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We investigate the stationary Navier-Stokes equations in Bessel-potential

spaes with Mukenhoupt weights. Sine in this setting it is possible that

the solutions do not posses any weak derivatives, we use the notation of

very weak solutions introdued by Amann [1℄. The basi tool is omplex

interpolation, thus we give a haraterization of the interpolation spaes of

the spaes of data and solutions. Then we establish a theory of solutions

to the Stokes equations in weighted Bessel-potential spaes and use this to

prove solvability of the Navier-Stokes equations for small data by means of

Banah's Fixed Point Theorem.

Key Words and Phrases: Stokes and Navier-Stokes equations, Mukenhoupt weights,

very weak solutions, Bessel Potential spaes, nonhomgeneous data

2000 Mathematis Subjet Classi�ation Numbers: Primary: 35Q30; Seondary: 35D05,

76D05, 35J65.

1 Introdution

Let 
 be a bounded domain in R

n

, n � 2, with C

1;1

-boundary. We onsider the

stationary Navier-Stokes problem with inhomogeneous data

��u+ u � ru+rp = F in 


div u = K in 


u = g on �
:

(1.1)

It is our aim to �nd a lass of solutions to (1.1) in a Bessel-potential spae H

�;q

(
),

� 2 [0; 2℄. This means we develop a solution theory that inludes strong solutions in

the ase � = 2 and weak solutions in the ase � = 1. However, if � = 0, it is also

possible that the solutions are only ontained in L

q

(
), i.e., they do not possess any

�

Department of Mathematis, Tehnishe Universit�at Darmstadt, Shlossgartenstra�e 7, 64289 Darm-

stadt, Germany, e-mail: shumaher�mathematik.tu-darmstadt.de

1



Navier-Stokes Equations in Bessel-Potential Spaes

weak derivatives. Consequently the notion of weak solutions is no longer suitable in

this ontext. Thus one introdues the more general notion of very weak solutions. To

arrive there one multiplies the �rst equation in (1.1) with a solenoidal test funtion �

vanishing on the boundary, then formal integration by parts yields

�hu;��i � huu;r�i � hKu; �i = hF; �i � hg;N � r�i

�


: (1.2)

Applying the same method to the seond equation with a suÆiently smooth test fun-

tion  we obtain

�hu;r i = hK; i � hg;N �  i

�


: (1.3)

The equations (1.2) and (1.3) an be used for the de�nition of very weak solutions.

This or similar formulations have been introdued by Amann in [1℄, by Amrouhe and

Girault in [2℄ and by Galdi, Simader and Sohr in [14℄. In these artiles as well as by

Farwig, Galdi and Sohr in [7℄, [6℄, [8℄ and by Giga in [16℄ solvability with low-regularity

data has been shown.

We investigate this problem in weighted funtion spaes. More preisely, we onsider

Lebesgue- and Sobolev- and Bessel potential spaes with respet to the measure w dx,

where w is a weight funtion ontained in the Mukenhoupt lass A

q

, f., (2.1) below.

Classial tools for the treatment of partial di�erential equations extend to funtion

spaes with Mukenhoupt weights. As important examples we mention the ontinuity

of the maximal operator and the multiplier theorems that an be found in the books of

Gar��a-Cuerva and Rubio de Frania [15℄ and Stein [25℄; extension theorems of funtions

on a domain to funtions on R

n

have been shown by Chua [4℄, extension theorems of

funtions on the boundary to funtions on the domain by Fr�ohlih [12℄, see also [20℄ and

embedding theorems by Fr�ohlih [13℄ using the ontinuity of singular integral operators

by Sawyer and Wheeden [19℄.

These tools were the base to treat the solvability of the Stokes and Navier-Stokes

equations in weighted funtion spaes by Farwig and Sohr in [9℄ and by Fr�ohlih in [10℄,

[11℄, [12℄.

As shown in [9℄ examples of Mukenhoupt weights are

w(x) = (1 + jxj)

�

; �n < � < n(q � 1) or

dist (x;M)

�

; �(n� k) < � < (n� k)(q � 1);

where M is a ompat k-dimensional Lipshitzian manifold. Thus, if one hooses a

partiular weight funtion, the developed theory an be used for a better ontrol of

the growth of the solution, for example in the neighborhood of a point or lose to the

boundary.

In Setion 4 we prove the solvability of the linear Stokes equations in weighted Bessel

potential spaes. To arrive there, we use omplex interpolation between the strong and

the very weak solutions. The notion of very weak solutions used in this ontext is slightly

more general than the one mentioned above. More preisely, one onsiders eah right

hand side of (1.2) and (1.3) as one funtional

f = [� 7! hF; �i � hg;N � r�i

�


℄ or k = [ 7! hK; i




� hg;N �  i

�


℄:

As a onsequene it is no longer distinguished between boundary ondition and fore,

or between boundary ondition and divergene, respetively, and sine the data may
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ontain a part that is onentrated on the boundary, the funtionals f and k are no

longer ontained in the lass of distributions on 
. In this ontext the regularity of

the data an be hosen so low that every funtion u 2 L

q

w

(
) ours as a very weak

solution with respet to appropriate data. It turns out that this setting is onvenient

to deal with omplex interpolation. As a preparation we give a haraterization of the

interpolation spaes of the spaes of solutions and of the spaes of the data in Setions

3.2 and 3.3. The main results in the linear ase are given in the Theorems 4.3 and 4.4.

When dealing with the Navier-Stokes equations in Setion 5 the nonlinearity gives us

reason to demand higher regularity of data and solutions. First of all, the nonlinear

term an be written as

u � ru = div uu�Ku:

To ensure that the multipliation on the right hand side is well-de�ned, it is reasonable

to demand that K is given by a funtion.

Moreover, when estimating the nonlinear term, one needs a weighted analogue to

the Sobolev Embedding Theorem. A good replaement proved in [13℄ requires strong

assumptions to the weight funtion. This an be ompensated for the prie of restritions

to the generality of the data and onsequently of a smaller lass of solutions. It turns out

that the more general the weight funtion is the higher one has to hoose the regularity

of data and solutions. Thus it is natural to onsider the problem in Bessel potential

spaes, where we are able to adapt the regularity of data and solutions preisely to the

quality of the weight funtion. Using the results from the linear ase we prove existene

and uniqueness results for the Navier-Stokes equations if the data is suÆiently small,

f., Theorems 5.6, 5.8 and 5.9.

2 Preliminaries

2.1 Weighted Funtion Spaes

Let A

q

, 1 < q <1, the set of Mukenhoupt weights, be given by all 0 � w 2 L

1

lo

(R

n

)

for whih

A

q

(w) := sup

Q

�

1

jQj

Z

Q

w dx

��

1

jQj

Z

Q

w

�

1

q�1

dx

�

q�1

<1: (2.1)

The supremum is taken over all ubes Q in R

n

. To avoid trivial ases, we exlude the

ase where w vanishes almost everywhere.

Lemma 2.1. 1. Every w 2 A

q

, q � 1 de�nes a loally �nite Borel measure w(F ) =

R

F

w dx and for q > 1 one has

w(Q) �

�

jQj

jF j

�

q

w(F )

for all ubes Q and all Borel sets F � Q with jF j > 0.

2. A

q

� A

p

for q < p.

3. Let w 2 A

q

for q > 1. Then there exists s < q suh that w 2 A

s

.
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Proof. 1. [25, V.1.7℄, 2. [15, IV Theorem 1.14℄, 3. [25, IX Prop. 4.5℄

Let k 2 N

0

, q 2 (1;1), w 2 A

q

and let 
 � R

n

be a Lipshitz domain. Then we

de�ne the following weighted versions of Lebesgue and Sobolev spaes.

� L

q

w

(
) :=

n

f 2 L

1

lo

(
) j kfk

q;w

:=

�
R




jf j

q

w dx

�

1

q

<1

o

.

It is an easy onsequene of the orresponding result in the unweighted ase that

(L

q

w

(
))

0

= L

q

0

w

0

(
) with

1

q

+

1

q

0

= 1 and w

0

= w

�

1

q�1

2 A

q

0

: (2.2)

� Set W

k;q

w

(
) =

n

u 2 L

q

w

(
)

�

�

�

kuk

k;q;w

:=

P

j�j�k

kD

�

uk

q;w

<1

o

.

� By C

1

0

(
) we denote the set of all smooth and ompatly supported funtions,

the spae C

1

0;�

(
) onsists of all funtions that are in addition divergene free.

� Moreover we set W

k;q

w;0

(
) = C

1

0

(
)

k�k

k;q;w

. The dual spae of it is denoted by

W

�k;q

w

(
) := (W

k;q

0

w

0

;0

(
))

0

. We also onsider the divergene-free versions

W

k;q

w;0;�

(
) := f� 2 W

k;q

w;0

(
) j div � = 0g and L

q

w;�

(
) = C

1

0;�

(
)

L

q

w

(
)

.

� Using this for k > 0 we set W

�k;q

w;0

(
) = C

1

0

(
)

k�k

W

�k;q

w

(R

n

)

.

� Moreover, we onsider the spaes of boundary values T

k;q

w

(�
) := (W

k;q

w

(
))j

�


,

equipped with the norm k � k

T

k;q

w

= k � k

T

k;q

w

(�
)

of the fator spae and �nally

T

0;q

w

(�
) := (T

1;q

0

w

0

(�
))

0

.

By [10℄, [12℄ and [4℄ the spaes L

q

w

(
), W

k;q

w

(
), W

k;q

w;0

(
) and T

k;q

w

(�
) are reexive

Banah spaes in whih C

1

0

(
), (C

1

0

(
), C

1

(
)j

�


, respetively) are dense.

Note that by Ne�as [18℄, Chapitre 2, x5, in the unweighted ase one has

T

k;q

1

(�
) =W

k�

1

q

;q

(�
) for k 2 N and T

0;q

1

(�
) = W

�

1

q

;q

(�
):

Lemma 2.2. Let 
 be a bounded domain. If 1 � s, w 2 A

s

and s < p < 1, then for

every q � sp and some r > q one has

L

r

(
) ,! L

q

w

(
) ,! L

p

(
):

Proof. The seond embedding is shown in [12, Lemma 2.2℄ the �rst one follows by

dualization from the seond and Lemma 2.1.

Theorem 2.3. Let 
 be a bounded Lipshitz domain or 
 = R

n

+

and N 2 N. Choose

p

i

2 [1;1), w

i

2 A

p

i

and k

i

2 N

0

, i = 1; :::; N . Then there exists an extension operator

E :

N

\

i=1

W

k

i

;p

i

w

i

(
)!

N

\

i=1

W

k

i

;p

i

w

i

(R

n

);

i.e., Euj




= u and kEuk

W

k

i

;p

i

w

i

(R

n

)

� kuk

W

k

i

;p

i

w

i

(
)

for i = 1; :::; N and for every u 2

T

N

i=1

W

k

i

;p

i

w

i

(
).
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Proof. This is a speial ase of [4, Theorem 1.4, Theorem 1.5℄. There Chua proves

extension theorems for the lass of (";1)-domains. By [17℄ this lass inludes bounded

Lipshitz domains and R

n

+

.

