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We investigate the stationary Navier-Stokes equations in Bessel-potential

spa
es with Mu
kenhoupt weights. Sin
e in this setting it is possible that

the solutions do not posses any weak derivatives, we use the notation of

very weak solutions introdu
ed by Amann [1℄. The basi
 tool is 
omplex

interpolation, thus we give a 
hara
terization of the interpolation spa
es of

the spa
es of data and solutions. Then we establish a theory of solutions

to the Stokes equations in weighted Bessel-potential spa
es and use this to

prove solvability of the Navier-Stokes equations for small data by means of

Bana
h's Fixed Point Theorem.
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1 Introdu
tion

Let 
 be a bounded domain in R

n

, n � 2, with C

1;1

-boundary. We 
onsider the

stationary Navier-Stokes problem with inhomogeneous data

��u+ u � ru+rp = F in 


div u = K in 


u = g on �
:

(1.1)

It is our aim to �nd a 
lass of solutions to (1.1) in a Bessel-potential spa
e H

�;q

(
),

� 2 [0; 2℄. This means we develop a solution theory that in
ludes strong solutions in

the 
ase � = 2 and weak solutions in the 
ase � = 1. However, if � = 0, it is also

possible that the solutions are only 
ontained in L

q

(
), i.e., they do not possess any

�
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weak derivatives. Consequently the notion of weak solutions is no longer suitable in

this 
ontext. Thus one introdu
es the more general notion of very weak solutions. To

arrive there one multiplies the �rst equation in (1.1) with a solenoidal test fun
tion �

vanishing on the boundary, then formal integration by parts yields

�hu;��i � huu;r�i � hKu; �i = hF; �i � hg;N � r�i

�


: (1.2)

Applying the same method to the se
ond equation with a suÆ
iently smooth test fun
-

tion  we obtain

�hu;r i = hK; i � hg;N �  i

�


: (1.3)

The equations (1.2) and (1.3) 
an be used for the de�nition of very weak solutions.

This or similar formulations have been introdu
ed by Amann in [1℄, by Amrou
he and

Girault in [2℄ and by Galdi, Simader and Sohr in [14℄. In these arti
les as well as by

Farwig, Galdi and Sohr in [7℄, [6℄, [8℄ and by Giga in [16℄ solvability with low-regularity

data has been shown.

We investigate this problem in weighted fun
tion spa
es. More pre
isely, we 
onsider

Lebesgue- and Sobolev- and Bessel potential spa
es with respe
t to the measure w dx,

where w is a weight fun
tion 
ontained in the Mu
kenhoupt 
lass A

q

, 
f., (2.1) below.

Classi
al tools for the treatment of partial di�erential equations extend to fun
tion

spa
es with Mu
kenhoupt weights. As important examples we mention the 
ontinuity

of the maximal operator and the multiplier theorems that 
an be found in the books of

Gar
��a-Cuerva and Rubio de Fran
ia [15℄ and Stein [25℄; extension theorems of fun
tions

on a domain to fun
tions on R

n

have been shown by Chua [4℄, extension theorems of

fun
tions on the boundary to fun
tions on the domain by Fr�ohli
h [12℄, see also [20℄ and

embedding theorems by Fr�ohli
h [13℄ using the 
ontinuity of singular integral operators

by Sawyer and Wheeden [19℄.

These tools were the base to treat the solvability of the Stokes and Navier-Stokes

equations in weighted fun
tion spa
es by Farwig and Sohr in [9℄ and by Fr�ohli
h in [10℄,

[11℄, [12℄.

As shown in [9℄ examples of Mu
kenhoupt weights are

w(x) = (1 + jxj)

�

; �n < � < n(q � 1) or

dist (x;M)

�

; �(n� k) < � < (n� k)(q � 1);

where M is a 
ompa
t k-dimensional Lips
hitzian manifold. Thus, if one 
hooses a

parti
ular weight fun
tion, the developed theory 
an be used for a better 
ontrol of

the growth of the solution, for example in the neighborhood of a point or 
lose to the

boundary.

In Se
tion 4 we prove the solvability of the linear Stokes equations in weighted Bessel

potential spa
es. To arrive there, we use 
omplex interpolation between the strong and

the very weak solutions. The notion of very weak solutions used in this 
ontext is slightly

more general than the one mentioned above. More pre
isely, one 
onsiders ea
h right

hand side of (1.2) and (1.3) as one fun
tional

f = [� 7! hF; �i � hg;N � r�i

�


℄ or k = [ 7! hK; i




� hg;N �  i

�


℄:

As a 
onsequen
e it is no longer distinguished between boundary 
ondition and for
e,

or between boundary 
ondition and divergen
e, respe
tively, and sin
e the data may
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ontain a part that is 
on
entrated on the boundary, the fun
tionals f and k are no

longer 
ontained in the 
lass of distributions on 
. In this 
ontext the regularity of

the data 
an be 
hosen so low that every fun
tion u 2 L

q

w

(
) o

urs as a very weak

solution with respe
t to appropriate data. It turns out that this setting is 
onvenient

to deal with 
omplex interpolation. As a preparation we give a 
hara
terization of the

interpolation spa
es of the spa
es of solutions and of the spa
es of the data in Se
tions

3.2 and 3.3. The main results in the linear 
ase are given in the Theorems 4.3 and 4.4.

When dealing with the Navier-Stokes equations in Se
tion 5 the nonlinearity gives us

reason to demand higher regularity of data and solutions. First of all, the nonlinear

term 
an be written as

u � ru = div uu�Ku:

To ensure that the multipli
ation on the right hand side is well-de�ned, it is reasonable

to demand that K is given by a fun
tion.

Moreover, when estimating the nonlinear term, one needs a weighted analogue to

the Sobolev Embedding Theorem. A good repla
ement proved in [13℄ requires strong

assumptions to the weight fun
tion. This 
an be 
ompensated for the pri
e of restri
tions

to the generality of the data and 
onsequently of a smaller 
lass of solutions. It turns out

that the more general the weight fun
tion is the higher one has to 
hoose the regularity

of data and solutions. Thus it is natural to 
onsider the problem in Bessel potential

spa
es, where we are able to adapt the regularity of data and solutions pre
isely to the

quality of the weight fun
tion. Using the results from the linear 
ase we prove existen
e

and uniqueness results for the Navier-Stokes equations if the data is suÆ
iently small,


f., Theorems 5.6, 5.8 and 5.9.

2 Preliminaries

2.1 Weighted Fun
tion Spa
es

Let A

q

, 1 < q <1, the set of Mu
kenhoupt weights, be given by all 0 � w 2 L

1

lo


(R

n

)

for whi
h

A

q

(w) := sup

Q

�

1

jQj

Z

Q

w dx

��

1

jQj

Z

Q

w

�

1

q�1

dx

�

q�1

<1: (2.1)

The supremum is taken over all 
ubes Q in R

n

. To avoid trivial 
ases, we ex
lude the


ase where w vanishes almost everywhere.

Lemma 2.1. 1. Every w 2 A

q

, q � 1 de�nes a lo
ally �nite Borel measure w(F ) =

R

F

w dx and for q > 1 one has

w(Q) �

�

jQj

jF j

�

q

w(F )

for all 
ubes Q and all Borel sets F � Q with jF j > 0.

2. A

q

� A

p

for q < p.

3. Let w 2 A

q

for q > 1. Then there exists s < q su
h that w 2 A

s

.

3
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Proof. 1. [25, V.1.7℄, 2. [15, IV Theorem 1.14℄, 3. [25, IX Prop. 4.5℄

Let k 2 N

0

, q 2 (1;1), w 2 A

q

and let 
 � R

n

be a Lips
hitz domain. Then we

de�ne the following weighted versions of Lebesgue and Sobolev spa
es.

� L

q

w

(
) :=

n

f 2 L

1

lo


(
) j kfk

q;w

:=

�
R




jf j

q

w dx

�

1

q

<1

o

.

It is an easy 
onsequen
e of the 
orresponding result in the unweighted 
ase that

(L

q

w

(
))

0

= L

q

0

w

0

(
) with

1

q

+

1

q

0

= 1 and w

0

= w

�

1

q�1

2 A

q

0

: (2.2)

� Set W

k;q

w

(
) =

n

u 2 L

q

w

(
)

�

�

�

kuk

k;q;w

:=

P

j�j�k

kD

�

uk

q;w

<1

o

.

� By C

1

0

(
) we denote the set of all smooth and 
ompa
tly supported fun
tions,

the spa
e C

1

0;�

(
) 
onsists of all fun
tions that are in addition divergen
e free.

� Moreover we set W

k;q

w;0

(
) = C

1

0

(
)

k�k

k;q;w

. The dual spa
e of it is denoted by

W

�k;q

w

(
) := (W

k;q

0

w

0

;0

(
))

0

. We also 
onsider the divergen
e-free versions

W

k;q

w;0;�

(
) := f� 2 W

k;q

w;0

(
) j div � = 0g and L

q

w;�

(
) = C

1

0;�

(
)

L

q

w

(
)

.

� Using this for k > 0 we set W

�k;q

w;0

(
) = C

1

0

(
)

k�k

W

�k;q

w

(R

n

)

.

� Moreover, we 
onsider the spa
es of boundary values T

k;q

w

(�
) := (W

k;q

w

(
))j

�


,

equipped with the norm k � k

T

k;q

w

= k � k

T

k;q

w

(�
)

of the fa
tor spa
e and �nally

T

0;q

w

(�
) := (T

1;q

0

w

0

(�
))

0

.

By [10℄, [12℄ and [4℄ the spa
es L

q

w

(
), W

k;q

w

(
), W

k;q

w;0

(
) and T

k;q

w

(�
) are re
exive

Bana
h spa
es in whi
h C

1

0

(
), (C

1

0

(
), C

1

(
)j

�


, respe
tively) are dense.

Note that by Ne�
as [18℄, Chapitre 2, x5, in the unweighted 
ase one has

T

k;q

1

(�
) =W

k�

1

q

;q

(�
) for k 2 N and T

0;q

1

(�
) = W

�

1

q

;q

(�
):

Lemma 2.2. Let 
 be a bounded domain. If 1 � s, w 2 A

s

and s < p < 1, then for

every q � sp and some r > q one has

L

r

(
) ,! L

q

w

(
) ,! L

p

(
):

Proof. The se
ond embedding is shown in [12, Lemma 2.2℄ the �rst one follows by

dualization from the se
ond and Lemma 2.1.

Theorem 2.3. Let 
 be a bounded Lips
hitz domain or 
 = R

n

+

and N 2 N. Choose

p

i

2 [1;1), w

i

2 A

p

i

and k

i

2 N

0

, i = 1; :::; N . Then there exists an extension operator

E :

N

\

i=1

W

k

i

;p

i

w

i

(
)!

N

\

i=1

W

k

i

;p

i

w

i

(R

n

);

i.e., Euj




= u and kEuk

W

k

i

;p

i

w

i

(R

n

)

� 
kuk

W

k

i

;p

i

w

i

(
)

for i = 1; :::; N and for every u 2

T

N

i=1

W

k

i

;p

i

w

i

(
).
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Proof. This is a spe
ial 
ase of [4, Theorem 1.4, Theorem 1.5℄. There Chua proves

extension theorems for the 
lass of (";1)-domains. By [17℄ this 
lass in
ludes bounded

Lips
hitz domains and R

n

+

.

