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We investigate the solvability of the instationary Stokes equations with
fully inhomogeneous data in L"(0,T; H?4(€2)), where H24(€) is a Bessel-
Potential space with a Muckenhoupt weight w. Depending on the order
of this Bessel-Potential space we are dealing with strong solutions or with
very weak solutions. Whereas in the context of lowest regularity one obtains
solvability with respect to inhomogeneous data by dualization, this is more
delicate in the case of higher regularity, where one has to introduce some
additional time regularity. As a preparation, we introduce a generalization of
the Stokes operator that is appropriate to the context of very weak solutions
in weighted Bessel-Potential spaces.
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1 Introduction

We consider the instationary Stokes equations with fully inhomogeneous data on some
time interval [0,7), 0 < T < oo, and in a bounded domain @ C R™ of class C!,

ou—Au+Vp =F in (0,
divu =K in (0,
v =g on (0,7)x 09, (1.1)

uw(0) =wuy in Q.

It is our aim to find a class of solutions to (1.1) in L7(0,T; H?4(Q)) where H?4(Q) is a
Bessel-potential space for § € [0,2]. This means we develop a solution theory that in-
cludes strong solutions in the case f = 2 and weak solutions in the case § = 1. However,
if B =0, it is also possible that the solutions are only contained in L"(0,T’; L(£2)), i.e.,
they do not possess any weak derivatives. Consequently the notion of weak solutions

*Department of Mathematics, Technische Universitdt Darmstadt, Schlossgartenstrafie 7, 64289 Darm-
stadt, Germany, e-mail: schumacher@mathematik.tu-darmstadt.de



is no longer suitable in this context. Thus one introduces the more general notion of
very weak solutions. To arrive there one multiplies the first equation in (1.1) with a
test function ¢, solenoidal in space and vanishing on the boundary and at time 7', then
formal integration by parts yields

—(u, 3t¢>Q,T — (u, A¢>Q,T = (F, ¢>Q,T — (9, N - V¢>89,T- (1.2)

Applying the same method to the second equation with a sufficiently smooth test func-
tion ¢ we obtain

—(u(t), Vi) = (K(1),9) — (9(t), N - )ag (1.3)

for almost every t. The equations (1.2) and (1.3) can be used for the definition of very
weak solutions. A similar formulation has been introduced by Amann in [3] in the case
of the Navier-Stokes equations. In this article as well as by Farwig, Galdi and Sohr in
[8], [9] and by Farwig, Kozono and Sohr [10] solvability with low-regularity data has
been shown.

We investigate this problem in function spaces weighted in the space variable. More
precisely, we consider Lebesgue-, Sobolev- and Bessel potential spaces with respect to
the measure w dz, where w is a weight function contained in the Muckenhoupt class A,
cf., (2.1) below.

Classical tools for the treatment of partial differential equations extend to function
spaces with Muckenhoupt weights. As important examples we mention the continuity
of the maximal operator and the multiplier theorems that can be found in the books of
Garcia-Cuerva and Rubio de Francia [18] and Stein [25]; extension theorems of functions
on a domain to functions on R™ have been shown by Chua [5], extension theorems of
functions on the boundary to functions on the domain by Fréhlich [15], see also [20].

These tools were the base to treat the solvability of the Stokes and Navier-Stokes
equations in weighted function spaces by Farwig and Sohr in [11] and by Frohlich in
[13], [14], [15]. Using particular weight functions this theory may be used for a better
dscription of the solution, e.g. close to the boundary or in the neighborhood of a
point. However the mathematical significance of Muckenhoupt weights is given by the
Extrapolation Theorem [18, IV Lemma 5.18]. An even more powerful extrapolation
theorem by Curbera, Garcia-Cuerva, Martell and Pérez 7] guarantees estimates in very
general Banach function spaces provided that the estimates in weighted function spaces
are known for all weights from the Muckenhoupt class A,. Moreover, this property
may be used to derive the R-boundedness of families of operators from their uniform
boundedness in weighted function spaces. This fact was used by Frohlich [14] to give a
new proof of the maximal regularity of the Stokes operator in L?; in this paper this is
the crucial method in Section 4.3.

The outline of this paper is as follows. In Section 3 we introduce a generalization
of the Stokes operator that is appropriate to the context of very weak solutions in
weighted Bessel-Potential spaces. Asin the classical case this generalized Stokes operator
generates an analytic semigroup and has maximal regularity.

The crucial method in Section 4.1 is dualization. Based on the existence and unique-
ness of strong solutions in [14] we obtain the solvability in the lowest regularity con-
text treated in the paper where the solutions are merely contained in L"(0,7"; L% (€2)).
This dualization procedure automatically yields solutions with respect to inhomogeneous



boundary values and divergences as shown in Theorem 4.3. The boundary conditions are
included implicitly in the inhomogeneous force and divergence, since they may contain
a part that is concentrated on the boundary.

In the Sections 4.3 and 4.4 we are looking for solutions with respect to higher regular-
ity. In this case, the inhomogeneous boundary condition and divergence complicates the
situation strongly. In particular, one needs some additional time-regularity depending
on the order of the Bessel potential space we are working in and a more complex theory
is required. The component of the boundary condition that is tangential to the bound-
ary is treated by means of an operator-valued Fourier Multiplier Theorem by Weis [29].
We obtain the solution to an inhomogeneous force by interpolation between the very
weak and the strong solution. The initial condition is represented by the semigroup
generated by the generalized Stokes operator. The divergence and the normal part of
the boundary condition can be realized by a gradient. If we put all these parts together
we can prove our main result Theorem 4.17.

2 Preliminaries

2.1 Weighted Function Spaces

Let A4,, 1 < ¢ < 0o, the set of Muckenhoupt weights, be given by all 0 < w € Lj,.(R")
for which

Aqfw) 1= (ﬁ/@mﬁ <|7;|/Qw_q+ldx>q_l < . (2.1)

The supremum is taken over all cubes ) in R™. To avoid trivial cases, we exclude the
case where w vanishes almost everywhere.

A constant C' = C(w) is called Aj-consistent if for every ¢y > 0 it can be chosen
uniformly for all w € A, with A,(w) < ¢p. The Aj-consistence is of great importance
since it is needed for the application of the Extrapolation Theorem [18, IV Lemma
5.18]. In particular this is used when showing the continuity of operator-valued Fourier
multipliers and the maximal regularity of an operator; see e.g. [15] for details and
applications, in this paper we make use of this method in Section 4.3.

Let k € Ny, ¢ € (1,00), w € A, and let Q@ C R™ be a Lipschitz domain. Then we
define the following weighted versions of Lebesgue and Sobolev spaces.

o L4() = {f € Lpe®) | |flgu := (Jy /17w dz)? < 00}

It is an easy consequence of the corresponding result in the unweighted case that

/ 1 1
(L4() = Liy(@) with —+ =1 and o' = W € Ay, (22)

o Set Whi(Q) = {u e L7(Q) ‘ u

b = Lo 1D%llgn < 00}

e By C§°(Q2) we denote the set of all smooth and compactly supported functions,
the space Cg%,(€2) consists of all functions that are in addition divergence free.



”'Hk,q,w

e Moreover we set Wlﬁg(Q) = C§°(Q) The dual space of it is denoted by

W, ka(Q) = (ka}?(;(Q))’ . We also consider the divergence-free versions
oo 7o L (9)

Wt (Q) == {p € Wod(Q) | dive = 0} and LY, ,(Q) = C55,(Q)

w,0,0
e Using this for £ > 0 we set Wu;g’q(Q) = CSO(Q)MWJk’q(“‘”).

e Moreover, we consider the spaces of boundary values T57(9Q) = (W5(Q))|sq,
equipped with the norm [| - {|;ra = [| - [|zxa (g0 Of the factor space and finally

To4(90) = (TS (69)).

By [13], [15] and [5] the spaces LZ(Q), Wk4(Q), WE4(Q) and T59(dQ) are reflexive

w,0

Banach spaces in which C§°(Q), (C$°(Q2), C*(9Q)]sq, respectively) are dense.

Theorem 2.1. (H6rmander-Michlin Multiplier Theorem with Weights)
Let m € C™(R™ \ {0}) fulfill the property

04m(€)] < K19, for every € € R"\ {0}, |a]=0,1,..,m,
for some constant K > 0. Then T defined by
Tf=mf for feSR"R)

estends to a continuous operator on LI (Q) for every q € (1,00) and w € A,.

More precisely there exists an Ag-consistent ¢ such that || T fl|gw < €|l fllqw for every
feLi(Q).
Proof. This is an immediate consequence of [18], Theorem 3.9. The same proof can be

used to show the A,-consistence of the continuity constant. O

2.2 Weighted Bessel-Potential Spaces

For £ € R™ we set (€) := (14]£[%)2. On the space 8'(R"; R) of temperate distributions
we define for all § € R the operator

Nf=F N Ff, feS'RYR),

where F stands for the Fourier transformation on &'(R™;R). Then for 1 < ¢ < oo,
w € Ay and B € R the weighted Bessel potential space is given by

HPAR™) = { £ € SRYR) | |l = 147 e < 00}

Theorem 2.2. If 1 < g < oo, w € Ay, Lk € Z and | < B < k then one has for the
complex interpolation spaces

[HL(R"), Hy*(R")], = Hy"(R"),

where 0 = % The norms are equivalent with A,-consistent equivalence constants.



Proof. This can be proven analogously to [26, Proposition 13.6.2]. For the weighted
version in the case [ = 0 and k& € IN see also [13, Satz 8.3]. The proof given there can
be repeated to obtain the more general assertion of this theorem. It is based on the
boundedness of the purely imaginary powers A% in L (R") which is a consequence of
the weighted Multiplier Theorem 2.1. Thus rereading the proof one also obtains the
Ag-consistence of the constants. O

Corollary 2.3. For ¢ € (1,00) and w € A, one has Wp4(R") = H 4(R"). If in
addition B € [0, 1] then

A% LY (R™), W (R™)]s — LE,(R")
is continuous. The equivalence and continuity constants are A,-consistent.

