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We investigate the solvability of the instationary Navier-Stokes equations
with fully inhomogeneous data in a bounded domain 2 C R”. The class of so-
lutions is contained in L"(0,T; H24(2)), where H24() is a Bessel-Potential
space with a Muckenhoupt weight w. In this context we derive solvability for
small data, where this smallness can be realized by the restriction on a short
time interval. Depending on the order of this Bessel-Potential space we are
dealing with strong solutions, weak solutions, or with very weak solutions.
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1 Introduction
We consider the Navier-Stokes equations with inhomogeneous data

ou—Au+uVu+Vp =f in (0,7) x Q
divu =k in (0,7) x Q (1.1)
u =g on (0,7) x 0Q '
u(0) =wuy in Q

on a bounded C'-domain Q@ C R", n > 2, and a time interval [0,7) with 7" € (0, c0].
For simplicity we assume that the coefficient of viscosity is equal to 1.

It is our aim to find a class of solutions to (1.1) in L"(0,T; H?9(Q2)) where H?7(Q) is
a Bessel-potential space for § € [0, 2]. This means we develop a solution theory that in-
cludes strong solutions in the case f = 2 and weak solutions in the case § = 1. However,
if # =0, it is also possible that the solutions are only contained in L"(0,T’; L(£2)), i.e.,
they do not possess any weak derivatives. Consequently the notion of weak solutions
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is no longer suitable in this context. Thus an appropriate formulation of the problem
is needed, the so-called very weak solutions to the Navier-Stokes equations. To come
to this formulation one multiplies (1.1) with a sufficiently smooth test function ¢ with
d(t)]|sq = 0 and div¢(t) = 0 for every t and supp¢ C [0,T) x Q. Then one applies
formal integration by parts and obtains

— (u, ¢t>Q,T — (u, A¢>Q,T
=(f,P)ar — (9, N - Vo)aar + (uu, Vo)ar + (ku, p)ar — (uo, $(0))a
using the identity - Vu = div (uu) — (divu)u. Applying the same procedure to the

second equation in (1.1) and a test function v, which does not necessarily vanish on the
boundary, yields

(1.2)

—(u(t), Vo = (k(t), ¥)a — (9(t), NY)o (1.3)
for almost every ¢. Now, u is called a very weak solution to the Navier-Stokes equations
if (1.2) and (1.3) are fulfilled for all test functions ¢ and 1. Note that the information
about the boundary values is preserved because V¢ and ¢ do not necessarily vanish on
the boundary. This or similar formulations have been introduced by Amann in [1], by
Amrouche and Girault in [2] and by Galdi, Simader and Sohr in [14]. In these articles
as well as by Farwig, Galdi and Sohr in [6], [5], [7] and by Giga in [16] solvability
with low-regularity data has been shown. In particular, the boundary conditions under
consideration are contained in spaces of distributions on the boundary.

We investigate this problem in function spaces weighted in the space variable. More
precisely, we consider Lebesgue-, Sobolev- and Bessel potential spaces with respect to
the measure w dx, where w is a weight function that is contained in the Muckenhoupt
class Ay, cf., (2.1) below.

Classical tools for the treatment of partial differential equations extend to function
spaces with Muckenhoupt weights. As important examples we mention the continuity
of the maximal operator and the multiplier theorems that can be found in the books of
Garcia-Cuerva and Rubio de Francia [15] and Stein [24]; extension theorems of functions
on a domain to functions on R™ have been shown by Chua [3], extension theorems of
functions on the boundary to functions on the domain by Fréhlich [12], see also [19].

These tools were the base to treat the solvability of the Stokes and Navier-Stokes
equations in weighted function spaces by Farwig and Sohr in [9] and by Frohlich in
[13], [12]. If one uses particular weight functions this theory may be used for a better
description of the solution, e.g. close to the boundary or in the neighborhood of a
point. A further mathematical significance of Muckenhoupt weights is given by the
Extrapolation Theorem [15, IV Lemma 5.18]. An even more powerful extrapolation
theorem by Curbera, Garcia-Cuerva, Martell and Pérez [4] guarantees estimates in very
general Banach function spaces provided that the estimates in weighted function spaces
are known for all weights from the Muckenhoupt class A,. Moreover, this property
may be used to derive the R-boundedness of families of operators from their uniform
boundedness in weighted function spaces. This fact was used by Frohlich [13] to give a
new proof of the maximal regularity of the Stokes operator in L9.

In the Main Theorem 4.4 we prove existence, uniqueness, and a priori estimates
of solutions to the instationary Navier-Stokes equations in weighted Bessel-Potential
spaces under the assumption that the data is small. This smallness of the data can be
guaranteed by the restriction to a short time interval.