From now on we 
all any domain that permits an extension operator as in Theorem 2.3

an extension domain. In parti
ular bounded Lips
hitz domains are extension domains.

Theorem 2.4. (H�ormander-Mi
hlin Multiplier Theorem with Weights)

Let m 2 C

n

(R

n

n f0g) ful�ll the property

j�

�

m(�)j � Kj�j

�j�j

; for every � 2 R

n

n f0g; j�j = 0; 1; :::; n;

for some 
onstant K > 0. Then T de�ned by




Tf = m

^

f for f 2 S(R

n

;R)

extends to a 
ontinuous operator on L

q

w

(
) for every q 2 (1;1) and w 2 A

q

.

Proof. This is an immediate 
onsequen
e of [15℄, Theorem 3.9.

By [22℄ one has the following weighted version of Bogowski's Theorem.

Theorem 2.5. Let 
 � R

n

, n � 2, be a bounded and lo
ally lips
hitzian domain.

Assume f 2 W

k;q

w;0

(
) su
h that

R

f = 0. Then there exists a fun
tion u 2 W

k+1;q

w;0

(
)

su
h that

div u = f and kuk

k+1;q;w

� 
kfk

k;q;w

;

with 
 = 
(
; q; w; k) > 0. Moreover, u 
an be 
hosen su
h that it depends linearly on f

and su
h that u 2 C

1

0

(
) if f 2 C

1

0

(
).

2.2 Complex Interpolation Theory

The fundamental tool in the Se
tions 3.3 and 4 is 
omplex interpolation. Thus we �x

some basi
 notation and fa
ts in this �eld.

Let fX

1

; X

2

g an interpolation 
ouple and D = fz 2 C j 0 < Re z < 1g. We de�ne

F (X

1

; X

2

) to be the spa
e of all bounded and holomorphi
 fun
tions f fromD toX

1

+X

2

whi
h are extendable to 
ontinuous fun
tions on D su
h that f(j + yi) is 
ontinuous on

R with values in X

j+1

, j = 0; 1, and su
h that

kfk

F (X

1

;X

2

)

= max

�

sup

y2R

kf(iy)k

X

1

; sup

y2R

kf(iy + 1)k

X

2

�

<1:

Then for 0 < � < 1 the 
omplex interpolation spa
e is given by [X

1

; X

2

℄

�

= ff(�) j f 2

F (X

1

; X

2

)g, equipped with the norm

kxk

[X

1

;X

2

℄

�

= inffkfk

F (X

1

;X

2

)

j f 2 F (X

1

; X

2

) and f(�) = xg:

Theorem 2.6. Let 0 < � < 1 and X

1

� X

2

with 
ontinuous and dense embedding.

Then one has

1. X

1

is densely and 
ontinuously embedded into [X

1

; X

2

℄

�

.
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2. (Reiteration)

�

[X

1

; X

2

℄

�

; [X

1

; X

2

℄

�

�

�

= [X

1

; X

2

℄

�

, where �; � 2 [0; 1℄ and � = (1�

�)� + ��.

3. (Duality) Let X

1

and X

2

be re
exive. Then [X

1

; X

2

℄

0

�

= [X

0

1

; X

0

2

℄

�

.

4. Let fY

1

; Y

2

g be another interpolation 
ouple with Y

1

� Y

2

. Moreover let T : X

i

!

Y

i

be a 
ontinuous linear operator for i = 1; 2. Then T : [X

1

; X

2

℄

�

! [Y

1

; Y

2

℄

�

is


ontinuous with operator norm bounded by kTk

1��

L(X

1

;Y

1

)

kTk

�

L(X

2

;Y

2

)

.

5. Let fX

1

; X

2

g and fY

1

; Y

2

g be interpolation 
ouples su
h that fX

1

; X

2

g is a retra
t

of fY

1

; Y

2

g, i.e., there exist 
ontinuous linear operators

I : X

1

+X

2

! Y

1

+ Y

2

and P : Y

1

+ Y

2

! X

1

+X

2

;

su
h that PI = id

X

1

+X

2

and I : X

i

! Y

i

and P : Y

i

! X

i

, i = 1; 2 are 
on-

tinuous. Then [X

1

; X

2

℄

�

= P [Y

1

; Y

2

℄

�

for � 2 [0; 1℄. The norms kuk

[X

1

;X

2

℄

�

and

inffkUk

[Y

1

;Y

2

℄

�

j PU = ug are equivalent.

Proof. All assertions 
an be found in [28℄ or [3℄.

2.3 Very Weak Solutions to the Stokes Equations

The existen
e and uniqueness of very weak solutions in weighted L

q

-spa
es have been

shown in [23℄. We quote the basi
 de�nitions and fa
ts that are needed in this paper.

De�nition 2.7. Let f 2 Y

�2;q

w

(
) and k 2 W

�1;q

w;0

(
). A fun
tion u 2 L

q

w

(
) is 
alled

a very weak solution to the Stokes problem with respe
t to the data f and k, if

�hu;��i = hf; �i; for all � 2 Y

2;q

0

w

0

;�

(
) and (2.3)

�hu;r i = hk;  i; for all  2 W

1;q

0

w

0

(
): (2.4)

Setting  = 1 in (2.4) it follows that a ne
essary 
ondition for the existen
e of a

very weak solution u is hk; 1i = 0. This 
ondition is the analogue to the 
ompatibility


ondition hk; 1i = hg;Ni

�


between divergen
e and boundary values in the 
ase of weak

solutions.

Theorem 2.8. Let f 2 Y

�2;q

w

(
) and k 2 W

�1;q

w;0

(
) with hk; 1i = 0. Then there exists

a unique very weak solution u 2 L

q

w

(
) to the Stokes problem in the sense of De�nition

2.7.2. It ful�lls the a priori estimate

kuk

q;w

� 


�

kfk

Y

�2;q

w

(
)

+ kkk

W

�1;q

w;0

�

(2.5)

with 
 = 
(
; q; w) > 0.

Moreover, there exists a pressure fun
tional p 2 W

�1;q

w;0

(
) (unique modulo 
onstants)

su
h that (u; p) solves

�hu;��i � hp; div�i = hf; �i for all � 2 Y

2;q

0

w

0

(
):
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In parti
ular ��u +rpj

C

1

0

(
)

= f j

C

1

0

(
)

in the sense of distributions. The fun
tionals

(u; p) ful�ll the inequality

kuk

q;w

+ kpk

W

�1;q

w;0

� 


�

kfk

Y

�2;q

w

+ kkk

W

�1;q

w;0

�

; (2.6)

where 
 = 
(
; q; w) > 0.

Theorem 2.9. Assume that f 2 Y

�2;q

w

(
) and k 2 W

�1;q

w;0

(
) allow a de
omposition

into

hf; �i = hF; �i � hg;N � r�i

�


for all � 2 Y

2;q

0

w

0

(
);

hk;  i = hK; i � hg;N �  i

�


for all  2 W

1;q

0

w

0

(
)

(2.7)

with g 2 T

0;q

w

(�
); F 2 W

�1;r

~w

(
); K 2 L

r

~w

(
), where 1 < r <1 and ~w 2 A

r

are 
hosen

su
h that W

1;q

0

w

0

(
) ,! L

r

0

~w

0

(
) ,! L

q

0

w

0

(
). Then one has:

1. Su
h a de
omposition is uniquely de�ned by f and k.

2. Every strong solution u 2 W

2;q

w

(
) to the Stokes problem 
orresponding to the data

g 2 T

2;q

w

(�
), F 2 L

q

w

(
) and K 2 W

1;q

w

(
) is a very weak solution 
orresponding

to the data f and k with the notation of (2.7).

3. If g 2 T

2;q

w

(�
), F 2 L

q

w

(
) and K 2 W

1;q

w

(
) with

R




K =

R

�


N �g, then the very

weak solution u to the Stokes problem with respe
t to f and k is a strong solution

with respe
t to F;K and g. In parti
ular u 2 W

2;q

w

(
), there exists a pressure

fun
tion p 2 W

1;q

w

(
), unique modulo 
onstants, su
h that the Stokes equations

are ful�lled in the sense of distributions and one has

kuk

2;q;w

+ kpk

1;q;w

� 
(kFk

q;w

+ kKk

1;q;w

+ kgk

T

2;q

w

): (2.8)

4. Let u be a very weak solution to the Stokes problem 
orresponding to the data f

and k as in (2.7). Then

u 2

~

W

q;r

w; ~w

:=

�

u 2 L

q

w

(
)

�

�

9
 > 0; jhu;��ij � 
k�k

1;r

0

; ~w

0

8� 2 C

1

0;�

(
)

	

:

There exists an operator 
 :

~

W

q;r

w; ~w

! T

0;q

w

(�
) that 
oin
ides with the tangential

tra
e on W

1;q

w

(
). The fa
t that div u = K 2 L

r

~w

(
) permits to de�ne the normal


omponent of the tra
e N � uj

�


. In this sense uj

�


is well-de�ned and uj

�


= g.

3 Weighted Bessel Potential Spa
es

3.1 De�nition and Simple Properties

For � 2 R

n

we set h�i := (1+ j�j

2

)

1

2

. On the spa
e S

0

(R

n

;R) of temperate distributions

we de�ne for all � 2 R the operator

�

�

f = F

�1

h�i

�

Ff; f 2 S

0

(R

n

;R);

where F stands for the Fourier transformation on S

0

(R

n

;R). Then for 1 < q < 1,

w 2 A

q

and � 2 R the weighted Bessel potential spa
e is given by

H

�;q

w

(R

n

) =

n

f 2 S

0

(R

n

;R)

�

�

kfk

H

�;q

w

(R

n

)

:= k�

�

fk

q;w;R

n

<1

o

:

7
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Theorem 3.1. If 1 < q <1, w 2 A

q

, l; k 2 Z and l < � < k then

�

H

l;q

w

(R

n

); H

k;q

w

(R

n

)

�

�

= H

�;q

w

(R

n

);

where � =

��l

k�l

.

Proof. This 
an be proven analogously to [26, Proposition 13.6.2℄. For the weighted

version in the 
ase l = 0 and k 2 N see also [10, Satz 8.3℄. The proof given there 
an

be repeated to obtain the more general assertion of this theorem.

For an extension domain 
 we de�ne the weighted Bessel potential spa
e on 
 by

H

�;q

w

(
) =

�

gj




j g 2 H

�;q

w

(R

n

)

	

equipped with the norm

kuk

H

�;q

w

(
)

:= inf

n

kUk

H

�;q

w

(R

n

)

j U 2 H

�;q

w

(R

n

); U j




= u

o

:

Note that if � < 0 then the restri
tion gj




has to be understood in the sense of distri-

butions as gj

C

1

0

(
)

.

Moreover, we set

H

�;q

w;0

(
) = (C

1

0

(
))

H

�;q

w

(R

n

)

; � 2 R;

equipped with the norm k � k

�;q;w;0;


:= kE

0

(�)k

�;q;w;R

n

, where E

0

denotes the extension

of a fun
tion by 0 to the whole spa
e R

n

. The spa
e H

�;q

w;0

(
) is a re
exive Bana
h spa
e

being a 
losed subspa
e of H

�;q

w

(R

n

), whi
h is re
exive sin
e it is isomorphi
 to L

q

w

(
).