Proof. Wh4(R"™) = HL?(R™) follows from the Multiplier Theorem 2.1. In praticular the
equivalence constants are Ag-consistent. Thus

||Aﬂu||L?u(lR”) = ||u||HE;q(1Rn) < CHUH[L?U(]R"),H};Q(]R")}B < CHUH[L?U(]R"),WJ,"](]R”)]B7
where ¢ > 0 is A,-consistent. O

We call a domain Q an extension domain if for every £ € IN and ¢ € (1,00) there
exists an extension operator

E:W(Q) — WZI(R")

that is continuous for j = 0, ..., k. By [5] in particular bounded Lipschitz domains are
extension domains.
For an extension domain €2 we define the weighted Bessel potential space on {2 by

Hy Q) = {gla | g € Hy'(R")}

equipped with the norm [[ul] .. ) = inf{||U||H5,q(]Rn) | U € HOYR™), Ulg = u} Note
that if 8 < 0 then the restriction g|g has to be understood in the sense of distributions
as g|06>0(Q)

B n
Moreover, we set Hgg(Q) = (C’[‘)’O(Q))Hw ) for f € R, equipped with the norm
I lg.gw0.0 == [|Eo(-)|lg,gw,rn, Where Ey denotes the extension of a function by 0 to the

whole space R". The space Hf,g(sz) is a reflexive Banach space and it is easy to verify
(see e.g. [23]) that H24(Q) = (H;,’féq,(Q))’ for every g € R.

Theorem 2.4. Let € be an extension domain, 1 < ¢ < oo, w € A,.

1. For k € Ny one has HE1(Q) = WFa(Q) and HZ’%(Q) = Wlﬁ’g(Q) with equivalent

norms.
2. Fork € N, 0 < 3 <k one has HZ(Q) = [L9(52), Ww’“’q(Q)]%.

Proof. [16] O



For spaces of boundary values we consider the spaces

99(Q) = {Hﬁ,q(m for 3 € [1,2]
‘ [T29(Q), TL(Q)])s  for Be€[0,1).

As spaces for our solutions we need spaces of functions that vanish on the boundary.
Thus for an extension domain @ C R", 1 < ¢ < oo, w € A, we set Y24(Q) := {u €
W24(Q) | ulag = 0}. For 0 < 8 < 2 we define the space

5 HEJaq(Rn . . .

Y29(Q) , if 0< B <1 equipped with || - || y5.agn),
H ()

Y24(Q) , if 1< B <2 equipped with ||+ || .0,

YPQ) =

where in the case 0 < 8 < 1 the functions of ¥,>¢(2) are assumed to be extended by 0
to functions defined on the whole space R"™. This is possible, since C§°(€2) is dense in
W, a(Q) D Y24(Q) and W§(Q) — WEI(R") — HS4(R™). We also consider the dual
spaces Y, -71(Q) = (Yf,’q,(Q))’.
We define the divergence free version of Y,>4(Q) by
Y2(Q) = {u e Y)UQ) | (u, V¢) =0 for every ¢ € C*(Q)}.

By Theorem 2.5 and (3.2) below one has Y,1¢(Q) = W, 8 () and Y24(Q) = L, ().

w,0,0

We also consider the dual spaces Y, 74(Q) := (Yf,’f,’(ﬂ)),. By the Hahn-Banach

theorem the space Y, 24(Q) is the restriction of all elements of Y,;#4(Q) to Yf,‘f;(ﬂ)
See [23] for further properties and discussions about these spaces. In particular there
have been proved the following interpolation properties.

Theorem 2.5. If Q) is a bounded C“'-domain then one has
[L4,(2), Y2 1uQ)], = Y1), 0=

with equivalent norms.
Now we prove two technical Lemmas that are needed in Section 4.3.

Lemma 2.6. Let Q) be a bounded CY'-domain. Then the norm in W14(Q) is equivalent
to the one in [LI(2), ij’q(Q)]% with an equivalence constant depending A,-consistently
on w.

Proof. We start defining an extension operator Er» by

u(z) for z, >0
23:1 Aju(2!, —jx,)  for x, <0,

Erru(z) = {

where );, 7 = 1,...,3 is chosen such that Z?Zl Aj(=j) =1for l =0,..,3. Then one
shows as in the unweighed case [1] that

Egy : WhU(RY) — Wi'(R™),  k=0,1,2,



is continuous where w is given by

N w(z', xy,) if 2, >0
w =
min;_; sw(z', —jz,) if z, <O0.

The continuity constant of Eg: and Ay(@) depend Aj-consistently on w.
Take an open covering (U;)7-; of Q, a collection of charts (a;)7-;, oj : V; — Uj, and
a partition of unity (¢;)™, subordlnate to the covering (U;),;. Assume that each o is
extended to a Cb! dlffeomorphlsm on R™. Moreover, let
Bgn j: Wod, (R?) — W2L_(R")

woa; woa;

be the extension operator defined above. We define the mapping

P: HW (R™) — W24(Q),

(Uy ey Upy) > Z%Rg(uj oa;t),
7j=1

where 1, € C§°(U;) with ¢; = 1 on supp ¢; and Rq denotes the restriction of functions

defined on R" to 2. Note that wo«; o aj_l =w on U; N D suppy;. Set

m

W2 = [ [ WL (™)

woa;

7=1
= (Brga((1w) 0 1), oy By n((dmi) 0 ) )
Since multiplication and concatenation with sufficiently smooth functions is continuous

between weighted Sobolev spaces, P and I are continuous with A,-consistent continuity
constants also if they are considered as operators

P: HLq ) = LL(Q) and I:L%(2)— [[LL. (R™).
7=1
Moreover, for u € L?(2) one has
PIu="1;Ro(Egn ;(($;u) 0 ay) o Z%(ﬁju— u.

J=1

Thus, the retraction principle of interpolation [4] together with the assertion for 2 = R™
in Crollary 2.3 yields

M m

(L4, W)y = P | ][ L (R™), Wifa, (R")
s =1 ! 1
— 1,q
—p H1 EON ) Wha(Q).
The constants are A, consistent since so are the constants of P and I. O



Lemma 2.7. Let Q = R"™ or a bounded C"'-domain and let B € [1,2]. Then for every
u € HP(Q) one has the estimate

gy < € (tllggragay + 9l g ragmy)
where ¢ = ¢(B, q, w, ).

Proof. In R™ the inequality follows from the Multiplier Theorem 2.1.

Let Egn : WhEa(R?) — WeY(R"), k = 0,1,2 be the operator constructed in the
proof of Lemma 2.6. Analogously, one shows for R"-valued functions that the extension
operator

v, z,) on R

EN'M co(z) = (Vo) (2!, x,) — 3 E]Ri(v.,)(x”af") | on R"
i1 Ai(=d)on (e, —jan)
is continuous as an operator EN'M :WEIR?) — WEIR™), k = 0, 1. Interpolation shows
that

n _17 n _17 n

Egn : Hy M(R7}) — H M(R"),

and by construction one has VE]R{; = E]MV.

To prove the result for a bounded domain € let (a;)7L, be a collection of charts and
(%);":1 a decomposition of unity subordinate to the corresponding covering of €). Then
we can calculate using the retraction principle of interpolation

m m
||U||[WJ;‘I(Q),W{ﬁ’q(Q)]ﬁ_1 < Cz ||wju||Hg’q(Q) < CZ ||77bju||HEJ’q(Ha].)
j=1 j=1

m m
< CZ [ (¥ju) o aj||H5,sqaj(Ri) < CZ ||E]Ri((7,b]lb) © Oéj)”Hg_;E&_(]R”)?
j=1 j=1 J

where by H, we denote the bent half spaces with boundary a;(R"~" x {0}). Using the
result in the whole space case and w o «; = w on supp ¥; N 2 we obtain

lallsrgeagy < ellullygnywzaan,
m
<c) <||ER1((%U) 0 )|l - raggny + IV ERz (($5u) 0 aj)||HL17q(Rn)>
j=1 v v

3 (1 (0510 0 0 s + 1B V(520 0 0 s

J

IN

j=1
< C(“U“HQ*W(Q) + ||Vu||Hg*1’q(Q))-
This is the asserted estimate. O

Lemma 2.8. Let —1 < 8 < 1. Let p € (CP(Q)) with Vp € HS14(Q).  Then
p € H24(Q) and there exists a constant ¢ = ¢(S, q, w) such that

||p||Hg’q/const. S C”Vp“Hg*l’q'
Proof. [23] O



2.3 The Stationary Stokes Equations in Bessel-Potential Spaces
Definition 2.9. Let f € Y, 249(Q) and k € W, 7%(Q). A function u € L%(Q) is called

w’
a very weak solution to the stationary Stokes problem with respect to the data f and

k, if
—(u,Ad) = (f,¢), forallp€V2%(Q) and (2.3)
—(u, V) = (k,¢), forall € Wh7(Q). (2.4)

The existence and uniqueness of very weak solutions in L% (€2) has been shown in
[24]. In general the regularity of very weak solutions is not sufficient to ensure that the
restriction u|gq is well defined. However, if we restrict ourselves to a certain class of
data then a good definition of boundary values is again possible. More precisely the
following theorem has been shown in [24] where one can also find further details and
discussions.

