solution, but also a weak one in the sense of Leray and

Hopf. Hen
e u is even a regular solution by Theorem 1.5 and satis�es the energy (in-)equality.

Furthermore, the uniqueness assertion follows from Theorem 1.2.

Next let 4 < s

�

� 8 (and 4 � q

�

< 6) so that (3.17) immediately yields r~u 2 L

2

�

0; T ;L

2

(
)

�

and ~u 2 L

2

�

0; T ;H

1

0

(
)

�

. Applying (1.24) and (3.14) to (3.12), H�older's inequality implies the

estimate

k~u(t)k

2

�




p

�

Z

t

0

1

(t� �)

1=2

e

��Æ(t��)

kuuk

2

d�

�




p

�

Z

t

0

1

(t� �)

1=2

e

��Æ(t��)

kuuk

q

�

=2

d�

� 
�

�1+2=s

�

kuuk

L

s

�

=2

(0;T ;L

q

�

=2

(
))

� 
�

�1+2=s

�

kuk

2

L

s

�

(0;T ;L

q

�

(
))

:

Consequently, ~u and even u belong to L

1

�

0; T ;L

2

(
)

�

. Now we 
omplete the proof as in the

previous 
ase.

Finally assume that 8 < s

�

< 1 (and 3 < q

�

< 4). Now we need �nitely many steps to

redu
e this 
ase to the former one. Let s

1

= s

�

and q

1

= q

�

. Then r~u 2 L

s

1

=2

�

0; T ;L

q

1

=2

(
)

�

by

(3.17). De�ning s

2

< s

1

, q

2

> q

1

by

s

2

=

s

1

2

;

1

3

+

1

q

2

=

2

q

1

we get by Sobolev's embedding theorem that ~u 2 L

s

2

�

0; T ;L

q

2

(
)

�

. By Lemma 1.11 we 
on
lude

that also 
 2 L

s

2

�

0; T ;L

q

2

(
)

�

so that

u 2 L

s

2

�

0; T ;L

q

2

(
)

�

where again

2

s

2

+

3

q

2

= 1. Repeating this step �nitely many times, if ne
essary, we arrive at

exponents s

k

2 (4; 8℄, q

k

2 [4; 6), i.e. in the previous 
ase.

Now Lemma 3.2 is 
ompletely proved. �
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Corollary 3.3. In the situation of Lemma 3.2 assume that T = 1. Then there exists a


onstant "

�

= "

�

(q

�

;
) > 0 with the following property: If

Z

1

0

kFk

s

�

�

d� � "

�

�

2s

�

�1

and ku

0

k

q

�

� "

�

�;

then the Navier-Stokes system (3.1) has a unique weak solution u in 
 � (0;1) satisfying u 2

L

s

�

�

0;1;L

q

�

(
)

�

and the energy inequality.

Proof. From (1.24) with � = 0 we obtain that

Z

1

0

ke

��t A

q

�

u

0

k

s

�

q

�

dt � 
ku

0

k

s

�

q

�

Z

1

0

e

��s

�

Æ

0

t

dt �




�

ku

0

k

s

�

q

�

:

Now the result follows from Lemma 3.2 when using a di�erent 
onstant "

�

= "

�

(q

�

;
) > 0. �

The next lemma has a te
hni
al 
hara
ter, but will immediately imply the assertions of

Theorem 3.1. We will use the notation

�

Z

b

a

h(�) d� =

1

b� a

Z

b

a

h(�) d�

for the mean value of an integral.

Lemma 3.4. Under the assumptions of Theorem 3.1 there exists a 
onstant "

�

= "

�

(q

�

; s;
) >

0 with the following property:

If 0 < t

0

< t � t

1

< T , 0 � � �

s

s

�

and if

(3.18)

Z

t

1

t

0

kFk

s

�

�

d� � "

�

�

2s

�

�1

and �

Z

t

t

0

(t

1

� �)

�

kuk

s

q

�

d� � "

�

�

s��

;

then u is regular in the interval (t�Æ; t

1

) for some Æ > 0 in the sense that u 2 L

s

�

�

t�Æ; t

1

;L

q

�

(
)

�

.

In parti
ular, if t

1

> t, then t is a regular point of u. If � = 0, then t

1

= T � 1 is allowed.

Proof. From the se
ond 
ondition in (3.18) and the fa
t that u satis�es the strong energy

inequality we �nd a null set N � (t

0

; t) su
h that for �

0

2 (t

0

; t)nN

(3.19)

1

2

ku(�

1

)k

2

2

+ �

Z

�

1

�

0

kruk

2

2

d� �

1

2

ku(�

0

)k

2

2

+

Z

�

1

�

0

hf; uid�; �

0

< �

1

< T;

and u(�

0

) 2 L

q

�

�

(
). Now, if we �nd �

0

2 (t

0

; t)nN su
h that

(3.20)

Z

t

1

��

0

0

ke

���A

q

�

u(�

0

)k

s

�

q

�

d� � "

�

�

s

�

�1

;

Lemma 3.2 will yield a unique weak solution v 2 L

s

�

([�

0

; t

1

); L

q

�

�

(
)

�

to the Navier-Stokes system

(3.1) with initial value v(�

0

) = u(�

0

) at �

0

. Then (3.19) and Serrin's Uniqueness Theorem 1.2

show that

u = v 2 L

s

�

�

�

0

; t

1

;L

q

�

�

(
)

�

and 
omplete the proof.

