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We investigate the solvability of the instationary Navier-Stokes equations

with fully inhomogeneous data in a bounded domain 
 � R

n

. The 
lass of so-

lutions is 
ontained in L

r

(0; T ;H

�;q

w

(
)), where H

�;q

w

(
) is a Bessel-Potential

spa
e with a Mu
kenhoupt weight w. In this 
ontext we derive solvability for

small data, where this smallness 
an be realized by the restri
tion on a short

time interval. Depending on the order of this Bessel-Potential spa
e we are

dealing with strong solutions, weak solutions, or with very weak solutions.
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1 Introdu
tion

We 
onsider the Navier-Stokes equations with inhomogeneous data

�

t

u��u+ uru+rp = f in (0; T )� 


div u = k in (0; T )� 


u = g on (0; T )� �


u(0) = u

0

in 


(1.1)

on a bounded C

1;1

-domain 
 � R

n

, n � 2, and a time interval [0; T ) with T 2 (0;1℄.

For simpli
ity we assume that the 
oeÆ
ient of vis
osity is equal to 1.

It is our aim to �nd a 
lass of solutions to (1.1) in L

r

(0; T ;H

�;q

(
)) where H

�;q

(
) is

a Bessel-potential spa
e for � 2 [0; 2℄. This means we develop a solution theory that in-


ludes strong solutions in the 
ase � = 2 and weak solutions in the 
ase � = 1. However,

if � = 0, it is also possible that the solutions are only 
ontained in L

r

(0; T ;L

q

(
)), i.e.,

they do not possess any weak derivatives. Consequently the notion of weak solutions

�
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is no longer suitable in this 
ontext. Thus an appropriate formulation of the problem

is needed, the so-
alled very weak solutions to the Navier-Stokes equations. To 
ome

to this formulation one multiplies (1.1) with a suÆ
iently smooth test fun
tion � with

�(t)j

�


= 0 and div �(t) = 0 for every t and supp� � [0; T ) � 
. Then one applies

formal integration by parts and obtains

� hu; �

t

i


;T

� hu;��i


;T

= hf; �i


;T

� hg;N � r�i

�
;T

+ huu;r�i


;T

+ hku; �i


;T

� hu

0

; �(0)i




(1.2)

using the identity u � ru = div (uu) � (div u)u. Applying the same pro
edure to the

se
ond equation in (1.1) and a test fun
tion  , whi
h does not ne
essarily vanish on the

boundary, yields

�hu(t);r i




= hk(t);  i




� hg(t); N i




(1.3)

for almost every t. Now, u is 
alled a very weak solution to the Navier-Stokes equations

if (1.2) and (1.3) are ful�lled for all test fun
tions � and  . Note that the information

about the boundary values is preserved be
ause r� and  do not ne
essarily vanish on

the boundary. This or similar formulations have been introdu
ed by Amann in [1℄, by

Amrou
he and Girault in [2℄ and by Galdi, Simader and Sohr in [14℄. In these arti
les

as well as by Farwig, Galdi and Sohr in [6℄, [5℄, [7℄ and by Giga in [16℄ solvability

with low-regularity data has been shown. In parti
ular, the boundary 
onditions under


onsideration are 
ontained in spa
es of distributions on the boundary.

We investigate this problem in fun
tion spa
es weighted in the spa
e variable. More

pre
isely, we 
onsider Lebesgue-, Sobolev- and Bessel potential spa
es with respe
t to

the measure w dx, where w is a weight fun
tion that is 
ontained in the Mu
kenhoupt


lass A

q

, 
f., (2.1) below.

Classi
al tools for the treatment of partial di�erential equations extend to fun
tion

spa
es with Mu
kenhoupt weights. As important examples we mention the 
ontinuity

of the maximal operator and the multiplier theorems that 
an be found in the books of

Gar
��a-Cuerva and Rubio de Fran
ia [15℄ and Stein [24℄; extension theorems of fun
tions

on a domain to fun
tions on R

n

have been shown by Chua [3℄, extension theorems of

fun
tions on the boundary to fun
tions on the domain by Fr�ohli
h [12℄, see also [19℄.

These tools were the base to treat the solvability of the Stokes and Navier-Stokes

equations in weighted fun
tion spa
es by Farwig and Sohr in [9℄ and by Fr�ohli
h in

[13℄, [12℄. If one uses parti
ular weight fun
tions this theory may be used for a better

des
ription of the solution, e.g. 
lose to the boundary or in the neighborhood of a

point. A further mathemati
al signi�
an
e of Mu
kenhoupt weights is given by the

Extrapolation Theorem [15, IV Lemma 5.18℄. An even more powerful extrapolation

theorem by Curbera, Gar
��a-Cuerva, Martell and P�erez [4℄ guarantees estimates in very

general Bana
h fun
tion spa
es provided that the estimates in weighted fun
tion spa
es

are known for all weights from the Mu
kenhoupt 
lass A

q

. Moreover, this property

may be used to derive the R-boundedness of families of operators from their uniform

boundedness in weighted fun
tion spa
es. This fa
t was used by Fr�ohli
h [13℄ to give a

new proof of the maximal regularity of the Stokes operator in L

q

.

In the Main Theorem 4.4 we prove existen
e, uniqueness, and a priori estimates

of solutions to the instationary Navier-Stokes equations in weighted Bessel-Potential

spa
es under the assumption that the data is small. This smallness of the data 
an be

guaranteed by the restri
tion to a short time interval.
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It has been pointed out in [20℄ that solutions to inhomogeneous boundary values

and divergen
es exist naturally in the 
ase of lowest regularity, i.e. of solutions in

L

r

(0; T ;L

q

w

(
)). However, if we want to obtain more regular solutions, one requires, in

addition to the spa
e-regularity of the data, a higher time-regularity of the boundary


ondition and the divergen
e. Naturally this problem remains in the nonlinear 
ase.

However, in the nonlinear 
ase that is treated here, it turns out that in addition the lower

regularity 
auses more diÆ
ulties in the sense that we have to put stronger assumptions

to the weight fun
tions, while in the 
ase of strong solutions we 
an deal with the full

generality. The reason is that weighted versions of the Sobolev Embedding Theorems

require strong assumptions to the weight fun
tions. In the 
ase of higher regularity these

assumptions are easier to ful�ll. Finally, it turns out that our solution theory yields

spa
es of solutions L

r

(0; T ;H

�;q

w

(
)) that embed into Serrin's 
lass L

r

(0; T ;L

p

(
)) with

2

r

+

n

p

� 1.

2 Weighted Fun
tion Spa
es

Let A

q

, 1 < q <1, the set of Mu
kenhoupt weights, be given by all 0 � w 2 L

1

lo


(R

n

)

for whi
h

A

q

(w) := sup

Q

�

1

jQj

Z

Q

w dx

��

1

jQj

Z

Q

w

�

1

q�1

dx

�

q�1

<1: (2.1)

The supremum is taken over all 
ubes Q in R

n

. To avoid trivial 
ases, we ex
lude the


ase where w vanishes almost everywhere.