Theorem 2.10. Assume that f € Y, 29(Q) and k € Wuj})’q(ﬂ) allow a decomposition
into
(f,0) =(F.0)=(9.N Vo)oo  forall p €Y,"(Q), 2.5)
(k) = (K, 9) = (9, N $)on forall € W, ()
with g € TY(0Q), F € W, (Q), K € L1 (Q), where 1 < r < 0o and i € A, are chosen
such that Wijiq,(Q) — L7,(Q) — LZ;,(Q). Let u be a very weak solution to the Stokes
problem corresponding to the data f and k. Then

u € Wg”,}, = {u € L1 (Q) ‘ Jde >0, [(u, Ap)| < ¢||@||1,r0 Vo € C’gf,(Q)}.

There exists an operator -y : Wg’fﬂ — T29(09Q) that coincides with the tangential trace
on Wh4(Q). The fact that divu = K € L' (Q)) permits to define the normal component
of the trace N - u|gq. In this sense u|sq is well-defined and ulsq = g.

We now turn to the stationary Stokes equations in weighted Bessel-Potential spaces.
As a space for the divergence we define

HY(Q) =

{ngg(ﬁ) = HS1Q) i § <o, (2.6)

HP49(Q) it 5>0.
By [23] one has the interpolation property

[Wz;,tl)’q(Q), Wy ()] s = Hf,;ﬁ{(Q) for —1<p<1

and the following theorem.

Theorem 2.11. Let 1 < g < oo, w € A, and 0 < 3 < 2. Assume that f € Y, 29(Q)
and k € Hu_},h’q(Q) allow decompositions into

(F,¢) — (9, N - Voo for every ¢ € Y57 (Q)
(K, 0) — (g, NtYan  for every 1 € WhT(Q)

{f,

¢)
(. 0) (2.7)



with F € YS=24(Q), K € HJM(Q) and g € T4(09). Assume in addition that K and
g fulfill the compatibility condition (K, 1)q = (g, N)sq.

Then there exists a unique very weak solution u € L3 (€2) with respect to f and k. It
is contained in HP(QY) and fulfills the estimate

[ullgqw < ¢ (HF“ygf*lq(Q) + ||K||ng01’q(g) + ||9||T5*‘1(39)> . (2.8)

3 The Generalized Stokes Operator

For this section we always assume that ¢ € (1,00), w € A, and /5 € [0, 2].
Proposition 3.1. If @ C R" is a bounded C'-domain, then [L% (Q),Y24(Q)], =

) tw,o

Y24(Q) and [LY, (), Y, 29(Q)], = Y, 24(Q), where § = B with equivalent norms.

) T w,o 2

Proof. From Theorem 2.11 we obtain that the operator S : Y,/ 29(Q) — Y4(Q),
defined by
(f.9) =—(Sf,Ap) forall p € Y% (Q) and
0 =—(Sf,Vy)  forall p € W),

is continuous. In addition, the operator

(3.1)

A YPUQ) = Y2Q), e [60 (u, Ad)] € V) >(Q)

is continuous. For f = 0 and f = 2 this is obvious, for f € (0,2) it follows by
interpolation from Theorem 2.5.
Moreover © = SA|ys,x for every x € Y24(Q) and it follows from the retraction

principle for interpolation spaces [4, Theorem 6.4.2] that
[LY,,(Q), Y24(Q)], = S ([V, 24Q), LL(D)]s) = S (Y 29(Q)) = Y1),

s Yo w,o
The second assertion follows when considering the dual spaces in the first. O
As in the classical unweighted case one defines the Stokes operator

A= Aoguw: LL,(2) DD(A) — L (), ur —PuA,
where P, : L1 () — L2(€2) is the Helmholtz projection that is the projection to the

space of divergence free vector fields

T A

L;’U’G(Q) = C’(‘)’fg(Q) Y _ {ue LL(Q) | (u, Vo) =0 for every ¢ € Wul);ql(Q)}. (3.2)

The kernel of P,,, is equal to the space of gradients {Vp | p € W}4(Q)}. Moreover
(1 — P,w)f = Vp, where p solves the weak Neumann problem

(Vp, Vo = (f, Vo)g for every ¢ e W7 (Q). (3.3)

All these facts about the Helmholtz projection in weighted spaces have been shown by
Frohlich in [12]. The domain of the Stokes operator is D(A) = Y;4(€2). In the weighted
context it has been introduced and discussed in [15] and [14].

In the following, we find an analogue to the Stokes operator which is adequate in the
context of very weak solutions in the Bessel potential spaces H?4().

10



Theorem 3.2. For every 0 < [ < 2 the Stokes operator A has an extension to an
element of LY 4(Q), Y2 29(Q)) with the following properties.

» fw,o

1. It describes a closed and densely defined linear operator in Yf};Q’q(Q) again denoted
by A. Foru € Y1) one has

Au = [Yj,ff’q'(ﬂ) 5 ¢ —(u, Ad)q).

2. The resolvent set p(—A) contains a sector ¥, U {0} = {A € C | |arg)\| < § +

e}, € € (0,5), and for X € X, U {0} the operator A + A is an isomorphism

in LOY24(Q),Y229Q)). The norm of the inverse ||(A + A)*1||£(Y£72,q yEay 0

» fw,o

independent of A € Xs for every 0 < < ¢.

3. For every 0 < § < e there exists a constant My such that

IMA +X) g2y < Ms for all X € 5. (3.4)

For —2 < ;1 < 0 let A, 4. be the extension of the Stokes operator whose existence
has been stated in Theorem 3.2. Then we call

Apgw : D(Augw) = Yuﬁr?’q(g) - Yzﬁfg(Q) - Yzﬁfg(Q)

the generalized Stokes operator in Y/¢(€2). If no confusion can occur, we omit the
indices and write A instead of A, ;.

Proof. For 3 = 2 one has Y24(Q) = Y24(Q) = D(A), the domain of the classical Stokes
operator in L{ ,(€2). Hence, in this case the assertion of this theorem is shown in [14],
where the Stokes operator in L, /(€2) is introduced.

Our aim is to show the assertion for § = 0 and to apply complex interpolation to
obtain the results for arbitrary 0 < g < 2.
Step 1: We consider A + Ay 4, where Ag 4, is the Stokes operator in Lg,yG(Q), as a
continuous linear operator

At Ag gt YIO (Q) — LY, ().

Let A 940 = Aj : LY () — Y,729(Q) be the associated dual operator. Then one

0,¢",w’

has for v € Y24(Q) and ¢ € Yj,’,q;(ﬂ)

<()\ + Af2,q,w)u7 ¢> = <u7 ()\ + AO,q’,w’)¢> = <u7 )‘¢ - A¢>
= <()\ - Pq,wA)ua ¢> = <()‘ + AO,q’,w’)ua ¢>
Thus we obtain using the properties of the dual operator, see e.g. [6]

e A+ Azgw) |y5;g = (A + Ao ) |Y£gg'

e For A € ¥. U {0} one has A + A 54, = (A + Agg.u)*, which implies ||A +
A—2,q,w||£(LZJ7G’Yu:g,Q) - ||)\ + AO,q’,w’ ||£(Y2;q’ ,Lq’, )’

11



e ¥, U {0} is contained in the resolvent set of A_,,,, and there exists M > 0 such
that for all A € X5, 0 < 6 < ¢,

N+ Aczgn) Meezozg) = IO+ Aoga) g yra) < Ms.

wl o w o

This implies by the definition of the resolvent
||)\()\ + A—Q;Q;w)_lfHwag’q + || ()\ + A_2aqaw)_1f

lgw < Md”f“x;i’q-

Since the resolvent set is nonempty, we know that the operator A_,,,, is closed in
Y, 24(€2). Using the Hahn-Banach theorem one shows that Lg, ,(€), which is equal to

the domain of Ao g0 in Y, 29(€), is dense in Y, 29(Q).
Step 2: Combining Proposition 3.1 and the assertions for § = 0 and 8 = 2 we obtain
by complex interpolation that

A Yf;g(Q) — Yf,;%q((z) and (A —.A)7": Yf;%q((z) — Yf;g(fz), A e Xsu {0}

are continuous operators. Moreover, by the same arguments we obtain from (3.4) for
B =0and f = 2 that [|[(A+ A)7 |,y p-2aiq) < Ms|A[™" for every A € X5 and My
independent of A. This completes the prdof. O

For ¢ € (0, %) one defines
A, :={AeC|A#0, |argA| <e}.

Corollary 3.3. The negative generalized Stokes operator —A in Yff’q(ﬂ) is the gen-
erator of a bounded analytic semigroup {e=**}ica. for every e € (0, 7).

Proof. This follows immediately when combining Theorem 3.2 with [19, Theorem 2.5.2].
U

4 Instationary Stokes Equations

4.1 Very Weak Solutions

We define some function spaces that are appropriate to the instationary and very weak
context. First, for 7' < oo and 1 < r,¢ < oo we set,

Xy (0,7) = {6 € L7 (0,5 Y27 (@) n W (0,15 LY (2)) | 9(T) = 0}
and for T' = oo
X7 (0,00) = {¢ € L7 (0,00, Y27 (Q)) N W' (0, 00; LY, () ‘
supp ¢ compact in Q x [0, oo)}

!

Both spaces are equipped with the norm [[¢|] (v 1= ||¢||LT,(W2,q:) + ||¢t||Lr’(Lq' ) If there

w

is no danger of confusion, we omit the (0,7") and write X;’,’q’. We choose the data

! ! !
fe (X;;x" (o,T)) and k€ L7(0,T; W, 59()). (4.1)

12



As a space of test functions we choose

wl

X7 (0,T) = {gb e X7 (0,T) | dive = 0} .

Definition 4.1. If f and k are given as in (4.1), then a function v € L"(0,T; L1 (Q2)) is
called a very weak solution to the instationary Stokes equations if

—(u, pr)ar — (u, Ad)ar = (f,¢)ar, forevery ¢ € X;,,’,‘f; and

—(u(t), V) = (k(t),¥)q, for every b € WL (Q)
and almost every ¢t € (0,7).