From now on we all any domain that permits an extension operator as in Theorem 2.3

an extension domain. In partiular bounded Lipshitz domains are extension domains.

Theorem 2.4. (H�ormander-Mihlin Multiplier Theorem with Weights)

Let m 2 C

n

(R

n

n f0g) ful�ll the property

j�

�

m(�)j � Kj�j

�j�j

; for every � 2 R

n

n f0g; j�j = 0; 1; :::; n;

for some onstant K > 0. Then T de�ned by



Tf = m

^

f for f 2 S(R

n

;R)

extends to a ontinuous operator on L

q

w

(
) for every q 2 (1;1) and w 2 A

q

.

Proof. This is an immediate onsequene of [15℄, Theorem 3.9.

By [22℄ one has the following weighted version of Bogowski's Theorem.

Theorem 2.5. Let 
 � R

n

, n � 2, be a bounded and loally lipshitzian domain.

Assume f 2 W

k;q

w;0

(
) suh that

R

f = 0. Then there exists a funtion u 2 W

k+1;q

w;0

(
)

suh that

div u = f and kuk

k+1;q;w

� kfk

k;q;w

;

with  = (
; q; w; k) > 0. Moreover, u an be hosen suh that it depends linearly on f

and suh that u 2 C

1

0

(
) if f 2 C

1

0

(
).

2.2 Complex Interpolation Theory

The fundamental tool in the Setions 3.3 and 4 is omplex interpolation. Thus we �x

some basi notation and fats in this �eld.

Let fX

1

; X

2

g an interpolation ouple and D = fz 2 C j 0 < Re z < 1g. We de�ne

F (X

1

; X

2

) to be the spae of all bounded and holomorphi funtions f fromD toX

1

+X

2

whih are extendable to ontinuous funtions on D suh that f(j + yi) is ontinuous on

R with values in X

j+1

, j = 0; 1, and suh that

kfk

F (X

1

;X

2

)

= max

�

sup

y2R

kf(iy)k

X

1

; sup

y2R

kf(iy + 1)k

X

2

�

<1:

Then for 0 < � < 1 the omplex interpolation spae is given by [X

1

; X

2

℄

�

= ff(�) j f 2

F (X

1

; X

2

)g, equipped with the norm

kxk

[X

1

;X

2

℄

�

= inffkfk

F (X

1

;X

2

)

j f 2 F (X

1

; X

2

) and f(�) = xg:

Theorem 2.6. Let 0 < � < 1 and X

1

� X

2

with ontinuous and dense embedding.

Then one has

1. X

1

is densely and ontinuously embedded into [X

1

; X

2

℄

�

.

5
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2. (Reiteration)

�

[X

1

; X

2

℄

�

; [X

1

; X

2

℄

�

�

�

= [X

1

; X

2

℄

�

, where �; � 2 [0; 1℄ and � = (1�

�)� + ��.

3. (Duality) Let X

1

and X

2

be reexive. Then [X

1

; X

2

℄

0

�

= [X

0

1

; X

0

2

℄

�

.

4. Let fY

1

; Y

2

g be another interpolation ouple with Y

1

� Y

2

. Moreover let T : X

i

!

Y

i

be a ontinuous linear operator for i = 1; 2. Then T : [X

1

; X

2

℄

�

! [Y

1

; Y

2

℄

�

is

ontinuous with operator norm bounded by kTk

1��

L(X

1

;Y

1

)

kTk

�

L(X

2

;Y

2

)

.

5. Let fX

1

; X

2

g and fY

1

; Y

2

g be interpolation ouples suh that fX

1

; X

2

g is a retrat

of fY

1

; Y

2

g, i.e., there exist ontinuous linear operators

I : X

1

+X

2

! Y

1

+ Y

2

and P : Y

1

+ Y

2

! X

1

+X

2

;

suh that PI = id

X

1

+X

2

and I : X

i

! Y

i

and P : Y

i

! X

i

, i = 1; 2 are on-

tinuous. Then [X

1

; X

2

℄

�

= P [Y

1

; Y

2

℄

�

for � 2 [0; 1℄. The norms kuk

[X

1

;X

2

℄

�

and

inffkUk

[Y

1

;Y

2

℄

�

j PU = ug are equivalent.

Proof. All assertions an be found in [28℄ or [3℄.

2.3 Very Weak Solutions to the Stokes Equations

The existene and uniqueness of very weak solutions in weighted L

q

-spaes have been

shown in [23℄. We quote the basi de�nitions and fats that are needed in this paper.

De�nition 2.7. Let f 2 Y

�2;q

w

(
) and k 2 W

�1;q

w;0

(
). A funtion u 2 L

q

w

(
) is alled

a very weak solution to the Stokes problem with respet to the data f and k, if

�hu;��i = hf; �i; for all � 2 Y

2;q

0

w

0

;�

(
) and (2.3)

�hu;r i = hk;  i; for all  2 W

1;q

0

w

0

(
): (2.4)

Setting  = 1 in (2.4) it follows that a neessary ondition for the existene of a

very weak solution u is hk; 1i = 0. This ondition is the analogue to the ompatibility

ondition hk; 1i = hg;Ni

�


between divergene and boundary values in the ase of weak

solutions.

Theorem 2.8. Let f 2 Y

�2;q

w

(
) and k 2 W

�1;q

w;0

(
) with hk; 1i = 0. Then there exists

a unique very weak solution u 2 L

q

w

(
) to the Stokes problem in the sense of De�nition

2.7.2. It ful�lls the a priori estimate

kuk

q;w

� 

�

kfk

Y

�2;q

w

(
)

+ kkk

W

�1;q

w;0

�

(2.5)

with  = (
; q; w) > 0.

Moreover, there exists a pressure funtional p 2 W

�1;q

w;0

(
) (unique modulo onstants)

suh that (u; p) solves

�hu;��i � hp; div�i = hf; �i for all � 2 Y

2;q

0

w

0

(
):
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In partiular ��u +rpj

C

1

0

(
)

= f j

C

1

0

(
)

in the sense of distributions. The funtionals

(u; p) ful�ll the inequality

kuk

q;w

+ kpk

W

�1;q

w;0

� 

�

kfk

Y

�2;q

w

+ kkk

W

�1;q

w;0

�

; (2.6)

where  = (
; q; w) > 0.

Theorem 2.9. Assume that f 2 Y

�2;q

w

(
) and k 2 W

�1;q

w;0

(
) allow a deomposition

into

hf; �i = hF; �i � hg;N � r�i

�


for all � 2 Y

2;q

0

w

0

(
);

hk;  i = hK; i � hg;N �  i

�


for all  2 W

1;q

0

w

0

(
)

(2.7)

with g 2 T

0;q

w

(�
); F 2 W

�1;r

~w

(
); K 2 L

r

~w

(
), where 1 < r <1 and ~w 2 A

r

are hosen

suh that W

1;q

0

w

0

(
) ,! L

r

0

~w

0

(
) ,! L

q

0

w

0

(
). Then one has:

1. Suh a deomposition is uniquely de�ned by f and k.

2. Every strong solution u 2 W

2;q

w

(
) to the Stokes problem orresponding to the data

g 2 T

2;q

w

(�
), F 2 L

q

w

(
) and K 2 W

1;q

w

(
) is a very weak solution orresponding

to the data f and k with the notation of (2.7).

3. If g 2 T

2;q

w

(�
), F 2 L

q

w

(
) and K 2 W

1;q

w

(
) with

R




K =

R

�


N �g, then the very

weak solution u to the Stokes problem with respet to f and k is a strong solution

with respet to F;K and g. In partiular u 2 W

2;q

w

(
), there exists a pressure

funtion p 2 W

1;q

w

(
), unique modulo onstants, suh that the Stokes equations

are ful�lled in the sense of distributions and one has

kuk

2;q;w

+ kpk

1;q;w

� (kFk

q;w

+ kKk

1;q;w

+ kgk

T

2;q

w

): (2.8)

4. Let u be a very weak solution to the Stokes problem orresponding to the data f

and k as in (2.7). Then

u 2

~

W

q;r

w; ~w

:=

�

u 2 L

q

w

(
)

�

�

9 > 0; jhu;��ij � k�k

1;r

0

; ~w

0

8� 2 C

1

0;�

(
)

	

:

There exists an operator  :

~

W

q;r

w; ~w

! T

0;q

w

(�
) that oinides with the tangential

trae on W

1;q

w

(
). The fat that div u = K 2 L

r

~w

(
) permits to de�ne the normal

omponent of the trae N � uj

�


. In this sense uj

�


is well-de�ned and uj

�


= g.

3 Weighted Bessel Potential Spaes

3.1 De�nition and Simple Properties

For � 2 R

n

we set h�i := (1+ j�j

2

)

1

2

. On the spae S

0

(R

n

;R) of temperate distributions

we de�ne for all � 2 R the operator

�

�

f = F

�1

h�i

�

Ff; f 2 S

0

(R

n

;R);

where F stands for the Fourier transformation on S

0

(R

n

;R). Then for 1 < q < 1,

w 2 A

q

and � 2 R the weighted Bessel potential spae is given by

H

�;q

w

(R

n

) =

n

f 2 S

0

(R

n

;R)

�

�

kfk

H

�;q

w

(R

n

)

:= k�

�

fk

q;w;R

n

<1

o

:

7
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Theorem 3.1. If 1 < q <1, w 2 A

q

, l; k 2 Z and l < � < k then

�

H

l;q

w

(R

n

); H

k;q

w

(R

n

)

�

�

= H

�;q

w

(R

n

);

where � =

��l

k�l

.

Proof. This an be proven analogously to [26, Proposition 13.6.2℄. For the weighted

version in the ase l = 0 and k 2 N see also [10, Satz 8.3℄. The proof given there an

be repeated to obtain the more general assertion of this theorem.

For an extension domain 
 we de�ne the weighted Bessel potential spae on 
 by

H

�;q

w

(
) =

�

gj




j g 2 H

�;q

w

(R

n

)

	

equipped with the norm

kuk

H

�;q

w

(
)

:= inf

n

kUk

H

�;q

w

(R

n

)

j U 2 H

�;q

w

(R

n

); U j




= u

o

:

Note that if � < 0 then the restrition gj




has to be understood in the sense of distri-

butions as gj

C

1

0

(
)

.

Moreover, we set

H

�;q

w;0

(
) = (C

1

0

(
))

H

�;q

w

(R

n

)

; � 2 R;

equipped with the norm k � k

�;q;w;0;


:= kE

0

(�)k

�;q;w;R

n

, where E

0

denotes the extension

of a funtion by 0 to the whole spae R

n

. The spae H

�;q

w;0

(
) is a reexive Banah spae

being a losed subspae of H

�;q

w

(R

n

), whih is reexive sine it is isomorphi to L

q

w

(
).

