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We investigate the solvability of the instationary Stokes equations with

fully inhomogeneous data in L

r

(0; T ;H

�;q

w

(
)), where H

�;q

w

(
) is a Bessel-

Potential spae with a Mukenhoupt weight w. Depending on the order

of this Bessel-Potential spae we are dealing with strong solutions or with

very weak solutions. Whereas in the ontext of lowest regularity one obtains

solvability with respet to inhomogeneous data by dualization, this is more

deliate in the ase of higher regularity, where one has to introdue some

additional time regularity. As a preparation, we introdue a generalization of

the Stokes operator that is appropriate to the ontext of very weak solutions

in weighted Bessel-Potential spaes.
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1 Introdution

We onsider the instationary Stokes equations with fully inhomogeneous data on some

time interval [0; T ), 0 < T � 1, and in a bounded domain 
 � R

n

of lass C

1;1

,

�

t

u��u+rp = F in (0; T )� 
;

div u = K in (0; T )� 
;

u = g on (0; T )� �
;

u(0) = u

0

in 
:

(1.1)

It is our aim to �nd a lass of solutions to (1.1) in L

r

(0; T ;H

�;q

(
)) where H

�;q

(
) is a

Bessel-potential spae for � 2 [0; 2℄. This means we develop a solution theory that in-

ludes strong solutions in the ase � = 2 and weak solutions in the ase � = 1. However,

if � = 0, it is also possible that the solutions are only ontained in L

r

(0; T ;L

q

(
)), i.e.,

they do not possess any weak derivatives. Consequently the notion of weak solutions

�
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is no longer suitable in this ontext. Thus one introdues the more general notion of

very weak solutions. To arrive there one multiplies the �rst equation in (1.1) with a

test funtion �, solenoidal in spae and vanishing on the boundary and at time T , then

formal integration by parts yields

�hu; �

t

�i


;T

� hu;��i


;T

= hF; �i


;T

� hg;N � r�i

�
;T

: (1.2)

Applying the same method to the seond equation with a suÆiently smooth test fun-

tion  we obtain

�hu(t);r i = hK(t);  i � hg(t); N �  i

�


(1.3)

for almost every t. The equations (1.2) and (1.3) an be used for the de�nition of very

weak solutions. A similar formulation has been introdued by Amann in [3℄ in the ase

of the Navier-Stokes equations. In this artile as well as by Farwig, Galdi and Sohr in

[8℄, [9℄ and by Farwig, Kozono and Sohr [10℄ solvability with low-regularity data has

been shown.

We investigate this problem in funtion spaes weighted in the spae variable. More

preisely, we onsider Lebesgue-, Sobolev- and Bessel potential spaes with respet to

the measure w dx, where w is a weight funtion ontained in the Mukenhoupt lass A

q

,

f., (2.1) below.

Classial tools for the treatment of partial di�erential equations extend to funtion

spaes with Mukenhoupt weights. As important examples we mention the ontinuity

of the maximal operator and the multiplier theorems that an be found in the books of

Gar��a-Cuerva and Rubio de Frania [18℄ and Stein [25℄; extension theorems of funtions

on a domain to funtions on R

n

have been shown by Chua [5℄, extension theorems of

funtions on the boundary to funtions on the domain by Fr�ohlih [15℄, see also [20℄.

These tools were the base to treat the solvability of the Stokes and Navier-Stokes

equations in weighted funtion spaes by Farwig and Sohr in [11℄ and by Fr�ohlih in

[13℄, [14℄, [15℄. Using partiular weight funtions this theory may be used for a better

dsription of the solution, e.g. lose to the boundary or in the neighborhood of a

point. However the mathematial signi�ane of Mukenhoupt weights is given by the

Extrapolation Theorem [18, IV Lemma 5.18℄. An even more powerful extrapolation

theorem by Curbera, Gar��a-Cuerva, Martell and P�erez [7℄ guarantees estimates in very

general Banah funtion spaes provided that the estimates in weighted funtion spaes

are known for all weights from the Mukenhoupt lass A

q

. Moreover, this property

may be used to derive the R-boundedness of families of operators from their uniform

boundedness in weighted funtion spaes. This fat was used by Fr�ohlih [14℄ to give a

new proof of the maximal regularity of the Stokes operator in L

q

; in this paper this is

the ruial method in Setion 4.3.

The outline of this paper is as follows. In Setion 3 we introdue a generalization

of the Stokes operator that is appropriate to the ontext of very weak solutions in

weighted Bessel-Potential spaes. As in the lassial ase this generalized Stokes operator

generates an analyti semigroup and has maximal regularity.

The ruial method in Setion 4.1 is dualization. Based on the existene and unique-

ness of strong solutions in [14℄ we obtain the solvability in the lowest regularity on-

text treated in the paper where the solutions are merely ontained in L

r

(0; T ;L

q

w

(
)).

This dualization proedure automatially yields solutions with respet to inhomogeneous
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boundary values and divergenes as shown in Theorem 4.3. The boundary onditions are

inluded impliitly in the inhomogeneous fore and divergene, sine they may ontain

a part that is onentrated on the boundary.

In the Setions 4.3 and 4.4 we are looking for solutions with respet to higher regular-

ity. In this ase, the inhomogeneous boundary ondition and divergene ompliates the

situation strongly. In partiular, one needs some additional time-regularity depending

on the order of the Bessel potential spae we are working in and a more omplex theory

is required. The omponent of the boundary ondition that is tangential to the bound-

ary is treated by means of an operator-valued Fourier Multiplier Theorem by Weis [29℄.

We obtain the solution to an inhomogeneous fore by interpolation between the very

weak and the strong solution. The initial ondition is represented by the semigroup

generated by the generalized Stokes operator. The divergene and the normal part of

the boundary ondition an be realized by a gradient. If we put all these parts together

we an prove our main result Theorem 4.17.

2 Preliminaries

2.1 Weighted Funtion Spaes

Let A

q

, 1 < q <1, the set of Mukenhoupt weights, be given by all 0 � w 2 L

1

lo

(R

n

)

for whih

A

q

(w) := sup

Q

�

1

jQj

Z

Q

w dx

��

1

jQj

Z

Q

w

�

1

q�1

dx

�

q�1

<1: (2.1)

The supremum is taken over all ubes Q in R

n

. To avoid trivial ases, we exlude the

ase where w vanishes almost everywhere.

A onstant C = C(w) is alled A

q

-onsistent if for every 

0

> 0 it an be hosen

uniformly for all w 2 A

q

with A

q

(w) < 

0

. The A

q

-onsistene is of great importane

sine it is needed for the appliation of the Extrapolation Theorem [18, IV Lemma

5.18℄. In partiular this is used when showing the ontinuity of operator-valued Fourier

multipliers and the maximal regularity of an operator; see e.g. [15℄ for details and

appliations, in this paper we make use of this method in Setion 4.3.

Let k 2 N

0

, q 2 (1;1), w 2 A

q

and let 
 � R

n

be a Lipshitz domain. Then we

de�ne the following weighted versions of Lebesgue and Sobolev spaes.

� L

q

w

(
) :=

n

f 2 L

1

lo

(
) j kfk

q;w

:=

�
R




jf j

q

w dx

�

1

q

<1

o

.

It is an easy onsequene of the orresponding result in the unweighted ase that

(L

q

w

(
))

0

= L

q

0

w

0

(
) with

1

q

+

1

q

0

= 1 and w

0

= w

�

1

q�1

2 A

q

0

: (2.2)

� Set W

k;q

w

(
) =

n

u 2 L

q

w

(
)

�

�

�

kuk

k;q;w

:=

P

j�j�k

kD

�

uk

q;w

<1

o

.

� By C

1

0

(
) we denote the set of all smooth and ompatly supported funtions,

the spae C

1

0;�

(
) onsists of all funtions that are in addition divergene free.
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� Moreover we set W

k;q

w;0

(
) = C

1

0

(
)

k�k

k;q;w

. The dual spae of it is denoted by

W

�k;q

w

(
) := (W

k;q

0

w

0

;0

(
))

0

. We also onsider the divergene-free versions

W

k;q

w;0;�

(
) := f� 2 W

k;q

w;0

(
) j div � = 0g and L

q

w;�

(
) = C

1

0;�

(
)

L

q

w

(
)

.

� Using this for k > 0 we set W

�k;q

w;0

(
) = C

1

0

(
)

k�k

W

�k;q

w

(R

n

)

.

� Moreover, we onsider the spaes of boundary values T

k;q

w

(�
) := (W

k;q

w

(
))j

�


,

equipped with the norm k � k

T

k;q

w

= k � k

T

k;q

w

(�
)

of the fator spae and �nally

T

0;q

w

(�
) := (T

1;q

0

w

0

(�
))

0

.

By [13℄, [15℄ and [5℄ the spaes L

q

w

(
), W

k;q

w

(
), W

k;q

w;0

(
) and T

k;q

w

(�
) are reexive

Banah spaes in whih C

1

0

(
), (C

1

0

(
), C

1

(
)j

�


, respetively) are dense.

Theorem 2.1. (H�ormander-Mihlin Multiplier Theorem with Weights)

Let m 2 C

n

(R

n

n f0g) ful�ll the property

j�

�

m(�)j � Kj�j

�j�j

; for every � 2 R

n

n f0g; j�j = 0; 1; :::; n;

for some onstant K > 0. Then T de�ned by



Tf = m

^

f for f 2 S(R

n

;R)

extends to a ontinuous operator on L

q

w

(
) for every q 2 (1;1) and w 2 A

q

.

More preisely there exists an A

q

-onsistent  suh that kTfk

q;w

� kfk

q;w

for every

f 2 L

q

w

(
).

Proof. This is an immediate onsequene of [18℄, Theorem 3.9. The same proof an be

used to show the A

q

-onsistene of the ontinuity onstant.

2.2 Weighted Bessel-Potential Spaes

For � 2 R

n

we set h�i := (1+ j�j

2

)

1

2

. On the spae S

0

(R

n

;R) of temperate distributions

we de�ne for all � 2 R the operator

�

�

f = F

�1

h�i

�

Ff; f 2 S

0

(R

n

;R);

where F stands for the Fourier transformation on S

0

(R

n

;R). Then for 1 < q < 1,

w 2 A

q

and � 2 R the weighted Bessel potential spae is given by

H

�;q

w

(R

n

) =

n

f 2 S

0

(R

n

;R)

�

�

kfk

H

�;q

w

(R

n

)

:= k�

�

fk

q;w;R

n

<1

o

:

Theorem 2.2. If 1 < q < 1, w 2 A

q

, l; k 2 Z and l < � < k then one has for the

omplex interpolation spaes

�

H

l;q

w

(R

n

); H

k;q

w

(R

n

)

�

�

= H

�;q

w

(R

n

);

where � =

��l

k�l

. The norms are equivalent with A

q

-onsistent equivalene onstants.
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Proof. This an be proven analogously to [26, Proposition 13.6.2℄. For the weighted

version in the ase l = 0 and k 2 N see also [13, Satz 8.3℄. The proof given there an

be repeated to obtain the more general assertion of this theorem. It is based on the

boundedness of the purely imaginary powers �

iy

in L

q

w

(R

n

) whih is a onsequene of

the weighted Multiplier Theorem 2.1. Thus rereading the proof one also obtains the

A

q

-onsistene of the onstants.

Corollary 2.3. For q 2 (1;1) and w 2 A

q

one has W

1;q

w

(R

n

) = H

1;q

w

(R

n

). If in

addition � 2 [0; 1℄ then

�

�

: [L

q

w

(R

n

);W

1;q

w

(R

n

)℄

�

! L

q

w

(R

n

)

is ontinuous. The equivalene and ontinuity onstants are A

q

-onsistent.

Proof. W

1;q

w

(R

n

) = H

1;q

w

(R

n

) follows from the Multiplier Theorem 2.1. In pratiular the

equivalene onstants are A

q

-onsistent. Thus

k�

�

uk

L

q

w

(R

n

)

= kuk

H

�;q

w

(R

n

)

� kuk

[L

q

w

(R

n

);H

1;q

w

(R

n

)℄

�

� kuk

[L

q

w

(R

n

);W

1;q

w

(R

n

)℄

�

;

where  > 0 is A

q

-onsistent.

We all a domain 
 an extension domain if for every k 2 N and q 2 (1;1) there

exists an extension operator

E : W

j;q

w

(
)! W

j;q

w

(R

n

)

that is ontinuous for j = 0; :::; k. By [5℄ in partiular bounded Lipshitz domains are

extension domains.

For an extension domain 
 we de�ne the weighted Bessel potential spae on 
 by

H

�;q

w

(
) =

�

gj




j g 2 H

�;q

w

(R

n

)

	

equipped with the norm kuk

H

�;q

w

(
)

:= inf

n

kUk

H

�;q

w

(R

n

)

j U 2 H

�;q

w

(R

n

); U j




= u

o

. Note

that if � < 0 then the restrition gj




has to be understood in the sense of distributions

as gj

C

1

0

(
)

.