Note that there does not occur any explicit initial condition «(0). It is hidden im-
plicitly in the definition, since the test functions do not vanish at time ¢ = 0. Moreover
such explicit initial conditions would not be reasonable, as shown in the following con-
siderations. Let u € L"(0,7; L% (€2)). Then

fi=l¢ = (u, =g — Ag)]
e {6 €W O T L) | 6(1) = 0f + (170, T ¥ (@) = (X7
k(t) = [ — (u(t), V)] € Wy () for almost every ¢t € (0,T),

and since ||k(t)]|-1,qw0 < ||u(t)||4w for almost every ¢, one has k € L"(0,T; WJEQ(Q))
Thus according to Definition 4.1 every u € L"(0,7; L1 (£2)) is a very weak solution to
the instationary Stokes problem with respect to appropriate data.

To obtain the solvability of the instationary Stokes equations in the very weak sense
in Theorem 4.3 below, we dualize the strong solutions that have been treated in [14].
More precisely one has:

Theorem 4.2. Let 1 < ¢ < oo, w € A, and let Q@ C R" be a bounded C"*-domain.
Moreover, let 0 < T < oo. Then for every f € L™(0,T; L1(2)) there exists a unique
solution v € L"(0,T;D(Agw)) = L"(0,T;Y%(Q)) with u, € L7(0,T; LY, ,(Q)) to the
Stokes equations

u+ Au=P,,f a.e in(0,T), u(0) =0,

where A is the classical Stokes operator in L, (). This solution fulfills the estimate

e L.t | Au Lr(Ld ) < c|| Py f LT (LY ,)»

where ¢ is independent of f and T.

Let ¢ € L"(0,T;Y,22(Q)) NWH(0,T; LL(Q)) be a strong solution to the instationary
Stokes problem in the sense of Theorem 4.2 with respect to the exterior force v €
L7(0,7;L%(2)). Then, by de Rham’s Theorem [27] there exists a distribution ¢ (t) €
C§° ()" such that

—Ap(t) + V(t) = v(t) — ¢u(t)
for almost every ¢. Then from this equation and from Lemma 2.8 we obtain, if we
assume in addition that [, (t) = 0 for every t € (0,T) that ¢» € L"(0,T; W,;?(2)) and
that 9] rgey < €IV¥ iy < ello

Lr(LY)-
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Since we use test functions that vanish at time T instead of 0, we set (¢ t) == o(T —1)
and (¢ ) ;= —(T —1t). Then we obtain —¢y— Ap— Vi) = v(T —-) with $(T') = 0, and
¢ and ¢ fulfill the estimate

16llxge + 1011 e winy < ellvllireg,). (4.2)

Theorem 4.3. Let Q2 be a bounded CHt-domain and 0 < T < co. Let f and k be given
as in (4.1) with (k(t),1) =0 for almost every t € (0,T).

Then there exists a unique very weak solution u € L"(0,T; L1 (Q2)) to the instationary
Stokes problem. This function u satisfies the estimate

[

vy S € (IF oy + Il (4.3)

with a constant ¢ = ¢(r, q, w,2) > 0.

Proof. First assume that T < oo. ,
As explained above for every v € L (0, T L!,(€2)) there exists a unique tuple (¢, ) €
X700 % L7(0, 5 Wk (), with

—¢y — Ap — Vi) = v, / Y(t)dx =0 for almost every t.
Q
We define a functional u by
(u, V) = {f, ®Yar + (k,¥)ar forall v e L7 (0,T; LZ,(Q)).
Then the a priori estimate for the strong solution (4.2) implies

[, 0)erl Il er iy 180+ Rl oy 16
v (4.4)
<e (11l gy + Nk ) ||v

L (L)

LT‘

, ’
Thus we obtain u € (L’“'(O, T, L;’U,(Q))) = 17(0,T; L1, ()) with

LT(W;};‘U) -

Moreover, for every (¢,1)) € X;,,”qgl x L' (0, T; W7 (€)) we have

—(u, pr)ar — (u, Ad)ar — (u, Vibyar = (f, d)ar + (k, V)ar,

where we used that the mapping v = —¢, — Ad — Vb — (¢, 1) is well-defined. This
shows that u is a very weak solution to the instationary Stokes problem according to
Definition 4.1 and finishes the proof of existence and of the a priori estimate.

To show the uniqueness let U € L"(0,7; LI (2)) be another very weak solution with
respect to the data f and k. Moreover, let v € L™ (0, T; LZ:,(Q)) and let ¢ € X;',’zfl and

e L"(0,T; Wul);q,(Q)) solve v = —¢, — A¢ — V1) as above. Then one has
(U,U> = _<U7 ¢t> - <U7 A¢> - <U7 V"/)> = <f7 ¢> + <k777b> = <U,U>.

el ey < € (Wl gy + 16
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Since v was arbitrary, this implies U =u and the proof for T' < oo is complete.
For T' = oo we take v € L™ (Ry; L,()), with suppv C (0, N) x Q for some N € N
and let
(6, 0) € X0/ (0,N) x L (0, N; W, ()
with [, (t) = 0 for almost every ¢ be the unique solution of —¢, — A¢ — Vip = v

with ¢(N) = 0. Extending the functions ¢ and 1 by 0 on [IV,00) x Q one obtains
¢ € X,/ (0,00) and ¢ € L™ (0, oo; WLe()). Thus the mapping

o0

wi= [ J L7(0,N,LL(Q) 3 v (f, $hap0 + (k. )00

N=1

is well-defined, where every v € L" (0, N, Lz:,(Q)) is assumed to be extended by zero to
R,.
We obtain that u|o,n) € L"(0, N, L% (€2)) for every N € IN. Moreover, since the set of

functions with compact support in time is dense in L™ (0, oo, LZ:,(Q)) and the estimates
in (4.4) are independent of 7', this yields v € L"(0, 00; L% (€2)) and the asserted estimate.
The uniqueness in the case T' = oo follows from the uniqueness in the case T' < co. [

Using a slightly more restricted space for the data one obtains the following estimate
for the time derivative. In particular the corollary below shows that the generalized
Stokes operator in Y, 2%(Q) has maximal regularity.

Corollary 4.4. Assume f € L"(0,T;Y,*4(2)) and k € L"(0,T; Wujéq(Q)) One has

!l /
L™(0,T;Y,*1(Q)) C (XZ),"I (0,T)> and the associated very weak solution which ezists
according to Theorem /.3 satisfies the stronger estimate

+ lullzragy < e (IFllrgn + IRl qroyn) — (49)

u 2,4
tlyz (q)

L (Vi)
with ¢ = ¢(r,q, w, Q) > 0. If in addition k = 0 then u solves the equation
Wlyz o+ A= Flyze oy
where A s the generalized Stokes operator in Yuj,g’q(Q).
Proof. Let ¢ € C§°(0, T Yj,q;(Q)) Then we can estimate using (4.3)
|<Ut|yj;q;(ﬂ), Prarl < [(u,Ad)ar|+ |(f, d)arl
< ¢ (I 2oy + Rlrarozn) 191

Together with (4.3), the a priori estimate in Theorem 4.3, this proves the assertion.
The last assertion follows from the characterization of the Stokes operator in Theorem
3.2 and the formulation of very weak solutions. O
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According to Definition 4.1 every u € L"(0,7; L1 (2)) is a very weak solution with
respect to appropriate data. This means that such solutions in general do not possess
enough time-regularity to ensure that the initial condition u(0) = wug is well-defined.

However, if the data is chosen as in Corollary 4.4, we obtain v € L"(0,7; Lg (€2)) and
Ut|Y2;q @ € L(0,T;Y,29(Q)). By [2] this implies that u],, 24 (o) is uniformly continuous

and hence this regularlty suffices to define u(0 )|Yz,q (@) € Y 24(€2), and one has

(u(0),¢(0))a = (u, d)ar + (u, P)ar

for every ¢ € C&([O,T],Yw,’qg(Q)) with ¢(T") = 0. Analogously to the case of strong

solutions the gradient part of the initial condition cannot be prescribed and is not
needed for the uniqueness of the solution.

Lemma 4.5. Ifu € L"(0,T; L% (Q)) is a very weak solution according to Definition 4.1

with respect to f € L™(0,T;Y, %)) and k € L"(0, T} Wujj)’q(Q)) then u(0)|y2.v @ =0
Proof. For ¢ € C§((0,T); Yj,q(;(Q)) one has
(u, o = —(u, o = (u, Ad)or + (f, d)ar (4.6)

e L7(0,T;Y;29(Q)) and (4.6) holds for all ¢ € X"/* because

which implies |, 2 Yoo

»(2)
one can appr0x1mate ¢ € XT by a sequence in C’&((O,T);Yj,’q’(ﬂ)) that converges
in L"(0,T; Y2q (€2)). Thus (u(0),¢(0))q = (u, d)ar + (u, pryor = 0 for every ¢ €
CH([0,T]; Y2 () with ¢(T) = 0. In particular, for a fixed ¢ € Y% () and 5 €
Cse([0,7)) with n(0) = 1 one has (u(0),()q = (u(0),¢n(0))q = 0. We have proved

u(0)] st ) = 0- O

4.2 The Spaces H"(X)

By S(R;R) we denote the space of rapidly decreasing smooth functions. For a Ba-
nach space X we denote the space of X-valued tempered distributions by S’(R; X) :=
L(S(R;R),X). Accordingly, for an interval I we denote the set of distributions by
D'(I[; X) == L(CE(I), X).

For the treatment of solutions to the instationary Stokes Problem in Bessel potential
spaces with inhomogeneous divergence and boundary conditions we need a higher time
regularity of this part of the data. To measure this time regularity we work in Banach
space-valued Bessel potential spaces.

