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We investigate the solvability of the instationary Navier-Stokes equations

with fully inhomogeneous data in a bounded domain 
 � R

n

. The lass of so-

lutions is ontained in L

r

(0; T ;H

�;q

w

(
)), where H

�;q

w

(
) is a Bessel-Potential

spae with a Mukenhoupt weight w. In this ontext we derive solvability for

small data, where this smallness an be realized by the restrition on a short

time interval. Depending on the order of this Bessel-Potential spae we are

dealing with strong solutions, weak solutions, or with very weak solutions.
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1 Introdution

We onsider the Navier-Stokes equations with inhomogeneous data

�

t

u��u+ uru+rp = f in (0; T )� 


div u = k in (0; T )� 


u = g on (0; T )� �


u(0) = u

0

in 


(1.1)

on a bounded C

1;1

-domain 
 � R

n

, n � 2, and a time interval [0; T ) with T 2 (0;1℄.

For simpliity we assume that the oeÆient of visosity is equal to 1.

It is our aim to �nd a lass of solutions to (1.1) in L

r

(0; T ;H

�;q

(
)) where H

�;q

(
) is

a Bessel-potential spae for � 2 [0; 2℄. This means we develop a solution theory that in-

ludes strong solutions in the ase � = 2 and weak solutions in the ase � = 1. However,

if � = 0, it is also possible that the solutions are only ontained in L

r

(0; T ;L

q

(
)), i.e.,

they do not possess any weak derivatives. Consequently the notion of weak solutions

�
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is no longer suitable in this ontext. Thus an appropriate formulation of the problem

is needed, the so-alled very weak solutions to the Navier-Stokes equations. To ome

to this formulation one multiplies (1.1) with a suÆiently smooth test funtion � with

�(t)j

�


= 0 and div �(t) = 0 for every t and supp� � [0; T ) � 
. Then one applies

formal integration by parts and obtains

� hu; �

t

i


;T

� hu;��i


;T

= hf; �i


;T

� hg;N � r�i

�
;T

+ huu;r�i


;T

+ hku; �i


;T

� hu

0

; �(0)i




(1.2)

using the identity u � ru = div (uu) � (div u)u. Applying the same proedure to the

seond equation in (1.1) and a test funtion  , whih does not neessarily vanish on the

boundary, yields

�hu(t);r i




= hk(t);  i




� hg(t); N i




(1.3)

for almost every t. Now, u is alled a very weak solution to the Navier-Stokes equations

if (1.2) and (1.3) are ful�lled for all test funtions � and  . Note that the information

about the boundary values is preserved beause r� and  do not neessarily vanish on

the boundary. This or similar formulations have been introdued by Amann in [1℄, by

Amrouhe and Girault in [2℄ and by Galdi, Simader and Sohr in [14℄. In these artiles

as well as by Farwig, Galdi and Sohr in [6℄, [5℄, [7℄ and by Giga in [16℄ solvability

with low-regularity data has been shown. In partiular, the boundary onditions under

onsideration are ontained in spaes of distributions on the boundary.

We investigate this problem in funtion spaes weighted in the spae variable. More

preisely, we onsider Lebesgue-, Sobolev- and Bessel potential spaes with respet to

the measure w dx, where w is a weight funtion that is ontained in the Mukenhoupt

lass A

q

, f., (2.1) below.

Classial tools for the treatment of partial di�erential equations extend to funtion

spaes with Mukenhoupt weights. As important examples we mention the ontinuity

of the maximal operator and the multiplier theorems that an be found in the books of

Gar��a-Cuerva and Rubio de Frania [15℄ and Stein [24℄; extension theorems of funtions

on a domain to funtions on R

n

have been shown by Chua [3℄, extension theorems of

funtions on the boundary to funtions on the domain by Fr�ohlih [12℄, see also [19℄.

These tools were the base to treat the solvability of the Stokes and Navier-Stokes

equations in weighted funtion spaes by Farwig and Sohr in [9℄ and by Fr�ohlih in

[13℄, [12℄. If one uses partiular weight funtions this theory may be used for a better

desription of the solution, e.g. lose to the boundary or in the neighborhood of a

point. A further mathematial signi�ane of Mukenhoupt weights is given by the

Extrapolation Theorem [15, IV Lemma 5.18℄. An even more powerful extrapolation

theorem by Curbera, Gar��a-Cuerva, Martell and P�erez [4℄ guarantees estimates in very

general Banah funtion spaes provided that the estimates in weighted funtion spaes

are known for all weights from the Mukenhoupt lass A

q

. Moreover, this property

may be used to derive the R-boundedness of families of operators from their uniform

boundedness in weighted funtion spaes. This fat was used by Fr�ohlih [13℄ to give a

new proof of the maximal regularity of the Stokes operator in L

q

.

In the Main Theorem 4.4 we prove existene, uniqueness, and a priori estimates

of solutions to the instationary Navier-Stokes equations in weighted Bessel-Potential

spaes under the assumption that the data is small. This smallness of the data an be

guaranteed by the restrition to a short time interval.
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It has been pointed out in [20℄ that solutions to inhomogeneous boundary values

and divergenes exist naturally in the ase of lowest regularity, i.e. of solutions in

L

r

(0; T ;L

q

w

(
)). However, if we want to obtain more regular solutions, one requires, in

addition to the spae-regularity of the data, a higher time-regularity of the boundary

ondition and the divergene. Naturally this problem remains in the nonlinear ase.

However, in the nonlinear ase that is treated here, it turns out that in addition the lower

regularity auses more diÆulties in the sense that we have to put stronger assumptions

to the weight funtions, while in the ase of strong solutions we an deal with the full

generality. The reason is that weighted versions of the Sobolev Embedding Theorems

require strong assumptions to the weight funtions. In the ase of higher regularity these

assumptions are easier to ful�ll. Finally, it turns out that our solution theory yields

spaes of solutions L

r

(0; T ;H

�;q

w

(
)) that embed into Serrin's lass L

r

(0; T ;L

p

(
)) with

2

r

+

n

p

� 1.

2 Weighted Funtion Spaes

Let A

q

, 1 < q <1, the set of Mukenhoupt weights, be given by all 0 � w 2 L

1

lo

(R

n

)

for whih

A

q

(w) := sup

Q

�

1

jQj

Z

Q

w dx

��

1

jQj

Z

Q

w

�

1

q�1

dx

�

q�1

<1: (2.1)

The supremum is taken over all ubes Q in R

n

. To avoid trivial ases, we exlude the

ase where w vanishes almost everywhere.

In [24℄ there are shown the following fats about the lass of Mukenhoupt weights.

� A

q

� A

p

for q < p.

� Let w 2 A

q

for q > 1. Then there exists s < q suh that w 2 A

s

.

