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We investigate the stationary Navier-Stokes equations in Bessel-potential
spaces with Muckenhoupt weights. Since in this setting it is possible that
the solutions do not posses any weak derivatives, we use the notation of
very weak solutions introduced by Amann [1]. The basic tool is complex
interpolation, thus we give a characterization of the interpolation spaces of
the spaces of data and solutions. Then we establish a theory of solutions
to the Stokes equations in weighted Bessel-potential spaces and use this to
prove solvability of the Navier-Stokes equations for small data by means of
Banach’s Fixed Point Theorem.
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1 Introduction

Let © be a bounded domain in R®, n > 2, with C*!'-boundary. We consider the
stationary Navier-Stokes problem with inhomogeneous data

—Au+u-Vu+Vp =F in Q
divu =K in (1.1)
u =g on Of).

It is our aim to find a class of solutions to (1.1) in a Bessel-potential space H"((Q),
[ € [0,2]. This means we develop a solution theory that includes strong solutions in
the case f = 2 and weak solutions in the case § = 1. However, if § = 0, it is also
possible that the solutions are only contained in L%(£2), i.e., they do not possess any
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weak derivatives. Consequently the notion of weak solutions is no longer suitable in
this context. Thus one introduces the more general notion of very weak solutions. To
arrive there one multiplies the first equation in (1.1) with a solenoidal test function ¢
vanishing on the boundary, then formal integration by parts yields

—{(u, A@) — (uu, Vo) — (Ku, d) = (F,¢) — (g, N - Vo)o. (1.2)

Applying the same method to the second equation with a sufficiently smooth test func-
tion 1) we obtain

_<U’7 VW = <K7 d)> - <ga N - 1/’)39 (13)
The equations (1.2) and (1.3) can be used for the definition of very weak solutions.
This or similar formulations have been introduced by Amann in [1], by Amrouche and
Girault in [2] and by Galdi, Simader and Sohr in [14]. In these articles as well as by
Farwig, Galdi and Sohr in [7], [6], [8] and by Giga in [16] solvability with low-regularity
data has been shown.

We investigate this problem in weighted function spaces. More precisely, we consider
Lebesgue- and Sobolev- and Bessel potential spaces with respect to the measure w dz,
where w is a weight function contained in the Muckenhoupt class A, cf., (2.1) below.

Classical tools for the treatment of partial differential equations extend to function
spaces with Muckenhoupt weights. As important examples we mention the continuity
of the maximal operator and the multiplier theorems that can be found in the books of
Garcia-Cuerva and Rubio de Francia [15] and Stein [25]; extension theorems of functions
on a domain to functions on R™ have been shown by Chua [4], extension theorems of
functions on the boundary to functions on the domain by Frohlich [12], see also [20] and
embedding theorems by Frohlich [13] using the continuity of singular integral operators
by Sawyer and Wheeden [19].

These tools were the base to treat the solvability of the Stokes and Navier-Stokes
equations in weighted function spaces by Farwig and Sohr in [9] and by Frohlich in [10],
[11], [12].

As shown in [9] examples of Muckenhoupt weights are

w(x)=(1+|z))*, —-n<a<n(g—1) or
dist (x, M)®, —(n—k)<a<(n—k)(¢g—1),

where M is a compact k-dimensional Lipschitzian manifold. Thus, if one chooses a
particular weight function, the developed theory can be used for a better control of
the growth of the solution, for example in the neighborhood of a point or close to the
boundary.

In Section 4 we prove the solvability of the linear Stokes equations in weighted Bessel
potential spaces. To arrive there, we use complex interpolation between the strong and
the very weak solutions. The notion of very weak solutions used in this context is slightly
more general than the one mentioned above. More precisely, one considers each right
hand side of (1.2) and (1.3) as one functional

f:[¢'_><F7¢>_<97NV¢>3Q] or k:[wH<K7w>Q_<gan>69]

As a consequence it is no longer distinguished between boundary condition and force,
or between boundary condition and divergence, respectively, and since the data may
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contain a part that is concentrated on the boundary, the functionals f and k are no
longer contained in the class of distributions on €2. In this context the regularity of
the data can be chosen so low that every function u € L%(2) occurs as a very weak
solution with respect to appropriate data. It turns out that this setting is convenient
to deal with complex interpolation. As a preparation we give a characterization of the
interpolation spaces of the spaces of solutions and of the spaces of the data in Sections
3.2 and 3.3. The main results in the linear case are given in the Theorems 4.3 and 4.4.

When dealing with the Navier-Stokes equations in Section 5 the nonlinearity gives us
reason to demand higher regularity of data and solutions. First of all, the nonlinear
term can be written as

u-Vu=divuu — Ku.

To ensure that the multiplication on the right hand side is well-defined, it is reasonable
to demand that K is given by a function.

Moreover, when estimating the nonlinear term, one needs a weighted analogue to
the Sobolev Embedding Theorem. A good replacement proved in [13] requires strong
assumptions to the weight function. This can be compensated for the price of restrictions
to the generality of the data and consequently of a smaller class of solutions. It turns out
that the more general the weight function is the higher one has to choose the regularity
of data and solutions. Thus it is natural to consider the problem in Bessel potential
spaces, where we are able to adapt the regularity of data and solutions precisely to the
quality of the weight function. Using the results from the linear case we prove existence
and uniqueness results for the Navier-Stokes equations if the data is sufficiently small,
cf., Theorems 5.6, 5.8 and 5.9.

2 Preliminaries

2.1 Weighted Function Spaces

Let A,, 1 < ¢ < 00, the set of Muckenhoupt weights, be given by all 0 < w € Lj,.(R")
for which

Ay (w) = sup (ﬁ/@wdaz) <ﬁ/¢2w—qild:p>q—1 < 0. (2.1)

The supremum is taken over all cubes ) in R™. To avoid trivial cases, we exclude the
case where w vanishes almost everywhere.

Lemma 2.1. 1. Every w € A,, ¢ > 1 defines a locally finite Borel measure w(F') =
[ wdz and for ¢ > 1 one has

w(Q) < (%)qwm

for all cubes Q and all Borel sets F' C @ with |F| > 0.
2. Ay C A, for g <np.

3. Let w € Ay for g > 1. Then there exists s < q such that w € Aj.
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Proof. 1. [25, V.1.7], 2. [15, IV Theorem 1.14], 3. [25, IX Prop. 4.5] O

Let k € Ny, ¢ € (1,00), w € A, and let & C R" be a Lipschitz domain. Then we
define the following weighted versions of Lebesgue and Sobolev spaces.

o L4(©) = {f € L@ | |flgw := (Jo | Fltwda)® < oo},

It is an easy consequence of the corresponding result in the unweighted case that

/ 1 1
(L4() = Liy(@) with _+— =1 and o' = W € Ay, (22)

o Set Whe(Q) = {u € L9(Q) ‘ o

k:qaw = Zkﬂsk ||Dau||%w < OO}

e By C5°(2) we denote the set of all smooth and compactly supported functions,
the space Cg%,(€2) consists of all functions that are in addition divergence free.

o Moreover we set Wy'6(Q) = CgO(Q)Mk’q’w. The dual space of it is denoted by
W, k(Q) = (Wi;%(ﬂ))’ . We also consider the divergence-free versions
oo 7oLk ()

Wt (Q) :={p € Wod(Q) | dive =0} and LY, (Q) = C32(Q)

w,0,0
e Using this for £ > 0 we set W;}IS"’(Q) = CSO(Q)|H|Wu7k’q(‘R").

e Moreover, we consider the spaces of boundary values T57(99Q) := (WF4(Q))]sq,
equipped with the norm |[| - [[;x0 = || - ||T£,q(m) of the factor space and finally

TO9(99) == (T57 (99))'.
By [10], [12] and [4] the spaces LZ(Q), Wk4(Q), WE4(Q) and T59(dQ) are reflexive

w,0
Banach spaces in which C§°(Q), (C$°(R2), C*(9Q)]sq, respectively) are dense.
Note that by Necas [18], Chapitre 2, §5, in the unweighted case one has
TH(9Q) = W 990Q) for ke N and TY(9Q) = W™ 9(9).