For 8 € R we set A? := F~Ur)8F, where (1) = (1 + |r|?)3
r > 1 we define the X-valued Bessel-potential space by

, 7 € R™. Using this, for

HP(R; X) = {u € S'(R; X) | Nlue L’“(R;X)} ,

equipped with the norm ||u|| gs.(r;x) = Ay L (r;x)- Moreover, we define

HP7(0,T; X) == {u|cgerr) | ve H(R; X)}
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with the norm ||ul| yerr.x) = inf {||U]|gsrmw.x) | U € HP"(R; X), U|csoorym) = }-
Finally, we set for >0

HY((0,T); X) := {Ulegeorswy | U € H*(R; X), suppU C [0,00)}
equipped with
||u||Hg’T((0,T];X) = inf{HUHHﬂw(R;X) | U € H(R; X),
supp U C [0,00), Ulcs(o,r5m) = u}

HE™(R; X))

and Hy" (0,75 X) := Cg=(0, 75 X) with || | g2 pix) = |- oo mex).
Lemma 4.6. Let X be a reflexive Banach space and B > 0. Then one has
H™P"(R; X) = (HP" (R; X)) and H™P7(0,T;X) = (H)" (0,T; X))

with equivalent norms. Everyu € H=P"(R; X) is identified with the element of the space
(HB (R; X"))' fulfilling

¢x* = (u, ") x x' R = <<u(t), ¢(t)>1R;90*>X,Xn (4.7)

where ¢ € S(R;R) and x* € X'. With this identification one has

X, X'

b= [ (AU ALV s (1.9

for every u € H-%"(R; X) and oy € H?"(R; X").

Proof. Let u € H=P"(R; X). The linear hull of {¢z* | ¢ € S(R;R), z* € X'} is dense
in H%"'(R; X"). Moreover for u € H™%"(R; X) and ¢ € S(R,R), 2* € X' one has

(U, ¢x*>X,X’,R - /R<A,5_,8U(3),A?¢(8)$*>X7X1d8,

thus [(u, pz*) x x' r
tends in a unique way to a continuous functional on H%™ (R; X'). This extension fulfills
(4.8).

Vice versa let u € (Hﬂ’rl(]R; X’))’. Then, since X is reflexive, u defines a distribution
u e S'(R; X) by

S ||U||H—,B,r(]R;X)||¢.’E*||H5,TI(R;X/), and we obtain that <U,, '>X7XI,]R ex-

SMR;R) > ¢~ [X'3a" = (u,d2%)] € X" = X.
For ¢ € S(R,R), 2* € X’ one has

(AT, B, )y

< ||u||(H—5,T'(R;X’))’||At_6¢x*||H5,T'(R;X’)

= Nullgz-s. gy 1027 1 s xr)-

Thus the functional A;u can be identified with an element of L"(R; X), or u with an
element of H=?"(R, X).
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The assertion H=%7(0,T; X) = (H?" (0,T; X"))" follows from the assertion on R as
follows. For u € H7(0,T; X) there exists U € H?"(R; X) = (H*"(R; X’))I with
Ulcgeo,ry) = u. Thus it follows for ¢ € C5°(0,T) and z* € X'

<<U’7 ¢>T7 x*>X,X’ = <U7 ¢x*>X,X’,T-

This extends by density and continuity to a functional in (HZ" (0,T; X"))".

Vice versa, for u € (HJ"(0,T;X")) there exists by the Hahn-Banach theorem a
functional U € (H%" (R; X"))' = H #"(R; X) such that U] = u. Since X is
reflexive, one has

=P (0,T3X7)

[S(R;R) 3 ¢ — [X' 22" — (U, ¢2")]] € HP"(R; X") = H " (R; X)
and U|Cg°(0,T) S H*W(O, T; X) [

A Banach space X is called a UMD-space if the Hilbert transform,
1
Hie) =PV~ [ 2 f(s)ds, [ e SE:X),
rl—s

extends to a bounded linear operator on LP(RR; X) for every 1 < p < oc.
Lemma 4.7. Let X be a UMD-space and 8 € R.
1. The derivative 0y is continuous

8 : HP(R;X) — HFV(R;X),
8,: HPT(0,T;X) — HF'7(0,T;X),
O : Hy"((0,T}; X) — Hy ""((0,T]; X).

2. For k € Z one has H*"(R; X) &2 Wk (R; X) and H*"(0,T; X) & Wk(0,T; X)

with equivalent norms. The isomorphism is given by the identification in (4.7).

3. Let B € [0,1] and let Xy, Xy be UMD-spaces with X; — X,. Then there ezists a
continuous linear extension operator

E: HP((0,T); Xo) N L7(0,T; X1) — HP"(R; X») N L™ (R; X;)
with Eu(t) =0 for every t < 0.

Proof. The assertions of 1. and 2. for the case H*"(R; X) follows from a the continuity
of scalar-valued Fourier multipliers between UMD-spaces proved by Zimmermann [30]
and duality.

For v € W*r(0,T; X), k > 0, we construct an extension

(=) )1 Aju(—jx) if -5 <e<0,
u(aj) if e [O,T],
Eu(l‘) == k+1 . . T (49)
e —T)> 5 \u(T —j-(x=T)) if T<x<T+ 75,
0 else,
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with Zj Ni(=j)=1forl=0,...,k, where ¢ is a smooth cut-off function with ¢ =0 in
a neighborhood of k%l
Thus for u € W*"(0,T; X) one has Eu € W»"(R; X) = H*"(R; X) which shows that

u € H*(0,T; X) with

||u||H’”(0,T;X) < ||Eu||H’°’T(]R;X) < C”EUHW’”(]R;X) < CHUHW’“(O,T;X)-

Vice versa for u € H*"(0,T; X) an appropriate extension exists by definition. Hence an
analogous argument completes the proof for k£ > 0.

For k < 0 the assertion follows by the duality stated in Lemma 4.6.
3. We begin to consider the extension by 0 to the negative half axis

Ey : HP((0,T]; X3) N L7(0,T; X1) — H?"(—00,T; X,) N L' (—00, T; X1),

which is continuous by the definition of HS"((0,T]; X3). Moreover, by E we denote the
extension to ¢ > T defined in the same way as in (4.9) with £ = 1. By construction

E: L'(—00,T;X;) —L(R;X;), i=1,2 and
E: HY(—00,T;Xs) — HY(R; Xy)

is continuous. Since Xy is a UMD-space one, has
[L7(—o00; X,), H" (—00, T} Xg)}ﬂ = HP"(—00,T; X,).

This is proved in the same way as in the scalar-valued case, cf. [26] 13, Prop. 6.2,
replacing the scalar-valued multiplier theorem by the Banach space-valued version in
[30]. Thus the assertion follows by interpolation. O

4.3 Inhomogeneous Tangential Boundary Conditions

Our next aim is to develop a solution theory of the instationary Stokes equations in
weighted Bessel potential spaces. In the context of lowest regularity, in which the class of
solutions is contained in L"(0,7"; LY (€2)) the data could be chosen fully inhomogeneous.
Now, turning to higher regularity, we do not want to loose this possibility. However,
this requires a more complex theory and a higher regularity of the data than before.

We start with purely tangential boundary conditions. If g(t) € T54(Q) for almost
every t, this means

g(t,z)- N =0 for almost every z € 0Q if € [1,2] and
(g(t), Nh)gq =0 for every scalar-valued h € C®(Q)|sq if 5 €0,1].

The reason why we deal with tangential boundary data is that such data can be repre-
sented by

fi=|Y20(9Q) 2 ¢ (g(t), N - Vo | € Yy 29(Q). (4.10)

In the latter space we have defined the generalized Stokes operator A, see Section 3. In
general very weak solutions are not regular enough to ensure that their restriction to the
boundary is well-defined. However, since f|cs@) = 0 we can give a sense to A7 flan
and it follows that A™"f|sq = ¢g. This has been shown and discussed in [17] and [24].
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Lemma 4.8. H?4(Q) is a UMD-space for every 3 > 0 and T?1(99Q) is a UMD-space
for B €[0,2].

Proof. By [2, Theorem 4.5.2] spaces isomorphic to L4 (€2), their dual spaces, factor spaces
and complex interpolation spaces are UMD-spaces. This proves the assertion. 0

Definition 4.9. Let X, Y be Banach spaces. A subset T C L(X,Y) is called R-bounded
if there is a constant C' > 0 such that for all T%,...,T, € T, x1,...,x, € X and n € N

one has
1 1
/ du < C /
0 0
Y

where (7;) is a sequence of independent, symmetric {1, —1}-valued random variables on
[0, 1], e.g. the Rademacher functions.

n

> ri(u)z;

j=1

n

> ri(u)Ty(y)

j=1

du,

X

The following theorem has been shown by Weis in [29, Theorem 3.4].

Theorem 4.10. Let X and Y be UMD-spaces. Let
R\{0} >t~ M(t) € L(X,Y)
be a differentiable function such that the sets
{M(t) | t € R\{0}} and {tM'(t) |t R\{0}}

are R-bounded. Then Kf = [M(-)f()]Y, f € C®(R,X), extends to a bounded linear
operator
K:L"(R;X) — L'(R;Y) for 1<r < oo.

By Theorem 2.4 one has H?(Q) = [L% (), W£"1(Q)]% and by Theorem 2.5 one has

[LL(2),Y21(Q)], = Y24(Q). However, we do not know whether the equivalence con-
stants depend A, -consistently on the weight function. To fix notation and to ensure
that interpolation preserves the Ag,-consistence of the constants we assume for the rest
of this section that the norm on H2(€2) is given by the norm in the interpolation space,
ie.

In particular H%9(Q) is equipped with the norm in W*4(Q) for every k € INy. Accord-
ingly we assume || - [[y.5.0.q) = || - [| gz Tor 5 € [1,2] and
I lhygay = I lizg @y wea@y, for B €10,1).