Note that by (3.6) below this norm is in general not equivalent to k�k

�;q;w;


. Moreover,

if � < 0 the spae H

�;q

w;0

(
) does in general not onsist of distributions on 
 but of

distributions on R

n

supported by 
.

We hoose this de�nition beause in this way one obtains a good behavior of the dual

spaes and interpolation properties, see Lemma 3.3 below.

Theorem 3.2. Let 
 be an extension domain, 1 < q <1, w 2 A

q

.

1. For k 2 N

0

one has H

k;q

w

(
) = W

k;q

w

(
) and H

k;q

w;0

(
) = W

k;q

w;0

(
) with equivalent

norms.

2. For k 2 N, 0 < � < k one has H

�;q

w

(
) = [L

q

w

(
);W

k;q

w

(
)℄�

k

.

3. The spaes H

�;q

w

(
), � > 0, are independent of the values of the weight funtion

w 2 A

q

outside 
, i.e., if w

1

; w

2

2 A

q

, w

1

j




= w

2

j




then H

�;q

w

1

(
) = H

�;q

w

2

(
) with

equivalent norms.

Proof. The assertions of 1. and 2. an be found in [13℄ exept for the assertion on

H

k;q

w;0

(
) in 1. Sine one has H

k;q

w

(R

n

) = W

k;q

w

(R

n

) with equivalent norms, the equation

H

k;q

w;0

(
) =W

k;q

w;0

(
) follows from the de�nition of H

k;q

w;0

(
). 3. follows from 2.

8
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3.2 Bessel Potential Spaes of Negative Order

Throughout this setion let 1 < q < 1 and w 2 A

q

. It follows in a straight-forward

way from the de�nition of the spaes H

�;q

w

(R

n

) that for every � > 0 one has

H

��;q

w

(R

n

) =

�

H

�;q

0

w

0

(R

n

)

�

0

isometrially: (3.1)

Lemma 3.3. For � 2 R one has H

��;q

w

(
) =

�

H

�;q

0

w

0

;0

(
)

�

0

with equivalent norms. In

partiular, for k 2 N one has H

�k;q

w

(
) = W

�k;q

w

(
).

Proof. Let u 2 H

��;q

w

(
). Then by de�nition there exists U 2 H

��;q

w

(R

n

) suh that

U j

C

1

0

(
)

= u with

2kuk

��;q;w;


� kUk

��;q;w;R

n

= sup

�2S(R

n

);k�k

�;q

0

;w

0

;R

n

�1

hU; �i

� sup

�2C

1

0

(
);k�k

�;q

0

;w

0

;R

n

�1

hu; �i = kuk

(H

�;q

0

w

0

;0

(
))

0

using (3.1). Thus u 2 (H

�;q

0

w

0

;0

(
))

0

.

Vie versa, by Hahn-Banah's theorem every u 2

�

H

�;q

0

w

0

;0

(
)

�

0

an be extended to an

element

U 2

�

H

�;q

0

w

0

(R

n

)

�

0

= H

��;q

w

(R

n

) with kUk

��;q;w;R

n

= kuk

(H

�;q

0

w

0

;0

(
))

0

:

Then a similar alulation as above yields u 2 H

��;q

w

(
) with kuk

��;q;w;


� kuk

(H

�;q

0

w

0

;0

(
))

0

.

To obtain the result for k 2 N one ombines the �rst assertion with Theorem 3.2.1.

Lemma 3.3 also yields the ompleteness of H

��;q

w

(
) in the ase � > 0.

Lemma 3.4. Let 
 be a bounded C

1;1

-domain or the half spae. There exists a ontin-

uous linear extension operator

E : H

�1;q

w

(
)! H

�1;q

w

(R

n

)

suh that Euj

C

1

0

(
)

= u for all u 2 H

�1;q

w

(
) and whih is also ontinuous as a mapping

E : H

1;q

w

(
)! H

1;q

w

(R

n

).

Proof. We begin with showing the assertion for the half spae 
 = R

n

+

.

By [12℄ for every f 2 W

�1;q

w

(R

n

+

) there exists a unique u 2 W

1;q

w;0

(R

n

+

) solving the

equation (1��)u = f . This solution u depends linearly on f and ful�lls the estimate

kuk

1;q;w

� kfk

�1;q;w

. We write u = (1��

D

)

�1

f . As shown in [21℄ one an prove as in

the unweighted ase [5℄ the regularity of solutions to the Laplae equation. In partiular

f 2 W

1;q

w

(R

n

+

) yields u 2 W

3;q

w

(R

n

+

) with kuk

3;q;w

� kfk

1;q;w

.

To onstrut E we remind that by Theorem 2.3 there exists a linear ontinuous

extension operator

~

E : W

1;q

w

(R

n

+

)!W

1;q

w

(R

n

) and

~

E : W

3;q

w

(R

n

+

)!W

3;q

w

(R

n

) with

~

Euj

R

n

+

= u:

9
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Now we set Eu = (1 � �)

~

E(1 � �

D

)

�1

u for every u 2 H

�1;q

w

(R

n

+

). Then E has the

asserted properties on the half spae R

n

+

.

For a bounded C

1;1

-domain 
 we take a olletion of harts (�

j

)

m

j=1

and a deompo-

sition of unity ( 

j

)

m

j=1

subordinate to the orresponding overing (U

j

)

j

of 
. Then for

u 2 W

1;q

w

(
) we set

E




u =

m

X

j=1

�

j

� E

R

n

+

((u 

j

) Æ �

j

) Æ �

�1

j

;

where E

R

n

+

: W

1;q

wÆ�

j

(R

n

+

)!W

1;q

wÆ�

j

(R

n

) is the operator just onstruted and �

j

2 C

1

0

(U

j

)

with �

j

 

j

=  

j

. Obviously E




: W

1;q

w

(
) ! W

1;q

w

(R

n

) is ontinuous. Moreover,

hange of variables yields that u 7! u Æ �

j

is a ontinuous operation from W

�1;q

w

(
) !

W

�1;q

wÆ�

j

(�

�1

j

(
)). This shows the ontinuity of E




: W

�1;q

w

(
) ! W

�1;q

w

(R

n

), and om-

bined with Lemma 3.3 the proof is omplete.

Theorem 3.5. Let 1 < q < 1, w 2 A

q

, �1 � � � 1 and 
 = R

n

+

or a bounded

C

1;1

-domain. Then

1. [H

�1;q

w

(
); H

1;q

w

(
)℄

�

= H

�;q

w

(
), where � =

1+�

2

.

2. For � =

1+�

2

one has

�

H

�1;q

w;0

(
); H

1;q

w

(
)

�

�

=

(

H

�;q

w;0

(
); if � < 0

H

�;q

w

(
); if � � 0:

Proof. 1. fH

�1;q

w

(
); H

1;q

w

(
)g is a retrat of fH

�1;q

w

(R

n

); H

1;q

w

(R

n

)g where the retration

is the restrition operator

R




: H

�1;q

w

(R

n

)! H

�1;q

w

(
); u 7! uj

C

1

0

(
)

;

and the oretration is the extension operator E onstruted in Lemma 3.4. Thus the

assertion in 1. follows from Theorem 2.6 and the orresponding interpolation property

on R

n

stated in Theorem 3.1

2. An appliation of the Duality Theorem 2.6 to 1. together with Lemma 3.3 yields

�

H

�1;q

w;0

(
); H

1;q

w;0

(
)

�

�

= H

�;q

w;0

(
): (3.2)

Sine F (H

�1;q

w;0

(
); H

1;q

w;0

(
)) � F (H

�1;q

w;0

(
); H

1;q

w

(
)), F as in (2.2), and the same is true

when replaing q by q

0

and w by w

0

, we have by (3.2)

L

q

w

(
) =

�

H

�1;q

w;0

(
); H

1;q

w;0

(
)

�

1

2

,!

�

H

�1;q

w;0

(
); H

1;q

w

(
)

�

1

2

(3.3)

and

L

q

0

w

0

(
) ,!

h

H

�1;q

0

w

0

;0

(
); H

1;q

0

w

0

(
)

i

1

2

=

�

H

�1;q

w;0

(
); H

1;q

w

(
)

�

0

1

2

: (3.4)

By the density of the embedding H

1;q

0

w

0

(
) ,!

h

H

�1;q

0

w

0

;0

(
); H

1;q

0

w

0

(
)

i

1

2

we obtain that the

embedding (3.4) is dense. Thus we dualize (3.4) and ombine it with (3.3) to obtain

�

H

�1;q

w;0

(
); H

1;q

w

(
)

�

1

2

= L

q

w

(
) =

�

H

�1;q

w

(
); H

1;q

w

(
)

�

1

2

=

�

H

�1;q

w;0

(
); H

1;q

w;0

(
)

�

1

2

:

Now the assertion follows by the reiteration property in Theorem 2.6.
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3.3 Bessel Potential Spaes with Zero Boundary Values

For an extension domain 
 � R

n

, 1 < q < 1, w 2 A

q

and 0 � � � 2 we de�ne the

spae

Y

�;q

w

(
) :=

8

>

<

>

:

Y

2;q

w

(
)

H

�;q

w

(R

n

)

; if 0 � � � 1 equipped with k � k

H

�;q

w

(R

n

)

;

Y

2;q

w

(
)

H

�;q

w

(
)

; if 1 < � � 2 equipped with k � k

H

�;q

w

(
)

;

where in the ase 0 � � � 1 the funtions of Y

2;q

w

(
) are assumed to be extended by 0

to funtions de�ned on the whole spae R

n

. This is possible, sine C

1

0

(
) is dense in

W

1;q

w;0

(
) � Y

2;q

w

(
) and W

1;q

w;0

(
) ,! W

1;q

w

(R

n

) ,! H

�;q

w

(R

n

).

In partiular, this implies that in the ase 0 � � � 1 one has

Y

�;q

w

(
) = C

1

0

(
)

H

�;q

w

(R

n

)

= H

�;q

w;0

(
): (3.5)

Moreover, for suh � it follows immediately from the de�nition of Y

�;q

w

(
) that the

extension E

0

u of funtions u 2 Y

�;q

w

(
) by 0 to funtions on R

n

is a ontinuous linear

map to H

�;q

w

(R

n

).

Finally, sine H

1;q

w

(
) = W

1;q

w

(
) and the norm in W

1;q

w

(
) is loal, for � = 1 the two

de�nitions are equivalent, i.e.,

Y

1;q

w

(
) = W

1;q

w;0

(
) = Y

2;q

w

(
)

H

1;q

w

(
)

;

where the latter spae is equipped with k � k

H

1;q

w

(
)

.

For symmetry reasons the question arises whether Y

�;q

w

(
) = Y

2;q

w

(
)

H

�;q

w

(
)

for all

0 � � � 2. However this is not the ase, not even in the unweighted ase. Indeed, by

Triebel [29, I.5.23℄ one has

Y

2;q

1

(
)

H

1

q

;q

(
)

= C

1

0

(
)

H

1

q

;q

(
)

6= fu 2 H

1

q

;q

(R

n

) j supp u � 
g = Y

1

q

;q

1

(
):

(3.6)

We hoose the spaes Y

�;q

w

(
) beause of their good properties with respet to interpo-

lation.

