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We investigate the solvability of the instationary Stokes equations with

fully inhomogeneous data in L

r

(0; T ;H

�;q

w

(
)), where H

�;q

w

(
) is a Bessel-

Potential spa
e with a Mu
kenhoupt weight w. Depending on the order

of this Bessel-Potential spa
e we are dealing with strong solutions or with

very weak solutions. Whereas in the 
ontext of lowest regularity one obtains

solvability with respe
t to inhomogeneous data by dualization, this is more

deli
ate in the 
ase of higher regularity, where one has to introdu
e some

additional time regularity. As a preparation, we introdu
e a generalization of

the Stokes operator that is appropriate to the 
ontext of very weak solutions

in weighted Bessel-Potential spa
es.
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1 Introdu
tion

We 
onsider the instationary Stokes equations with fully inhomogeneous data on some

time interval [0; T ), 0 < T � 1, and in a bounded domain 
 � R

n

of 
lass C

1;1

,

�

t

u��u+rp = F in (0; T )� 
;

div u = K in (0; T )� 
;

u = g on (0; T )� �
;

u(0) = u

0

in 
:

(1.1)

It is our aim to �nd a 
lass of solutions to (1.1) in L

r

(0; T ;H

�;q

(
)) where H

�;q

(
) is a

Bessel-potential spa
e for � 2 [0; 2℄. This means we develop a solution theory that in-


ludes strong solutions in the 
ase � = 2 and weak solutions in the 
ase � = 1. However,

if � = 0, it is also possible that the solutions are only 
ontained in L

r

(0; T ;L

q

(
)), i.e.,

they do not possess any weak derivatives. Consequently the notion of weak solutions

�
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is no longer suitable in this 
ontext. Thus one introdu
es the more general notion of

very weak solutions. To arrive there one multiplies the �rst equation in (1.1) with a

test fun
tion �, solenoidal in spa
e and vanishing on the boundary and at time T , then

formal integration by parts yields

�hu; �

t

�i


;T

� hu;��i


;T

= hF; �i


;T

� hg;N � r�i

�
;T

: (1.2)

Applying the same method to the se
ond equation with a suÆ
iently smooth test fun
-

tion  we obtain

�hu(t);r i = hK(t);  i � hg(t); N �  i

�


(1.3)

for almost every t. The equations (1.2) and (1.3) 
an be used for the de�nition of very

weak solutions. A similar formulation has been introdu
ed by Amann in [3℄ in the 
ase

of the Navier-Stokes equations. In this arti
le as well as by Farwig, Galdi and Sohr in

[8℄, [9℄ and by Farwig, Kozono and Sohr [10℄ solvability with low-regularity data has

been shown.

We investigate this problem in fun
tion spa
es weighted in the spa
e variable. More

pre
isely, we 
onsider Lebesgue-, Sobolev- and Bessel potential spa
es with respe
t to

the measure w dx, where w is a weight fun
tion 
ontained in the Mu
kenhoupt 
lass A

q

,


f., (2.1) below.

Classi
al tools for the treatment of partial di�erential equations extend to fun
tion

spa
es with Mu
kenhoupt weights. As important examples we mention the 
ontinuity

of the maximal operator and the multiplier theorems that 
an be found in the books of

Gar
��a-Cuerva and Rubio de Fran
ia [18℄ and Stein [25℄; extension theorems of fun
tions

on a domain to fun
tions on R

n

have been shown by Chua [5℄, extension theorems of

fun
tions on the boundary to fun
tions on the domain by Fr�ohli
h [15℄, see also [20℄.

These tools were the base to treat the solvability of the Stokes and Navier-Stokes

equations in weighted fun
tion spa
es by Farwig and Sohr in [11℄ and by Fr�ohli
h in

[13℄, [14℄, [15℄. Using parti
ular weight fun
tions this theory may be used for a better

ds
ription of the solution, e.g. 
lose to the boundary or in the neighborhood of a

point. However the mathemati
al signi�
an
e of Mu
kenhoupt weights is given by the

Extrapolation Theorem [18, IV Lemma 5.18℄. An even more powerful extrapolation

theorem by Curbera, Gar
��a-Cuerva, Martell and P�erez [7℄ guarantees estimates in very

general Bana
h fun
tion spa
es provided that the estimates in weighted fun
tion spa
es

are known for all weights from the Mu
kenhoupt 
lass A

q

. Moreover, this property

may be used to derive the R-boundedness of families of operators from their uniform

boundedness in weighted fun
tion spa
es. This fa
t was used by Fr�ohli
h [14℄ to give a

new proof of the maximal regularity of the Stokes operator in L

q

; in this paper this is

the 
ru
ial method in Se
tion 4.3.

The outline of this paper is as follows. In Se
tion 3 we introdu
e a generalization

of the Stokes operator that is appropriate to the 
ontext of very weak solutions in

weighted Bessel-Potential spa
es. As in the 
lassi
al 
ase this generalized Stokes operator

generates an analyti
 semigroup and has maximal regularity.

The 
ru
ial method in Se
tion 4.1 is dualization. Based on the existen
e and unique-

ness of strong solutions in [14℄ we obtain the solvability in the lowest regularity 
on-

text treated in the paper where the solutions are merely 
ontained in L

r

(0; T ;L

q

w

(
)).

This dualization pro
edure automati
ally yields solutions with respe
t to inhomogeneous
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boundary values and divergen
es as shown in Theorem 4.3. The boundary 
onditions are

in
luded impli
itly in the inhomogeneous for
e and divergen
e, sin
e they may 
ontain

a part that is 
on
entrated on the boundary.

In the Se
tions 4.3 and 4.4 we are looking for solutions with respe
t to higher regular-

ity. In this 
ase, the inhomogeneous boundary 
ondition and divergen
e 
ompli
ates the

situation strongly. In parti
ular, one needs some additional time-regularity depending

on the order of the Bessel potential spa
e we are working in and a more 
omplex theory

is required. The 
omponent of the boundary 
ondition that is tangential to the bound-

ary is treated by means of an operator-valued Fourier Multiplier Theorem by Weis [29℄.

We obtain the solution to an inhomogeneous for
e by interpolation between the very

weak and the strong solution. The initial 
ondition is represented by the semigroup

generated by the generalized Stokes operator. The divergen
e and the normal part of

the boundary 
ondition 
an be realized by a gradient. If we put all these parts together

we 
an prove our main result Theorem 4.17.

2 Preliminaries

2.1 Weighted Fun
tion Spa
es

Let A

q

, 1 < q <1, the set of Mu
kenhoupt weights, be given by all 0 � w 2 L

1

lo


(R

n

)

for whi
h

A

q

(w) := sup

Q

�

1

jQj

Z

Q

w dx

��

1

jQj

Z

Q

w

�

1

q�1

dx

�

q�1

<1: (2.1)

The supremum is taken over all 
ubes Q in R

n

. To avoid trivial 
ases, we ex
lude the


ase where w vanishes almost everywhere.

A 
onstant C = C(w) is 
alled A

q

-
onsistent if for every 


0

> 0 it 
an be 
hosen

uniformly for all w 2 A

q

with A

q

(w) < 


0

. The A

q

-
onsisten
e is of great importan
e

sin
e it is needed for the appli
ation of the Extrapolation Theorem [18, IV Lemma

5.18℄. In parti
ular this is used when showing the 
ontinuity of operator-valued Fourier

multipliers and the maximal regularity of an operator; see e.g. [15℄ for details and

appli
ations, in this paper we make use of this method in Se
tion 4.3.

Let k 2 N

0

, q 2 (1;1), w 2 A

q

and let 
 � R

n

be a Lips
hitz domain. Then we

de�ne the following weighted versions of Lebesgue and Sobolev spa
es.

� L

q

w

(
) :=

n

f 2 L

1

lo


(
) j kfk

q;w

:=

�
R




jf j

q

w dx

�

1

q

<1

o

.

It is an easy 
onsequen
e of the 
orresponding result in the unweighted 
ase that

(L

q

w

(
))

0

= L

q

0

w

0

(
) with

1

q

+

1

q

0

= 1 and w

0

= w

�

1

q�1

2 A

q

0

: (2.2)

� Set W

k;q

w

(
) =

n

u 2 L

q

w

(
)

�

�

�

kuk

k;q;w

:=

P

j�j�k

kD

�

uk

q;w

<1

o

.

� By C

1

0

(
) we denote the set of all smooth and 
ompa
tly supported fun
tions,

the spa
e C

1

0;�

(
) 
onsists of all fun
tions that are in addition divergen
e free.
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� Moreover we set W

k;q

w;0

(
) = C

1

0

(
)

k�k

k;q;w

. The dual spa
e of it is denoted by

W

�k;q

w

(
) := (W

k;q

0

w

0

;0

(
))

0

. We also 
onsider the divergen
e-free versions

W

k;q

w;0;�

(
) := f� 2 W

k;q

w;0

(
) j div � = 0g and L

q

w;�

(
) = C

1

0;�

(
)

L

q

w

(
)

.

� Using this for k > 0 we set W

�k;q

w;0

(
) = C

1

0

(
)

k�k

W

�k;q

w

(R

n

)

.

� Moreover, we 
onsider the spa
es of boundary values T

k;q

w

(�
) := (W

k;q

w

(
))j

�


,

equipped with the norm k � k

T

k;q

w

= k � k

T

k;q

w

(�
)

of the fa
tor spa
e and �nally

T

0;q

w

(�
) := (T

1;q

0

w

0

(�
))

0

.

By [13℄, [15℄ and [5℄ the spa
es L

q

w

(
), W

k;q

w

(
), W

k;q

w;0

(
) and T

k;q

w

(�
) are re
exive

Bana
h spa
es in whi
h C

1

0

(
), (C

1

0

(
), C

1

(
)j

�


, respe
tively) are dense.

Theorem 2.1. (H�ormander-Mi
hlin Multiplier Theorem with Weights)

Let m 2 C

n

(R

n

n f0g) ful�ll the property

j�

�

m(�)j � Kj�j

�j�j

; for every � 2 R

n

n f0g; j�j = 0; 1; :::; n;

for some 
onstant K > 0. Then T de�ned by




Tf = m

^

f for f 2 S(R

n

;R)

extends to a 
ontinuous operator on L

q

w

(
) for every q 2 (1;1) and w 2 A

q

.

More pre
isely there exists an A

q

-
onsistent 
 su
h that kTfk

q;w

� 
kfk

q;w

for every

f 2 L

q

w

(
).

Proof. This is an immediate 
onsequen
e of [18℄, Theorem 3.9. The same proof 
an be

used to show the A

q

-
onsisten
e of the 
ontinuity 
onstant.

2.2 Weighted Bessel-Potential Spa
es

For � 2 R

n

we set h�i := (1+ j�j

2

)

1

2

. On the spa
e S

0

(R

n

;R) of temperate distributions

we de�ne for all � 2 R the operator

�

�

f = F

�1

h�i

�

Ff; f 2 S

0

(R

n

;R);

where F stands for the Fourier transformation on S

0

(R

n

;R). Then for 1 < q < 1,

w 2 A

q

and � 2 R the weighted Bessel potential spa
e is given by

H

�;q

w

(R

n

) =

n

f 2 S

0

(R

n

;R)

�

�

kfk

H

�;q

w

(R

n

)

:= k�

�

fk

q;w;R

n

<1

o

:

Theorem 2.2. If 1 < q < 1, w 2 A

q

, l; k 2 Z and l < � < k then one has for the


omplex interpolation spa
es

�

H

l;q

w

(R

n

); H

k;q

w

(R

n

)

�

�

= H

�;q

w

(R

n

);

where � =

��l

k�l

. The norms are equivalent with A

q

-
onsistent equivalen
e 
onstants.
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Proof. This 
an be proven analogously to [26, Proposition 13.6.2℄. For the weighted

version in the 
ase l = 0 and k 2 N see also [13, Satz 8.3℄. The proof given there 
an

be repeated to obtain the more general assertion of this theorem. It is based on the

boundedness of the purely imaginary powers �

iy

in L

q

w

(R

n

) whi
h is a 
onsequen
e of

the weighted Multiplier Theorem 2.1. Thus rereading the proof one also obtains the

A

q

-
onsisten
e of the 
onstants.

Corollary 2.3. For q 2 (1;1) and w 2 A

q

one has W

1;q

w

(R

n

) = H

1;q

w

(R

n

). If in

addition � 2 [0; 1℄ then

�

�

: [L

q

w

(R

n

);W

1;q

w

(R

n

)℄

�

! L

q

w

(R

n

)

is 
ontinuous. The equivalen
e and 
ontinuity 
onstants are A

q

-
onsistent.

Proof. W

1;q

w

(R

n

) = H

1;q

w

(R

n

) follows from the Multiplier Theorem 2.1. In prati
ular the

equivalen
e 
onstants are A

q

-
onsistent. Thus

k�

�

uk

L

q

w

(R

n

)

= kuk

H

�;q

w

(R

n

)

� 
kuk

[L

q

w

(R

n

);H

1;q

w

(R

n

)℄

�

� 
kuk

[L

q

w

(R

n

);W

1;q

w

(R

n

)℄

�

;

where 
 > 0 is A

q

-
onsistent.

We 
all a domain 
 an extension domain if for every k 2 N and q 2 (1;1) there

exists an extension operator

E : W

j;q

w

(
)! W

j;q

w

(R

n

)

that is 
ontinuous for j = 0; :::; k. By [5℄ in parti
ular bounded Lips
hitz domains are

extension domains.