To prove (3.20) note that the se
ond 
ondition in (3.18) yields the existen
e of �

0

2 (t

0

; t)nN

su
h that

(3.21) (t

1

� �

0

)

�

ku(�

0

)k

s

q

�

� �

Z

t

t

0

(t

1

� �)

�

ku(�)k

s

q

�

d� � "

�

�

s��

;
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otherwise (t

1

� �)

�

ku(�)k

s

q

�

is stri
tly larger than �

R

t

t

0

(t

1

� �)

�

kuk

s

q

�

d� for every � 2 (t

0

; T )nN ,

and we are led to a 
ontradi
tion. Now, by Lemma 1.11, H�older's inequality and (3.21),

Z

t

1

��

0

0

ke

���A

q

�

u(�

0

)k

s

�

q

�

d� �

Z

t

1

��

0

0

e

�Æ

0

�s

�

�

d� ku(�

0

)k

s

�

q

�

� 
(t

1

� �

0

)

�s

�

=s

�

�1+�s

�

=s

ku(�

0

)k

s

�

q

�

� 
 "

s

�

=s

�

�

s

�

�1

:

Hen
e, with a new 
onstant "

�

= "

�

(q

�

; s;
) > 0, (3.20) is proved. If � = 0, then t

1

= T � 1 is

admitted. �

Proof of Theorem 3.1. (1) Assuming (3.6) we 
hoose s = s

�

, � =

s

s

�

= 1. Furthermore,

let t

0

= t� Æ, t

1

= t + Æ where Æ > 0 is 
hosen so small that

�

Z

t

t�Æ

(t

1

� �)kuk

s

q

�

d� � 2

Z

t

t�Æ

kuk

s

q

�

d� � "

�

�

s��

and

Z

t

t�Æ

kFk

s

�

�

d� � "

�

�

2s

�

�1

:

Then Lemma 3.4 implies that u is regular at t.

(2) Given (3.8) let t

0

= t� Æ, t

1

= t + Æ su
h that with � =

s

s

�

�

Z

t

t�Æ

(t

1

� �)

�

kuk

s

q

�

d� � 2

�

1

Æ

1��

Z

t

t�Æ

kuk

s

q

�

d�:

By (3.8) we �nd Æ > 0 su
h that the se
ond 
ondition of (3.18) is satis�ed. Obviously, the


ondition on F in (3.18) 
an be ful�lled as well. Then Lemma 3.4 proves the suÆ
ien
y of (3.8)

to imply regularity of u at t. The ne
essity of (3.8) is a simple 
onsequen
e of H�older's inequality.

(3) Given the initial value u

0

2 L

q

�

�

(
), Lemma 3.2 yields a unique weak solution v 2

L

s

�

�

0; Æ

1

;L

q

�

�

(
)

�

for some Æ

1

> 0 whi
h 
oin
ides with u on [0; Æ

1

) by Theorem 1.2. Moreover,

the elementary estimate

Z

Æ

1

0

ke

���A

q

�

u

0

k

s

�

q

�

d� � 
 Æ

1

ku

0

k

s

�

q

�

and (3.10) imply that we may 
hoose

Æ

1

=

"

�

�

s

�

�1


ku

0

k

s

�

q

�

:

In Lemma 3.4 let � =

s

s

�

, t

0

= t�

Æ

1

2

and t

1

= t+

Æ

1

2

where t � Æ

1

is arbitrary. Then

�

Z

t

t

0

(t

1

� �)

�

kuk

s

q

�

d� �

2

Æ

1��

1

Z

T

0

kuk

s

q

�

d�

whi
h by (3.9) is smaller than

2

�

"

�

�

s

�

�1


ku

0

k

s

�

q

�

�

s

s

�

�1

� "

�

�

s

�

�1

ku

0

k

s

�

�s

q

�

= 
 "

s=s

�

�

�

s�s=s

�

:
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Rede�ning "

�

, we see that (3.18) is ful�lled. Hen
e u is regular at every t 2 [Æ

1

; T ) by Lemma

3.4; more pre
isely, u is regular in

�

t � Æ(t); t +

Æ

1

2

�

. This argument 
ompletes the proof when

T <1.