Moreover, we set H

�;q

w;0

(
) = (C

1

0

(
))

H

�;q

w

(R

n

)

for � 2 R, equipped with the norm

k � k

�;q;w;0;


:= kE

0

(�)k

�;q;w;R

n

, where E

0

denotes the extension of a funtion by 0 to the

whole spae R

n

. The spae H

�;q

w;0

(
) is a reexive Banah spae and it is easy to verify

(see e.g. [23℄) that H

�;q

w

(
) = (H

��;q

0

w

0

;0

(
))

0

for every � 2 R.

Theorem 2.4. Let 
 be an extension domain, 1 < q <1, w 2 A

q

.

1. For k 2 N

0

one has H

k;q

w

(
) = W

k;q

w

(
) and H

k;q

w;0

(
) = W

k;q

w;0

(
) with equivalent

norms.

2. For k 2 N, 0 < � < k one has H

�;q

w

(
) = [L

q

w

(
);W

k;q

w

(
)℄�

k

.

Proof. [16℄
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For spaes of boundary values we onsider the spaes

T

�;q

w

(
) :=

(

H

�;q

w

(
) for � 2 [1; 2℄

[T

0;q

w

(
); T

1;q

w

(
)℄

�

for � 2 [0; 1):

As spaes for our solutions we need spaes of funtions that vanish on the boundary.

Thus for an extension domain 
 � R

n

, 1 < q < 1, w 2 A

q

we set Y

2;q

w

(
) := fu 2

W

2;q

w

(
) j uj

�


= 0g. For 0 � � � 2 we de�ne the spae

Y

�;q

w

(
) :=

8

>

<

>

:

Y

2;q

w

(
)

H

�;q

w

(R

n

)

; if 0 � � � 1 equipped with k � k

H

�;q

w

(R

n

)

;

Y

2;q

w

(
)

H

�;q

w

(
)

; if 1 < � � 2 equipped with k � k

H

�;q

w

(
)

;

where in the ase 0 � � � 1 the funtions of Y

2;q

w

(
) are assumed to be extended by 0

to funtions de�ned on the whole spae R

n

. This is possible, sine C

1

0

(
) is dense in

W

1;q

w;0

(
) � Y

2;q

w

(
) and W

1;q

w;0

(
) ,! W

1;q

w

(R

n

) ,! H

�;q

w

(R

n

). We also onsider the dual

spaes Y

��;q

w

(
) := (Y

�;q

0

w

0

(
))

0

.

We de�ne the divergene free version of Y

�;q

w

(
) by

Y

�;q

w;�

(
) :=

�

u 2 Y

�;q

w

(
) j hu;r�i = 0 for every � 2 C

1

(
)

	

:

By Theorem 2.5 and (3.2) below one has Y

1;q

w;�

(
) = W

1;q

w;0;�

(
) and Y

0;q

w;�

(
) = L

q

w;�

(
).

We also onsider the dual spaes Y

��;q

w;�

(
) :=

�

Y

�;q

0

w

0

;�

(
)

�

0

. By the Hahn-Banah

theorem the spae Y

��;q

w;�

(
) is the restrition of all elements of Y

��;q

w

(
) to Y

�;q

0

w

0

;�

(
).

See [23℄ for further properties and disussions about these spaes. In partiular there

have been proved the following interpolation properties.

Theorem 2.5. If 
 is a bounded C

1;1

-domain then one has

�

L

q

w

(
); Y

2;q

w

(
)

�

�

= Y

�;q

w

(
); � =

�

2

; 0 � � � 2

with equivalent norms.

Now we prove two tehnial Lemmas that are needed in Setion 4.3.

Lemma 2.6. Let 
 be a bounded C

1;1

-domain. Then the norm in W

1;q

w

(
) is equivalent

to the one in [L

q

w

(
);W

2;q

w

(
)℄

1

2

with an equivalene onstant depending A

q

-onsistently

on w.

Proof. We start de�ning an extension operator E

R

n

+

by

E

R

n

+

u(x) =

(

u(x) for x

n

> 0

P

3

j=1

�

j

u(x

0

;�jx

n

) for x

n

< 0;

where �

j

, j = 1; :::; 3 is hosen suh that

P

3

j=1

�

j

(�j)

l

= 1 for l = 0; :::; 3. Then one

shows as in the unweighed ase [1℄ that

E

R

n

+

: W

k;q

w

(R

n

+

)!W

k;q

~w

(R

n

); k = 0; 1; 2;

6



is ontinuous where ~w is given by

~w =

(

w(x

0

; x

n

) if x

n

> 0

min

j=1;:::;3

w(x

0

;�jx

n

) if x

n

< 0:

The ontinuity onstant of E

R

n

+

and A

q

( ~w) depend A

q

-onsistently on w.

Take an open overing (U

j

)

m

j=1

of 
, a olletion of harts (�

j

)

m

j=1

, �

j

: V

j

! U

j

, and

a partition of unity (�

j

)

m

j=1

subordinate to the overing (U

j

)

j

. Assume that eah �

j

is

extended to a C

1;1

-di�eomorphism on R

n

. Moreover, let

E

R

n

+

;j

: W

2;q

wÆ�

j

(R

n

+

)!W

2;q

ŵÆ�

j

(R

n

)

be the extension operator de�ned above. We de�ne the mapping

P :

m

Y

j=1

W

2;q

℄wÆ�

j

(R

n

)! W

2;q

w

(
);

(u

1

; :::; u

m

) 7!

m

X

j=1

 

j

R




(u

j

Æ �

�1

j

);

where  

j

2 C

1

0

(U

j

) with  

j

� 1 on supp�

j

and R




denotes the restrition of funtions

de�ned on R

n

to 
. Note that℄w Æ �

j

Æ �

�1

j

= w on U

j

\ 
 � supp 

j

. Set

I :W

2;q

w

(
)!

m

Y

j=1

W

2;q

℄wÆ�

j

(R

n

)

u 7!

�

E

R

n

+

;1

((�

1

u) Æ �

1

); :::; E

R

n

+

;m

((�

m

u) Æ �

m

)

�

:

Sine multipliation and onatenation with suÆiently smooth funtions is ontinuous

between weighted Sobolev spaes, P and I are ontinuous with A

q

-onsistent ontinuity

onstants also if they are onsidered as operators

P :

m

Y

j=1

L

q

℄wÆ�

j

(R

n

)! L

q

w

(
) and I : L

q

w

(
)!

m

Y

j=1

L

q

℄wÆ�

j

(R

n

):

Moreover, for u 2 L

q

w

(
) one has

PIu =

m

X

j=1

 

j

R




(E

R

n

+

;j

((�

j

u) Æ �

j

) Æ �

�1

j

) =

m

X

j=1

 

j

�

j

u = u:

Thus, the retration priniple of interpolation [4℄ together with the assertion for 
 = R

n

in Crollary 2.3 yields

[L

q

w

(
);W

2;q

w

(
)℄

1

2

= P

"

m

Y

j=1

L

q

℄wÆ�

j

(R

n

);

m

Y

j=1

W

2;q

℄wÆ�

j

(R

n

)

#

1

2

= P

 

m

Y

j=1

W

1;q

℄wÆ�

j

(R

n

)

!

= W

1;q

w

(
):

The onstants are A

q

onsistent sine so are the onstants of P and I.
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Lemma 2.7. Let 
 = R

n

or a bounded C

1;1

-domain and let � 2 [1; 2℄. Then for every

u 2 H

�;q

w

(
) one has the estimate

kuk

H

�;q

w

(
)

� 

�

kuk

H

��1;q

w

(
)

+ kruk

H

��1;q

w

(
)

�

;

where  = (�; q; w;
).

Proof. In R

n

the inequality follows from the Multiplier Theorem 2.1.

Let E

R

n

+

: W

k;q

w

(R

n

+

) ! W

k;q

~w

(R

n

), k = 0; 1; 2 be the operator onstruted in the

proof of Lemma 2.6. Analogously, one shows for R

n

-valued funtions that the extension

operator

~

E

R

n

+

: v(x) = (v

0

; v

n

)(x

0

; x

n

) 7!

8

>

<

>

:

v(x

0

; x

n

) on R

n

+

 

E

R

n

+

(v

0

)(x

0

; x

n

)

P

3

j=1

�

j

(�j)v

n

(x

0

;�jx

n

)

!

on R

n

�

is ontinuous as an operator

~

E

R

n

+

:W

k;q

w

(R

n

+

)!W

k;q

~w

(R

n

), k = 0; 1. Interpolation shows

that

~

E

R

n

+

: H

��1;q

~w

(R

n

+

)! H

��1;q

~w

(R

n

);

and by onstrution one has rE

R

n

+

=

~

E

R

n

+

r.

To prove the result for a bounded domain 
 let (�

j

)

m

j=1

be a olletion of harts and

( 

j

)

m

j=1

a deomposition of unity subordinate to the orresponding overing of 
. Then

we an alulate using the retration priniple of interpolation

kuk

[W

1;q

w

(
);W

2;q

w

(
)℄

��1

� 

m

X

j=1

k 

j

uk

H

�;q

w

(
)

� 

m

X

j=1

k 

j

uk

H

�;q

w

(H

�

j

)

� 

m

X

j=1

k( 

j

u) Æ �

j

k

H

�;q

wÆ�

j

(R

n

+

)

� 

m

X

j=1

kE

R

n

+

(( 

j

u) Æ �

j

)k

H

�;q

℄
wÆ�

j

(R

n

)

;

where by H

�

j

we denote the bent half spaes with boundary �

j

(R

n�1

�f0g). Using the

result in the whole spae ase and℄w Æ �

j

= w on supp 

j

\ 
 we obtain

kuk

H

�;q

w

(
)

� kuk

[W

1;q

w

(
);W

2;q

w

(
)℄

��1

� 

m

X

j=1

�

kE

R

n

+

(( 

j

u) Æ �

j

)k

H

��1;q

℄
wÆ�

j

(R

n

)

+ krE

R

n

+

(( 

j

u) Æ �

j

)k

H

��1;q

℄
wÆ�

j

(R

n

)

�

� 

m

X

j=1

�

kE

R

n

+

(( 

j

u) Æ �

j

)k

H

��1;q

℄
wÆ�

j

(R

n

)

+ k

~

E

R

n

+

r(( 

j

u) Æ �

j

)k

H

��1;q

℄
wÆ�

j

(R

n

)

�

� (kuk

H

��1;q

w

(
)

+ kruk

H

��1;q

w

(
)

):

This is the asserted estimate.

Lemma 2.8. Let �1 � � � 1. Let p 2 (C

1

0

(
))

0

with rp 2 H

��1;q

w

(
). Then

p 2 H

�;q

w

(
) and there exists a onstant  = (
; q; w) suh that

kpk

H

�;q

w

=onst:

� krpk

H

��1;q

w

:

Proof. [23℄
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2.3 The Stationary Stokes Equations in Bessel-Potential Spaes

De�nition 2.9. Let f 2 Y

�2;q

w

(
) and k 2 W

�1;q

w;0

(
). A funtion u 2 L

q

w

(
) is alled

a very weak solution to the stationary Stokes problem with respet to the data f and

k, if

�hu;��i = hf; �i; for all � 2 Y

2;q

0

w

0

;�

(
) and (2.3)

�hu;r i = hk;  i; for all  2 W

1;q

0

w

0

(
): (2.4)

The existene and uniqueness of very weak solutions in L

q

w

(
) has been shown in

[24℄. In general the regularity of very weak solutions is not suÆient to ensure that the

restrition uj

�


is well de�ned. However, if we restrit ourselves to a ertain lass of

data then a good de�nition of boundary values is again possible. More preisely the

following theorem has been shown in [24℄ where one an also �nd further details and

disussions.

Theorem 2.10. Assume that f 2 Y

�2;q

w

(
) and k 2 W

�1;q

w;0

(
) allow a deomposition

into

hf; �i = hF; �i � hg;N � r�i

�


for all � 2 Y

2;q

0

w

0

(
);

hk;  i = hK; i � hg;N �  i

�


for all  2 W

1;q

0

w

0

(
)

(2.5)

with g 2 T

0;q

w

(�
); F 2 W

�1;r

~w

(
); K 2 L

r

~w

(
), where 1 < r <1 and ~w 2 A

r

are hosen

suh that W

1;q

0

w

0

(
) ,! L

r

0

~w

0

(
) ,! L

q

0

w

0

(
). Let u be a very weak solution to the Stokes

problem orresponding to the data f and k. Then

u 2

~

W

q;r

w; ~w

:=

�

u 2 L

q

w

(
)

�

�

9 > 0; jhu;��ij � k�k

1;r

0

; ~w

0

8� 2 C

1

0;�

(
)

	

:

There exists an operator  :

~

W

q;r

w; ~w

! T

0;q

w

(�
) that oinides with the tangential trae

on W

1;q

w

(
). The fat that div u = K 2 L

r

~w

(
) permits to de�ne the normal omponent

of the trae N � uj

�


. In this sense uj

�


is well-de�ned and uj

�


= g.

We now turn to the stationary Stokes equations in weighted Bessel-Potential spaes.