For an extension domain 
 we de�ne the weighted Bessel potential spa
e on 
 by

H

�;q

w

(
) =

�

gj




j g 2 H

�;q

w

(R

n

)

	

equipped with the norm kuk

H

�;q

w

(
)

:= inf

n

kUk

H

�;q

w

(R

n

)

j U 2 H

�;q

w

(R

n

); U j




= u

o

. Note

that if � < 0 then the restri
tion gj




has to be understood in the sense of distributions

as gj

C

1

0

(
)

.

Moreover, we set H

�;q

w;0

(
) = (C

1

0

(
))

H

�;q

w

(R

n

)

for � 2 R, equipped with the norm

k � k

�;q;w;0;


:= kE

0

(�)k

�;q;w;R

n

, where E

0

denotes the extension of a fun
tion by 0 to the

whole spa
e R

n

. The spa
e H

�;q

w;0

(
) is a re
exive Bana
h spa
e and it is easy to verify

(see e.g. [23℄) that H

�;q

w

(
) = (H

��;q

0

w

0

;0

(
))

0

for every � 2 R.

Theorem 2.4. Let 
 be an extension domain, 1 < q <1, w 2 A

q

.

1. For k 2 N

0

one has H

k;q

w

(
) = W

k;q

w

(
) and H

k;q

w;0

(
) = W

k;q

w;0

(
) with equivalent

norms.

2. For k 2 N, 0 < � < k one has H

�;q

w

(
) = [L

q

w

(
);W

k;q

w

(
)℄�

k

.

Proof. [16℄
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For spa
es of boundary values we 
onsider the spa
es

T

�;q

w

(
) :=

(

H

�;q

w

(
) for � 2 [1; 2℄

[T

0;q

w

(
); T

1;q

w

(
)℄

�

for � 2 [0; 1):

As spa
es for our solutions we need spa
es of fun
tions that vanish on the boundary.

Thus for an extension domain 
 � R

n

, 1 < q < 1, w 2 A

q

we set Y

2;q

w

(
) := fu 2

W

2;q

w

(
) j uj

�


= 0g. For 0 � � � 2 we de�ne the spa
e

Y

�;q

w

(
) :=

8

>

<

>

:

Y

2;q

w

(
)

H

�;q

w

(R

n

)

; if 0 � � � 1 equipped with k � k

H

�;q

w

(R

n

)

;

Y

2;q

w

(
)

H

�;q

w

(
)

; if 1 < � � 2 equipped with k � k

H

�;q

w

(
)

;

where in the 
ase 0 � � � 1 the fun
tions of Y

2;q

w

(
) are assumed to be extended by 0

to fun
tions de�ned on the whole spa
e R

n

. This is possible, sin
e C

1

0

(
) is dense in

W

1;q

w;0

(
) � Y

2;q

w

(
) and W

1;q

w;0

(
) ,! W

1;q

w

(R

n

) ,! H

�;q

w

(R

n

). We also 
onsider the dual

spa
es Y

��;q

w

(
) := (Y

�;q

0

w

0

(
))

0

.

We de�ne the divergen
e free version of Y

�;q

w

(
) by

Y

�;q

w;�

(
) :=

�

u 2 Y

�;q

w

(
) j hu;r�i = 0 for every � 2 C

1

(
)

	

:

By Theorem 2.5 and (3.2) below one has Y

1;q

w;�

(
) = W

1;q

w;0;�

(
) and Y

0;q

w;�

(
) = L

q

w;�

(
).

We also 
onsider the dual spa
es Y

��;q

w;�

(
) :=

�

Y

�;q

0

w

0

;�

(
)

�

0

. By the Hahn-Bana
h

theorem the spa
e Y

��;q

w;�

(
) is the restri
tion of all elements of Y

��;q

w

(
) to Y

�;q

0

w

0

;�

(
).

See [23℄ for further properties and dis
ussions about these spa
es. In parti
ular there

have been proved the following interpolation properties.

Theorem 2.5. If 
 is a bounded C

1;1

-domain then one has

�

L

q

w

(
); Y

2;q

w

(
)

�

�

= Y

�;q

w

(
); � =

�

2

; 0 � � � 2

with equivalent norms.

Now we prove two te
hni
al Lemmas that are needed in Se
tion 4.3.

Lemma 2.6. Let 
 be a bounded C

1;1

-domain. Then the norm in W

1;q

w

(
) is equivalent

to the one in [L

q

w

(
);W

2;q

w

(
)℄

1

2

with an equivalen
e 
onstant depending A

q

-
onsistently

on w.

Proof. We start de�ning an extension operator E

R

n

+

by

E

R

n

+

u(x) =

(

u(x) for x

n

> 0

P

3

j=1

�

j

u(x

0

;�jx

n

) for x

n

< 0;

where �

j

, j = 1; :::; 3 is 
hosen su
h that

P

3

j=1

�

j

(�j)

l

= 1 for l = 0; :::; 3. Then one

shows as in the unweighed 
ase [1℄ that

E

R

n

+

: W

k;q

w

(R

n

+

)!W

k;q

~w

(R

n

); k = 0; 1; 2;

6



is 
ontinuous where ~w is given by

~w =

(

w(x

0

; x

n

) if x

n

> 0

min

j=1;:::;3

w(x

0

;�jx

n

) if x

n

< 0:

The 
ontinuity 
onstant of E

R

n

+

and A

q

( ~w) depend A

q

-
onsistently on w.

Take an open 
overing (U

j

)

m

j=1

of 
, a 
olle
tion of 
harts (�

j

)

m

j=1

, �

j

: V

j

! U

j

, and

a partition of unity (�

j

)

m

j=1

subordinate to the 
overing (U

j

)

j

. Assume that ea
h �

j

is

extended to a C

1;1

-di�eomorphism on R

n

. Moreover, let

E

R

n

+

;j

: W

2;q

wÆ�

j

(R

n

+

)!W

2;q

ŵÆ�

j

(R

n

)

be the extension operator de�ned above. We de�ne the mapping

P :

m

Y

j=1

W

2;q

℄wÆ�

j

(R

n

)! W

2;q

w

(
);

(u

1

; :::; u

m

) 7!

m

X

j=1

 

j

R




(u

j

Æ �

�1

j

);

where  

j

2 C

1

0

(U

j

) with  

j

� 1 on supp�

j

and R




denotes the restri
tion of fun
tions

de�ned on R

n

to 
. Note that℄w Æ �

j

Æ �

�1

j

= w on U

j

\ 
 � supp 

j

. Set

I :W

2;q

w

(
)!

m

Y

j=1

W

2;q

℄wÆ�

j

(R

n

)

u 7!

�

E

R

n

+

;1

((�

1

u) Æ �

1

); :::; E

R

n

+

;m

((�

m

u) Æ �

m

)

�

:

Sin
e multipli
ation and 
on
atenation with suÆ
iently smooth fun
tions is 
ontinuous

between weighted Sobolev spa
es, P and I are 
ontinuous with A

q

-
onsistent 
ontinuity


onstants also if they are 
onsidered as operators

P :

m

Y

j=1

L

q

℄wÆ�

j

(R

n

)! L

q

w

(
) and I : L

q

w

(
)!

m

Y

j=1

L

q

℄wÆ�

j

(R

n

):

Moreover, for u 2 L

q

w

(
) one has

PIu =

m

X

j=1

 

j

R




(E

R

n

+

;j

((�

j

u) Æ �

j

) Æ �

�1

j

) =

m

X

j=1

 

j

�

j

u = u:

Thus, the retra
tion prin
iple of interpolation [4℄ together with the assertion for 
 = R

n

in Crollary 2.3 yields

[L

q

w

(
);W

2;q

w

(
)℄

1

2

= P

"

m

Y

j=1

L

q

℄wÆ�

j

(R

n

);

m

Y

j=1

W

2;q

℄wÆ�

j

(R

n

)

#

1

2

= P

 

m

Y

j=1

W

1;q

℄wÆ�

j

(R

n

)

!

= W

1;q

w

(
):

The 
onstants are A

q


onsistent sin
e so are the 
onstants of P and I.
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Lemma 2.7. Let 
 = R

n

or a bounded C

1;1

-domain and let � 2 [1; 2℄. Then for every

u 2 H

�;q

w

(
) one has the estimate

kuk

H

�;q

w

(
)

� 


�

kuk

H

��1;q

w

(
)

+ kruk

H

��1;q

w

(
)

�

;

where 
 = 
(�; q; w;
).

Proof. In R

n

the inequality follows from the Multiplier Theorem 2.1.

Let E

R

n

+

: W

k;q

w

(R

n

+

) ! W

k;q

~w

(R

n

), k = 0; 1; 2 be the operator 
onstru
ted in the

proof of Lemma 2.6. Analogously, one shows for R

n

-valued fun
tions that the extension

operator

~

E

R

n

+

: v(x) = (v

0

; v

n

)(x

0

; x

n

) 7!

8

>

<

>

:

v(x

0

; x

n

) on R

n

+

 

E

R

n

+

(v

0

)(x

0

; x

n

)

P

3

j=1

�

j

(�j)v

n

(x

0

;�jx

n

)

!

on R

n

�

is 
ontinuous as an operator

~

E

R

n

+

:W

k;q

w

(R

n

+

)!W

k;q

~w

(R

n

), k = 0; 1. Interpolation shows

that

~

E

R

n

+

: H

��1;q

~w

(R

n

+

)! H

��1;q

~w

(R

n

);

and by 
onstru
tion one has rE

R

n

+

=

~

E

R

n

+

r.

To prove the result for a bounded domain 
 let (�

j

)

m

j=1

be a 
olle
tion of 
harts and

( 

j

)

m

j=1

a de
omposition of unity subordinate to the 
orresponding 
overing of 
. Then

we 
an 
al
ulate using the retra
tion prin
iple of interpolation

kuk

[W

1;q

w

(
);W

2;q

w

(
)℄

��1

� 


m

X

j=1

k 

j

uk

H

�;q

w

(
)

� 


m

X

j=1

k 

j

uk

H

�;q

w

(H

�

j

)

� 


m

X

j=1

k( 

j

u) Æ �

j

k

H

�;q

wÆ�

j

(R

n

+

)

� 


m

X

j=1

kE

R

n

+

(( 

j

u) Æ �

j

)k

H

�;q

℄
wÆ�

j

(R

n

)

;

where by H

�

j

we denote the bent half spa
es with boundary �

j

(R

n�1

�f0g). Using the

result in the whole spa
e 
ase and℄w Æ �

j

= w on supp 

j

\ 
 we obtain

kuk

H

�;q

w

(
)

� 
kuk

[W

1;q

w

(
);W

2;q

w

(
)℄

��1

� 


m

X

j=1

�

kE

R

n

+

(( 

j

u) Æ �

j

)k

H

��1;q

℄
wÆ�

j

(R

n

)

+ krE

R

n

+

(( 

j

u) Æ �

j

)k

H

��1;q

℄
wÆ�

j

(R

n

)

�

� 


m

X

j=1

�

kE

R

n

+

(( 

j

u) Æ �

j

)k

H

��1;q

℄
wÆ�

j

(R

n

)

+ k

~

E

R

n

+

r(( 

j

u) Æ �

j

)k

H

��1;q

℄
wÆ�

j

(R

n

)

�

� 
(kuk

H

��1;q

w

(
)

+ kruk

H

��1;q

w

(
)

):

This is the asserted estimate.

Lemma 2.8. Let �1 � � � 1. Let p 2 (C

1

0

(
))

0

with rp 2 H

��1;q

w

(
). Then

p 2 H

�;q

w

(
) and there exists a 
onstant 
 = 
(
; q; w) su
h that

kpk

H

�;q

w

=
onst:

� 
krpk

H

��1;q

w

:

Proof. [23℄
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2.3 The Stationary Stokes Equations in Bessel-Potential Spa
es

De�nition 2.9. Let f 2 Y

�2;q

w

(
) and k 2 W

�1;q

w;0

(
). A fun
tion u 2 L

q

w

(
) is 
alled

a very weak solution to the stationary Stokes problem with respe
t to the data f and

k, if

�hu;��i = hf; �i; for all � 2 Y

2;q

0

w

0

;�

(
) and (2.3)

�hu;r i = hk;  i; for all  2 W

1;q

0

w

0

(
): (2.4)

The existen
e and uniqueness of very weak solutions in L

q

w

(
) has been shown in

[24℄. In general the regularity of very weak solutions is not suÆ
ient to ensure that the

restri
tion uj

�


is well de�ned. However, if we restri
t ourselves to a 
ertain 
lass of

data then a good de�nition of boundary values is again possible. More pre
isely the

following theorem has been shown in [24℄ where one 
an also �nd further details and

dis
ussions.

Theorem 2.10. Assume that f 2 Y

�2;q

w

(
) and k 2 W

�1;q

w;0

(
) allow a de
omposition

into

hf; �i = hF; �i � hg;N � r�i

�


for all � 2 Y

2;q

0

w

0

(
);

hk;  i = hK; i � hg;N �  i

�


for all  2 W

1;q

0

w

0

(
)

(2.5)

with g 2 T

0;q

w

(�
); F 2 W

�1;r

~w

(
); K 2 L

r

~w

(
), where 1 < r <1 and ~w 2 A

r

are 
hosen

su
h that W

1;q

0

w

0

(
) ,! L

r

0

~w

0

(
) ,! L

q

0

w

0

(
). Let u be a very weak solution to the Stokes

problem 
orresponding to the data f and k. Then

u 2

~

W

q;r

w; ~w

:=

�

u 2 L

q

w

(
)

�

�

9
 > 0; jhu;��ij � 
k�k

1;r

0

; ~w

0

8� 2 C

1

0;�

(
)

	

:

There exists an operator 
 :

~

W

q;r

w; ~w

! T

0;q

w

(�
) that 
oin
ides with the tangential tra
e

on W

1;q

w

(
). The fa
t that div u = K 2 L

r

~w

(
) permits to de�ne the normal 
omponent

of the tra
e N � uj

�


. In this sense uj

�


is well-de�ned and uj

�


= g.