If T = 1, applying the previous result for ea
h �nite interval we obtain that u 2

L

s

�

lo


�

[0;1);L

q

�

�

(
)

�

: Due to (3.9) we �nd a suÆ
iently large �

0

satisfying ku(�

0

)k

q�

� "

�

� and

the energy inequality (3.19). Then Corollary 3.3 yields the existen
e of a unique weak solution

v 2 L

s

�

�

�

0

;1;L

q

�

�

(
)

�

with v(�

0

) = u(�

0

) whi
h must 
oin
ide with u on [�

0

;1). This argument

proves (3). �

Corollary 3.5. Under the assumptions of Theorem 3.1 we have the following results:

(1) There exists "

�

= "

�

(q

�

; s;
) > 0 su
h that u is regular for all t � T

1

where

(3.22) T

1

>

1

"

�

�

s

kuk

s

L

s

(0;1;L

q

�

(
))

provided that u 2 L

s

�

0;1;L

q

�

�

(
)

�

and

R

1

0

kFk

s

�

�

d� � "

�

�

2s

�

�1

.

(2) Assume that t 2 (0; T ) is a singular point of the weak solution u in the sense that u 62

L

s

�

�

t� Æ; t+ Æ;L

q

�

(
)

�

for any Æ > 0. Then

(3.23) lim inf

Æ!0+

1

Æ

1��

Z

t

t�Æ

kuk

s

q

�

d� > 0 for all � 2

�

0;

s

s

�

�

and even

(3.24) lim

Æ!0+

�

Z

t

t�Æ

kuk

s

q

�

d� =1:

The set of singular points of u is either empty or at least a set of Lebesgue measure zero, if

u 2 L

s

�

0; T ;L

q

�

(
)

�

.

Proof. (1) Let � = 0 in Lemma 3.4. Then by assumption

lim

t

0

!0+

�

Z

T

1

t

0

kuk

s

q

�

d� < "

�

�

s

;

and Lemma 3.4 yields the regularity of u for t � T

1

.

(2) Let t 2 (0; T ) be a singular point of u and assume that the left hand side of (3.23) is zero.

Then, setting t

0

= t � Æ; t

1

= t + Æ we 
on
lude that there exists some suÆ
iently small Æ > 0

su
h that (3.18) is satis�ed. Hen
e we get the 
ontradi
tion that u is regular at t. If (3.24) does

not hold, then lim inf

Æ!0+

�

R

t

t�Æ

kuk

s

q

�

d� <1 and 
onsequently lim inf

Æ!0+

1

Æ

1��

R

t

t�Æ

kuk

s

q

�

d� = 0

for � 2

�

0;

s

s

�

�

whi
h is a 
ontradi
tion to (3.23).

It is a simple 
onsequen
e of Leray's Stru
ture Theorem, see [24℄, that the Lebesgue mea-

sure of the set of singular points in time vanishes. Here we may also argue as follows if

u 2 L

s

�

0; T ;L

q

�

�

(
)

�

. By Lebesgue's Di�erentiation Theorem

lim

Æ!0+

�

Z

t

t�Æ

kuk

s

q

�

d� = ku(t)k

s

q

�

for almost all t 2 (0; T ):

Hen
e (3.24) 
an hold only on a Lebesgue null set. �
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3.2. Energy-Based Criteria for Regularity. Let u be a weak solution in the sense of

Leray and Hopf satisfying the energy inequality. Assume that f = 0 and 0 6= u

0

2 H

1

0

(
)\L

2

�

(
)

so that there exists an interval [0; T ) on whi
h u is a strong solution and satis�es even the energy

identity (1.3). Then the kineti
 energy

E(t) =

1

2

ku(t)k

2

2

is a stri
tly de
reasing 
ontinuous fun
tion of t 2 [0; T ). However, at t = T the energy identity


ould loose its validity; either the kineti
 energy has a jump dis
ontinuity downward at t = T or

E(t) will be stri
tly less than the 
ontinuously de
reasing fun
tion

��

Z

t

0

kru(�)k

2

2

d� + E(0)

for 
ertain t > T 
lose to T . In the �rst 
ase the jump must be downward sin
e ku(t)k

2

is lower

semi
ontinuous by (1.7). Assuming that ku(t)k

2

is 
ontinuous and de
reasing in an open interval

to the right of T , there are three possibilities: E(T+) := lim

t!T+

E(t) equals either E(T ) or

E(T ) < E(T+) < E(T�);

where E(T�) := lim

t!T�

E(t), or E(T+) = E(T�). The fourth possibility E(T+) > E(T�)

is ex
luded sin
e u satis�es the energy inequality for t � T as well; if we want to ex
lude this

possibility at a further jump dis
ontinuity

~

T > T , we have to use the strong energy inequality.

If u satis�es the strong energy inequality and T is an initial point in time where the energy

inequality holds (T = s in (1.9)), then ne
essarily E(T+) = E(T ); otherwise the other two

possibilities 
annot be ruled out.