Note that by (3.6) below this norm is in general not equivalent to k�k

�;q;w;


. Moreover,

if � < 0 the spa
e H

�;q

w;0

(
) does in general not 
onsist of distributions on 
 but of

distributions on R

n

supported by 
.

We 
hoose this de�nition be
ause in this way one obtains a good behavior of the dual

spa
es and interpolation properties, see Lemma 3.3 below.

Theorem 3.2. Let 
 be an extension domain, 1 < q <1, w 2 A

q

.

1. For k 2 N

0

one has H

k;q

w

(
) = W

k;q

w

(
) and H

k;q

w;0

(
) = W

k;q

w;0

(
) with equivalent

norms.

2. For k 2 N, 0 < � < k one has H

�;q

w

(
) = [L

q

w

(
);W

k;q

w

(
)℄�

k

.

3. The spa
es H

�;q

w

(
), � > 0, are independent of the values of the weight fun
tion

w 2 A

q

outside 
, i.e., if w

1

; w

2

2 A

q

, w

1

j




= w

2

j




then H

�;q

w

1

(
) = H

�;q

w

2

(
) with

equivalent norms.

Proof. The assertions of 1. and 2. 
an be found in [13℄ ex
ept for the assertion on

H

k;q

w;0

(
) in 1. Sin
e one has H

k;q

w

(R

n

) = W

k;q

w

(R

n

) with equivalent norms, the equation

H

k;q

w;0

(
) =W

k;q

w;0

(
) follows from the de�nition of H

k;q

w;0

(
). 3. follows from 2.

8
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3.2 Bessel Potential Spa
es of Negative Order

Throughout this se
tion let 1 < q < 1 and w 2 A

q

. It follows in a straight-forward

way from the de�nition of the spa
es H

�;q

w

(R

n

) that for every � > 0 one has

H

��;q

w

(R

n

) =

�

H

�;q

0

w

0

(R

n

)

�

0

isometri
ally: (3.1)

Lemma 3.3. For � 2 R one has H

��;q

w

(
) =

�

H

�;q

0

w

0

;0

(
)

�

0

with equivalent norms. In

parti
ular, for k 2 N one has H

�k;q

w

(
) = W

�k;q

w

(
).

Proof. Let u 2 H

��;q

w

(
). Then by de�nition there exists U 2 H

��;q

w

(R

n

) su
h that

U j

C

1

0

(
)

= u with

2kuk

��;q;w;


� kUk

��;q;w;R

n

= sup

�2S(R

n

);k�k

�;q

0

;w

0

;R

n

�1

hU; �i

� sup

�2C

1

0

(
);k�k

�;q

0

;w

0

;R

n

�1

hu; �i = kuk

(H

�;q

0

w

0

;0

(
))

0

using (3.1). Thus u 2 (H

�;q

0

w

0

;0

(
))

0

.

Vi
e versa, by Hahn-Bana
h's theorem every u 2

�

H

�;q

0

w

0

;0

(
)

�

0


an be extended to an

element

U 2

�

H

�;q

0

w

0

(R

n

)

�

0

= H

��;q

w

(R

n

) with kUk

��;q;w;R

n

= kuk

(H

�;q

0

w

0

;0

(
))

0

:

Then a similar 
al
ulation as above yields u 2 H

��;q

w

(
) with kuk

��;q;w;


� kuk

(H

�;q

0

w

0

;0

(
))

0

.

To obtain the result for k 2 N one 
ombines the �rst assertion with Theorem 3.2.1.

Lemma 3.3 also yields the 
ompleteness of H

��;q

w

(
) in the 
ase � > 0.

Lemma 3.4. Let 
 be a bounded C

1;1

-domain or the half spa
e. There exists a 
ontin-

uous linear extension operator

E : H

�1;q

w

(
)! H

�1;q

w

(R

n

)

su
h that Euj

C

1

0

(
)

= u for all u 2 H

�1;q

w

(
) and whi
h is also 
ontinuous as a mapping

E : H

1;q

w

(
)! H

1;q

w

(R

n

).

Proof. We begin with showing the assertion for the half spa
e 
 = R

n

+

.

By [12℄ for every f 2 W

�1;q

w

(R

n

+

) there exists a unique u 2 W

1;q

w;0

(R

n

+

) solving the

equation (1��)u = f . This solution u depends linearly on f and ful�lls the estimate

kuk

1;q;w

� 
kfk

�1;q;w

. We write u = (1��

D

)

�1

f . As shown in [21℄ one 
an prove as in

the unweighted 
ase [5℄ the regularity of solutions to the Lapla
e equation. In parti
ular

f 2 W

1;q

w

(R

n

+

) yields u 2 W

3;q

w

(R

n

+

) with kuk

3;q;w

� 
kfk

1;q;w

.

To 
onstru
t E we remind that by Theorem 2.3 there exists a linear 
ontinuous

extension operator

~

E : W

1;q

w

(R

n

+

)!W

1;q

w

(R

n

) and

~

E : W

3;q

w

(R

n

+

)!W

3;q

w

(R

n

) with

~

Euj

R

n

+

= u:

9
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Now we set Eu = (1 � �)

~

E(1 � �

D

)

�1

u for every u 2 H

�1;q

w

(R

n

+

). Then E has the

asserted properties on the half spa
e R

n

+

.

For a bounded C

1;1

-domain 
 we take a 
olle
tion of 
harts (�

j

)

m

j=1

and a de
ompo-

sition of unity ( 

j

)

m

j=1

subordinate to the 
orresponding 
overing (U

j

)

j

of 
. Then for

u 2 W

1;q

w

(
) we set

E




u =

m

X

j=1

�

j

� E

R

n

+

((u 

j

) Æ �

j

) Æ �

�1

j

;

where E

R

n

+

: W

1;q

wÆ�

j

(R

n

+

)!W

1;q

wÆ�

j

(R

n

) is the operator just 
onstru
ted and �

j

2 C

1

0

(U

j

)

with �

j

 

j

=  

j

. Obviously E




: W

1;q

w

(
) ! W

1;q

w

(R

n

) is 
ontinuous. Moreover,


hange of variables yields that u 7! u Æ �

j

is a 
ontinuous operation from W

�1;q

w

(
) !

W

�1;q

wÆ�

j

(�

�1

j

(
)). This shows the 
ontinuity of E




: W

�1;q

w

(
) ! W

�1;q

w

(R

n

), and 
om-

bined with Lemma 3.3 the proof is 
omplete.

Theorem 3.5. Let 1 < q < 1, w 2 A

q

, �1 � � � 1 and 
 = R

n

+

or a bounded

C

1;1

-domain. Then

1. [H

�1;q

w

(
); H

1;q

w

(
)℄

�

= H

�;q

w

(
), where � =

1+�

2

.

2. For � =

1+�

2

one has

�

H

�1;q

w;0

(
); H

1;q

w

(
)

�

�

=

(

H

�;q

w;0

(
); if � < 0

H

�;q

w

(
); if � � 0:

Proof. 1. fH

�1;q

w

(
); H

1;q

w

(
)g is a retra
t of fH

�1;q

w

(R

n

); H

1;q

w

(R

n

)g where the retra
tion

is the restri
tion operator

R




: H

�1;q

w

(R

n

)! H

�1;q

w

(
); u 7! uj

C

1

0

(
)

;

and the 
oretra
tion is the extension operator E 
onstru
ted in Lemma 3.4. Thus the

assertion in 1. follows from Theorem 2.6 and the 
orresponding interpolation property

on R

n

stated in Theorem 3.1

2. An appli
ation of the Duality Theorem 2.6 to 1. together with Lemma 3.3 yields

�

H

�1;q

w;0

(
); H

1;q

w;0

(
)

�

�

= H

�;q

w;0

(
): (3.2)

Sin
e F (H

�1;q

w;0

(
); H

1;q

w;0

(
)) � F (H

�1;q

w;0

(
); H

1;q

w

(
)), F as in (2.2), and the same is true

when repla
ing q by q

0

and w by w

0

, we have by (3.2)

L

q

w

(
) =

�

H

�1;q

w;0

(
); H

1;q

w;0

(
)

�

1

2

,!

�

H

�1;q

w;0

(
); H

1;q

w

(
)

�

1

2

(3.3)

and

L

q

0

w

0

(
) ,!

h

H

�1;q

0

w

0

;0

(
); H

1;q

0

w

0

(
)

i

1

2

=

�

H

�1;q

w;0

(
); H

1;q

w

(
)

�

0

1

2

: (3.4)

By the density of the embedding H

1;q

0

w

0

(
) ,!

h

H

�1;q

0

w

0

;0

(
); H

1;q

0

w

0

(
)

i

1

2

we obtain that the

embedding (3.4) is dense. Thus we dualize (3.4) and 
ombine it with (3.3) to obtain

�

H

�1;q

w;0

(
); H

1;q

w

(
)

�

1

2

= L

q

w

(
) =

�

H

�1;q

w

(
); H

1;q

w

(
)

�

1

2

=

�

H

�1;q

w;0

(
); H

1;q

w;0

(
)

�

1

2

:

Now the assertion follows by the reiteration property in Theorem 2.6.
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3.3 Bessel Potential Spa
es with Zero Boundary Values

For an extension domain 
 � R

n

, 1 < q < 1, w 2 A

q

and 0 � � � 2 we de�ne the

spa
e

Y

�;q

w

(
) :=

8

>

<

>

:

Y

2;q

w

(
)

H

�;q

w

(R

n

)

; if 0 � � � 1 equipped with k � k

H

�;q

w

(R

n

)

;

Y

2;q

w

(
)

H

�;q

w

(
)

; if 1 < � � 2 equipped with k � k

H

�;q

w

(
)

;

where in the 
ase 0 � � � 1 the fun
tions of Y

2;q

w

(
) are assumed to be extended by 0

to fun
tions de�ned on the whole spa
e R

n

. This is possible, sin
e C

1

0

(
) is dense in

W

1;q

w;0

(
) � Y

2;q

w

(
) and W

1;q

w;0

(
) ,! W

1;q

w

(R

n

) ,! H

�;q

w

(R

n

).

In parti
ular, this implies that in the 
ase 0 � � � 1 one has

Y

�;q

w

(
) = C

1

0

(
)

H

�;q

w

(R

n

)

= H

�;q

w;0

(
): (3.5)

Moreover, for su
h � it follows immediately from the de�nition of Y

�;q

w

(
) that the

extension E

0

u of fun
tions u 2 Y

�;q

w

(
) by 0 to fun
tions on R

n

is a 
ontinuous linear

map to H

�;q

w

(R

n

).

Finally, sin
e H

1;q

w

(
) = W

1;q

w

(
) and the norm in W

1;q

w

(
) is lo
al, for � = 1 the two

de�nitions are equivalent, i.e.,

Y

1;q

w

(
) = W

1;q

w;0

(
) = Y

2;q

w

(
)

H

1;q

w

(
)

;

where the latter spa
e is equipped with k � k

H

1;q

w

(
)

.

For symmetry reasons the question arises whether Y

�;q

w

(
) = Y

2;q

w

(
)

H

�;q

w

(
)

for all

0 � � � 2. However this is not the 
ase, not even in the unweighted 
ase. Indeed, by

Triebel [29, I.5.23℄ one has

Y

2;q

1

(
)

H

1

q

;q

(
)

= C

1

0

(
)

H

1

q

;q

(
)

6= fu 2 H

1

q

;q

(R

n

) j supp u � 
g = Y

1

q

;q

1

(
):

(3.6)

We 
hoose the spa
es Y

�;q

w

(
) be
ause of their good properties with respe
t to interpo-

lation.