We now turn to the stationary Stokes equations in weighted Bessel-Potential spa
es.

As a spa
e for the divergen
e we de�ne

H

�;q

w;�

(
) =

(

H

�;q

w;0

(
) = (H

��;q

0

w

0

(
))

0

if � < 0;

H

�;q

w

(
) if � � 0:

(2.6)

By [23℄ one has the interpolation property

�

W

�1;q

w;0

(
);W

1;q

w

(
)

�

1+�

2

= H

�;q

w;�

(
) for � 1 � � � 1

and the following theorem.

Theorem 2.11. Let 1 < q < 1, w 2 A

q

and 0 � � � 2. Assume that f 2 Y

�2;q

w

(
)

and k 2 H

�1;q

w;0

(
) allow de
ompositions into

hf; �i = hF; �i � hg;N � r�i

�


for every � 2 Y

2;q

0

w

0

(
)

hk;  i = hK; i � hg;N i

�


for every  2 W

1;q

0

w

0

(
)

(2.7)
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with F 2 Y

��2;q

w

(
), K 2 H

��1;q

w;�

(
) and g 2 T

�;q

w

(�
). Assume in addition that K and

g ful�ll the 
ompatibility 
ondition hK; 1i




= hg;Ni

�


.

Then there exists a unique very weak solution u 2 L

q

w

(
) with respe
t to f and k. It

is 
ontained in H

�;q

w

(
) and ful�lls the estimate

kuk

�;q;w

� 


�

kFk

Y

��2;q

w

(
)

+ kKk

H

��1;q

w;0

(
)

+ kgk

T

�;q

w

(�
)

�

: (2.8)

3 The Generalized Stokes Operator

For this se
tion we always assume that q 2 (1;1), w 2 A

q

and � 2 [0; 2℄.

Proposition 3.1. If 
 � R

n

is a bounded C

1;1

-domain, then

�

L

q

w;�

(
); Y

2;q

w;�

(
)

�

�

=

Y

�;q

w;�

(
) and

�

L

q

w;�

(
); Y

�2;q

w;�

(
)

�

�

= Y

��;q

w;�

(
), where � =

�

2

with equivalent norms.

Proof. From Theorem 2.11 we obtain that the operator S : Y

��2;q

w

(
) ! Y

�;q

w;�

(
),

de�ned by

hf; 'i = �hSf;�'i for all ' 2 Y

2;q

0

w

0

;�

(
) and

0 = �hSf;r i for all  2 W

1;q

w

0

(
);

(3.1)

is 
ontinuous. In addition, the operator

A : Y

�;q

w

(
)! Y

��2;q

w

(
); u 7! [� 7! hu;��i℄ 2 Y

��2;q

w

(
)

is 
ontinuous. For � = 0 and � = 2 this is obvious, for � 2 (0; 2) it follows by

interpolation from Theorem 2.5.

Moreover x = SAj

Y

�;q

w;�

x for every x 2 Y

�;q

w;�

(
) and it follows from the retra
tion

prin
iple for interpolation spa
es [4, Theorem 6.4.2℄ that

�

L

q

w;�

(
); Y

2;q

w;�

(
)

�

�

= S

�

[Y

�2;q

w

(
); L

q

w

(
)℄

�

�

= S

�

Y

��2;q

w

(
)

�

= Y

�;q

w;�

(
):

The se
ond assertion follows when 
onsidering the dual spa
es in the �rst.

As in the 
lassi
al unweighted 
ase one de�nes the Stokes operator

A = A

0;q;w

: L

q

w;�

(
) � D(A)! L

q

w;�

(
); u 7! �P

q;w

�;

where P

q;w

: L

q

w

(
) ! L

q

w

(
) is the Helmholtz proje
tion that is the proje
tion to the

spa
e of divergen
e free ve
tor �elds

L

q

w;�

(
) = C

1

0;�

(
)

L

q

w

(
)

= fu 2 L

q

w

(
) j hu;r�i = 0 for every � 2 W

1;q

0

w

0

(
)g: (3.2)

The kernel of P

q;w

is equal to the spa
e of gradients frp j p 2 W

1;q

w

(
)g. Moreover

(1� P

q;w

)f = rp, where p solves the weak Neumann problem

hrp;r�i




= hf;r�i




for every � 2 W

1;q

0

w

0

(
): (3.3)

All these fa
ts about the Helmholtz proje
tion in weighted spa
es have been shown by

Fr�ohli
h in [12℄. The domain of the Stokes operator is D(A) = Y

2;q

w;�

(
). In the weighted


ontext it has been introdu
ed and dis
ussed in [15℄ and [14℄.

In the following, we �nd an analogue to the Stokes operator whi
h is adequate in the


ontext of very weak solutions in the Bessel potential spa
es H

�;q

w

(
).
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Theorem 3.2. For every 0 � � � 2 the Stokes operator A has an extension to an

element of L(Y

�;q

w;�

(
); Y

��2;q

w;�

(
)) with the following properties.

1. It des
ribes a 
losed and densely de�ned linear operator in Y

��2;q

w;�

(
) again denoted

by A. For u 2 Y

�;q

w;�

(
) one has

Au = [Y

2��;q

0

w

0

;�

(
) 3 � 7! �hu;��i




℄:

2. The resolvent set �(�A) 
ontains a se
tor �

"

[ f0g = f� 2 C j j arg�j <

�

2

+

"g, " 2 (0;

�

2

), and for � 2 �

"

[ f0g the operator � + A is an isomorphism

in L(Y

�;q

w;�

(
); Y

��2;q

w;�

(
)). The norm of the inverse k(� + A)

�1

k

L(Y

��2;q

w;�

;Y

�;q

w;�

)

is

independent of � 2 �

Æ

for every 0 < Æ < ".

3. For every 0 < Æ < " there exists a 
onstant M

Æ

su
h that

k�(A+ �)

�1

k

L(Y

��2;q

w;�

(
))

�M

Æ

for all � 2 �

Æ

: (3.4)

For �2 � � � 0 let A

�;q;w

be the extension of the Stokes operator whose existen
e

has been stated in Theorem 3.2. Then we 
all

A

�;q;w

: D(A

�;q;w

) := Y

�+2;q

w;�

(
) � Y

�;q

w;�

(
)! Y

�;q

w;�

(
)

the generalized Stokes operator in Y

�;q

w;�

(
). If no 
onfusion 
an o

ur, we omit the

indi
es and write A instead of A

�;q;w

.

Proof. For � = 2 one has Y

�;q

w;�

(
) = Y

2;q

w;�

(
) = D(A), the domain of the 
lassi
al Stokes

operator in L

q

w;�

(
). Hen
e, in this 
ase the assertion of this theorem is shown in [14℄,

where the Stokes operator in L

q

w;�

(
) is introdu
ed.

Our aim is to show the assertion for � = 0 and to apply 
omplex interpolation to

obtain the results for arbitrary 0 � � � 2.

Step 1: We 
onsider � +A

0;q

0

;w

0

, where A

0;q

0

;w

0

is the Stokes operator in L

q

0

w

0

;�

(
), as a


ontinuous linear operator

�+A

0;q

0

;w

0

: Y

2;q

0

w

0

;�

(
)! L

q

0

w

0

;�

(
):

Let A

�2;q;w

:= A

�

0;q

0

;w

0

: L

q

w;�

(
)! Y

�2;q

w;�

(
) be the asso
iated dual operator. Then one

has for u 2 Y

2;q

w;�

(
) and � 2 Y

2;q

0

w

0

;�

(
)

h(�+A

�2;q;w

)u; �i = hu; (�+A

0;q

0

;w

0

)�i = hu; �����i

= h(�� P

q;w

�)u; �i = h(�+A

0;q

0

;w

0

)u; �i:

Thus we obtain using the properties of the dual operator, see e.g. [6℄

� (�+A

�2;q;w

)j

Y

2;q

w;�

= (�+A

0;q;w

)j

Y

2;q

w;�

.

� For � 2 �

"

[ f0g one has � + A

�2;q;w

= (� + A

0;q

0

;w

0

)

�

, whi
h implies k� +

A

�2;q;w

k

L(L

q

w;�

;Y

�2;q

w;�

)

= k�+A

0;q

0

;w

0

k

L(Y

2;q

0

w

0

;�

;L

q

0

w

0

;�

)

.
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� �

"

[ f0g is 
ontained in the resolvent set of A

�2;q;w

and there exists M

Æ

> 0 su
h

that for all � 2 �

Æ

, 0 < Æ < ",

k(�+A

�2;q;w

)

�1

k

L(Y

�2;q

w;�

;L

q

w;�

)

= k(�+A

0;q

0

;w

0

)

�1

k

L(L

q

0

w

0

;�

;Y

2;q

0

w

0

;�

)

�M

Æ

:

This implies by the de�nition of the resolvent

k�(�+A

�2;q;w

)

�1

fk

Y

�2;q

w;�

+ k(�+A

�2;q;w

)

�1

fk

q;w

�M

Æ

kfk

Y

�2;q

w;�

:

Sin
e the resolvent set is nonempty, we know that the operator A

�2;q;w

is 
losed in

Y

�2;q

w;�

(
). Using the Hahn-Bana
h theorem one shows that L

q

w;�

(
), whi
h is equal to

the domain of A

�2;q;w

in Y

�2;q

w;�

(
), is dense in Y

�2;q

w;�

(
).

Step 2: Combining Proposition 3.1 and the assertions for � = 0 and � = 2 we obtain

by 
omplex interpolation that

A : Y

�;q

w;�

(
)! Y

��2;q

w;�

(
) and (��A)

�1

: Y

��2;q

w;�

(
)! Y

�;q

w;�

(
); � 2 �

Æ

[ f0g

are 
ontinuous operators. Moreover, by the same arguments we obtain from (3.4) for

� = 0 and � = 2 that k(� + A)

�1

k

L(Y

��2;q

w;�

(
))

� M

Æ

j�j

�1

for every � 2 �

Æ

and M

Æ

independent of �. This 
ompletes the proof.

For " 2 (0;

�

2

) one de�nes

�

"

:= f� 2 C j � 6= 0; j arg�j < "g :

Corollary 3.3. The negative generalized Stokes operator �A in Y

��2;q

w;�

(
) is the gen-

erator of a bounded analyti
 semigroup fe

�tA

g

t2�

"

for every " 2 (0;

�

2

).

Proof. This follows immediately when 
ombining Theorem 3.2 with [19, Theorem 2.5.2℄.

4 Instationary Stokes Equations

4.1 Very Weak Solutions

We de�ne some fun
tion spa
es that are appropriate to the instationary and very weak


ontext. First, for T <1 and 1 < r; q <1 we set

X

r

0

;q

0

w

0

(0; T ) =

n

� 2 L

r

0

(0; T ;Y

2;q

0

w

0

(
)) \W

1;r

0

(0; T ;L

q

0

w

0

(
)) j �(T ) = 0

o

and for T =1

X

r

0

;q

0

w

0

(0;1) =

n

� 2 L

r

0

(0;1;Y

2;q

0

w

0

(
)) \W

1;r

0

(0;1;L

q

0

w

0

(
))

�

�

�

supp � 
ompa
t in 
� [0;1)

o

:

Both spa
es are equipped with the norm k�k

X

r

0

;q

0

w

0

:= k�k

L

r

0

(W

2;q

0

w

0

)

+k�

t

k

L

r

0

(L

q

0

w

0

)

. If there

is no danger of 
onfusion, we omit the (0; T ) and write X

r

0

;q

0

w

0

. We 
hoose the data

f 2

�

X

r

0

;q

0

w

0

(0; T )

�

0

and k 2 L

r

(0; T ;W

�1;q

w;0

(
)): (4.1)
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As a spa
e of test fun
tions we 
hoose

X

r

0

;q

0

w

0

;�

(0; T ) =

n

� 2 X

r

0

;q

0

w

0

(0; T ) j div� = 0

o

:

De�nition 4.1. If f and k are given as in (4.1), then a fun
tion u 2 L

r

(0; T ;L

q

w

(
)) is


alled a very weak solution to the instationary Stokes equations if

�hu; �

t

i


;T

� hu;��i


;T

= hf; �i


;T

; for every � 2 X

r

0

;q

0

w

0

;�

and

�hu(t);r i




= hk(t);  i




; for every  2 W

1;q

0

w

0

(
)

and almost every t 2 (0; T ):

Note that there does not o

ur any expli
it initial 
ondition u(0). It is hidden im-

pli
itly in the de�nition, sin
e the test fun
tions do not vanish at time t = 0. Moreover

su
h expli
it initial 
onditions would not be reasonable, as shown in the following 
on-

siderations. Let u 2 L

r

(0; T ;L

q

w

(
)). Then

f := [� 7! hu;��

t

���i℄

2

n

� 2 W

1;r

0

(0; T ;L

q

0

w

0

(
))

�

�

�(T ) = 0

o

0

+ (L

r

0

(0; T ;Y

2;q

0

w

0

(
)))

0

= (X

r

0

;q

0

w

0

)

0

;

k(t) := [ 7! hu(t);r i℄ 2 W

�1;q

w;0

(
) for almost every t 2 (0; T );

and sin
e kk(t)k

�1;q;w;0

� ku(t)k

q;w

for almost every t, one has k 2 L

r

(0; T ;W

�1;q

w;0

(
)).