Theorem 4.11. Let Q C R" be a bounded domain of class C*' and let I be an interval.

1. For2 > f3>0 let B(t): LL(Q) — HPYQ), t € I, be uniformly bounded for every
w € A, with an A,-consistent bound of the continuity constant. Then B(t), t € I,
s R-bounded.

2. The assertion of 1. holds true if one replaces HZ(Q) by Y24(Q).
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Proof. 1. We begin with the case 0 < < 1. Let (ij);y:l, ;R D U; = V; CQbea
collection of C'*!'-charts and assume that each 1); is extended to a C*!'-diffeomorphism
from R” to R™. Let (¢;); be a decomposition of unity subordinate to the covering (V;);
of Q.

For v € A, we set w; := vo; ' and by E, : HI(R"?) — HPY(R") we denote the
even extension

for z, >0
Bou(z) = {“(x) =T for we HPYRY)

(e, —x,)  for x, <

and by Fy : LI (Q2) — LI (R™) we denote the extension by 0. We consider the mapping
M;(t) : LY(R"™) — LZ(R"), which is defined by the composition

Cw* hihoy 7!

My(t): LARY) —2——— L4, (R")  —2 L1 (Q) —% HE9(Q)
My . :h—¢ C h—>hot)
“’J—H]> HE9(Hy,) RGN HP9(R2) Ly HEY(R)
AP q n R 1 n Eo n
A, mmry /5 LIR) -2 Ly(Rm),

where H,, is the bent half space with boundary ¢;(R"™! x {0}) and v*(2', z,) = v(a', z,,)
for z, > 0 and v*(2', z,,) = v(a', —,,) for z,, < 0. This operator M;(t) is the composition
of B(t) with operators constant in ¢ and with norms depending A,-consistently on the
weight functions v and w. The Ag-consistence of the norms of Cy,, My, Ey and E, is
easy to check in the cases 8 = 0 and = 1 and it is preserved by interpolation. For A?
we refer to Corollary 2.3.

By the assumptions on B(t) we obtain that M;(¢) is uniformly bounded in ¢ with an
A,-consistent bound. Thus by [14, Theorem 4.3] we obtain that M;(t) is R-bounded.

Next we show that

= Z Mti;j o C,l/}j—l o Rgn o APoE, o Rgy o M;(t) o Cy, o Ey, (4.11)
where M; H(Bu’)‘;p - (Hy,) = HE4(2) is the multiplication with some cut-off func-

tion ¢j € CSO(VJ) Wlth éj = 1 on supp ¢;. One has the equations

RgoC\y-10Cy, o Ey =1d g (),
J

ZM(Z;]_O 1OR]RnOA o E, ORRnOEooRRnOAﬁOE oCy, o My, —ldHBq @

~~

=id , since APoE, is even

1 w1
We have used that the Fourier transform and the inverse Fourier transform as well as
the multiplication with the even function (£)? maps even functions to even functions.
This shows that the image space of A’ o E, consists of even functions. Thus (4.11) holds.

We find that B(t) is R-bounded as a sum and composition of the R-bounded operators
M;(t) with bounded operators which are constant in ¢.
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We turn to the case 1 < 3 < 2. If B(t) : LL(Q) — HE(Q), t € I, fulfills the
assumptions of this theorem, then 9;B(t) : L4 (Q) — HZ~%4(Q) is uniformly bounded
for i =1,...,n as well, by a constant depending A,-consistently on w. Moreover, by the
embedding H2(Q) — HEZ 14(Q) the same is true for B(t) : LL(Q) — HS1(Q).

Since 0 < f —1 < 1, we are in the case just treated and we find that

OB(t): L1 () — HPY(Q), i=1,...,n, and B(t): LL(Q) — H’(Q)

are R-bounded. Thus using the notation of Definition 4.9 we find by Lemma 2.7

1 m
/ S 1 (w) Bt du
O k=1 HE1(9)
n 1 m 1 m

<c / 0; > ri(u)B(ti) by du+/ > " re(u)B(te) i du
j=1"0 k=1 HE-La(q) 0 |[k=1 HEba(Q)
1 m

<c / > " r(w) du.

O k=1 L4,(9)

Hence B(t) is R-bounded.
2. For 1 < < 2onehas || - |lypa = || - [lpgw- Thus, if B(t) : LL,(Q) — Y 4(Q) C
HP(Q) fulfills the assumptions of the theorem, then B(t) : L% (Q) — HP(Q) is R-
bounded. Since B(t) takes values in Y»4(€2), we obtain the asserted R-boundedness of
B(t) : LL(Q) — Y54(9Q).

Now we assume 0 < 3 < 1. We choose some ball B, such that ! C B,. Then the
operator

u(z) if z€Q

' (4.12)
0 if xe B, \Q

Eop, : Y)(Q) = HY(B,), By, (u)(z) = {

is continuous with continuity constant 1. This is clear for 5 =0 and g =1, for g € (0, 1)
it follows by interpolation.

We set

D(t): LY(B,) — H(B,), D(t)u= Eyp, o B(t) o Rq,

where Rg is the restriction to 2. Then D(t) is uniformly bounded by a constant de-
pending A,-consistently on w. Hence it is R-bounded by 1.

Let u € H(B,) with u|g,\q = 0. Then by the Theorems 2.5 and 2.4 the norm in
the interpolation space is equivalent to the one defined by restrictions. The constants

are maybe no longer A,-consistent, but in this step of the proof this is no longer needed.
Thus we may estimate, denoting by Ey g~ the extension by 0 to the whole space R",

[Roullypagqy <cllEoreRoul zs.0n,
=cl[PUl ggagny < Ul ggagny < cllull s, )

where ¢ is some cut-off function with supp¢y C B, and ¢ =1 in Q and U € HZ(R")
is some extension of (Ey g Rou)|p, = u with ||U||Hg,q(Rn) < c||u||Hg,q(BT).
Now the R-boundedness of B(t) follows from the R-boundedness of D(t) as before. [
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Lemma 4.12. Let 0 < <¢e, e € (0,5) and w € A,. Then the operator

N'TEA+A) LG (9Q) = YE(Q)

is bounded uniformly with respect to A € X5 U {0}. This uniform bound depends A,-
consistently on w.

Proof. For the cases § = 0 and 8 = 2 we observe that by [14] the strong solution u of
(A + A)u = f fulfills the estimate

All[ullgw + Nlullz.gw < el Fllgw

with ¢ depending Ag-consistently on w. This yields ||ull2,4w < ¢||f]|gw, Which is the

assertion for f = 2 and (\)||ullgw < c(JA| + D)||ullgw < €| flgw, Which is the assertion
for f# = 0. Thus we have shown

]
(A + A)71||£(L?U,U,Hg’q) <e(A):t for f=0,2.
Next we consider the case f = 1. By interpolation we obtain

1A+ A) s

w,o

ey S ¢ THN) e = o),

1
2

where c is independent of A and depends A,-consistently on w. Now Lemma 2.6 yields

HA+A)  fllype < MIA+A) " Fll g gz, < M) 2 fllow-

1
2

This is the assertion for § = 1. For § € (0,1) and 5 € (1,2) we use reiteration. a

We obtain the following regularity result in the case of purely tangential boundary
conditions.

Lemma 4.13. Let 0 < 5 <2 and
Sy
g € L'(0, T T,(0)) M Hy ™ ((0, ) T,7(0%2))
be purely tangential. Let u € L"(0,T; L% (2)) be the unique very weak solution to the
instationary Stokes problem with zero initial values, force and divergence and boundary

condition g, t.e.,

—(u, Yo — (0, Ad)ar = —(g,N-Vdloar  forall ¢ € X

(u(t),)o= 0 for all v e W' (Q) (4.13)

and almost every t. Then u € L"(0,T; H?4(Q)) and it fulfills the estimate

?

||ut|yj;‘,1;(g)||LT(Y£;2"1) + HUHLT(Hqu) <c <||g||Lr(T£v‘1) + Hg“H?"((O,T];TB”))

with ¢ = ¢(r,Q, ¢, Ag(w)) > 0.
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Proof. By the Lemmas 4.7 and 4.8 we may assume that g is extended to an element of
LM (R; T24(0Q)) N H3"(R; T44(89)) with g(t) = 0 for ¢ < 0. This is possible without
increasing the magnitude of the norm of g. The extension is again denoted by ¢. Let

B:{g € TP09Q) | g purely tangential} —Y, 29(Q),
g=lo = —(9:N- V).

Let w € L"(R;L%(2)) with u(t) = 0 for ¢ < 0 and such that, for ¢ > 0, it is the
very weak solution to the instationary Stokes problem with exterior force Bg, for the
extended function g. This solution exists by Theorem 4.3, is uniquely defined by g and
solves the Stokes equations in the sense of (4.13) with T replaced by co. Moreover, by
the uniqueness of very weak solutions, this function u coincides on [0, 7] with the very
weak solution with respect to the original g, given in the assumption of this theorem.

We have to show that it satisfies u € L"(R; H2(Q2)) and fulfills the estimate. Set
uy(t) := A7'Bg(t), where A is the generalized Stokes operator on Y, 29(€2). Then
uy(t)|an = g(t) in the sense of Theorem 2.10 for almost every ¢ since g is purely tangen-
tial.

Since A~'B : T29(9S2) — L% () is continuous, one obtains

5 _ _ 8
||U1||H§,T(R,L3J) = ||At2-A 1Bg| L (R;LY) = ||~’4 1BAt2g| Lm(R;LY,) < C||g||H§,r(R,T3,q)-

Moreover, from the pointwise estimate in Theorem 2.11 we obtain u, € L"(R; H24(Q))
and the estimate ||u|

L (RyHE) < cllg| Lr (R0 Now ug := u — uy solves
Oyug + Auy = —0uy in D'(R, Y, 74(2)).