It has been pointed out in [20] that solutions to inhomogeneous boundary values
and divergences exist naturally in the case of lowest regularity, i.e. of solutions in
L7(0,7; L7(2)). However, if we want to obtain more regular solutions, one requires, in
addition to the space-regularity of the data, a higher time-regularity of the boundary
condition and the divergence. Naturally this problem remains in the nonlinear case.
However, in the nonlinear case that is treated here, it turns out that in addition the lower
regularity causes more difficulties in the sense that we have to put stronger assumptions
to the weight functions, while in the case of strong solutions we can deal with the full
generality. The reason is that weighted versions of the Sobolev Embedding Theorems
require strong assumptions to the weight functions. In the case of higher regularity these
assumptions are easier to fulfill. Finally, it turns out that our solution theory yields
spaces of solutions L"(0,T; H2(€2)) that embed into Serrin’s class L”(0, T'; LP(§2)) with
2 ypn <.

r p —

2 Weighted Function Spaces

Let A4,, 1 < ¢ < 0o, the set of Muckenhoupt weights, be given by all 0 < w € Lj,.(R")
for which

Ay (w) = sup (ﬁ/@wdaz) <ﬁ/¢2w—ﬁd:p>q—1 < 0. (2.1)

The supremum is taken over all cubes ) in R™. To avoid trivial cases, we exclude the
case where w vanishes almost everywhere.
In [24] there are shown the following facts about the class of Muckenhoupt weights.

o A, C A, forq<p.
o Let w € A, for ¢ > 1. Then there exists s < ¢ such that w € A;.

Let k € Ny, ¢ € (1,00), w € Ay and let Q@ C R™ be a Lipschitz domain. Then we
define the following weighted versions of Lebesgue and Sobolev spaces.

o L8(@) i={f € L@ | |flgw := (Jo | Fltwda)® < oo},

It is an easy consequence of the corresponding result in the unweighted case that

/ 1 1
(L4() = Liy(@) with _+— =1 and o' = W € Ay, (22)

o Set Whi(Q) = {u e L7(Q) ‘ u

b = Dot 1D < 00}

e By C§°(Q2) we denote the set of all smooth and compactly supported functions,
the space Cf5, (2) consists of all functions that are in addition divergence free.

o Moreover we set W,4(Q) = CgO(Q)”'Hk’q’w. The dual space of it is denoted by

W ka(Q) .= (ka}%(ﬂ))’ . We also consider the divergence-free versions
oo 7o L (9)

Wt (Q) = {p € Wrs(Q) | dive =0} and L, (Q) = C52(Q)

w,0,0



e Using this for £ > 0 we set W;}IS"’(Q) = CSO(Q)|H|Wu7k’q(‘R").

e Moreover, we consider the spaces of boundary values T59(99Q) = (Wk(Q))|sq,
equipped with the norm || - [|;x0 = || - ||T£,q(m) of the factor space and finally

TO9(99) == (T57 (99))'.

By [12] and [3] the spaces L (2), Wk4(Q), Wu]fg(Q) and TF4(9Q) are reflexive Banach
spaces in which C§°(9), (C5°(Q2), C*°(Q)]sq, respectively) are dense.

It has been shown in [12, Lemma 2.2.] that on a bounded domain a weighted Lebesgue
space embeds into an unweighted one. More precisely, one has

LI (Q) — LP(Q) for ¢ >sp if we A, for s <gq. (2.3)

Next we introduce weighted Bessel-Potential spaces on R" and on a bounded Lipschitz
domain. For £ € R™ we set (€) := (14 |[€]2)2. On the space S'(R™;R) of temperate
distributions we define for all 3 € R the operator

Nf=FNOFf, [feSRYR),

where F stands for the Fourier transformation on &'(R™;R). Then for 1 < ¢ < oo,
w € Ay and B € R the weighted Bessel potential space is given by

HEO(RY) = {1 € 8 (R™R) | || fllygoqun = A" Fllgwmr < 00}

For a bounded Lipschitz domain €2 we define the weighted Bessel potential space on
Q by
Hy () = {gla | g € Hy"(R")}

w

equipped with the norm [[ul] s.q g, = inf{||U||H5,q(]Rn) | U € HPARY), Ulg = u} Note
that if 8 < 0 then the restriction g|g has to be understood in the sense of distributions

as glose(q)-
For spaces of boundary values we consider the spaces

TP4(Q) = {Hg’q(g) for g€ l1,2]
N [T29(Q), TL(Q)])s  for B€[0,1).

As spaces for our solutions we need spaces of functions that vanish on the boundary.
Thus for a bounded Lipschitz domain @ C R", 1 < ¢ < 0o, w € A, we set Y24(Q) :=
{u e W21Q) | ulpg = 0}. For 0 < 8 < 2 we define the space

HE1(R)
2,q . . .
Yf’q(Q) . Y4 (2) , if 0<p <1 equipped with || - ||H§;‘1(1Rn)=

JIARIto)
Y 4(Q) , if 1< B <2 equipped with || - ||HB’Q(Q)’

where in the case 0 < 8 < 1 the functions of ¥,>¢(f2) are assumed to be extended by 0
to functions defined on the whole space R". This is possible, since C§°(€2) is dense in



W, a(Q) D Y24(Q) and W5(Q) — WEI(R") — HE4(R™). We also consider the dual
spaces Y, -71(Q) = (Yf,’q,(Q))’.
Now we define the divergence free version of Y,%4(Q) by

Y29(Q) == {u e Y)UQ) | (u, V§) =0 for every ¢ € C®(Q)}.