Thus a

ording to De�nition 4.1 every u 2 L

r

(0; T ;L

q

w

(
)) is a very weak solution to

the instationary Stokes problem with respe
t to appropriate data.

To obtain the solvability of the instationary Stokes equations in the very weak sense

in Theorem 4.3 below, we dualize the strong solutions that have been treated in [14℄.

More pre
isely one has:

Theorem 4.2. Let 1 < q < 1, w 2 A

q

and let 
 � R

n

be a bounded C

1;1

-domain.

Moreover, let 0 < T � 1. Then for every f 2 L

r

(0; T ;L

q

w

(
)) there exists a unique

solution u 2 L

r

(0; T ;D(A

q;w

)) = L

r

(0; T ;Y

2;q

w;�

(
)) with u

t

2 L

r

(0; T ;L

q

w;�

(
)) to the

Stokes equations

u

t

+Au = P

q;w

f a.e. in (0; T ); u(0) = 0;

where A is the 
lassi
al Stokes operator in L

q

w;�

(
). This solution ful�lls the estimate

ku

t

k

L

r

(L

q

w;�

)

+ kAuk

L

r

(L

q

w;�

)

� 
kP

q;w

fk

L

r

(L

q

w;�

)

;

where 
 is independent of f and T .

Let � 2 L

r

(0; T ;Y

2;q

w;�

(
))\W

1;r

(0; T ;L

q

w

(
)) be a strong solution to the instationary

Stokes problem in the sense of Theorem 4.2 with respe
t to the exterior for
e v 2

L

r

(0; T ;L

q

w

(
)). Then, by de Rham's Theorem [27℄ there exists a distribution  (t) 2

C

1

0

(
)

0

su
h that

���(t) +r (t) = v(t)� �

t

(t)

for almost every t. Then from this equation and from Lemma 2.8 we obtain, if we

assume in addition that

R




 (t) = 0 for every t 2 (0; T ) that  2 L

r

(0; T ;W

1;q

w

(
)) and

that k k

L

r

(W

1;q

w

)

� 
kr k

L

r

(L

q

w

)

� 
kvk

L

r

(L

q

w

)

.
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Sin
e we use test fun
tions that vanish at time T instead of 0, we set

~

�(t) := �(T � t)

and

~

 (t) := � (T � t). Then we obtain �

~

�

t

��

~

��r

~

 = v(T � �) with

~

�(T ) = 0, and

~

� and

~

 ful�ll the estimate

k

~

�k

X

r;q

w

+ k

~

 k

L

r

(W

1;q

w

)

� 
kvk

L

r

(L

q

w

)

: (4.2)

Theorem 4.3. Let 
 be a bounded C

1;1

-domain and 0 < T � 1. Let f and k be given

as in (4.1) with hk(t); 1i = 0 for almost every t 2 (0; T ).

Then there exists a unique very weak solution u 2 L

r

(0; T ;L

q

w

(
)) to the instationary

Stokes problem. This fun
tion u satis�es the estimate

kuk

L

r

(L

q

w

)

� 


�

kfk

(X

r

0

;q

0

w

0

)

0

+ kkk

L

r

(W

�1;q

w;0

)

�

(4.3)

with a 
onstant 
 = 
(r; q; w;
) > 0.

Proof. First assume that T <1.

As explained above for every v 2 L

r

0

(0; T ;L

q

0

w

0

(
)) there exists a unique tuple (�;  ) 2

X

r

0

;q

0

w

0

;�

� L

r

0

(0; T ;W

1;q

0

w

0

(
)), with

��

t

����r = v;

Z




 (t) dx = 0 for almost every t:

We de�ne a fun
tional u by

hu; vi


;T

:= hf; �i


;T

+ hk;  i


;T

for all v 2 L

r

0

(0; T ;L

q

0

w

0

(
)):

Then the a priori estimate for the strong solution (4.2) implies

jhu; vi


;T

j �kfk

(X

r

0

;q

0

w

0

)

0

k�k

X

r

0

q

0

w

0

+ kkk

L

r

(W

�1;q

w;0

)

k k

L

r

0

(W

1;q

0

w

0

)

�


�

kfk

(X

r

0

;q

0

w

0

)

0

+ kkk

L

r

(W

�1;q

w;0

)

�

kvk

L

r

0

(L

q

0

w

0

)

:

(4.4)

Thus we obtain u 2

�

L

r

0

(0; T ;L

q

0

w

0

(
))

�

0

= L

r

(0; T ;L

q

w

(
)) with

kuk

L

r

(L

q

w

)

� 


�

kfk

(X

r

0

;q

0

w

0

)

0

+ kkk

L

r

(W

�1;q

w;0

)

�

:

Moreover, for every (�;  ) 2 X

r

0

;q

0

w

0

;�

� L

r

0

(0; T ;W

1;q

0

w

0

(
)) we have

�hu; �

t

i


;T

� hu;��i


;T

� hu;r i


;T

= hf; �i


;T

+ hk;  i


;T

;

where we used that the mapping v = ��

t

� �� � r 7! (�;  ) is well-de�ned. This

shows that u is a very weak solution to the instationary Stokes problem a

ording to

De�nition 4.1 and �nishes the proof of existen
e and of the a priori estimate.

To show the uniqueness let U 2 L

r

(0; T ;L

q

w

(
)) be another very weak solution with

respe
t to the data f and k. Moreover, let v 2 L

r

0

(0; T ;L

q

0

w

0

(
)) and let � 2 X

r

0

;q

0

w

0

;�

and

 2 L

r

0

(0; T ;W

1;q

0

w

0

(
)) solve v = ��

t

����r as above. Then one has

hU; vi = �hU; �

t

i � hU;��i � hU;r i = hf; �i+ hk;  i = hu; vi:
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Sin
e v was arbitrary, this implies U = u and the proof for T <1 is 
omplete.

For T = 1 we take v 2 L

r

0

(R

+

;L

q

0

w

0

(
)), with supp v � (0; N) � 
 for some N 2 N

and let

(�;  ) 2 X

r

0

;q

0

w

0

;�

(0; N)� L

r

0

(0; N ;W

1;q

0

w

0

(
))

with

R




 (t) = 0 for almost every t be the unique solution of ��

t

� �� � r = v

with �(N) = 0. Extending the fun
tions � and  by 0 on [N;1) � 
 one obtains

� 2 X

r

0

;q

0

w

0

;�

(0;1) and  2 L

r

0

(0;1;W

1;q

0

w

0

(
)). Thus the mapping

u :=

"

1

[

N=1

L

r

0

(0; N; L

q

0

w

0

(
)) 3 v 7! hf; �i


;1

+ hk;  i


;1

#

is well-de�ned, where every v 2 L

r

0

(0; N; L

q

0

w

0

(
)) is assumed to be extended by zero to

R

+

.

We obtain that uj

(0;N)

2 L

r

(0; N; L

q

w

(
)) for every N 2 N. Moreover, sin
e the set of

fun
tions with 
ompa
t support in time is dense in L

r

0

(0;1; L

q

0

w

0

(
)) and the estimates

in (4.4) are independent of T , this yields u 2 L

r

(0;1;L

q

w

(
)) and the asserted estimate.

The uniqueness in the 
ase T =1 follows from the uniqueness in the 
ase T <1.

Using a slightly more restri
ted spa
e for the data one obtains the following estimate

for the time derivative. In parti
ular the 
orollary below shows that the generalized

Stokes operator in Y

�2;q

w;�

(
) has maximal regularity.

Corollary 4.4. Assume f 2 L

r

(0; T ;Y

�2;q

w

(
)) and k 2 L

r

(0; T ;W

�1;q

w;0

(
)). One has

L

r

(0; T ;Y

�2;q

w

(
)) �

�

X

r

0

;q

0

w

0

(0; T )

�

0

and the asso
iated very weak solution whi
h exists

a

ording to Theorem 4.3 satis�es the stronger estimate













u

t

j

Y

2;q

0

w

0

;�

(
)













L

r

(Y

�2;q

w;�

)

+ kuk

L

r

(L

q

w

)

� 


�

kfk

L

r

(Y

�2;q

w

)

+ kkk

L

r

(W

�1;q

w;0

)

�

(4.5)

with 
 = 
(r; q; w;
) > 0. If in addition k = 0 then u solves the equation

u

0

j

Y

2;q

0

w

0

;�

(
)

+Au = f j

Y

2;q

0

w

0

;�

(
)

;

where A is the generalized Stokes operator in Y

�2;q

w;�

(
).

Proof. Let � 2 C

1

0

(0; T ;Y

2;q

0

w

0

;�

(
)). Then we 
an estimate using (4.3)

jhu

t

j

Y

2;q

0

w

0

;�

(
)

; �i


;T

j � jhu;��i


;T

j+ jhf; �i


;T

j

� 


�

kfk

L

r

(Y

�2;q

w

)

+ kkk

L

r

(W

�1;q

w;0

)

�

k�k

L

r

0

(Y

2;q

0

w

0

)

:

Together with (4.3), the a priori estimate in Theorem 4.3, this proves the assertion.

The last assertion follows from the 
hara
terization of the Stokes operator in Theorem

3.2 and the formulation of very weak solutions.
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A

ording to De�nition 4.1 every u 2 L

r

(0; T ;L

q

w

(
)) is a very weak solution with

respe
t to appropriate data. This means that su
h solutions in general do not possess

enough time-regularity to ensure that the initial 
ondition u(0) = u

0

is well-de�ned.

However, if the data is 
hosen as in Corollary 4.4, we obtain u 2 L

r

(0; T ;L

q

w

(
)) and

u

t

j

Y

2;q

0

w

0

;�

(
)

2 L

r

(0; T ;Y

�2;q

w;�

(
)). By [2℄ this implies that uj

Y

2;q

0

w

0

;�

(
)

is uniformly 
ontinuous

and hen
e this regularity suÆ
es to de�ne u(0)j

Y

2;q

0

w

0

;�

(
)

2 Y

�2;q

w;�

(
), and one has

hu(0); �(0)i




= hu; �

t

i


;T

+ hu

t

; �i


;T

for every � 2 C

1

0

([0; T ℄; Y

2;q

0

w

0

;�

(
)) with �(T ) = 0. Analogously to the 
ase of strong

solutions the gradient part of the initial 
ondition 
annot be pres
ribed and is not

needed for the uniqueness of the solution.

Lemma 4.5. If u 2 L

r

(0; T ;L

q

w

(
)) is a very weak solution a

ording to De�nition 4.1

with respe
t to f 2 L

r

(0; T ;Y

�2;q

w

(
)) and k 2 L

r

(0; T ;W

�1;q

w;0

(
)) then u(0)j

Y

2;q

0

w

0

;�

(
)

= 0.

Proof. For � 2 C

1

0

((0; T );Y

2;q

0

w

0

;�

(
)) one has

hu

t

; �i


;T

= �hu; �

t

i


;T

= hu;��i


;T

+ hf; �i


;T

(4.6)

whi
h implies u

t

j

Y

2;q

0

w

0

;�

(
)

2 L

r

(0; T ;Y

�2;q

w;�

(
)) and (4.6) holds for all � 2 X

r

0

;q

0

w

0

be
ause

one 
an approximate � 2 X

r

0

;q

0

w

0

by a sequen
e in C

1

0

((0; T );Y

2;q

0

w

0

(
)) that 
onverges

in L

r

0

(0; T ;Y

2;q

0

w

0

(
)). Thus hu(0); �(0)i




= hu

t

; �i


;T

+ hu; �

t

i


;T

= 0 for every � 2

C

1

([0; T ℄;Y

2;q

0

w

0

;�

(
)) with �(T ) = 0. In parti
ular, for a �xed � 2 Y

2;q

0

w

0

;�

(
) and � 2

C

1

0

([0; T )) with �(0) = 1 one has hu(0); �i




= hu(0); ��(0)i




= 0. We have proved

u(0)j

Y

2;q

0

w

0

;�

(
)

= 0.

4.2 The Spa
es H

�;r

(X)

By S(R;R) we denote the spa
e of rapidly de
reasing smooth fun
tions. For a Ba-

na
h spa
e X we denote the spa
e of X-valued tempered distributions by S

0

(R;X) :=

L(S(R;R); X). A

ordingly, for an interval I we denote the set of distributions by

D

0

(I;X) := L(C

1

0

(I); X).

For the treatment of solutions to the instationary Stokes Problem in Bessel potential

spa
es with inhomogeneous divergen
e and boundary 
onditions we need a higher time

regularity of this part of the data. To measure this time regularity we work in Bana
h

spa
e-valued Bessel potential spa
es.

For � 2 R we set �

�

t

:= F

�1

h�i

�

F , where h�i

�

= (1 + j� j

2

)

�

2

, � 2 R

n

. Using this, for

r > 1 we de�ne the X-valued Bessel-potential spa
e by

H

�;r

(R;X) :=

n

u 2 S

0

(R;X) j �

�

t

u 2 L

r

(R;X)

o

;

equipped with the norm kuk

H

�;r

(R;X)

:= k�

�

t

uk

L

r

(R;X)

. Moreover, we de�ne

H

�;r

(0; T ;X) :=

�

uj

C

1

0

(0;T ;R)

j u 2 H

�;r

(R;X)

	

16



with the norm kuk

H

�;r

(0;T ;X)

:= inf

�

kUk

H

�;r

(R;X)

j U 2 H

�;r

(R;X); U j

C

1

0

(0;T ;R)

= u

	

.