As a spae for the divergene we de�ne

H

�;q

w;�

(
) =

(

H

�;q

w;0

(
) = (H

��;q

0

w

0

(
))

0

if � < 0;

H

�;q

w

(
) if � � 0:

(2.6)

By [23℄ one has the interpolation property

�

W

�1;q

w;0

(
);W

1;q

w

(
)

�

1+�

2

= H

�;q

w;�

(
) for � 1 � � � 1

and the following theorem.

Theorem 2.11. Let 1 < q < 1, w 2 A

q

and 0 � � � 2. Assume that f 2 Y

�2;q

w

(
)

and k 2 H

�1;q

w;0

(
) allow deompositions into

hf; �i = hF; �i � hg;N � r�i

�


for every � 2 Y

2;q

0

w

0

(
)

hk;  i = hK; i � hg;N i

�


for every  2 W

1;q

0

w

0

(
)

(2.7)
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with F 2 Y

��2;q

w

(
), K 2 H

��1;q

w;�

(
) and g 2 T

�;q

w

(�
). Assume in addition that K and

g ful�ll the ompatibility ondition hK; 1i




= hg;Ni

�


.

Then there exists a unique very weak solution u 2 L

q

w

(
) with respet to f and k. It

is ontained in H

�;q

w

(
) and ful�lls the estimate

kuk

�;q;w

� 

�

kFk

Y

��2;q

w

(
)

+ kKk

H

��1;q

w;0

(
)

+ kgk

T

�;q

w

(�
)

�

: (2.8)

3 The Generalized Stokes Operator

For this setion we always assume that q 2 (1;1), w 2 A

q

and � 2 [0; 2℄.

Proposition 3.1. If 
 � R

n

is a bounded C

1;1

-domain, then

�

L

q

w;�

(
); Y

2;q

w;�

(
)

�

�

=

Y

�;q

w;�

(
) and

�

L

q

w;�

(
); Y

�2;q

w;�

(
)

�

�

= Y

��;q

w;�

(
), where � =

�

2

with equivalent norms.

Proof. From Theorem 2.11 we obtain that the operator S : Y

��2;q

w

(
) ! Y

�;q

w;�

(
),

de�ned by

hf; 'i = �hSf;�'i for all ' 2 Y

2;q

0

w

0

;�

(
) and

0 = �hSf;r i for all  2 W

1;q

w

0

(
);

(3.1)

is ontinuous. In addition, the operator

A : Y

�;q

w

(
)! Y

��2;q

w

(
); u 7! [� 7! hu;��i℄ 2 Y

��2;q

w

(
)

is ontinuous. For � = 0 and � = 2 this is obvious, for � 2 (0; 2) it follows by

interpolation from Theorem 2.5.

Moreover x = SAj

Y

�;q

w;�

x for every x 2 Y

�;q

w;�

(
) and it follows from the retration

priniple for interpolation spaes [4, Theorem 6.4.2℄ that

�

L

q

w;�

(
); Y

2;q

w;�

(
)

�

�

= S

�

[Y

�2;q

w

(
); L

q

w

(
)℄

�

�

= S

�

Y

��2;q

w

(
)

�

= Y

�;q

w;�

(
):

The seond assertion follows when onsidering the dual spaes in the �rst.

As in the lassial unweighted ase one de�nes the Stokes operator

A = A

0;q;w

: L

q

w;�

(
) � D(A)! L

q

w;�

(
); u 7! �P

q;w

�;

where P

q;w

: L

q

w

(
) ! L

q

w

(
) is the Helmholtz projetion that is the projetion to the

spae of divergene free vetor �elds

L

q

w;�

(
) = C

1

0;�

(
)

L

q

w

(
)

= fu 2 L

q

w

(
) j hu;r�i = 0 for every � 2 W

1;q

0

w

0

(
)g: (3.2)

The kernel of P

q;w

is equal to the spae of gradients frp j p 2 W

1;q

w

(
)g. Moreover

(1� P

q;w

)f = rp, where p solves the weak Neumann problem

hrp;r�i




= hf;r�i




for every � 2 W

1;q

0

w

0

(
): (3.3)

All these fats about the Helmholtz projetion in weighted spaes have been shown by

Fr�ohlih in [12℄. The domain of the Stokes operator is D(A) = Y

2;q

w;�

(
). In the weighted

ontext it has been introdued and disussed in [15℄ and [14℄.

In the following, we �nd an analogue to the Stokes operator whih is adequate in the

ontext of very weak solutions in the Bessel potential spaes H

�;q

w

(
).
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Theorem 3.2. For every 0 � � � 2 the Stokes operator A has an extension to an

element of L(Y

�;q

w;�

(
); Y

��2;q

w;�

(
)) with the following properties.

1. It desribes a losed and densely de�ned linear operator in Y

��2;q

w;�

(
) again denoted

by A. For u 2 Y

�;q

w;�

(
) one has

Au = [Y

2��;q

0

w

0

;�

(
) 3 � 7! �hu;��i




℄:

2. The resolvent set �(�A) ontains a setor �

"

[ f0g = f� 2 C j j arg�j <

�

2

+

"g, " 2 (0;

�

2

), and for � 2 �

"

[ f0g the operator � + A is an isomorphism

in L(Y

�;q

w;�

(
); Y

��2;q

w;�

(
)). The norm of the inverse k(� + A)

�1

k

L(Y

��2;q

w;�

;Y

�;q

w;�

)

is

independent of � 2 �

Æ

for every 0 < Æ < ".

3. For every 0 < Æ < " there exists a onstant M

Æ

suh that

k�(A+ �)

�1

k

L(Y

��2;q

w;�

(
))

�M

Æ

for all � 2 �

Æ

: (3.4)

For �2 � � � 0 let A

�;q;w

be the extension of the Stokes operator whose existene

has been stated in Theorem 3.2. Then we all

A

�;q;w

: D(A

�;q;w

) := Y

�+2;q

w;�

(
) � Y

�;q

w;�

(
)! Y

�;q

w;�

(
)

the generalized Stokes operator in Y

�;q

w;�

(
). If no onfusion an our, we omit the

indies and write A instead of A

�;q;w

.

Proof. For � = 2 one has Y

�;q

w;�

(
) = Y

2;q

w;�

(
) = D(A), the domain of the lassial Stokes

operator in L

q

w;�

(
). Hene, in this ase the assertion of this theorem is shown in [14℄,

where the Stokes operator in L

q

w;�

(
) is introdued.

Our aim is to show the assertion for � = 0 and to apply omplex interpolation to

obtain the results for arbitrary 0 � � � 2.

Step 1: We onsider � +A

0;q

0

;w

0

, where A

0;q

0

;w

0

is the Stokes operator in L

q

0

w

0

;�

(
), as a

ontinuous linear operator

�+A

0;q

0

;w

0

: Y

2;q

0

w

0

;�

(
)! L

q

0

w

0

;�

(
):

Let A

�2;q;w

:= A

�

0;q

0

;w

0

: L

q

w;�

(
)! Y

�2;q

w;�

(
) be the assoiated dual operator. Then one

has for u 2 Y

2;q

w;�

(
) and � 2 Y

2;q

0

w

0

;�

(
)

h(�+A

�2;q;w

)u; �i = hu; (�+A

0;q

0

;w

0

)�i = hu; �����i

= h(�� P

q;w

�)u; �i = h(�+A

0;q

0

;w

0

)u; �i:

Thus we obtain using the properties of the dual operator, see e.g. [6℄

� (�+A

�2;q;w

)j

Y

2;q

w;�

= (�+A

0;q;w

)j

Y

2;q

w;�

.

� For � 2 �

"

[ f0g one has � + A

�2;q;w

= (� + A

0;q

0

;w

0

)

�

, whih implies k� +

A

�2;q;w

k

L(L

q

w;�

;Y

�2;q

w;�

)

= k�+A

0;q

0

;w

0

k

L(Y

2;q

0

w

0

;�

;L

q

0

w

0

;�

)

.
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� �

"

[ f0g is ontained in the resolvent set of A

�2;q;w

and there exists M

Æ

> 0 suh

that for all � 2 �

Æ

, 0 < Æ < ",

k(�+A

�2;q;w

)

�1

k

L(Y

�2;q

w;�

;L

q

w;�

)

= k(�+A

0;q

0

;w

0

)

�1

k

L(L

q

0

w

0

;�

;Y

2;q

0

w

0

;�

)

�M

Æ

:

This implies by the de�nition of the resolvent

k�(�+A

�2;q;w

)

�1

fk

Y

�2;q

w;�

+ k(�+A

�2;q;w

)

�1

fk

q;w

�M

Æ

kfk

Y

�2;q

w;�

:

Sine the resolvent set is nonempty, we know that the operator A

�2;q;w

is losed in

Y

�2;q

w;�

(
). Using the Hahn-Banah theorem one shows that L

q

w;�

(
), whih is equal to

the domain of A

�2;q;w

in Y

�2;q

w;�

(
), is dense in Y

�2;q

w;�

(
).

Step 2: Combining Proposition 3.1 and the assertions for � = 0 and � = 2 we obtain

by omplex interpolation that

A : Y

�;q

w;�

(
)! Y

��2;q

w;�

(
) and (��A)

�1

: Y

��2;q

w;�

(
)! Y

�;q

w;�

(
); � 2 �

Æ

[ f0g

are ontinuous operators. Moreover, by the same arguments we obtain from (3.4) for

� = 0 and � = 2 that k(� + A)

�1

k

L(Y

��2;q

w;�

(
))

� M

Æ

j�j

�1

for every � 2 �

Æ

and M

Æ

independent of �. This ompletes the proof.

For " 2 (0;

�

2

) one de�nes

�

"

:= f� 2 C j � 6= 0; j arg�j < "g :

Corollary 3.3. The negative generalized Stokes operator �A in Y

��2;q

w;�

(
) is the gen-

erator of a bounded analyti semigroup fe

�tA

g

t2�

"

for every " 2 (0;

�

2

).

Proof. This follows immediately when ombining Theorem 3.2 with [19, Theorem 2.5.2℄.

4 Instationary Stokes Equations

4.1 Very Weak Solutions

We de�ne some funtion spaes that are appropriate to the instationary and very weak

ontext. First, for T <1 and 1 < r; q <1 we set

X

r

0

;q

0

w

0

(0; T ) =

n

� 2 L

r

0

(0; T ;Y

2;q

0

w

0

(
)) \W

1;r

0

(0; T ;L

q

0

w

0

(
)) j �(T ) = 0

o

and for T =1

X

r

0

;q

0

w

0

(0;1) =

n

� 2 L

r

0

(0;1;Y

2;q

0

w

0

(
)) \W

1;r

0

(0;1;L

q

0

w

0

(
))

�

�

�

supp � ompat in 
� [0;1)

o

:

Both spaes are equipped with the norm k�k

X

r

0

;q

0

w

0

:= k�k

L

r

0

(W

2;q

0

w

0

)

+k�

t

k

L

r

0

(L

q

0

w

0

)

. If there

is no danger of onfusion, we omit the (0; T ) and write X

r

0

;q

0

w

0

. We hoose the data

f 2

�

X

r

0

;q

0

w

0

(0; T )

�

0

and k 2 L

r

(0; T ;W

�1;q

w;0

(
)): (4.1)
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As a spae of test funtions we hoose

X

r

0

;q

0

w

0

;�

(0; T ) =

n

� 2 X

r

0

;q

0

w

0

(0; T ) j div� = 0

o

:

De�nition 4.1. If f and k are given as in (4.1), then a funtion u 2 L

r

(0; T ;L

q

w

(
)) is

alled a very weak solution to the instationary Stokes equations if

�hu; �

t

i


;T

� hu;��i


;T

= hf; �i


;T

; for every � 2 X

r

0

;q

0

w

0

;�

and

�hu(t);r i




= hk(t);  i




; for every  2 W

1;q

0

w

0

(
)

and almost every t 2 (0; T ):

Note that there does not our any expliit initial ondition u(0). It is hidden im-

pliitly in the de�nition, sine the test funtions do not vanish at time t = 0. Moreover

suh expliit initial onditions would not be reasonable, as shown in the following on-

siderations. Let u 2 L

r

(0; T ;L

q

w

(
)). Then

f := [� 7! hu;��

t

���i℄

2

n

� 2 W

1;r

0

(0; T ;L

q

0

w

0

(
))

�

�

�(T ) = 0

o

0

+ (L

r

0

(0; T ;Y

2;q

0

w

0

(
)))

0

= (X

r

0

;q

0

w

0

)

0

;

k(t) := [ 7! hu(t);r i℄ 2 W

�1;q

w;0

(
) for almost every t 2 (0; T );

and sine kk(t)k

�1;q;w;0

� ku(t)k

q;w

for almost every t, one has k 2 L

r

(0; T ;W

�1;q

w;0

(
)).

Thus aording to De�nition 4.1 every u 2 L

r

(0; T ;L

q

w

(
)) is a very weak solution to

the instationary Stokes problem with respet to appropriate data.

To obtain the solvability of the instationary Stokes equations in the very weak sense

in Theorem 4.3 below, we dualize the strong solutions that have been treated in [14℄.

More preisely one has:

Theorem 4.2. Let 1 < q < 1, w 2 A

q

and let 
 � R

n

be a bounded C

1;1

-domain.