In [24℄ there are shown the following fa
ts about the 
lass of Mu
kenhoupt weights.

� A

q

� A

p

for q < p.

� Let w 2 A

q

for q > 1. Then there exists s < q su
h that w 2 A

s

.

Let k 2 N

0

, q 2 (1;1), w 2 A

q

and let 
 � R

n

be a Lips
hitz domain. Then we

de�ne the following weighted versions of Lebesgue and Sobolev spa
es.

� L

q

w

(
) :=

n

f 2 L

1

lo


(
) j kfk

q;w

:=

�
R




jf j

q

w dx

�

1

q

<1

o

.

It is an easy 
onsequen
e of the 
orresponding result in the unweighted 
ase that

(L

q

w

(
))

0

= L

q

0

w

0

(
) with

1

q

+

1

q

0

= 1 and w

0

= w

�

1

q�1

2 A

q

0

: (2.2)

� Set W

k;q

w

(
) =

n

u 2 L

q

w

(
)

�

�

�

kuk

k;q;w

:=

P

j�j�k

kD

�

uk

q;w

<1

o

.

� By C

1

0

(
) we denote the set of all smooth and 
ompa
tly supported fun
tions,

the spa
e C

1

0;�

(
) 
onsists of all fun
tions that are in addition divergen
e free.

� Moreover we set W

k;q

w;0

(
) = C

1

0

(
)

k�k

k;q;w

. The dual spa
e of it is denoted by

W

�k;q

w

(
) := (W

k;q

0

w

0

;0

(
))

0

. We also 
onsider the divergen
e-free versions

W

k;q

w;0;�

(
) := f� 2 W

k;q

w;0

(
) j div � = 0g and L

q

w;�

(
) = C

1

0;�

(
)

L

q

w

(
)

.
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� Using this for k > 0 we set W

�k;q

w;0

(
) = C

1

0

(
)

k�k

W

�k;q

w

(R

n

)

.

� Moreover, we 
onsider the spa
es of boundary values T

k;q

w

(�
) := (W

k;q

w

(
))j

�


,

equipped with the norm k � k

T

k;q

w

= k � k

T

k;q

w

(�
)

of the fa
tor spa
e and �nally

T

0;q

w

(�
) := (T

1;q

0

w

0

(�
))

0

.

By [12℄ and [3℄ the spa
es L

q

w

(
), W

k;q

w

(
), W

k;q

w;0

(
) and T

k;q

w

(�
) are re
exive Bana
h

spa
es in whi
h C

1

0

(
), (C

1

0

(
), C

1

(
)j

�


, respe
tively) are dense.

It has been shown in [12, Lemma 2.2.℄ that on a bounded domain a weighted Lebesgue

spa
e embeds into an unweighted one. More pre
isely, one has

L

q

w

(
) ,! L

p

(
) for q � sp if w 2 A

s

for s < q: (2.3)

Next we introdu
e weighted Bessel-Potential spa
es on R

n

and on a bounded Lips
hitz

domain. For � 2 R

n

we set h�i := (1 + j�j

2

)

1

2

. On the spa
e S

0

(R

n

;R) of temperate

distributions we de�ne for all � 2 R the operator

�

�

f = F

�1

h�i

�

Ff; f 2 S

0

(R

n

;R);

where F stands for the Fourier transformation on S

0

(R

n

;R). Then for 1 < q < 1,

w 2 A

q

and � 2 R the weighted Bessel potential spa
e is given by

H

�;q

w

(R

n

) =

n

f 2 S

0

(R

n

;R)

�

�

kfk

H

�;q

w

(R

n

)

:= k�

�

fk

q;w;R

n

<1

o

:

For a bounded Lips
hitz domain 
 we de�ne the weighted Bessel potential spa
e on


 by

H

�;q

w

(
) =

�

gj




j g 2 H

�;q

w

(R

n

)

	

equipped with the norm kuk

H

�;q

w

(
)

:= inf

n

kUk

H

�;q

w

(R

n

)

j U 2 H

�;q

w

(R

n

); U j




= u

o

. Note

that if � < 0 then the restri
tion gj




has to be understood in the sense of distributions

as gj

C

1

0

(
)

.

For spa
es of boundary values we 
onsider the spa
es

T

�;q

w

(
) :=

(

H

�;q

w

(
) for � 2 [1; 2℄

[T

0;q

w

(
); T

1;q

w

(
)℄

�

for � 2 [0; 1):

As spa
es for our solutions we need spa
es of fun
tions that vanish on the boundary.

Thus for a bounded Lips
hitz domain 
 � R

n

, 1 < q < 1, w 2 A

q

we set Y

2;q

w

(
) :=

fu 2 W

2;q

w

(
) j uj

�


= 0g. For 0 � � � 2 we de�ne the spa
e

Y

�;q

w

(
) :=

8

>

<

>

:

Y

2;q

w

(
)

H

�;q

w

(R

n

)

; if 0 � � � 1 equipped with k � k

H

�;q

w

(R

n

)

;

Y

2;q

w

(
)

H

�;q

w

(
)

; if 1 < � � 2 equipped with k � k

H

�;q

w

(
)

;

where in the 
ase 0 � � � 1 the fun
tions of Y

2;q

w

(
) are assumed to be extended by 0

to fun
tions de�ned on the whole spa
e R

n

. This is possible, sin
e C

1

0

(
) is dense in
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W

1;q

w;0

(
) � Y

2;q

w

(
) and W

1;q

w;0

(
) ,! W

1;q

w

(R

n

) ,! H

�;q

w

(R

n

). We also 
onsider the dual

spa
es Y

��;q

w

(
) := (Y

�;q

0

w

0

(
))

0

.

Now we de�ne the divergen
e free version of Y

�;q

w

(
) by

Y

�;q

w;�

(
) :=

�

u 2 Y

�;q

w

(
) j hu;r�i = 0 for every � 2 C

1

(
)

	

:

By Theorem 2.1 and (3.1) below one has Y

1;q

w;�

(
) = f� 2 W

1;q

w;0

(
) j div � = 0g and

Y

0;q

w;�

(
) = L

q

w;�

(
).

We also 
onsider the dual spa
es Y

��;q

w;�

(
) :=

�

Y

�;q

0

w

0

;�

(
)

�

0

. By the Hahn-Bana
h

theorem the spa
e Y

��;q

w;�

(
) is the restri
tion of all elements of Y

��;q

w

(
) to Y

�;q

0

w

0

;�

(
).

See [21℄ for further properties and dis
ussions about these spa
es. In parti
ular there

have been proved the following interpolation properties.

Theorem 2.1. If 
 is a bounded C

1;1

-domain then one has

�

L

q

w

(
); Y

2;q

w

(
)

�

�

= Y

�;q

w

(
); � =

�

2

; 0 � � � 2

and

�

L

q

w;�

(
); Y

2;q

w;�

(
)

�

�

= Y

�;q

w;�

(
); � =

�

2

; 0 � � � 2

with equivalent norms.