Finally, we set for � � 0

H

�;r

0

((0; T ℄;X) :=

�

U j

C

1

0

(0;T ;R)

j U 2 H

�;r

(R;X); suppU � [0;1)

	

equipped with

kuk

H

�;r

0

((0;T ℄;X)

:= inf

�

kUk

H

�;r

(R;X)

j U 2 H

�;r

(R;X);

suppU � [0;1); U j

C

1

0

(0;T ;R)

= u

	

and H

�;r

0

(0; T ;X) := C

1

0

(0; T ;X)

H

�;r

(R;X)

with k � k

H

�;r

0

(0;T ;X)

= k � k

H

�;r

(R;X)

.

Lemma 4.6. Let X be a re
exive Bana
h spa
e and � � 0. Then one has

H

��;r

(R;X)

�

=

(H

�;r

0

(R;X

0

))

0

and H

��;r

(0; T ;X)

�

=

(H

�;r

0

0

(0; T ;X

0

))

0

with equivalent norms. Every u 2 H

��;r

(R;X) is identi�ed with the element of the spa
e

(H

�;r

0

(R;X

0

))

0

ful�lling

�x

�

7! hu; �x

�

i

X;X

0

;R

:=




hu(t); �(t)i

R

; x

�

�

X;X

0

; (4.7)

where � 2 S(R;R) and x

�

2 X

0

. With this identi�
ation one has

hu;  i

X;X

0

;R

=

Z

R

D

�

��

t

u(s);�

�

t

 (s)

E

X;X

0

ds (4.8)

for every u 2 H

��;r

(R;X) and  2 H

�;r

0

(R;X

0

).

Proof. Let u 2 H

��;r

(R;X). The linear hull of f�x

�

j � 2 S(R;R); x

�

2 X

0

g is dense

in H

�;r

0

(R;X

0

). Moreover for u 2 H

��;r

(R;X) and � 2 S(R;R), x

�

2 X

0

one has

hu; �x

�

i

X;X

0

;R

=

Z

R

h�

��

t

u(s);�

�

t

�(s)x

�

i

X;X

0

ds;

thus jhu; �x

�

i

X;X

0

;R

j � kuk

H

��;r

(R;X)

k�x

�

k

H

�;r

0

(R;X

0

)

, and we obtain that hu; �i

X;X

0

;R

ex-

tends in a unique way to a 
ontinuous fun
tional on H

�;r

0

(R;X

0

). This extension ful�lls

(4.8).

Vi
e versa let u 2

�

H

�;r

0

(R;X

0

)

�

0

. Then, sin
e X is re
exive, u de�nes a distribution

u 2 S

0

(R;X) by

S(R;R) 3 � 7! [X

0

3 x

�

7! hu; �x

�

i℄ 2 X

00

= X:

For � 2 S(R;R), x

�

2 X

0

one has

�

�




h�

��

t

u; �i

R

; x

�

�

X;X

0

�

�

� kuk

(H

��;r

0

(R;X

0

))

0

k�

��

t

�x

�

k

H

�;r

0

(R;X

0

)

= kuk

(H

��;r

0

(R;X

0

))

0

k�x

�

k

L

r

0

(R;X

0

)

:

Thus the fun
tional �

��

t

u 
an be identi�ed with an element of L

r

(R;X), or u with an

element of H

��;r

(R; X).
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The assertion H

��;r

(0; T ;X)

�

=

(H

�;r

0

0

(0; T ;X

0

))

0

follows from the assertion on R as

follows. For u 2 H

��;r

(0; T ;X) there exists U 2 H

��;r

(R;X) =

�

H

�;r

0

(R;X

0

)

�

0

with

U j

C

1

0

(0;T )

= u. Thus it follows for � 2 C

1

0

(0; T ) and x

�

2 X

0




hu; �i

T

; x

�

�

X;X

0

= hU; �x

�

i

X;X

0

;T

:

This extends by density and 
ontinuity to a fun
tional in (H

�;r

0

0

(0; T ;X

0

))

0

.

Vi
e versa, for u 2 (H

�;r

0

0

(0; T ;X

0

))

0

there exists by the Hahn-Bana
h theorem a

fun
tional U 2 (H

�;r

0

(R;X

0

))

0

�

=

H

��;r

(R;X) su
h that U j

H

�;r

0

0

(0;T ;X

0

)

= u. Sin
e X is

re
exive, one has

�

S(R;R) 3 � 7! [X

0

3 x

�

7! hU; �x

�

i℄

�

2 H

��;r

(R;X

00

) = H

��;r

(R;X)

and U j

C

1

0

(0;T )

2 H

��;r

(0; T ;X).

A Bana
h spa
e X is 
alled a UMD-spa
e if the Hilbert transform,

Hf(x) = PV �

Z

R

1

t� s

f(s)ds; f 2 S(R;X);

extends to a bounded linear operator on L

p

(R;X) for every 1 < p <1.

Lemma 4.7. Let X be a UMD-spa
e and � 2 R.

1. The derivative �

t

is 
ontinuous

�

t

: H

�;r

(R;X) ! H

��1;r

(R;X);

�

t

: H

�;r

(0; T ;X) ! H

��1;r

(0; T ;X);

�

t

: H

�;r

0

((0; T ℄;X) ! H

��1;r

0

((0; T ℄;X):

2. For k 2 Z one has H

k;r

(R;X)

�

=

W

k;r

(R;X) and H

k;r

(0; T ;X)

�

=

W

k;r

(0; T ;X)

with equivalent norms. The isomorphism is given by the identi�
ation in (4.7).

3. Let � 2 [0; 1℄ and let X

1

; X

2

be UMD-spa
es with X

1

,! X

2

. Then there exists a


ontinuous linear extension operator

E : H

�;r

0

((0; T ℄;X

2

) \ L

r

(0; T ;X

1

)! H

�;r

(R;X

2

) \ L

r

(R;X

1

)

with Eu(t) = 0 for every t < 0.

Proof. The assertions of 1. and 2. for the 
ase H

k;r

(R;X) follows from a the 
ontinuity

of s
alar-valued Fourier multipliers between UMD-spa
es proved by Zimmermann [30℄

and duality.

For u 2 W

k;r

(0; T ;X), k > 0, we 
onstru
t an extension

Eu(x) =

8

>

>

>

<

>

>

>

:

�(�x)

P

k+1

j=1

�

j

u(�jx) if �

T

k+1

< x < 0;

u(x) if x 2 [0; T ℄;

�(x� T )

P

k+1

j=1

�

j

u(T � j � (x� T )) if T < x < T +

T

k+1

;

0 else;

(4.9)
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with

P

j

�

j

(�j)

l

= 1 for l = 0; :::; k, where � is a smooth 
ut-o� fun
tion with � = 0 in

a neighborhood of

T

k+1

.

Thus for u 2 W

k;r

(0; T ;X) one has Eu 2 W

k;r

(R;X) = H

k;r

(R;X) whi
h shows that

u 2 H

k;r

(0; T ;X) with

kuk

H

k;r

(0;T ;X)

� kEuk

H

k;r

(R;X)

� 
kEuk

W

k;r

(R;X)

� 
kuk

W

k;r

(0;T ;X)

:

Vi
e versa for u 2 H

k;r

(0; T ;X) an appropriate extension exists by de�nition. Hen
e an

analogous argument 
ompletes the proof for k � 0.

For k < 0 the assertion follows by the duality stated in Lemma 4.6.

3. We begin to 
onsider the extension by 0 to the negative half axis

E

0

: H

�;r

0

((0; T ℄;X

2

) \ L

r

(0; T ;X

1

)! H

�;r

(�1; T ;X

2

) \ L

r

(�1; T ;X

1

);

whi
h is 
ontinuous by the de�nition of H

�;r

0

((0; T ℄;X

2

). Moreover, by E we denote the

extension to t > T de�ned in the same way as in (4.9) with k = 1. By 
onstru
tion

E : L

r

(�1; T ;X

i

) ! L

r

(R;X

i

); i = 1; 2 and

E : H

1;r

(�1; T ;X

2

) ! H

1;r

(R;X

2

)

is 
ontinuous. Sin
e X

2

is a UMD-spa
e one, has

�

L

r

(�1;X

2

); H

1;r

(�1; T ;X

2

)

�

�

= H

�;r

(�1; T ;X

2

):

This is proved in the same way as in the s
alar-valued 
ase, 
f. [26℄ 13, Prop. 6.2,

repla
ing the s
alar-valued multiplier theorem by the Bana
h spa
e-valued version in

[30℄. Thus the assertion follows by interpolation.

4.3 Inhomogeneous Tangential Boundary Conditions

Our next aim is to develop a solution theory of the instationary Stokes equations in

weighted Bessel potential spa
es. In the 
ontext of lowest regularity, in whi
h the 
lass of

solutions is 
ontained in L

r

(0; T ;L

q

w

(
)) the data 
ould be 
hosen fully inhomogeneous.

Now, turning to higher regularity, we do not want to loose this possibility. However,

this requires a more 
omplex theory and a higher regularity of the data than before.

We start with purely tangential boundary 
onditions. If g(t) 2 T

�;q

w

(
) for almost

every t, this means

g(t; x) �N = 0 for almost every x 2 �
 if � 2 [1; 2℄ and

hg(t); Nhi

�


= 0 for every s
alar-valued h 2 C

1

(
)j

�


if � 2 [0; 1℄:

The reason why we deal with tangential boundary data is that su
h data 
an be repre-

sented by

f :=

h

Y

2;q

0

w

0

;�

(
) 3 � 7! hg(t); N � r�i

�


i

2 Y

�2;q

w;�

(
): (4.10)

In the latter spa
e we have de�ned the generalized Stokes operator A, see Se
tion 3. In

general very weak solutions are not regular enough to ensure that their restri
tion to the

boundary is well-de�ned. However, sin
e f j

C

1

0

(
)

= 0 we 
an give a sense to A

�1

f j

�


and it follows that A

�1

f j

�


= g. This has been shown and dis
ussed in [17℄ and [24℄.
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Lemma 4.8. H

�;q

w

(
) is a UMD-spa
e for every � � 0 and T

�;q

w

(�
) is a UMD-spa
e

for � 2 [0; 2℄.

Proof. By [2, Theorem 4.5.2℄ spa
es isomorphi
 to L

q

w

(
), their dual spa
es, fa
tor spa
es

and 
omplex interpolation spa
es are UMD-spa
es. This proves the assertion.

De�nition 4.9. LetX; Y be Bana
h spa
es. A subset T � L(X; Y ) is 
alledR-bounded

if there is a 
onstant C > 0 su
h that for all T

1

; :::; T

n

2 T , x

1

; :::; x

n

2 X and n 2 N

one has

Z

1

0
















n

X

j=1

r

j

(u)T

j

(x

j

)
















Y

du � C

Z

1

0
















n

X

j=1

r

j

(u)x

j
















X

du;

where (r

j

) is a sequen
e of independent, symmetri
 f1;�1g-valued random variables on

[0; 1℄, e.g. the Radema
her fun
tions.

The following theorem has been shown by Weis in [29, Theorem 3.4℄.

Theorem 4.10. Let X and Y be UMD-spa
es. Let

R n f0g 3 t 7!M(t) 2 L(X; Y )

be a di�erentiable fun
tion su
h that the sets

fM(t) j t 2 R n f0gg and ftM

0

(t) j t 2 R n f0gg

are R-bounded. Then Kf = [M(�)

^

f(�)℄

_

, f 2 C

1

0

(R; X), extends to a bounded linear

operator

K : L

r

(R;X)! L

r

(R;Y ) for 1 < r <1:

By Theorem 2.4 one has H

�;q

w

(
) = [L

q

w

(
);W

k;q

w

(
)℄�

k

and by Theorem 2.5 one has

[L

q

w

(
); Y

2;q

w

(
)℄

�

= Y

�;q

w

(
). However, we do not know whether the equivalen
e 
on-

stants depend A

q

-
onsistently on the weight fun
tion. To �x notation and to ensure

that interpolation preserves the A

q

-
onsisten
e of the 
onstants we assume for the rest

of this se
tion that the norm on H

�;q

w

(
) is given by the norm in the interpolation spa
e,

i.e.

k � k

H

�;q

w

(
)

= k � k

[W

k;q

w

(
);W

k+1;q

w

(
)℄

�

; where � 2 [k; k + 1℄ and � = � � k:

In parti
ular H

k;q

w

(
) is equipped with the norm in W

k;q

w

(
) for every k 2 N

0

. A

ord-

ingly we assume k � k

Y

�;q

w

(
)

= k � k

H

�;q

w

(
)

for � 2 [1; 2℄ and

k � k

Y

�;q

w

(
)

= k � k

[L

q

w

(
);W

1;q

w;0

(
)℄

�

for � 2 [0; 1):

Theorem 4.11. Let 
 � R

n

be a bounded domain of 
lass C

1;1

and let I be an interval.

1. For 2 � � � 0 let B(t) : L

q

w

(
)! H

�;q

w

(
), t 2 I, be uniformly bounded for every

w 2 A

q

with an A

q

-
onsistent bound of the 
ontinuity 
onstant. Then B(t), t 2 I,

is R-bounded.