Lemma 2.2. Let € be a bounded domain. If 1 < s, w € A; and s < p < oo, then for
every q > sp and some r > q one has

L7(Q) < LL(Q) — LP(Q).

Proof. The second embedding is shown in [12, Lemma 2.2] the first one follows by
dualization from the second and Lemma 2.1. O

Theorem 2.3. Let €2 be a bounded Lipschitz domain or Q = R} and N € N. Choose
pi €[1,00), w; € Ap, and k; € Ny, i = 1,..., N. Then there exists an extension operator

N N
E: [\ Wer(Q) — (Wi (R,

i=1 i=1
i.e., Eulqg = u and ||Eu||W£p

3
Nz, WP ().

®r) < c||u||W£§,pi(m for i =1,....N and for every u €
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Proof. This is a special case of [4, Theorem 1.4, Theorem 1.5]. There Chua proves
extension theorems for the class of (¢, 00)-domains. By [17] this class includes bounded
Lipschitz domains and R}. O

From now on we call any domain that permits an extension operator as in Theorem 2.3
an extension domain. In particular bounded Lipschitz domains are extension domains.

Theorem 2.4. (Hormander-Michlin Multiplier Theorem with Weights)
Let m € C™(R™ \ {0}) fulfill the property

0°m(€)] < K|E| 1 for every € € R"\ {0}, |a|=0,1,...,n,
for some constant K > 0. Then T defined by
f\f =mf for fe€ S(R™, R)
extends to a continuous operator on L1 (Q) for every q € (1,00) and w € A,.
Proof. This is an immediate consequence of [15], Theorem 3.9. O
By [22] one has the following weighted version of Bogowski’s Theorem.

Theorem 2.5. Let 2 C R™, n > 2, be a bounded and locally lipschitzian domain.
Assume f € Wﬁg(ﬂ) such that [ f = 0. Then there exists a function u € Wu]fjgl’q(Q)
such that

divu = f and |uller1,qw < cllfllegw,

with ¢ = ¢(Q, q,w, k) > 0. Moreover, u can be chosen such that it depends linearly on f
and such that u € C3°(Q) if f € C5°(2).

2.2 Complex Interpolation Theory

The fundamental tool in the Sections 3.3 and 4 is complex interpolation. Thus we fix
some basic notation and facts in this field.

Let {X;, X2} an interpolation couple and D = {z € C | 0 < Rez < 1}. We define
F (X1, X5) to be the space of all bounded and holomorphic functions f from D to X;+ X,
which are extendable to continuous functions on D such that f(j + yi) is continuous on
R with values in X;,4, j = 0,1, and such that

T - max{sup 1) s sup [/ iy + 1>||X2} < .
yeR yeR

Then for 0 < 6 < 1 the complex interpolation space is given by [X1, Xo]g = {f(0) | f €
F(Xy,X5)}, equipped with the norm

||x||[X1,X2L9 = inf{“fHF(Xl,Xz) | f € F(X17X2) and f(e) = ZL‘}

Theorem 2.6. Let 0 < 0 < 1 and X; C Xy with continuous and dense embedding.
Then one has

1. X is densely and continuously embedded into [ X1, Xs]p.
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2. (Reiteration) [[X1, Xo]x, [X1, Xa],], = [X1, Xo]y, where A, pp € [0,1] and n = (1 —
)N+ 0.

3. (Duality) Let X, and Xy be reflexive. Then [ X1, Xs]) = [X], X}]o-

4. Let {Y1,Y2} be another interpolation couple with Yy C Y,. Moreover let T : X; —

Y; be a continuous linear operator for i = 1,2. Then T : [X1, Xs]o — [Y1,Y2]p is

continuous with operator norm bounded by ||T||1£zf(1 Y1)||T||0£(X2,Y2)'

5. Let { X1, X5} and {Y1,Ys} be interpolation couples such that { X1, Xy} is a retract
of {Y1,Ya}, i.e., there exist continuous linear operators

I Xi+Xo—=>Y14+Ys and P:Yi+Y, — X;+ X,

such that PI = id x,yx, and [ : X; = Y; and P : Y; — X;, i@ = 1,2 are con-
tinuous. Then (X1, Xolg = P[Y1,Y5]y for 6 € [0,1]. The norms ||ulx, x,), and
inf{||U|| i1 v2), | PU = u} are equivalent.

Proof. All assertions can be found in [28] or [3]. O

2.3 Very Weak Solutions to the Stokes Equations

The existence and uniqueness of very weak solutions in weighted L?-spaces have been
shown in [23]. We quote the basic definitions and facts that are needed in this paper.

Definition 2.7. Let f € Y 29(Q) and k € Wl;,[l)’q(Q). A function u € L7 (€) is called
a very weak solution to the Stokes problem with respect to the data f and k, if

—(u,A¢) = (f,¢), forall¢ ey’ (Q) and (2.3)
—(u, V) = (k,¢), forallh € W5 (Q). (2.4)

Setting 1» = 1 in (2.4) it follows that a necessary condition for the existence of a
very weak solution u is (k,1) = 0. This condition is the analogue to the compatibility
condition (k, 1) = (g, N)gq between divergence and boundary values in the case of weak
solutions.

Theorem 2.8. Let f € Y, 29(Q) and k € Wujjjq(Q) with (k,1) = 0. Then there exists
a unique very weak solution u € L1 () to the Stokes problem in the sense of Definition
2.7.2. 1t fulfills the a priori estimate

[ullgw < ¢ ||f||yw‘2’q o Tt 1 Elly-1a (2.5)
( ) w,0

with ¢ = ¢(, ¢, w) > 0.

Moreover, there exists a pressure functional p € Wujj)’q(Q) (unique modulo constants)
such that (u,p) solves

—(u, A@) — (p,div o) = (f,d) for all ¢ e Y7 ().
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In particular —Au + Vplege) = floge(a) in the sense of distributions. The functionals
(u, p) fulfill the inequality

o + el < € (1 llyg 2o+ el 3 ) (2.6)
where ¢ = ¢(Q, q,w) > 0.

Theorem 2.9. Assume that f € Y, 29(Q) and k € Wuj})’q(Q) allow a decomposition
into

[lu

(f.8) =(F.0) = (9.N-Vo)oa  forall € Y (Q),

(ko)) = (K 0) = (g, N W)on  forall € W7 (Q)
with g € TX9(0Q), F € W; " (Q), K € L7 (Q), where 1 <1 < 0o and i € A, are chosen
such that Wul};q’(Q) — L7, (Q) — LZ;,(Q). Then one has:

(2.7)

1. Such a decomposition is uniquely defined by f and k.

2. Every strong solution u € W21(Q) to the Stokes problem corresponding to the data
g €T>1(00), F € L1 (Q) and K € WY1(Q) is a very weak solution corresponding
to the data f and k with the notation of (2.7).

3. Ifg € T29(0Q), F € LL(Q) and K € W (Q) with [, K = [,, N-g, then the very
weak solution u to the Stokes problem with respect to f and k is a strong solution
with respect to F, K and g. In particular v € W29(QQ), there erists a pressure
function p € WE4(Q), unique modulo constants, such that the Stokes equations
are fulfilled in the sense of distributions and one has

lgw + ([ K [1g0 +[19ll720)- (2.8)

Law < c(|[F

[ullo.q.w + llp

4. Let u be a very weak solution to the Stokes problem corresponding to the data f
and k as in (2.7). Then

u € ijz} = {u € L1 (Q) ‘ e >0, [(u, Ap)| < ¢||@||1,rm Vo € CS?G(Q)}.