Theorem 3.6. Let 1 < q <1, w 2 A

q

and 0 � � � 2. Then

�

L

q

w

(R

n

+

); Y

2;q

w

(R

n

+

)

�

�

= Y

�;q

w

(R

n

+

); � =

�

2

with equivalent norms.

Proof. As a preparation we note that the norm in Y

�;q

w

(R

n

+

) is equivalent to the one in

Y

�;q

~w

(R

n

+

) if ~w 2 A

q

with ~wj

R

n

+

= wj

R

n

+

. In the ase � � 1 this is true by Theorem 3.2.

If � < 1 one has by Theorem 3.5 and (3.5)

Y

�;q

w

(R

n

+

) = H

�;q

w;0

(R

n

+

) =

�

H

��;q

0

w

0

(R

n

+

)

�

0

= [H

1;q

0

w

0

(R

n

+

); H

�1;q

0

w

0

(R

n

+

)℄

0

�+1

2

:

11
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The latter interpolation spae is independent of the weight funtion outside R

n

+

, beause

H

1;q

0

w

0

(R

n

+

) and H

�1;q

0

w

0

(R

n

+

) are.

As shown in [12℄ if w 2 A

q

then

w

�

(x) :=

(

w(x) on R

n

+

w(x

0

;�x

n

) on R

n

�

is also ontained in A

q

. Thus we may assume from now on that w = w

�

is even.

Step 1: We show that

�

L

q

w

(R

n

+

); Y

2;q

w

(R

n

+

)

�

�

,! Y

�;q

w

(R

n

+

):

To see this let u 2

�

L

q

w

(R

n

+

); Y

2;q

w

(R

n

+

)

�

�

.

We begin with the ase 1 � � � 2. Then there is a funtion U 2 F (L

q

w

(R

n

+

); Y

2;q

w

(R

n

+

))

suh that U(�) = u and kUk

F (L

q

w

(R

n

+

);Y

2;q

w

(R

n

+

))

� 2kuk

[L

q

w

(R

n

+

);Y

2;q

w

(R

n

+

)℄

�

.

Sine F (L

q

w

(R

n

+

); Y

2;q

w

(R

n

+

)) � F (L

q

w

(R

n

+

); H

2;q

w

(R

n

+

)), we obtain

u = U(�) 2 [L

q

w

(R

n

+

); H

2;q

w

(R

n

+

)℄

�

= H

�;q

w

(R

n

+

)

and

kuk

H

�;q

w

(R

n

+

)

�  inf

n

kV k

F (L

q

w

(R

n

+

);H

2;q

w

(R

n

+

))

�

�

V 2 F (L

q

w

(R

n

+

); H

2;q

w

(R

n

+

)); V (�) = u

o

� kUk

F (L

q

w

(R

n

+

);Y

2;q

w

(R

n

+

))

� 2kuk

[L

q

w

(R

n

+

);Y

2;q

w

(R

n

+

)℄

�

:

Moreover, by Theorem 2.6 we know that Y

2;q

w

(R

n

+

) is dense in [L

q

w

(R

n

+

); Y

2;q

w

(R

n

+

)℄

�

whih

yields the assertion of Step 1 in the ase � � 1.

In the ase 0 � � � 1 we assume that we already know

�

L

q

w

(R

n

+

); Y

2;q

w

(R

n

+

)

�

1

2

=

Y

1;q

w

(R

n

+

). This follows from the ase 1 � � � 2 whih will be shown independently.

Then, sine

Y

1;q

w

(R

n

+

) = C

1

0

(R

n

+

)

W

1;q

w

(R

n

)

= W

1;q

w;0

(R

n

+

);

and the extension

E

0

u(x) =

(

u(x) for x 2 R

n

+

0 for x 2 R

n

�

of funtions de�ned on the half spae is ontinuous from W

1;q

w;0

(R

n

+

) to W

1;q

w

(R

n

) and

from L

q

w

(R

n

+

) to L

q

w

(R

n

), we �nd by interpolation and the reiteration property that

E

0

:

�

L

q

w

(R

n

+

); Y

2;q

w

(R

n

+

)

�

�

=

�

L

q

w

(R

n

+

);W

1;q

w;0

(R

n

+

)

�

2�

! H

�;q

w

(R

n

)

is ontinuous for 0 � � �

1

2

. Thus for every u 2 C

1

0

(R

n

+

) we obtain

kuk

Y

�;q

w

(R

n

+

)

= kE

0

uk

�;q;w;R

n

� kuk

[L

q

w

(R

n

+

);W

1;q

w;0

(R

n

+

)℄

2�

:

Then the density of the embedding C

1

0

(R

n

+

) ,!

�

L

q

w

(R

n

+

);W

1;q

w;0

(R

n

+

)

�

2�

�nishes the proof

of Step 1.

Step 2: Claim: If the odd extension, E

odd

: Y

�;q

w

(R

n

+

)! H

�;q

w

(R

n

), is ontinuous, where

E

odd

u(x) =

(

u(x) if x 2 R

n

+

�u(x

0

;�x

n

) if x 2 R

n

�

12



Navier-Stokes Equations in Bessel-Potential Spaes

for x = (x

0

; x

n

), then the assertion Y

�;q

w

(R

n

+

) ,!

�

L

q

w

(R

n

+

); Y

2;q

w

(R

n

+

)

�

�

is true for �.

Proof of the Claim. Let u 2 Y

�;q

w

(R

n

+

) and set

U(z) = e

z

2

�

(��z)2

E

odd

u:

Then one has U 2 F (L

q

w

(R

n

);W

2;q

w

(R

n

)) with U(�) = e

�

2

E

odd

u. Moreover, sine for ev-

ery � 2 C the operator �

�

maps odd funtions to odd funtions, one has U(iy+1)j

R

n�1

=

0 whih implies U(iy+1)j

R

n

+

2 Y

2;q

w

(R

n

+

) for every y. Thus U j

R

n

+

2 F (L

q

w

(R

n

+

); Y

2;q

w

(R

n

+

))

and we obtain u 2

�

L

q

w

(R

n

+

); Y

2;q

w

(R

n

+

)

�

�

with

kuk

[L

q

w

(R

n

+

);Y

2;q

w

(R

n

+

)℄

�

� sup

y

kU(iy + 1)k

Y

2;q

w

(R

n

+

)

+ sup

y

kU(iy)k

L

q

w

(R

n

+

)

� sup

y

kU(iy + 1)k

Y

2;q

w

(R

n

)

+ sup

y

kU(iy)k

L

q

w

(R

n

)

� kE

odd

uk

H

�;q

w

(R

n

)

� kuk

Y

�;q

w

(R

n

+

)

:

Step 3: The embedding Y

�;q

w

(R

n

+

) ,!

�

L

q

w

(R

n

+

); Y

2;q

w

(R

n

+

)

�

�

is true for � < 1.

By the de�nition of Y

�;q

w

(R

n

+

) for � < 1 we know that the extension E

0

u of u by 0 on

R

n

is ontinuous from Y

�;q

w

(R

n

+

) to H

�;q

w

(R

n

) with norm 1. Thus the odd extension of

u, whih is equal to

E

odd

u(x) = E

0

u(x)� E

0

u(x

0

;�x

n

);

is also ontinuous. Step 2 ompletes the argument.

Step 4: The embedding Y

�;q

w

(R

n

+

) ,!

�

L

q

w

(R

n

+

); Y

2;q

w

(R

n

+

)

�

�

is true for 1 � � � 2.

For g 2 T

2;q

w

(R

n�1

) there exists an extension S(g) with the following properties:

� S(g)j

R

n�1

= g.

� S is a ontinuous linear mapping S : T

2;q

w

(R

n�1

)!W

2;q

w

(R

n

) and S : T

1;q

w

(R

n�1

)!

W

1;q

w

(R

n

).

To see this we de�ne S(g)j

R

n

+

to be the solution of

(1��)S(g) = 0 on R

n

+

and S(g) = g on R

n�1

:

Then by [12, Theorem 4.5℄ we know that S(g)j

R

n

+

is well-de�ned and has the two prop-

erties on R

n

+

. By Theorem 2.3 there exists an extension operator, ontinuous from

W

2;q

w

(R

n

+

) to W

2;q

w

(R

n

) as well as from W

1;q

w

(R

n

+

) to W

1;q

w

(R

n

). Thus the existene of

suh an S is proved.

Now we onsider the operator

B : H

2;q

w

(R

n

+

)! H

2;q

w

(R

n

); u 7! S(uj

R

n�1

) + E

odd

(u� S(uj

R

n�1

)):

Sine w = ~w and Y

2;q

w

(R

n

+

)j

R

n�1

= f0g, it is easy to hek that the operator E

odd

is

ontinuous from Y

2;q

w

(R

n

+

) to W

2;q

w

(R

n

) and fromW

1;q

w;0

(R

n

+

) to W

1;q

w

(R

n

). Thus, we have

onstruted an operator B whih is ontinuous from W

2;q

w

(R

n

+

) to W

2;q

w

(R

n

) as well as

from W

1;q

w

(R

n

+

) to W

1;q

w

(R

n

) and whih oinides with E

odd

on Y

�;q

w

(R

n

+

), � = 1; 2. By

interpolation we �nd that

B : H

�;q

w

(R

n

+

)! H

�;q

w

(R

n

)

13
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is ontinuous for every 1 � � � 2. Thus for every u 2 Y

�;q

w

(R

n

+

) � Y

1;q

w

(R

n

+

) one has

kE

odd

uk

H

�;q

w

(R

n

)

= kBuk

H

�;q

w

(R

n

)

� kuk

H

�;q

w

(R

n

+

)

= kuk

Y

�;q

w

(R

n

+

)

:

Thus Step 2 �nishes the proof.

Theorem 3.7. The assertion of Theorem 3.6 holds true, when replaing R

n

+

by a

bounded C

1;1

-domain 
, i.e.,

�

L

q

w

(
); Y

2;q

w

(
)

�

�

= Y

�;q

w

(
); � =

�

2

; 0 � � � 2

with equivalent norms.

Proof. Let �

j

, j = 1; :::; m, be a olletion of C

1;1

-harts and  

j

a deomposition of unity

subordinate to the orresponding overing of 
. We assume that every  

j

is extended

to an element of C

1

0

(R

n

) and that every �

i

is extended to an element of C

1;1

(R

n

) suh

that it has an inverse �

�1

j

2 C

1;1

(R

n

).

Then we �x j, write  =  

j

and � = �

j

and de�ne the mapping

B : Y

�;q

wÆ�

(R

n

+

)! Y

�;q

w

(
); u 7! (u � ( Æ �)) Æ �

�1

: (3.7)

Using appropriate extensions of funtions in Y

�;q

w

(R

n

+

) to R

n

and the ontinuity of the

onatenation and multipliation with suÆiently smooth funtions one shows that B

is a ontinuous mapping into the asserted image spae.