By Theorem 2.1 and (3.1) below one has Y,2¢(Q) = {¢ € W, 5(Q) | dive = 0} and
Yoa(Q) = L, ().
We also consider the dual spaces Y, 24(Q) := (Yf,’ff,’(Q))'. By the Hahn-Banach

theorem the space Y, 24(Q) is the restriction of all elements of Y,;#4() to Yf,fg(Q)
See [21] for further properties and discussions about these spaces. In particular there
have been proved the following interpolation properties.

Theorem 2.1. If Q is a bounded C“'-domain then one has

[LE(Q), Y1), =Y(Q), 0=73, 0<p<2
and
[18,,(2),Y22(@)], = V3H0), 6=1 0<p<o
with equivalent norms.
Finally as a space for the divergence we set
H(6), if v >0
HJ;’,Z(Q) = g HLI(R™) )
H5(Q) = C§e(Q) , if v <O.

The following embeddings between weighted spaces have been proved in [21], where
there has also been shown the existence and uniqueness of solutions to the stationary
Navier-Stokes equations. In the present paper it is used to estimate the nonlinear term.

Lemma 2.2. Let 2 C R"™ be a bounded Lipschitz domain. Moreover, let 1 < s <r <
q < oo, r>1and assume 0 < B < n such that

% _F (2.4)

> .
ns

=

Then for every w € Ay the following embeddings are true:

1. HP(Q2) < L1(Q).

2. Hg;q'(Q) s L (), where w, = wTT and w, = w L,

3. L’“w(ng <(—>)Hl;ﬂ"1(§2), L' (Q) — Hujf)’q(Q) and for 8 € [0,1] one has W;"(Q) —
Y -1=Pe(Q).

w

4. If B € [0,1], then one has H-" () — HL=54(Q).



3 The Linear Stokes Equations and the Stokes Operator

Throughout this section let 2 be a bounded domain that is at least of class C'!.
As in the classical unweighted case one defines the Stokes operator

A= Agguw: L8 (Q) D D(A) — LL_(Q), u— —PpuA,

w,o

where P, : LI (Q) — L% () is the Helmholtz projection that is the projection to the
space of divergence free vector fields

L8 () = Coo () = {u e L1(Q) | (u, Vo) = 0 for every ¢ € WS (@)} (3.1)

The kernel of P,,, is equal to the space of gradients {Vp | p € W1 1(Q)}.

All these facts about the Helmholtz projection in weighted spaces have been shown by
Frohlich in [11]. The domain of the Stokes operator is D(A) = Y,2¢(€2). In the weighted
context the Stokes operator has been introduced and discussed in [12] and [13].

In the following, we consider an analogue to the Stokes operator which is adequate in
the context of very weak solutions in the Bessel potential spaces HZ4().

Theorem 3.1. For every 0 < [ < 2 the Stokes operator A has an extension to an
element of L(Y24(Q), Y0 29(Q)) with the following properties.

» tw,o

1. It describes a closed and densely defined linear operator in Yf};Q’q(Q) again denoted
by A. For u € Y1) one has

Au= [V 27(Q) 5 ¢ = —(u, Ap)a).
2. The resolvent set p(—A) contains a sector
. U{0} = {AeC | fargA| < S+2} c€(0,5),

and for every 0 < § < ¢ there exists a constant Ms such that

|A(A + A)—1||£(Y£;2,q(m) < Ms for all \ € Ss. (3.2)

Proof. This has been shown in [20]. O

For =2 < <0 let A, . be the extension of the Stokes operator whose existence
has been stated in Theorem 3.1. Then we call

Apgw : D(Augw) = Yﬁ;‘?"l(g) - qu;t,’g(Q) - qu;t,’g(Q)

the generalized Stokes operator in Y}"4(Q2). If no confusion can occur, we omit the
indices and write A instead of A, 4.

Corollary 3.2. The negative generalized Stokes operator —A in Y£7;2’Q(Q) is the gen-
erator of a bounded analytic semigroup {e="*},ca. for every ¢ € (0, Z), where A, =
{AeC | AN#£0, |argA| < e}.

In addition one has e *=20v = ¢ tAs-20u |YJ;2”J(Q) Jor0 < B <~v<2, ¢,pe€ (0,00)
and w € A, N A, with Y17 () < Y1(Q).



Proof. The first assertion follows immediately from the resolvent estimate in 3.1 the sec-
ond follows from the corresponding fact on the resolvent and the representation formula
of the semigroup in terms of a path integral [18]. O

For a Banach space X we denote the space of X-valued tempered distributions by
S'(R; X) := L(S(R;R), X). Accordingly, for an interval I we denote the set of distri-
butions by D'(I; X) := L(C§°(I), X).

For the treatment of solutions to the instationary Stokes and Navier-Stokes problem
in Bessel-Potential spaces with inhomogeneous divergence and boundary conditions we
need a higher time regularity of this part of the data. To measure this time regularity
we work in Banach space-valued Bessel-Potential spaces.