E(t)

T

t

Fig 3.1 The kineti
 energy E(t) in the neighborhood of a jump dis
ontinuity T

In the following assume that E(�) is 
ontinuous in time, so that (1.7) implies u 2

C

0

�

[0; T );L

2

�

(
)

�

rather than only u 2 L

1

�

0; T ;L

2

�

(
)

�

. Nevertheless we are not allowed to


on
lude that u is a regular solution. A
tually, this 
on
lusion is related to the modulus of 
on-

tinuity of the fun
tion E(t) (or to that of the fun
tion t 7! ku(t)k

2

sin
e u 2 L

1

�

0; T ;L

2

�

(
)

�

).
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Theorem 3.6. Let 
 � R

3

be a bounded domain with boundary �
 2 C

1;1

and let u be a weak

solution of the instationary Navier-Stokes system (3.1) satisfying the strong energy inequality

on (0; T ). The data u

0

; f satisfy u

0

2 L

2

�

(
) and f 2 L

s

�

=s

�

0; T ;L

2

(
)

�

, f = divF , F 2

L

2

�

0; T ;L

2

(
)

�

\ L

s

�

�

(0; T ;L

�

(
)

�

where �; s; s

�

will be given in (3.29) below.

(1) Let � 2 (

1

2

; 1) and let u satisfy at t 2 (0; T ) the 
ondition

sup

t

0

6=t

jE(t)� E(t

0

)j

jt� t

0

j

�

<1

or only

(3.25) lim inf

Æ!0+

1

Æ

�

jE(t)� E(t� Æ)j <1;

where E(�) denotes the kineti
 energy. Then u is regular at t.

(2) (The 
ase � =

1

2

) There exists a 
onstant "

�

= "

�

(
) > 0 su
h that if

sup

t

0

6=t

jE(t)� E(t

0

)j

jt� t

0

j

1=2

� "

�

�

5=2

or only

(3.26) lim inf

Æ!0+

1

Æ

1=2

jE(t)� E(t� Æ)j � "

�

�

5=2

;

then u is regular at t 2 (0; T ).

Remark 3.7. (1) By Theorem 3.6 (1), H�older 
ontinuity of the kineti
 energy E(�) from the

left at t implies regularity at t if the H�older exponent � is larger than

1

2

. In the 
ase � =

1

2

the


orresponding H�older seminorm (from the left) is assumed to be suÆ
iently small. In both 
ases

the fun
tion E(�) may be repla
ed by the fun
tion ku(�)k

2

.

(2) The proof of Theorem 3.6, see (3.30), (3.31) below, will yield the following regularity


riterion using kruk

2

instead of kuk

2

. If

� 2 (

1

2

; 1) and lim inf

Æ!0+

1

Æ

�

Z

t

t�Æ

kru(�)k

2

2

d� <1(3.27)

or

� =

1

2

and lim inf

Æ!0+

1

Æ

1=2

Z

t

t�Æ

kru(�)k

2

2

d� � "

�

�

5=2

;(3.28)

then u is regular at t.

(3) In the 
ase � =

1

2

a smallness 
ondition as in (3.26) or (3.28) is ne
essary. Indeed, if

f = 0 and (0; t), 0 < t <1; is a maximal regularity interval of u, then

kru(�)k

2

�




0

(t� �)

1=4

; 0 < � < t;

where 


0

= 


0

(
) > 0, see [24℄. Hen
e

lim inf

Æ!0+

1

Æ

1=2

Z

t

t�Æ

kruk

2

2

d� � 2 


2

0

> 0;
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and due to the strong energy inequality,

lim inf

Æ!0+

E(t� Æ)� E(t)

Æ

1=2

� 2 � 


2

0

> 0:

Proof of Theorem 3.6. (see also [15℄ for the proof of (1)). The proof is based on Lemma

3.4 with t

0

= t� Æ, t

1

= t+ Æ and the exponents

(3.29)

(

if � >

1

2

: s = 4�� " > 2;

2

s

+

3

q

�

=

3

2

;

2

s

�

+

3

q

�

= 1; � =

s

s

�

;

if � =

1

2

: s = 2; " = 0; q

�

= 6; s

�

= 4; � =

1

2

:

In both 
ases the weak solution u satis�es u 2 L

s

�

0; T ;L

q

�

(
)

�

, 
f. (1.11), and 1 �

s

s

�

=

s

4

. To


ontrol the se
ond term in (3.18) we will use the interpolation inequality

kuk

q

�

� 
 kuk

1�2=s

2

kruk

2=s

2

; 
 = 
 (q

�

;
) > 0;

and get that

I(Æ) := �

Z

t

t

0

(t

1

� �)

�

kuk

s

q

�

d� � 2

�

Æ

��1

Z

t

t�Æ

kuk

s

q

�

d�

� 
 Æ

�s=4

Z

t

t�Æ

kruk

2

2

kuk

s�2

2

d�(3.30)

� 
 kuk

s�2

L

1

(L

2

)

Æ

�s=4

Z

t

t�Æ

kruk

2

2

d� :

Sin
e u is supposed to satisfy the strong energy inequality, we may pro
eed for almost all Æ > 0

as follows:

I(Æ) �




�

Æ

�s=4

�

jE(t� Æ)� E(t)j+

�

�

�

Z

Æ

t�Æ

(f; u) d�

�

�

�

�

=




�

Æ

"=4

�

jE(t� Æ)� E(t)j

Æ

�

+

�

�

�

1

Æ

�

Z

t

t�Æ

(f; u) d�

�

�

�

�

;(3.31)

where the 
onstant 
 depends on ku

0

k

2

when � >

1

2

:

First 
onsider the 
ase � >

1

2

in whi
h " > 0. Then

�

�

�

1

Æ

s=4

Z

t

t�Æ

(f; u) d�

�

�

�

�




Æ

s=4

Z

t

t�Æ

kfk

2

d� � 


�

Z

t

t�Æ

kfk

4=(4�s)

2

d�

�

(4�s)=4

:

Hen
e, if f 2 L

4=(4�s)

�

0; T ;L

2

(
)

�

, the left-hand term in the previous inequality 
onverges to 0

as Æ ! 0+. Moreover, due to the assumption (3.25), the term

(3.32)




�

Æ

"=4

�

jE(t� Æ)� E(t)j

Æ

�

in (3.31) 
onverges to 0 as Æ ! 0+. Hen
e the right-hand side in (3.31) 
onverges to 0 as Æ ! 0+,

and the 
ontinuity of I(Æ) for Æ > 0 implies that the 
ondition (3.18)

2


an be ful�lled for some

Æ

0

> 0. Finally, the assumption F 2 L

s

�

�

0; T ;L

�

(
)

�

shows that also (3.18)

1


an be satis�ed.

Se
ondly, in the 
ase � =

1

2

(and " = 0), the assumption f 2 L

2

�

0; T ;L

2

(
)

�

implies as above

that

1

Æ

�

Z

t

t�Æ

(f; u) d� ! 0 as Æ ! 0 + :
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Moreover, the term (3.32) is bounded by 2 
 "

�

�

3=2

for a sequen
e (Æ

j

), 0 < Æ

j

! 0 as j ! 1,

due to the assumption (3.26). Hen
e the 
ontinuity of I(Æ), Æ > 0, proves that (3.18)

2


an be

satis�ed. Con
erning (3.18)

1

we pro
eed as before.

Now Theorem 3.6 is 
ompletely proved. �

3.3. Lo
al in Spa
e-Time Regularity. Consider a weak solution u of the Navier-Stokes

system (3.1) in a general domain 
 � R

3

. In this subse
tion we are looking for 
onditions

on u lo
ally in spa
e and time to guarantee that u is regular lo
ally in spa
e and time. The

fundamental result in this dire
tion is due to L. Ca�arelli, R. Kohn and L. Nirenberg [7℄ and

requires the de�nition of a suitable weak solution.

Definition 3.8. A weak solution u to (3.1) is 
alled a suitable weak solution if the asso
iated

pressure term satis�es

(3.33) rp 2 L

q

lo


�

0;1;L

q

lo


(
)

�

with q =

5

4

and the lo
alized energy inequality

1

2

k'u(t)k

2

2

+ �

Z

t

t

0

k'ruk

2

2

d� �

1

2

k'u(t

0

)k

2

2

+

Z

t

t

0

('f; 'u) d�

�

1

2

Z

t

t

0

(rjuj

2

;r'

2

) d� +

Z

t

t

0

�

1

2

juj

2

+ p; u � r'

2

�

d�(3.34)

holds for almost all t

0

� 0, all t � t

0

and all ' 2 C

1

0

(R

3

).

Using a standard molli�
ation pro
edure we obtain from (3.34) the inequality

Z


�(0;T )

jruj

2

� dx dt �

Z


�(0;T )

u � f� dx d�

+

1

2

Z


�(0;T )

juj

2

(�

t

+��) dx dt+

Z


�(0;T )

�

1

2

juj

2

+ p; u � r�

�

dx dt(3.35)

for all non-negative test fun
tions � 2 C

1

0

�


 � (0; T )

�

. This version of the lo
alized energy

inequality was used in [7℄. However, note that (3.34) is a stronger 
ondition than (3.35) in the

sense that the test fun
tions in (3.34) are not assumed to vanish in a neighborhood of �
. The

existen
e of a suitable weak solution satisfying (3.35) has been proved, under 
ertain smoothness

assumptions on the boundary �
, for a bounded domain in [7℄, for an exterior domain in [25℄,

and for a general uniform C

2

-domain in [16℄, with (3.34) instead of (3.35).

To des
ribe the lo
al regularity result from [7℄ we introdu
e the spa
e-time 
ylinder

Q

r

= Q

r

(x

0

; t

0

) = B

r

(x

0

)� (t

0

� r

2

; t

0

); B

r

(x

0

) = fx 2 R

3

: jx� x

0

j < rg;

for (x

0

; t

0

) 2 
� (0; T ) su
h that Q

r

� 
� (0; T ). The following result is a simpli�ed version of

the lo
al results in [7℄, [36℄, [37℄.

Theorem 3.9. Let u be a suitable weak solution of (3.1) and let Q

r

= Q

r

(x

0

; t

0

) � 
�(0; T ),

r > 0. There exists an absolute 
onstant "

�

> 0 with the following property:

(1) If

(3.36) kuk

3

L

3

(Q

r

)

+ kpk

3=2

L

3=2

(Q

r

)

� "

�

r

2

;

then u 2 L

1

(Q

r=2

).
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(2) If

(3.37) lim sup

�!0

1

�

kruk

2

L

2

(Q

�

)

� "

�

then there exists r

0

> 0 with Q

r

0

� 
� (0; T ) su
h that u 2 L

1

(Q

r

0

).