Now setting B

j

u = (u( 

j

Æ �

j

)) Æ �

�1

j

we de�ne the operator

B




:

m

Y

i=1

Y

�;q

wÆ�

i

(R

n

+

)! Y

�;q

w

(
); (u

1

; :::; u

m

) 7!

m

X

i=1

B

i

u

i

;

whih is ontinuous and surjetive for every � 2 [0; 2℄. (Surjetivity follows if one

onsiders the operators

A

j

: H

�;q

w

(
) 3 u 7! (u�

j

) Æ �

j

2 H

�;q

wÆ�

j

(R

n

+

); j = 1; :::; m;

where �

j

is an appropriate ut-o� funtion, with �

j

� 1 on supp 

j

.) By interpolation

and Theorem 3.6 it follows that

B




:

m

Y

i=1

Y

�;q

w

i

(R

n

+

)!

�

L

q

w

(
); Y

2;q

w

(
)

�

�

2

is ontinuous, where w

i

:= w Æ �

i

.

For every u 2 Y

�;q

w

(
) there exists (u

1

; :::; u

m

) 2

Q

m

i=1

Y

�;q

w

i

(R

n

+

) with B




(u

1

; :::; u

m

) =

u and ku

i

k

Y

�;q

w

i

(R

n

+

)

� kuk

Y

�;q

w

(
)

for every i = 1; :::; m. Then one an estimate

kuk

[L

q

w

(
);Y

2;q

w

(
)℄

�

=kB




(u

1

; :::; u

m

)k

[L

q

w

(
);Y

2;q

w

(
)℄

�

�

m

X

i=1

ku

i

k

[L

q

w

i

(R

n

+

);Y

2;q

w

i

(R

n

+

)℄

�

� 

m

X

i=1

ku

i

k

Y

�;q

w

i

(R

n

+

)

�kuk

Y

�;q

w

(
)

:

Thus we obtain [L

q

w

(
); Y

2;q

w

(
)℄�

2

� Y

�;q

w

(
).

The inlusion "�" is proved in the same way as in the proof of Theorem 3.6, Step 1.
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4 Stokes Equations in Weighted Bessel Potential Spaes

Throughout this setion let 
 be a bounded C

1;1

-domain. Moreover let � 2 [0; 2℄,

q 2 (1;1) and w 2 A

q

. As a spae for exterior fores we de�ne

Y

��;q

w

(
) :=

�

Y

�;q

0

w

0

(
)

�

0

:

Note that if 0 � � � 1 then by (3.5) one has the embedding

Y

��;q

w

(
) = H

��;q

w

(
) ,! W

�1;q

w

(
)

and thus Y

��;q

w

(
) onsists of distributions on 
.

If � > 1 then this is in general not the ase. In partiular, if � is large enough, then

a funtional f 2 Y

��;q

w

(
) might inlude a part that is supported on the boundary and

whih an be onsidered as a boundary ondition.

As a spae for divergenes we hoose

H

;q

w;�

(
) :=

(

H

;q

w

(
); if  � 0

H

;q

w;0

(
); if  < 0;

for every  2 [�1; 1℄. This spae is equipped with the norm k � k

;q;w;�;


:= k � k

H

;q

w;�

(
)

.

We use the notion of very weak solutions introdued in De�nition 2.7, however if

� � 1, i.e., the solution is ontained in W

1;q

w

(
), then we also speak of weak solutions.

Theorem 4.1. Let 1 < q < 1, w 2 A

q

and 0 � � � 2. Moreover, let f 2

Y

��2;q

w

(
) and k 2 H

��1;q

w;�

(
) with hk; 1i = 0. Then there exists a unique very weak

solution u 2 Y

�;q

w

(
) to the Stokes problem with respet to the data f; k in the sense of

De�nition 2.7. This funtion u ful�lls the estimate

kuk

Y

�;q

w

(
)

� 

�

kfk

Y

��2;q

w

(
)

+ kkk

��1;q;w;�;


�

: (4.1)

Moreover, there exists a pressure funtional p 2 H

��1;q

w

(
), unique modulo onstants,

suh that

��u+rp = f j

C

1

0

(
)

in C

1

0

(
)

0

:

Proof. From the results in Setions 3.2 and 3.3 it follows that

�

Y

�2;q

w

(
)�H

�1;q

w;0

(
); L

q

w

(
)�H

1;q

w

(
)

�

�

= Y

��2;q

w

(
)�H

��1;q

w;�

(
);

where � =

�

2

. It is immediate that

k 7! K := k � hk; 1i 2 L(H

�1;q

w;0

(
)) \ L(H

1;q

w

(
)):

By Theorem 2.8 the mapping

S : Y

�2;q

w

(
)�H

�1;q

w;0

(
) 3 (f; k) 7! u 2 L

q

w

(
);

is ontinuous, where u 2 L

q

w

(
) is the very weak solution to the Stokes problem with

respet to the data f and K = k � hk; 1i.
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If u is a solution in the sense of De�nition 2.7 with suÆiently regular data f and k,

then by Theorem 2.9 we �nd that u is a strong solution with zero boundary values. In

partiular, S is also ontinuous from L

q

w

(
)�H

1;q

w

(
) to Y

2;q

w

(
). Now we obtain from

the interpolation properties in Theorems 3.5 and 3.7 together with the duality Theorem

2.6 that

S : Y

��2;q

w

(
)�H

��1;q

w;�

(
)! Y

�;q

w

(
)

is ontinuous, whih �nishes the proof of existene and estimates of u. Uniqueness

follows from the uniqueness of very weak solutions in L

q

w

(
) (Theorem 2.8).

It remains to show the existene of p. By the theory of strong solutions in [12℄

there exists a pressure funtion p 2 H

1;q

w

(
). Moreover, by Theorem 2.8 there exists a

pressure funtional p 2 H

�1;q

w;0

(
) that belongs to a very weak solution. In both ases p

is unique if hp; 1i = 0. Thus by the interpolation Theorem 3.5.2 we obtain a funtional

~p 2 H

��1;q

w;�

(
) suh that

�hu;��i � h~p; div �i = hF; �i for all � 2 Y

2;q

0

w

0

(
):

The restrition p := ~pj

C

1

0

(
)

solves the problem.

By the de�nition of Y

�;q

w

(
) it follows, that whenever a trae operator

tr : H

�;q

w

(
)! T (D)

for a boundary portion D � �
 is well-de�ned (as a ontinuous linear operator into

some boundary spae T (D), whih oinides with the usual trae uj

D

on W

1;q

w

(
)), then

for the solution u 2 Y

�;q

w

(
) one has tr u = 0.

In the ase, where data and solutions are regular enough (inluding the ase � = 1 of

weak solutions), we want to deal with inhomogeneous boundary values.

If � � 1, then H

�;q

w

(
) ,! W

1;q

w

(
) whih implies the existene of a ontinuous trae

operator

tr : H

�;q

w

(
)! T

1;q

w

(�
); tru = uj

�


if u 2 C

1

(
):

As in the ase of weighted Sobolev spaes we de�ne the assoiated boundary spae by

T

�;q

w

(�
) = tr

�

H

�;q

w

(
)

�

equipped with the norm kgk

T

�;q

w

(�
)

= inf

�

kuk

�;q;w;


j u 2 H

�;q

w

(
); tr u = g

	

.

Lemma 4.2. For every � 2 [1; 2℄ one has [T

1;q

w

(�
); T

2;q

w

(�
)℄

��1

= T

�;q

w

(�
) and there

exists a ontinuous linear extension operator ext : T

�;q

w

(�
)! H

�;q

w

(
), independent of

�.

Proof. As shown in [21℄ one an prove as in the unweighted ase that there exists a

unique solution to the Dirihlet problem (1 � �)u = 0, uj

�R

n

+

= g. This solution u

is regular aording to the data, i.e., kuk

k;q;w

� kgk

T

k;q

w

(R

n�1

)

for k 2 N. Using this

a straight-forward loalization proedure yields that there exists a ontinuous linear

extension operator

ext : T

1;q

w

(�
)!W

1;q

w

(
) and ext : T

2;q

w

(�
)!W

2;q

w

(
) (4.2)
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with ext gj

�


= g. Moreover, by de�nition the trae operator tr : W

1;q

w

(
) ! T

1;q

w

(�
)

and tr : W

2;q

w

(
)! T

2;q

w

(�
) is ontinuous.

Obviously one has tr Æ ext = id

T

1;q

w

(�
)

and thus Theorem 2.6.5 shows

[T

1;q

w

(�
); T

2;q

w

(�
)℄

��1

= tr [W

1;q

w

(
);W

2;q

w

(
)℄

��1

= trH

�;q

w

(
) = T

�;q

w

(�
):

Thus the �rst assertion is proved. The seond assertion follows from the �rst ombined

with (4.2).

Theorem 4.3. Let 1 < q < 1, w 2 A

q

and 1 � � � 2. Moreover, let F 2 H

��2;q

w

(
),

K 2 H

��1;q

w

(
) and g 2 T

�;q

w

(�
) with

R




K =

R

�


g � N . Then there exists a unique

weak solution u 2 H

�;q

w

(
), i.e.,

(ru;r�) = hF; �i; for all � 2 W

1;q

w;0;�

(
)

ful�lling uj

�


= g and div u = K in the sense of distributions. This solution ful�lls the

estimate

kuk

�;q;w

� 

�

kFk

��2;q;w

+ kKk

��1;q;w

+ kgk

T

�;q

w

(�
)

�

:

Moreover, there exists a pressure funtion p 2 H

��1;q

w

(
), unique modulo onstants, suh

that the Stokes equations are ful�lled in the sense of distributions.

Proof. First of all reall that if � 2 [1; 2℄, then � � 2 2 [�1; 0℄, whih implies F 2

H

��2;q

w

(
) = Y

��2;q

w

(
).