2. The assertion of 1. holds true if one repla
es H

�;q

w

(
) by Y

�;q

w

(
).
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Proof. 1. We begin with the 
ase 0 � � < 1. Let ( 

j

)

N

j=1

,  

j

: R

n

+

� U

j

! V

j

� 
 be a


olle
tion of C

1;1

-
harts and assume that ea
h  

j

is extended to a C

1;1

-di�eomorphism

from R

n

to R

n

. Let (�

j

)

j

be a de
omposition of unity subordinate to the 
overing (V

j

)

j

of 
.

For v 2 A

q

we set w

j

:= v Æ  

�1

j

and by E

e

: H

�;q

v

(R

n

+

) ! H

�;q

v

�

(R

n

) we denote the

even extension

E

e

u(x) =

(

u(x) for x

n

� 0

u(x

0

;�x

n

) for x

n

� 0

for u 2 H

�;q

v

(R

n

+

)

and by E

0

: L

q

w

(
)! L

q

w

(R

n

) we denote the extension by 0. We 
onsider the mapping

M

j

(t) : L

q

v

(R

n

)! L

q

v

(R

n

), whi
h is de�ned by the 
omposition

M

j

(t) : L

q

v

(R

n

)

C

 

�1

j

:h7!hÆ 

�1

j

���������! L

q

w

j

(R

n

)

R




���! L

q

w

j

(
)

B(t)

���! H

�;q

w

j

(
)

M

�

j

:h7!�

j

h

�������! H

�;q

w

j

(H

 

j

)

C

 

j

:h7!hÆ 

j

�������! H

�;q

v

(R

n

+

)

E

e

���! H

�;q

v

�

(R

n

)

�

�

���! L

q

v

�

(R

n

)

R

R

n

+

���! L

q

v

(R

n

+

)

E

0

���! L

q

v

(R

n

);

where H

 

j

is the bent half spa
e with boundary  

j

(R

n�1

�f0g) and v

�

(x

0

; x

n

) = v(x

0

; x

n

)

for x

n

� 0 and v

�

(x

0

; x

n

) = v(x

0

;�x

n

) for x

n

< 0. This operatorM

j

(t) is the 
omposition

of B(t) with operators 
onstant in t and with norms depending A

q

-
onsistently on the

weight fun
tions v and w. The A

q

-
onsisten
e of the norms of C

 

j

, M

�

j

, E

0

and E

e

is

easy to 
he
k in the 
ases � = 0 and � = 1 and it is preserved by interpolation. For �

�

we refer to Corollary 2.3.

By the assumptions on B(t) we obtain that M

j

(t) is uniformly bounded in t with an

A

q

-
onsistent bound. Thus by [14, Theorem 4.3℄ we obtain that M

j

(t) is R-bounded.

Next we show that

B(t) =

n

X

j=1

M

~

�

j

Æ C

 

�1

j

ÆR

R

n

+

Æ �

��

Æ E

e

ÆR

R

n

+

ÆM

j

(t) Æ C

 

j

Æ E

0

; (4.11)

where M

~

�

j

: H

�;q

(wÆ 

j

)

�

Æ 

�1

j

(H

 

j

) ! H

�;q

w

(
) is the multipli
ation with some 
ut-o� fun
-

tion

~

�

j

2 C

1

0

(V

j

) with

~

�

j

� 1 on supp�

j

. One has the equations

R




Æ C

 

�1

j

Æ C

 

j

Æ E

0

= id

L

q

w

(
)

;

N

X

j=1

M

~

�

j

Æ C

 

�1

j

ÆR

R

n

+

Æ �

��

Æ E

e

ÆR

R

n

+

Æ E

0

ÆR

R

n

+

Æ �

�

Æ E

e

| {z }

=id

H

�;q

w

(R

n

+

)

; sin
e �

�

ÆE

e

is even

ÆC

 

j

ÆM

�

j

= id

H

�;q

w

(
)

:

We have used that the Fourier transform and the inverse Fourier transform as well as

the multipli
ation with the even fun
tion h�i

�

maps even fun
tions to even fun
tions.

This shows that the image spa
e of �

�

ÆE

e


onsists of even fun
tions. Thus (4.11) holds.

We �nd that B(t) is R-bounded as a sum and 
omposition of the R-bounded operators

M

j

(t) with bounded operators whi
h are 
onstant in t.
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We turn to the 
ase 1 < � � 2. If B(t) : L

q

w

(
) ! H

�;q

w

(
), t 2 I, ful�lls the

assumptions of this theorem, then �

i

B(t) : L

q

w

(
) ! H

��1;q

w

(
) is uniformly bounded

for i = 1; :::; n as well, by a 
onstant depending A

q

-
onsistently on w. Moreover, by the

embedding H

�;q

w

(
) ,! H

��1;q

w

(
) the same is true for B(t) : L

q

w

(
)! H

��1;q

w

(
).

Sin
e 0 < � � 1 � 1, we are in the 
ase just treated and we �nd that

�

i

B(t) : L

q

w

(
)! H

��1;q

w

(
); i = 1; :::; n; and B(t) : L

q

w

(
)! H

��1;q

w

(
)

are R-bounded. Thus using the notation of De�nition 4.9 we �nd by Lemma 2.7

Z

1

0
















m

X

k=1

r

k

(u)B(t

k

)h

k
















H

�;q

w

(
)

du

� 


0

�

n

X

j=1

Z

1

0
















�

j

m

X

k=1

r

k

(u)B(t

k

)h

k
















H

��1;q

w

(
)

du +

Z

1

0
















m

X

k=1

r

k

(u)B(t

k

)h

k
















H

��1;q

w

(
)

du

1

A

� 


Z

1

0
















m

X

k=1

r

k

(u)h

k
















L

q

w

(
)

du:

Hen
e B(t) is R-bounded.

2. For 1 � � � 2 one has k � k

Y

�;q

w

= k � k

�;q;w

. Thus, if B(t) : L

q

w

(
) ! Y

�;q

w

(
) �

H

�;q

w

(
) ful�lls the assumptions of the theorem, then B(t) : L

q

w

(
) ! H

�;q

w

(
) is R-

bounded. Sin
e B(t) takes values in Y

�;q

w

(
), we obtain the asserted R-boundedness of

B(t) : L

q

w

(
)! Y

�;q

w

(
).

Now we assume 0 � � < 1. We 
hoose some ball B

r

su
h that 
 � B

r

. Then the

operator

E

0;B

r

: Y

�;q

w

(
)! H

�;q

w

(B

r

); E

0;B

r

(u)(x) =

(

u(x) if x 2 


0 if x 2 B

r

n 


(4.12)

is 
ontinuous with 
ontinuity 
onstant 1. This is 
lear for � = 0 and � = 1, for � 2 (0; 1)

it follows by interpolation.

We set

D(t) : L

q

w

(B

r

)! H

�;q

w

(B

r

); D(t)u = E

0;B

r

ÆB(t) ÆR




;

where R




is the restri
tion to 
. Then D(t) is uniformly bounded by a 
onstant de-

pending A

q

-
onsistently on w. Hen
e it is R-bounded by 1.

Let u 2 H

�;q

w

(B

r

) with uj

B

r

n


= 0. Then by the Theorems 2.5 and 2.4 the norm in

the interpolation spa
e is equivalent to the one de�ned by restri
tions. The 
onstants

are maybe no longer A

q

-
onsistent, but in this step of the proof this is no longer needed.

Thus we may estimate, denoting by E

0;R

n

the extension by 0 to the whole spa
e R

n

,

kR




uk

Y

�;q

w

(
)

�
kE

0;R

n

R




uk

H

�;q

w

(R

n

)

=
k Uk

H

�;q

w

(R

n

)

� 
kUk

H

�;q

w

(R

n

)

� 
kuk

H

�;q

w

(B

r

)

;

where  is some 
ut-o� fun
tion with supp � B

r

and  = 1 in 
 and U 2 H

�;q

w

(R

n

)

is some extension of (E

0;R

n

R




u)j

B

r

= u with kUk

H

�;q

w

(R

n

)

� 
kuk

H

�;q

w

(B

r

)

.

Now the R-boundedness of B(t) follows from the R-boundedness ofD(t) as before.
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Lemma 4.12. Let 0 < Æ < ", " 2 (0;

�

2

) and w 2 A

q

. Then the operator

h�i

1�

�

2

(�+A)

�1

: L

q

w;�

(
)! Y

�;q

w

(
)

is bounded uniformly with respe
t to � 2 �

Æ

[ f0g. This uniform bound depends A

q

-


onsistently on w.

Proof. For the 
ases � = 0 and � = 2 we observe that by [14℄ the strong solution u of

(�+A)u = f ful�lls the estimate

j�jkuk

q;w

+ kuk

2;q;w

� 
kfk

q;w

with 
 depending A

q

-
onsistently on w. This yields kuk

2;q;w

� 
kfk

q;w

, whi
h is the

assertion for � = 2 and h�ikuk

q;w

� 
(j�j + 1)kuk

q;w

� 
kfk

q;w

, whi
h is the assertion

for � = 0. Thus we have shown

k(�+A)

�1

k

L(L

q

w;�

;H

�;q

w

)

� 
h�i

�

2

�1

for � = 0; 2:

Next we 
onsider the 
ase � = 1. By interpolation we obtain

k(�+A)

�1

k

L(L

q

w;�

;[L

q

w

;H

2;q

w

℄

1

2

)

� 


1�

1

2

h�i

�(1�

1

2

)




1

2

= 
h�i

�

1

2

;

where 
 is independent of � and depends A

q

-
onsistently on w. Now Lemma 2.6 yields

k(�+A)

�1

fk

Y

1;q

w

�Mk(� +A)

�1

fk

[L

q

w

;H

2;q

w

℄

1

2

� 
Mh�i

�

1

2

kfk

q;w

:

This is the assertion for � = 1. For � 2 (0; 1) and � 2 (1; 2) we use reiteration.

We obtain the following regularity result in the 
ase of purely tangential boundary


onditions.

Lemma 4.13. Let 0 � � � 2 and

g 2 L

r

(0; T ;T

�;q

w

(�
)) \H

�

2

;r

0

((0; T ℄;T

0;q

w

(�
))

be purely tangential. Let u 2 L

r

(0; T ;L

q

w

(
)) be the unique very weak solution to the

instationary Stokes problem with zero initial values, for
e and divergen
e and boundary


ondition g, i.e.,

�hu; �

t

�i


;T

� hu;��i


;T

= �hg;N � r�i

�
;T

for all � 2 X

r

0

;q

0

w

0

;�

hu(t);  i




= 0 for all  2 W

1;q

0

w

0

(
)

(4.13)

and almost every t. Then u 2 L

r

(0; T ;H

�;q

w

(
)) and it ful�lls the estimate

ku

t

j

Y

2;q

0

w

0

;�

(
)

k

L

r

(Y

��2;q

w;�

)

+ kuk

L

r

(H

�;q

w

)

� 


�

kgk

L

r

(T

�;q

w

)

+ kgk

H

�

2

;r

0

((0;T ℄;T

0;q

w

)

�

;

with 
 = 
(r;
; q; A

q

(w)) > 0.
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Proof. By the Lemmas 4.7 and 4.8 we may assume that g is extended to an element of

L

r

(R;T

�;q

w

(�
)) \ H

�

2

;r

(R;T

0;q

w

(�
)) with g(t) = 0 for t < 0. This is possible without

in
reasing the magnitude of the norm of g. The extension is again denoted by g. Let

B : fg 2 T

�;q

w

(�
) j g purely tangentialg !Y

�2;q

w

(
);

g 7![� 7! �hg;N � r�i℄:

Let u 2 L

r

(R;L

q

w

(
)) with u(t) = 0 for t < 0 and su
h that, for t � 0, it is the

very weak solution to the instationary Stokes problem with exterior for
e Bg, for the

extended fun
tion g. This solution exists by Theorem 4.3, is uniquely de�ned by g and

solves the Stokes equations in the sense of (4.13) with T repla
ed by 1. Moreover, by

the uniqueness of very weak solutions, this fun
tion u 
oin
ides on [0; T ℄ with the very

weak solution with respe
t to the original g, given in the assumption of this theorem.

We have to show that it satis�es u 2 L

r

(R;H

�;q

w

(
)) and ful�lls the estimate. Set

u

1

(t) := A

�1

Bg(t), where A is the generalized Stokes operator on Y

�2;q

w;�

(
). Then

u

1

(t)j

�


= g(t) in the sense of Theorem 2.10 for almost every t sin
e g is purely tangen-

tial.

Sin
e A

�1

B : T

0;q

w

(�
)! L

q

w

(
) is 
ontinuous, one obtains

ku

1

k

H

�

2

;r

(R;L

q

w

)

= k�

�

2

t

A

�1

Bgk

L

r

(R;L

q

w

)

= kA

�1

B�

�

2

t

gk

L

r

(R;L

q

w

)

� 
kgk

H

�

2

;r

(R;T

0;q

w

)

:

Moreover, from the pointwise estimate in Theorem 2.11 we obtain u

1

2 L

r

(R;H

�;q

w

(
))

and the estimate ku

1

k

L

r

(R;H

�;q

w

)

� 
kgk

L

r

(R;T

�;q

w

)

. Now u

2

:= u� u

1

solves

�

t

u

2

+Au

2

= ��

t

u

1

in D

0

(R; Y

�2;q

w;�

(
)):

An appli
ation of the Fourier transformation with respe
t to the time variable t yields

û

2

= �it(it +A)

�1

û

1

.