Remark 3.10. (1) The 
ondition (3.36) requires the existen
e of a suitable radius r > 0 and

information on u as well as on the pressure p. However, (3.37) needs information for ru only,

but on all paraboli
 
ylinders Q

r

, r > 0 suÆ
iently small.

(2) The main 
ondition on u in (3.36), i.e. kuk

3

L

3

(Q

r

)

� "

�

r

2

, may be rewritten in the integral

mean form

�

Z

t

0

t

0

�r

2

�

Z

B

r

(x

0

)

jruj

3

dx d� � "

�

:

Obviously this 
ondition is satis�ed when ju(x; t)j �

"

�

r

in Q

r

. By analogy, the other terms

in (3.36) and (3.37) may be treated. Conversely, if u is not regular at (x

0

; t

0

), then we are

heuristi
ally led to the blow-up rate

ju(x; t)j �




0

�

jx� x

0

j

2

+ jt� t

0

j

�

1=2

;




0

> 0; in a neighborhood of (x

0

; t

0

), see [7℄.

(3) The 
on
lusion u 2 L

1

(Q

r=2

) in Theorem 3.9 does not imply that u 2 C

1

(Q

r=2

) even if

f 2 C

1

or f = 0. However, u is of 
lass C

1

in x, but not ne
essarily in t, see [57℄, [64℄. In

[36℄ it is proved that a suitable weak solution satisfying (3.37) is H�older 
ontinuous in spa
e and

time lo
ally.

(4) In (3.37) the term ru may be repla
ed by its symmetri
 part

1

2

�

ru + (ru)

T

�

or its

skew-symmetri
 part

1

2

�

ru� (ru)

T

�

, i.e. by the vorti
ity ! = 
url u, see [38℄, [67℄.

(5) More general results 
on
erning regularity 
riteria for suitable weak solutions using lo
al

smallness 
onditions on u;ru; 
urlu or r

2

u without any 
ondition on the pressure 
an be found

in [33℄. If e.g. 1 �

2

s

+

3

q

� 2 and

(3.38) lim sup

r!0

r

�(

2

s

+

3

q

�1)

kuk

L

s

(t

0

�r

2

;t

0

;L

q

(B

r

(x

0

))

� "

�

for some smallness 
onstant "

�

> 0, then u is regular at (x

0

; t

0

) in the sense that u is essentially

bounded in a spa
e time 
ylinder Q

r

0

(x

0

; t

0

) � 
 � (0; T ), 0 < r

0

< r. For similar results near

the boundary of 
 see [32℄.

To des
ribe our main result on lo
al spa
e-time regularity of suitable weak (or only weak)

solutions we use the short notation

kuk

L

s

L

q

(Q

r

)

= kuk

L

s

(t

0

�r

2

;t

0

;L

q

(B

r

(x

0

))

when Q

r

= Q

r

(x

0

; t

0

) = B

r

(x

0

) � (t

0

� r

2

; t

0

). Note that the 
ondition (3.39) in Theorem 3.11

below does not use the lim sup

r!0

, but requires the existen
e of a single suÆ
iently small radius

r > 0, and only norms of u, but not of ru or the pressure.

Theorem 3.11. Let 
 � R

3

be an arbitrary domain and let u be a suitable weak solution of

the Navier-Stokes system in 
� (0; T ) where for simpli
ity f = 0. Let 2 < s < 1, 3 < q <1

satisfy the 
onditions

2

s

+

3

q

� 1 +

1

q

and q � 4:
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Then there exists an absolute 
onstant "

�

= "

�

(s; q) > 0 independent of � > 0, x

0

2 
, t

0

2 (0; T )

and r > 0 with Q

r

(x

0

; t

0

) � 
� (0; T ) and of u with the following property: If

(3.39) kuk

L

s

L

q

(Q

r

)

� "

�

min

�

�; �

1�

1

s

�

r

2

s

+

3

q

�1

;

then u is regular in Q

r=2

in the sense

u 2 L

s

�

�

t

0

� (r=2)

2

; t

0

;L

q

�

�

B

r=2

(x

0

)

��

;

2

s

�

+

3

q

�

= 1:

Here, s

�

= 4, q

�

= 6 if s � 4; in this 
ase, it suÆ
es to assume that u is a weak solution only.

If 2 < s < 4, then s

�

; q

�

are de�ned by

2

s

�

+

3

q

= 1 +

1

q

and

2

s

�

+

3

q

�

= 1.
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����
����
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�������������

���������
���������
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���������
���������
�������������

����

�� �� ����

1

s

1

4

1

2

S

=

3

2

S

=

1

1

q

1

4

1

3

1

2

1

6

Fig 3.2 In the hat
hed region (s < 4) the lo
alized energy inequality is needed

to prove lo
al regularity, in the doubly hat
hed region (s � 4; q � 4)

no lo
al version of an energy inequality is needed.