Moreover, let 0 < T � 1. Then for every f 2 L

r

(0; T ;L

q

w

(
)) there exists a unique

solution u 2 L

r

(0; T ;D(A

q;w

)) = L

r

(0; T ;Y

2;q

w;�

(
)) with u

t

2 L

r

(0; T ;L

q

w;�

(
)) to the

Stokes equations

u

t

+Au = P

q;w

f a.e. in (0; T ); u(0) = 0;

where A is the lassial Stokes operator in L

q

w;�

(
). This solution ful�lls the estimate

ku

t

k

L

r

(L

q

w;�

)

+ kAuk

L

r

(L

q

w;�

)

� kP

q;w

fk

L

r

(L

q

w;�

)

;

where  is independent of f and T .

Let � 2 L

r

(0; T ;Y

2;q

w;�

(
))\W

1;r

(0; T ;L

q

w

(
)) be a strong solution to the instationary

Stokes problem in the sense of Theorem 4.2 with respet to the exterior fore v 2

L

r

(0; T ;L

q

w

(
)). Then, by de Rham's Theorem [27℄ there exists a distribution  (t) 2

C

1

0

(
)

0

suh that

���(t) +r (t) = v(t)� �

t

(t)

for almost every t. Then from this equation and from Lemma 2.8 we obtain, if we

assume in addition that

R




 (t) = 0 for every t 2 (0; T ) that  2 L

r

(0; T ;W

1;q

w

(
)) and

that k k

L

r

(W

1;q

w

)

� kr k

L

r

(L

q

w

)

� kvk

L

r

(L

q

w

)

.
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Sine we use test funtions that vanish at time T instead of 0, we set

~

�(t) := �(T � t)

and

~

 (t) := � (T � t). Then we obtain �

~

�

t

��

~

��r

~

 = v(T � �) with

~

�(T ) = 0, and

~

� and

~

 ful�ll the estimate

k

~

�k

X

r;q

w

+ k

~

 k

L

r

(W

1;q

w

)

� kvk

L

r

(L

q

w

)

: (4.2)

Theorem 4.3. Let 
 be a bounded C

1;1

-domain and 0 < T � 1. Let f and k be given

as in (4.1) with hk(t); 1i = 0 for almost every t 2 (0; T ).

Then there exists a unique very weak solution u 2 L

r

(0; T ;L

q

w

(
)) to the instationary

Stokes problem. This funtion u satis�es the estimate

kuk

L

r

(L

q

w

)

� 

�

kfk

(X

r

0

;q

0

w

0

)

0

+ kkk

L

r

(W

�1;q

w;0

)

�

(4.3)

with a onstant  = (r; q; w;
) > 0.

Proof. First assume that T <1.

As explained above for every v 2 L

r

0

(0; T ;L

q

0

w

0

(
)) there exists a unique tuple (�;  ) 2

X

r

0

;q

0

w

0

;�

� L

r

0

(0; T ;W

1;q

0

w

0

(
)), with

��

t

����r = v;

Z




 (t) dx = 0 for almost every t:

We de�ne a funtional u by

hu; vi


;T

:= hf; �i


;T

+ hk;  i


;T

for all v 2 L

r

0

(0; T ;L

q

0

w

0

(
)):

Then the a priori estimate for the strong solution (4.2) implies

jhu; vi


;T

j �kfk

(X

r

0

;q

0

w

0

)

0

k�k

X

r

0

q

0

w

0

+ kkk

L

r

(W

�1;q

w;0

)

k k

L

r

0

(W

1;q

0

w

0

)

�

�

kfk

(X

r

0

;q

0

w

0

)

0

+ kkk

L

r

(W

�1;q

w;0

)

�

kvk

L

r

0

(L

q

0

w

0

)

:

(4.4)

Thus we obtain u 2

�

L

r

0

(0; T ;L

q

0

w

0

(
))

�

0

= L

r

(0; T ;L

q

w

(
)) with

kuk

L

r

(L

q

w

)

� 

�

kfk

(X

r

0

;q

0

w

0

)

0

+ kkk

L

r

(W

�1;q

w;0

)

�

:

Moreover, for every (�;  ) 2 X

r

0

;q

0

w

0

;�

� L

r

0

(0; T ;W

1;q

0

w

0

(
)) we have

�hu; �

t

i


;T

� hu;��i


;T

� hu;r i


;T

= hf; �i


;T

+ hk;  i


;T

;

where we used that the mapping v = ��

t

� �� � r 7! (�;  ) is well-de�ned. This

shows that u is a very weak solution to the instationary Stokes problem aording to

De�nition 4.1 and �nishes the proof of existene and of the a priori estimate.

To show the uniqueness let U 2 L

r

(0; T ;L

q

w

(
)) be another very weak solution with

respet to the data f and k. Moreover, let v 2 L

r

0

(0; T ;L

q

0

w

0

(
)) and let � 2 X

r

0

;q

0

w

0

;�

and

 2 L

r

0

(0; T ;W

1;q

0

w

0

(
)) solve v = ��

t

����r as above. Then one has

hU; vi = �hU; �

t

i � hU;��i � hU;r i = hf; �i+ hk;  i = hu; vi:
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Sine v was arbitrary, this implies U = u and the proof for T <1 is omplete.

For T = 1 we take v 2 L

r

0

(R

+

;L

q

0

w

0

(
)), with supp v � (0; N) � 
 for some N 2 N

and let

(�;  ) 2 X

r

0

;q

0

w

0

;�

(0; N)� L

r

0

(0; N ;W

1;q

0

w

0

(
))

with

R




 (t) = 0 for almost every t be the unique solution of ��

t

� �� � r = v

with �(N) = 0. Extending the funtions � and  by 0 on [N;1) � 
 one obtains

� 2 X

r

0

;q

0

w

0

;�

(0;1) and  2 L

r

0

(0;1;W

1;q

0

w

0

(
)). Thus the mapping

u :=

"

1

[

N=1

L

r

0

(0; N; L

q

0

w

0

(
)) 3 v 7! hf; �i


;1

+ hk;  i


;1

#

is well-de�ned, where every v 2 L

r

0

(0; N; L

q

0

w

0

(
)) is assumed to be extended by zero to

R

+

.

We obtain that uj

(0;N)

2 L

r

(0; N; L

q

w

(
)) for every N 2 N. Moreover, sine the set of

funtions with ompat support in time is dense in L

r

0

(0;1; L

q

0

w

0

(
)) and the estimates

in (4.4) are independent of T , this yields u 2 L

r

(0;1;L

q

w

(
)) and the asserted estimate.

The uniqueness in the ase T =1 follows from the uniqueness in the ase T <1.

Using a slightly more restrited spae for the data one obtains the following estimate

for the time derivative. In partiular the orollary below shows that the generalized

Stokes operator in Y

�2;q

w;�

(
) has maximal regularity.

Corollary 4.4. Assume f 2 L

r

(0; T ;Y

�2;q

w

(
)) and k 2 L

r

(0; T ;W

�1;q

w;0

(
)). One has

L

r

(0; T ;Y

�2;q

w

(
)) �

�

X

r

0

;q

0

w

0

(0; T )

�

0

and the assoiated very weak solution whih exists

aording to Theorem 4.3 satis�es the stronger estimate









u

t

j

Y

2;q

0

w

0

;�

(
)









L

r

(Y

�2;q

w;�

)

+ kuk

L

r

(L

q

w

)

� 

�

kfk

L

r

(Y

�2;q

w

)

+ kkk

L

r

(W

�1;q

w;0

)

�

(4.5)

with  = (r; q; w;
) > 0. If in addition k = 0 then u solves the equation

u

0

j

Y

2;q

0

w

0

;�

(
)

+Au = f j

Y

2;q

0

w

0

;�

(
)

;

where A is the generalized Stokes operator in Y

�2;q

w;�

(
).

Proof. Let � 2 C

1

0

(0; T ;Y

2;q

0

w

0

;�

(
)). Then we an estimate using (4.3)

jhu

t

j

Y

2;q

0

w

0

;�

(
)

; �i


;T

j � jhu;��i


;T

j+ jhf; �i


;T

j

� 

�

kfk

L

r

(Y

�2;q

w

)

+ kkk

L

r

(W

�1;q

w;0

)

�

k�k

L

r

0

(Y

2;q

0

w

0

)

:

Together with (4.3), the a priori estimate in Theorem 4.3, this proves the assertion.

The last assertion follows from the haraterization of the Stokes operator in Theorem

3.2 and the formulation of very weak solutions.
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Aording to De�nition 4.1 every u 2 L

r

(0; T ;L

q

w

(
)) is a very weak solution with

respet to appropriate data. This means that suh solutions in general do not possess

enough time-regularity to ensure that the initial ondition u(0) = u

0

is well-de�ned.

However, if the data is hosen as in Corollary 4.4, we obtain u 2 L

r

(0; T ;L

q

w

(
)) and

u

t

j

Y

2;q

0

w

0

;�

(
)

2 L

r

(0; T ;Y

�2;q

w;�

(
)). By [2℄ this implies that uj

Y

2;q

0

w

0

;�

(
)

is uniformly ontinuous

and hene this regularity suÆes to de�ne u(0)j

Y

2;q

0

w

0

;�

(
)

2 Y

�2;q

w;�

(
), and one has

hu(0); �(0)i




= hu; �

t

i


;T

+ hu

t

; �i


;T

for every � 2 C

1

0

([0; T ℄; Y

2;q

0

w

0

;�

(
)) with �(T ) = 0. Analogously to the ase of strong

solutions the gradient part of the initial ondition annot be presribed and is not

needed for the uniqueness of the solution.

Lemma 4.5. If u 2 L

r

(0; T ;L

q

w

(
)) is a very weak solution aording to De�nition 4.1

with respet to f 2 L

r

(0; T ;Y

�2;q

w

(
)) and k 2 L

r

(0; T ;W

�1;q

w;0

(
)) then u(0)j

Y

2;q

0

w

0

;�

(
)

= 0.

Proof. For � 2 C

1

0

((0; T );Y

2;q

0

w

0

;�

(
)) one has

hu

t

; �i


;T

= �hu; �

t

i


;T

= hu;��i


;T

+ hf; �i


;T

(4.6)

whih implies u

t

j

Y

2;q

0

w

0

;�

(
)

2 L

r

(0; T ;Y

�2;q

w;�

(
)) and (4.6) holds for all � 2 X

r

0

;q

0

w

0

beause

one an approximate � 2 X

r

0

;q

0

w

0

by a sequene in C

1

0

((0; T );Y

2;q

0

w

0

(
)) that onverges

in L

r

0

(0; T ;Y

2;q

0

w

0

(
)). Thus hu(0); �(0)i




= hu

t

; �i


;T

+ hu; �

t

i


;T

= 0 for every � 2

C

1

([0; T ℄;Y

2;q

0

w

0

;�

(
)) with �(T ) = 0. In partiular, for a �xed � 2 Y

2;q

0

w

0

;�

(
) and � 2

C

1

0

([0; T )) with �(0) = 1 one has hu(0); �i




= hu(0); ��(0)i




= 0. We have proved

u(0)j

Y

2;q

0

w

0

;�

(
)

= 0.

4.2 The Spaes H

�;r

(X)

By S(R;R) we denote the spae of rapidly dereasing smooth funtions. For a Ba-

nah spae X we denote the spae of X-valued tempered distributions by S

0

(R;X) :=

L(S(R;R); X). Aordingly, for an interval I we denote the set of distributions by

D

0

(I;X) := L(C

1

0

(I); X).

For the treatment of solutions to the instationary Stokes Problem in Bessel potential

spaes with inhomogeneous divergene and boundary onditions we need a higher time

regularity of this part of the data. To measure this time regularity we work in Banah

spae-valued Bessel potential spaes.

For � 2 R we set �

�

t

:= F

�1

h�i

�

F , where h�i

�

= (1 + j� j

2

)

�

2

, � 2 R

n

. Using this, for

r > 1 we de�ne the X-valued Bessel-potential spae by

H

�;r

(R;X) :=

n

u 2 S

0

(R;X) j �

�

t

u 2 L

r

(R;X)

o

;

equipped with the norm kuk

H

�;r

(R;X)

:= k�

�

t

uk

L

r

(R;X)

. Moreover, we de�ne

H

�;r

(0; T ;X) :=

�

uj

C

1

0

(0;T ;R)

j u 2 H

�;r

(R;X)
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with the norm kuk

H

�;r

(0;T ;X)

:= inf

�

kUk

H

�;r

(R;X)

j U 2 H

�;r

(R;X); U j

C

1

0

(0;T ;R)

= u

	

.

Finally, we set for � � 0

H

�;r

0

((0; T ℄;X) :=

�

U j

C

1

0

(0;T ;R)

j U 2 H

�;r

(R;X); suppU � [0;1)

	

equipped with

kuk

H

�;r

0

((0;T ℄;X)

:= inf

�

kUk

H

�;r

(R;X)

j U 2 H

�;r

(R;X);

suppU � [0;1); U j

C

1

0

(0;T ;R)

= u

	

and H

�;r

0

(0; T ;X) := C

1

0

(0; T ;X)

H

�;r

(R;X)

with k � k

H

�;r

0

(0;T ;X)

= k � k

H

�;r

(R;X)

.