For 8 € R we set A? := F~1(7)?F, where (1)¢ = (1 + |T|2)§, 7 € R. Using this, for
r > 1 we define the X-valued Bessel-potential space by

HP"(R; X) := {u € S'(R; X) | Alu e LT(]R;X)} ,

equipped with the norm ||ul|ys.(gr;x) := A w

Lr(r;x)- Moreover, we set for 5 > 0
HY"((0,T); X) = {Ulcsoorm) | U € H"(R; X), suppU C [0,00)}
equipped with
||u||Hg”((0,T};X) = inf{“U“Hﬁw(]R;X) | U € H"(R; X),
supp U C [0,00), Ulce(o,r5m) = u}-

As a space of initial values we consider the space

o0
207 = 3@ i= {1 € VL) | [ el it < oo}

where e~*4 is the semigroup that is generated by the generalized Stokes operator A in
Yf;Q’q(Q) with
e YE(9) - D(A) = YEH(Q) C HIL(Q).

It is equipped with the norm ||ug|| 8.4 = [Juol]yp-24 + ||e_tAu0||LT(H5,q).

The following theorem has been shown in [20]

Theorem 3.3. Let 1 < ¢ < oo, f € [0,2] and let w € A,. Let Q@ C R" be a bounded
C%*'-domain if B > 1 and a bounded C**-domain if 8 < 1. Moreover, we take

feL(0,T; Y 249)),
B,

ke Hg" ((0,T]; Wy g?(Q) N L™(0,T; HOH(Q)),
é

g € Hg" ((0,T]; T%(0) N L™ (0, T; T2 (%)),

up € I (1),

fulfilling the compatibility condition (k(t),1)q = (g(t), N)sq, for almost all t € (0,T).



Then there exists a unique very weak solution u € L™(0,T; H?(Q)) to the instationary
Stokes system, i.e.,

—(u, dr)or — (U, Ad)ar = —(uo, #(0))o + (f, d)ar — (9, N - Vd)aar
—(u(t), Vib)o = (k(t),V)q — (g(t), Nv)oo  for a.e. t €[0,T]

for all ¢ € L7 (0,T; Y37 (Q)) n WL (0, T Lz:,(Q)) with supp ¢ compact in Q x [0,7T)

) two

and i € Wul);q’(Q). This solution u fulfills the estimate

el oy llrorvzzzacay 1l

< r —2,q k
< (MMhrtreony + sy 659

+lll g, + unlzec

((0,TT;T9)NL(TE7)

with ¢ = ¢(Q,r, B,q,w) > 0.

4 Instationary Navier-Stokes Equations
The nonlinear term of the Navier-Stokes equations in the variational formulation can be
rewritten by the functional

¢ — —(uu, Vo) — (udiv u, @).

To make the multiplication udiv u well-defined, we assume that the divergence is given
by a function. More precisely for 5 < 1 we choose p > 1 such that

Liy(Q) < Hyy"(9) (4.1)

and assume that u(t) € L* () for almost every t. See Lemma 2.2 for sufficiant conditions
for (4.1).

Definition 4.1. Let 3 € [0,2], r,¢ € (1,00), w € A;. Moreover, in the case f <1
choose y1 > 1 such that it fulfills (4.1). Take

f el (0,T;Y; (),
ke L7(0,T; LA () N Hy " ((0,T]; Wy 54(Q)) if <1 and
ke 170,75 HE (@) 0 H (0, T W, (@) i 521,
g € L'(0, 75 707(09) N Hy (0, 7] T27(092)),
uy € I507(12).

Then u € L"(0,T; H24(Q)) is called a very weak solution to the Navier-Stokes problem
if
—(u, ¢t>Q,T — (u, A¢>Q,T
= (f,®)or — (9, N - V)oar + (uu, Vo)ar + (ku, 9)ar — (w0, #(0))a

for every ¢ € WL (0, T; Y37 (Q)) with supp ¢ C [0,T) x Q, divu = k is fulfilled in the

) fwlo
sense of distributions and u - N|sq =g - N.



Since a very weak solutions u € L"(0,T; H?4(€2)) is in general not regular enough to
guarantee that its restriction to the boundary is well-defined, some discussions on the
boundary values are in order. The component of the boundary condition that is normal
to the boundary is simple, since v fulfills divu(t) = k(t) € LE(Q). Thus we find for
almost every ¢

(u(t), ¥ N)oo = (divu(t), ¥)a + (u(t), Vib)a = (k(t), P)a + (u(t), Vi)a = (g(t), YN).

In this sense one has u - N|gg = ¢ - N. The tangential part of the boundary con-
dition causes more difficulties. By [22] a sufficient condition that guarantees the well-
definedness of the boundary condition is [(u(t), Ag)| < C(t)||¢]]1,,. for every ¢ € CF%(€2)
and almost every ¢. It is obvious that this requires a further restriction of the exterior
force and, in addition, some appropriate time regularity of the solution. However, it is
not difficult to show that every sufficiently regular solution fulfills the boundary condi-
tion u(t)|asq = ¢(t) almost everywhere.

The evaluation of every very weak solution to the Navier-Stokes equation with respect
to the above data at time 0 is well-defined and satisfies w(0)|,,2,, = uo. This holds

Y
w! o

because by the a priori estimate (4.5) below one has u| 24, € L2(0,T" VS 29(Q)).