Let k 2 N

0

, q 2 (1;1), w 2 A

q

and let 
 � R

n

be a Lipshitz domain. Then we

de�ne the following weighted versions of Lebesgue and Sobolev spaes.

� L

q

w

(
) :=

n

f 2 L

1

lo

(
) j kfk

q;w

:=

�
R




jf j

q

w dx

�

1

q

<1

o

.

It is an easy onsequene of the orresponding result in the unweighted ase that

(L

q

w

(
))

0

= L

q

0

w

0

(
) with

1

q

+

1

q

0

= 1 and w

0

= w

�

1

q�1

2 A

q

0

: (2.2)

� Set W

k;q

w

(
) =

n

u 2 L

q

w

(
)

�

�

�

kuk

k;q;w

:=

P

j�j�k

kD

�

uk

q;w

<1

o

.

� By C

1

0

(
) we denote the set of all smooth and ompatly supported funtions,

the spae C

1

0;�

(
) onsists of all funtions that are in addition divergene free.

� Moreover we set W

k;q

w;0

(
) = C

1

0

(
)

k�k

k;q;w

. The dual spae of it is denoted by

W

�k;q

w

(
) := (W

k;q

0

w

0

;0

(
))

0

. We also onsider the divergene-free versions

W

k;q

w;0;�

(
) := f� 2 W

k;q

w;0

(
) j div � = 0g and L

q

w;�

(
) = C

1

0;�

(
)

L

q

w

(
)

.
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� Using this for k > 0 we set W

�k;q

w;0

(
) = C

1

0

(
)

k�k

W

�k;q

w

(R

n

)

.

� Moreover, we onsider the spaes of boundary values T

k;q

w

(�
) := (W

k;q

w

(
))j

�


,

equipped with the norm k � k

T

k;q

w

= k � k

T

k;q

w

(�
)

of the fator spae and �nally

T

0;q

w

(�
) := (T

1;q

0

w

0

(�
))

0

.

By [12℄ and [3℄ the spaes L

q

w

(
), W

k;q

w

(
), W

k;q

w;0

(
) and T

k;q

w

(�
) are reexive Banah

spaes in whih C

1

0

(
), (C

1

0

(
), C

1

(
)j

�


, respetively) are dense.

It has been shown in [12, Lemma 2.2.℄ that on a bounded domain a weighted Lebesgue

spae embeds into an unweighted one. More preisely, one has

L

q

w

(
) ,! L

p

(
) for q � sp if w 2 A

s

for s < q: (2.3)

Next we introdue weighted Bessel-Potential spaes on R

n

and on a bounded Lipshitz

domain. For � 2 R

n

we set h�i := (1 + j�j

2

)

1

2

. On the spae S

0

(R

n

;R) of temperate

distributions we de�ne for all � 2 R the operator

�

�

f = F

�1

h�i

�

Ff; f 2 S

0

(R

n

;R);

where F stands for the Fourier transformation on S

0

(R

n

;R). Then for 1 < q < 1,

w 2 A

q

and � 2 R the weighted Bessel potential spae is given by

H

�;q

w

(R

n

) =

n

f 2 S

0

(R

n

;R)

�

�

kfk

H

�;q

w

(R

n

)

:= k�

�

fk

q;w;R

n

<1

o

:

For a bounded Lipshitz domain 
 we de�ne the weighted Bessel potential spae on


 by

H

�;q

w

(
) =

�

gj




j g 2 H

�;q

w

(R

n

)

	

equipped with the norm kuk

H

�;q

w

(
)

:= inf

n

kUk

H

�;q

w

(R

n

)

j U 2 H

�;q

w

(R

n

); U j




= u

o

. Note

that if � < 0 then the restrition gj




has to be understood in the sense of distributions

as gj

C

1

0

(
)

.

For spaes of boundary values we onsider the spaes

T

�;q

w

(
) :=

(

H

�;q

w

(
) for � 2 [1; 2℄

[T

0;q

w

(
); T

1;q

w

(
)℄

�

for � 2 [0; 1):

As spaes for our solutions we need spaes of funtions that vanish on the boundary.

Thus for a bounded Lipshitz domain 
 � R

n

, 1 < q < 1, w 2 A

q

we set Y

2;q

w

(
) :=

fu 2 W

2;q

w

(
) j uj

�


= 0g. For 0 � � � 2 we de�ne the spae

Y

�;q

w

(
) :=

8

>

<

>

:

Y

2;q

w

(
)

H

�;q

w

(R

n

)

; if 0 � � � 1 equipped with k � k

H

�;q

w

(R

n

)

;

Y

2;q

w

(
)

H

�;q

w

(
)

; if 1 < � � 2 equipped with k � k

H

�;q

w

(
)

;

where in the ase 0 � � � 1 the funtions of Y

2;q

w

(
) are assumed to be extended by 0

to funtions de�ned on the whole spae R

n

. This is possible, sine C

1

0

(
) is dense in
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W

1;q

w;0

(
) � Y

2;q

w

(
) and W

1;q

w;0

(
) ,! W

1;q

w

(R

n

) ,! H

�;q

w

(R

n

). We also onsider the dual

spaes Y

��;q

w

(
) := (Y

�;q

0

w

0

(
))

0

.

Now we de�ne the divergene free version of Y

�;q

w

(
) by

Y

�;q

w;�

(
) :=

�

u 2 Y

�;q

w

(
) j hu;r�i = 0 for every � 2 C

1

(
)

	

:

By Theorem 2.1 and (3.1) below one has Y

1;q

w;�

(
) = f� 2 W

1;q

w;0

(
) j div � = 0g and

Y

0;q

w;�

(
) = L

q

w;�

(
).

We also onsider the dual spaes Y

��;q

w;�

(
) :=

�

Y

�;q

0

w

0

;�

(
)

�

0

. By the Hahn-Banah

theorem the spae Y

��;q

w;�

(
) is the restrition of all elements of Y

��;q

w

(
) to Y

�;q

0

w

0

;�

(
).

See [21℄ for further properties and disussions about these spaes. In partiular there

have been proved the following interpolation properties.

Theorem 2.1. If 
 is a bounded C

1;1

-domain then one has

�

L

q

w

(
); Y

2;q

w

(
)

�

�

= Y

�;q

w

(
); � =

�

2

; 0 � � � 2

and

�

L

q

w;�

(
); Y

2;q

w;�

(
)

�

�

= Y

�;q

w;�

(
); � =

�

2

; 0 � � � 2

with equivalent norms.

Finally as a spae for the divergene we set

H

;q

w;�

(
) :=

(

H

;q

w

(
); if  � 0

H

;q

w;0

(
) = C

1

0

(
)

H

;q

w

(R

n

)

; if  < 0:

The following embeddings between weighted spaes have been proved in [21℄, where

there has also been shown the existene and uniqueness of solutions to the stationary

Navier-Stokes equations. In the present paper it is used to estimate the nonlinear term.