Proof. Rewriting (3.39) in the integral mean form

�

�

Z

t

0

t

0

�r

2

�

�

Z

B

r

(x

0

)

jruj

q

dx

�

s=q

ds

�

1=s

� "

�

min

�

�; �

1�

1

s

�

where "

�

from (3.39) must be repla
ed by

"

�

jB

1

(0)j

1=q

, H�older's inequality shows that we may repla
e

s; q in (3.39) by any smaller s and smaller q, respe
tively. In parti
ular, when s � 4 and q � 4,

we may assume that s = s

�

= 4; q = 4. When 2 < s < 4, then let s = s

�

satisfy

2

s

�

+

3

q

= 1 +

1

q

.

In both 
ases we get

(3.40) s = s

�

� q;

2

s

�

+

3

q

= 1 +

1

q

;

2

s

�

+

3

q

�

= 1;

sin
e q � 4. As a se
ond step we may assume after a shift of 
oordinates in spa
e and time that

x

0

= 0 and t

0

= 0. Next we use a s
aling argument and 
onsider

(3.41) u

r

(y; �) = ru(ry; r

2

�); p

r

(y; �) = r

2

p(ry; r

2

�)
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on Q

1

= B

1

(0)� (�1; 0) instead of (u; p) on Q

r

. Note that u

r

; p

r

solve the Navier-Stokes system

with the same vis
osity � and that u

r

satis�es (3.39) in the form

(3.42) ku

r

k

L

s

L

q

(Q

1

)

� "

�

min

�

�; �

1�1=s

�

:

Hen
e, without loss of generality, we assume that u satis�es (3.39) on Q

1

with r = 1 and s = s

�

.

The idea of the proof is to 
onstru
t with the help of Theorem 2.18 a very weak solution v

in Q

0

= B

r

0

� (t

0

; 0) for suitable r

0

2 (

1

2

; 1) and t

0

2 (�1;�

1

2

) with data

v(t

0

) = u(t

0

); v

j

�B

r

0

= u

j

�B

r

0

and to identify v with u on Q

0

; hen
e

v = u 2 L

s

�

L

q

�

(Q

0

) and v = u in L

s

�

L

q

�

�

B

1=2

� (�

1

2

; 0)

�

:

t

�1

B

r

0

Q

0

B

r

0

B

1

0

�

1

2

t

0

Fig 3.3 The spa
e-time 
ylinders Q

1

and Q

0

.

For this purpose we have to �nd r

0

2 (

1

2

; 1) and t

0

2 (�1;�

1

2

) su
h that the smallness 
onditions

Z

�t

0

0

kA

q

�

e

���A

q

�

A

�1

q

�

P

q

�

u(t

0

)k

s

�

q

�

d� � "

s

�

�

�

s

�

�1

(3.43)

Z

0

t

0

ku

j

�B

r

0

k

s

�

W

�1=q

�

;q

�

(�B

r

0

)

d� � "

s

�

�

�

s

�

�1

;(3.44)


f. (2.50), are ful�lled; here A

q

�

and P

q

�

denote the Stokes operator and the Helmholtz proje
tion,

respe
tively, on B

r

0

.
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Con
erning (3.43) we �nd t

0

2 (�1;�

1

2

) satisfying

ku(t

0

)k

s

L

q

(B

1

)

� �

Z

�1=2

�1

kuk

s

L

q

(B

1

)

d� � 2 kuk

s

L

s

L

q

(Q

1

)

� 2"

s

�

�

s

:

Then Lemma 1.11 (3), (4) with � =

1

2q

,

1

q

+

3

q

�

=

3

q

, and the property

s

�

2q

=

1

q�2

< 1 imply that

Z

�t

0

0

kA

q

�

e

���A

q

�

A

�1

q

�

P

q

�

u(t

0

)k

s

�

q

�

d�

=

Z

�t

0

0

kA

1=2q

q

e

���A

q

A

�1=2q

q

P

q

u(t

0

)k

s

�

q

�

d�

� 


Z

�t

0

0

e

��Æ

0

s

�

�

(��)

s

�

=2q

ku(t

0

)k

s

�

q

d�

�




�

ku(t

0

)k

s

�

q

� 
 "

s

�

�

�

s�1

:

Hen
e (3.43) is satis�ed for a suÆ
iently small 
onstant "

�

in (3.42).