Theorem 3.6. Let 1 < q <1, w 2 A

q

and 0 � � � 2. Then

�

L

q

w

(R

n

+

); Y

2;q

w

(R

n

+

)

�

�

= Y

�;q

w

(R

n

+

); � =

�

2

with equivalent norms.

Proof. As a preparation we note that the norm in Y

�;q

w

(R

n

+

) is equivalent to the one in

Y

�;q

~w

(R

n

+

) if ~w 2 A

q

with ~wj

R

n

+

= wj

R

n

+

. In the 
ase � � 1 this is true by Theorem 3.2.

If � < 1 one has by Theorem 3.5 and (3.5)

Y

�;q

w

(R

n

+

) = H

�;q

w;0

(R

n

+

) =

�

H

��;q

0

w

0

(R

n

+

)

�

0

= [H

1;q

0

w

0

(R

n

+

); H

�1;q

0

w

0

(R

n

+

)℄

0

�+1

2

:

11



Navier-Stokes Equations in Bessel-Potential Spa
es

The latter interpolation spa
e is independent of the weight fun
tion outside R

n

+

, be
ause

H

1;q

0

w

0

(R

n

+

) and H

�1;q

0

w

0

(R

n

+

) are.

As shown in [12℄ if w 2 A

q

then

w

�

(x) :=

(

w(x) on R

n

+

w(x

0

;�x

n

) on R

n

�

is also 
ontained in A

q

. Thus we may assume from now on that w = w

�

is even.

Step 1: We show that

�

L

q

w

(R

n

+

); Y

2;q

w

(R

n

+

)

�

�

,! Y

�;q

w

(R

n

+

):

To see this let u 2

�

L

q

w

(R

n

+

); Y

2;q

w

(R

n

+

)

�

�

.

We begin with the 
ase 1 � � � 2. Then there is a fun
tion U 2 F (L

q

w

(R

n

+

); Y

2;q

w

(R

n

+

))

su
h that U(�) = u and kUk

F (L

q

w

(R

n

+

);Y

2;q

w

(R

n

+

))

� 2kuk

[L

q

w

(R

n

+

);Y

2;q

w

(R

n

+

)℄

�

.

Sin
e F (L

q

w

(R

n

+

); Y

2;q

w

(R

n

+

)) � F (L

q

w

(R

n

+

); H

2;q

w

(R

n

+

)), we obtain

u = U(�) 2 [L

q

w

(R

n

+

); H

2;q

w

(R

n

+

)℄

�

= H

�;q

w

(R

n

+

)

and

kuk

H

�;q

w

(R

n

+

)

� 
 inf

n

kV k

F (L

q

w

(R

n

+

);H

2;q

w

(R

n

+

))

�

�

V 2 F (L

q

w

(R

n

+

); H

2;q

w

(R

n

+

)); V (�) = u

o

� 
kUk

F (L

q

w

(R

n

+

);Y

2;q

w

(R

n

+

))

� 2
kuk

[L

q

w

(R

n

+

);Y

2;q

w

(R

n

+

)℄

�

:

Moreover, by Theorem 2.6 we know that Y

2;q

w

(R

n

+

) is dense in [L

q

w

(R

n

+

); Y

2;q

w

(R

n

+

)℄

�

whi
h

yields the assertion of Step 1 in the 
ase � � 1.

In the 
ase 0 � � � 1 we assume that we already know

�

L

q

w

(R

n

+

); Y

2;q

w

(R

n

+

)

�

1

2

=

Y

1;q

w

(R

n

+

). This follows from the 
ase 1 � � � 2 whi
h will be shown independently.

Then, sin
e

Y

1;q

w

(R

n

+

) = C

1

0

(R

n

+

)

W

1;q

w

(R

n

)

= W

1;q

w;0

(R

n

+

);

and the extension

E

0

u(x) =

(

u(x) for x 2 R

n

+

0 for x 2 R

n

�

of fun
tions de�ned on the half spa
e is 
ontinuous from W

1;q

w;0

(R

n

+

) to W

1;q

w

(R

n

) and

from L

q

w

(R

n

+

) to L

q

w

(R

n

), we �nd by interpolation and the reiteration property that

E

0

:

�

L

q

w

(R

n

+

); Y

2;q

w

(R

n

+

)

�

�

=

�

L

q

w

(R

n

+

);W

1;q

w;0

(R

n

+

)

�

2�

! H

�;q

w

(R

n

)

is 
ontinuous for 0 � � �

1

2

. Thus for every u 2 C

1

0

(R

n

+

) we obtain

kuk

Y

�;q

w

(R

n

+

)

= kE

0

uk

�;q;w;R

n

� 
kuk

[L

q

w

(R

n

+

);W

1;q

w;0

(R

n

+

)℄

2�

:

Then the density of the embedding C

1

0

(R

n

+

) ,!

�

L

q

w

(R

n

+

);W

1;q

w;0

(R

n

+

)

�

2�

�nishes the proof

of Step 1.

Step 2: Claim: If the odd extension, E

odd

: Y

�;q

w

(R

n

+

)! H

�;q

w

(R

n

), is 
ontinuous, where

E

odd

u(x) =

(

u(x) if x 2 R

n

+

�u(x

0

;�x

n

) if x 2 R

n

�

12
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for x = (x

0

; x

n

), then the assertion Y

�;q

w

(R

n

+

) ,!

�

L

q

w

(R

n

+

); Y

2;q

w

(R

n

+

)

�

�

is true for �.

Proof of the Claim. Let u 2 Y

�;q

w

(R

n

+

) and set

U(z) = e

z

2

�

(��z)2

E

odd

u:

Then one has U 2 F (L

q

w

(R

n

);W

2;q

w

(R

n

)) with U(�) = e

�

2

E

odd

u. Moreover, sin
e for ev-

ery � 2 C the operator �

�

maps odd fun
tions to odd fun
tions, one has U(iy+1)j

R

n�1

=

0 whi
h implies U(iy+1)j

R

n

+

2 Y

2;q

w

(R

n

+

) for every y. Thus U j

R

n

+

2 F (L

q

w

(R

n

+

); Y

2;q

w

(R

n

+

))

and we obtain u 2

�

L

q

w

(R

n

+

); Y

2;q

w

(R

n

+

)

�

�

with

kuk

[L

q

w

(R

n

+

);Y

2;q

w

(R

n

+

)℄

�

� sup

y

kU(iy + 1)k

Y

2;q

w

(R

n

+

)

+ sup

y

kU(iy)k

L

q

w

(R

n

+

)

� sup

y

kU(iy + 1)k

Y

2;q

w

(R

n

)

+ sup

y

kU(iy)k

L

q

w

(R

n

)

� 
kE

odd

uk

H

�;q

w

(R

n

)

� 
kuk

Y

�;q

w

(R

n

+

)

:

Step 3: The embedding Y

�;q

w

(R

n

+

) ,!

�

L

q

w

(R

n

+

); Y

2;q

w

(R

n

+

)

�

�

is true for � < 1.

By the de�nition of Y

�;q

w

(R

n

+

) for � < 1 we know that the extension E

0

u of u by 0 on

R

n

is 
ontinuous from Y

�;q

w

(R

n

+

) to H

�;q

w

(R

n

) with norm 1. Thus the odd extension of

u, whi
h is equal to

E

odd

u(x) = E

0

u(x)� E

0

u(x

0

;�x

n

);

is also 
ontinuous. Step 2 
ompletes the argument.

Step 4: The embedding Y

�;q

w

(R

n

+

) ,!

�

L

q

w

(R

n

+

); Y

2;q

w

(R

n

+

)

�

�

is true for 1 � � � 2.

For g 2 T

2;q

w

(R

n�1

) there exists an extension S(g) with the following properties:

� S(g)j

R

n�1

= g.

� S is a 
ontinuous linear mapping S : T

2;q

w

(R

n�1

)!W

2;q

w

(R

n

) and S : T

1;q

w

(R

n�1

)!

W

1;q

w

(R

n

).

To see this we de�ne S(g)j

R

n

+

to be the solution of

(1��)S(g) = 0 on R

n

+

and S(g) = g on R

n�1

:

Then by [12, Theorem 4.5℄ we know that S(g)j

R

n

+

is well-de�ned and has the two prop-

erties on R

n

+

. By Theorem 2.3 there exists an extension operator, 
ontinuous from

W

2;q

w

(R

n

+

) to W

2;q

w

(R

n

) as well as from W

1;q

w

(R

n

+

) to W

1;q

w

(R

n

). Thus the existen
e of

su
h an S is proved.

Now we 
onsider the operator

B : H

2;q

w

(R

n

+

)! H

2;q

w

(R

n

); u 7! S(uj

R

n�1

) + E

odd

(u� S(uj

R

n�1

)):

Sin
e w = ~w and Y

2;q

w

(R

n

+

)j

R

n�1

= f0g, it is easy to 
he
k that the operator E

odd

is


ontinuous from Y

2;q

w

(R

n

+

) to W

2;q

w

(R

n

) and fromW

1;q

w;0

(R

n

+

) to W

1;q

w

(R

n

). Thus, we have


onstru
ted an operator B whi
h is 
ontinuous from W

2;q

w

(R

n

+

) to W

2;q

w

(R

n

) as well as

from W

1;q

w

(R

n

+

) to W

1;q

w

(R

n

) and whi
h 
oin
ides with E

odd

on Y

�;q

w

(R

n

+

), � = 1; 2. By

interpolation we �nd that

B : H

�;q

w

(R

n

+

)! H

�;q

w

(R

n

)

13
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is 
ontinuous for every 1 � � � 2. Thus for every u 2 Y

�;q

w

(R

n

+

) � Y

1;q

w

(R

n

+

) one has

kE

odd

uk

H

�;q

w

(R

n

)

= kBuk

H

�;q

w

(R

n

)

� 
kuk

H

�;q

w

(R

n

+

)

= 
kuk

Y

�;q

w

(R

n

+

)

:

Thus Step 2 �nishes the proof.

Theorem 3.7. The assertion of Theorem 3.6 holds true, when repla
ing R

n

+

by a

bounded C

1;1

-domain 
, i.e.,

�

L

q

w

(
); Y

2;q

w

(
)

�

�

= Y

�;q

w

(
); � =

�

2

; 0 � � � 2

with equivalent norms.

Proof. Let �

j

, j = 1; :::; m, be a 
olle
tion of C

1;1

-
harts and  

j

a de
omposition of unity

subordinate to the 
orresponding 
overing of 
. We assume that every  

j

is extended

to an element of C

1

0

(R

n

) and that every �

i

is extended to an element of C

1;1

(R

n

) su
h

that it has an inverse �

�1

j

2 C

1;1

(R

n

).

Then we �x j, write  =  

j

and � = �

j

and de�ne the mapping

B : Y

�;q

wÆ�

(R

n

+

)! Y

�;q

w

(
); u 7! (u � ( Æ �)) Æ �

�1

: (3.7)

Using appropriate extensions of fun
tions in Y

�;q

w

(R

n

+

) to R

n

and the 
ontinuity of the


on
atenation and multipli
ation with suÆ
iently smooth fun
tions one shows that B

is a 
ontinuous mapping into the asserted image spa
e.