Lemma 2.2. Let 
 � R

n

be a bounded Lipshitz domain. Moreover, let 1 � s � r �

q <1, r > 1 and assume 0 � � < n suh that

1

q

�

1

r

�

�

ns

: (2.4)

Then for every w 2 A

s

the following embeddings are true:

1. H

�;r

w

(
) ,! L

q

w

(
).

2. H

�;q

0

w

q

(
) ,! L

r

0

w

r

(
), where w

q

= w

�

1

q�1

and w

r

= w

�

1

r�1

.

3. L

r

w

(
) ,! H

��;q

w

(
), L

r

w

(
) ,! H

��;q

w;0

(
) and for � 2 [0; 1℄ one has W

�1;r

w

(
) ,!

Y

�1��;q

w

(
).

4. If � 2 [0; 1℄, then one has H

1;r

w

(
) ,! H

1��;q

w

(
).
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3 The Linear Stokes Equations and the Stokes Operator

Throughout this setion let 
 be a bounded domain that is at least of lass C

1;1

.

As in the lassial unweighted ase one de�nes the Stokes operator

A = A

0;q;w

: L

q

w;�

(
) � D(A)! L

q

w;�

(
); u 7! �P

q;w

�;

where P

q;w

: L

q

w

(
) ! L

q

w

(
) is the Helmholtz projetion that is the projetion to the

spae of divergene free vetor �elds

L

q

w;�

(
) = C

1

0;�

(
)

L

q

w

(
)

= fu 2 L

q

w

(
) j hu;r�i = 0 for every � 2 W

1;q

0

w

0

(
)g: (3.1)

The kernel of P

q;w

is equal to the spae of gradients frp j p 2 W

1;q

w

(
)g.

All these fats about the Helmholtz projetion in weighted spaes have been shown by

Fr�ohlih in [11℄. The domain of the Stokes operator is D(A) = Y

2;q

w;�

(
). In the weighted

ontext the Stokes operator has been introdued and disussed in [12℄ and [13℄.

In the following, we onsider an analogue to the Stokes operator whih is adequate in

the ontext of very weak solutions in the Bessel potential spaes H

�;q

w

(
).

Theorem 3.1. For every 0 � � � 2 the Stokes operator A has an extension to an

element of L(Y

�;q

w;�

(
); Y

��2;q

w;�

(
)) with the following properties.

1. It desribes a losed and densely de�ned linear operator in Y

��2;q

w;�

(
) again denoted

by A. For u 2 Y

�;q

w;�

(
) one has

Au = [Y

2��;q

0

w

0

;�

(
) 3 � 7! �hu;��i




℄:

2. The resolvent set �(�A) ontains a setor

�

"

[ f0g = f� 2 C j j arg�j <

�

2

+ "g; " 2 (0;

�

2

);

and for every 0 < Æ < " there exists a onstant M

Æ

suh that

k�(A+ �)

�1

k

L(Y

��2;q

w;�

(
))

�M

Æ

for all � 2 �

Æ

: (3.2)

Proof. This has been shown in [20℄.

For �2 � � � 0 let A

�;q;w

be the extension of the Stokes operator whose existene

has been stated in Theorem 3.1. Then we all

A

�;q;w

: D(A

�;q;w

) := Y

�+2;q

w;�

(
) � Y

�;q

w;�

(
)! Y

�;q

w;�

(
)

the generalized Stokes operator in Y

�;q

w;�

(
). If no onfusion an our, we omit the

indies and write A instead of A

�;q;w

.

Corollary 3.2. The negative generalized Stokes operator �A in Y

��2;q

w;�

(
) is the gen-

erator of a bounded analyti semigroup fe

�tA

g

t2�

"

for every " 2 (0;

�

2

), where �

"

=

f� 2 C j � 6= 0; j arg�j < "g.

In addition one has e

�tA

�2;�;w

= e

�tA

��2;q;w

j

Y

�2;�

w;�

(
)

for 0 � � �  � 2, q; � 2 (0;1)

and w 2 A

q

\ A

�

with Y

;�

w

(
) ,! Y

�;q

w

(
).
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Proof. The �rst assertion follows immediately from the resolvent estimate in 3.1 the se-

ond follows from the orresponding fat on the resolvent and the representation formula

of the semigroup in terms of a path integral [18℄.

For a Banah spae X we denote the spae of X-valued tempered distributions by

S

0

(R;X) := L(S(R;R); X). Aordingly, for an interval I we denote the set of distri-

butions by D

0

(I;X) := L(C

1

0

(I); X).

For the treatment of solutions to the instationary Stokes and Navier-Stokes problem

in Bessel-Potential spaes with inhomogeneous divergene and boundary onditions we

need a higher time regularity of this part of the data. To measure this time regularity

we work in Banah spae-valued Bessel-Potential spaes.

For � 2 R we set �

�

t

:= F

�1

h�i

�

F , where h�i

�

= (1 + j� j

2

)

�

2

, � 2 R. Using this, for

r > 1 we de�ne the X-valued Bessel-potential spae by

H

�;r

(R;X) :=

n

u 2 S

0

(R;X) j �

�

t

u 2 L

r

(R;X)

o

;

equipped with the norm kuk

H

�;r

(R;X)

:= k�

�

t

uk

L

r

(R;X)

. Moreover, we set for � � 0

H

�;r

0

((0; T ℄;X) :=

�

U j

C

1

0

(0;T ;R)

j U 2 H

�;r

(R;X); suppU � [0;1)

	

equipped with

kuk

H

�;r

0

((0;T ℄;X)

:= inf

�

kUk

H

�;r

(R;X)

j U 2 H

�;r

(R;X);

suppU � [0;1); U j

C

1

0

(0;T ;R)

= u

	

:

As a spae of initial values we onsider the spae

I

�;q;r

w

= I

�;q;r

w

(
) :=

�

u

0

2 Y

��2;q

w;�

(
)

�

�

�

Z

1

0

ke

�tA

u

0

k

r

�;q;w

dt <1

�

;

where e

�tA

is the semigroup that is generated by the generalized Stokes operator A in

Y

��2;q

w;�

(
) with

e

�tA

: Y

��2;q

w;�

(
)! D(A) = Y

�;q

w;�

(
) � H

�;q

w;�

(
):

It is equipped with the norm ku

0

k

I

�;q;r

w

:= ku

0

k

Y

��2;q

w;�

+ ke

�tA

u

0

k

L

r

(H

�;q

w

)

.