An application of the Fourier transformation with respect to the time variable ¢ yields
7?62 - —Zt(lt + A)_lﬁ/l.
As a next step we show that
M(t) := (£)~7t(it + A) " Py € L(LE (), V()

is a Fourier multiplier. Since

_B . -
||M(t) ||,C(LZ,(Q),Y£"I(Q)) S ||<t> 2 +1 (Zt + A) IPq;w“ﬁ(LZ,(Q),Yf’q(Q))

for every ¢, we find by Lemma 4.12 that M (¢) is uniformly bounded by a constant that
depends A,-consistently on w. By Theorem 4.11 this implies that M (¢) is R-bounded.
Moreover,

DI(0) = (1) F = D005 )+ A Py — it2(1) 5 i1+ A) 2P,
Since t(it+.A)~" : LL(Q) — LI (Q) is uniformly bounded with an A,-consistent constant

and t(t)~5 — P3ity> 2 < (1+ g)(t>1’§, this is R-bounded as before.
Combining the above with Theorem 4.10 and Lemma 4.8 shows that M (¢) is a mul-
tiplier. Thus

N[

L (HS) < lug Lr(vgey = ||~7:_1iM(t)<t>' Uy
< | FNH)

||U/2| LT(HEJ’q)

<elgll,

vy = clluall g,

B .
(L, BTy
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Using this we are in the position to estimate the time derivative of u because

100l vy = At gz < elltall oy < €l o
Combining this with the estimate for u; implies
el 20y + Nl < € (lrgzga, + 19l o)
= C||g| L" T,B q) Hg,r(Tg,q)'
]

4.4 Solutions to Fully Inhomogeneous Data

In the following we consider external forces

feL(0,T;YS>9(Q) = [L"(0,T;Y, (), L7(0, 15 LL(Q)] s for 0< B <2,
2

where the equality of the spaces follows from [28, 1.18.4] combined with Theorem 2.5.
For such forces one obtains very weak solutions to the instationary Stokes problem by
interpolation.

Lemma 4.14. For every f € L"(0,T; Y2 29(Q)) there exists a unique solution u €
L7(0,T;Y,24(Q)) to the Stokes equation

) T w,o

s+ Au = flag o i D'(0,T;Y02(Q) with w(0)]y2. ) = 0.

w! o

It fulfills the estimate

Lr(Yg,’g) S C||f|yj;4,1;(ﬂ)| L"(Yg;z‘?)'

Proof. By Corollary 4.4 and Lemma 4.5 this is true for 8 = 0. Since for f(t) € LI ,(€2)
one has f|Y2,q @ = awf |y2 2. the solution operator

L:UWJM%QDBfHueﬂmﬂﬂﬁﬂm%

where u is the strong solution to the instationary Stokes equations with force f, is well-

defined, continuous by Theorem 4.2 and it coincides with the very weak solution with

respect to ¢ — (f, ¢) by the uniqueness of the very weak solution in Theorem 4.3.
Thus we may apply interpolation to the solution operator L : f +— u

L:L"(0,T;Y,>%Q)) — L"(0,T; L% () and
L:L"(0,T;L%(Q)) — L"(0,T; YQ"I(Q))

) T w,o

and we obtain the assertion. O
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Our space of initial values is

o.¢]
I00T = I097(Q) = {uo € Y29 | / le™ o g ult < OO} :
0

where e~ is the semigroup that is generated by the generalized Stokes operator A in

VI 2(Q) with
e Y H(Q) = D(A) = Y U(Q) € HY(Q).

It is equipped with the norm [[ug|| s := [[uollys-20 + [le™* u0|

L HB 41)
Lemma 4.15. Z297 is dense in I29" for every 3 € [0,2].

Proof. If B = 2 nothing is to show. Thus we assume 3 € [0, 2).
For ug € Z2%" and A > 0 we set uy := A(\ + A)'ug. Recall the inequalities

1A+ A) |y, < cllzllyzze and (A +A) " 2llyzg < cllzllpy,,,

which are true with ¢ independent of A by Theorem 3.2. Using this and the definition
of the norm in Z2%" one shows that luallzzar < e(M)[uollzoar < e(A)||uol|s.ar. This
yields u, € Z%%". Moreover, since x(t) := e uy € Y, 24(Q) we find by Lemma 4.12

Az (1) || g 2225 0. (4.14)

1
AMA+A) T (t) — z(t)]]yea < 5
A+ A) " a(t) — (1)l vz T

Since [AA+A) "'z (t)lys.0 < cl|Azx(t)|lys-20 € L"(Ry) with ¢ independent of A we have
by Lebesgue’s Theorem ’

e un — e ugllyzy = A+ A) () = (t) g = 0 in L'(RS)

as A — oo. In addition Lemma [19, Lemma 1.3.2] implies that uy — ug in Yﬂ;Q’q(Q) as
A — 0o and we obtain convergence in 24 O

Lemma 4.16. Let 1 < ¢ < o0, € [0,2] and let w € A,. Let Q C R"™ be a bounded
C%'-domain if B > 1 and a bounded C**-domain if 8 < 1.
Then the Helmholtz projection P,,, : H24(Q) — H2(Q) is continuous.

Proof. This follows by interpolation from the corresponding assertions for § = 0,1, 2.
The assertion for 8 = 0 follows from [12] and the one for 5 =1 and = 2 follows from
the regularity of solutions to the weak Neumann problem in weighted spaces that has
been proved in [21, A2]. O

Theorem 4.17. Let 1 < ¢ < oo, f € [0,2] and let w € A,. Let Q@ C R" be a bounded
C?>'-domain if B > 1 and a bounded CY'-domain if 8 < 1. Moreover, we take

feroT; Y“‘I(Q)),
T]; Wy (2) N L7 (0, T; Hy 2(9)),

(0,
B,
g€ Hg ((0,T]; TM(aQ)) N L™ (0,T; T74(0Q)),
up € Iy (),

8,
ke Hy (
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fulfilling the compatibility condition (k(t),1)q = (g(t), N)aq, for almost all t € (0,T).
Then there exists a unique very weak solution u € L"(0,T; HP(Q)) to the instationary
Stokes system, i.e.,

—(u, d)ar — (u, A¢>QT = —(uo, 9(0))a + (f, ®)ax — (9, N - Vo)aar
—(u(t), Vi)a = (k(t),¥)a — (9(t), NY)aa  for a.e. t€[0,T]

for all ¢ € XI% and ¢ € W57 (Q).

N
Moreover, there exists a pressure functional p € H-5"(0,T; HZ~49(Q)) that is unique
modulo constants, such that

du — Au+ Vp = fles

is fulfilled in the sense of distributions on (0,T) x Q. This solution (u,p) fulfills the
estimate

||ut|Yj}q;(Q)||LT(0,T;Y£;2’q(Q)) + ||U/||LT(H5},’q) + ||p||H_1,T(HE)—1,q)

< - k
SC <||f LT(HE) 2,41) + || || (;, ((OT} W—lq)ﬂLT(HB lq) (415)

g

+ 19
| “ 7 ((0,T)5 Ty )L (157)

with ¢ = ¢(Q,r, B,q,w) > 0.

Remark 4.18. The right hand side in the above theorem is

(6 = —(uo, (0))a + (f, Oar — (9, N - Vhaar] € (X117

This means the case of non-zero initial conditions requires no generalization of the
definition of the very weak solution given in Definition 4.1.

Proof. Step 1. We start with the divergence and the normal part of the boundary
condition.

Let @, (t) € HP(Q) be the very weak solution to the stationary Stokes system with
external force 0, boundary condition ¢(¢) and divergence k(t). Moreover, set uy(t) :=
U1 (t) — Pyt (t). Then one has by Lemma 4.16

uy(t) € HP(Q), ui(t) = Vr(t)
and for almost every t € [0,7] and every ¢ € Wul)iq,(Q) one has by (3.3)

(Vr, Vip)a = (ui(t), Vo = (i (1), Vib)a = = (k(t), ¥)a + (9(t), Ni)oa

This function 7 can be chosen such that [, 7 = 0.

The a priori estimate of the solution to the stationary problem combined with the
continuity of P,,, on H2?(Q) shown in Lemma 4.16 implies u; € L"(0,T; HZ3((2)).
Thus by Lemma 4.7 one has du; € H=17(0,T; H?9(Q)) and it cannot be expected to
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be a function in time. However, since u; is a gradient, for ¢ € C§°(0,T; Yj,’q(;(Q)) one
has 7
(Oyur, @)ar = —(u1, 0 Py wd)ar = —(Pywur, Op)ar = 0.
V2 (@) € L"(0,T; Y], #9()) is obvious.
Next we have to show that the tangential component of the boundary value ~y(u;) of
uy is well-defined in the sense of Theorem 2.10 and fulfills the estimate

Thus the estimate for Oyu; |

< cllu
LT(Tg’q)ﬂHO%’T(Tg’) H 1” r(HE )mHéz (L)

cl Ik .
(n ly ot w10, g e (Toq))
(4.16)

[l (u)]

We begin proving the following pointwise inequality

7 (ur@)llgge < cllur(® gge < k@] gg-1e + Mg ll75.4)- (4.17)

The second inequality follows from the a priori estimate of the stationary Stokes equation
in Theorem 2.11 combined with the continuity of F,,. Hence it remains to prove the
first.

If 3 > 1 this follows from the continuity of the restriction v — v|sq : H?9(Q) —
T54(09). Thus we assume 0 < 3 < 1. Since Auy(t) = VAn(¢) one has Aur(t)|cge ) =
0. This means y(u(t)) € T21(952) is well-defined by Theorem 2.10. Moreover, if 5 = 0,
this means that the mapping

Wh(Q) 5 1 (V) € TO(9)
is continuous and, by the definition of T.¢(Q2), it is also bounded as an operator
YoV : W21(Q) — TL1(09).