Now setting B

j

u = (u( 

j

Æ �

j

)) Æ �

�1

j

we de�ne the operator

B




:

m

Y

i=1

Y

�;q

wÆ�

i

(R

n

+

)! Y

�;q

w

(
); (u

1

; :::; u

m

) 7!

m

X

i=1

B

i

u

i

;

whi
h is 
ontinuous and surje
tive for every � 2 [0; 2℄. (Surje
tivity follows if one


onsiders the operators

A

j

: H

�;q

w

(
) 3 u 7! (u�

j

) Æ �

j

2 H

�;q

wÆ�

j

(R

n

+

); j = 1; :::; m;

where �

j

is an appropriate 
ut-o� fun
tion, with �

j

� 1 on supp 

j

.) By interpolation

and Theorem 3.6 it follows that

B




:

m

Y

i=1

Y

�;q

w

i

(R

n

+

)!

�

L

q

w

(
); Y

2;q

w

(
)

�

�

2

is 
ontinuous, where w

i

:= w Æ �

i

.

For every u 2 Y

�;q

w

(
) there exists (u

1

; :::; u

m

) 2

Q

m

i=1

Y

�;q

w

i

(R

n

+

) with B




(u

1

; :::; u

m

) =

u and ku

i

k

Y

�;q

w

i

(R

n

+

)

� 
kuk

Y

�;q

w

(
)

for every i = 1; :::; m. Then one 
an estimate

kuk

[L

q

w

(
);Y

2;q

w

(
)℄

�

=kB




(u

1

; :::; u

m

)k

[L

q

w

(
);Y

2;q

w

(
)℄

�

�


m

X

i=1

ku

i

k

[L

q

w

i

(R

n

+

);Y

2;q

w

i

(R

n

+

)℄

�

� 


m

X

i=1

ku

i

k

Y

�;q

w

i

(R

n

+

)

�
kuk

Y

�;q

w

(
)

:

Thus we obtain [L

q

w

(
); Y

2;q

w

(
)℄�

2

� Y

�;q

w

(
).

The in
lusion "�" is proved in the same way as in the proof of Theorem 3.6, Step 1.
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4 Stokes Equations in Weighted Bessel Potential Spa
es

Throughout this se
tion let 
 be a bounded C

1;1

-domain. Moreover let � 2 [0; 2℄,

q 2 (1;1) and w 2 A

q

. As a spa
e for exterior for
es we de�ne

Y

��;q

w

(
) :=

�

Y

�;q

0

w

0

(
)

�

0

:

Note that if 0 � � � 1 then by (3.5) one has the embedding

Y

��;q

w

(
) = H

��;q

w

(
) ,! W

�1;q

w

(
)

and thus Y

��;q

w

(
) 
onsists of distributions on 
.

If � > 1 then this is in general not the 
ase. In parti
ular, if � is large enough, then

a fun
tional f 2 Y

��;q

w

(
) might in
lude a part that is supported on the boundary and

whi
h 
an be 
onsidered as a boundary 
ondition.

As a spa
e for divergen
es we 
hoose

H


;q

w;�

(
) :=

(

H


;q

w

(
); if 
 � 0

H


;q

w;0

(
); if 
 < 0;

for every 
 2 [�1; 1℄. This spa
e is equipped with the norm k � k


;q;w;�;


:= k � k

H


;q

w;�

(
)

.

We use the notion of very weak solutions introdu
ed in De�nition 2.7, however if

� � 1, i.e., the solution is 
ontained in W

1;q

w

(
), then we also speak of weak solutions.

Theorem 4.1. Let 1 < q < 1, w 2 A

q

and 0 � � � 2. Moreover, let f 2

Y

��2;q

w

(
) and k 2 H

��1;q

w;�

(
) with hk; 1i = 0. Then there exists a unique very weak

solution u 2 Y

�;q

w

(
) to the Stokes problem with respe
t to the data f; k in the sense of

De�nition 2.7. This fun
tion u ful�lls the estimate

kuk

Y

�;q

w

(
)

� 


�

kfk

Y

��2;q

w

(
)

+ kkk

��1;q;w;�;


�

: (4.1)

Moreover, there exists a pressure fun
tional p 2 H

��1;q

w

(
), unique modulo 
onstants,

su
h that

��u+rp = f j

C

1

0

(
)

in C

1

0

(
)

0

:

Proof. From the results in Se
tions 3.2 and 3.3 it follows that

�

Y

�2;q

w

(
)�H

�1;q

w;0

(
); L

q

w

(
)�H

1;q

w

(
)

�

�

= Y

��2;q

w

(
)�H

��1;q

w;�

(
);

where � =

�

2

. It is immediate that

k 7! K := k � hk; 1i 2 L(H

�1;q

w;0

(
)) \ L(H

1;q

w

(
)):

By Theorem 2.8 the mapping

S : Y

�2;q

w

(
)�H

�1;q

w;0

(
) 3 (f; k) 7! u 2 L

q

w

(
);

is 
ontinuous, where u 2 L

q

w

(
) is the very weak solution to the Stokes problem with

respe
t to the data f and K = k � hk; 1i.
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If u is a solution in the sense of De�nition 2.7 with suÆ
iently regular data f and k,

then by Theorem 2.9 we �nd that u is a strong solution with zero boundary values. In

parti
ular, S is also 
ontinuous from L

q

w

(
)�H

1;q

w

(
) to Y

2;q

w

(
). Now we obtain from

the interpolation properties in Theorems 3.5 and 3.7 together with the duality Theorem

2.6 that

S : Y

��2;q

w

(
)�H

��1;q

w;�

(
)! Y

�;q

w

(
)

is 
ontinuous, whi
h �nishes the proof of existen
e and estimates of u. Uniqueness

follows from the uniqueness of very weak solutions in L

q

w

(
) (Theorem 2.8).

It remains to show the existen
e of p. By the theory of strong solutions in [12℄

there exists a pressure fun
tion p 2 H

1;q

w

(
). Moreover, by Theorem 2.8 there exists a

pressure fun
tional p 2 H

�1;q

w;0

(
) that belongs to a very weak solution. In both 
ases p

is unique if hp; 1i = 0. Thus by the interpolation Theorem 3.5.2 we obtain a fun
tional

~p 2 H

��1;q

w;�

(
) su
h that

�hu;��i � h~p; div �i = hF; �i for all � 2 Y

2;q

0

w

0

(
):

The restri
tion p := ~pj

C

1

0

(
)

solves the problem.

By the de�nition of Y

�;q

w

(
) it follows, that whenever a tra
e operator

tr : H

�;q

w

(
)! T (D)

for a boundary portion D � �
 is well-de�ned (as a 
ontinuous linear operator into

some boundary spa
e T (D), whi
h 
oin
ides with the usual tra
e uj

D

on W

1;q

w

(
)), then

for the solution u 2 Y

�;q

w

(
) one has tr u = 0.

In the 
ase, where data and solutions are regular enough (in
luding the 
ase � = 1 of

weak solutions), we want to deal with inhomogeneous boundary values.

If � � 1, then H

�;q

w

(
) ,! W

1;q

w

(
) whi
h implies the existen
e of a 
ontinuous tra
e

operator

tr : H

�;q

w

(
)! T

1;q

w

(�
); tru = uj

�


if u 2 C

1

(
):

As in the 
ase of weighted Sobolev spa
es we de�ne the asso
iated boundary spa
e by

T

�;q

w

(�
) = tr

�

H

�;q

w

(
)

�

equipped with the norm kgk

T

�;q

w

(�
)

= inf

�

kuk

�;q;w;


j u 2 H

�;q

w

(
); tr u = g

	

.

Lemma 4.2. For every � 2 [1; 2℄ one has [T

1;q

w

(�
); T

2;q

w

(�
)℄

��1

= T

�;q

w

(�
) and there

exists a 
ontinuous linear extension operator ext : T

�;q

w

(�
)! H

�;q

w

(
), independent of

�.

Proof. As shown in [21℄ one 
an prove as in the unweighted 
ase that there exists a

unique solution to the Diri
hlet problem (1 � �)u = 0, uj

�R

n

+

= g. This solution u

is regular a

ording to the data, i.e., kuk

k;q;w

� 
kgk

T

k;q

w

(R

n�1

)

for k 2 N. Using this

a straight-forward lo
alization pro
edure yields that there exists a 
ontinuous linear

extension operator

ext : T

1;q

w

(�
)!W

1;q

w

(
) and ext : T

2;q

w

(�
)!W

2;q

w

(
) (4.2)
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with ext gj

�


= g. Moreover, by de�nition the tra
e operator tr : W

1;q

w

(
) ! T

1;q

w

(�
)

and tr : W

2;q

w

(
)! T

2;q

w

(�
) is 
ontinuous.

Obviously one has tr Æ ext = id

T

1;q

w

(�
)

and thus Theorem 2.6.5 shows

[T

1;q

w

(�
); T

2;q

w

(�
)℄

��1

= tr [W

1;q

w

(
);W

2;q

w

(
)℄

��1

= trH

�;q

w

(
) = T

�;q

w

(�
):

Thus the �rst assertion is proved. The se
ond assertion follows from the �rst 
ombined

with (4.2).

Theorem 4.3. Let 1 < q < 1, w 2 A

q

and 1 � � � 2. Moreover, let F 2 H

��2;q

w

(
),

K 2 H

��1;q

w

(
) and g 2 T

�;q

w

(�
) with

R




K =

R

�


g � N . Then there exists a unique

weak solution u 2 H

�;q

w

(
), i.e.,

(ru;r�) = hF; �i; for all � 2 W

1;q

w;0;�

(
)

ful�lling uj

�


= g and div u = K in the sense of distributions. This solution ful�lls the

estimate

kuk

�;q;w

� 


�

kFk

��2;q;w

+ kKk

��1;q;w

+ kgk

T

�;q

w

(�
)

�

:

Moreover, there exists a pressure fun
tion p 2 H

��1;q

w

(
), unique modulo 
onstants, su
h

that the Stokes equations are ful�lled in the sense of distributions.

Proof. First of all re
all that if � 2 [1; 2℄, then � � 2 2 [�1; 0℄, whi
h implies F 2

H

��2;q

w

(
) = Y

��2;q

w

(
).

Existen
e: For g 2 T

�;q

w

(�
) there exists v 2 H

�;q

w

(
) su
h that tr v = g and kvk

�;q;w;


�

2kgk

T

�;q

w

(�
)

. Sin
e there exists an extension V of v to the whole spa
e R

n

that ful�lls

the estimate kV k

�;q;w;R

n

� 
kvk

�;q;w;


, one has

�v = (�V )j

C

1

0

(
)

2 H

��2;q

w

(
) = Y

��2;q

w

(
):

Hen
e by Theorem 4.1 there exists U 2 H

�;q

w

(
) solving

hF +�v; �i = �hU;��i for all � 2 Y

2;q

0

w

0

;�

(
) and

hK � div v;  i = �hU;r i for all  2 W

1;q

0

w

0

(
):

Sin
e U 2 Y

�;q

w

(
) � W

1;q

w;0

(
), we obtain by integration by parts for � 2 Y

2;q

0

w

0

;�

(
), whi
h

is dense in W

1;q

0

w

0

;0

(
), that

(r(U + v);r�) = �(U;��)� h�v; �i = hF; �i;

where by the density of C

1

0

(
) inW

1;q

0

w

0

;0

(
) one 
an apply the de�nition of the derivatives

div to rv in the sense of distributions. Setting u := U + v we obtain div u = K in

the sense of distributions and tr u = tr v + trU = tr v = g. Moreover by the a priori

estimate (4.1)

kuk

�;q;w;


�


�

kgk

T

�;q

w

(�
)

+ kFk

��2;q;w;


+ k�vk

��2;q;w;


+ kKk

��1;q;w;


+ kdiv vk

��1;q;w;


�

�


�

kgk

T

�;q

w

(�
)

+ kFk

��2;q;w;


+ kKk

��1;q;w;


�

:
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Uniqueness: Note that [� 7! �hF; �i+ hg;N � r�i

�


℄ 2 Y

�2;q

w

(
). Thus the uniqueness

of u follows from the one of very weak solutions shown in Theorem 2.8.