The following theorem has been shown in [20℄

Theorem 3.3. Let 1 < q < 1, � 2 [0; 2℄ and let w 2 A

q

. Let 
 � R

n

be a bounded

C

2;1

-domain if � > 1 and a bounded C

1;1

-domain if � � 1. Moreover, we take

f 2 L

r

(0; T ;Y

��2;q

w

(
));

k 2 H

�

2

;r

0

((0; T ℄;W

�1;q

w;0

(
)) \ L

r

(0; T ;H

��1;q

w;�

(
));

g 2 H

�

2

;r

0

((0; T ℄;T

0;q

w

(�
)) \ L

r

(0; T ;T

�;q

w

(�
));

u

0

2 I

�;q;r

w

(
);

ful�lling the ompatibility ondition hk(t); 1i




= hg(t); Ni

�


, for almost all t 2 (0; T ).
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Then there exists a unique very weak solution u 2 L

r

(0; T ;H

�;q

w

(
)) to the instationary

Stokes system, i.e.,

�hu; �

t

i


;T

� hu;��i


;T

= �hu

0

; �(0)i




+ hf; �i


;T

� hg;N � r�i

�
;T

�hu(t);r i




= hk(t);  i




� hg(t); N i

�


for a.e. t 2 [0; T ℄

for all � 2 L

r

0

(0; T ;Y

2;q

0

w

0

;�

(
)) \ W

1;r

0

(0; T ;L

q

0

w

0

(
)) with supp� ompat in 
 � [0; T )

and  2 W

1;q

0

w

0

(
). This solution u ful�lls the estimate

ku

t

j

Y

2;q

0

w

0

;�

(
)

k

L

r

(0;T ;Y

��2;q

w;�

(
))

+ kuk

L

r

(H

�;q

w

)

�

�

kfk

L

r

(H

��2;q

w

)

+ kkk

H

�

2

;r

0

((0;T ℄;W

�1;q

w;0

)\L

r

(H

��1;q

w;�

)

+ kgk

H

�

2

;r

0

((0;T ℄;T

0;q

w

)\L

r

(T

�;q

w

)

+ ku

0

k

I

�;q;r

w

�

(3.3)

with  = (
; r; �; q; w) > 0.

4 Instationary Navier-Stokes Equations

The nonlinear term of the Navier-Stokes equations in the variational formulation an be

rewritten by the funtional

� 7! �huu;r�i � hudiv u; �i:

To make the multipliation udiv u well-de�ned, we assume that the divergene is given

by a funtion. More preisely for � � 1 we hoose � > 1 suh that

L

�

w

(
) ,! H

��1;q

w;0

(
) (4.1)

and assume that u(t) 2 L

�

w

(
) for almost every t. See Lemma 2.2 for suÆiant onditions

for (4.1).

De�nition 4.1. Let � 2 [0; 2℄, r; q 2 (1;1), w 2 A

q

. Moreover, in the ase � � 1

hoose � > 1 suh that it ful�lls (4.1). Take

f 2 L

r

(0; T ;Y

��2;q

w

(
));

k 2 L

r

(0; T ;L

�

w

(
)) \H

�

2

;r

0

((0; T ℄;W

�1;q

w;0

(
)) if � < 1 and

k 2 L

r

(0; T ;H

��1;q

w

(
)) \H

�

2

;r

0

((0; T ℄;W

�1;q

w;0

(
)) if � � 1;

g 2 L

r

(0; T ;T

�;q

w

(�
)) \H

�

2

;r

0

((0; T ℄;T

0;q

w

(�
));

u

0

2 I

�;q;r

w

(
):

Then u 2 L

r

(0; T ;H

�;q

w

(
)) is alled a very weak solution to the Navier-Stokes problem

if

�hu; �

t

i


;T

� hu;��i


;T

= hf; �i


;T

� hg;N � r�i

�
;T

+ huu;r�i


;T

+ hku; �i


;T

� hu

0

; �(0)i




for every � 2 W

1;r

0

(0; T ;Y

2;q

0

w

0

;�

(
)) with supp � � [0; T )� 
, div u = k is ful�lled in the

sense of distributions and u �N j

�


= g �N .
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Sine a very weak solutions u 2 L

r

(0; T ;H

�;q

w

(
)) is in general not regular enough to

guarantee that its restrition to the boundary is well-de�ned, some disussions on the

boundary values are in order. The omponent of the boundary ondition that is normal

to the boundary is simple, sine u ful�lls div u(t) = k(t) 2 L

�

w

(
). Thus we �nd for

almost every t

hu(t);  Ni

�


= hdiv u(t);  i




+ hu(t);r i




= hk(t);  i




+ hu(t);r i




= hg(t);  Ni:

In this sense one has u � N j

�


= g � N . The tangential part of the boundary on-

dition auses more diÆulties. By [22℄ a suÆient ondition that guarantees the well-

de�nedness of the boundary ondition is jhu(t);��ij � C(t)k�k

1;�;v

for every � 2 C

1

0;�

(
)

and almost every t. It is obvious that this requires a further restrition of the exterior

fore and, in addition, some appropriate time regularity of the solution. However, it is

not diÆult to show that every suÆiently regular solution ful�lls the boundary ondi-

tion u(t)j

�


= g(t) almost everywhere.

The evaluation of every very weak solution to the Navier-Stokes equation with respet

to the above data at time 0 is well-de�ned and satis�es u(0)j

Y

2;q

0

w

0

;�

= u

0

. This holds

beause by the a priori estimate (4.5) below one has u

t

j

Y

2;q

0

w

0

;�

(
)

2 L

r

2

(0; T

00

;Y

��2;q

w;�

(
)).

See [20℄ for more details.

For � > 0 the frational powers A

�

of the generator of an analyti semigroup are

well-de�ned by [18℄. In the unweighted ase the boundedness of imaginary powers of

the Stokes operator is used to prove an exat haraterization of the domains of frational

powers of the Stokes operator, see Giga [17℄. However, in weighted funtion spaes this

is not established. We use the following Theorem by Franzke [10℄ as a replaement.

Theorem 4.2. Let X be a Banah spae and A a densely de�ned positive operator in

X, i.e.,

k(�+ A)

�1

k �

K

1 + �

for every � � 0:

Then for m 2 N, 0 < � < 1 and 0 < �

�

< �m < �

+

one has

D(A

�

+

) ,! [X;D(A

m

)℄

�

,! D(A

�

�

):

In partiular if A = A is the Stokes operator in L

q

w;�

(
), m = 1, 0 < � < 2 and " > 0,

then we �nd by Theorem 2.1

D(A

1

2

�+"

) ,! Y

�;q

w;�

(
) ,! D(A

1

2

��"

): (4.2)

Thus one has the estimate



1

kA

1

2

��"

uk

q;w

� kuk

Y

�;q

w;�

� 

2

kA

1

2

�+"

uk

q;w

:

Moreover, if we onsider the generalized Stokes operator in Y

�1;�

w;�

(
), one obtains by

Theorems 2.1 and 3.1

kuk

�;w

� kAuk

Y

�2;�

w;�

= kA

1

2

�"

A

1

2

+"

uk

Y

�2;�

w;�

� kA

1

2

+"

uk

[Y

�2;�

w;�

;L

q

w;�

℄

1

2

� kA

1

2

+"

uk

Y

�1;�

w;�

= kA

1

2

+"

uk

H

�1;�

w;�

:

(4.3)
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The proof of existene and uniqueness of very weak solutions to the instationary Navier-

Stokes equations requires the Variation of Constants Formula established in the following

lemma.