There exists an operator vy : Wf}; — T29(0Q) that coincides with the tangential
trace on W4(Q2). The fact that divu = K € L () permits to define the normal
component of the trace N - u|pq. In this sense ulsq is well-defined and ulgsq = g.

3 Weighted Bessel Potential Spaces

3.1 Definition and Simple Properties

For £ € R™ we set (€) := (1+|€|2)2. On the space S'(R™; R) of temperate distributions
we define for all § € R the operator

Nf=F Y Ff, [feSR:R)

where F stands for the Fourier transformation on &'(R™;R). Then for 1 < ¢ < oo,
w € A, and B € R the weighted Bessel potential space is given by

HEIRY) = {f € §' R R) | || fllgoqun = 1A°f

|qaw7Rn < OO} .
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Theorem 3.1. If1 <g<oo, w e Ay, l,k€Z andl < B <k then
[H,;'(R"), Hy*(R")], = Hp(R"),
Bl

where 0 = I

—~

Proof. This can be proven analogously to [26, Proposition 13.6.2]. For the weighted
version in the case [ = 0 and k € IN see also [10, Satz 8.3]. The proof given there can
be repeated to obtain the more general assertion of this theorem. O

For an extension domain €2 we define the weighted Bessel potential space on {2 by
Hy'(Q) = {gla | g € Hy"(R")}

equipped with the norm

Note that if # < 0 then the restriction g|n has to be understood in the sense of distri-
butions as g|ce(a)-

Moreover, we set ,
@ =Cr@)™ ™, ser,

equipped with the norm || - || 4.w.0.0 = ||[Eo(-)| 5,9.wr", Where Ejy denotes the extension
of a function by 0 to the whole space R". The space Hgg(ﬂ) is a reflexive Banach space
being a closed subspace of HZ4(R™), which is reflexive since it is isomorphic to L4 ().

Note that by (3.6) below this norm is in general not equivalent to ||-||g,4.w.0- Moreover,
if 8 < 0 the space Hgg(Q) does in general not consist of distributions on 2 but of
distributions on R™ supported by €.

We choose this definition because in this way one obtains a good behavior of the dual
spaces and interpolation properties, see Lemma 3.3 below.

Theorem 3.2. Let € be an extension domain, 1 < ¢ < oo, w € A,.

1. For k € Ny one has HE9(Q) = WE(Q) and HYH(Q) = Wei(Q) with equivalent

norms.

2. Fork € N, 0 < 8 <k one has H?4(Q) = [L% (), Ww"’q(Q)]%.

3. The spaces H?4(Q), B > 0, are independent of the values of the weight function
w € Ay outside €2, i.e., if wi,wy € Ay, wilg = wa|q then HEY(Q) = HE9(Q) with
equivalent norms.

Proof. The assertions of 1. and 2. can be found in [13] except for the assertion on
HJ%(Q) in 1. Since one has H%¢(R") = WE4(R") with equivalent norms, the equation
Hf,%(Q) = kag(Q) follows from the definition of Hﬁ%(ﬂ) 3. follows from 2. O
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3.2 Bessel Potential Spaces of Negative Order

Throughout this section let 1 < ¢ < oo and w € A,. It follows in a straight-forward
way from the definition of the spaces H24(R") that for every 3 > 0 one has

, !
Hujﬂ’q(IR”) — (Hg;q (IR”)) isometrically. (3.1)

, !
Lemma 3.3. For 3 € R one has H;#(Q) = (Hg;?O(Q)) with equivalent norms. In
particular, for k € N one has H;*1(Q2) = W 54(Q).

Proof. Let u € H,™9(Q). Then by definition there exists U € H_?9(R") such that
U|080(Q) = u with

2[ull-ggwe = NUl-pgwre = sup (U, ¢)
PES(R™),[|Bllg 4" ! ,mrn <1
> sup <U’7 ¢> = ||u||(H5;%(Q))’

¢ECSO(Q)7”¢HL?,(J’,1U’,]RTL <1

using (3.1). Thus u € (HJ%(Q))'.
’ /
Vice versa, by Hahn-Banach’s theorem every u € (H53?0(9)> can be extended to an

element

! / .
Ue (HYY(R)) = HP9(R") with [|U]|squme = [ull

HE ()

Then a similar calculation as above yields u € H,%(Q) with ||u||_g4wa < ||u||(H,3,q/ @y
w’ 0

To obtain the result for £ € IN one combines the first assertion with Theorem 3.2.1. O

Lemma 3.3 also yields the completeness of H,%9(€2) in the case 3 > 0.

Lemma 3.4. Let Q be a bounded CY'-domain or the half space. There exists a contin-
uous linear extension operator

E: H Q) — H;Y(R")

such that Eu|csoq) = u for all u € Hy%(Q) and which is also continuous as a mapping

B HY9(Q) — HL9(R™).

Proof. We begin with showing the assertion for the half space 1 = R"}.

By [12] for every f € W, (R") there exists a unique u € WJJ”%(]R’Q solving the
equation (1 — A)u = f. This solution u depends linearly on f and fulfills the estimate
Nullt.gw < ¢l fll=1,4.0- We write u = (1 — Ap)~'f. As shown in [21] one can prove as in
the unweighted case [5] the regularity of solutions to the Laplace equation. In particular
f e Wyi(RY) yields u € W24(R:) with ||ulls,40 < |l f]]1,g0-

To construct £ we remind that by Theorem 2.3 there exists a linear continuous
extension operator

E:WyU(RY) — Wit(R") and E: W2URY) — WH(R") with Eulgy = u.
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Now we set Eu = (1 — A)E(1 — Ap)~'u for every u € H;"4(R"). Then E has the
asserted properties on the half space R’}.
For a bounded C'"*-domain € we take a collection of charts (a;)7-; and a decompo-

sition of unity (¢;)7-, subordinate to the corresponding covering (U;); of 2. Then for
u € WL(Q) we set

EQU = Z ¢] . E]RZ_((UZ%) o O[j) 0 Oéj_l,
j=1

where Egr : Wég‘]ai (R}) — WJ,’;’% (R™) is the operator just constructed and ¢; € C§°(U;)
with ¢;i; = ;. Obviously Eq : WL4(Q) — WL4R") is continuous. Moreover,
change of variables yields that u — u o «; is a continuous operation from W, H4(Q) —
WL (a1 (Q)). This shows the continuity of Eq : W-54(Q) — W14(R"), and com-

woaj \7']

bined with Lemma 3.3 the proof is complete. 0

Theorem 3.5. Let 1 < g < oo, w € Ay, =1 < 3 < 1 and Q@ = R} or a bounded
COY'-domain. Then

1. [H;“(Q), H:(Q)], = HZ(Q), where § = 2.

2

2. For0 = # one has

HY4(Q), if B<0

—1,q l,q _
[Hu;,o (€2), H,, (Q)]a - {HgyfI(Q), if B2>0.