Finally as a spa
e for the divergen
e we set

H


;q

w;�

(
) :=

(

H


;q

w

(
); if 
 � 0

H


;q

w;0

(
) = C

1

0

(
)

H


;q

w

(R

n

)

; if 
 < 0:

The following embeddings between weighted spa
es have been proved in [21℄, where

there has also been shown the existen
e and uniqueness of solutions to the stationary

Navier-Stokes equations. In the present paper it is used to estimate the nonlinear term.

Lemma 2.2. Let 
 � R

n

be a bounded Lips
hitz domain. Moreover, let 1 � s � r �

q <1, r > 1 and assume 0 � � < n su
h that

1

q

�

1

r

�

�

ns

: (2.4)

Then for every w 2 A

s

the following embeddings are true:

1. H

�;r

w

(
) ,! L

q

w

(
).

2. H

�;q

0

w

q

(
) ,! L

r

0

w

r

(
), where w

q

= w

�

1

q�1

and w

r

= w

�

1

r�1

.

3. L

r

w

(
) ,! H

��;q

w

(
), L

r

w

(
) ,! H

��;q

w;0

(
) and for � 2 [0; 1℄ one has W

�1;r

w

(
) ,!

Y

�1��;q

w

(
).

4. If � 2 [0; 1℄, then one has H

1;r

w

(
) ,! H

1��;q

w

(
).
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3 The Linear Stokes Equations and the Stokes Operator

Throughout this se
tion let 
 be a bounded domain that is at least of 
lass C

1;1

.

As in the 
lassi
al unweighted 
ase one de�nes the Stokes operator

A = A

0;q;w

: L

q

w;�

(
) � D(A)! L

q

w;�

(
); u 7! �P

q;w

�;

where P

q;w

: L

q

w

(
) ! L

q

w

(
) is the Helmholtz proje
tion that is the proje
tion to the

spa
e of divergen
e free ve
tor �elds

L

q

w;�

(
) = C

1

0;�

(
)

L

q

w

(
)

= fu 2 L

q

w

(
) j hu;r�i = 0 for every � 2 W

1;q

0

w

0

(
)g: (3.1)

The kernel of P

q;w

is equal to the spa
e of gradients frp j p 2 W

1;q

w

(
)g.

All these fa
ts about the Helmholtz proje
tion in weighted spa
es have been shown by

Fr�ohli
h in [11℄. The domain of the Stokes operator is D(A) = Y

2;q

w;�

(
). In the weighted


ontext the Stokes operator has been introdu
ed and dis
ussed in [12℄ and [13℄.

In the following, we 
onsider an analogue to the Stokes operator whi
h is adequate in

the 
ontext of very weak solutions in the Bessel potential spa
es H

�;q

w

(
).

Theorem 3.1. For every 0 � � � 2 the Stokes operator A has an extension to an

element of L(Y

�;q

w;�

(
); Y

��2;q

w;�

(
)) with the following properties.

1. It des
ribes a 
losed and densely de�ned linear operator in Y

��2;q

w;�

(
) again denoted

by A. For u 2 Y

�;q

w;�

(
) one has

Au = [Y

2��;q

0

w

0

;�

(
) 3 � 7! �hu;��i




℄:

2. The resolvent set �(�A) 
ontains a se
tor

�

"

[ f0g = f� 2 C j j arg�j <

�

2

+ "g; " 2 (0;

�

2

);

and for every 0 < Æ < " there exists a 
onstant M

Æ

su
h that

k�(A+ �)

�1

k

L(Y

��2;q

w;�

(
))

�M

Æ

for all � 2 �

Æ

: (3.2)

Proof. This has been shown in [20℄.

For �2 � � � 0 let A

�;q;w

be the extension of the Stokes operator whose existen
e

has been stated in Theorem 3.1. Then we 
all

A

�;q;w

: D(A

�;q;w

) := Y

�+2;q

w;�

(
) � Y

�;q

w;�

(
)! Y

�;q

w;�

(
)

the generalized Stokes operator in Y

�;q

w;�

(
). If no 
onfusion 
an o

ur, we omit the

indi
es and write A instead of A

�;q;w

.

Corollary 3.2. The negative generalized Stokes operator �A in Y

��2;q

w;�

(
) is the gen-

erator of a bounded analyti
 semigroup fe

�tA

g

t2�

"

for every " 2 (0;

�

2

), where �

"

=

f� 2 C j � 6= 0; j arg�j < "g.

In addition one has e

�tA


�2;�;w

= e

�tA

��2;q;w

j

Y


�2;�

w;�

(
)

for 0 � � � 
 � 2, q; � 2 (0;1)

and w 2 A

q

\ A

�

with Y


;�

w

(
) ,! Y

�;q

w

(
).
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Proof. The �rst assertion follows immediately from the resolvent estimate in 3.1 the se
-

ond follows from the 
orresponding fa
t on the resolvent and the representation formula

of the semigroup in terms of a path integral [18℄.

For a Bana
h spa
e X we denote the spa
e of X-valued tempered distributions by

S

0

(R;X) := L(S(R;R); X). A

ordingly, for an interval I we denote the set of distri-

butions by D

0

(I;X) := L(C

1

0

(I); X).

For the treatment of solutions to the instationary Stokes and Navier-Stokes problem

in Bessel-Potential spa
es with inhomogeneous divergen
e and boundary 
onditions we

need a higher time regularity of this part of the data. To measure this time regularity

we work in Bana
h spa
e-valued Bessel-Potential spa
es.

For � 2 R we set �

�

t

:= F

�1

h�i

�

F , where h�i

�

= (1 + j� j

2

)

�

2

, � 2 R. Using this, for

r > 1 we de�ne the X-valued Bessel-potential spa
e by

H

�;r

(R;X) :=

n

u 2 S

0

(R;X) j �

�

t

u 2 L

r

(R;X)

o

;

equipped with the norm kuk

H

�;r

(R;X)

:= k�

�

t

uk

L

r

(R;X)

. Moreover, we set for � � 0

H

�;r

0

((0; T ℄;X) :=

�

U j

C

1

0

(0;T ;R)

j U 2 H

�;r

(R;X); suppU � [0;1)

	

equipped with

kuk

H

�;r

0

((0;T ℄;X)

:= inf

�

kUk

H

�;r

(R;X)

j U 2 H

�;r

(R;X);

suppU � [0;1); U j

C

1

0

(0;T ;R)

= u

	

:

As a spa
e of initial values we 
onsider the spa
e

I

�;q;r

w

= I

�;q;r

w

(
) :=

�

u

0

2 Y

��2;q

w;�

(
)

�

�

�

Z

1

0

ke

�tA

u

0

k

r

�;q;w

dt <1

�

;

where e

�tA

is the semigroup that is generated by the generalized Stokes operator A in

Y

��2;q

w;�

(
) with

e

�tA

: Y

��2;q

w;�

(
)! D(A) = Y

�;q

w;�

(
) � H

�;q

w;�

(
):

It is equipped with the norm ku

0

k

I

�;q;r

w

:= ku

0

k

Y

��2;q

w;�

+ ke

�tA

u

0

k

L

r

(H

�;q

w

)

.