Lemma 4.3. Let 1 < q; r <1, 0 � � � 2. Moreover, take f 2 L

r

(0; T ;Y

��2;q

w;�

(
)) and

let u 2 L

r

(0; T ;Y

�;q

w;�

(
)) be the solution to

u

t

+Au = f in D

0

(0; T ;Y

��2;q

w;�

(
)) and u(0) = 0;

where A = A

��2;q;w

is the generalized Stokes operator in Y

��2;q

w;�

(
). Then

u(t) =

Z

t

0

e

�A(t��)

f(�) d� for almost every t 2 (0; T ):

Proof. From the embeddings H

�;q

w;�

(
) ,! L

q

w;�

(
) and Y

��2;q

w;�

(
) ,! Y

�2;q

w;�

(
) we know

that

u 2 L

r

(0; T ;L

q

w;�

(
)) and f 2 L

r

(0; T ;Y

�2;q

w;�

(
)):

Thus we obtain A

�1

0;q;w

u 2 L

r

(0; T ;Y

2;q

w;�

(
)) and A

�1

�2;q;w

f 2 L

r

(0; T ;L

q

w;�

(
)).

Sine the generalized Stokes operator is de�ned in Theorem 3.1 as an extension of the

lassial one, we obtain that A

�1

�2;q;w

u = A

�1

0;q;w

u is the strong solution to the instationary

Stokes problem

(A

�1

0;q;w

u)

t

+A

0;q;w

(A

�1

0;q;w

u) = A

�1

�2;q;w

f:

By the maximal regularity of the lassial Stokes operator [13℄ and the uniqueness of

strong solutions the Variation of Constants Formula holds in the ase of strong solutions.

Thus one obtains

A

�1

0;q;w

u(t) =

Z

t

0

e

�A

0;q;w

(t��)

A

�1

�2;q;w

f(�) d�: (4.4)

Moreover, by Theorem 3.2 one has

A

0;q;w

e

�(t��)A

0;q;w

A

�1

�2;q;w

f = A

�2;q;w

e

�(t��)A

�2;q;w

A

�1

�2;q;w

f = e

�(t��)A

�2;q;w

f

= e

�(t��)A

��2;q;w

f:

Thus if one applies A

0;q;w

to both sides of (4.4) the proof of the lemma is �nished.

Theorem 4.4. Let � 2 [0; 2℄ with � >

ns

q

� 1, where q 2 (1;1) and w 2 A

s

for some

s < q. Moreover, let 
 � R

n

, n � 2 be a bounded C

1;1

-domain, if � � 1, and a bounded

C

2;1

-domain, if � > 1.

Choose r 2 (1;1) suh that

1

r

< min

�

�

ns

2q

+

�

2

+

1

2

;

1� �

2

�

if 0 � � < 1;

1

r

< min

�

�

ns

2q

+

�

2

+

1

2

;

2� �

2

�

if 1 � � < 2 and

1

r

< min

�

�

ns

2q

+

3

2

;

1

2

�

and

2

q

�

2

ns

<

1

s

if � = 2:

In the ase n = 2 and � 2 [1; 2) we assume in addition that � >

2s

q

�

1

2

.
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Take f , k, g and u

0

as in De�nition 4.1 with � hosen suh that

1� �

ns

+

1

q

�

1

�

= 0 in the ase � � 1:

Then, if � � 1 there exists a onstant � = �(
; �; q; w; r) > 0 with the following property:

If 0 < T

0

� T with

 

Z

T

0

0

ke

��A

u

0

k

r

�;q;w

d�

!

1

r

+ kfk

L

r

(0;T

0

;Y

��2;q

w

)

+kkk

L

r

(0;T

0

;L

�

w

)\H

�

2

;r

0

((0;T

0

℄;W

�1;q

w;0

)

+ kgk

L

r

(0;T

0

;T

�;q

w

)\H

�

2

;r

0

((0;T

0

℄;T

0;q

w

)

� �;

then there exists a unique very weak solution u 2 L

r

(0; T

0

;H

�;q

w

(
)) to the Navier-Stokes

equations. For every T

00

2 (0; T

0

℄, T

00

<1 this solution u satis�es the estimate

kuk

L

r

(0;T

0

;H

�;q

w

)

+ku

t

j

Y

2;q

0

w

0

;�

(
)

k

L

r

2

(0;T

00

;Y

��2;q

w;�

(
))

�

��

Z

T

0

0

ke

��A

u

0

k

r

�;q;w

d�

�

1

r

+ kfk

L

r

(0;T

0

;Y

��2;q

w

)

+ kkk

L

r

(0;T

0

;L

�

w

)\H

�

2

;r

0

((0;T

0

℄;W

�1;q

w;0

)

+ kgk

L

r

(0;T

0

;T

�;q

w

)\H

�

2

;r

0

((0;T

0

℄;T

0;q

w

)

�

;

(4.5)

here  inreases with inreasing T

00

but an be hosen independently of T and T

0

.

If � > 1 then the same assertion holds if L

r

(0; T

0

;L

�

w

(
))\H

�

2

;r

0

((0; T

0

℄;W

�1;q

w;0

(
)) is

replaed by L

r

(0; T

0

;H

��1;q

w

(
)) \H

�

2

;r

0

((0; T

0

℄;W

�1;q

w;0

(
)).

Proof. Let E 2 L

r

(0; T ;H

�;q

w

(
)) be the very weak solution to the instationary Stokes

problem with respet to the data f; k; g and u

0

in the sense of Theorem 3.3.

Assume that u 2 L

r

(0; T ;H

�;q

w

(
)) is the very weak solution to the Navier-Stokes

equations we are looking for. Then ~u := u� E solves

�

t

~u��~u+r~p = �W (u); div ~u = 0; ~uj

�


= 0 and ~u(0) = 0

in the very weak sense with

W (u)(t) := [Y

2;q

0

w

0

;�

(
) 3 � 7! �hu(t)u(t);r�i




� hk(t)u(t); �i




℄

for almost every t. This means

�h~u; �

t

i


;T

� h~u;��i


;T

= hW (u); �i




with � as in De�nition 4.1. Then the Variation of Constants Formula proved in Lemma

4.3 yields

~u(t) = �

Z

t

0

e

�(t��)A

W (u)d� =: G(~u)(t):

As a �rst step we assume � < 1. By the de�nition of � and the assumptions on � one

has s � � < q and by Lemma 2.2 one obtains L

�

w

(
) ,! H

��1;q

w

(
). Put

� =

1

r

� 1 < 0 and " := min

�

1

5

�

���

�

2

�

1

2

�

;

1

5

�

�

ns

q

+ � + 1�

2

r

��

> 0;

where " is positive by the assumption on r. Moreover, if � <

ns

q

we set � :=

nsq

2ns�2q�

.