Proof. 1. {H (), HL7(Q)} is a retract of { H,;»4(R"™), H.*(R"™)} where the retraction
is the restriction operator

Ro : HEY(R™) — HEM(Q), wrs ulcee (@),

and the coretraction is the extension operator E constructed in Lemma 3.4. Thus the
assertion in 1. follows from Theorem 2.6 and the corresponding interpolation property
on R" stated in Theorem 3.1

2. An application of the Duality Theorem 2.6 to 1. together with Lemma 3.3 yields

[H,5(Q), HYS(Q)], = HES(9). (3.2)

w,0 » T4 w,0

Since F(Hﬁ)’q(ﬂ), Hi,%(ﬂ)) C F(Hﬁ)’q(ﬂ), HM(Q)), F asin (2.2), and the same is true
when replacing ¢ by ¢’ and w by w', we have by (3.2)

L3,() = [H, (), Hy5(Q)], = [H,§"(Q), Hy"()], (3.3)
and
LE(Q) = [H (@), HY (@), = [H,§(9), Hy(@)], (3.4)

By the density of the embedding H57 (€2) < [H;,l,aq’(Q), Hij,q,(Q)] | we obtain that the

embedding (3.4) is dense. Thus we dualize (3.4) and combine it with (3.3) to obtain
[H, (), H(Q)], = L4(0) = [H, (@), Hy(©)], = [H,5(), B0,

w w,0

Now the assertion follows by the reiteration property in Theorem 2.6. U

10
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3.3 Bessel Potential Spaces with Zero Boundary Values

For an extension domain 2 C R", 1 < ¢ < oo, w € A; and 0 < 8 < 2 we define the
space

5 HEJaq(Rn) . i .

Yw’q(Q) , if 0 <3 <1 equipped with || . ||Hg,q(1Rn),
H ()

Y 4(Q) , if 1< B <2 equipped with || - ||Hqu(9)v

Yf’q(Q) =

where in the case 0 < 8 < 1 the functions of ¥,>4(2) are assumed to be extended by 0

to functions defined on the whole space R". This is possible, since C§°(€2) is dense in
W, d(Q) D Y24(Q) and W, §(Q) = Wi(R") < HZ(R").

w,0

In particular, this implies that in the case 0 < $ < 1 one has

= HDH(Q). (3.5)

Moreover, for such 3 it follows immediately from the definition of Y%4(Q2) that the
extension Fyu of functions u € Y,»4(Q) by 0 to functions on R™ is a continuous linear
map to HZ(R™).

Finally, since H:?(Q) = W4(Q) and the norm in W4(€) is local, for § =1 the two
definitions are equivalent, i.e.,

HyY(Q)

Y U(Q) = W,h(Q) = Yo' () :

w,0

where the latter space is equipped with || - || 1.4/
A
For symmetry reasons the question arises whether Y,4(Q) = Y,9(Q) for all
0 < B < 2. However this is not the case, not even in the unweighted case. Indeed, by

Triebel [29, 1.5.23] one has

H%’q(ﬂ) _ — qu 1 (36)

YE(©) Cr@)"" " # {u e PR [ suppu € ) = 1777(@).

We choose the spaces Y,74(Q2) because of their good properties with respect to interpo-
lation.

Theorem 3.6. Let 1 < g < oo, we Ay and 0 < 3 < 2. Then

" n n 5
[L(RY), Y (RY)], = YOURY), 6= D)

with equivalent norms.

Proof. As a preparation we note that the norm in Yu?’q(IR’}r) is equivalent to the one in
YPUR™) if @ € A, with W|gr = w|gy. In the case § > 1 this is true by Theorem 3.2.
If # <1 one has by Theorem 3.5 and (3.5)

’ ! ! _ ’ n
YPURY) = HO§(RY) = (H 7 (R})) = [Hy (R, L (R

11
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The latter interpolation space is independent of the weight function outside R’} , because
HY(R™) and H, " (R™) are.
As shown in [12] if w € A, then

W () = {w(xl) on R

w(x',—x,) on R™

is also contained in A,. Thus we may assume from now on that w = w* is even.
Step 1: We show that

[LE(R7), Y2U(RY)], > YIURE).

To see this let u € [LE(RY), Y, ( "),

We begin with the case 1 < § < 2. Then there is a function U € F(L/(R%), Y, 2?(R%))
such that U(f) = u and ||U||F weyvzomn)) < 2llipe@ny) yzemn ),

Since F(LZ(R™), Y. 24(R")) C F(Lq (R%), H21(R™)), we obtain

u="U(0) € [L},(RY), Hy'(R})]p = Hy*(RY)
and
||u||Hqu(]R1) < Cinf{||V||F(LZJ(1RT+L),H?;‘1(1R1)) ‘ Ve F(LfU(IR’}F),Hg;q(IR’}F)), V() = U}

< Ul prs rayvzemny < 2cllllipyme ) yzemn ),

Moreover, by Theorem 2.6 we know that Y,>?(R" ) is dense in [LZ (R ), Y,2(R" )]y which

yields the assertion of Step 1 in the case § > 1.

In the case 0 < 8 < 1 we assume that we already know [LZ(R%),Y24(R%)], =
2

Y,?(R™%). This follows from the case 1 < 4 < 2 which will be shown independently.

Then, since
Wul,’q(IRn)

Yy 4(RY) = C(RY) = W h(RY)

Eyu(z) = u(xz) for xz e RY
0 for z € R*

and the extension

of functions defined on the half space is continuous from W;%(]R’}r) to WL4(R"™) and
from LI (R%) to LL(R"), we find by interpolation and the reiteration property that

Eo : [L3,(RY), Y (RY)], = [L4,(RY), W, 5(RY)],, — H*(R”)

is continuous for 0 < @ < 1. Thus for every u € C§°(R") we obtain

||U||y£vq(R¢) = || Eoul| g,z < c“u“[L?U(]R:L_),Wi’,%(Ri)be

Then the density of the embedding C§°(R%) — [L4(R™), Wé%(R’}r)] ,p finishes the proof
of Step 1.
Step 2: Claim: If the odd extension, E,qq : Y,24(R") — HP4(R"), is continuous, where

u(x) if v € R
—u(a', —x,) if z€R"

Eoddu(x) = {

12
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for z = (2, x,), then the assertion Y,}/(R'}) < [L(R%), Y 2(R%)], is true for 5.
Proof of the Claim. Let u € Y4(R") and set

U(z) = e N2 .

Then one has U € F(LL(R"), W2(R")) with U(f) = e?* E,qqu. Moreover, since for ev-
ery u € C the operator A* maps odd functions to odd functions, one has U (iy+1)|gn-1 =
0 which implies U (iy+1)|r: € Yy ¢(R") for every y. Thus Ulgs € F(LE(RY), Y (R%))
and we obtain u € [LL(R?),Y,2/(R')], with

lllig, ny yzo ey, < Sl;P 1UGy + Dllyzemn) + Sl;P U (i)l Le,men)
< sup [[U iy + 1)lly2e(gny + sup [U ()|l Lg )
Y

Yy
< CHEOddu“HEJ’q(R") < CHUHYf’q(]RZ_)'

Step 3: The embedding Y7 ¢(R%) < [LL(RY), Y 24(R? )], is true for < 1.
By the definition of Y,24(R") for 5 < 1 we know that the extension Eyu of u by 0 on
R™ is continuous from Y7 4(R") to HZ4(R™) with norm 1. Thus the odd extension of

u, which is equal to
Eoqau(z) = Egu(z) — Eyu(z', —x,),
is also continuous. Step 2 completes the argument.
Step 4: The embedding Y, *(R") < [L%(R™), Y, 2(R")], is true for 1 < § < 2.
For g € T>9(R"!) there exists an extension S(g) with the following properties:

o S(g)lrr1 =g

e Sisa continuous linear mapping S : T>4(R*™') — W24(R") and S : TL4(R"*™!) —
WLa(R™).

To see this we define S(g)|rz to be the solution of
(1-A)S(g)=0 onR? and S(g)=g¢g on R* "

Then by [12, Theorem 4.5] we know that S(g)|r» is well-defined and has the two prop-
erties on R}. By Theorem 2.3 there exists an extension operator, continuous from
W24(R™) to W21(R") as well as from W 4(R") to W, ¢(R™). Thus the existence of
such an S is proved.

Now we consider the operator

B:HZ(RY) — HZUR™), urr S(ulge-1) + Epga(u — S(ulge-1)).