Existene: For g 2 T

�;q

w

(�
) there exists v 2 H

�;q

w

(
) suh that tr v = g and kvk

�;q;w;


�

2kgk

T

�;q

w

(�
)

. Sine there exists an extension V of v to the whole spae R

n

that ful�lls

the estimate kV k

�;q;w;R

n

� kvk

�;q;w;


, one has

�v = (�V )j

C

1

0

(
)

2 H

��2;q

w

(
) = Y

��2;q

w

(
):

Hene by Theorem 4.1 there exists U 2 H

�;q

w

(
) solving

hF +�v; �i = �hU;��i for all � 2 Y

2;q

0

w

0

;�

(
) and

hK � div v;  i = �hU;r i for all  2 W

1;q

0

w

0

(
):

Sine U 2 Y

�;q

w

(
) � W

1;q

w;0

(
), we obtain by integration by parts for � 2 Y

2;q

0

w

0

;�

(
), whih

is dense in W

1;q

0

w

0

;0

(
), that

(r(U + v);r�) = �(U;��)� h�v; �i = hF; �i;

where by the density of C

1

0

(
) inW

1;q

0

w

0

;0

(
) one an apply the de�nition of the derivatives

div to rv in the sense of distributions. Setting u := U + v we obtain div u = K in

the sense of distributions and tr u = tr v + trU = tr v = g. Moreover by the a priori

estimate (4.1)

kuk

�;q;w;


�

�

kgk

T

�;q

w

(�
)

+ kFk

��2;q;w;


+ k�vk

��2;q;w;


+ kKk

��1;q;w;


+ kdiv vk

��1;q;w;


�

�

�

kgk

T

�;q

w

(�
)

+ kFk

��2;q;w;


+ kKk

��1;q;w;


�

:

17



Navier-Stokes Equations in Bessel-Potential Spaes

Uniqueness: Note that [� 7! �hF; �i+ hg;N � r�i

�


℄ 2 Y

�2;q

w

(
). Thus the uniqueness

of u follows from the one of very weak solutions shown in Theorem 2.8.

Pressure: To show the existene of p we use that by de Rham's Theorem [27, Ch.1

Proposition 1.1℄ there exists p 2 (C

1

0

(
))

0

suh that the Stokes equations are ful�lled

in the sense of distributions. From the equation we obtain rp 2 H

��2;q

w

(
). It remains

to show p 2 H

��1;q

w

(
). However, this follows by Lemma 4.7 below and the proof is

omplete

Now we turn to the ase 0 � � � 1. In this ase the funtions in H

�;q

w

(
) in general

do not possess enough regularity to guarantee the well-de�nedness of a trae operator.

Here we de�ne boundary spaes by

T

�;q

w

(�
) =

�

T

0;q

w

(�
); T

1;q

w

(�
)

�

�

; (4.3)

equipped with the norm of the interpolation spae.

Theorem 4.4. Let 1 < q <1, w 2 A

q

and 0 � � � 1. Assume that f 2 Y

�2;q

w

(
) and

k 2 H

�1;q

w;0

(
) allow deompositions into

hf; �i = hF; �i � hg;N � r�i

�


for every � 2 Y

2;q

0

w

0

(
)

hk;  i = hK; i � hg;N i

�


for every  2 W

1;q

0

w

0

(
)

(4.4)

with F 2 Y

��2;q

w

(
), K 2 H

��1;q

w;0

(
) and g 2 T

�;q

w

(�
). Assume in addition that K and

g ful�ll the ompatibility ondition hK; 1i




= hg;Ni

�


.

Then the very weak solution u 2 L

q

w

(
) with respet to f and k, whih exists aording

to Theorem 2.8 is ontained in H

�;q

w

(
) and ful�lls the estimate

kuk

�;q;w

� 

�

kFk

Y

��2;q

w

(
)

+ kKk

H

��1;q

w;0

(
)

+ kgk

T

�;q

w

(�
)

�

: (4.5)

Remark 4.5. The regularity of the data in Theorem 4.4 is in general not suÆient to

guarantee that the restrition of the orresponding solution u to the boundary is well-

de�ned. Aordingly, without the additional regularity the deomposition of the data

(4.4) is in general not unique.

If we assume in addition that F 2 W

�1;r

~w

(
) and K 2 L

r

~w

(
), where r and ~w 2 A

r

are hosen suh that

W

�1;r

~w

(
) ,! Y

��2;q

w

(
) and L

r

~w

(
) ,! H

��1;q

w;0

(
) (4.6)

one obtains by Theorem 2.9.3 that the trae uj

�


is well-de�ned and that one has

uj

�


= g, where g is the given boundary ondition.

Proof of Theorem 4.4. Step 1: We onsider the operator

B : T

0;q

w

(�
)! L

q

w

(
); g 7! u;

where u is the very weak solution to the Stokes problem with data

f = [� 7! hg;N � r�i

�


℄ and k = [ 7! hg;N i

�


℄:

18
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Obviously, B is linear and ontinuous, also onsidered as an operator B : T

1;q

w

(�
) !

W

1;q

w

(
). This follows from Theorem 4.3 in the ase � = 1 sine the very weak solution

with respet to f and k oinides with the weak solution with 0 fore and divergene

and boundary ondition g. Thus interpolation yields that B : T

�;q

w

(�
) ! H

�;q

w

(
) is

ontinuous.

Step 2: Let U = Bg 2 H

�;q

w

(
) be given by Step 1. Moreover, let v 2 Y

�;q

w

(
) be the

very weak solution to the Stokes problem with respet to the data F , K, whih exists

aording to Theorem 4.1. Then u := U + v is a very weak solution with respet to f

and k and ful�lls the estimate (4.5).

The uniqueness of the solution follows from Theorem 2.8.

Corollary 4.6. Let 
 be a bounded C

1;1

-domain. Moreover, let 1 < q; r <1, w 2 A

q

,

v 2 A

r

and 0 � � � 2 be given suh that H

�;q

w

(
) ,! L

r

v

(
). Then

T

�;q

w

(�
) ,! T

0;r

v

(�
):

Proof. Let g 2 T

�;q

w

(�
). Then the very weak solution u 2 H

�;q

w

(
) to

�hu;��i = hg;N � r�i

�


for all � 2 Y

2;q

0

w

0

;�

(
)

�hu;r i = hg;N i

�


for all  2 W

1;q

0

w

0

(
)

ful�lls kuk

�;q;w

� kgk

T

�;q

w

(�
)

. Moreover, one has u 2

~

W

r;r

v;v

(de�ned in Theorem 2.9.4)

with kuk

~

W

r;r

v;v

= kuk

r;v

and div u = 0. Thus the tangential and the normal trae of u are

well-de�ned in the sense of Theorem 2.9.4. Sine uj

�


= g, we obtain

kgk

T

0;r

v

(�
)

� kuk

r;v

� kuk

�;q;w

� kgk

T

�;q

w

(�
)

:

The results of this setion an be used for the proof of the following Lemma whih

is needed to estimate the pressure in Theorem 4.3. Sine the pressure is well-de�ned

only modulo onstants, we onsider the spae H

�;q

w

(
)=onst. If � � 0 this spae an

be identi�ed with the spae of all u 2 H

�;q

w

(
) suh that hu; 1i




= 0. If � < 0 one has

H

�;q

w

(
)=onst:

�

=

�

� 2 H

��;q

0

w

0

;0

(
)

�

�

Z




� = 0

�

0

via the isomorphism u+R 7! uj

n

�2H

��;q

0

w

0

;0

(
) j

R




�=0

o

.

Lemma 4.7. Let �1 � � � 1. Let p 2 (C

1

0

(
))

0

with rp 2 H

��1;q

w

(
). Then

p 2 H

�;q

w

(
) and there exists a onstant  = (
; q; w) suh that

kpk

H

�;q

w

=onst:

� krpk

H

��1;q

w

:

Proof. Case 1: Let � � 0. By Theorem 2.5 for every � 2 W

1;q

0

w

0

;0

(
) with

R




� = 0 there

exists � 2 W

2;q

0

w

0

;0

(
) suh that div � = � and k�k

2;q

0

;w

0

� k�k

1;q

0

;w

0

. The funtion � an

be hosen suh that the mapping � 7! � is linear and ful�lls the additional estimate

k�k

1;q

0

;w

0

� k�k

q

0

;w

0

.

For a moment we onsider the mapping � 7! � as a mapping from L

q

0

w

0

(
) to H

1;q

0

w

0

(R

n

)

and from H

1;q

0

w

0

;0

(
) to H

2;q

0

w

0

(R

n

) assuming that � is extended by 0 to a funtion de�ned
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on R

n

. Thus by interpolation we obtain for  2 [0; 1℄ that k�k

H

+1;q

0

w

0

(R

n

)

� k�k

H

;q

0

w

0

;0

(
)

.

Sine for � 2 C

1

0

(
) one has supp � � 
, we have shown k�k

H

+1;q

0

w

0

;0

(
)

� k�k

H

;q

0

w

0

;0

(
)

.

This implies the estimate

jhp; �i




j = jhp; div �i




j � krpk

H

��1;q

w

k�k

H

1��;q

0

w

0

;0

� krpk

H

��1;q

w

k�k

H

��;q

0

w

0

;0

for every � 2 C

1

0

(
). This is the assertion for � � 0.

Case 2: Let � > 0. We onsider the solution operator S : f 7! p where (u; p) solves

�hu;��i � hp; div�i = hf; �i; for all � 2 Y

2;q

0

w

0

(
)

and hu;r i = 0 for  2 W

1;q

0

w

0

(
), hp; 1i = 0. By the Theorems 2.8 and 2.9

S : Y

�2;q

w

(
)!W

�1;q

w;0

(
) and S : L

q

w

(
)!W

1;q

w

(
)

is ontinuous. By the interpolation theorems proved in the Setions 3.2 and 3.3 and the

fat that � 2 (0; 1℄ and Srp = p� hp; 1i we obtain the estimate

kp� hp; 1ik

H

�;q

w

(
)

� kSrpk

[W

�1;q

w;0

(
);W

1;q

w

(
)℄

�+1

2

� krpk

[Y

�2;q

w

(
);L

q

w

(
)℄

�+1

2

� krpk

Y

��1;q

w

(
)

= krpk

H

��1;q

w

(
)

5 The Stationary Navier-Stokes Equations

5.1 Estimates of the Nonlinear Term

We prepare some embedding theorems. These theorems are proved by the use of weakly

singular integral operators. Thus for 0 < � < n we de�ne

I

�

g(x) =

Z

R

n

g(y)

jx� yj

n��

dy = F

�1

j�j

��

ĝ(x); (5.1)

where the seond equality holds by [24, V. Lemma 2℄ for an appropriate onstant  2 R.

Theorem 5.1. Let 0 < � < n and 1 < p < q < 1, v 2 A

p

and w 2 A

q

. Moreover,

assume that v and w ful�ll the ondition

jQj

�

n

�1

�

Z

Q

w

�

1

q

�

Z

Q

v

�

1

p�1

�

1

p

0

<  for every ube Q � R

n

with a onstant  > 0 independent of Q. Then

kI

�

fk

q;w

� kfk

p;v

for every f 2 L

p

v

(R

n

):

Proof. This is a speial ase of [19, Theorem 1 (B)℄.
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Lemma 5.2. Let w 2 A

q

, v 2 A

p

with

jQj

�

n

�1

�

Z

Q

w

�

1

q

�

Z

Q

v

�

1

p�1

�

1

p

0

<  for every ube Q � R

n

with a onstant  > 0 independent of Q. Then one has

H

;p

v

(R

n

) ,! L

q

w

(R

n

) for every  � �:

Proof. By [13, Lemma 3.2℄ the embedding

M :=

n

f 2 S(R

n

) j

^

f � 0 in a neighborhood of 0

o

,! H

�;p

v

(R

n

)

is dense. Moreover, we de�ne J

�

f := F

�1

j�j

�

(1 + j�j

2

)

�

�

2

Ff , where  is the onstant

from (5.1). Then by the Multiplier Theorem 2.4 the operator J

�

: L

p

v

(
) ! L

p

v

(
)

is ontinuous. Moreover, for f 2 M one has f = I

�

J

�

�

�

f . Thus one obtains using

Theorem 5.1 for every f 2 M

kfk

L

q

w

(R

n

)

= kI

�

J

�

�

�

fk

L

q

w

(R

n

)

� kJ

�

�

�

fk

L

p

v

(R

n

)

� k�

�

fk

L

p

v

(R

n

)

= kfk

H

�;p

v

(R

n

)

:

Thus by the density of M in H

�;p

v

(R

n

) the inequality holds for every f 2 H

�;p

v

(R

n

) and

one obtains H

;p

v

(R

n

) ,! H

�;p

v

(R

n

) ,! L

q

w

(R

n

).