Pressure: To show the existen
e of p we use that by de Rham's Theorem [27, Ch.1

Proposition 1.1℄ there exists p 2 (C

1

0

(
))

0

su
h that the Stokes equations are ful�lled

in the sense of distributions. From the equation we obtain rp 2 H

��2;q

w

(
). It remains

to show p 2 H

��1;q

w

(
). However, this follows by Lemma 4.7 below and the proof is


omplete

Now we turn to the 
ase 0 � � � 1. In this 
ase the fun
tions in H

�;q

w

(
) in general

do not possess enough regularity to guarantee the well-de�nedness of a tra
e operator.

Here we de�ne boundary spa
es by

T

�;q

w

(�
) =

�

T

0;q

w

(�
); T

1;q

w

(�
)

�

�

; (4.3)

equipped with the norm of the interpolation spa
e.

Theorem 4.4. Let 1 < q <1, w 2 A

q

and 0 � � � 1. Assume that f 2 Y

�2;q

w

(
) and

k 2 H

�1;q

w;0

(
) allow de
ompositions into

hf; �i = hF; �i � hg;N � r�i

�


for every � 2 Y

2;q

0

w

0

(
)

hk;  i = hK; i � hg;N i

�


for every  2 W

1;q

0

w

0

(
)

(4.4)

with F 2 Y

��2;q

w

(
), K 2 H

��1;q

w;0

(
) and g 2 T

�;q

w

(�
). Assume in addition that K and

g ful�ll the 
ompatibility 
ondition hK; 1i




= hg;Ni

�


.

Then the very weak solution u 2 L

q

w

(
) with respe
t to f and k, whi
h exists a

ording

to Theorem 2.8 is 
ontained in H

�;q

w

(
) and ful�lls the estimate

kuk

�;q;w

� 


�

kFk

Y

��2;q

w

(
)

+ kKk

H

��1;q

w;0

(
)

+ kgk

T

�;q

w

(�
)

�

: (4.5)

Remark 4.5. The regularity of the data in Theorem 4.4 is in general not suÆ
ient to

guarantee that the restri
tion of the 
orresponding solution u to the boundary is well-

de�ned. A

ordingly, without the additional regularity the de
omposition of the data

(4.4) is in general not unique.

If we assume in addition that F 2 W

�1;r

~w

(
) and K 2 L

r

~w

(
), where r and ~w 2 A

r

are 
hosen su
h that

W

�1;r

~w

(
) ,! Y

��2;q

w

(
) and L

r

~w

(
) ,! H

��1;q

w;0

(
) (4.6)

one obtains by Theorem 2.9.3 that the tra
e uj

�


is well-de�ned and that one has

uj

�


= g, where g is the given boundary 
ondition.

Proof of Theorem 4.4. Step 1: We 
onsider the operator

B : T

0;q

w

(�
)! L

q

w

(
); g 7! u;

where u is the very weak solution to the Stokes problem with data

f = [� 7! hg;N � r�i

�


℄ and k = [ 7! hg;N i

�


℄:

18



Navier-Stokes Equations in Bessel-Potential Spa
es

Obviously, B is linear and 
ontinuous, also 
onsidered as an operator B : T

1;q

w

(�
) !

W

1;q

w

(
). This follows from Theorem 4.3 in the 
ase � = 1 sin
e the very weak solution

with respe
t to f and k 
oin
ides with the weak solution with 0 for
e and divergen
e

and boundary 
ondition g. Thus interpolation yields that B : T

�;q

w

(�
) ! H

�;q

w

(
) is


ontinuous.

Step 2: Let U = Bg 2 H

�;q

w

(
) be given by Step 1. Moreover, let v 2 Y

�;q

w

(
) be the

very weak solution to the Stokes problem with respe
t to the data F , K, whi
h exists

a

ording to Theorem 4.1. Then u := U + v is a very weak solution with respe
t to f

and k and ful�lls the estimate (4.5).

The uniqueness of the solution follows from Theorem 2.8.

Corollary 4.6. Let 
 be a bounded C

1;1

-domain. Moreover, let 1 < q; r <1, w 2 A

q

,

v 2 A

r

and 0 � � � 2 be given su
h that H

�;q

w

(
) ,! L

r

v

(
). Then

T

�;q

w

(�
) ,! T

0;r

v

(�
):

Proof. Let g 2 T

�;q

w

(�
). Then the very weak solution u 2 H

�;q

w

(
) to

�hu;��i = hg;N � r�i

�


for all � 2 Y

2;q

0

w

0

;�

(
)

�hu;r i = hg;N i

�


for all  2 W

1;q

0

w

0

(
)

ful�lls kuk

�;q;w

� 
kgk

T

�;q

w

(�
)

. Moreover, one has u 2

~

W

r;r

v;v

(de�ned in Theorem 2.9.4)

with kuk

~

W

r;r

v;v

= kuk

r;v

and div u = 0. Thus the tangential and the normal tra
e of u are

well-de�ned in the sense of Theorem 2.9.4. Sin
e uj

�


= g, we obtain

kgk

T

0;r

v

(�
)

� 
kuk

r;v

� 
kuk

�;q;w

� 
kgk

T

�;q

w

(�
)

:

The results of this se
tion 
an be used for the proof of the following Lemma whi
h

is needed to estimate the pressure in Theorem 4.3. Sin
e the pressure is well-de�ned

only modulo 
onstants, we 
onsider the spa
e H

�;q

w

(
)=
onst. If � � 0 this spa
e 
an

be identi�ed with the spa
e of all u 2 H

�;q

w

(
) su
h that hu; 1i




= 0. If � < 0 one has

H

�;q

w

(
)=
onst:

�

=

�

� 2 H

��;q

0

w

0

;0

(
)

�

�

Z




� = 0

�

0

via the isomorphism u+R 7! uj

n

�2H

��;q

0

w

0

;0

(
) j

R




�=0

o

.

Lemma 4.7. Let �1 � � � 1. Let p 2 (C

1

0

(
))

0

with rp 2 H

��1;q

w

(
). Then

p 2 H

�;q

w

(
) and there exists a 
onstant 
 = 
(
; q; w) su
h that

kpk

H

�;q

w

=
onst:

� 
krpk

H

��1;q

w

:

Proof. Case 1: Let � � 0. By Theorem 2.5 for every � 2 W

1;q

0

w

0

;0

(
) with

R




� = 0 there

exists � 2 W

2;q

0

w

0

;0

(
) su
h that div � = � and k�k

2;q

0

;w

0

� 
k�k

1;q

0

;w

0

. The fun
tion � 
an

be 
hosen su
h that the mapping � 7! � is linear and ful�lls the additional estimate

k�k

1;q

0

;w

0

� 
k�k

q

0

;w

0

.

For a moment we 
onsider the mapping � 7! � as a mapping from L

q

0

w

0

(
) to H

1;q

0

w

0

(R

n

)

and from H

1;q

0

w

0

;0

(
) to H

2;q

0

w

0

(R

n

) assuming that � is extended by 0 to a fun
tion de�ned
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on R

n

. Thus by interpolation we obtain for 
 2 [0; 1℄ that k�k

H


+1;q

0

w

0

(R

n

)

� 
k�k

H


;q

0

w

0

;0

(
)

.

Sin
e for � 2 C

1

0

(
) one has supp � � 
, we have shown k�k

H


+1;q

0

w

0

;0

(
)

� 
k�k

H


;q

0

w

0

;0

(
)

.

This implies the estimate

jhp; �i




j = jhp; div �i




j � krpk

H

��1;q

w

k�k

H

1��;q

0

w

0

;0

� 
krpk

H

��1;q

w

k�k

H

��;q

0

w

0

;0

for every � 2 C

1

0

(
). This is the assertion for � � 0.

Case 2: Let � > 0. We 
onsider the solution operator S : f 7! p where (u; p) solves

�hu;��i � hp; div�i = hf; �i; for all � 2 Y

2;q

0

w

0

(
)

and hu;r i = 0 for  2 W

1;q

0

w

0

(
), hp; 1i = 0. By the Theorems 2.8 and 2.9

S : Y

�2;q

w

(
)!W

�1;q

w;0

(
) and S : L

q

w

(
)!W

1;q

w

(
)

is 
ontinuous. By the interpolation theorems proved in the Se
tions 3.2 and 3.3 and the

fa
t that � 2 (0; 1℄ and Srp = p� hp; 1i we obtain the estimate

kp� hp; 1ik

H

�;q

w

(
)

� 
kSrpk

[W

�1;q

w;0

(
);W

1;q

w

(
)℄

�+1

2

� 
krpk

[Y

�2;q

w

(
);L

q

w

(
)℄

�+1

2

� 
krpk

Y

��1;q

w

(
)

= 
krpk

H

��1;q

w

(
)

5 The Stationary Navier-Stokes Equations

5.1 Estimates of the Nonlinear Term

We prepare some embedding theorems. These theorems are proved by the use of weakly

singular integral operators. Thus for 0 < � < n we de�ne

I

�

g(x) =

Z

R

n

g(y)

jx� yj

n��

dy = 
F

�1

j�j

��

ĝ(x); (5.1)

where the se
ond equality holds by [24, V. Lemma 2℄ for an appropriate 
onstant 
 2 R.

Theorem 5.1. Let 0 < � < n and 1 < p < q < 1, v 2 A

p

and w 2 A

q

. Moreover,

assume that v and w ful�ll the 
ondition

jQj

�

n

�1

�

Z

Q

w

�

1

q

�

Z

Q

v

�

1

p�1

�

1

p

0

< 
 for every 
ube Q � R

n

with a 
onstant 
 > 0 independent of Q. Then

kI

�

fk

q;w

� 
kfk

p;v

for every f 2 L

p

v

(R

n

):

Proof. This is a spe
ial 
ase of [19, Theorem 1 (B)℄.
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Lemma 5.2. Let w 2 A

q

, v 2 A

p

with

jQj

�

n

�1

�

Z

Q

w

�

1

q

�

Z

Q

v

�

1

p�1

�

1

p

0

< 
 for every 
ube Q � R

n

with a 
onstant 
 > 0 independent of Q. Then one has

H


;p

v

(R

n

) ,! L

q

w

(R

n

) for every 
 � �:

Proof. By [13, Lemma 3.2℄ the embedding

M :=

n

f 2 S(R

n

) j

^

f � 0 in a neighborhood of 0

o

,! H

�;p

v

(R

n

)

is dense. Moreover, we de�ne J

�

f := 
F

�1

j�j

�

(1 + j�j

2

)

�

�

2

Ff , where 
 is the 
onstant

from (5.1). Then by the Multiplier Theorem 2.4 the operator J

�

: L

p

v

(
) ! L

p

v

(
)

is 
ontinuous. Moreover, for f 2 M one has f = I

�

J

�

�

�

f . Thus one obtains using

Theorem 5.1 for every f 2 M

kfk

L

q

w

(R

n

)

= kI

�

J

�

�

�

fk

L

q

w

(R

n

)

� 
kJ

�

�

�

fk

L

p

v

(R

n

)

� 
k�

�

fk

L

p

v

(R

n

)

= 
kfk

H

�;p

v

(R

n

)

:

Thus by the density of M in H

�;p

v

(R

n

) the inequality holds for every f 2 H

�;p

v

(R

n

) and

one obtains H


;p

v

(R

n

) ,! H

�;p

v

(R

n

) ,! L

q

w

(R

n

).