Since w = w and Y 29(R")|ga-1 = {0}, it is easy to check that the operator E,qq is
continuous from Y,2¢(R%) to W2¢(R") and from W, ¢ (R%) to W 4(R™). Thus, we have
constructed an operator B which is continuous from W2(R’) to W24(R") as well as
from W24(R?%) to Wr?(R") and which coincides with E,qy on Y7(R), 8 =1,2. By
interpolation we find that

B HEA(RL) - HEA(RY)

13



Navier-Stokes Equations in Bessel-Potential Spaces

is continuous for every 1 < 8 < 2. Thus for every u € Y/4(R) C Y,»¢(R") one has
HEoddu”HEJ’q(Rn) = ||BU||H3"1(]RTL) < CHUHHE;‘?(Ri) = CHUHy,E’q(]Ri)'
Thus Step 2 finishes the proof. O

Theorem 3.7. The assertion of Theorem 3.6 holds true, when replacing R" by a
bounded C*-domain Q, i.e.,

L4, 2], = Vi), 0="1

, 0<p<2

with equivalent norms.

Proof. Let a, j =1, ..., m, be a collection of C*-'-charts and ¢; a decomposition of unity
subordinate to the corresponding covering of Q. We assume that every 1; is extended
to an element of C$°(R") and that every q; is extended to an element of C!'(IR™) such
that it has an inverse a; ' € CH!(R™).

Then we fix j, write ¢ = ¢; and o = «; and define the mapping

B:YZL(RY) = YPI(Q), ue (u- (Yoa))oa ™ (3.7)

wow

Using appropriate extensions of functions in Y,?4(R") to R™ and the continuity of the
concatenation and multiplication with sufficiently smooth functions one shows that B
is a continuous mapping into the asserted image space.

Now setting Bju = (u(¢; o o)) o aj_l we define the operator

Bq : Hyfgg M) = YIUQ), (ur, e um) = Y B,

which is continuous and surjective for every 8 € [0,2]. (Surjectivity follows if one
considers the operators

A; HPYQ) > uws (upj) oy € HEL (RY), j=1,..,m

woa;

where ¢; is an appropriate cut-off function, with ¢; = 1 on supp;.) By interpolation
and Theorem 3.6 it follows that

Bo: [[¥20(82) - [24(@)129@)]

1=1

is continuous, where w; := w o «;.
For every u € Y}(Q) there exists (u1, ..., um) € [[;7, Y2U(RY) with Bo(uy, ..., um) =
u and ||uz~||Y£_,q(R1) < dfullygaq for every i =1,...,m. Then one can estimate

||u||[LZ,(Q),Y£’q(Q)]9 =|Ba(u1, ..., un)|| (L% (2),Y0 9 (2)]g

<CZ||UZ||L‘1 (R),Y.29(R™))] <CZ||UZ||YM R")

SCH”H)@E*‘?(Q)-

Thus we obtain [LZ(Q), Y24(Q)]s D Y/4(Q).
2
The inclusion ” C” is proved in the same way as in the proof of Theorem 3.6, Step 1. [

14
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4 Stokes Equations in Weighted Bessel Potential Spaces

Throughout this section let  be a bounded C!'-domain. Moreover let 3 € [0, 2],
q € (1,00) and w € A,. As a space for exterior forces we define

’ !

V(@) = (V@)
Note that if 0 < 8 <1 then by (3.5) one has the embedding
Y, () = H,1(Q) <= W, ()

and thus Y, #9(Q) consists of distributions on €.

If B > 1 then this is in general not the case. In particular, if 5 is large enough, then
a functional f € Y,7%4(Q2) might include a part that is supported on the boundary and
which can be considered as a boundary condition.

As a space for divergences we choose

70(Q) = H;/},q(Q)j it v>0
w HH(), if v <0,

for every v € [~1,1]. This space is equipped with the norm || - ||, w0 = [ |53 0)-
We use the notion of very weak solutions introduced in Definition 2.7, however if
B > 1, i.e., the solution is contained in W,4(2), then we also speak of weak solutions.

Theorem 4.1. Let 1 < g < oo, w € Ay and 0 < B < 2. Moreover, let f €
YI=2UQ) and k€ HJV(Q) with (k,1) = 0. Then there exists a unique very weak
solution u € Y/24(QQ) to the Stokes problem with respect to the data f,k in the sense of
Definition 2.7. This function u fulfills the estimate

lullysaoy < € (I hva-aqay + [ ls-1qmm0) - (4.1)

Moreover, there exists a pressure functional p € HE~Y9(Q), unique modulo constants,
such that

—Au+Vp = flege@ in C5o()".
Proof. From the results in Sections 3.2 and 3.3 it follows that
(Y, 29(Q) x H,,5"(Q), L1, (Q) x Hy"(Q)], = Y ™29(Q) x Hy M(Q),
where 0 = g It is immediate that
ko K=k — (k1) € L(Hy"(Q) N LIHG(Q)).
By Theorem 2.8 the mapping
S: Y, 2UQ) x Hy () 3 (f, k) = u € LE(9),

is continuous, where u € L%(2) is the very weak solution to the Stokes problem with
respect to the data f and K =k — (k, 1).

15
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If u is a solution in the sense of Definition 2.7 with sufficiently regular data f and £,
then by Theorem 2.9 we find that u is a strong solution with zero boundary values. In
particular, S is also continuous from L% (Q2) x HL(Q2) to Y,2¢(2). Now we obtain from
the interpolation properties in Theorems 3.5 and 3.7 together with the duality Theorem
2.6 that

S Y[ 2UQ) x HY M(Q) — V()

is continuous, which finishes the proof of existence and estimates of w. Uniqueness
follows from the uniqueness of very weak solutions in Lg% (€2) (Theorem 2.8).

[t remains to show the existence of p. By the theory of strong solutions in [12]
there exists a pressure function p € HL(Q2). Moreover, by Theorem 2.8 there exists a
pressure functional p € Hujyt’q(Q) that belongs to a very weak solution. In both cases p
is unique if (p, 1) = 0. Thus by the interpolation Theorem 3.5.2 we obtain a functional
p € HJ M(Q) such that

—(u, Ag) — (p,div ) = (F,¢) forall ¢ Y2 (Q).
The restriction p := p|cg (o) solves the problem. a

By the definition of Y,24(Q) it follows, that whenever a trace operator
tr : H>4(Q) — T(D)

for a boundary portion D C 09 is well-defined (as a continuous linear operator into
some boundary space T'(D), which coincides with the usual trace u|p on W,>4()), then
for the solution u € Y24(€2) one has tru = 0.

In the case, where data and solutions are regular enough (including the case 5 =1 of
weak solutions), we want to deal with inhomogeneous boundary values.

If 8 > 1, then HZ(Q) < WL9(Q) which implies the existence of a continuous trace
operator

tr : HP9(Q) — TL909Q), tru=ulspgif ue C®Q).

As in the case of weighted Sobolev spaces we define the associated boundary space by

TS(00) = tr (HLY(9)

equipped with the norm ||g||T£,q(aﬂ) = inf {|Jul|gguwe | v € HZ(Q), tru=g}.

Lemma 4.2. For every 8 € [1,2] one has [T27(9), T>7(0Q)])5_1 = TP1(09Q) and there
exists a continuous linear extension operator ext : T21(9Q) — HP(Q), independent of

3.

Proof. As shown in [21] one can prove as in the unweighted case that there exists a
unique solution to the Dirichlet problem (1 — A)u = 0, usrz = g. This solution u
is regular according to the data, i.e., ||ulzqw < c||g||T£,q(]Rn,1) for k € IN. Using this
a straight-forward localization procedure yields that there exists a continuous linear
extension operator

ext : Tp?(9Q) — Wp4(Q) and ext : T27(9Q) — W2(Q) (4.2)
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with ext glao = ¢g. Moreover, by definition the trace operator tr : W1 4(Q) — T14(9Q)
and tr : W24(Q) — T27(09) is continuous.
Obviously one has tr oext =id L (50) and thus Theorem 2.6.5 shows

[T,7(09), T (0)]5-1 = tr [W7(Q), Wi(Q)]5-1 = tr Hp(Q) = T,(09).