As a next step we show that

M(t) := hti

�

�

2

t(it +A)

�1

P

q;w

2 L(L

q

w

(
); Y

�;q

w

(
))

is a Fourier multiplier. Sin
e

kM(t)k

L(L

q

w

(
);Y

�;q

w

(
))

� khti

�

�

2

+1

(it+A)

�1

P

q;w

k

L(L

q

w

(
);Y

�;q

w

(
))

for every t, we �nd by Lemma 4.12 that M(t) is uniformly bounded by a 
onstant that

depends A

q

-
onsistently on w. By Theorem 4.11 this implies that M(t) is R-bounded.

Moreover,

tM

0

(t) = (thti

�

�

2

�

�

2

t

3

hti

�

�

2

�2

)(it+A)

�1

P

q;w

� it

2

hti

�

�

2

(it+A)

�2

P

q;w

:

Sin
e t(it+A)

�1

: L

q

w

(
)! L

q

w

(
) is uniformly bounded with an A

q

-
onsistent 
onstant

and thti

�

�

2

�

�

2

t

3

hti

�

�

2

�2

� (1 +

�

2

)hti

1�

�

2

, this is R-bounded as before.

Combining the above with Theorem 4.10 and Lemma 4.8 shows that M(t) is a mul-

tiplier. Thus

ku

2

k

L

r

(H

�;q

w

)

� ku

2

k

L

r

(Y

�;q

w

)

= kF

�1

iM(t)hti

�

2

û

1

k

L

r

(H

�;q

w

)

� 
kF

�1

hti

�

2

û

1

k

L

r

(L

q

w

)

= 
ku

1

k

H

�

2

;r

(L

q

w

)

� 
kgk

H

�

2

;r

(T

0;q

w

)

:
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Using this we are in the position to estimate the time derivative of u be
ause

k�

t

uk

L

r

(Y

��2;q

w;�

)

= kAu

2

k

L

r

(Y

��2;q

w;�

)

� 
ku

2

k

L

r

(Y

�;q

w;�

)

� 
kgk

H

�

2

;r

(T

0;q

w

)

:

Combining this with the estimate for u

1

implies

ku

t

k

L

r

(Y

��2;q

w;�

)

+ kuk

L

r

(H

�;q

w

)

� 


�

kgk

L

r

(T

�;q

w

)

+ kgk

H

�

2

;r

(T

0;q

w

)

�

= 
kgk

L

r

(T

�;q

w

)\H

�

2

;r

(T

0;q

w

)

:

4.4 Solutions to Fully Inhomogeneous Data

In the following we 
onsider external for
es

f 2 L

r

(0; T ;Y

��2;q

w

(
)) =

�

L

r

(0; T ;Y

�2;q

w

(
)); L

r

(0; T ;L

q

w

(
))

�

�

2

for 0 � � � 2;

where the equality of the spa
es follows from [28, 1.18.4℄ 
ombined with Theorem 2.5.

For su
h for
es one obtains very weak solutions to the instationary Stokes problem by

interpolation.

Lemma 4.14. For every f 2 L

r

(0; T ;Y

��2;q

w

(
)) there exists a unique solution u 2

L

r

(0; T ;Y

�;q

w;�

(
)) to the Stokes equation

u

t

+Au = f j

Y

2;q

0

w

0

;�

(
)

in D

0

(0; T ;Y

��2;q

w;�

(
)) with u(0)j

Y

2;q

0

w

0

;�

(
)

= 0:

It ful�lls the estimate

kuk

L

r

(Y

�;q

w;�

)

� 
kf j

Y

2;q

0

w

0

;�

(
)

k

L

r

(Y

��2;q

w;�

)

:

Proof. By Corollary 4.4 and Lemma 4.5 this is true for � = 0. Sin
e for f(t) 2 L

q

w;�

(
)

one has f j

Y

2;q

0

w

0

;�

(
)

= P

q;w

f j

Y

2;q

0

w

0

;�

(
)

the solution operator

L : L

r

(0; T ;L

q

w

(
)) 3 f 7! u 2 L

r

(0; T ;Y

2;q

w;�

(
));

where u is the strong solution to the instationary Stokes equations with for
e f , is well-

de�ned, 
ontinuous by Theorem 4.2 and it 
oin
ides with the very weak solution with

respe
t to � 7! hf; �i by the uniqueness of the very weak solution in Theorem 4.3.

Thus we may apply interpolation to the solution operator L : f 7! u

L : L

r

(0; T ;Y

�2;q

w

(
))! L

r

(0; T ;L

q

w;�

(
)) and

L : L

r

(0; T ;L

q

w

(
))! L

r

(0; T ;Y

2;q

w;�

(
))

and we obtain the assertion.
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Our spa
e of initial values is

I

�;q;r

w

= I

�;q;r

w

(
) :=

�

u

0

2 Y

��2;q

w;�

(
)

�

�

�

Z

1

0

ke

�tA

u

0

k

r

�;q;w

dt <1

�

;

where e

�tA

is the semigroup that is generated by the generalized Stokes operator A in

Y

��2;q

w;�

(
) with

e

�tA

: Y

��2;q

w;�

(
)! D(A) = Y

�;q

w;�

(
) � H

�;q

w;�

(
):

It is equipped with the norm ku

0

k

I

�;q;r

w

:= ku

0

k

Y

��2;q

w;�

+ ke

�tA

u

0

k

L

r

(H

�;q

w

)

.

Lemma 4.15. I

2;q;r

w

is dense in I

�;q;r

w

for every � 2 [0; 2℄.

Proof. If � = 2 nothing is to show. Thus we assume � 2 [0; 2).

For u

0

2 I

�;q;r

w

and � > 0 we set u

�

:= �(�+A)

�1

u

0

. Re
all the inequalities

k(�+A)

�1

xk

L

q

w;�

� 
kxk

Y

�2;q

w;�

and k(�+A)

�1

xk

Y

2;q

w;�

� 
kxk

L

q

w;�

;

whi
h are true with 
 independent of � by Theorem 3.2. Using this and the de�nition

of the norm in I

�;q;r

w

one shows that ku

�

k

I

2;q;r

w

� 
(�)ku

0

k

I

0;q;r

w

� 
(�)ku

0

k

I

�;q;r

w

. This

yields u

�

2 I

2;q;r

w

. Moreover, sin
e x(t) := e

�tA

u

0

2 Y

2;q

w;�

(
) we �nd by Lemma 4.12

k�(�+A)

�1

x(t)� x(t)k

Y

�;q

w;�

�

1

h�i

1�

�

2

kAx(t)k

q;w

�!1

���! 0: (4.14)

Sin
e kA(�+A)

�1

x(t)k

Y

�;q

w;�

� 
kAx(t)k

Y

��2;q

w;�

2 L

r

(R

+

) with 
 independent of � we have

by Lebesgue's Theorem

ke

�tA

u

�

� e

�tA

u

0

k

Y

�;q

w;�

= k�(�+A)

�1

x(t)� x(t)k

Y

�;q

w;�

! 0 in L

r

(R

+

)

as �!1. In addition Lemma [19, Lemma I.3.2℄ implies that u

�

! u

0

in Y

��2;q

w;�

(
) as

�!1 and we obtain 
onvergen
e in I

�;q;r

w

.

Lemma 4.16. Let 1 < q < 1, � 2 [0; 2℄ and let w 2 A

q

. Let 
 � R

n

be a bounded

C

2;1

-domain if � > 1 and a bounded C

1;1

-domain if � � 1.

Then the Helmholtz proje
tion P

q;w

: H

�;q

w

(
)! H

�;q

w

(
) is 
ontinuous.

Proof. This follows by interpolation from the 
orresponding assertions for � = 0; 1; 2.

The assertion for � = 0 follows from [12℄ and the one for � = 1 and � = 2 follows from

the regularity of solutions to the weak Neumann problem in weighted spa
es that has

been proved in [21, A2℄.

Theorem 4.17. Let 1 < q < 1, � 2 [0; 2℄ and let w 2 A

q

. Let 
 � R

n

be a bounded

C

2;1

-domain if � > 1 and a bounded C

1;1

-domain if � � 1. Moreover, we take

f 2 L

r

(0; T ;Y

��2;q

w

(
));

k 2 H

�

2

;r

0

((0; T ℄;W

�1;q

w;0

(
)) \ L

r

(0; T ;H

��1;q

w;�

(
));

g 2 H

�

2

;r

0

((0; T ℄;T

0;q

w

(�
)) \ L

r

(0; T ;T

�;q

w

(�
));

u

0

2 I

�;q;r

w

(
);
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ful�lling the 
ompatibility 
ondition hk(t); 1i




= hg(t); Ni

�


, for almost all t 2 (0; T ).

Then there exists a unique very weak solution u 2 L

r

(0; T ;H

�;q

w

(
)) to the instationary

Stokes system, i.e.,

�hu; �

t

i


;T

� hu;��i


;T

= �hu

0

; �(0)i




+ hf; �i


;T

� hg;N � r�i

�
;T

�hu(t);r i




= hk(t);  i




� hg(t); N i

�


for a.e. t 2 [0; T ℄

for all � 2 X

r

0

;q

0

w

0

;�

and  2 W

1;q

0

w

0

(
).

Moreover, there exists a pressure fun
tional p 2 H

�1;r

(0; T ;H

��1;q

w

(
)) that is unique

modulo 
onstants, su
h that

�

t

u��u+rp = f j

C

1

0

(
)

is ful�lled in the sense of distributions on (0; T ) � 
. This solution (u; p) ful�lls the

estimate

ku

t

j

Y

2;q

0

w

0

;�

(
)

k

L

r

(0;T ;Y

��2;q

w;�

(
))

+ kuk

L

r

(H

�;q

w

)

+ kpk

H

�1;r

(H

��1;q

w

)

�


�

kfk

L

r

(H

��2;q

w

)

+ kkk

H

�

2

;r

0

((0;T ℄;W

�1;q

w;0

)\L

r

(H

��1;q

w;�

)

+ kgk

H

�

2

;r

0

((0;T ℄;T

0;q

w

)\L

r

(T

�;q

w

)

+ ku

0

k

I

�;q;r

w

�

(4.15)

with 
 = 
(
; r; �; q; w) > 0.

Remark 4.18. The right hand side in the above theorem is

[� 7! �hu

0

; �(0)i




+ hf; �i


;T

� hg;N � r�i

�
;T

℄ 2 (X

r

0

;q

0

w

0

)

0

:

This means the 
ase of non-zero initial 
onditions requires no generalization of the

de�nition of the very weak solution given in De�nition 4.1.

Proof. Step 1. We start with the divergen
e and the normal part of the boundary


ondition.

Let ~u

1

(t) 2 H

�;q

w

(
) be the very weak solution to the stationary Stokes system with

external for
e 0, boundary 
ondition g(t) and divergen
e k(t). Moreover, set u

1

(t) :=

~u

1

(t)� P

q;w

~u

1

(t). Then one has by Lemma 4.16

u

1

(t) 2 H

�;q

w

(
); u

1

(t) = r�(t)

and for almost every t 2 [0; T ℄ and every  2 W

1;q

0

w

0

(
) one has by (3.3)

hr�;r i




= hu

1

(t);r i




= h~u

1

(t);r i




= �hk(t);  i




+ hg(t); N i

�


:

This fun
tion � 
an be 
hosen su
h that

R




� = 0.

The a priori estimate of the solution to the stationary problem 
ombined with the


ontinuity of P

q;w

on H

�;q

w

(
) shown in Lemma 4.16 implies u

1

2 L

r

(0; T ;H

�;q

w

(
)).

Thus by Lemma 4.7 one has �

t

u

1

2 H

�1;r

(0; T ;H

�;q

w

(
)) and it 
annot be expe
ted to
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be a fun
tion in time. However, sin
e u

1

is a gradient, for � 2 C

1

0

(0; T ;Y

2;q

0

w

0

;�

(
)) one

has

h�

t

u

1

; �i


;T

= �hu

1

; �

t

P

q

0

;w

0

�i


;T

= �hP

q;w

u

1

; �

t

�i


;T

= 0:

Thus the estimate for �

t

u

1

j

Y

2;q

0

w

0

;�

(
)

2 L

r

(0; T ;Y

��2;q

w;�

(
)) is obvious.

Next we have to show that the tangential 
omponent of the boundary value 
(u

1

) of

u

1

is well-de�ned in the sense of Theorem 2.10 and ful�lls the estimate

k
(u

1

)k

L

r

(T

�;q

w

)\H

�

2

;r

0

(T

0;q

w

)

� 
ku

1

k

L

r

(H

�;q

w

)\H

�

2

;r

0

(L

q

w

)

� 


�

kkk

L

r

(H

��1;q

w;�

)\H

�

2

;r

0

(W

�1;q

w;0

)

+ kgk

L

r

(T

�;q

w

)\H

�

2

;r

0

(T

0;q

w

)

�

:

(4.16)

We begin proving the following pointwise inequality

k
(u

1

(t))k

T

�;q

w

� 
ku

1

(t)k

H

�;q

w

� 
(kk(t)k

H

��1;q

w;�

+ kg(t)k

T

�;q

w

): (4.17)

The se
ond inequality follows from the a priori estimate of the stationary Stokes equation

in Theorem 2.11 
ombined with the 
ontinuity of P

q;w

. Hen
e it remains to prove the

�rst.

If � � 1 this follows from the 
ontinuity of the restri
tion v 7! vj

�


: H

�;q

w

(
) !