The following theorem has been shown in [20℄

Theorem 3.3. Let 1 < q < 1, � 2 [0; 2℄ and let w 2 A

q

. Let 
 � R

n

be a bounded

C

2;1

-domain if � > 1 and a bounded C

1;1

-domain if � � 1. Moreover, we take

f 2 L

r

(0; T ;Y

��2;q

w

(
));

k 2 H

�

2

;r

0

((0; T ℄;W

�1;q

w;0

(
)) \ L

r

(0; T ;H

��1;q

w;�

(
));

g 2 H

�

2

;r

0

((0; T ℄;T

0;q

w

(�
)) \ L

r

(0; T ;T

�;q

w

(�
));

u

0

2 I

�;q;r

w

(
);

ful�lling the 
ompatibility 
ondition hk(t); 1i




= hg(t); Ni

�


, for almost all t 2 (0; T ).
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Then there exists a unique very weak solution u 2 L

r

(0; T ;H

�;q

w

(
)) to the instationary

Stokes system, i.e.,

�hu; �

t

i


;T

� hu;��i


;T

= �hu

0

; �(0)i




+ hf; �i


;T

� hg;N � r�i

�
;T

�hu(t);r i




= hk(t);  i




� hg(t); N i

�


for a.e. t 2 [0; T ℄

for all � 2 L

r

0

(0; T ;Y

2;q

0

w

0

;�

(
)) \ W

1;r

0

(0; T ;L

q

0

w

0

(
)) with supp� 
ompa
t in 
 � [0; T )

and  2 W

1;q

0

w

0

(
). This solution u ful�lls the estimate

ku

t

j

Y

2;q

0

w

0

;�

(
)

k

L

r

(0;T ;Y

��2;q

w;�

(
))

+ kuk

L

r

(H

�;q

w

)

�


�

kfk

L

r

(H

��2;q

w

)

+ kkk

H

�

2

;r

0

((0;T ℄;W

�1;q

w;0

)\L

r

(H

��1;q

w;�

)

+ kgk

H

�

2

;r

0

((0;T ℄;T

0;q

w

)\L

r

(T

�;q

w

)

+ ku

0

k

I

�;q;r

w

�

(3.3)

with 
 = 
(
; r; �; q; w) > 0.

4 Instationary Navier-Stokes Equations

The nonlinear term of the Navier-Stokes equations in the variational formulation 
an be

rewritten by the fun
tional

� 7! �huu;r�i � hudiv u; �i:

To make the multipli
ation udiv u well-de�ned, we assume that the divergen
e is given

by a fun
tion. More pre
isely for � � 1 we 
hoose � > 1 su
h that

L

�

w

(
) ,! H

��1;q

w;0

(
) (4.1)

and assume that u(t) 2 L

�

w

(
) for almost every t. See Lemma 2.2 for suÆ
iant 
onditions

for (4.1).

De�nition 4.1. Let � 2 [0; 2℄, r; q 2 (1;1), w 2 A

q

. Moreover, in the 
ase � � 1


hoose � > 1 su
h that it ful�lls (4.1). Take

f 2 L

r

(0; T ;Y

��2;q

w

(
));

k 2 L

r

(0; T ;L

�

w

(
)) \H

�

2

;r

0

((0; T ℄;W

�1;q

w;0

(
)) if � < 1 and

k 2 L

r

(0; T ;H

��1;q

w

(
)) \H

�

2

;r

0

((0; T ℄;W

�1;q

w;0

(
)) if � � 1;

g 2 L

r

(0; T ;T

�;q

w

(�
)) \H

�

2

;r

0

((0; T ℄;T

0;q

w

(�
));

u

0

2 I

�;q;r

w

(
):

Then u 2 L

r

(0; T ;H

�;q

w

(
)) is 
alled a very weak solution to the Navier-Stokes problem

if

�hu; �

t

i


;T

� hu;��i


;T

= hf; �i


;T

� hg;N � r�i

�
;T

+ huu;r�i


;T

+ hku; �i


;T

� hu

0

; �(0)i




for every � 2 W

1;r

0

(0; T ;Y

2;q

0

w

0

;�

(
)) with supp � � [0; T )� 
, div u = k is ful�lled in the

sense of distributions and u �N j

�


= g �N .
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Sin
e a very weak solutions u 2 L

r

(0; T ;H

�;q

w

(
)) is in general not regular enough to

guarantee that its restri
tion to the boundary is well-de�ned, some dis
ussions on the

boundary values are in order. The 
omponent of the boundary 
ondition that is normal

to the boundary is simple, sin
e u ful�lls div u(t) = k(t) 2 L

�

w

(
). Thus we �nd for

almost every t

hu(t);  Ni

�


= hdiv u(t);  i




+ hu(t);r i




= hk(t);  i




+ hu(t);r i




= hg(t);  Ni:

In this sense one has u � N j

�


= g � N . The tangential part of the boundary 
on-

dition 
auses more diÆ
ulties. By [22℄ a suÆ
ient 
ondition that guarantees the well-

de�nedness of the boundary 
ondition is jhu(t);��ij � C(t)k�k

1;�;v

for every � 2 C

1

0;�

(
)

and almost every t. It is obvious that this requires a further restri
tion of the exterior

for
e and, in addition, some appropriate time regularity of the solution. However, it is

not diÆ
ult to show that every suÆ
iently regular solution ful�lls the boundary 
ondi-

tion u(t)j

�


= g(t) almost everywhere.

The evaluation of every very weak solution to the Navier-Stokes equation with respe
t

to the above data at time 0 is well-de�ned and satis�es u(0)j

Y

2;q

0

w

0

;�

= u

0

. This holds

be
ause by the a priori estimate (4.5) below one has u

t

j

Y

2;q

0

w

0

;�

(
)

2 L

r

2

(0; T

00

;Y

��2;q

w;�

(
)).

See [20℄ for more details.

For � > 0 the fra
tional powers A

�

of the generator of an analyti
 semigroup are

well-de�ned by [18℄. In the unweighted 
ase the boundedness of imaginary powers of

the Stokes operator is used to prove an exa
t 
hara
terization of the domains of fra
tional

powers of the Stokes operator, see Giga [17℄. However, in weighted fun
tion spa
es this

is not established. We use the following Theorem by Franzke [10℄ as a repla
ement.