Thus the first assertion is proved. The second assertion follows from the first combined
with (4.2). O

Theorem 4.3. Let 1 < g < oo, w € A, and 1 < B < 2. Moreover, let F € HP~%9(Q),
K € HM(Q) and g € T59(00) with [ K = [,,9- N. Then there exists a unique
weak solution v € HP(Q), i.e.,

(Vu, Vo) = (F,¢), forall ¢eW-i (Q)

w,0,0

fulfilling u|pq = g and divu = K in the sense of distributions. This solution fulfills the
estimate

lells.gm < € (1F s 2000 + 1K 5100 + 9z acony ) -

Moreover, there exists a pressure function p € HZ 59(Q), unique modulo constants, such
that the Stokes equations are fulfilled in the sense of distributions.

Proof. First of all recall that if g € [1,2], then § — 2 € [—1,0], which implies F' €
H=29(Q) = Y,779(Q).

Ezistence: For g € T51(9Q) there exists v € H?(Q) such that trv = g and ||v]|g w0 <
2| g||T£,q(m). Since there exists an extension V' of v to the whole space R™ that fulfills
the estimate ||V|sq.w.r" < ¢||v]|5,q,w.0, One has

Av = (AV)|cee(a) € HY 9(Q) = Y >9(Q).
Hence by Theorem 4.1 there exists U € HP(Q) solving

(F+Av,¢) =—(U,A¢) forall g € Y37(Q) and
(K —dive,) =—(U, V) forall p € W57 (Q).

Since U € Y/24(Q) C Wul,’fé(ﬂ), we obtain by integration by parts for ¢ € Yj,’z;(Q), which
is dense in Wé;%(Q), that
(V(U + U), V¢) = _(U7 A¢) - <AU, ¢> = <F7 ¢>7

where by the density of C§°(2) in Wul);%(ﬂ) one can apply the definition of the derivatives
div to Vo in the sense of distributions. Setting v := U + v we obtain divu = K in
the sense of distributions and tru = trv +trU = trv = g. Moreover by the a priori
estimate (4.1)
[ullsgw.e <c(lgllzga@a) + 1Fl5-20w0 + 12052400
+ ||K||ﬂ_lyq7waﬂ + ||d1VU||B_1aqaw7Q)

<e (11gllgagom + 1 lls-2g0 + 1 l5-1,40) -
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Uniqueness: Note that [¢p — —(F, @) + (g, N - V@)aq] € Y,729(2). Thus the uniqueness
of u follows from the one of very weak solutions shown in Theorem 2.8.

Pressure: To show the existence of p we use that by de Rham’s Theorem [27, Ch.1
Proposition 1.1] there exists p € (C5°(€2))" such that the Stokes equations are fulfilled
in the sense of distributions. From the equation we obtain Vp € H?=24(Q2). It remains
to show p € HP~19(Q). However, this follows by Lemma 4.7 below and the proof is
complete O

Now we turn to the case 0 < 8 < 1. In this case the functions in H2?(Q) in general
do not possess enough regularity to guarantee the well-definedness of a trace operator.
Here we define boundary spaces by

T29(00) = [T99(09), TH(09)] ,. (4.3)
equipped with the norm of the interpolation space.
Theorem 4.4. Let 1 < g < oo, w € A, and 0 < § < 1. Assume that f € Y, *1(Q2) and

ke Hu_},h’q(Q) allow decompositions into

(f,8) = (F.¢) = (9. N -V)oa for every ¢ € Y () (1.4)
(k) = (K, ¥) — (g, N¢)aq for every 1 € Wh () ‘

with F € Y~21(Q), K € Hf,;f’q((z) and g € T21(09). Assume in addition that K and
g fulfill the compatibility condition (K, 1)q = (g, N)sq.

Then the very weak solution u € L () with respect to f and k, which exists according
to Theorem 2.8 is contained in HP(Q) and fulfills the estimate

[ullgqw < ¢ <||F||y£—2’q(g) + ||K||Hg,—01"1(9) + ||9||T5’q(39)> . (4.5)

Remark 4.5. The regularity of the data in Theorem 4.4 is in general not sufficient to
guarantee that the restriction of the corresponding solution u to the boundary is well-
defined. Accordingly, without the additional regularity the decomposition of the data
(4.4) is in general not unique.

If we assume in addition that F' € W, " (Q) and K € L%(Q), where r and o € A,
are chosen such that

Wal(Q) = YE24(Q) and Ly (Q) — Hy"(Q) (4.6)

one obtains by Theorem 2.9.3 that the trace u|gn is well-defined and that one has
u|on = g, where g is the given boundary condition.

Proof of Theorem /.4. Step 1: We consider the operator
B :T>(09) — LL(Q), g+ u,
where u is the very weak solution to the Stokes problem with data

f=lp= (9N -Vo)ao] and k=[¢ = (g, NP)aa].
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Obviously, B is linear and continuous, also considered as an operator B : T 4(9Q) —
WL4(€2). This follows from Theorem 4.3 in the case 8 = 1 since the very weak solution
with respect to f and £ coincides with the weak solution with 0 force and divergence
and boundary condition g. Thus interpolation yields that B : T249(0Q) — H24(Q) is
continuous.
Step 2: Let U = Bg € H?4(Q) be given by Step 1. Moreover, let v € Y4(2) be the
very weak solution to the Stokes problem with respect to the data F', K, which exists
according to Theorem 4.1. Then u := U + v is a very weak solution with respect to f
and & and fulfills the estimate (4.5).

The uniqueness of the solution follows from Theorem 2.8. O

Corollary 4.6. Let Q be a bounded C*'-domain. Moreover, let 1 < q,r < 00, w € Ay,
v e A, and 0 < B <2 be given such that H?9(Q) — L' (). Then

TP1(0) — T>"(09).
Proof. Let g € T29(952). Then the very weak solution u € H2(Q) to
—(u, Ay = (g, N - Vg)aq forall ¢ e Y20 (Q)
—(u, Vo) = (g, Ni))oq for all 1 € W57 ()

fulfills [[ul|g,qw < ¢l[gll7£.9(50)- Moreover, one has u € W;; (defined in Theorem 2.9.4)
with ||u[|prr = [|ull;» and divu = 0. Thus the tangential and the normal trace of u are
well-defined in the sense of Theorem 2.9.4. Since u|gq = g, we obtain

9ll70+00) < cllellrp < cllullsgw < cllgllpgson): -

The results of this section can be used for the proof of the following Lemma which
is needed to estimate the pressure in Theorem 4.3. Since the pressure is well-defined
only modulo constants, we consider the space H24(Q2)/const. If 3 > 0 this space can
be identified with the space of all u € H?4(2) such that (u,1)q = 0. If 8 < 0 one has

H54(Q) /const. = {¢ € H;,ﬁ;q’(Q) | / o= O}
Q

e hi L .
via the isomorphism u + R U|{¢6Hw,ff;)q (@) | Jo=0}

Lemma 4.7. Let —1 < 8 < 1. Let p € (C°(Q))" with Vp € HE59Q). Then
p € HPM(Q) and there exists a constant ¢ = ¢($, ¢, w) such that

||p||Hg’q/const. < C“Vp“Hg_l’q'

Proof. Case 1: Let $ < 0. By Theorem 2.5 for every ¢ € WJ};%(Q) with [, ¢ = 0 there

exists ¢ € Wf};%(Q) such that div({ = ¢ and [|(]|2,yw < €||@||14.0- The function ¢ can
be chosen such that the mapping ¢ — ( is linear and fulfills the additional estimate
¢l <l