Lemma 4.6. Let X be a reexive Banah spae and � � 0. Then one has

H

��;r

(R;X)

�

=

(H

�;r

0

(R;X

0

))

0

and H

��;r

(0; T ;X)

�

=

(H

�;r

0

0

(0; T ;X

0

))

0

with equivalent norms. Every u 2 H

��;r

(R;X) is identi�ed with the element of the spae

(H

�;r

0

(R;X

0

))

0

ful�lling

�x

�

7! hu; �x

�

i

X;X

0

;R

:=




hu(t); �(t)i

R

; x

�

�

X;X

0

; (4.7)

where � 2 S(R;R) and x

�

2 X

0

. With this identi�ation one has

hu;  i

X;X

0

;R

=

Z

R

D

�

��

t

u(s);�

�

t

 (s)

E

X;X

0

ds (4.8)

for every u 2 H

��;r

(R;X) and  2 H

�;r

0

(R;X

0

).

Proof. Let u 2 H

��;r

(R;X). The linear hull of f�x

�

j � 2 S(R;R); x

�

2 X

0

g is dense

in H

�;r

0

(R;X

0

). Moreover for u 2 H

��;r

(R;X) and � 2 S(R;R), x

�

2 X

0

one has

hu; �x

�

i

X;X

0

;R

=

Z

R

h�

��

t

u(s);�

�

t

�(s)x

�

i

X;X

0

ds;

thus jhu; �x

�

i

X;X

0

;R

j � kuk

H

��;r

(R;X)

k�x

�

k

H

�;r

0

(R;X

0

)

, and we obtain that hu; �i

X;X

0

;R

ex-

tends in a unique way to a ontinuous funtional on H

�;r

0

(R;X

0

). This extension ful�lls

(4.8).

Vie versa let u 2

�

H

�;r

0

(R;X

0

)

�

0

. Then, sine X is reexive, u de�nes a distribution

u 2 S

0

(R;X) by

S(R;R) 3 � 7! [X

0

3 x

�

7! hu; �x

�

i℄ 2 X

00

= X:

For � 2 S(R;R), x

�

2 X

0

one has

�

�




h�

��

t

u; �i

R

; x

�

�

X;X

0

�

�

� kuk

(H

��;r

0

(R;X

0

))

0

k�

��

t

�x

�

k

H

�;r

0

(R;X

0

)

= kuk

(H

��;r

0

(R;X

0

))

0

k�x

�

k

L

r

0

(R;X

0

)

:

Thus the funtional �

��

t

u an be identi�ed with an element of L

r

(R;X), or u with an

element of H

��;r

(R; X).
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The assertion H

��;r

(0; T ;X)

�

=

(H

�;r

0

0

(0; T ;X

0

))

0

follows from the assertion on R as

follows. For u 2 H

��;r

(0; T ;X) there exists U 2 H

��;r

(R;X) =

�

H

�;r

0

(R;X

0

)

�

0

with

U j

C

1

0

(0;T )

= u. Thus it follows for � 2 C

1

0

(0; T ) and x

�

2 X

0




hu; �i

T

; x

�

�

X;X

0

= hU; �x

�

i

X;X

0

;T

:

This extends by density and ontinuity to a funtional in (H

�;r

0

0

(0; T ;X

0

))

0

.

Vie versa, for u 2 (H

�;r

0

0

(0; T ;X

0

))

0

there exists by the Hahn-Banah theorem a

funtional U 2 (H

�;r

0

(R;X

0

))

0

�

=

H

��;r

(R;X) suh that U j

H

�;r

0

0

(0;T ;X

0

)

= u. Sine X is

reexive, one has

�

S(R;R) 3 � 7! [X

0

3 x

�

7! hU; �x

�

i℄

�

2 H

��;r

(R;X

00

) = H

��;r

(R;X)

and U j

C

1

0

(0;T )

2 H

��;r

(0; T ;X).

A Banah spae X is alled a UMD-spae if the Hilbert transform,

Hf(x) = PV �

Z

R

1

t� s

f(s)ds; f 2 S(R;X);

extends to a bounded linear operator on L

p

(R;X) for every 1 < p <1.

Lemma 4.7. Let X be a UMD-spae and � 2 R.

1. The derivative �

t

is ontinuous

�

t

: H

�;r

(R;X) ! H

��1;r

(R;X);

�

t

: H

�;r

(0; T ;X) ! H

��1;r

(0; T ;X);

�

t

: H

�;r

0

((0; T ℄;X) ! H

��1;r

0

((0; T ℄;X):

2. For k 2 Z one has H

k;r

(R;X)

�

=

W

k;r

(R;X) and H

k;r

(0; T ;X)

�

=

W

k;r

(0; T ;X)

with equivalent norms. The isomorphism is given by the identi�ation in (4.7).

3. Let � 2 [0; 1℄ and let X

1

; X

2

be UMD-spaes with X

1

,! X

2

. Then there exists a

ontinuous linear extension operator

E : H

�;r

0

((0; T ℄;X

2

) \ L

r

(0; T ;X

1

)! H

�;r

(R;X

2

) \ L

r

(R;X

1

)

with Eu(t) = 0 for every t < 0.

Proof. The assertions of 1. and 2. for the ase H

k;r

(R;X) follows from a the ontinuity

of salar-valued Fourier multipliers between UMD-spaes proved by Zimmermann [30℄

and duality.

For u 2 W

k;r

(0; T ;X), k > 0, we onstrut an extension

Eu(x) =

8

>

>

>

<

>

>

>

:

�(�x)

P

k+1

j=1

�

j

u(�jx) if �

T

k+1

< x < 0;

u(x) if x 2 [0; T ℄;

�(x� T )

P

k+1

j=1

�

j

u(T � j � (x� T )) if T < x < T +

T

k+1

;

0 else;

(4.9)

18



with

P

j

�

j

(�j)

l

= 1 for l = 0; :::; k, where � is a smooth ut-o� funtion with � = 0 in

a neighborhood of

T

k+1

.

Thus for u 2 W

k;r

(0; T ;X) one has Eu 2 W

k;r

(R;X) = H

k;r

(R;X) whih shows that

u 2 H

k;r

(0; T ;X) with

kuk

H

k;r

(0;T ;X)

� kEuk

H

k;r

(R;X)

� kEuk

W

k;r

(R;X)

� kuk

W

k;r

(0;T ;X)

:

Vie versa for u 2 H

k;r

(0; T ;X) an appropriate extension exists by de�nition. Hene an

analogous argument ompletes the proof for k � 0.

For k < 0 the assertion follows by the duality stated in Lemma 4.6.

3. We begin to onsider the extension by 0 to the negative half axis

E

0

: H

�;r

0

((0; T ℄;X

2

) \ L

r

(0; T ;X

1

)! H

�;r

(�1; T ;X

2

) \ L

r

(�1; T ;X

1

);

whih is ontinuous by the de�nition of H

�;r

0

((0; T ℄;X

2

). Moreover, by E we denote the

extension to t > T de�ned in the same way as in (4.9) with k = 1. By onstrution

E : L

r

(�1; T ;X

i

) ! L

r

(R;X

i

); i = 1; 2 and

E : H

1;r

(�1; T ;X

2

) ! H

1;r

(R;X

2

)

is ontinuous. Sine X

2

is a UMD-spae one, has

�

L

r

(�1;X

2

); H

1;r

(�1; T ;X

2

)

�

�

= H

�;r

(�1; T ;X

2

):

This is proved in the same way as in the salar-valued ase, f. [26℄ 13, Prop. 6.2,

replaing the salar-valued multiplier theorem by the Banah spae-valued version in

[30℄. Thus the assertion follows by interpolation.

4.3 Inhomogeneous Tangential Boundary Conditions

Our next aim is to develop a solution theory of the instationary Stokes equations in

weighted Bessel potential spaes. In the ontext of lowest regularity, in whih the lass of

solutions is ontained in L

r

(0; T ;L

q

w

(
)) the data ould be hosen fully inhomogeneous.

Now, turning to higher regularity, we do not want to loose this possibility. However,

this requires a more omplex theory and a higher regularity of the data than before.

We start with purely tangential boundary onditions. If g(t) 2 T

�;q

w

(
) for almost

every t, this means

g(t; x) �N = 0 for almost every x 2 �
 if � 2 [1; 2℄ and

hg(t); Nhi

�


= 0 for every salar-valued h 2 C

1

(
)j

�


if � 2 [0; 1℄:

The reason why we deal with tangential boundary data is that suh data an be repre-

sented by

f :=

h

Y

2;q

0

w

0

;�

(
) 3 � 7! hg(t); N � r�i

�


i

2 Y

�2;q

w;�

(
): (4.10)

In the latter spae we have de�ned the generalized Stokes operator A, see Setion 3. In

general very weak solutions are not regular enough to ensure that their restrition to the

boundary is well-de�ned. However, sine f j

C

1

0

(
)

= 0 we an give a sense to A

�1

f j

�


and it follows that A

�1

f j

�


= g. This has been shown and disussed in [17℄ and [24℄.
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Lemma 4.8. H

�;q

w

(
) is a UMD-spae for every � � 0 and T

�;q

w

(�
) is a UMD-spae

for � 2 [0; 2℄.

Proof. By [2, Theorem 4.5.2℄ spaes isomorphi to L

q

w

(
), their dual spaes, fator spaes

and omplex interpolation spaes are UMD-spaes. This proves the assertion.

De�nition 4.9. LetX; Y be Banah spaes. A subset T � L(X; Y ) is alledR-bounded

if there is a onstant C > 0 suh that for all T

1

; :::; T

n

2 T , x

1

; :::; x

n

2 X and n 2 N

one has

Z

1

0











n

X

j=1

r

j

(u)T

j

(x

j

)











Y

du � C

Z

1

0











n

X

j=1

r

j

(u)x

j











X

du;

where (r

j

) is a sequene of independent, symmetri f1;�1g-valued random variables on

[0; 1℄, e.g. the Rademaher funtions.

The following theorem has been shown by Weis in [29, Theorem 3.4℄.

Theorem 4.10. Let X and Y be UMD-spaes. Let

R n f0g 3 t 7!M(t) 2 L(X; Y )

be a di�erentiable funtion suh that the sets

fM(t) j t 2 R n f0gg and ftM

0

(t) j t 2 R n f0gg

are R-bounded. Then Kf = [M(�)

^

f(�)℄

_

, f 2 C

1

0

(R; X), extends to a bounded linear

operator

K : L

r

(R;X)! L

r

(R;Y ) for 1 < r <1:

By Theorem 2.4 one has H

�;q

w

(
) = [L

q

w

(
);W

k;q

w

(
)℄�

k

and by Theorem 2.5 one has

[L

q

w

(
); Y

2;q

w

(
)℄

�

= Y

�;q

w

(
). However, we do not know whether the equivalene on-

stants depend A

q

-onsistently on the weight funtion. To �x notation and to ensure

that interpolation preserves the A

q

-onsistene of the onstants we assume for the rest

of this setion that the norm on H

�;q

w

(
) is given by the norm in the interpolation spae,

i.e.

k � k

H

�;q

w

(
)

= k � k

[W

k;q

w

(
);W

k+1;q

w

(
)℄

�

; where � 2 [k; k + 1℄ and � = � � k:

In partiular H

k;q

w

(
) is equipped with the norm in W

k;q

w

(
) for every k 2 N

0

. Aord-

ingly we assume k � k

Y

�;q

w

(
)

= k � k

H

�;q

w

(
)

for � 2 [1; 2℄ and

k � k

Y

�;q

w

(
)

= k � k

[L

q

w

(
);W

1;q

w;0

(
)℄

�

for � 2 [0; 1):

Theorem 4.11. Let 
 � R

n

be a bounded domain of lass C

1;1

and let I be an interval.

1. For 2 � � � 0 let B(t) : L

q

w

(
)! H

�;q

w

(
), t 2 I, be uniformly bounded for every

w 2 A

q

with an A

q

-onsistent bound of the ontinuity onstant. Then B(t), t 2 I,

is R-bounded.

2. The assertion of 1. holds true if one replaes H

�;q

w

(
) by Y

�;q

w

(
).
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Proof. 1. We begin with the ase 0 � � < 1. Let ( 

j

)

N

j=1

,  

j

: R

n

+

� U

j

! V

j

� 
 be a

olletion of C

1;1

-harts and assume that eah  

j

is extended to a C

1;1

-di�eomorphism

from R

n

to R

n

. Let (�

j

)

j

be a deomposition of unity subordinate to the overing (V

j

)

j

of 
.