Theorem 4.2. Let X be a Bana
h spa
e and A a densely de�ned positive operator in

X, i.e.,

k(�+ A)

�1

k �

K

1 + �

for every � � 0:

Then for m 2 N, 0 < � < 1 and 0 < �

�

< �m < �

+

one has

D(A

�

+

) ,! [X;D(A

m

)℄

�

,! D(A

�

�

):

In parti
ular if A = A is the Stokes operator in L

q

w;�

(
), m = 1, 0 < � < 2 and " > 0,

then we �nd by Theorem 2.1

D(A

1

2

�+"

) ,! Y

�;q

w;�

(
) ,! D(A

1

2

��"

): (4.2)

Thus one has the estimate




1

kA

1

2

��"

uk

q;w

� kuk

Y

�;q

w;�

� 


2

kA

1

2

�+"

uk

q;w

:

Moreover, if we 
onsider the generalized Stokes operator in Y

�1;�

w;�

(
), one obtains by

Theorems 2.1 and 3.1

kuk

�;w

� 
kAuk

Y

�2;�

w;�

= 
kA

1

2

�"

A

1

2

+"

uk

Y

�2;�

w;�

� 
kA

1

2

+"

uk

[Y

�2;�

w;�

;L

q

w;�

℄

1

2

� 
kA

1

2

+"

uk

Y

�1;�

w;�

= 
kA

1

2

+"

uk

H

�1;�

w;�

:

(4.3)
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The proof of existen
e and uniqueness of very weak solutions to the instationary Navier-

Stokes equations requires the Variation of Constants Formula established in the following

lemma.

Lemma 4.3. Let 1 < q; r <1, 0 � � � 2. Moreover, take f 2 L

r

(0; T ;Y

��2;q

w;�

(
)) and

let u 2 L

r

(0; T ;Y

�;q

w;�

(
)) be the solution to

u

t

+Au = f in D

0

(0; T ;Y

��2;q

w;�

(
)) and u(0) = 0;

where A = A

��2;q;w

is the generalized Stokes operator in Y

��2;q

w;�

(
). Then

u(t) =

Z

t

0

e

�A(t��)

f(�) d� for almost every t 2 (0; T ):

Proof. From the embeddings H

�;q

w;�

(
) ,! L

q

w;�

(
) and Y

��2;q

w;�

(
) ,! Y

�2;q

w;�

(
) we know

that

u 2 L

r

(0; T ;L

q

w;�

(
)) and f 2 L

r

(0; T ;Y

�2;q

w;�

(
)):

Thus we obtain A

�1

0;q;w

u 2 L

r

(0; T ;Y

2;q

w;�

(
)) and A

�1

�2;q;w

f 2 L

r

(0; T ;L

q

w;�

(
)).

Sin
e the generalized Stokes operator is de�ned in Theorem 3.1 as an extension of the


lassi
al one, we obtain that A

�1

�2;q;w

u = A

�1

0;q;w

u is the strong solution to the instationary

Stokes problem

(A

�1

0;q;w

u)

t

+A

0;q;w

(A

�1

0;q;w

u) = A

�1

�2;q;w

f:

By the maximal regularity of the 
lassi
al Stokes operator [13℄ and the uniqueness of

strong solutions the Variation of Constants Formula holds in the 
ase of strong solutions.

Thus one obtains

A

�1

0;q;w

u(t) =

Z

t

0

e

�A

0;q;w

(t��)

A

�1

�2;q;w

f(�) d�: (4.4)

Moreover, by Theorem 3.2 one has

A

0;q;w

e

�(t��)A

0;q;w

A

�1

�2;q;w

f = A

�2;q;w

e

�(t��)A

�2;q;w

A

�1

�2;q;w

f = e

�(t��)A

�2;q;w

f

= e

�(t��)A

��2;q;w

f:

Thus if one applies A

0;q;w

to both sides of (4.4) the proof of the lemma is �nished.

Theorem 4.4. Let � 2 [0; 2℄ with � >

ns

q

� 1, where q 2 (1;1) and w 2 A

s

for some

s < q. Moreover, let 
 � R

n

, n � 2 be a bounded C

1;1

-domain, if � � 1, and a bounded

C

2;1

-domain, if � > 1.

Choose r 2 (1;1) su
h that

1

r

< min

�

�

ns

2q

+

�

2

+

1

2

;

1� �

2

�

if 0 � � < 1;

1

r

< min

�

�

ns

2q

+

�

2

+

1

2

;

2� �

2

�

if 1 � � < 2 and

1

r

< min

�

�

ns

2q

+

3

2

;

1

2

�

and

2

q

�

2

ns

<

1

s

if � = 2:

In the 
ase n = 2 and � 2 [1; 2) we assume in addition that � >

2s

q

�

1

2

.
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Take f , k, g and u

0

as in De�nition 4.1 with � 
hosen su
h that

1� �

ns

+

1

q

�

1

�

= 0 in the 
ase � � 1:

Then, if � � 1 there exists a 
onstant � = �(
; �; q; w; r) > 0 with the following property:

If 0 < T

0

� T with

 

Z

T

0

0

ke

��A

u

0

k

r

�;q;w

d�

!

1

r

+ kfk

L

r

(0;T

0

;Y

��2;q

w

)

+kkk

L

r

(0;T

0

;L

�

w

)\H

�

2

;r

0

((0;T

0

℄;W

�1;q

w;0

)

+ kgk

L

r

(0;T

0

;T

�;q

w

)\H

�

2

;r

0

((0;T

0

℄;T

0;q

w

)

� �;

then there exists a unique very weak solution u 2 L

r

(0; T

0

;H

�;q

w

(
)) to the Navier-Stokes

equations. For every T

00

2 (0; T

0

℄, T

00

<1 this solution u satis�es the estimate

kuk

L

r

(0;T

0

;H

�;q

w

)

+ku

t

j

Y

2;q

0

w

0

;�

(
)

k

L

r

2

(0;T

00

;Y

��2;q

w;�

(
))

�


��

Z

T

0

0

ke

��A

u

0

k

r

�;q;w

d�

�

1

r

+ kfk

L

r

(0;T

0

;Y

��2;q

w

)

+ kkk

L

r

(0;T

0

;L

�

w

)\H

�

2

;r

0

((0;T

0

℄;W

�1;q

w;0

)

+ kgk

L

r

(0;T

0

;T

�;q

w

)\H

�

2

;r

0

((0;T

0

℄;T

0;q

w

)

�

;

(4.5)

here 
 in
reases with in
reasing T

00

but 
an be 
hosen independently of T and T

0

.

If � > 1 then the same assertion holds if L

r

(0; T

0

;L

�

w

(
))\H

�

2

;r

0

((0; T

0

℄;W

�1;q

w;0

(
)) is

repla
ed by L

r

(0; T

0

;H

��1;q

w

(
)) \H

�

2

;r

0

((0; T

0

℄;W

�1;q

w;0

(
)).

Proof. Let E 2 L

r

(0; T ;H

�;q

w

(
)) be the very weak solution to the instationary Stokes

problem with respe
t to the data f; k; g and u

0

in the sense of Theorem 3.3.

Assume that u 2 L

r

(0; T ;H

�;q

w

(
)) is the very weak solution to the Navier-Stokes

equations we are looking for. Then ~u := u� E solves

�

t

~u��~u+r~p = �W (u); div ~u = 0; ~uj

�


= 0 and ~u(0) = 0

in the very weak sense with

W (u)(t) := [Y

2;q

0

w

0

;�

(
) 3 � 7! �hu(t)u(t);r�i




� hk(t)u(t); �i




℄

for almost every t. This means

�h~u; �

t

i


;T

� h~u;��i


;T

= hW (u); �i




with � as in De�nition 4.1. Then the Variation of Constants Formula proved in Lemma

4.3 yields

~u(t) = �

Z

t

0

e

�(t��)A

W (u)d� =: G(~u)(t):

As a �rst step we assume � < 1. By the de�nition of � and the assumptions on � one

has s � � < q and by Lemma 2.2 one obtains L

�

w

(
) ,! H

��1;q

w

(
). Put

� =

1

r

� 1 < 0 and " := min

�

1

5

�

���

�

2

�

1

2

�

;

1

5

�

�

ns

q

+ � + 1�

2

r

��

> 0;

where " is positive by the assumption on r. Moreover, if � <

ns

q

we set � :=

nsq

2ns�2q�

.