Now 
onsider the problem of �nding r

0

2 (

1

2

; 1) su
h that (3.44) is satis�ed. By the mean

value argument as before, there exists r

0

2 (

1

2

; 1) su
h that

kuk

s

�

L

s

�

(�1;0;L

q

(�B

r

0

))

=

Z

0

�1

kuk

s

�

L

q

(�B

r

0

)

d�

� �

Z

1

1=2

�

Z

0

�1

kuk

s

�

L

q

(�B

r

)

�

d� dr

= 2

Z

0

�1

�

Z

1

1=2

kuk

s

�

L

q

(�B

r

)

dr

�

d�:

Sin
e s

�

� q, see (3.40), we apply H�older's inequality to the inner integral and get from (3.42)

that

kuk

s

�

L

s

�

(�1;0;L

q

(�B

r

0

))

� 2

Z

0

�1

�

Z

1

1=2

kuk

q

L

q

(�B

r

)

dr

�

s

�

=q

d�

� 2

Z

0

�1

kuk

s

�

L

q

(B

1

)

d�

� 2"

s

�

�

�

s

�

�1

:

Finally, using the embedding L

q

(�B

r

0

) � W

�1=q

�

;q

�

(�B

r

0

) with an embedding 
onstant uniformly

bounded in r

0

2

�

1

2

; 1

�

, we get that (3.44) is satis�ed for a slightly di�erent 
onstant "

�

> 0.

Now Theorem 2.18 yields a unique very weak solution v in L

s

�

L

q

�

(Q

0

) with data v(t

0

) = u(t

0

)

and v = u on �B

r

0

� (t

0

; 0). For this argument it is important to note that the smallnes 
onstant

"

�

in the appli
ation of Theorem 2.18 in the spa
e-time domain Q

0

may be 
hosen independently

of r

0

2 (

1

2

; 1) and t

0

2 (�1;�

1

2

); for its proof we have to refer to the s
aling argument (3.41).

As the �nal step of the proof it suÆ
es to show that v = u on Q

0

. First 
onsider the 
ase

s � 4 in whi
h s

�

= 4, q

�

= 6, v 2 L

4

L

6

(Q

0

) and u 2 L

4

L

4

(Q

0

). Let 
 denote the very weak
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solution of the Stokes system




t

� ��
 +rp = 0; div 
 = 0 in Q

0

;


(t

0

) = u(t

0

); 


j

�B

r

0

= u

j

�B

r

0

:

By Theorem 2.14 
 2 L

4

L

6

(Q

0

) � L

4

L

4

(Q

0

) so that v�
 and u�
 solve the instationary Stokes

system

U

t

� ��U +rp = �div (vv) and = �div (uu) in Q

0

;

divU = 0 in Q

0

; U(t

0

) = 0; U

j

�B

r

0

= 0;

respe
tively. Sin
e vv 2 L

2

L

2

(Q

0

) and uu 2 L

2

L

2

(Q

0

), in both 
ases the very weak solution U

is even a weak solution satisfying the energy identity. Hen
e u� v = u� 
 � (v � 
) is a weak

solution of the Stokes system

(3.45)

U

t

� ��U +rp = �div (Uu+ vU); divU = 0 in Q

0

;

U(t

0

) = 0; u

j

�B

r

0

= 0;

where Uu; vU 2 L

2

L

2

(Q

0

). Let k�k

[�;t℄

; � < t; denote the norm

kwk

[�;t℄

=

�

kwk

2

L

1

(�;t;L

2

(B

r

0

))

+ �krwk

2

L

2

(�;t;L

2

(B

r

0

))

�

1=2

:

Testing (3.45) in B

r

0

� [t

0

; t

0

+ "℄, " > 0, with U we get the estimate

(3.46) kUk

2

[t

0

;t

0

+"℄

� 
kUk

2

[t

0

;t

0

+"℄

kvk

L

4

(t

0

;t

0

+";L

6

(B

r

0

))

with a 
onstant 
 > 0 independent of t

0

and " > 0 as well as of U; u and v; here we used that

R

B

r

0

Uu � rU dx = 0 and that

�

�

�

Z

B

r

0

vU � rU dx

�

�

�

� 
krUk

2

kUk

3

kvk

6

� 
krUk

3=2

2

kUk

1=2

2

kvk

6

:

Sin
e v 2 L

4

L

6

(Q

0

), we may 
hoose " > 0 suÆ
iently small so that (3.46) yields U � 0 on

[t

0

; t

0

+ "℄. Repeating this argument a �nite number of times with the same " > 0 we 
on
lude

that U � 0 on [t

0

; 0℄, i.e., u = v 2 L

4

L

6

(Q

0

). This proves Theorem 3.11 in the 
ase s � 4. Note

that u was not assumed to be a suitable weak solution in this 
ase.

Se
ondly, let 2 < s = s

�

< 4 and 
onsequently q > 4. In this 
ase an approximation pro
edure

is used to apply the lo
alized energy inequality in a similar way as in Serrin's uniqueness 
riterion


on
erning the usual energy inequality. Moreover, regularity results for v allow to 
on
lude that

U = u� v satis�es the inequality

1

2

kU(t)k

2

2

+ �

Z

t

t

0

krUk

2

2

d� �

Z

t

t

0

(U � rU; v) d� ;

we omit further details of these te
hni
al arguments. Sin
e v 2 L

s

�

L

q

�

(Q

r

0

), the absorption

prin
iple may be used to get in a �nite number of steps on 
onse
utive intervals t

0

= t

1

< t

2

<

: : : < t

m

= 0 that u = v in Q

0

, 
f. (3.46). �
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