For a moment we consider the mapping ¢ — ( as a mapping from LZ;, () to Hi)’,q, (R™)
and from Hi;,%(ﬂ) to Hi’,q,(IR”) assuming that ¢ is extended by 0 to a function defined

! anl .
q,w
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on R"™. Thus by interpolation we obtain for v € [0, 1] that ||C||H7+1,qr(m) < cl|¢] jrar @
w! w’,0

Since for ¢ € C§°(£2) one has su C €2, we have shown o <c ,,: .
6 € CF(Q) s [ T

This implies the estimate
. 0ol = |(p,div ol < V9l yg-ralllgr-ne < VP gg-ralldll -

for every ¢ € C3°(€2). This is the assertion for § < 0.
Case 2: Let > 0. We consider the solution operator S : f +— p where (u, p) solves

—(u, A@) — (p,div o) = (f,¢), forall ¢ € V2 (Q)
and (u, V) =0 for ¢ € Wul;;ql(Q)a (p,1) = 0. By the Theorems 2.8 and 2.9
S: Y, Q) » W, 5%(Q) and S: LL(Q) — W"(Q)

is continuous. By the interpolation theorems proved in the Sections 3.2 and 3.3 and the
fact that § € (0,1] and SVp = p — (p, 1) we obtain the estimate

Ip =2 D) < ASVPIw @iz < AVPyza@ @15

2=

S C||Vp||Y£71’LZ(Q) = C||Vp||H571,q(Q)

5 The Stationary Navier-Stokes Equations

5.1 Estimates of the Nonlinear Term

We prepare some embedding theorems. These theorems are proved by the use of weakly
singular integral operators. Thus for 0 < 8 < n we define

o) = [ By = il ato), G.)

where the second equality holds by [24, V. Lemma 2] for an appropriate constant ¢ € R.

Theorem 5.1. Let 0 < S <nand 1l <p <qg<oo,v €A, and w € A;. Moreover,
assume that v and w fulfill the condition

|Q|§_1 (/ w> ! (/ vpll>p < c for every cube @@ C R"
Q Q

with a constant ¢ > 0 independent of Q). Then

s fllgw < cllfllpw for every f e LY(R").

Proof. This is a special case of [19, Theorem 1 (B)]. O
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Lemma 5.2. Let w € A, v € A, with

1

1 1
|Q|§_1 </ w) ' </ v_ﬁ> T<e for every cube @ C R"
Q Q

with a constant ¢ > 0 independent of Q. Then one has
H)P(R"™) < LL(R") for every v > f.
Proof. By [13, Lemma 3.2] the embedding

M = {f e S(R") | f = 0 in a neighborhood of 0} — HPP(R")

is dense. Moreover, we define Jzf := ¢F~'EP(1 + €)=5 Ff, where ¢ is the constant
from (5.1). Then by the Multiplier Theorem 2.4 the operator Jz : LP(Q)) — LP(Q)
is continuous. Moreover, for f € M one has f = IzJzAgf. Thus one obtains using
Theorem 5.1 for every f € M

1 llzg,ny = M TsAs fllzg,mny < cllToMsfllzpmny < cllMsfllpmny = llFll gprmny-

Thus by the density of M in H??(R™) the inequality holds for every f € HP?(R") and
one obtains H)P(R") — HPP(R") — L% (R™). O

Lemma 5.3. Let 2 C R” be a bounded Lipschitz domain. Moreover, let 1 < s < r <
g < oo, r>1and assume 0 < B < n such that
— ﬁ (5.2)

ns

>

| =
S | =

Then for every w € Ag the following embeddings are true:
1. HP"(Q) — L1 (Q).

1 1

2. HPT(Q) = L7, (Q), where wy = w™ a7 and w, = w 71,

8. LT (Q) — H_ P4(Q), LT () — H;y%’q(Q) and for 8 € [0,1] one has W;'"(Q) —
Y 1-Ba(Q).

4. If B €[0,1], then one has HL"(Q) — HL54(0Q).

Proof. We begin with showing that without loss of generality we may assume that
1 <s<r. Lets=r. Sincer >1and w € A, by Lemma 2.1.3 there exists ¢ € [1,7)
such that w € A;. If (5.2) holds for s, it holds for s replaced by ¢ in any case. Thus we
may replace s by ¢ < r.

1. By [13, Corollary 3.2] the asserted embedding holds if there exists a constant C' > 0
such that |Q|§w(Q)%7% < C for all Q C U for some open set U D Q. By Lemma 2.1.1
we know that for every @ C U and w € A, it holds |Q|* < J}((Jlljs)w(Q) = cw(Q). Thus

= =
= =

< cw(U)%ﬁ_ =C

Q7 w(Q)i ™ < cw(@) e
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. ﬂ 1 1 .
since .-+ o — ¢ 2 0 by assumption.

2. As above Lemma 2.1.1 states that w € Ay implies w(Q) > ¢(U)|Q|* for every @ C U,
where U is some bounded domain with Q C U. It has been shown in [10, Lemma A.2]
that in this case there exists a weight function W € A, such that W = w on €2 and
W(Q) > ¢(U)|Q|* for every cube Q C R™.

Now by Theorem 3.2 we know that

HY () = Hy? ()

with equivalent norms. By Lemma 5.2 the condition

Q! </ Wr> ' </ (Wq)q’ll> " <e for every cube @ C R" (5.3)
Q Q

1mp11es HW (]R”) — L%, (R") for every v > a. Thus we have to show (5.3). Since

W, 7 = Wt = W = (W, q’*l, we calculate using the definition of Muckenhoupt
weights, W € A, and = — = < 0

“([ovy) = @ w@iwe)!
Rk (/Q W,«) (/Q ) ) QI WL(Q)P W (Q)
< QWY < dQpF T,

The last term is bounded if & + s(é - %) = 0. There exists 0 < o < 8 so that this is
true, because s (5 - %) < 0 and for a = 8 one has £ + ) sl =

Now for f € Hg,;q'(Q) there exists an extension F' € HW (R™) with || F|| <

H’Y q )
2||f||H;"}q,(Q) < C||f||H3J:1qf(Q). One obtains
q

||f||LdT(Q) S ||F||LT < CHFHH’Y‘I ]R” < C||f||H7q (R”)

and the asserted embedding is proved.
3. Considering the dual spaces in 2. we obtain L! (2) < Hu_)f)’q(Q). Moreover, since

HE(Q) — HJY(Q) < L (), one also has L, () < H,»(Q).
Finally, for u € W, (Q) and ¢ € Y27 () one has by the Poincaré inequality

[{w, &) < cllufl - 1rwll VOl < cllull 1wl VOllsgw < cllull-rmwlldlls1e -

This proves the last embedding.
4. For u € H."() one has by Lemma 4.7 and 3.

u—/udaj
Q

Thus ||U||1—ﬂ,q,w < C”U“l,r,w + fQ

< d[Vull 0w < el Vullrw < ellflyrw
I_Baqaw

< el O
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Lemma 5.4. Let Q C R" be a bounded CY'-domain. Assume w € Ay for some 1 < s <

q and B> 1 — 1 in the case n >3 and > 2 — L in the case n = 2.
q q 2

1. In addition, let 0 < <1 and 1 <t < oo with

1-5,

1
S =0 5.4
mpa (5:4)

1
t

Then w € Ay, Lt (Q) — Hf,jol’q(ﬂ) and

a) for every u,v € H3(Q) and ¢ € H;Tﬂ’q,(ﬂ) one has

‘/um/) da

b) for every k € L!(Q), u € HZ(Q) and ¢ € Hi,,—ﬂ’q,(ﬂ) one has

‘/ kug d

2. If 1 < 5 <2 then ||u- Vvl lg_gqw < c|u

< dffu

|U||ﬂ7q7w||d)||tlyw’7

B,q,w

< c|k

¢

tw |u B,q,w Lt w'-

Bqmw JOT every u,v € Hg’q(Q).