Lemma 5.3. Let 
 � R

n

be a bounded Lips
hitz domain. Moreover, let 1 � s � r �

q <1, r > 1 and assume 0 � � < n su
h that

1

q

�

1

r

�

�

ns

: (5.2)

Then for every w 2 A

s

the following embeddings are true:

1. H

�;r

w

(
) ,! L

q

w

(
).

2. H

�;q

0

w

q

(
) ,! L

r

0

w

r

(
), where w

q

= w

�

1

q�1

and w

r

= w

�

1

r�1

.

3. L

r

w

(
) ,! H

��;q

w

(
), L

r

w

(
) ,! H

��;q

w;0

(
) and for � 2 [0; 1℄ one has W

�1;r

w

(
) ,!

Y

�1��;q

w

(
).

4. If � 2 [0; 1℄, then one has H

1;r

w

(
) ,! H

1��;q

w

(
).

Proof. We begin with showing that without loss of generality we may assume that

1 � s < r. Let s = r. Sin
e r > 1 and w 2 A

r

by Lemma 2.1.3 there exists t 2 [1; r)

su
h that w 2 A

t

. If (5.2) holds for s, it holds for s repla
ed by t in any 
ase. Thus we

may repla
e s by t < r.

1. By [13, Corollary 3.2℄ the asserted embedding holds if there exists a 
onstant C > 0

su
h that jQj

�

n

w(Q)

1

q

�

1

r

< C for all Q � U for some open set U � 
. By Lemma 2.1.1

we know that for every Q � U and w 2 A

s

it holds jQj

s

�

jU j

s

w(U)

w(Q) = 
w(Q). Thus

jQj

�

n

w(Q)

1

q

�

1

r

� 
w(Q)

�

sn

+

1

q

�

1

r

� 
w(U)

�

sn

+

1

q

�

1

r

=: C
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sin
e

�

sn

+

1

q

�

1

r

� 0 by assumption.

2. As above Lemma 2.1.1 states that w 2 A

s

implies w(Q) � 
(U)jQj

s

for every Q � U ,

where U is some bounded domain with 
 � U . It has been shown in [10, Lemma A.2℄

that in this 
ase there exists a weight fun
tion W 2 A

q

su
h that W = w on 
 and

W (Q) � 
(U)jQj

s

for every 
ube Q � R

n

.

Now by Theorem 3.2 we know that

H


;q

0

w

q

(
) = H


;q

0

W

q

(
)

with equivalent norms. By Lemma 5.2 the 
ondition

jQj

�

n

�1

�

Z

Q

W

r

�

1

r

0

�

Z

Q

(W

q

)

�

1

q

0

�1

�

1

q

< 
 for every 
ube Q � R

n

(5.3)

implies H


;q

0

W

q

(R

n

) ,! L

r

0

W

r

(R

n

) for every 
 � �. Thus we have to show (5.3). Sin
e

W

�

1

r

0

�1

r

= W

1

r

0

�1

1

r�1

= W = (W

q

)

�

1

q

0

�1

, we 
al
ulate using the de�nition of Mu
kenhoupt

weights, W 2 A

r

and

1

q

�

1

r

� 0

jQj

�

n

�1

�

Z

Q

W

r

�

1

r

0

�

Z

Q

(W

q

)

�

1

q

0

�1

�

1

q

= jQj

�

n

�1

W

r

(Q)

1

r

0

W (Q)

1

q

� 
jQj

�

n

W (Q)

(

1

q

�

1

r

)

� 
jQj

�

n

+s(

1

q

�

1

r

)

:

The last term is bounded if

�

n

+ s(

1

q

�

1

r

) = 0. There exists 0 � � � � so that this is

true, be
ause s

�

1

q

�

1

r

�

� 0 and for � = � one has

�

n

+ s(

1

q

�

1

r

) �

�

n

� s

�

sn

= 0.

Now for f 2 H


;q

0

w

q

(
) there exists an extension F 2 H


;q

0

W

q

(R

n

) with kFk

H


;q

0

W

q

(R

n

)

�

2kfk

H


;q

0

W

q

(
)

� 
kfk

H


;q

0

w

q

(
)

. One obtains

kfk

L

r

0

w

r

(
)

� kFk

L

r

0

W

r

(R

n

)

� 
kFk

H


;q

0

W

q

(R

n

)

� 
kfk

H


;q

0

W

q

(R

n

)

;

and the asserted embedding is proved.

3. Considering the dual spa
es in 2. we obtain L

r

w

(
) ,! H

��;q

w;0

(
). Moreover, sin
e

H

�;q

0

w

0

;0

(
) ,! H

�;q

0

w

0

(
) ,! L

r

0

w

r

(
), one also has L

r

w

(
) ,! H

��;q

w

(
).

Finally, for u 2 W

�1;r

w

(
) and � 2 Y

2;q

0

w

0

(
) one has by the Poin
ar�e inequality

jhu; �ij � 
kuk

�1;r;w

kr�k

r

0

;w

0

� 
kuk

�1;r;w

kr�k

�;q

0

;w

0

� 
kuk

�1;r;w

k�k

�+1;q

0

;w

0

:

This proves the last embedding.

4. For u 2 H

1;r

w

(
) one has by Lemma 4.7 and 3.













u�

Z




u dx













1��;q;w

� 
kruk

��;q;w

� 
kruk

r;w

� 
kuk

1;r;w

:

Thus kuk

1��;q;w

� 
kuk

1;r;w

+

R




juj dx � 
kuk

1;r;w

+ 
kuk

r;w

� 
kuk

1;r;w

.
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Lemma 5.4. Let 
 � R

n

be a bounded C

1;1

-domain. Assume w 2 A

s

for some 1 � s <

q and � >

ns

q

� 1 in the 
ase n � 3 and � >

2s

q

�

1

2

in the 
ase n = 2.

1. In addition, let 0 � � � 1 and 1 < t <1 with

1� �

ns

+

1

q

�

1

t

= 0: (5.4)

Then w 2 A

t

, L

t

w

(
) ,! H

��1;q

w;0

(
) and

a) for every u; v 2 H

�;q

w

(
) and  2 H

1��;q

0

w

0

(
) one has

�

�

�

�

Z

uv dx

�

�

�

�

� 
kuk

�;q;w

kvk

�;q;w

k k

t

0

;w

0

;

b) for every k 2 L

t

w

(
), u 2 H

�;q

w

(
) and � 2 H

2��;q

0

w

0

(
) one has

�

�

�

�

Z

ku� dx

�

�

�

�

� 
kkk

t;w

kuk

�;q;w

k�k

1;t

0

;w

0

:

2. If 1 � � � 2 then ku � rvk

��2;q;w

� 
kuk

�;q;w

kvk

�;q;w

for every u; v 2 H

�;q

w

(
).

Proof. One has

t =

nsq

q(1� �) + ns

>

nsq

q(2�

ns

q

) + ns

=

ns

2

� s:

Thus, by Lemma 5.3 one has L

t

w

(
) ,! H

��1;q

w;0

(
) and H

1��;q

0

w

q

(
) ,! L

t

0

w

t

(
).

1. a) Let r := 2t. Then one has

�

1

r

�

1

q

+

�

ns

� 0 and hen
e H

�;q

w

(
) ,! L

r

w

(
). If q � r this follows from Lemma

5.3 and if q > r then one obtains from the de�nition of the spa
es H

�;q

w

(
) ,!

L

q

w

(
) ,! L

r

w

(
).

�

1

r

+

1

r

+

1

t

0

= 1.

� �

1

(t�1)t

0

+

1

r

+

1

r

= 0.

�

�

�

�

Z

uv� dx

�

�

�

�

=

�

�

�

�

Z

uw

1

r

vw

1

r

 w

1

t

0

t

dx

�

�

�

�

� kuk

r;w

kvk

r;w

k k

t

0

;w

t

� 
kuk

�;q;w

kvk

�;q;w

k k

t

0

;w

t

:

1. b) First we assume that � <

ns

q

. We set r =

nsq

�q�+ns

and � =

�

1�

1

r

�

1

t

�

�1

=

rt

rt�t�r

.

Then

� �

0

=

rt

r+t

=

nsq

q+2ns�2q�

>

nqs

3q

� s if n � 3. If n = 2 one needs the stronger

assumption on � to ensure �

0

� s.

� �

1

�

0

+

1

t

+

1

ns

= �

1

r

+

1

ns

=

1+��

ns

q

ns

> 0. Hen
e H

1;t

0

w

t

(
) ,! L

�

w

�

0

(
).
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�

1

t

+

1

r

+

1

�

= 1 and �

1

(�

0

�1)�

+

1

t

+

1

r

= 0.

Thus we 
an estimate as above

�

�

�

�

Z

ku� dx

�

�

�

�

� kkk

t;w

kuk

r;w

k�k

�;w

�

0

� 
kkk

t;w

kuk

�;q;w

k�k

1;t

0

;w

t

:

If � �

ns

q

then H

�;q

w

(
) ,! L

r

w

(
) for every r 2 (1;1). Moreover, we �nd some � > t

0

su
h that H

1;t

0

w

t

(
) ,! L

�

w

�

0

(
). Choosing r su
h that

1

r

+

1

�

+

1

t

= 1 we 
an repeat the

above estimate.

2. As above we begin with the 
ase � <

ns

q

. Let � :=

nsq

ns�q�

, � :=

nsq

ns�q�+q

and

r :=

nsq

2ns�2�q+q

. Then one has

�

1

r

=

1

�

+

1

�

.

� r >

ns

3

� s if n � 3. If n = 2 we need the stronger assumption on � to ensure

r > s. Moreover,

1

q

>

1

r

�

2��

ns

, thus L

r

w

(
) ,! H

��2;q

w

(
).

�

1

�

=

1

q

�

�

ns

whi
h implies H

�;q

w

(
) ,! L

�

w

(
).

�

1

q

�

��1

ns

=

1

�

whi
h shows H

��1;q

w

(
) ,! L

�

w

(
).

Thus it follows from H�older's inequality

kurvk

��2;q;w

� 
kurvk

r;w

� 
kuk

�;w

krvk

�;w

� 
kuk

�;q;w

krvk

��1;q;w

:

If 2 � � �

ns

q

then H

�;q

w

(
) ,! L

�

w

(
) for every � 2 (1;1). Thus if � 6= 2 we repeat the

above estimate with r as above, � = q and � su
h that

1

�

+

1

�

=

1

r

.