Then one obtains by the assumptions on �:
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� � is well-de�ned and � >

ns

2

� s.

�

1

q

�

1

�

�

�2��5"���1

ns

with 0 < �2�� 5"� � � 1 � 1 < n.

�

1

2�

=

1

q

�

�

ns

.

This proves

H

�;q

w

(
) ,! L

2�

w

(
) and H

�2��5"���1;�

w

(
) ,! L

q

w

(
); (4.6)

using Lemma 2.2 if � < q. For q � � the latter embedding is obvious.

If 1 > � �

ns

q

then H

�;q

w

(
) ,! L

2�

w

(
) for every � 2 (1;1). In this 
ase we 
hoose �

with

1

q

<

1

�

<

1

q

+

�2��5"���1

ns

. Then the embeddings (4.6) hold for �.

By (4.2), (4.3) and well-known estimates about analyti
 semigroups [18℄ one obtains

the estimate

kG(~u)(t)k

H

�;q

w

�kG(~u)(t)k

Y

�;q

w

�

Z

t

0







e

�(t��)A

W (u)







Y

�;q

w

d�

�

Z

t

0










A

��

e

�(t��)A

A

�+

�

2

+"

W (u)










q;w

d�

�


Z

t

0

1

(t� �)

��










A

(�+2"+

�

2

+

1

2

)�

1

2

�"

W (u)










q;w

d�

�


Z

t

0

1

(t� �)

��










A

(�+2"+

�

2

+

1

2

)�

1

2

�"

W (u)










�2��5"���1;�;w

d�

�


Z

t

0

1

(t� �)

��










A

�

1

2

�"

W (u)










�;w

d�

�


Z

t

0

1

(t� �)

��

kW (u)k

�1;�;w

d�;

(4.7)

where we have used A

�2;q;w

j

Y

�1;�

w;�

= A

�1;�;w

, where A

�2;q;w

is the generalized Stokes

operator in Y

�2;q

w;�

(
) and A

�1;�;w

is the generalized Stokes operator in Y

�1;�

w;�

(
) =

(W

1;�

0

0;w

0

;�

(
))

0

.

We have to estimate kW (u)k

�1;�;w

. For � 2 Y

2;q

0

w

0

;�

(
) one has

jhW (u); �i




j �jhuu;r�i




j+ jhku; �i




j

�kuuk

�;w

kr�k

�

0

;w

�

+ kkuk

~�;w

k�k

~�

0

;w

~�

�

�

kuk

2

2�;w

+ kkk

�;w

kuk

2�;w

�

k�k

1;�

0

;w

�

�


�

kuk

2

�;q;w

+ kkk

�;w

kuk

�;q;w

�

k�k

1;�

0

;w

�

(4.8)

sin
e for ~� given by

1

~�

=

1

�

+

1

2�

an elementary 
omputation shows

1

�

=

1

~�

�

1

ns

whi
h

implies H

1;�

0

w

�

(
) ,! L

~�

0

w

~�

(
).
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Thus we 
ontinue 
ombining (4.7) and (4.8), the Hardy-Littlewood inequality [24,

VIII 4.2℄ and the equality

1

r

+ �+ 1 =

1

r

2

. Then we may estimate

kG(~u)k

L

r

(0;T ;H

�;q

w

(
))

�














Z

t

0

1

(t� �)

��

�

ku(�)k

2

�;q;w

+ kk(�)k

�;w

ku(�)k

�;q;w

�

d�













L

r

(0;T )

�








ku(�)k

2

�;q;w

+ kk(�)k

�;w

ku(�)k

�;q;w







L

r

2

(0;T )

�


�

kuk

2

L

r

(0;T ;H

�;q

w

(
))

+ kkk

L

r

(0;T ;L

�

w

(
))

kuk

L

r

(0;T ;H

�;q

w

(
))

�

�


��

k~uk

L

r

(0;T ;H

�;q

w

(
))

+ kEk

L

r

(0;T ;H

�;q

w

(
))

�

2

+ kkk

L

r

(0;T ;L

�

w

(
))

�

k~uk

L

r

(0;T ;H

�;q

w

(
))

+ kEk

L

r

(0;T ;H

�;q

w

(
))

��

:

(4.9)

Now assume

 

Z

T

0

0

ke

��A

u

0

k

r

�;q;w

d�

!

1

r

+ kfk

L

r

(0;T

0

;Y

��2;q

w

)

+ kkk

L

r

(0;T

0

;L

�

w

)\H

�

2

;r

0

((0;T

0

℄;W

�1;q

w;0

)

+ kgk

L

r

(0;T

0

;T

�;q

w

)\H

�

2

;r

0

((0;T

0

℄;T

0;q

w

)

� �

and k~uk

L

r

(0;T ;H

�;q

w

(
))

< Æ, where � and Æ are positive but will be 
hosen suÆ
iently small

later on. Then one has kEk

L

r

(0;T ;H

�;q

w

(
))

� K�, where K is the 
onstant from the a

priori estimate for the solution to the instationary Stokes equations, Theorem 3.3. Thus

we obtain from (4.9)

kG(~u)k

L

r

(0;T ;H

�;q

w

(
))

� 
((Æ +K�)

2

+ �(Æ +K�)) < Æ;

if � and Æ are suÆ
iently small. This shows G(B

Æ

(0)) � B

Æ

(0), where B

Æ

(0) is the 
losed

ball with radius Æ in L

r

(0; T ;H

�;q

w

(
)).