For v 2 A

q

we set w

j

:= v Æ  

�1

j

and by E

e

: H

�;q

v

(R

n

+

) ! H

�;q

v

�

(R

n

) we denote the

even extension

E

e

u(x) =

(

u(x) for x

n

� 0

u(x

0

;�x

n

) for x

n

� 0

for u 2 H

�;q

v

(R

n

+

)

and by E

0

: L

q

w

(
)! L

q

w

(R

n

) we denote the extension by 0. We onsider the mapping

M

j

(t) : L

q

v

(R

n

)! L

q

v

(R

n

), whih is de�ned by the omposition

M

j

(t) : L

q

v

(R

n

)

C

 

�1

j

:h7!hÆ 

�1

j

���������! L

q

w

j

(R

n

)

R




���! L

q

w

j

(
)

B(t)

���! H

�;q

w

j

(
)

M

�

j

:h7!�

j

h

�������! H

�;q

w

j

(H

 

j

)

C

 

j

:h7!hÆ 

j

�������! H

�;q

v

(R

n

+

)

E

e

���! H

�;q

v

�

(R

n

)

�

�

���! L

q

v

�

(R

n

)

R

R

n

+

���! L

q

v

(R

n

+

)

E

0

���! L

q

v

(R

n

);

where H

 

j

is the bent half spae with boundary  

j

(R

n�1

�f0g) and v

�

(x

0

; x

n

) = v(x

0

; x

n

)

for x

n

� 0 and v

�

(x

0

; x

n

) = v(x

0

;�x

n

) for x

n

< 0. This operatorM

j

(t) is the omposition

of B(t) with operators onstant in t and with norms depending A

q

-onsistently on the

weight funtions v and w. The A

q

-onsistene of the norms of C

 

j

, M

�

j

, E

0

and E

e

is

easy to hek in the ases � = 0 and � = 1 and it is preserved by interpolation. For �

�

we refer to Corollary 2.3.

By the assumptions on B(t) we obtain that M

j

(t) is uniformly bounded in t with an

A

q

-onsistent bound. Thus by [14, Theorem 4.3℄ we obtain that M

j

(t) is R-bounded.

Next we show that

B(t) =

n

X

j=1

M

~

�

j

Æ C

 

�1

j

ÆR

R

n

+

Æ �

��

Æ E

e

ÆR

R

n

+

ÆM

j

(t) Æ C

 

j

Æ E

0

; (4.11)

where M

~

�

j

: H

�;q

(wÆ 

j

)

�

Æ 

�1

j

(H

 

j

) ! H

�;q

w

(
) is the multipliation with some ut-o� fun-

tion

~

�

j

2 C

1

0

(V

j

) with

~

�

j

� 1 on supp�

j

. One has the equations

R




Æ C

 

�1

j

Æ C

 

j

Æ E

0

= id

L

q

w

(
)

;

N

X

j=1

M

~

�

j

Æ C

 

�1

j

ÆR

R

n

+

Æ �

��

Æ E

e

ÆR

R

n

+

Æ E

0

ÆR

R

n

+

Æ �

�

Æ E

e

| {z }

=id

H

�;q

w

(R

n

+

)

; sine �

�

ÆE

e

is even

ÆC

 

j

ÆM

�

j

= id

H

�;q

w

(
)

:

We have used that the Fourier transform and the inverse Fourier transform as well as

the multipliation with the even funtion h�i

�

maps even funtions to even funtions.

This shows that the image spae of �

�

ÆE

e

onsists of even funtions. Thus (4.11) holds.

We �nd that B(t) is R-bounded as a sum and omposition of the R-bounded operators

M

j

(t) with bounded operators whih are onstant in t.
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We turn to the ase 1 < � � 2. If B(t) : L

q

w

(
) ! H

�;q

w

(
), t 2 I, ful�lls the

assumptions of this theorem, then �

i

B(t) : L

q

w

(
) ! H

��1;q

w

(
) is uniformly bounded

for i = 1; :::; n as well, by a onstant depending A

q

-onsistently on w. Moreover, by the

embedding H

�;q

w

(
) ,! H

��1;q

w

(
) the same is true for B(t) : L

q

w

(
)! H

��1;q

w

(
).

Sine 0 < � � 1 � 1, we are in the ase just treated and we �nd that

�

i

B(t) : L

q

w

(
)! H

��1;q

w

(
); i = 1; :::; n; and B(t) : L

q

w

(
)! H

��1;q

w

(
)

are R-bounded. Thus using the notation of De�nition 4.9 we �nd by Lemma 2.7

Z

1

0











m

X

k=1

r

k

(u)B(t

k

)h

k











H

�;q

w

(
)

du

� 

0

�

n

X

j=1

Z

1

0











�

j

m

X

k=1

r

k

(u)B(t

k

)h

k











H

��1;q

w

(
)

du +

Z

1

0











m

X

k=1

r

k

(u)B(t

k

)h

k











H

��1;q

w

(
)

du

1

A

� 

Z

1

0











m

X

k=1

r

k

(u)h

k











L

q

w

(
)

du:

Hene B(t) is R-bounded.

2. For 1 � � � 2 one has k � k

Y

�;q

w

= k � k

�;q;w

. Thus, if B(t) : L

q

w

(
) ! Y

�;q

w

(
) �

H

�;q

w

(
) ful�lls the assumptions of the theorem, then B(t) : L

q

w

(
) ! H

�;q

w

(
) is R-

bounded. Sine B(t) takes values in Y

�;q

w

(
), we obtain the asserted R-boundedness of

B(t) : L

q

w

(
)! Y

�;q

w

(
).

Now we assume 0 � � < 1. We hoose some ball B

r

suh that 
 � B

r

. Then the

operator

E

0;B

r

: Y

�;q

w

(
)! H

�;q

w

(B

r

); E

0;B

r

(u)(x) =

(

u(x) if x 2 


0 if x 2 B

r

n 


(4.12)

is ontinuous with ontinuity onstant 1. This is lear for � = 0 and � = 1, for � 2 (0; 1)

it follows by interpolation.

We set

D(t) : L

q

w

(B

r

)! H

�;q

w

(B

r

); D(t)u = E

0;B

r

ÆB(t) ÆR




;

where R




is the restrition to 
. Then D(t) is uniformly bounded by a onstant de-

pending A

q

-onsistently on w. Hene it is R-bounded by 1.

Let u 2 H

�;q

w

(B

r

) with uj

B

r

n


= 0. Then by the Theorems 2.5 and 2.4 the norm in

the interpolation spae is equivalent to the one de�ned by restritions. The onstants

are maybe no longer A

q

-onsistent, but in this step of the proof this is no longer needed.

Thus we may estimate, denoting by E

0;R

n

the extension by 0 to the whole spae R

n

,

kR




uk

Y

�;q

w

(
)

�kE

0;R

n

R




uk

H

�;q

w

(R

n

)

=k Uk

H

�;q

w

(R

n

)

� kUk

H

�;q

w

(R

n

)

� kuk

H

�;q

w

(B

r

)

;

where  is some ut-o� funtion with supp � B

r

and  = 1 in 
 and U 2 H

�;q

w

(R

n

)

is some extension of (E

0;R

n

R




u)j

B

r

= u with kUk

H

�;q

w

(R

n

)

� kuk

H

�;q

w

(B

r

)

.

Now the R-boundedness of B(t) follows from the R-boundedness ofD(t) as before.
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Lemma 4.12. Let 0 < Æ < ", " 2 (0;

�

2

) and w 2 A

q

. Then the operator

h�i

1�

�

2

(�+A)

�1

: L

q

w;�

(
)! Y

�;q

w

(
)

is bounded uniformly with respet to � 2 �

Æ

[ f0g. This uniform bound depends A

q

-

onsistently on w.

Proof. For the ases � = 0 and � = 2 we observe that by [14℄ the strong solution u of

(�+A)u = f ful�lls the estimate

j�jkuk

q;w

+ kuk

2;q;w

� kfk

q;w

with  depending A

q

-onsistently on w. This yields kuk

2;q;w

� kfk

q;w

, whih is the

assertion for � = 2 and h�ikuk

q;w

� (j�j + 1)kuk

q;w

� kfk

q;w

, whih is the assertion

for � = 0. Thus we have shown

k(�+A)

�1

k

L(L

q

w;�

;H

�;q

w

)

� h�i

�

2

�1

for � = 0; 2:

Next we onsider the ase � = 1. By interpolation we obtain

k(�+A)

�1

k

L(L

q

w;�

;[L

q

w

;H

2;q

w

℄

1

2

)

� 

1�

1

2

h�i

�(1�

1

2

)



1

2

= h�i

�

1

2

;

where  is independent of � and depends A

q

-onsistently on w. Now Lemma 2.6 yields

k(�+A)

�1

fk

Y

1;q

w

�Mk(� +A)

�1

fk

[L

q

w

;H

2;q

w

℄

1

2

� Mh�i

�

1

2

kfk

q;w

:

This is the assertion for � = 1. For � 2 (0; 1) and � 2 (1; 2) we use reiteration.

We obtain the following regularity result in the ase of purely tangential boundary

onditions.

Lemma 4.13. Let 0 � � � 2 and

g 2 L

r

(0; T ;T

�;q

w

(�
)) \H

�

2

;r

0

((0; T ℄;T

0;q

w

(�
))

be purely tangential. Let u 2 L

r

(0; T ;L

q

w

(
)) be the unique very weak solution to the

instationary Stokes problem with zero initial values, fore and divergene and boundary

ondition g, i.e.,

�hu; �

t

�i


;T

� hu;��i


;T

= �hg;N � r�i

�
;T

for all � 2 X

r

0

;q

0

w

0

;�

hu(t);  i




= 0 for all  2 W

1;q

0

w

0

(
)

(4.13)

and almost every t. Then u 2 L

r

(0; T ;H

�;q

w

(
)) and it ful�lls the estimate

ku

t

j

Y

2;q

0

w

0

;�

(
)

k

L

r

(Y

��2;q

w;�

)

+ kuk

L

r

(H

�;q

w

)

� 

�

kgk

L

r

(T

�;q

w

)

+ kgk

H

�

2

;r

0

((0;T ℄;T

0;q

w

)

�

;

with  = (r;
; q; A

q

(w)) > 0.
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Proof. By the Lemmas 4.7 and 4.8 we may assume that g is extended to an element of

L

r

(R;T

�;q

w

(�
)) \ H

�

2

;r

(R;T

0;q

w

(�
)) with g(t) = 0 for t < 0. This is possible without

inreasing the magnitude of the norm of g. The extension is again denoted by g. Let

B : fg 2 T

�;q

w

(�
) j g purely tangentialg !Y

�2;q

w

(
);

g 7![� 7! �hg;N � r�i℄:

Let u 2 L

r

(R;L

q

w

(
)) with u(t) = 0 for t < 0 and suh that, for t � 0, it is the

very weak solution to the instationary Stokes problem with exterior fore Bg, for the

extended funtion g. This solution exists by Theorem 4.3, is uniquely de�ned by g and

solves the Stokes equations in the sense of (4.13) with T replaed by 1. Moreover, by

the uniqueness of very weak solutions, this funtion u oinides on [0; T ℄ with the very

weak solution with respet to the original g, given in the assumption of this theorem.

We have to show that it satis�es u 2 L

r

(R;H

�;q

w

(
)) and ful�lls the estimate. Set

u

1

(t) := A

�1

Bg(t), where A is the generalized Stokes operator on Y

�2;q

w;�

(
). Then

u

1

(t)j

�


= g(t) in the sense of Theorem 2.10 for almost every t sine g is purely tangen-

tial.

Sine A

�1

B : T

0;q

w

(�
)! L

q

w

(
) is ontinuous, one obtains

ku

1

k

H

�

2

;r

(R;L

q

w

)

= k�

�

2

t

A

�1

Bgk

L

r

(R;L

q

w

)

= kA

�1

B�

�

2

t

gk

L

r

(R;L

q

w

)

� kgk

H

�

2

;r

(R;T

0;q

w

)

:

Moreover, from the pointwise estimate in Theorem 2.11 we obtain u

1

2 L

r

(R;H

�;q

w

(
))

and the estimate ku

1

k

L

r

(R;H

�;q

w

)

� kgk

L

r

(R;T

�;q

w

)

. Now u

2

:= u� u

1

solves

�

t

u

2

+Au

2

= ��

t

u

1

in D

0

(R; Y

�2;q

w;�

(
)):

An appliation of the Fourier transformation with respet to the time variable t yields

û

2

= �it(it +A)

�1

û

1

.

As a next step we show that

M(t) := hti

�

�

2

t(it +A)

�1

P

q;w

2 L(L

q

w

(
); Y

�;q

w

(
))

is a Fourier multiplier. Sine

kM(t)k

L(L

q

w

(
);Y

�;q

w

(
))

� khti

�

�

2

+1

(it+A)

�1

P

q;w

k

L(L

q

w

(
);Y

�;q

w

(
))

for every t, we �nd by Lemma 4.12 that M(t) is uniformly bounded by a onstant that

depends A

q

-onsistently on w. By Theorem 4.11 this implies that M(t) is R-bounded.

Moreover,

tM

0

(t) = (thti

�

�

2

�

�

2

t

3

hti

�

�

2

�2

)(it+A)

�1

P

q;w

� it

2

hti

�

�

2

(it+A)

�2

P

q;w

:

Sine t(it+A)

�1

: L

q

w

(
)! L

q

w

(
) is uniformly bounded with an A

q

-onsistent onstant

and thti

�

�

2

�

�

2

t

3

hti

�

�

2

�2

� (1 +

�

2

)hti

1�

�

2

, this is R-bounded as before.