Hence by interpolation we obtain the continuity of v oV : H14(Q) — T54(0Q) and
this implies the pointwise estimate (4.17) for almost every ¢, where one uses the Lemmas
2.8 and 2.7 to verify

Imllggrra < e (I97llgge + el mga) < e (197 g0+ 19710 ) < ellenllgga,

since m has mean value 0. Thus we obtain

< c(||k|

||7(U1)| S C||U,1| LT(HE,;M) + ||g| LT(Tg’q))' (418)

In particular (4.17) holds for  replaced by 0. Assume for a moment that k, g and
uy are defined on R x € with supp k,supp g C [0,00) in time. Obviously the operator
A, acting in time commutes with the continuous operator (g(t), k(t)) — u1(t) acting in
space. Combining this with (4.17) implies

L'V‘(Tqu) Lr(Hg’q)

lv(u)ll 4 <cllull g

He T(RTOY) T(R;LY,)

<e (Mo W)
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For g and k given as in the assumption of this theorem by Lemma 4.7 there exist
extensions Eg € H2"(R;T%9(09)) and Ek € H>"(R; H, (). The resulting uf
fulfills supp v C supp Fg U supp Fk in time. Thus we obtain

U <c|l|k + 4.20
I 1)||H§’T((0,T};T0’q)_ (” ||H(?’T((OT] i) ||g||H§’T((0,T];T°’q)> 420)

0 w iy 0 w

from (4.19). Combining (4.18) and (4.20) implies that the tangential component of the

boundary value of u; fulfills y(u) € HO‘%’T((O, T); T%4(0Q)) N L7 (0, T; T1(99)) and the
estimate (4.16).

Step 2. We consider the tangential component of the boundary condition.

Let uy € L"(0,T; H54(€2)) be the solution to the instationary Stokes system with van-
ishing initial condition, exterior force, divergence and the purely tangential boundary
condition

8y
Gran — y(u1) € HZ"((0,T]; T%4(0Q)) N L7 (0, T; T1(09)),

where gy, is the tangential component of g. Such a function us exists by Lemma 4.13
and fulfills the estimate

||(atu2)|yj;f’1;| Lr (v %9 + ||U'2| Lr(HE1)

<c + U
< (ngm||H§,T(T3W(T5,q) ™ 1>||H§,T(T3W(T5,q))

< (81 5.+ 191,80+ iy + Dol )

where in the last inequality we have used (4.16).

Step 3. The next step is to consider the initial values.

We set us(t) = e~*4ug, where e~ is the semigroup generated by the generalized Stokes
operator in Y7 #9(€2). Then us is a solution to

atU3 + AU3 = 0, U3|Y2;q’ (Q)(O) = Uyp.

w’,o

By the definition of the space of initial values Z2%" it fulfills the estimate

Step 4. It remains to treat the external force.
By Lemma 4.14 there exists a unique very weak solution uy € L"(0,T;Y4()) solving

+ [|us]
L (Y552

atu’3|y2;l1, (Q) LT(HE)#I) S ||u0||1'5})7‘1aT-

w’,o

Ous + Ay = flyag q)  Ualy2w ) (0) = 0.

It fulfills the estimate + [Juq|
Lr (Y2

Step 5. Summarizing the above shows that u := u; + uy + uz +uy € L"(0,T; H?4(Q))

atU4|

V2 (@ @) < A2y

w',o
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is a very weak solution as required. The function u fulfills the estimate

since this is true for uy, ug, uz and uy.
Step 6. The uniqueness of u follows from the uniqueness of the very weak solution
proved in Theorem 4.3.
Step 7. It remains to show existence and estimates for the pressure functional.
We approximate f, k, g, ug by functions

Ol 50 + ullpr gz, <e (||f||y R F R,

Lr (Y855

gl

LTS HnHZ " (TS9) + ||u0||quq,r> ,

(Tw

C @

fa € L7(0,T; L1(Q)), k, € Hy"(0,T; H-(Q)),
€ Hy"(0,T; T>1(09)),  ugn, € IZ0"

in the norms of the corresponding spaces for the data as in the assumptions of this
theorem. Then one obtains as above a strong solution

u, € L"(0,T; HZ(Q)) with  dyu, € L7(0,T; LL())

to the Stokes problem with respect to the data wg, fy, gn, kn. By the uniqueness proved
in Step 5 the functions u, fulfill the a priori estimate (4.15). This implies u,, — u in
L7(0,T; HZ4(Q)).

By de Rham’s Theorem [27] there exists p,(t) € (C§°(£2))" such that

Opun(t) — Auy(t) + Vpp(t) = fu(t) almost everywhere on (0,77) x 2.

Since Vp, € L"(0,7;L%(£2)) one has by Lemma 2.8 that p(t) € W.4(Q) for almost
every t. We choose p,(t) such that [ p,(t)dz = 0 for every ¢.
Every Vp, fulfills the estimate

190l ars20y <l A .

Lr(HS MnHE " (H, | LT (T nHE " (T9)

wO

1ol -2y + Nl g2e).

where we have used Y,J 29(Q)| 2 5, < HJ >9(Q2) and Lemma 4.7 to show
w’,0

||8tun||H—1,r(H5*2aq) S CHUTL“LT(HE)*%Q) S C“un“Lr(Hg,Q)-

Moreover, by Lemma 4.7 one has H 17 (0,T; HZ 29(Q)) = W L(0,T; H~ 2‘I(Q)) and
for every ¢ € Wy (0,75 Hyy o (€2)) with (¢(¢), 1) = 0 we find ¢ € WO”(O Ty HL 57 ()
with

—(C(1), Voo = (6(1), ) forall v € Wh' (Q)
and ||C||W01,T(Hzfg,qf) < C||¢||W01,T(H175,qf). For 8 € [0, 1] we may choose ((t) to be equal
w’,0 w’,0

to the very weak solution to the stationary Stokes equation with 0 external force and
divergence ¢(t) that exists by Theorem 2.11. For § € (1,2] we may apply complex
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interpolation to the Bogowski operator on LZ(£2) and on WJ)%(Q) The continuity of
this operator between weighted spaces has been shown in [22].
For ¢ € C§°((0,T") x ) with mean value 0 one has the estimate

|<pm ¢>Q,T| - |<va <>Q,T| S C“vP”HH_l’T(Hg_Q’q)||¢||H3’T(H11U,_’§’q,)'

Combining the above yields the estimate

||pn||H71,r(Hg—1,Q) SC(“kn

+1/n

LT(Hggl’q)ﬂH’g’T(H;,ldq) + ||gn ||LT

8
(T8 HNHE" (T2

Lr(HE 29 + ||U'0,n |Léi’q*)-

Replacing p,, by p, — pm in the above estimates shows that (p,) is a Cauchy sequence
in H-17(0,T; H3~14(Q)) converging to some p € H 17 (0,T; HZ~14(Q)).

The couple (u,p) solves the Stokes equations in the distributional sense and fulfills
the a priori estimate. O

Note that the solution constructed in Theorem 4.17 does in general not fulfill O,u €
L7(0,T;Y/~29(Q)). Accordingly, the pressure p is contained in H=17(0,T; H=14((Q)).
This result could be improved to

p € H V(0,T; HY(Q) + L7(0,T; HY (),

but p is in general not integrable in time.

Another problem concerns the boundary values. In the above theorem boundary
conditions are included even though for 0 < § < 1 the equation ulsn = ¢ in general
makes no sense. The reason is that u is in general not smooth enough to make its
restriction to the boundary well-defined.

However, if data and solution are regular enough, this can be established a posteri-
ori. More precisely, let € (1,00) and w € A, such that L% (Q) — Wg;l’q(ﬂ) and

Sy _
assume k € L7(0,7; LE(Q) N Hy’ ((O,T];Hwyt’q(Q)). Then the normal component of
the boundary condition can be defined as in the stationary case and one obtains

(u(t), Noo = (u(t), Vip)a + (divu(t), )a = (9(1), NY)oa

for almost every t and every ¢ € Wul};q'(Q). Thus the normal component of u is equal to
the one of g.

The tangential component causes more difficulties than in the stationary case. The
reason is that f € L"(0,7; W;"*(Q)) does in general not imply d,u(t) € W;"*(Q) for
almost every ¢. And this is necessary to ensure u(t) € Wgﬁ}, the space in which the
tangential component of the boundary values is well-defined.

Hence, to ensure that the tangential boundary condition is well-defined we assume

fe L’ (0,T; W, ")) and we L'(0,T; H>Q)), w(t) € W, ""(Q)  (4.21)

for almost every ¢. Then, using test functions of the form 7 - ¢ with n € C§°(0,7) and
¢ € C5°(€2) one shows that for every ¢ € Cg%,(€2) and almost every ¢ one has

(Au(t), p)a = (u(t), Ap)a = (Dul(t), d)a — (f(t), P)a
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which implies u(t) € Wuq)‘;} for almost every t by the assumptions on f and u;. Moreover,
(u, N - Vd)oar = (u, Ap)or — (Au, p)or = (9, N - Vd)aar

for every ¢ € Wb (0,T; Yj,q;(Q)) with ¢(0) = ¢(7') = 0. This means that u fulfills the
tangential boundary condition almost everywhere.

In particular, (4.21) is fulfilled in the case of weak solutions. Thus one has the
following proposition.

Proposition 4.19. Let 5 € [1,2] and the data f,k,g and ug be chosen according to
Theorem 4.17 and let u € L™(0,T; HP1(Q)) be a very weak solution with respect to this
data.

Then (u,p) fulfills the Stokes system (1.1) in the sense of distributions. In addition
u(t)|aq = g(t) for almost every t.
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