We show that G is a 
ontra
tion on B

Æ

(0). As above we �nd the pointwise estimate

jhW (E + ~u)�W (E + ~v); �i




j

�jh(E + ~u)

2

� (E + ~v)

2

;r�i




j+ jhk(E + ~u)� k(E + ~v); �ij

�jh2E(~u� ~v);r�i




j+ jh~u~u� ~v~v;r�i




j+ jhk(~u� ~v); �i




j

�


�

kEk

�;q;w

k~u� ~vk

�;q;w

+ k~uk

�;q;w

k~u� ~vk

�;q;w

+ k~vk

�;q;w

k~u� ~vk

�;q;w

+ kkk

�;w

k~u� ~vk

�;q;w

�

k�k

1;�

0

;w

�

almost everywhere in t. Thus

kW (E + ~u)�W (E + ~v)k

�1;�;w

�


�

kEk

�;q;w

+ k~uk

�;q;w

+ k~vk

�;q;w

+ kkk

�;w

�

k~u� ~vk

�;q;w

:
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Now an analogous estimate as for kG(~u)k

L

r

(0;T ;H

�;q

w

(
))

shows

kG(~u)� G(~v)k

L

r

(0;T ;H

�;q

w

(
))

�











Z

t

0

1

(t� �)

��

�

kEk

�;q;w

+ k~uk

�;q;w

+ k~vk

�;q;w

+ kkk

�;w

�

k~u� ~vk

�;q;w

d�










L

r

(0;T

0

)

�


�

kEk

L

r

(0;T

0

;H

�;q

w

)

+ k~uk

L

r

(0;T

0

;H

�;q

w

)

+ k~vk

L

r

(0;T

0

;H

�;q

w

)

+ kkk

L

r

(0;T

0

;L

�

w

)

�

� k~u� ~vk

L

r

(0;T

0

;H

�;q

w

)

�
(K� + � + 2Æ)k~u� ~vk

L

r

(0;T

0

;H

�;q

w

)

:

This means, if � and Æ are suÆ
iently small, then G is a 
ontra
tion. Hen
e by Bana
h's

�xed point theorem there exists a unique ~u 2 B

Æ

(0) with G(~u) = ~u. Then u := E + ~u is

the solution we have been looking for.

We turn to the 
ase � � 1. In this 
ase the proof of existen
e follows the same

lines of the 
ase � < 1 but using di�erent embeddings. Moreover, the fa
t that k 2

L

r

(0; T ;H

��1;q

w

(
)) gives us reason to repeat the arguments.

Let � =

1

r

� 1. Then as in (4.7) we obtain with an appropriate 
hoi
e of " > 0

kG(~u)(t)k

�;q;w

=kG(~u)(t)k

Y

�;q

w

�


Z

t

0










A

��

e

�(t��)A

A

�+

�

2

+

"

4

W (u)










q;w

d�

�


Z

t

0

1

(t� �)

��










A

�+

�

2

+

"

4

W (u)










q;w

d�

�


Z

t

0

1

(t� �)

��

kW (u)k

�+2�+";q;w

d�

�

Z

t

0

1

(t� �)

��

kW (u)k

�;w

d�;

where � is 
hosen a

ording to � as follows.

If � <

ns

q

then we 
hoose �

1

, �

2

, � su
h that

1

�

1

=

1

q

�

�

ns

;

1

�

2

=

1

q

�

� � 1

ns

;

1

�

=

1

�

1

+

1

�

2

:

Then one has by the restri
tions on

1

r

� � > s. If n = 2 one uses the additional assumption to show this.

�

1

�

+

�+2�

ns

=

2

q

�

2��1

ns

+

�+2�

ns

<

1

q

.

� � + 2� < 0.

This implies with an appropriate 
hoi
e of "

L

�

w

(
) ,! H

�+2�+";q

w

(
); H

�;q

w

(
) ,! L

�

1

w

(
); H

��1;q

w

(
) ,! L

�

2

w

(
): (4.10)
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If

ns

q

� � < 2, then H

�;q

w

(
) ,! L

�

1

w

(
) for every �

1

2 (1;1). Then we 
hoose � with

1

q

<

1

�

<

1

q

�

�+2�

ns

, �

2

> � with

1

�

2

�

1

q

�

��1

ns

and �

1

su
h that

1

�

1

+

1

�

2

=

1

�

. This implies

the embeddings (4.10). Thus in any 
ase we may estimate

kv � ruk

�;w

� kvk

�

1

;w

kruk

�

2

;w

� 
kvk

�;q;w

kuk

�;q;w

(4.11)

for every u; v 2 H

�;q

w

(
). Hen
e we obtain as in (4.9)

kG(~u)k

L

r

(0;T

0

;H

�;q

w

)

� 














Z

t

0

1

(t� �)

��

(k~u(�)k

�;q;w

+ kE(�)k

�;q;w

)

2

d�













L

r

(0;T

0

)

� 


�

k~uk

L

r

(0;T

0

;H

�;q

w

)

+ kEk

L

r

(0;T

0

;H

�;q

w

)

�

2

(4.12)

and

kG(~u)� G(~v)k

L

r

(0;T

0

;H

�;q

w

)

� 


�

kEk

L

r

(0;T

0

;H

�;q

w

)

+ k~uk

L

r

(0;T

0

;H

�;q

w

)

+ k~vk

L

r

(0;T

0

;H

�;q

w

)

�

ku� vk

L

r

(0;T

0

;H

�;q

w

)

:

Then the same iteration pro
edure as in the 
ase � < 1 shows the existen
e of a unique

�xed point ~u = G(~u) within a ball in L

r

(0; T

0

;H

�;q

w

(
)) with radius Æ.

We turn to the 
ase � = 2, i.e., the 
ase of strong solutions. One uses the estimate

kG(u)k

2;q;w

�


Z

t

0

1

(t� �)

��

kW (u)k

2+2�+";q;w

d�

�


Z

t

0

1

(t� �)

��

kW (u)k

1;�;w

d�:

Su
h a � 
an be 
hosen be
ause 2 + 2� =

2

r

< 1. As above we 
hoose � and � su
h that

su
h that

�

1

q

>

1

�

�

1�

2

r

ns

to guarantee the embedding H

1;�

w

(
) ,! H

2

r

+";q

w

(
),

�

1

2�

�

1

q

�

1

ns

to obtain H

1;q

w

(
) ,! L

2�

w

(
).

�

1

�

�

1

q

�

2

ns

whi
h yields H

2;q

w

(
) ,! L

�

w

(
).

If ns � q > 0 the above holds if � =

nsq

2ns�2q

and

1

�

=

1

�

�

1

q

. If ns � q � 0 then

H

1;q

w

(
) ,! L

2�

w

(
) for every � and in addition H

2;q

w

(
) ,! L

�

w

(
) for every �. Then we


hoose any � with

1

q

<

1

�

<

1

q

+

1�

1

r

ns

and

1

�

=

1

�

�

1

q

to guarantee the above.

We use this to prove kW (u)k

1;�;w

� 
kuk

2

2;q;w

. To this aim we 
al
ulate

k�

k

W (u)k

�;w

�k�

k

u � ruk

�;w

+ ku � �

k

ruk

�;w

�kruk

2

2�;w

+ kuk

�;w

kr

2

uk

q;w

� 
kuk

2

2;q;w

:

(4.13)

From now on we derive all following estimates as in the 
ase 0 � � < 1. This �nishes

the proof of existen
e for small data for every � 2 [0; 2℄.
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The next step is to prove the a priori estimate. Let ~u 2 B

Æ

(0) be the �xed point of

G. Then one has by (4.9) and (4.12)

k~uk

L

r

(0;T

0

;H

�;q

w

(
))

=kG(~u)k

L

r

(0;T

0

;H

�;q

w

(
))

�


�

(Æ +K�)(k~uk

L

r

(0;T

0

;H

�;q

w

(
))

+ kEk

L

r

(0;T

0

;H

�;q

w

(
))

)

+ �(k~uk

L

r

(0;T

0

;H

�;q

w

(
))