If � = 2 let r = q and we may 
hoose � > q su
h that su
h that H

��1;q

w

(
) ,! L

�

w

(
)

and � su
h that

1

�

+

1

�

=

1

r

.

5.2 Stationary Navier-Stokes Equations in Bessel Potential Spa
es

In this se
tion we always assume

� 
 � R

n

is a bounded C

1;1

-domain,

� 1 < q <1 and w 2 A

s

for some 1 � s < q,

� � 2 [0; 2℄ with

ns

q

� 1 < �.

If n � 3 one 
an always 
hoose su
h a � sin
e by Lemma 2.1 for every w 2 A

q

there

exists s as above with s < q and w 2 A

s

. Thus

ns

q

� 1 < n� 1 � 2.

De�nition 5.5. Let 0 � � � 2, 1 < q < 1 and w 2 A

q

. Moreover, let g 2 T

�;q

w

(�
),

F 2 Y

��2;q

w

(
) and K 2 L

t

w

(
). Then u 2 H

�;q

w

(
) is 
alled a very weak solution to the

stationary Navier-Stokes equations, if

�hu;��i � huu;r�i � hKu; �i = hF; �i � hg;N � r�i

�


for every � 2 Y

2;q

0

w

0

;�

(
);

�hu;r i = hK; i � hg;N i

�


for every  2 W

1;q

0

w

0

(
):

24



Navier-Stokes Equations in Bessel-Potential Spa
es

Theorem 5.6. Let q > 1, w 2 A

s

for some 1 � s < q, 0 � � < 1 and � >

ns

q

� 1 if

n � 3 and � > �

1

2

+

2s

q

if n = 2. Moreover, let F 2 Y

��2;q

w

(
), K 2 L

t

w

(
) with

1� �

ns

+

1

q

�

1

t

= 0 (5.5)

and g 2 T

�;q

w

(�
) with hK; 1i




= hg;Ni

�


. Then there exists a 
onstant � > 0 indepen-

dent of the data su
h that, if

kFk

Y

��2;q

w

+ kKk

t;w

+ kgk

T

�;q

w

(�
)

� �;

then there exists a very weak solution u 2 H

�;q

w

(
) to the stationary Navier-Stokes

equations. This solution satis�es the estimate

kuk

�;q;w

� 


�

kFk

�1;t;w

+ kKk

t;w

+ kgk

T

�;q

w

(�
)

�

(5.6)

with 
 = 
(�; q; w;
) > 0. Furthermore, if we assume in addition that F 2 W

�1;t

w

(
),

then u ful�lls uj

�


= g in the sense of Theorem 2.9.4.

Proof. By the Lemmas 5.3 and 5.4 one has

L

t

w

(
) ,! H

��1;q

w;0

(
) and W

�1;t

w

(
) ,! Y

��2;q

w

(
):

For u 2 H

�;q

w

(
) let W (u) 2 (C

1

0

(
))

0

be given by

hW (u); �i = huu;r�i+ hKu; �i for all � 2 C

1

0

(
):

By Lemma 5.4.1 one has for � 2 C

1

0

(
)

jhW (u); �ij � 
(kuk

2

�;q;w

+ kKk

t;w

kuk

�;q;w

)k�k

1;t

0

;w

0

and hen
e W (u) 2 W

�1;t

w

(
) ,! Y

��2;q

w

(
) with

kW (u)k

Y

��2;q

w

� 


1

kW (u)k

�1;t;w

� 
(kuk

2

�;q;w

+ kKk

t;w

kuk

�;q;w

): (5.7)

We de�ne the mapping S : H

�;q

w

(
)! H

�;q

w

(
) by

�hSu;��i = hF; �i+ hW (u); �i � hg;N � r�i

�


for every � 2 Y

2;q

0

w

0

;�

(
);

�hSu;r i = hK; i � hg;N i

�


for every  2 W

1;q

0

w

0

(
):

The operator S is well-de�ned by Theorem 4.4.

We want to use Bana
h's Fixed Point Theorem to show that S has a �xed point under

the assumption that the data is small enough.

By the a priori estimate in Theorem 4.4 we know that

kvk

�;q;w

� D(kFk

Y

��2;q

w

+ kKk

t;w

+ kgk

T

�;q

w

(�
)

); (5.8)

if v is a very weak solution to the Stokes problem with respe
t to the data F 2 Y

��2;q

w

(
),

K 2 L

t

w

(
) and g 2 T

�;q

w

(�
).
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We assume that the data F;K and g are 
hosen small enough su
h that the right hand

side of (5.8) is stri
tly smaller then � :=

1

6
D

, where 
 is the 
onstant in the estimate

(5.7) and D is the 
onstant in the a priori estimate (5.8). Without loss of generality we

assume that D � 1, whi
h implies that additionally kKk

t;w

< �.

Furthermore, it follows from (5.7) and (5.8) that for su
h data and Æ =

2

6
D

the 
losed

ball B

Æ

(0) in H

�;q

w

(
) is mapped by S into itself.

The next step is to show that S is a 
ontra
tion on B

Æ

(0). Take u; v 2 B

Æ

(0). Then

Su� Sv is a solution of

�hSu� Sv;��i = hW (u)�W (v); �i for every � 2 Y

2;q

0

w

0

;�

(
)

�hSu� Sv;r i = 0 for every  2 W

1;q

0

w

0

(
):

Moreover, from Lemma 5.4.1 we obtain

jhW (u)�W (v); �ij � jh(u� v)u;r�ij+ jhv(u� v);r�ij+ jhK(u� v); �ij

� 
(kuk

�;q;w

+ kvk

�;q;w

+ kKk

t;w

)ku� vk

�;q;w

k�k

1;t

0

;w

t

=

5

6D

ku� vk

�;q;w

k�k

1;t

0

;w

t

:

Thus we obtain from the a priori estimate (5.8) that

kSu� Svk

�;q;w

� DkW (u)�W (v)k

�1;t;w

�

5

6

ku� vk

�;q;w

:

Now Bana
h's �xed point theorem gives us the existen
e of a unique �xed point of S

within the ballB

Æ

(0) and hen
e of a solution u 2 H

�;q

w

(
) to the stationary Navier-Stokes

system.

The a priori estimate (5.6) follows from

kuk

�;q;w

= kS(u)k

�;q;w

� D

�

kFk

Y

��2;q

w

+ kKk

t;w

+ kgk

T

�;q

w

(�
)

+ 
(kuk

2

�;q;w

+ kKk

t;w

kuk

�;q;w

)

�

sin
e D
(kuk

�;q;w

+ kKk

t;w

) �

3

6

and we may subtra
t

3

6

kuk

�;q;w

from both sides of the

above equation.

Now assume that F 2 W

�1;q

w

(
). It remains to show that in this 
ase the solution u

ful�lls the boundary 
ondition uj

�


= g. To see this one uses the fa
t that u is a very

weak solution to the Stokes equations with respe
t to the data

f = [� 7! hF; �i+ hW (u); �i � hg;N � r�i

�


℄

k = [ 7! hK; i � hg;N i

�


℄;

where f j

C

1

0

(
)

= [� 7! hF; �i + hW (u); �i℄ 2 W

�1;t

w

(
). Then the assertion about the

boundary values follows from Theorem 2.9.4.

De�nition 5.7. Let 1 � � � 2. Moreover, let F 2 H

��2;q

w

(
), K 2 H

��1;q

w

(
) and

g 2 T

�;q

w

(�
). Then u 2 H

�;q

w

(
) is 
alled a weak solution to the stationary Navier-

Stokes equations, if

(ru;r�) + (u � ru; �) = hF; �i for every � 2 C

1

0;�

(
);

div u = K and uj

�


= g.
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Theorem 5.8. Let 1 � � � 2 and � >

ns

q

�1 if n � 3 and � >

2s

q

�

1

2

if n = 2. Moreover,

let F 2 H

��2;q

w

(
), K 2 H

��1;q

w

(
) and g 2 T

�;q

w

(�
) with

R

K dx =

R

�


gN dS. Then

there exists a 
onstant � > 0 su
h that, if

kFk

��2;q;w

+ kKk

��1;q;w

+ kgk

T

�;q

w

(�
)

� �;

then there exists a weak solution u 2 H

�;q

w

(
) to the stationary Navier-Stokes equations.

This solution satis�es the estimate

kuk

�;q;w

� 


�

kFk

��2;q;w

+ kKk

��1;q;w

+ kgk

T

�;q

w

(�
)

�

with 
 = 
(�; q; w;
) > 0.

Proof. This 
an be proved in the same way as Theorem 5.6 using Lemma 5.4.2. instead

of Lemma 5.4.1. and Theorem 4.3 instead of Theorem 4.4.

The very weak solution is unique even without the assumption of the smallness of

the exterior for
e f and the boundary 
ondition g. In the 
ase n � 3 this follows from

the uniqueness of very weak solutions to the stationary Navier-Stokes equations in the

unweighted 
ase whi
h has been proved in [6℄. This is shown in the following theorem.

Theorem 5.9. Let the data F;K and g be given as in Theorem 5.6 or Theorem 5.8,

respe
tively, and let u be a very weak solution to the stationary Navier-Stokes system

with respe
t to the data F;K and g.

Then there exists a 
onstant � > 0 su
h that under the 
ondition that

kuk

�;q;w

+ kKk

t;w

� �

there exists at most one very weak solution to the stationary Navier-Stokes equations

a

ording to De�nition 5.5.

Proof. By Lemma 5.3 and Lemma 2.2 one has for � <

ns

q

u 2 H

�;q

w

(
) ,! L

nsq

�q�+ns

w

(
) ,! L

nq

�q�+ns

(
) = L

�

(
);

where, by the assumptions on �, one has � :=

nq

�q�+ns

> n.

For � �

ns

q

the embedding H

�;q

w

(
) ,! L

�

w

(
) holds for every � > 1. If we 
hoose

� = �s with � > n, then we obtain that also in this 
ase

H

�;q

w

(
) ,! L

�

(
) (5.9)

We want to show that � > n in (5.9) 
an be 
hosen su
h that K 2 L

�n

�+n

(
) and F 2

W

�1;

n�

�+n

(
) is ful�lled additionally. If � � 1 then one has by assumption K 2 L

t

w

(
)

and F 2 W

�1;t

w

(
) and by the proof of Lemma 5.4 one has t >

ns

2

=

n

2

s

n+n

. Thus we �nd

� with the asserted properties, sin
e again by Lemma 2.2 one has the embeddings

L

t

w

(
) ,! L

t

s

(
) and W

�1;t

w

(
) ,! W

�1;

t

s

(
):
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Now let � > 1. Then the embedding H

��1;q

w

(
) ,! L

t

w

(
) follows dire
tly from Lemma

5.3 and Y

��2;q

w

(
) ,! W

�1;t

w

(
) follows when taking the dual spa
es in the embedding

W

1;t

0

w

0

;0

(
) ,! Y

2��;q

0

w

0

(
), that is shown in Lemma 5.3.

Moreover, from Corollary 4.6 we obtain that g 2 W

�

1

�

;�

(�
) := T

0;�

1

(�
). Hen
e data

and solution are 
ontained in the same spa
es as in [6, Theorem 1.5℄. Thus exa
tly the

same proof as given there 
an be used to show that two solutions that 
orrespond to

the same data 
oin
ide.
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