(9)
See [20] for more details. ’

For a > 0 the fractional powers A® of the generator of an analytic semigroup are
well-defined by [18]. In the unweighted case the boundedness of imaginary powers of
the Stokes operator is used to prove an exact characterization of the domains of fractional
powers of the Stokes operator, see Giga [17]. However, in weighted function spaces this
is not established. We use the following Theorem by Franzke [10] as a replacement.

Theorem 4.2. Let X be a Banach space and A a densely defined positive operator in
X, e,
A+ 4)7H < K for every X > 0.
T 14X -
Then forme N, 0 <0 <1 and 0 < a_ <Om < ay one has
D(AY) — [X,D(A™)]p — D(A*).

In particular if A = A is the Stokes operator in Lf, (€2), m=1,0< 3 <2and ¢ > 0,
then we find by Theorem 2.1

D(A7H9) 5 Y29(Q) < D(A). (4.2)
Thus one has the estimate

cl||A%ﬂ*€u

1
g < Tullygs < e} A3 ullg.

Moreover, if we consider the generalized Stokes operator in Y, Lr(Q), one obtains by
Theorems 2.1 and 3.1

1, .1
||U||p,w < C“AU”YJ,?;P = || A2 EA2+E”||YJ,3”J

1 1
< C||A2+Eu||[Yu;(2,’p,LZ,,J}l < c||A2+Eu||wa’i,p (4.3)
2

1
_ 5+
= || A3 ul| e



The proof of existence and uniqueness of very weak solutions to the instationary Navier-
Stokes equations requires the Variation of Constants Formula established in the following
lemma.

Lemma 4.3. Let 1 < ¢, < 0o, 0 < 8 < 2. Moreover, take f € L"(0,T; ny;“(Q)) and
let w e L™(0,T;Y24(Q)) be the solution to

u+Au=f in D'(0,T; Yff’q(ﬂ)) and u(0) =0,

where A = Ag_s 4, 15 the generalized Stokes operator in Yf};z’q(Q). Then
¢
u(t) = / e~ M f(r)dr for almost every t € (0,T).
0

Proof. From the embeddings H%(Q) < L%, () and Y 29(Q) — Y, 29(Q) we know
that
uwe L"(0,T; LY (Q) and fe L"(0,T;Y, ().

Thus we obtain Ay, ,u € L"(0,7;Y24()) and AZ} ,, f € L™(0,T; LY, ,(52)).

Since the generalized Stokes operator is defined in Theorem 3.1 as an extension of the
classical one, we obtain that A:é,q,wu = Ag’;’wu is the strong solution to the instationary
Stokes problem

(Apgw)e + Ao gw(Aggutt) = Az g f-
By the maximal regularity of the classical Stokes operator [13] and the uniqueness of

strong solutions the Variation of Constants Formula holds in the case of strong solutions.
Thus one obtains

t
Aghut) = [ o AZ, fr) dr. (4.9
0
Moreover, by Theorem 3.2 one has

—(t— A w -1 _ —(t— A7 w -1 . —(t— Af w
Ao,qw€ (t=7)Ao,q, A72,q,wf_A—2,q,’we (t=T)A 2,4, A72,q,wf_e (t—=7)A_2, f

— ef(th)A,Bflq,w f

Thus if one applies A, ., to both sides of (4.4) the proof of the lemma is finished. O

Theorem 4.4. Let 5 € [0,2] with 5 > % — 1, where g € (1,00) and w € A for some
s < q. Moreover, let Q C R™, n > 2 be a bounded C*'-domain, if B3 < 1, and a bounded
C?t-domain, if B > 1.

Choose r € (1,00) such that

1 i ns [ 1 1-=-p .

Z < T 0<pB<1

r mm{ 20 T2 } F0sh<l,

1 12—
;<min{—g—2+§+§,TB} if 1< pB<2 and

1 31 2 2 1
— < min —E—i——,— and - ——< - if B=2
r 2g 2 2 qg ns s

In the case n =2 and B € [1,2) we assume in addition that 5 > % - 3.

10



Take f, k, g and ug as in Definition 4.1 with p chosen such that

1-8 1 1
5+___:0 in the case B < 1.
ns q 1%

Then, if B < 1 there exists a constant n = n(Q, B, q,w,r) > 0 with the following property:

If0 < T <T with
T’ T
(/ ||€7'Au0||qu7wd7-> + ||f| LT(O,T’;Y£72"1)
0

© g —1l,q “g|| B,q g 0,q
7(0,1";Lyy)NHy ((O,T’];W ) (0,17 T )NH ((O,T’];Tw’ )

w,0

HIAN <,

then there exists a unique very weak solution u € L™(0,T"; HP(Q)) to the Navier-Stokes
equations. For every T" € (0,T'], T" < oo this solution u satisfies the estimate

||“||Lr(o,T';HE;q)+||“t|yj;?;(g) 5 0,77;Y8 5%9(2))

T 1
<e(([ e Al gutr)” + 11
0

+ Il

LT (0,17 29) (4.5)
+ llgll

here ¢ increases with increasing T" but can be chosen mdependently of T and T".
If B > 1 then the same assertion holds if L™(0,T"; L (©2)) N Hz’r((O T, W, & 0'()) is
Sy _
replaced by L™ (0,T"; HP-59(Q)) N HE" ((0,1"]; W, ().