+ kEk

L

r

(0;T

0

;H

�;q

w

(
))

)

�

:

Choosing Æ and � su
h that 
(Æ + 2�) < 1 this proves

k~uk

L

r

(0;T

0

;H

�;q

w

(
))

�


(Æ + 2�)

1� 
(Æ + 2�)

kEk

L

r

(0;T

0

;H

�;q

w

(
))

:

Finally, we obtain for � < 1

kuk

L

r

(0;T

0

;H

�;q

w

(
))

�k~uk

L

r

(0;T

0

;H

�;q

w

(
))

+ kEk

L

r

(0;T

0

;H

�;q

w

(
))

�
kEk

L

r

(0;T

0

;H

�;q

w

(
))

�


��

Z

T

0

0

ke

��A

u

0

k

r

�;q;w

d�

�

1

r

+ kfk

L

r

(0;T

0

;Y

��2

w

(
))

+ kkk

L

r

(0;T

0

;L

�

w

)\H

�

2

;r

0

((0;T

0

℄;W

�1;q

w;0

)

+ kgk

L

r

(0;T

0

;T

�;q

w

)\H

�

2

;r

0

((0;T

0

℄;T

0;q

w

)

�

by the a priori estimate in the linear 
ase in Theorem 3.3. If � � 1 one obtains the

estimate

kuk

L

r

(0;T

0

;H

�;q

w

(
))

�


��

Z

T

0

0

ke

��A

u

0

k

r

�;q;w

d�

�

1

r

+ kfk

L

r

(0;T

0

;Y

��2

w

(
))

+ kkk

L

r

(0;T

0

;H

��1;q

w

)\H

�

2

;r

0

((0;T

0

℄;W

�1;q

w;0

)

+ kgk

L

r

(0;T

0

;T

�;q

w

)\H

�

2

;r

0

((0;T

0

℄;T

0;q

w

)

�

analogously.

Sin
e u is a very weak solution to the instationary Stokes problem

�

t

u��u+rp = f �W (u)�G� U

0

; (4.14)

where G = [� 7! hg;N � r�i

�
;T

℄ and U

0

= [� 7! hu

0

; �(0)i




℄, we get the estimate (4.5)

from the linear 
ase. More pre
isely let T

00

2 (0; T

0

℄ with T

00

< 1 and 
hoose � as in

the estimates (4.8), (4.11), (4.13). Then we obtain by the a priori estimate of solutions

to the instationary Stokes equation in L

r

2

(0; T ;H

�;q

w

(
)) and H�older's inequality in the


ase � < 1

k�

t

uj

Y

2;q

0

w

0

;�

(
)

k

L

r

2

(0;T

00

;Y

��2;q

w;�

(
))

�


�

kfk

L

r

2

(0;T

00

;Y

��2;q

w

(
))

+ kW (u)k

L

r

2

(0;T

00

;Y

��2;q

w;�

(
))

+kkk

H

�

2

;

r

2

0

((0;T ℄;W

�1;q

w;0

)\L

r

2

(H

��1;q

w;�

)

+ kgk

H

�

2

;

r

2

0

((0;T ℄;T

0;q

w

)\L

r

2

(T

�;q

w

)

+ ku

0

k

I

�;q;

r

2

w

�

�
(T

00

)

�

kfk

L

r

(0;T

00

;Y

��2;q

w

(
))

+ 
(� + Æ)kuk

L

r

(0;T

0

;H

�;q

w

(
))

+kkk

H

�

2

;r

0

((0;T ℄;W

�1;q

w;0

)\L

r

(H

��1;q

w;�

)

+ kgk

H

�

2

;r

0

((0;T ℄;T

0;q

w

)\L

r

(T

�;q

w

)

+ ku

0

k

I

�;q;r

w

�

:
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If � 2 [1; 2℄ one estimates analogously. Then the estimate for u proves (4.5).

Note that the equation (4.14) is only tested with fun
tions in Y

2;q

0

w

0

;�

(
) and only holds

in this sense. Thus the distributional derivative �

t

u may 
ontain a gradient part whi
h

is not a fun
tion in time.

Uniqueness 
an be proved in the same way as in [6℄: Let v 2 L

r

(0; T

0

;H

�;q

w

(
)) be

a very weak solution 
orresponding to the same data f; k; g and u

0

. Then U := u � v

solves

�

t

U ��U +rP = �div (Uu)� div (vU) + kU;

divU = 0; U j

�


= 0; U(0) = 0

in the very weak sense. Then for � < 1 one obtains as above

kUk

L

r

(0;T

0

;H

�;q

w

(
))

�


�

kuk

L

r

(0;T

0

;H

�;q

w

)

+ kvk

L

r

(0;T

0

;H

�;q

w

)

+ kkk

L

r

(0;T

0

;L

�

w

(
))

�

kUk

L

r

(0;T

0

;H

�;q

w

(
))

with a 
onstant 
 that is independent of T

0

. A 
orresponding inequality holds in the 
ase

� � 1. In parti
ular it holds for T

0

repla
ed by any T

000

2 (0; T

0

℄. If T

000

is suÆ
iently

small su
h that

kuk

L

r

(0;T

000

;H

�;q

w

(
))

+ kvk

L

r

(0;T

000

;H

�;q

w

(
))

+ kkk

L

r

(0;T

000

;L

�

w

(
))

<

1

2


;

we obtain kUk

L

r

(0;T

000

;H

�;q

w

(
))

� 0 or U = 0 on [0; T

000

). If T

000

< T

0

we assume that

T

000

is maximal with the property u = v on [0; T

000

). However, then we may repeat this

pro
edure and obtain u = v on a bigger interval. This is a 
ontradi
tion. Thus u is

unique in L

r

(0; T

0

;H

�;q

w

(
)) and the proof is 
omplete.

Remark 4.5. Choose �; r; q a

ording to Theorem 4.4.

We now prove that in this 
ase the solution u 2 L

r

(0; T ;H

�;q

w

(
)) ful�lls Serrin's


ondition [23℄ in the sense that u 2 L

r

(0; T

0

; L

�

(
)), where

1

r

+

n

�

< 1.

If ns� q� > 0 then for the number � that ful�lls

1

2�

=

1

q

�

�

ns

one has by Lemma 2.2

and (2.3)

H

�;q

w

(
) ,! L

2�

w

(
) ,! L

2�

s

(
)

and

2

r

+

n

2�

s

< �

ns

q

+ � + 1 +

ns� q�

q

= 1:

If ns � q� � 0 then H

�;q

w

(
) ,! L

�

(
) for every � 2 (1;1). Sin
e r > 2, this � 
an be


hosen su
h that

2

r

+

n

�

< 1.

The reason why there appears "<" instead of "�" as in the unweighted 
ase [23℄, [8℄,

is that the boundedness of imaginary powers is not proved for the Stokes operator in

spa
es weighted with arbitrary Mu
kenhoupt weights. Thus we have to work without an

exa
t 
hara
terization of the domains of fra
tional powers of the Stokes operator D(A

�

)

and use the embedding (4.2) instead.
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