Then one obtains by the assumptions on �:
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� � is well-de�ned and � >

ns

2

� s.

�

1

q

�

1

�

�

�2��5"���1

ns

with 0 < �2�� 5"� � � 1 � 1 < n.

�

1

2�

=

1

q

�

�

ns

.

This proves

H

�;q

w

(
) ,! L

2�

w

(
) and H

�2��5"���1;�

w

(
) ,! L

q

w

(
); (4.6)

using Lemma 2.2 if � < q. For q � � the latter embedding is obvious.

If 1 > � �

ns

q

then H

�;q

w

(
) ,! L

2�

w

(
) for every � 2 (1;1). In this ase we hoose �

with

1

q

<

1

�

<

1

q

+

�2��5"���1

ns

. Then the embeddings (4.6) hold for �.

By (4.2), (4.3) and well-known estimates about analyti semigroups [18℄ one obtains

the estimate

kG(~u)(t)k

H

�;q

w

�kG(~u)(t)k

Y

�;q

w

�

Z

t

0





e

�(t��)A

W (u)





Y

�;q

w

d�

�

Z

t

0







A

��

e

�(t��)A

A

�+

�

2

+"

W (u)







q;w

d�

�

Z

t

0

1

(t� �)

��







A

(�+2"+

�

2

+

1

2

)�

1

2

�"

W (u)







q;w

d�

�

Z

t

0

1

(t� �)

��







A

(�+2"+

�

2

+

1

2

)�

1

2

�"

W (u)







�2��5"���1;�;w

d�

�

Z

t

0

1

(t� �)

��







A

�

1

2

�"

W (u)







�;w

d�

�

Z

t

0

1

(t� �)

��

kW (u)k

�1;�;w

d�;

(4.7)

where we have used A

�2;q;w

j

Y

�1;�

w;�

= A

�1;�;w

, where A

�2;q;w

is the generalized Stokes

operator in Y

�2;q

w;�

(
) and A

�1;�;w

is the generalized Stokes operator in Y

�1;�

w;�

(
) =

(W

1;�

0

0;w

0

;�

(
))

0

.

We have to estimate kW (u)k

�1;�;w

. For � 2 Y

2;q

0

w

0

;�

(
) one has

jhW (u); �i




j �jhuu;r�i




j+ jhku; �i




j

�kuuk

�;w

kr�k

�

0

;w

�

+ kkuk

~�;w

k�k

~�

0

;w

~�

�

�

kuk

2

2�;w

+ kkk

�;w

kuk

2�;w

�

k�k

1;�

0

;w

�

�

�

kuk

2

�;q;w

+ kkk

�;w

kuk

�;q;w

�

k�k

1;�

0

;w

�

(4.8)

sine for ~� given by

1

~�

=

1

�

+

1

2�

an elementary omputation shows

1

�

=

1

~�

�

1

ns

whih

implies H

1;�

0

w

�

(
) ,! L

~�

0

w

~�

(
).
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Thus we ontinue ombining (4.7) and (4.8), the Hardy-Littlewood inequality [24,

VIII 4.2℄ and the equality

1

r

+ �+ 1 =

1

r

2

. Then we may estimate

kG(~u)k

L

r

(0;T ;H

�;q

w

(
))

�









Z

t

0

1

(t� �)

��

�

ku(�)k

2

�;q;w

+ kk(�)k

�;w

ku(�)k

�;q;w

�

d�









L

r

(0;T )

�





ku(�)k

2

�;q;w

+ kk(�)k

�;w

ku(�)k

�;q;w





L

r

2

(0;T )

�

�

kuk

2

L

r

(0;T ;H

�;q

w

(
))

+ kkk

L

r

(0;T ;L

�

w

(
))

kuk

L

r

(0;T ;H

�;q

w

(
))

�

�

��

k~uk

L

r

(0;T ;H

�;q

w

(
))

+ kEk

L

r

(0;T ;H

�;q

w

(
))

�

2

+ kkk

L

r

(0;T ;L

�

w

(
))

�

k~uk

L

r

(0;T ;H

�;q

w

(
))

+ kEk

L

r

(0;T ;H

�;q

w

(
))

��

:

(4.9)

Now assume

 

Z

T

0

0

ke

��A

u

0

k

r

�;q;w

d�

!

1

r

+ kfk

L

r

(0;T

0

;Y

��2;q

w

)

+ kkk

L

r

(0;T

0

;L

�

w

)\H

�

2

;r

0

((0;T

0

℄;W

�1;q

w;0

)

+ kgk

L

r

(0;T

0

;T

�;q

w

)\H

�

2

;r

0

((0;T

0

℄;T

0;q

w

)

� �

and k~uk

L

r

(0;T ;H

�;q

w

(
))

< Æ, where � and Æ are positive but will be hosen suÆiently small

later on. Then one has kEk

L

r

(0;T ;H

�;q

w

(
))

� K�, where K is the onstant from the a

priori estimate for the solution to the instationary Stokes equations, Theorem 3.3. Thus

we obtain from (4.9)

kG(~u)k

L

r

(0;T ;H

�;q

w

(
))

� ((Æ +K�)

2

+ �(Æ +K�)) < Æ;

if � and Æ are suÆiently small. This shows G(B

Æ

(0)) � B

Æ

(0), where B

Æ

(0) is the losed

ball with radius Æ in L

r

(0; T ;H

�;q

w

(
)).

We show that G is a ontration on B

Æ

(0). As above we �nd the pointwise estimate

jhW (E + ~u)�W (E + ~v); �i




j

�jh(E + ~u)

2

� (E + ~v)

2

;r�i




j+ jhk(E + ~u)� k(E + ~v); �ij

�jh2E(~u� ~v);r�i




j+ jh~u~u� ~v~v;r�i




j+ jhk(~u� ~v); �i




j

�

�

kEk

�;q;w

k~u� ~vk

�;q;w

+ k~uk

�;q;w

k~u� ~vk

�;q;w

+ k~vk

�;q;w

k~u� ~vk

�;q;w

+ kkk

�;w

k~u� ~vk

�;q;w

�

k�k

1;�

0

;w

�

almost everywhere in t. Thus

kW (E + ~u)�W (E + ~v)k

�1;�;w

�

�

kEk

�;q;w

+ k~uk

�;q;w

+ k~vk

�;q;w

+ kkk

�;w

�

k~u� ~vk

�;q;w

:
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Now an analogous estimate as for kG(~u)k