Combining the above with Theorem 4.10 and Lemma 4.8 shows that M(t) is a mul-

tiplier. Thus

ku

2

k

L

r

(H

�;q

w

)

� ku

2

k

L

r

(Y

�;q

w

)

= kF

�1

iM(t)hti

�

2

û

1

k

L

r

(H

�;q

w

)

� kF

�1

hti

�

2

û

1

k

L

r

(L

q

w

)

= ku

1

k

H

�

2

;r

(L

q

w

)

� kgk

H

�

2

;r

(T

0;q

w

)

:
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Using this we are in the position to estimate the time derivative of u beause

k�

t

uk

L

r

(Y

��2;q

w;�

)

= kAu

2

k

L

r

(Y

��2;q

w;�

)

� ku

2

k

L

r

(Y

�;q

w;�

)

� kgk

H

�

2

;r

(T

0;q

w

)

:

Combining this with the estimate for u

1

implies

ku

t

k

L

r

(Y

��2;q

w;�

)

+ kuk

L

r

(H

�;q

w

)

� 

�

kgk

L

r

(T

�;q

w

)

+ kgk

H

�

2

;r

(T

0;q

w

)

�

= kgk

L

r

(T

�;q

w

)\H

�

2

;r

(T

0;q

w

)

:

4.4 Solutions to Fully Inhomogeneous Data

In the following we onsider external fores

f 2 L

r

(0; T ;Y

��2;q

w

(
)) =

�

L

r

(0; T ;Y

�2;q

w

(
)); L

r

(0; T ;L

q

w

(
))

�

�

2

for 0 � � � 2;

where the equality of the spaes follows from [28, 1.18.4℄ ombined with Theorem 2.5.

For suh fores one obtains very weak solutions to the instationary Stokes problem by

interpolation.

Lemma 4.14. For every f 2 L

r

(0; T ;Y

��2;q

w

(
)) there exists a unique solution u 2

L

r

(0; T ;Y

�;q

w;�

(
)) to the Stokes equation

u

t

+Au = f j

Y

2;q

0

w

0

;�

(
)

in D

0

(0; T ;Y

��2;q

w;�

(
)) with u(0)j

Y

2;q

0

w

0

;�

(
)

= 0:

It ful�lls the estimate

kuk

L

r

(Y

�;q

w;�

)

� kf j

Y

2;q

0

w

0

;�

(
)

k

L

r

(Y

��2;q

w;�

)

:

Proof. By Corollary 4.4 and Lemma 4.5 this is true for � = 0. Sine for f(t) 2 L

q

w;�

(
)

one has f j

Y

2;q

0

w

0

;�

(
)

= P

q;w

f j

Y

2;q

0

w

0

;�

(
)

the solution operator

L : L

r

(0; T ;L

q

w

(
)) 3 f 7! u 2 L

r

(0; T ;Y

2;q

w;�

(
));

where u is the strong solution to the instationary Stokes equations with fore f , is well-

de�ned, ontinuous by Theorem 4.2 and it oinides with the very weak solution with

respet to � 7! hf; �i by the uniqueness of the very weak solution in Theorem 4.3.

Thus we may apply interpolation to the solution operator L : f 7! u

L : L

r

(0; T ;Y

�2;q

w

(
))! L

r

(0; T ;L

q

w;�

(
)) and

L : L

r

(0; T ;L

q

w

(
))! L

r

(0; T ;Y

2;q

w;�

(
))

and we obtain the assertion.
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Our spae of initial values is

I

�;q;r

w

= I

�;q;r

w

(
) :=

�

u

0

2 Y

��2;q

w;�

(
)

�

�

�

Z

1

0

ke

�tA

u

0

k

r

�;q;w

dt <1

�

;

where e

�tA

is the semigroup that is generated by the generalized Stokes operator A in

Y

��2;q

w;�

(
) with

e

�tA

: Y

��2;q

w;�

(
)! D(A) = Y

�;q

w;�

(
) � H

�;q

w;�

(
):

It is equipped with the norm ku

0

k

I

�;q;r

w

:= ku

0

k

Y

��2;q

w;�

+ ke

�tA

u

0

k

L

r

(H

�;q

w

)

.

Lemma 4.15. I

2;q;r

w

is dense in I

�;q;r

w

for every � 2 [0; 2℄.

Proof. If � = 2 nothing is to show. Thus we assume � 2 [0; 2).

For u

0

2 I

�;q;r

w

and � > 0 we set u

�

:= �(�+A)

�1

u

0

. Reall the inequalities

k(�+A)

�1

xk

L

q

w;�

� kxk

Y

�2;q

w;�

and k(�+A)

�1

xk

Y

2;q

w;�

� kxk

L

q

w;�

;

whih are true with  independent of � by Theorem 3.2. Using this and the de�nition

of the norm in I

�;q;r

w

one shows that ku

�

k

I

2;q;r

w

� (�)ku

0

k

I

0;q;r

w

� (�)ku

0

k

I

�;q;r

w

. This

yields u

�

2 I

2;q;r

w

. Moreover, sine x(t) := e

�tA

u

0

2 Y

2;q

w;�

(
) we �nd by Lemma 4.12

k�(�+A)

�1

x(t)� x(t)k

Y

�;q

w;�

�

1

h�i

1�

�

2

kAx(t)k

q;w

�!1

���! 0: (4.14)

Sine kA(�+A)

�1

x(t)k

Y

�;q

w;�

� kAx(t)k

Y

��2;q

w;�

2 L

r

(R

+

) with  independent of � we have

by Lebesgue's Theorem

ke

�tA

u

�

� e

�tA

u

0

k

Y

�;q

w;�

= k�(�+A)

�1

x(t)� x(t)k

Y

�;q

w;�

! 0 in L

r

(R

+

)

as �!1. In addition Lemma [19, Lemma I.3.2℄ implies that u

�

! u

0

in Y

��2;q

w;�

(
) as

�!1 and we obtain onvergene in I

�;q;r

w

.

Lemma 4.16. Let 1 < q < 1, � 2 [0; 2℄ and let w 2 A

q

. Let 
 � R

n

be a bounded

C

2;1

-domain if � > 1 and a bounded C

1;1

-domain if � � 1.

Then the Helmholtz projetion P

q;w

: H

�;q

w

(
)! H

�;q

w

(
) is ontinuous.

Proof. This follows by interpolation from the orresponding assertions for � = 0; 1; 2.

The assertion for � = 0 follows from [12℄ and the one for � = 1 and � = 2 follows from

the regularity of solutions to the weak Neumann problem in weighted spaes that has

been proved in [21, A2℄.

Theorem 4.17. Let 1 < q < 1, � 2 [0; 2℄ and let w 2 A

q

. Let 
 � R

n

be a bounded

C

2;1

-domain if � > 1 and a bounded C

1;1

-domain if � � 1. Moreover, we take

f 2 L

r

(0; T ;Y

��2;q

w

(
));

k 2 H

�

2

;r

0

((0; T ℄;W

�1;q

w;0

(
)) \ L

r

(0; T ;H

��1;q

w;�

(
));

g 2 H

�

2

;r

0

((0; T ℄;T

0;q

w

(�
)) \ L

r

(0; T ;T

�;q

w

(�
));

u

0

2 I

�;q;r

w

(
);
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ful�lling the ompatibility ondition hk(t); 1i




= hg(t); Ni

�


, for almost all t 2 (0; T ).

Then there exists a unique very weak solution u 2 L

r

(0; T ;H

�;q

w

(
)) to the instationary

Stokes system, i.e.,

�hu; �

t

i


;T

� hu;��i


;T

= �hu

0

; �(0)i




+ hf; �i


;T

� hg;N � r�i

�
;T

�hu(t);r i




= hk(t);  i




� hg(t); N i

�


for a.e. t 2 [0; T ℄

for all � 2 X

r

0

;q

0

w

0

;�

and  2 W

1;q

0

w

0

(
).

Moreover, there exists a pressure funtional p 2 H

�1;r

(0; T ;H

��1;q

w

(
)) that is unique

modulo onstants, suh that

�

t

u��u+rp = f j

C

1

0

(
)

is ful�lled in the sense of distributions on (0; T ) � 
. This solution (u; p) ful�lls the

estimate

ku

t

j

Y

2;q

0

w

0

;�

(
)

k

L

r

(0;T ;Y

��2;q

w;�

(
))

+ kuk

L

r

(H

�;q

w

)

+ kpk

H

�1;r

(H

��1;q

w

)

�

�

kfk

L

r

(H

��2;q

w

)

+ kkk

H

�

2

;r

0

((0;T ℄;W

�1;q

w;0

)\L

r

(H

��1;q

w;�

)

+ kgk

H

�

2

;r

0

((0;T ℄;T

0;q

w

)\L

r

(T

�;q

w

)

+ ku

0

k

I

�;q;r

w

�

(4.15)

with  = (
; r; �; q; w) > 0.

Remark 4.18. The right hand side in the above theorem is

[� 7! �hu

0

; �(0)i




+ hf; �i


;T

� hg;N � r�i

�
;T

℄ 2 (X

r

0

;q

0

w

0

)

0

:

This means the ase of non-zero initial onditions requires no generalization of the

de�nition of the very weak solution given in De�nition 4.1.

Proof. Step 1. We start with the divergene and the normal part of the boundary

ondition.

Let ~u

1

(t) 2 H

�;q

w

(
) be the very weak solution to the stationary Stokes system with

external fore 0, boundary ondition g(t) and divergene k(t). Moreover, set u

1

(t) :=

~u

1

(t)� P

q;w

~u

1

(t). Then one has by Lemma 4.16

u

1

(t) 2 H

�;q

w

(
); u

1

(t) = r�(t)

and for almost every t 2 [0; T ℄ and every  2 W

1;q

0

w

0

(
) one has by (3.3)

hr�;r i




= hu

1

(t);r i




= h~u

1

(t);r i




= �hk(t);  i




+ hg(t); N i

�


:

This funtion � an be hosen suh that

R




� = 0.

The a priori estimate of the solution to the stationary problem ombined with the

ontinuity of P

q;w

on H

�;q

w

(
) shown in Lemma 4.16 implies u

1

2 L

r

(0; T ;H

�;q

w

(
)).

Thus by Lemma 4.7 one has �

t

u

1

2 H

�1;r

(0; T ;H

�;q

w

(
)) and it annot be expeted to
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be a funtion in time. However, sine u

1

is a gradient, for � 2 C

1

0

(0; T ;Y

2;q

0

w

0

;�

(
)) one

has

h�

t

u

1

; �i


;T

= �hu

1

; �

t

P

q

0

;w

0

�i


;T

= �hP

q;w

u

1

; �

t

�i


;T

= 0:

Thus the estimate for �

t

u

1

j

Y

2;q

0

w

0

;�

(
)

2 L

r

(0; T ;Y

��2;q

w;�

(
)) is obvious.

Next we have to show that the tangential omponent of the boundary value (u

1

) of

u

1

is well-de�ned in the sense of Theorem 2.10 and ful�lls the estimate

k(u

1

)k

L

r

(T

�;q

w

)\H

�

2

;r

0

(T

0;q

w

)

� ku

1

k

L

r

(H

�;q

w

)\H

�

2

;r

0

(L

q

w

)

� 

�

kkk

L

r

(H

��1;q

w;�

)\H

�

2

;r

0

(W

�1;q

w;0

)

+ kgk

L

r

(T

�;q

w

)\H

�

2

;r

0

(T

0;q

w

)

�

:

(4.16)

We begin proving the following pointwise inequality

k(u

1

(t))k

T

�;q

w

� ku

1

(t)k

H

�;q

w

� (kk(t)k

H

��1;q

w;�

+ kg(t)k

T

�;q

w

): (4.17)

The seond inequality follows from the a priori estimate of the stationary Stokes equation

in Theorem 2.11 ombined with the ontinuity of P

q;w

. Hene it remains to prove the

�rst.

If � � 1 this follows from the ontinuity of the restrition v 7! vj

�


: H

�;q

w

(
) !