w,0
Proof. Let E € L™(0,T; H24(Q)) be the very weak solution to the instationary Stokes
problem with respect to the data f, k, g and ug in the sense of Theorem 3.3.
Assume that u € L"(0,T; H?4(Q)) is the very weak solution to the Navier-Stokes
equations we are looking for. Then @ := u — E solves

Ot — A+ Vp=—-W(u), divi=0, ilso=0 and a(0)=0

. o)
L7 (0,1 LEYNHZ " (0,17 ;W, 59 L7 (0,775 ) nHE " ((0,17];T97)

in the very weak sense with
W (u)(t) == [Y3% () 3 ¢ = —(u(t)u(t), Vo)o — (k(t)u(t), 6)o]
for almost every ¢t. This means
— (@, ¢y — (@, Ap)ar = (W (u), d)o

with ¢ as in Definition 4.1. Then the Variation of Constants Formula proved in Lemma
4.3 yields

() = — /0 ~=DAW (w)dr =: G (i) (1),

As a first step we assume < 1. By the definition of p and the assumptions on [ one
has s < j1 < ¢ and by Lemma 2.2 one obtains L”(Q2) < HZ~59(Q). Put

1 1 g1\ 1 ns 2
=-—-1<0 d =min - (—-a—=—=],= | —— 1-—Z= 0
«Q " < and ¢ m1n{5< o 5 2),5< + B+ r>}> ,

nsq
2ns—2qB "

ns

where ¢ is positive by the assumption on r. Moreover, if 8 <
Then one obtains by the assumptions on [3:

we set p =

11



e pis well-defined and p > =% > s.

o 1>1 ¥l with0< —2a—5:—f—-1<1<n
1 1 B
% Ty
This proves
HP9(Q) — L?(Q) and H > 5 A Lr(Q) — L1(Q), (4.6)

using Lemma 2.2 if p < q. For ¢ < p the latter embedding is obvious.

If1> > " then HP1(Q) — L2(Q) for every p € (1,00). In this case we choose p
with % < % < % + %i_’ﬁ Then the embeddings (4.6) hold for p.

By (4.2), (4.3) and well-known estimates about analytic semigroups [18] one obtains
the estimate

1G(@) ()] g0 <[1G(@) (@[30

t
< [ e
0 w

S/
0

t
C/ 1 A(a+2€+g+%)*%few(u)
o (t—7)°

dr

q,w

A—ae—(t—T)AAoc-l-g-l-eW(u)

A

dr
aw (4.7)

IN

dr

—2a—be—F—1,p,w

t
C/ % A(a+2e+§+%>—%—aw(u)‘
0

dr

psw

Sc/ot % AW ()

t—71)°

t
1
<e [ W)
o

— 1)

where we have used A 5guly-10 = A 1,4, where A 5, is the generalized Stokes
operator in Y, 29(Q) and A_,, is the generalized Stokes operator in Y, () =
10
(Wour,0(€2))"
We have to estimate ||W (u)||_1,pw. For ¢ € inflg(ﬂ) one has

(W (u), p)al <[(uu, Vé)a| + [(ku, d)ql
Slluwllpwll Vol w, + 1kwllpwl ol ws

(4.8)
< (llell3p + &l wwllllzow) 111,00,
<e (l1ullf g + &l wwllulls,g0) 161100,
since for p given by 1 = 1 + L an elementary computation shows + = 1 — L which
p 2p p p ns

1
I
implies H&;’J”I(Q) — Lgﬁ(Q).

12



d (4.8), the Hardy-Littlewood inequality [24,
. Then we may estimate

Thus we continue combining (4.7) a
VIII 4.2] and the equality + + o+ 1 =

=

Wl =

1G(a)]

L (0,75 H29(Q))

[ O g+ I sl )

T

LT (0,T)

<e (I g + IEO ol 15000l 5 0.7
2

= (““' vty +IF ||Lr<o,T;me>||u||u<o,T;H3’qm)>>

<e( (Ja

1o rsati (1l ooy + 1]

(4.9)

Lr(o,rsmE () T & Lr(o,T;Hﬁ*‘I(Q)))

Lr(o,T;HE*q(Q») )

Now assume

1
T T
—TA
( | e uonz,q,wdf) 1 -0

+ K
L

3

+ <
(0,1 Li)NHG ™ (0,1 W,, 59) Lr (0,177 )NHE ™ ((0,T7,T7)

and || Lo HE()) < 0, where i and ¢ are positive but will be chosen sufficiently small
later on. Then one has ||E proratay < Kn, where K is the constant from the a
priori estimate for the solution to the instationary Stokes equations, Theorem 3.3. Thus
we obtain from (4.9)

||g(a)||Lr(0,T;HE;q(Q)) < c((6 + Kn)* +n(d + Kn)) <4,

if n and 0 are sufficiently small. This shows G(B;(0)) C B;(0), where B;(0) is the closed
ball with radius § in L"(0,7; HP((Q2)).
We show that G is a contraction on B;(0). As above we find the pointwise estimate