L

r

(0;T ;H

�;q

w

(
))

shows

kG(~u)� G(~v)k

L

r

(0;T ;H

�;q

w

(
))

�







Z

t

0

1

(t� �)

��

�

kEk

�;q;w

+ k~uk

�;q;w

+ k~vk

�;q;w

+ kkk

�;w

�

k~u� ~vk

�;q;w

d�







L

r

(0;T

0

)

�

�

kEk

L

r

(0;T

0

;H

�;q

w

)

+ k~uk

L

r

(0;T

0

;H

�;q

w

)

+ k~vk

L

r

(0;T

0

;H

�;q

w

)

+ kkk

L

r

(0;T

0

;L

�

w

)

�

� k~u� ~vk

L

r

(0;T

0

;H

�;q

w

)

�(K� + � + 2Æ)k~u� ~vk

L

r

(0;T

0

;H

�;q

w

)

:

This means, if � and Æ are suÆiently small, then G is a ontration. Hene by Banah's

�xed point theorem there exists a unique ~u 2 B

Æ

(0) with G(~u) = ~u. Then u := E + ~u is

the solution we have been looking for.

We turn to the ase � � 1. In this ase the proof of existene follows the same

lines of the ase � < 1 but using di�erent embeddings. Moreover, the fat that k 2

L

r

(0; T ;H

��1;q

w

(
)) gives us reason to repeat the arguments.

Let � =

1

r

� 1. Then as in (4.7) we obtain with an appropriate hoie of " > 0

kG(~u)(t)k

�;q;w

=kG(~u)(t)k

Y

�;q

w

�

Z

t

0







A

��

e

�(t��)A

A

�+

�

2

+

"

4

W (u)







q;w

d�

�

Z

t

0

1

(t� �)

��







A

�+

�

2

+

"

4

W (u)







q;w

d�

�

Z

t

0

1

(t� �)

��

kW (u)k

�+2�+";q;w

d�

�

Z

t

0

1

(t� �)

��

kW (u)k

�;w

d�;

where � is hosen aording to � as follows.

If � <

ns

q

then we hoose �

1

, �

2

, � suh that

1

�

1

=

1

q

�

�

ns

;

1

�

2

=

1

q

�

� � 1

ns

;

1

�

=

1

�

1

+

1

�

2

:

Then one has by the restritions on

1

r

� � > s. If n = 2 one uses the additional assumption to show this.

�

1

�

+

�+2�

ns

=

2

q

�

2��1

ns

+

�+2�

ns

<

1

q

.

� � + 2� < 0.

This implies with an appropriate hoie of "

L

�

w

(
) ,! H

�+2�+";q

w

(
); H

�;q

w

(
) ,! L

�

1

w

(
); H

��1;q

w

(
) ,! L

�

2

w

(
): (4.10)
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If

ns

q

� � < 2, then H

�;q

w

(
) ,! L

�

1

w

(
) for every �

1

2 (1;1). Then we hoose � with

1

q

<

1

�

<

1

q

�

�+2�

ns

, �

2

> � with

1

�

2

�

1

q

�

��1

ns

and �

1

suh that

1

�

1

+

1

�

2

=

1

�

. This implies

the embeddings (4.10). Thus in any ase we may estimate

kv � ruk

�;w

� kvk

�

1

;w

kruk

�

2

;w

� kvk

�;q;w

kuk

�;q;w

(4.11)

for every u; v 2 H

�;q

w

(
). Hene we obtain as in (4.9)

kG(~u)k

L

r

(0;T

0

;H

�;q

w

)

� 









Z

t

0

1

(t� �)

��

(k~u(�)k

�;q;w

+ kE(�)k

�;q;w

)

2

d�









L

r

(0;T

0

)

� 

�

k~uk

L

r

(0;T

0

;H

�;q

w

)

+ kEk

L

r

(0;T

0

;H

�;q

w

)

�

2

(4.12)

and

kG(~u)� G(~v)k

L

r

(0;T

0

;H

�;q

w

)

� 

�

kEk

L

r

(0;T

0

;H

�;q

w

)

+ k~uk

L

r

(0;T

0

;H

�;q

w

)

+ k~vk

L

r

(0;T

0

;H

�;q

w

)

�

ku� vk

L

r

(0;T

0

;H

�;q

w

)

:

Then the same iteration proedure as in the ase � < 1 shows the existene of a unique

�xed point ~u = G(~u) within a ball in L

r

(0; T

0

;H

�;q

w

(
)) with radius Æ.

We turn to the ase � = 2, i.e., the ase of strong solutions. One uses the estimate

kG(u)k

2;q;w

�

Z

t

0

1

(t� �)

��

kW (u)k

2+2�+";q;w

d�

�

Z

t

0

1

(t� �)

��

kW (u)k

1;�;w

d�:

Suh a � an be hosen beause 2 + 2� =

2

r

< 1. As above we hoose � and � suh that

suh that

�

1

q

>

1

�

�

1�

2

r

ns

to guarantee the embedding H

1;�

w

(
) ,! H

2

r

+";q

w

(
),

�

1

2�

�

1

q

�

1

ns

to obtain H

1;q

w

(
) ,! L

2�

w

(
).

�

1

�

�

1

q

�

2

ns

whih yields H

2;q

w

(
) ,! L

�

w

(
).

If ns � q > 0 the above holds if � =

nsq

2ns�2q

and

1

�

=

1

�

�

1

q

. If ns � q � 0 then

H

1;q

w

(
) ,! L

2�

w

(
) for every � and in addition H

2;q

w

(
) ,! L

�

w

(
) for every �. Then we

hoose any � with

1

q

<

1

�

<

1

q

+

1�

1

r

ns

and

1

�

=

1

�

�

1

q

to guarantee the above.

We use this to prove kW (u)k

1;�;w

� kuk

2

2;q;w

. To this aim we alulate

k�

k

W (u)k

�;w

�k�

k

u � ruk

�;w

+ ku � �

k

ruk

�;w

�kruk

2

2�;w

+ kuk

�;w

kr

2

uk

q;w

� kuk

2

2;q;w

:

(4.13)

From now on we derive all following estimates as in the ase 0 � � < 1. This �nishes

the proof of existene for small data for every � 2 [0; 2℄.
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The next step is to prove the a priori estimate. Let ~u 2 B

Æ

(0) be the �xed point of

G. Then one has by (4.9) and (4.12)

k~uk

L

r

(0;T

0

;H

�;q

w

(
))

=kG(~u)k

L

r

(0;T

0

;H

�;q

w

(
))

�

�

(Æ +K�)(k~uk

L

r

(0;T

0

;H

�;q

w

(
))

+ kEk

L

r

(0;T

0

;H

�;q

w

(
))

)

+ �(k~uk

L

r

(0;T

0

;H

�;q

w

(
))

+ kEk

L

r

(0;T

0

;H

�;q

w

(
))