T

�;q

w

(�
). Thus we assume 0 � � < 1. Sine �u

1

(t) = r��(t) one has �u

1

(t)j

C

1

0;�

(
)

=

0. This means (u

1

(t)) 2 T

0;q

w

(�
) is well-de�ned by Theorem 2.10. Moreover, if � = 0,

this means that the mapping

W

1;q

w

(
) 3 � 7! (r�) 2 T

0;q

w

(�
)

is ontinuous and, by the de�nition of T

1;q

w

(
), it is also bounded as an operator

 Æ r : W

2;q

w

(
)! T

1;q

w

(�
):

Hene by interpolation we obtain the ontinuity of  Æ r : H

�+1;q

w

(
) ! T

�;q

w

(�
) and

this implies the pointwise estimate (4.17) for almost every t, where one uses the Lemmas

2.8 and 2.7 to verify

k�k

H

�+1;q

w

� 

�

kr�k

H

�;q

w

+ k�k

H

�;q

w

�

� 

�

kr�k

H

�;q

w

+ kr�k

H

��1;q

w

�

� ku

1

k

H

�;q

w

;

sine � has mean value 0. Thus we obtain

k(u

1

)k

L

r

(T

�;q

w

)

� ku

1

k

L

r

(H

�;q

w

)

� (kkk

L

r

(H

��1;q

w;�

)

+ kgk

L

r

(T

�;q

w

)

): (4.18)

In partiular (4.17) holds for � replaed by 0. Assume for a moment that k, g and

u

1

are de�ned on R � 
 with supp k; supp g � [0;1) in time. Obviously the operator

�

t

ating in time ommutes with the ontinuous operator (g(t); k(t)) 7! u

1

(t) ating in

spae. Combining this with (4.17) implies

k(u

1

)k

H

�

2

;r

(R;T

0;q

w

)

�ku

1

k

H

�

2

;r

(R;L

q

w

)

�

�

kkk

H

�

2

;r

(R;H

�1;q

w;0

)

+ kgk

H

�

2

;r

(R;T

0;q

w

)

�

:

(4.19)
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For g and k given as in the assumption of this theorem by Lemma 4.7 there exist

extensions Eg 2 H

�

2

;r

(R;T

0;q

w

(�
)) and Ek 2 H

�

2

;r

(R;H

�1;q

w;0

(
)). The resulting u

E

1

ful�lls supp u

E

1

� suppEg [ suppEk in time. Thus we obtain

k(u

1

)k

H

�

2

;r

0

((0;T ℄;T

0;q

w

)

� 

�

kkk

H

�

2

;r

0

((0;T ℄;H

�1;q

w;0

)

+ kgk

H

�

2

;r

0

((0;T ℄;T

0;q

w

)

�

(4.20)

from (4.19). Combining (4.18) and (4.20) implies that the tangential omponent of the

boundary value of u

1

ful�lls (u

1

) 2 H

�

2

;r

0

((0; T ℄;T

0;q

w

(�
)) \ L

r

(0; T ;T

�;q

w

(�
)) and the

estimate (4.16).

Step 2. We onsider the tangential omponent of the boundary ondition.

Let u

2

2 L

r

(0; T ;H

�;q

w

(
)) be the solution to the instationary Stokes system with van-

ishing initial ondition, exterior fore, divergene and the purely tangential boundary

ondition

g

tan

� (u

1

) 2 H

�

2

;r

0

((0; T ℄;T

0;q

w

(�
)) \ L

r

(0; T ;T

�;q

w

(�
));

where g

tan

is the tangential omponent of g. Suh a funtion u

2

exists by Lemma 4.13

and ful�lls the estimate

k(�

t

u

2

)j

Y

2;q

0

w

0

;�

k

L

r

(Y

��2;q

w;�

)

+ ku

2

k

L

r

(H

�;q

w

)

�

�

kg

tan

k

H

�

2

;r

0

(T

0;q

w

)\L

r

(T

�;q

w

)

+ k(u

1

)k

H

�

2

;r

0

(T

0;q

w

)\L

r

(T

�;q

w

)

�

�

�

kkk

H

�

2

;r

0

(H

�1;q

w;0

)

+ kgk

H

�

2

;r

0

(T

0;q

w

)

+ kkk

L

r

(H

��1;q

w;�

)

+ kgk

L

r

(T

�;q

w

)

�

;

where in the last inequality we have used (4.16).

Step 3. The next step is to onsider the initial values.

We set u

3

(t) = e

�tA

u

0

, where e

�tA

is the semigroup generated by the generalized Stokes

operator in Y

��2;q

w;�

(
). Then u

3

is a solution to

�

t

u

3

+Au

3

= 0; u

3

j

Y

2;q

0

w

0

;�

(
)

(0) = u

0

:

By the de�nition of the spae of initial values I

�;q;r

w

it ful�lls the estimate









�

t

u

3

j

Y

2;q

0

w

0

;�

(
)









L

r

(Y

��2;q

w;�

)

+ ku

3

k

L

r

(H

�;q

w

)

� ku

0

k

I

�;q;r

w

:

Step 4. It remains to treat the external fore.

By Lemma 4.14 there exists a unique very weak solution u

4

2 L

r

(0; T ;Y

�;q

w;�

(
)) solving

�

t

u

4

+Au

4

= f j

Y

2;q

0

w

0

;�

(
)

; u

4

j

Y

2;q

0

w

0

;�

(
)

(0) = 0:

It ful�lls the estimate









�

t

u

4

j

Y

2;q

0

w

0

;�

(
)









L

r

(Y

��2;q

w;�

)

+ ku

4

k

L

r

(Y

�;q

w

(
))

� kfk

L

r

(Y

��2;q

w

)

.

Step 5. Summarizing the above shows that u := u

1

+ u

2

+ u

3

+ u

4

2 L

r

(0; T ;H

�;q

w

(
))
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is a very weak solution as required. The funtion u ful�lls the estimate









�

t

uj

Y

2;q

0

w

0

;�

(
)









L

r

(Y

��2;q

w;�

)

+ kuk

L

r

(H

�;q

w

)

�

�

kfk

L

r

(H

��2;q

w

)

+ kkk

L

r

(H

��1;q

w;�

)\H

�

2

;r

0

(W

�1;q

w;0

)

+ kgk

L

r

(T

�;q

w

)\H

�

2

;r

0

(T

0;q

w

)

+ ku

0

k

I

�;q;r

w

�

;

sine this is true for u

1

, u

2

, u

3

and u

4

.

Step 6. The uniqueness of u follows from the uniqueness of the very weak solution

proved in Theorem 4.3.

Step 7. It remains to show existene and estimates for the pressure funtional.

We approximate f; k; g; u

0

by funtions

f

n

2 L

r

(0; T ;L

q

w

(
)); k

n

2 H

1;r

0

(0; T ;H

1;q

w

(
));

g

n

2 H

1;r

0

(0; T ;T

2;q

w

(�
)); u

0;n

2 I

2;q;r

w

in the norms of the orresponding spaes for the data as in the assumptions of this

theorem. Then one obtains as above a strong solution

u

n

2 L

r

(0; T ;H

2;q

w

(
)) with �

t

u

n

2 L

r

(0; T ;L

q

w

(
))

to the Stokes problem with respet to the data u

0;n

; f

n

; g

n

; k

n

. By the uniqueness proved

in Step 5 the funtions u

n

ful�ll the a priori estimate (4.15). This implies u

n

! u in

L

r

(0; T ;H

�;q

w

(
)).

By de Rham's Theorem [27℄ there exists p

n

(t) 2 (C

1

0

(
))

0

suh that

�

t

u

n

(t)��u

n

(t) +rp

n

(t) = f

n

(t) almost everywhere on (0; T )� 
:

Sine rp

n

2 L

r

(0; T ;L

q

w

(
)) one has by Lemma 2.8 that p(t) 2 W

1;q

w

(
) for almost

every t. We hoose p

n

(t) suh that

R

p

n

(t) dx = 0 for every t.

Every rp

n

ful�lls the estimate

krp

n

k

H

�1;r

(H

��2;q

w

)

�

�

kk

n

k

L

r

(H

��1;q

w;�

)\H

�

2
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0

(H

�1;q

w;0

)

+ kg

n

k

L

r
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�;q

w
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�

2

;r

0

(T

0;q

w

)

+ kf

n

k

L

r

(Y

��2;q

w

)

+ ku

0;n

k

I

�;q;r

w

�

;

where we have used Y

��2;q

w

(
)j

H

2��;q

0

w

0

;0

,! H

��2;q

w

(
) and Lemma 4.7 to show

k�

t

u

n

k

H

�1;r

(H

��2;q

w

)

� ku

n

k

L

r

(H

��2;q

w

)

� ku

n

k

L

r

(H

�;q

w

)

:

Moreover, by Lemma 4.7 one has H

�1;r

(0; T ;H

��2;q

w

(
)) = W

�1;r

(0; T ;H

��2;q

w

(
)) and

for every � 2 W

1;r

0

(0; T ;H

1��;q

0

w

0

;0

(
)) with h�(t); 1i = 0 we �nd � 2 W

1;r

0

(0; T ;H

2��;q

0

w

0

;0

(
))

with

�h�(t);r i




= h�(t);  i




for all  2 W

1;q

0

w

0

(
)

and k�k

W

1;r

0

(H

2��;q

0

w

0

;0

)

� k�k

W

1;r

0

(H

1��;q

0

w

0

;0

)

. For � 2 [0; 1℄ we may hoose �(t) to be equal

to the very weak solution to the stationary Stokes equation with 0 external fore and

divergene �(t) that exists by Theorem 2.11. For � 2 (1; 2℄ we may apply omplex
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interpolation to the Bogowski operator on L

q

w

(
) and on W

1;q

w;0

(
). The ontinuity of

this operator between weighted spaes has been shown in [22℄.

For � 2 C

1

0

((0; T )� 
) with mean value 0 one has the estimate

jhp

n

; �i


;T

j = jhrp

n

; �i


;T

j � krp

n

k

H

�1;r

(H

��2;q

w

)

k�k

H

1;r

0

(H

1��;q

0

w

0

;0

)

:

Combining the above yields the estimate
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n

k

H

�1;r
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��1;q

w

)

�

�

kk

n

k

L

r

(H

��1;q

w;�
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�

2

;r

(H

�1;q

w;0

)

+ kg
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k

L
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�;q

w

)\H

�
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0
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0;q
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+ kf
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L
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��2;q

w

)
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0;n

k

I

�;q;r
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�

:

Replaing p

n

by p

n

� p

m

in the above estimates shows that (p

n

) is a Cauhy sequene

in H

�1;r

(0; T ;H

��1;q

w

(
)) onverging to some p 2 H

�1;r

(0; T ;H

��1;q

w

(
)).

The ouple (u; p) solves the Stokes equations in the distributional sense and ful�lls

the a priori estimate.

Note that the solution onstruted in Theorem 4.17 does in general not ful�ll �

t

u 2

L

r

(0; T ;Y

��2;q

w

(
)). Aordingly, the pressure p is ontained in H

�1;r

(0; T ;H

��1;q

w

(
)).

This result ould be improved to

p 2 H

�1;r

(0; T ;H

�;q

w

(
)) + L

r

(0; T ;H

��1;q

w

(
));

but p is in general not integrable in time.

Another problem onerns the boundary values. In the above theorem boundary

onditions are inluded even though for 0 � � < 1 the equation uj

�


= g in general

makes no sense. The reason is that u is in general not smooth enough to make its

restrition to the boundary well-de�ned.

However, if data and solution are regular enough, this an be established a posteri-

ori. More preisely, let � 2 (1;1) and ~w 2 A

�

suh that L

�

~w

(
) ,! W

��1;q

w;0

(
) and

assume k 2 L

r

(0; T ;L

�

~w

(
)) \ H

�

2

;r

0

((0; T ℄;H

�1;q

w;0

(
)). Then the normal omponent of

the boundary ondition an be de�ned as in the stationary ase and one obtains

hu(t); N i

�


= hu(t);r i




+ hdiv u(t);  i




= hg(t); N i

�


for almost every t and every  2 W

1;q

0

w

0

(
). Thus the normal omponent of u is equal to

the one of g.

The tangential omponent auses more diÆulties than in the stationary ase. The

reason is that f 2 L

r

(0; T ;W

�1;�

~w

(
)) does in general not imply �

t

u(t) 2 W

�1;�

~w

(
) for

almost every t. And this is neessary to ensure u(t) 2

~

W

q;�

w; ~w

, the spae in whih the

tangential omponent of the boundary values is well-de�ned.

Hene, to ensure that the tangential boundary ondition is well-de�ned we assume

f 2 L

r

(0; T ;W

�1;�

~w

(
)) and u 2 L

r

(0; T ;H

�;q

w

(
)); u

t

(t) 2 W

�1;�

~w

(
) (4.21)

for almost every t. Then, using test funtions of the form � � � with � 2 C

1

0

(0; T ) and

� 2 C

1

0

(
) one shows that for every � 2 C

1

0;�

(
) and almost every t one has

h�u(t); �i




= hu(t);��i




= h�

t

u(t); �i




� hf(t); �i
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whih implies u(t) 2

~

W

q;�

w; ~w

for almost every t by the assumptions on f and u

t

. Moreover,

hu;N � r�i

�
;T

= hu;��i


;T

� h�u; �i


;T

= hg;N � r�i

�
;T

for every � 2 W

1;r

(0; T ;Y

2;q

0

w

0

;�

(
)) with �(0) = �(T ) = 0. This means that u ful�lls the

tangential boundary ondition almost everywhere.

In partiular, (4.21) is ful�lled in the ase of weak solutions. Thus one has the

following proposition.

Proposition 4.19. Let � 2 [1; 2℄ and the data f; k; g and u

0

be hosen aording to

Theorem 4.17 and let u 2 L

r

(0; T ;H

�;q

w

(
)) be a very weak solution with respet to this

data.

Then (u; p) ful�lls the Stokes system (1.1) in the sense of distributions. In addition

u(t)j

�


= g(t) for almost every t.
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