[(W(E + 1) = W(E +0), d)al
[{(E+ @)’ = (E+0)°,Vo)al + [(k(E + 1) — k(E +0), 6)|
[(2E(u — 0), Vo)a| + (i — 00, Vo)a| + [(k(u — 0), p)ql

c(I1E 1500l = Blls. g0 + [1ll.g.]1 = 0
+lo gaw T [k

VASAIAN

B,q,w
|ﬂ - 2~’“ﬂ,q,w) ||¢||1,p’,wp

|a -0 |u,w

B,q,w

almost everywhere in ¢. Thus

IW(E + @) = W(E +0)ll-1p0w <c(IEllg.qw + lills,g0 + 10540 + [

|u,w)||@ - 77“&!1#}'

13



Now an analogous estimate as for ||G ()|, 7. g8y shows

1G(@) = GOl 1 0.1

[/t

SC(HEHLT(O,T';HE;‘J) + ||a||Lr(o,T';Hg’q) + ||6||LT(O,T';H3"1) + ||k
|

Nu—o

8,qwdT

sc gaw + 10ll5.g00 + [1Elluw) 1% —

Bqw t ||ﬂ

Lr(0,17)

LT(O,T’;Lﬁ))

L7(0,1";HY)
Sc(Kn4n+20) |14 = 0| 1y o gv, ooy -

This means, if n and § are sufficiently small, then G is a contraction. Hence by Banach’s
fixed point theorem there exists a unique @ € Bs(0) with G(a) = 4. Then u:= E + 4 is
the solution we have been looking for.

We turn to the case § > 1. In this case the proof of existence follows the same
lines of the case f < 1 but using different embeddings. Moreover, the fact that k €
L7(0,T; HP=19(Q)) gives us reason to repeat the arguments.

Let o = % — 1. Then as in (4.7) we obtain with an appropriate choice of £ > 0

16 (@) () |5, =G (@) )]y

t
SC/
0
</t L
<c | T/
o (t—7)

t
1
<c / S AT
S

A-e DAL W ()| dr

q’w

AW (u)||  dr

q,w

-7

t
1
< [ W @
o

— )

where p is chosen according to [ as follows.
If g < % then we choose 7, 12, p such that

1 1 1 1 -1 1 1 1
G G .

Mmoo q¢ ns g ns P M

Then one has by the restrictions on %

e p>s. If n =2 one uses the additional assumption to show this.

1 B+2a _ 2 25—1 B+2a 1
* T s Ty T e T <
e J+2a <.

This implies with an appropriate choice of ¢

L5,(Q) — Hyre=(Q), Hp'(Q) < Ly (Q), Hy Q) < LE(Q). (4.10)

w

14



If 22 < f < 2, then HP1(Q) — L™ (Q) for every i € (1,00). Then we choose p with

2 . _1 .. .
%< % < %—ﬂzso‘, ny > p with n% > %—ﬂn—s and 7; such that niquni2 = %. This implies

the embeddings (4.10). Thus in any case we may estimate

[o - Vullpw < N0llgywl[ Vel w < ellv

B.gw|| %] 8,g, (4.11)

for every u,v € HP4(Q). Hence we obtain as in (4.9)

1G(a)]

<c

L7(0,17;HY)

/0 ﬁ(Ha(T) Bygw T ||E(7') B,q,w)QdT

LOI)  (4.12)

Lr(oaaly T IE] LT(O,T’;Hg’q))

<c(Ja
and

1G(a) — G(o)|

Lr(0,17;HE)
<c (“E“LT(O,T’;HE,"]) + H{LHLT(O,T’;HE,"]) + Hﬁ“LT(O,T’;Hﬁ’q)) lu — UHLT(O,T’;Hﬁ’q)'

Then the same iteration procedure as in the case f < 1 shows the existence of a unique
fixed point @ = G () within a ball in L"(0,T"; H54(Q2)) with radius 4.
We turn to the case § = 2, i.e., the case of strong solutions. One uses the estimate

1

t
2,q.w SC/O m||w(u)||2+2a+e,q,wd7

|
SC/O WHW(U)

Such a p can be chosen because 2 + 2o = % < 1. As above we choose p and 7 such that
such that

1G ()

l,p,’wdT-

. % > % — ;sl; to guarantee the embedding H.?(Q) — H1E+E’q(Q),
e = > 2 — L {oobtain Hy4(Q) — L2(Q).
p =4 s
. % > % — 2 which yields H2%(Q) — L7,(9).
If ns —q > 0 the above holds if p = QRZS_’IQq and % = % - %. If ns — ¢ < 0 then

HL1(Q) — L2°(Q) for every p and in addition H%?(Q2) — L7 () for every n. Then we
17;? and % = % - % to guarantee the above.

Lo < cllull3

choose any p with % < % < % +

We use this to prove ||W(u) To this aim we calculate

7q7w‘

106 W (u)

lpw <[]0k - V|| pw + ||u - Ok V| puw

4.13
<NVl + |92 (4.13)

nw |qaw S C”u”%,q,w

From now on we derive all following estimates as in the case 0 < < 1. This finishes
the proof of existence for small data for every g € [0, 2].