T

�;q

w

(�
). Thus we assume 0 � � < 1. Sin
e �u

1

(t) = r��(t) one has �u

1

(t)j

C

1

0;�

(
)

=

0. This means 
(u

1

(t)) 2 T

0;q

w

(�
) is well-de�ned by Theorem 2.10. Moreover, if � = 0,

this means that the mapping

W

1;q

w

(
) 3 � 7! 
(r�) 2 T

0;q

w

(�
)

is 
ontinuous and, by the de�nition of T

1;q

w

(
), it is also bounded as an operator


 Æ r : W

2;q

w

(
)! T

1;q

w

(�
):

Hen
e by interpolation we obtain the 
ontinuity of 
 Æ r : H

�+1;q

w

(
) ! T

�;q

w

(�
) and

this implies the pointwise estimate (4.17) for almost every t, where one uses the Lemmas

2.8 and 2.7 to verify

k�k

H

�+1;q

w

� 


�

kr�k

H

�;q

w

+ k�k

H

�;q

w

�

� 


�

kr�k

H

�;q

w

+ kr�k

H

��1;q

w

�

� 
ku

1

k

H

�;q

w

;

sin
e � has mean value 0. Thus we obtain

k
(u

1

)k

L

r

(T

�;q

w

)

� 
ku

1

k

L

r

(H

�;q

w

)

� 
(kkk

L

r

(H

��1;q

w;�

)

+ kgk

L

r

(T

�;q

w

)

): (4.18)

In parti
ular (4.17) holds for � repla
ed by 0. Assume for a moment that k, g and

u

1

are de�ned on R � 
 with supp k; supp g � [0;1) in time. Obviously the operator

�

t

a
ting in time 
ommutes with the 
ontinuous operator (g(t); k(t)) 7! u

1

(t) a
ting in

spa
e. Combining this with (4.17) implies

k
(u

1

)k

H

�

2

;r

(R;T

0;q

w

)

�
ku

1

k

H

�

2

;r

(R;L

q

w

)

�


�

kkk

H

�

2

;r

(R;H

�1;q

w;0

)

+ kgk

H

�

2

;r

(R;T

0;q

w

)

�

:

(4.19)
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For g and k given as in the assumption of this theorem by Lemma 4.7 there exist

extensions Eg 2 H

�

2

;r

(R;T

0;q

w

(�
)) and Ek 2 H

�

2

;r

(R;H

�1;q

w;0

(
)). The resulting u

E

1

ful�lls supp u

E

1

� suppEg [ suppEk in time. Thus we obtain

k
(u

1

)k

H

�

2

;r

0

((0;T ℄;T

0;q

w

)

� 


�

kkk

H

�

2

;r

0

((0;T ℄;H

�1;q

w;0

)

+ kgk

H

�

2

;r

0

((0;T ℄;T

0;q

w

)

�

(4.20)

from (4.19). Combining (4.18) and (4.20) implies that the tangential 
omponent of the

boundary value of u

1

ful�lls 
(u

1

) 2 H

�

2

;r

0

((0; T ℄;T

0;q

w

(�
)) \ L

r

(0; T ;T

�;q

w

(�
)) and the

estimate (4.16).

Step 2. We 
onsider the tangential 
omponent of the boundary 
ondition.

Let u

2

2 L

r

(0; T ;H

�;q

w

(
)) be the solution to the instationary Stokes system with van-

ishing initial 
ondition, exterior for
e, divergen
e and the purely tangential boundary


ondition

g

tan

� 
(u

1

) 2 H

�

2

;r

0

((0; T ℄;T

0;q

w

(�
)) \ L

r

(0; T ;T

�;q

w

(�
));

where g

tan

is the tangential 
omponent of g. Su
h a fun
tion u

2

exists by Lemma 4.13

and ful�lls the estimate

k(�

t

u

2

)j

Y

2;q

0

w

0

;�

k

L

r

(Y

��2;q

w;�

)

+ ku

2

k

L

r

(H

�;q

w

)

�


�

kg

tan

k

H

�

2

;r

0

(T

0;q

w

)\L

r

(T

�;q

w

)

+ k
(u

1

)k

H

�

2

;r

0

(T

0;q

w

)\L

r

(T

�;q

w

)

�

�


�

kkk

H

�

2

;r

0

(H

�1;q

w;0

)

+ kgk

H

�

2

;r

0

(T

0;q

w

)

+ kkk

L

r

(H

��1;q

w;�

)

+ kgk

L

r

(T

�;q

w

)

�

;

where in the last inequality we have used (4.16).

Step 3. The next step is to 
onsider the initial values.

We set u

3

(t) = e

�tA

u

0

, where e

�tA

is the semigroup generated by the generalized Stokes

operator in Y

��2;q

w;�

(
). Then u

3

is a solution to

�

t

u

3

+Au

3

= 0; u

3

j

Y

2;q

0

w

0

;�

(
)

(0) = u

0

:

By the de�nition of the spa
e of initial values I

�;q;r

w

it ful�lls the estimate













�

t

u

3

j

Y

2;q

0

w

0

;�

(
)













L

r

(Y

��2;q

w;�

)

+ ku

3

k

L

r

(H

�;q

w

)

� ku

0

k

I

�;q;r

w

:

Step 4. It remains to treat the external for
e.

By Lemma 4.14 there exists a unique very weak solution u

4

2 L

r

(0; T ;Y

�;q

w;�

(
)) solving

�

t

u

4

+Au

4

= f j

Y

2;q

0

w

0

;�

(
)

; u

4

j

Y

2;q

0

w

0

;�

(
)

(0) = 0:

It ful�lls the estimate













�

t

u

4

j

Y

2;q

0

w

0

;�

(
)













L

r

(Y

��2;q

w;�

)

+ ku

4

k

L

r

(Y

�;q

w

(
))

� 
kfk

L

r

(Y

��2;q

w

)

.

Step 5. Summarizing the above shows that u := u

1

+ u

2

+ u

3

+ u

4

2 L

r

(0; T ;H

�;q

w

(
))
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is a very weak solution as required. The fun
tion u ful�lls the estimate













�

t

uj

Y

2;q

0

w
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��2;q
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+ kuk

L
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�
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+ kkk

L

r
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��1;q

w;�
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�
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0

(W
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)
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L

r

(T

�;q

w

)\H

�

2
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(T

0;q

w

)
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0

k

I

�;q;r

w

�

;

sin
e this is true for u

1

, u

2

, u

3

and u

4

.

Step 6. The uniqueness of u follows from the uniqueness of the very weak solution

proved in Theorem 4.3.

Step 7. It remains to show existen
e and estimates for the pressure fun
tional.

We approximate f; k; g; u

0

by fun
tions

f

n

2 L

r

(0; T ;L

q

w

(
)); k

n

2 H

1;r

0

(0; T ;H

1;q

w

(
));

g

n

2 H

1;r

0

(0; T ;T

2;q

w

(�
)); u

0;n

2 I

2;q;r

w

in the norms of the 
orresponding spa
es for the data as in the assumptions of this

theorem. Then one obtains as above a strong solution

u

n

2 L

r

(0; T ;H

2;q

w

(
)) with �

t

u

n

2 L

r

(0; T ;L

q

w

(
))

to the Stokes problem with respe
t to the data u

0;n

; f

n

; g

n

; k

n

. By the uniqueness proved

in Step 5 the fun
tions u

n

ful�ll the a priori estimate (4.15). This implies u

n

! u in

L

r

(0; T ;H

�;q

w

(
)).

By de Rham's Theorem [27℄ there exists p

n

(t) 2 (C

1

0

(
))

0

su
h that

�

t

u

n

(t)��u

n

(t) +rp

n

(t) = f

n

(t) almost everywhere on (0; T )� 
:

Sin
e rp

n

2 L

r

(0; T ;L

q

w

(
)) one has by Lemma 2.8 that p(t) 2 W

1;q

w

(
) for almost

every t. We 
hoose p

n

(t) su
h that

R

p

n

(t) dx = 0 for every t.

Every rp

n

ful�lls the estimate
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n

k
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(H

��2;q

w

)

�


�

kk

n

k

L

r

(H

��1;q

w;�

)\H

�

2

;r

0

(H

�1;q

w;0

)

+ kg

n

k

L

r

(T

�;q

w

)\H

�

2

;r

0

(T

0;q

w

)

+ kf

n

k

L

r

(Y

��2;q

w

)

+ ku

0;n

k

I

�;q;r

w

�

;

where we have used Y

��2;q

w

(
)j

H

2��;q

0

w

0

;0

,! H

��2;q

w

(
) and Lemma 4.7 to show

k�

t

u

n

k

H

�1;r
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��2;q

w

)
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n

k

L

r
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��2;q

w

)

� 
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n

k

L

r

(H

�;q

w

)

:

Moreover, by Lemma 4.7 one has H

�1;r

(0; T ;H

��2;q

w

(
)) = W

�1;r

(0; T ;H

��2;q

w

(
)) and

for every � 2 W

1;r

0

(0; T ;H

1��;q

0

w

0

;0

(
)) with h�(t); 1i = 0 we �nd � 2 W

1;r

0

(0; T ;H

2��;q

0

w

0

;0

(
))

with

�h�(t);r i




= h�(t);  i




for all  2 W

1;q

0

w

0

(
)

and k�k

W

1;r

0

(H

2��;q

0

w

0

;0

)

� 
k�k

W

1;r

0

(H

1��;q

0

w

0

;0

)

. For � 2 [0; 1℄ we may 
hoose �(t) to be equal

to the very weak solution to the stationary Stokes equation with 0 external for
e and

divergen
e �(t) that exists by Theorem 2.11. For � 2 (1; 2℄ we may apply 
omplex
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interpolation to the Bogowski operator on L

q

w

(
) and on W

1;q

w;0

(
). The 
ontinuity of

this operator between weighted spa
es has been shown in [22℄.

For � 2 C

1

0

((0; T )� 
) with mean value 0 one has the estimate

jhp

n

; �i


;T

j = jhrp

n
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;T

j � 
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n

k

H
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(H

��2;q

w

)
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0
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1��;q

0
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)

:

Combining the above yields the estimate
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:

Repla
ing p

n

by p

n

� p

m

in the above estimates shows that (p

n

) is a Cau
hy sequen
e

in H

�1;r

(0; T ;H

��1;q

w

(
)) 
onverging to some p 2 H

�1;r

(0; T ;H

��1;q

w

(
)).

The 
ouple (u; p) solves the Stokes equations in the distributional sense and ful�lls

the a priori estimate.

Note that the solution 
onstru
ted in Theorem 4.17 does in general not ful�ll �

t

u 2

L

r

(0; T ;Y

��2;q

w

(
)). A

ordingly, the pressure p is 
ontained in H

�1;r

(0; T ;H

��1;q

w

(
)).

This result 
ould be improved to

p 2 H

�1;r

(0; T ;H

�;q

w

(
)) + L

r

(0; T ;H

��1;q

w

(
));

but p is in general not integrable in time.

Another problem 
on
erns the boundary values. In the above theorem boundary


onditions are in
luded even though for 0 � � < 1 the equation uj

�


= g in general

makes no sense. The reason is that u is in general not smooth enough to make its

restri
tion to the boundary well-de�ned.

However, if data and solution are regular enough, this 
an be established a posteri-

ori. More pre
isely, let � 2 (1;1) and ~w 2 A

�

su
h that L

�

~w

(
) ,! W

��1;q

w;0

(
) and

assume k 2 L

r

(0; T ;L

�

~w

(
)) \ H

�

2

;r

0

((0; T ℄;H

�1;q

w;0

(
)). Then the normal 
omponent of

the boundary 
ondition 
an be de�ned as in the stationary 
ase and one obtains

hu(t); N i

�


= hu(t);r i




+ hdiv u(t);  i




= hg(t); N i

�


for almost every t and every  2 W

1;q

0

w

0

(
). Thus the normal 
omponent of u is equal to

the one of g.

The tangential 
omponent 
auses more diÆ
ulties than in the stationary 
ase. The

reason is that f 2 L

r

(0; T ;W

�1;�

~w

(
)) does in general not imply �

t

u(t) 2 W

�1;�

~w

(
) for

almost every t. And this is ne
essary to ensure u(t) 2

~

W

q;�

w; ~w

, the spa
e in whi
h the

tangential 
omponent of the boundary values is well-de�ned.

Hen
e, to ensure that the tangential boundary 
ondition is well-de�ned we assume

f 2 L

r

(0; T ;W

�1;�

~w

(
)) and u 2 L

r

(0; T ;H

�;q

w

(
)); u

t

(t) 2 W

�1;�

~w

(
) (4.21)

for almost every t. Then, using test fun
tions of the form � � � with � 2 C

1

0

(0; T ) and

� 2 C

1

0

(
) one shows that for every � 2 C

1

0;�

(
) and almost every t one has

h�u(t); �i




= hu(t);��i




= h�

t

u(t); �i




� hf(t); �i
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whi
h implies u(t) 2

~

W

q;�

w; ~w

for almost every t by the assumptions on f and u

t

. Moreover,

hu;N � r�i

�
;T

= hu;��i


;T

� h�u; �i


;T

= hg;N � r�i

�
;T

for every � 2 W

1;r

(0; T ;Y

2;q

0

w

0

;�

(
)) with �(0) = �(T ) = 0. This means that u ful�lls the

tangential boundary 
ondition almost everywhere.

In parti
ular, (4.21) is ful�lled in the 
ase of weak solutions. Thus one has the

following proposition.

Proposition 4.19. Let � 2 [1; 2℄ and the data f; k; g and u

0

be 
hosen a

ording to

Theorem 4.17 and let u 2 L

r

(0; T ;H

�;q

w

(
)) be a very weak solution with respe
t to this

data.

Then (u; p) ful�lls the Stokes system (1.1) in the sense of distributions. In addition

u(t)j

�


= g(t) for almost every t.
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