Lemma 5.3. Let 
 � R

n

be a bounded Lipshitz domain. Moreover, let 1 � s � r �

q <1, r > 1 and assume 0 � � < n suh that

1

q

�

1

r

�

�

ns

: (5.2)

Then for every w 2 A

s

the following embeddings are true:

1. H

�;r

w

(
) ,! L

q

w

(
).

2. H

�;q

0

w

q

(
) ,! L

r

0

w

r

(
), where w

q

= w

�

1

q�1

and w

r

= w

�

1

r�1

.

3. L

r

w

(
) ,! H

��;q

w

(
), L

r

w

(
) ,! H

��;q

w;0

(
) and for � 2 [0; 1℄ one has W

�1;r

w

(
) ,!

Y

�1��;q

w

(
).

4. If � 2 [0; 1℄, then one has H

1;r

w

(
) ,! H

1��;q

w

(
).

Proof. We begin with showing that without loss of generality we may assume that

1 � s < r. Let s = r. Sine r > 1 and w 2 A

r

by Lemma 2.1.3 there exists t 2 [1; r)

suh that w 2 A

t

. If (5.2) holds for s, it holds for s replaed by t in any ase. Thus we

may replae s by t < r.

1. By [13, Corollary 3.2℄ the asserted embedding holds if there exists a onstant C > 0

suh that jQj

�

n

w(Q)

1

q

�

1

r

< C for all Q � U for some open set U � 
. By Lemma 2.1.1

we know that for every Q � U and w 2 A

s

it holds jQj

s

�

jU j

s

w(U)

w(Q) = w(Q). Thus

jQj

�

n

w(Q)

1

q

�

1

r

� w(Q)

�

sn

+

1

q

�

1

r

� w(U)

�

sn

+

1

q

�

1

r

=: C
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sine

�

sn

+

1

q

�

1

r

� 0 by assumption.

2. As above Lemma 2.1.1 states that w 2 A

s

implies w(Q) � (U)jQj

s

for every Q � U ,

where U is some bounded domain with 
 � U . It has been shown in [10, Lemma A.2℄

that in this ase there exists a weight funtion W 2 A

q

suh that W = w on 
 and

W (Q) � (U)jQj

s

for every ube Q � R

n

.

Now by Theorem 3.2 we know that

H

;q

0

w

q

(
) = H

;q

0

W

q

(
)

with equivalent norms. By Lemma 5.2 the ondition

jQj

�

n

�1

�

Z

Q

W

r

�

1

r

0

�

Z

Q

(W

q

)

�

1

q

0

�1

�

1

q

<  for every ube Q � R

n

(5.3)

implies H

;q

0

W

q

(R

n

) ,! L

r

0

W

r

(R

n

) for every  � �. Thus we have to show (5.3). Sine

W

�

1

r

0

�1

r

= W

1

r

0

�1

1

r�1

= W = (W

q

)

�

1

q

0

�1

, we alulate using the de�nition of Mukenhoupt

weights, W 2 A

r

and

1

q

�

1

r

� 0

jQj

�

n

�1

�

Z

Q

W

r

�

1

r

0

�

Z

Q

(W

q

)

�

1

q

0

�1

�

1

q

= jQj

�

n

�1

W

r

(Q)

1

r

0

W (Q)

1

q

� jQj

�

n

W (Q)

(

1

q

�

1

r

)

� jQj

�

n

+s(

1

q

�

1

r

)

:

The last term is bounded if

�

n

+ s(

1

q

�

1

r

) = 0. There exists 0 � � � � so that this is

true, beause s

�

1

q

�

1

r

�

� 0 and for � = � one has

�

n

+ s(

1

q

�

1

r

) �

�

n

� s

�

sn

= 0.

Now for f 2 H

;q

0

w

q

(
) there exists an extension F 2 H

;q

0

W

q

(R

n

) with kFk

H

;q

0

W

q

(R

n

)

�

2kfk

H

;q

0

W

q

(
)

� kfk

H

;q

0

w

q

(
)

. One obtains

kfk

L

r

0

w

r

(
)

� kFk

L

r

0

W

r

(R

n

)

� kFk

H

;q

0

W

q

(R

n

)

� kfk

H

;q

0

W

q

(R

n

)

;

and the asserted embedding is proved.

3. Considering the dual spaes in 2. we obtain L

r

w

(
) ,! H

��;q

w;0

(
). Moreover, sine

H

�;q

0

w

0

;0

(
) ,! H

�;q

0

w

0

(
) ,! L

r

0

w

r

(
), one also has L

r

w

(
) ,! H

��;q

w

(
).

Finally, for u 2 W

�1;r

w

(
) and � 2 Y

2;q

0

w

0

(
) one has by the Poinar�e inequality

jhu; �ij � kuk

�1;r;w

kr�k

r

0

;w

0

� kuk

�1;r;w

kr�k

�;q

0

;w

0

� kuk

�1;r;w

k�k

�+1;q

0

;w

0

:

This proves the last embedding.

4. For u 2 H

1;r

w

(
) one has by Lemma 4.7 and 3.









u�

Z




u dx









1��;q;w

� kruk

��;q;w

� kruk

r;w

� kuk

1;r;w

:

Thus kuk

1��;q;w

� kuk

1;r;w

+

R




juj dx � kuk

1;r;w

+ kuk

r;w

� kuk

1;r;w

.
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Lemma 5.4. Let 
 � R

n

be a bounded C

1;1

-domain. Assume w 2 A

s

for some 1 � s <

q and � >

ns

q

� 1 in the ase n � 3 and � >

2s

q

�

1

2

in the ase n = 2.

1. In addition, let 0 � � � 1 and 1 < t <1 with

1� �

ns

+

1

q

�

1

t

= 0: (5.4)

Then w 2 A

t

, L

t

w

(
) ,! H

��1;q

w;0

(
) and

a) for every u; v 2 H

�;q

w

(
) and  2 H

1��;q

0

w

0

(
) one has

�

�

�

�

Z

uv dx

�

�

�

�

� kuk

�;q;w

kvk

�;q;w

k k

t

0

;w

0

;

b) for every k 2 L

t

w

(
), u 2 H

�;q

w

(
) and � 2 H

2��;q

0

w

0

(
) one has

�

�

�

�

Z

ku� dx

�

�

�

�

� kkk

t;w

kuk

�;q;w

k�k

1;t

0

;w

0

:

2. If 1 � � � 2 then ku � rvk

��2;q;w

� kuk

�;q;w

kvk

�;q;w

for every u; v 2 H

�;q

w

(
).

Proof. One has

t =

nsq

q(1� �) + ns

>

nsq

q(2�

ns

q

) + ns

=

ns

2

� s:

Thus, by Lemma 5.3 one has L

t

w

(
) ,! H

��1;q

w;0

(
) and H

1��;q

0

w

q

(
) ,! L

t

0

w

t

(
).

1. a) Let r := 2t. Then one has

�

1

r

�

1

q

+

�

ns

� 0 and hene H

�;q

w

(
) ,! L

r

w

(
). If q � r this follows from Lemma

5.3 and if q > r then one obtains from the de�nition of the spaes H

�;q

w

(
) ,!

L

q

w

(
) ,! L

r

w

(
).

�

1

r

+

1

r

+

1

t

0

= 1.

� �

1

(t�1)t

0

+

1

r

+

1

r

= 0.

�

�

�

�

Z

uv� dx

�

�

�

�

=

�

�

�

�

Z

uw

1

r

vw

1

r

 w

1

t

0

t

dx

�

�

�

�

� kuk

r;w

kvk

r;w

k k

t

0

;w

t

� kuk

�;q;w

kvk

�;q;w

k k

t

0

;w

t

:

1. b) First we assume that � <

ns

q

. We set r =

nsq

�q�+ns

and � =

�

1�

1

r

�

1

t

�

�1

=

rt

rt�t�r

.

Then

� �

0

=

rt

r+t

=

nsq

q+2ns�2q�

>

nqs

3q

� s if n � 3. If n = 2 one needs the stronger

assumption on � to ensure �

0

� s.

� �

1

�

0

+

1

t

+

1

ns

= �

1

r

+

1

ns

=

1+��

ns

q

ns

> 0. Hene H

1;t

0

w

t

(
) ,! L

�

w

�

0

(
).
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�

1

t

+

1

r

+

1

�

= 1 and �

1

(�

0

�1)�

+

1

t

+

1

r

= 0.

Thus we an estimate as above

�

�

�

�

Z

ku� dx

�

�

�

�

� kkk

t;w

kuk

r;w

k�k

�;w

�

0

� kkk

t;w

kuk

�;q;w

k�k

1;t

0

;w

t

:

If � �

ns

q

then H

�;q

w

(
) ,! L

r

w

(
) for every r 2 (1;1). Moreover, we �nd some � > t

0

suh that H

1;t

0

w

t

(
) ,! L

�

w

�

0

(
). Choosing r suh that

1

r

+

1

�

+

1

t

= 1 we an repeat the

above estimate.

2. As above we begin with the ase � <

ns

q

. Let � :=

nsq

ns�q�

, � :=

nsq

ns�q�+q

and

r :=

nsq

2ns�2�q+q

. Then one has

�

1

r

=

1

�

+

1

�

.

� r >

ns

3

� s if n � 3. If n = 2 we need the stronger assumption on � to ensure

r > s. Moreover,

1

q

>

1

r

�

2��

ns

, thus L

r

w

(
) ,! H

��2;q

w

(
).

�

1

�

=

1

q

�

�

ns

whih implies H

�;q

w

(
) ,! L

�

w

(
).

�

1

q

�

��1

ns

=

1

�

whih shows H

��1;q

w

(
) ,! L

�

w

(
).

Thus it follows from H�older's inequality

kurvk

��2;q;w

� kurvk

r;w

� kuk

�;w

krvk

�;w

� kuk

�;q;w

krvk

��1;q;w

:

If 2 � � �

ns

q

then H

�;q

w

(
) ,! L

�

w

(
) for every � 2 (1;1). Thus if � 6= 2 we repeat the

above estimate with r as above, � = q and � suh that

1

�

+

1

�

=

1

r

.