)

�

:

Choosing Æ and � suh that (Æ + 2�) < 1 this proves

k~uk

L

r

(0;T

0

;H

�;q

w

(
))

�

(Æ + 2�)

1� (Æ + 2�)

kEk

L

r

(0;T

0

;H

�;q

w

(
))

:

Finally, we obtain for � < 1

kuk

L

r

(0;T

0

;H

�;q

w

(
))

�k~uk

L

r

(0;T

0

;H

�;q

w

(
))

+ kEk

L

r

(0;T

0

;H

�;q

w

(
))

�kEk

L

r

(0;T

0

;H

�;q

w

(
))

�

��

Z

T

0

0

ke

��A

u

0

k

r

�;q;w

d�

�

1

r

+ kfk

L

r

(0;T

0

;Y

��2

w

(
))

+ kkk

L

r

(0;T

0

;L

�

w

)\H

�

2

;r

0

((0;T

0

℄;W

�1;q

w;0

)

+ kgk

L

r

(0;T

0

;T

�;q

w

)\H

�

2

;r

0

((0;T

0

℄;T

0;q

w

)

�

by the a priori estimate in the linear ase in Theorem 3.3. If � � 1 one obtains the

estimate

kuk

L

r

(0;T

0

;H

�;q

w

(
))

�

��

Z

T

0

0

ke

��A

u

0

k

r

�;q;w

d�

�

1

r

+ kfk

L

r

(0;T

0

;Y

��2

w

(
))

+ kkk

L

r

(0;T

0

;H

��1;q

w

)\H

�

2

;r

0

((0;T

0

℄;W

�1;q

w;0

)

+ kgk

L

r

(0;T

0

;T

�;q

w

)\H

�

2

;r

0

((0;T

0

℄;T

0;q

w

)

�

analogously.

Sine u is a very weak solution to the instationary Stokes problem

�

t

u��u+rp = f �W (u)�G� U

0

; (4.14)

where G = [� 7! hg;N � r�i

�
;T

℄ and U

0

= [� 7! hu

0

; �(0)i




℄, we get the estimate (4.5)

from the linear ase. More preisely let T

00

2 (0; T

0

℄ with T

00

< 1 and hoose � as in

the estimates (4.8), (4.11), (4.13). Then we obtain by the a priori estimate of solutions

to the instationary Stokes equation in L

r

2

(0; T ;H

�;q

w

(
)) and H�older's inequality in the

ase � < 1

k�

t

uj

Y

2;q

0

w

0

;�

(
)

k

L

r

2

(0;T

00

;Y

��2;q

w;�

(
))

�

�

kfk

L

r

2

(0;T

00

;Y

��2;q

w

(
))

+ kW (u)k

L

r

2

(0;T

00

;Y

��2;q

w;�

(
))

+kkk

H

�

2

;

r

2

0

((0;T ℄;W

�1;q

w;0

)\L

r

2

(H

��1;q

w;�

)

+ kgk

H

�

2

;

r

2

0

((0;T ℄;T

0;q

w

)\L

r

2

(T

�;q

w

)

+ ku

0

k

I

�;q;

r

2

w

�

�(T

00

)

�

kfk

L

r

(0;T

00

;Y

��2;q

w

(
))

+ (� + Æ)kuk

L

r

(0;T

0

;H

�;q

w

(
))

+kkk

H

�

2

;r

0

((0;T ℄;W

�1;q

w;0

)\L

r

(H

��1;q

w;�

)

+ kgk

H

�

2

;r

0

((0;T ℄;T

0;q

w

)\L

r

(T

�;q

w

)

+ ku

0

k

I

�;q;r

w

�

:
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If � 2 [1; 2℄ one estimates analogously. Then the estimate for u proves (4.5).

Note that the equation (4.14) is only tested with funtions in Y

2;q

0

w

0

;�

(
) and only holds

in this sense. Thus the distributional derivative �

t

u may ontain a gradient part whih

is not a funtion in time.

Uniqueness an be proved in the same way as in [6℄: Let v 2 L

r

(0; T

0

;H

�;q

w

(
)) be

a very weak solution orresponding to the same data f; k; g and u

0

. Then U := u � v

solves

�

t

U ��U +rP = �div (Uu)� div (vU) + kU;

divU = 0; U j

�


= 0; U(0) = 0

in the very weak sense. Then for � < 1 one obtains as above

kUk

L

r

(0;T

0

;H

�;q

w

(
))

�

�

kuk

L

r

(0;T

0

;H

�;q

w

)

+ kvk

L

r

(0;T

0

;H

�;q

w

)

+ kkk

L

r

(0;T

0

;L

�

w

(
))

�

kUk

L

r

(0;T

0

;H

�;q

w

(
))

with a onstant  that is independent of T

0

. A orresponding inequality holds in the ase

� � 1. In partiular it holds for T

0

replaed by any T

000

2 (0; T

0

℄. If T

000

is suÆiently

small suh that

kuk

L

r

(0;T

000

;H

�;q

w

(
))

+ kvk

L

r

(0;T

000

;H

�;q

w

(
))

+ kkk

L

r

(0;T

000

;L

�

w

(
))

<

1

2

;

we obtain kUk

L

r

(0;T

000

;H

�;q

w

(
))

� 0 or U = 0 on [0; T

000

). If T

000

< T

0

we assume that

T

000

is maximal with the property u = v on [0; T

000

). However, then we may repeat this

proedure and obtain u = v on a bigger interval. This is a ontradition. Thus u is

unique in L

r

(0; T

0

;H

�;q

w

(
)) and the proof is omplete.

Remark 4.5. Choose �; r; q aording to Theorem 4.4.

We now prove that in this ase the solution u 2 L

r

(0; T ;H

�;q

w

(
)) ful�lls Serrin's

ondition [23℄ in the sense that u 2 L

r

(0; T

0

; L

�

(
)), where

1

r

+

n

�

< 1.

If ns� q� > 0 then for the number � that ful�lls

1

2�

=

1

q

�

�

ns

one has by Lemma 2.2

and (2.3)

H

�;q

w

(
) ,! L

2�

w

(
) ,! L

2�

s

(
)

and

2

r

+

n

2�

s

< �

ns

q

+ � + 1 +

ns� q�

q

= 1:

If ns � q� � 0 then H

�;q

w

(
) ,! L

�

(
) for every � 2 (1;1). Sine r > 2, this � an be

hosen suh that

2

r

+

n

�

< 1.

The reason why there appears "<" instead of "�" as in the unweighted ase [23℄, [8℄,

is that the boundedness of imaginary powers is not proved for the Stokes operator in

spaes weighted with arbitrary Mukenhoupt weights. Thus we have to work without an

exat haraterization of the domains of frational powers of the Stokes operator D(A

�

)

and use the embedding (4.2) instead.
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