15



The next step is to prove the a priori estimate. Let & € B;s(0) be the fixed point of
G. Then one has by (4.9) and (4.12)

It

Lr(0,77;HS (0 _||g( )| L7 (0,17;HE(Q))
gc((a + Kn) (1] o vy + BN e ozt

+n(llal

e Lr(O,T';Hﬁ’q(m)))'

Choosing § and 7 such that ¢(d 4+ 2n) < 1 this proves

M“ |
LT((]’TI;HE)’Q(Q)) - ]_ — 0(6 + 2"7)

I

L7(0,T";HE ()"

Finally, we obtain for 5 < 1

[l

<||U| Lr(ommla @) T | E|
<c||F]

L7 (0,17 HE( L7(0,T"; HE(9))

L7 (0,T";HS ()

4

T 1
sc((/o e uall i) + 111

+ |k )
H HLT(O,T’;L%)ﬁH?’r((O,T’};Ww,O) ||g|| (0,175 Tﬂq)ﬂHg ((0,77;729)

Lr(0,17,YE2(Q))

by the a priori estimate in the linear case in Theorem 3.3. If § > 1 one obtains the
estimate

TI
el <e(( 1

dT) A o v 200

+ ||k )
” ” (0,17 HE = 1‘I)er’g (RS ||g|| (0,715 q)mH’g ((0,T";199)
analogously.
Since u is a very weak solution to the instationary Stokes problem
ou—Au+Vp=f—W(u) —G—U,, (4.14)

where G = [¢ — (9, N - Vd)oar] and Uy = [¢ — (ug, $(0))q], we get the estimate (4.5)
from the linear case. More precisely let 7" € (0,7'] with 7" < oo and choose p as in
the estimates (4.8), (4.11), (4.13). Then we obtain by the a priori estimate of solutions
to the instationary Stokes equation in L3(0,7; H?9(Q2)) and Hélder’s inequality in the
case f <1

<c (||f||L%(O,TI/;Yf—Z,q(Q)) + ||W(U')||L%(0,T”;Y£;2’q(9))

Ik + + luollss
R85 o mvsmnns ug i 1085 ouprmorns gy ¥ 0“15”>

SC(T”) <||f||LT(0,T”;Y£72’q(Q)) + 0(77 + 6) ||U/||LT(O,T’;H5,’L1(Q))

ol s, ¥ ||u0||15,q,r) |

g T —l,q B—1,q 2 0,q B,q
Hy " (0T Wy, o )NLT (Hyy, ) Hg" (0,1 )NL" (Tw™)

HI&]
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If B € [1,2] one estimates analogously. Then the estimate for u proves (4.5).

Note that the equation (4.14) is only tested with functions in Yu?,’:{;(Q) and only holds
in this sense. Thus the distributional derivative 0,u may contain a gradient part which
is not a function in time.

Uniqueness can be proved in the same way as in [6]: Let v € L"(0,1"; HP(Q)) be
a very weak solution corresponding to the same data f, %, g and uy. Then U :=u — v
solves

O,U — AU + VP = —div (Uu) — div (vU) + kU,
divU =0, Ulpo=0, U(0)=0

in the very weak sense. Then for § < 1 one obtains as above

TN e 0,27, 819(0y) =€ (HUHLr(o,T';Hﬁ’q) 1l o120,

+ ||k||LT(0,T';L§3(Q))) U

L7 (0,173 H i (€2))

with a constant ¢ that is independent of 7'. A corresponding inequality holds in the case
£ > 1. In particular it holds for 7" replaced by any 7" € (0,7"]. If T" is sufficiently
small such that

||u||LT(0’T,,,;H5,q(Q)) + ||U||LT(0,TW;H5,q(Q)) + ||k| LT(O,T’”;L%(Q)) < 2_6,

we obtain ||U| L (0 T/H.Hﬂa‘l(Q)) S 0Oor U =0 on [O,T”,)- If T”, < T, we assume that
T" is maximal with the property u = v on [0,7"). However, then we may repeat this

procedure and obtain u = v on a bigger interval. This is a contradiction. Thus u is
unique in L7(0,T"; H?(Q)) and the proof is complete. O

Remark 4.5. Choose 3, r, q according to Theorem 4.4.

We now prove that in this case the solution u € L7(0,T; H24(€)) fulfills Serrin’s
condition [23] in the sense that u € L™(0,T", L"(2)), where * + y <1

If ns — ¢fB > 0 then for the number p that fulfills ﬁ = % — % one has by Lemma 2.2
and (2.3)

H(Q) = LP(Q) = L¥(Q)
and 5
n ns
St <-——+B+1+
ro £ q
If ns — qB < 0 then HZ4(Q2) — L"(Q) for every n € (1,00). Since r > 2, this i can be
chosen such that % + % < 1.

The reason why there appears ”<” instead of ”<” as in the unweighted case [23], [8],
is that the boundedness of imaginary powers is not proved for the Stokes operator in
spaces weighted with arbitrary Muckenhoupt weights. Thus we have to work without an
exact characterization of the domains of fractional powers of the Stokes operator D(.A%)
and use the embedding (4.2) instead.

ns —qff _

1.
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