If � = 2 let r = q and we may hoose � > q suh that suh that H

��1;q

w

(
) ,! L

�

w

(
)

and � suh that

1

�

+

1

�

=

1

r

.

5.2 Stationary Navier-Stokes Equations in Bessel Potential Spaes

In this setion we always assume

� 
 � R

n

is a bounded C

1;1

-domain,

� 1 < q <1 and w 2 A

s

for some 1 � s < q,

� � 2 [0; 2℄ with

ns

q

� 1 < �.

If n � 3 one an always hoose suh a � sine by Lemma 2.1 for every w 2 A

q

there

exists s as above with s < q and w 2 A

s

. Thus

ns

q

� 1 < n� 1 � 2.

De�nition 5.5. Let 0 � � � 2, 1 < q < 1 and w 2 A

q

. Moreover, let g 2 T

�;q

w

(�
),

F 2 Y

��2;q

w

(
) and K 2 L

t

w

(
). Then u 2 H

�;q

w

(
) is alled a very weak solution to the

stationary Navier-Stokes equations, if

�hu;��i � huu;r�i � hKu; �i = hF; �i � hg;N � r�i

�


for every � 2 Y

2;q

0

w

0

;�

(
);

�hu;r i = hK; i � hg;N i

�


for every  2 W

1;q

0

w

0

(
):
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Theorem 5.6. Let q > 1, w 2 A

s

for some 1 � s < q, 0 � � < 1 and � >

ns

q

� 1 if

n � 3 and � > �

1

2

+

2s

q

if n = 2. Moreover, let F 2 Y

��2;q

w

(
), K 2 L

t

w

(
) with

1� �

ns

+

1

q

�

1

t

= 0 (5.5)

and g 2 T

�;q

w

(�
) with hK; 1i




= hg;Ni

�


. Then there exists a onstant � > 0 indepen-

dent of the data suh that, if

kFk

Y

��2;q

w

+ kKk

t;w

+ kgk

T

�;q

w

(�
)

� �;

then there exists a very weak solution u 2 H

�;q

w

(
) to the stationary Navier-Stokes

equations. This solution satis�es the estimate

kuk

�;q;w

� 

�

kFk

�1;t;w

+ kKk

t;w

+ kgk

T

�;q

w

(�
)

�

(5.6)

with  = (�; q; w;
) > 0. Furthermore, if we assume in addition that F 2 W

�1;t

w

(
),

then u ful�lls uj

�


= g in the sense of Theorem 2.9.4.

Proof. By the Lemmas 5.3 and 5.4 one has

L

t

w

(
) ,! H

��1;q

w;0

(
) and W

�1;t

w

(
) ,! Y

��2;q

w

(
):

For u 2 H

�;q

w

(
) let W (u) 2 (C

1

0

(
))

0

be given by

hW (u); �i = huu;r�i+ hKu; �i for all � 2 C

1

0

(
):

By Lemma 5.4.1 one has for � 2 C

1

0

(
)

jhW (u); �ij � (kuk

2

�;q;w

+ kKk

t;w

kuk

�;q;w

)k�k

1;t

0

;w

0

and hene W (u) 2 W

�1;t

w

(
) ,! Y

��2;q

w

(
) with

kW (u)k

Y

��2;q

w

� 

1

kW (u)k

�1;t;w

� (kuk

2

�;q;w

+ kKk

t;w

kuk

�;q;w

): (5.7)

We de�ne the mapping S : H

�;q

w

(
)! H

�;q

w

(
) by

�hSu;��i = hF; �i+ hW (u); �i � hg;N � r�i

�


for every � 2 Y

2;q

0

w

0

;�

(
);

�hSu;r i = hK; i � hg;N i

�


for every  2 W

1;q

0

w

0

(
):

The operator S is well-de�ned by Theorem 4.4.

We want to use Banah's Fixed Point Theorem to show that S has a �xed point under

the assumption that the data is small enough.

By the a priori estimate in Theorem 4.4 we know that

kvk

�;q;w

� D(kFk

Y

��2;q

w

+ kKk

t;w

+ kgk

T

�;q

w

(�
)

); (5.8)

if v is a very weak solution to the Stokes problem with respet to the data F 2 Y

��2;q

w

(
),

K 2 L

t

w

(
) and g 2 T

�;q

w

(�
).
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We assume that the data F;K and g are hosen small enough suh that the right hand

side of (5.8) is stritly smaller then � :=

1

6D

, where  is the onstant in the estimate

(5.7) and D is the onstant in the a priori estimate (5.8). Without loss of generality we

assume that D � 1, whih implies that additionally kKk

t;w

< �.

Furthermore, it follows from (5.7) and (5.8) that for suh data and Æ =

2

6D

the losed

ball B

Æ

(0) in H

�;q

w

(
) is mapped by S into itself.

The next step is to show that S is a ontration on B

Æ

(0). Take u; v 2 B

Æ

(0). Then

Su� Sv is a solution of

�hSu� Sv;��i = hW (u)�W (v); �i for every � 2 Y

2;q

0

w

0

;�

(
)

�hSu� Sv;r i = 0 for every  2 W

1;q

0

w

0

(
):

Moreover, from Lemma 5.4.1 we obtain

jhW (u)�W (v); �ij � jh(u� v)u;r�ij+ jhv(u� v);r�ij+ jhK(u� v); �ij

� (kuk

�;q;w

+ kvk

�;q;w

+ kKk

t;w

)ku� vk

�;q;w

k�k

1;t

0

;w

t

=

5

6D

ku� vk

�;q;w

k�k

1;t

0

;w

t

:

Thus we obtain from the a priori estimate (5.8) that

kSu� Svk

�;q;w

� DkW (u)�W (v)k

�1;t;w

�

5

6

ku� vk

�;q;w

:

Now Banah's �xed point theorem gives us the existene of a unique �xed point of S

within the ballB

Æ

(0) and hene of a solution u 2 H

�;q

w

(
) to the stationary Navier-Stokes

system.

The a priori estimate (5.6) follows from

kuk

�;q;w

= kS(u)k

�;q;w

� D

�

kFk

Y

��2;q

w

+ kKk

t;w

+ kgk

T

�;q

w

(�
)

+ (kuk

2

�;q;w

+ kKk

t;w

kuk

�;q;w

)

�

sine D(kuk

�;q;w

+ kKk

t;w

) �

3

6

and we may subtrat

3

6

kuk

�;q;w

from both sides of the

above equation.

Now assume that F 2 W

�1;q

w

(
). It remains to show that in this ase the solution u

ful�lls the boundary ondition uj

�


= g. To see this one uses the fat that u is a very

weak solution to the Stokes equations with respet to the data

f = [� 7! hF; �i+ hW (u); �i � hg;N � r�i

�


℄

k = [ 7! hK; i � hg;N i

�


℄;

where f j

C

1

0

(
)

= [� 7! hF; �i + hW (u); �i℄ 2 W

�1;t

w

(
). Then the assertion about the

boundary values follows from Theorem 2.9.4.

De�nition 5.7. Let 1 � � � 2. Moreover, let F 2 H

��2;q

w

(
), K 2 H

��1;q

w

(
) and

g 2 T

�;q

w

(�
). Then u 2 H

�;q

w

(
) is alled a weak solution to the stationary Navier-

Stokes equations, if

(ru;r�) + (u � ru; �) = hF; �i for every � 2 C

1

0;�

(
);

div u = K and uj

�


= g.
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Theorem 5.8. Let 1 � � � 2 and � >

ns

q

�1 if n � 3 and � >

2s

q

�

1

2

if n = 2. Moreover,

let F 2 H

��2;q

w

(
), K 2 H

��1;q

w

(
) and g 2 T

�;q

w

(�
) with

R

K dx =

R

�


gN dS. Then

there exists a onstant � > 0 suh that, if

kFk

��2;q;w

+ kKk

��1;q;w

+ kgk

T

�;q

w

(�
)

� �;

then there exists a weak solution u 2 H

�;q

w

(
) to the stationary Navier-Stokes equations.

This solution satis�es the estimate

kuk

�;q;w

� 

�

kFk

��2;q;w

+ kKk

��1;q;w

+ kgk

T

�;q

w

(�
)

�

with  = (�; q; w;
) > 0.

Proof. This an be proved in the same way as Theorem 5.6 using Lemma 5.4.2. instead

of Lemma 5.4.1. and Theorem 4.3 instead of Theorem 4.4.

The very weak solution is unique even without the assumption of the smallness of

the exterior fore f and the boundary ondition g. In the ase n � 3 this follows from

the uniqueness of very weak solutions to the stationary Navier-Stokes equations in the

unweighted ase whih has been proved in [6℄. This is shown in the following theorem.

Theorem 5.9. Let the data F;K and g be given as in Theorem 5.6 or Theorem 5.8,

respetively, and let u be a very weak solution to the stationary Navier-Stokes system

with respet to the data F;K and g.

Then there exists a onstant � > 0 suh that under the ondition that

kuk

�;q;w

+ kKk

t;w

� �

there exists at most one very weak solution to the stationary Navier-Stokes equations

aording to De�nition 5.5.

Proof. By Lemma 5.3 and Lemma 2.2 one has for � <

ns

q

u 2 H

�;q

w

(
) ,! L

nsq

�q�+ns

w

(
) ,! L

nq

�q�+ns

(
) = L

�

(
);

where, by the assumptions on �, one has � :=

nq

�q�+ns

> n.

For � �

ns

q

the embedding H

�;q

w

(
) ,! L

�

w

(
) holds for every � > 1. If we hoose

� = �s with � > n, then we obtain that also in this ase

H

�;q

w

(
) ,! L

�

(
) (5.9)

We want to show that � > n in (5.9) an be hosen suh that K 2 L

�n

�+n

(
) and F 2

W

�1;

n�

�+n

(
) is ful�lled additionally. If � � 1 then one has by assumption K 2 L

t

w

(
)

and F 2 W

�1;t

w

(
) and by the proof of Lemma 5.4 one has t >

ns

2

=

n

2

s

n+n

. Thus we �nd

� with the asserted properties, sine again by Lemma 2.2 one has the embeddings

L

t

w

(
) ,! L

t

s

(
) and W

�1;t

w

(
) ,! W

�1;

t

s

(
):
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Now let � > 1. Then the embedding H

��1;q

w

(
) ,! L

t

w

(
) follows diretly from Lemma

5.3 and Y

��2;q

w

(
) ,! W

�1;t

w

(
) follows when taking the dual spaes in the embedding

W

1;t

0

w

0

;0

(
) ,! Y

2��;q

0

w

0

(
), that is shown in Lemma 5.3.

Moreover, from Corollary 4.6 we obtain that g 2 W

�

1

�

;�

(�
) := T

0;�

1

(�
). Hene data

and solution are ontained in the same spaes as in [6, Theorem 1.5℄. Thus exatly the

same proof as given there an be used to show that two solutions that orrespond to

the same data oinide.
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