B,q,w |U

Proof. One has
, nsq - nsq _ns
g1—B)+ns  q2-")+ns 2 7

Thus, by Lemma 5.3 one has L () — ngol’q(Q) and H&;ﬂ’q'(Q) — Lt (Q).
1. a) Let r := 2¢. Then one has

=W
&
=
Q.
p—
—
L
\%
=
t+
=
@
=
e
=
@
=
>3
t+
=8
=
9]
=
S
=
-+
=
@
[on
@
=
=
—-
t+
— .
[
=
Q
=
t+
=
)
0N
o
o
Q
@
9]
S
)
—
)
~—

1
11 3
= ‘/uwrvwrww,f' dx

< Nullrwllvllrwllllewe < cllwllsguwllvllsgwlllle w.-
. _ _ 1 1y _ t

1. b) First we assume that § < %. We set r = _q’;‘:ns and 1 = (1 - E) =T,
Then

o = r’"—lt = T > 5y = sifn > 3. If n = 2 one needs the stronger

assumption on S to ensure 1’ > s.
14+p-22 /
. —# +i+ L =—1+L=—">0. Hence H,! (Q) — LZW(Q).
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1 1 1 _ 1 1,1
o;+;+5—1and (n'—l)n+t+r_0‘

Thus we can estimate as above

‘/ kuo dx

If p > %2 then HB1(Q) — L (Q) for every r € (1,00). Moreover, we find some n > #'

such that H:' (Q) < L7 (€). Choosing r such that 1 + % + 1 =1 we can repeat the
n

above estimate.

2. As above we begin with the case < %. Let n := n:f‘éﬂ, o= nsfsgﬂ
r:=-—2= _ Then one has

< [|Kllewlleellrwll@llnw, < cllkllewllells.qulolle .

and

2ns—2Bq+q

1 1 1
e 1 == =,

r n + “

er>% >sifn >3 If n =2 we need the stronger assumption on 3 to ensure
> 5. Moreover, + > 1 — 28 thus L7 (Q) < HI~29(Q).
q r ns

<

- % which implies H?4(Q2) — L7 ().

1
q

3=

o 1221 — L which shows HE~11(Q) — L ().
o

ns

Q=

Thus it follows from Hélder’s inequality

[NV 0lls-2,40 < clluVollrw < ellullywl Vo

|[J,’ll} S C||u||ﬂyq7w||vv||ﬂ_lyq7w

If2>p> > then HP4(Q) — L7 (Q) for every n € (1,00). Thus if 3 # 2 we repeat the

above estimate with r as above, © = ¢ and 7 such that % + i = %

If 3 =2let r = ¢q and we may choose y > ¢ such that such that HZ~19(Q) < L~ (Q)

w

and 7 such that %+i =1 O

r

5.2 Stationary Navier-Stokes Equations in Bessel Potential Spaces
In this section we always assume

e O C R"is a bounded C''-domain,

e 1l <g<ooand wée€ A, for some 1 < s <gq,

e f€0,2] with 2 —1 <.

If n < 3 one can always choose such a 3 since by Lemma 2.1 for every w € A, there
exists s as above with s < g and w € A,. Thus % —1l<n—-1<2.

Definition 5.5. Let 0 < 8 < 2,1 < ¢ < oo and w € A,. Moreover, let g € T29(99),
F eYf24Q) and K € L. (). Then u € H?9(Q) is called a very weak solution to the

stationary Navier-Stokes equations, if
—(u, Ag) = (uu, Vo) — (Ku,d) = (F,¢) —(9,N-V)ag for every ¢ € Yff’,q;(Q),
—(u, Vo) = (K,v¥) — (g, N)aq for every 1 € Wul};q’(Q).
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Theorem 5.6. Let ¢ > 1, w € A, for some1 < s<q,0< <1 andﬁ>%—1 if
n>3and > —35+ 27; if n = 2. Moreover, let F € Y/=24(Q), K € L (Q) with

Lo 1 1_, (5.5)

and g € TP1(0Q) with (K, 1)q = (g, N)aq. Then there exists a constant p > 0 indepen-
dent of the data such that, if

1 lyg 20 + 1K e + 9]0 00) < 25

then there exists a very weak solution uw € HP(Q) to the stationary Navier-Stokes
equations. This solution satisfies the estimate

s < ¢ (I1Fl| 1w + 1K

I o+ 19z 00y ) (5.6)

with ¢ = ¢(B,q,w, Q) > 0. Furthermore, if we assume in addition that F € W, (Q),
then w fulfills u|sq = g in the sense of Theorem 2.9.4.

Proof. By the Lemmas 5.3 and 5.4 one has
L, (Q) — HM(Q) and W, H(Q) — YI729(Q).
For u € HB1(Q) let W (u) € (C5°(2)) be given by
(W(u), ¢) = (uu, Vo) + (Ku, ¢) forall ¢ e C5°(Q).
By Lemma 5.4.1 one has for ¢ € C§°(Q2)
[V (), ] < (Il g+ I N g0 161
and hence W (u) € W;5(Q) — Y/=24(Q) with

W (u)llyg-2a < ex[W ()| -1 < e(llullf g + 1K

B,q,w)- (5-7)

taw |U'

We define the mapping S : H2(Q) — HP(Q) by

—(SU, A¢> = (Fa ¢> + <W(u)7 ¢> - <ga N- v¢>39 for every ¢ S in?{;(ﬂ),
—(Su, Vi) = (K, ) — (g, Ni)sq for every 1 € Wul)iq,(Q).

The operator S is well-defined by Theorem 4.4.

We want to use Banach’s Fixed Point Theorem to show that S has a fixed point under
the assumption that the data is small enough.

By the a priori estimate in Theorem 4.4 we know that

[0]15.90 < D([Fllyg-20 + [[Kllw + [[9ll789(50)); (5:8)

if v is a very weak solution to the Stokes problem with respect to the data F' € Y,/~24((Q),
K € Lt (Q) and g € T?1(99).
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We assume that the data F, K and g are chosen small enough such that the right hand
side of (5.8) is strictly smaller then p := 5, where ¢ is the constant in the estimate
(5.7) and D is the constant in the a priori estimate (5.8). Without loss of generality we
assume that D > 1, which implies that additionally ||K||;. < p-

Furthermore, it follows from (5.7) and (5.8) that for such data and § = 525 the closed
ball B(0) in H?4(Q) is mapped by S into itself.

The next step is to show that S is a contraction on Bj(0). Take u,v € Bs(0). Then

Su — Swv is a solution of

—(Su— Sv,A¢) = (W(u)— W(v),¢) forevery ¢€ Y7 (Q)
—(Su— Sv,Vip) =0 for every 1 € W7 (Q).

Moreover, from Lemma 5.4.1 we obtain

[(W(u) =W(v),9)| < [((u—0v)u, V)| + [(v(u—v), V)| + [(K(u =), )]
< clllullggw + 0lls.gw + 1K lew)lu = vlls.00ll 110w

> ¢

—||lu—wv
Thus we obtain from the a priori estimate (5.8) that

Baqaw latlywt °

6D

5
154 = Svllp.gw < DIW () = W(0)||l-1ew < gllw = vli500-

Now Banach’s fixed point theorem gives us the existence of a unique fixed point of S
within the ball Bs(0) and hence of a solution u € H?4(Q) to the stationary Navier-Stokes
system.

The a priori estimate (5.6) follows from

lells g = 15030
< D (1Fllyg-sa + 1K

[ull.00))

since De(||ul|g,qw + || K|ltw) < 2 and we may subtract 3{|u|s,q. from both sides of the
above equation.

Now assume that F € W 1(Q). It remains to show that in this case the solution u
fulfills the boundary condition u|sq = g. To see this one uses the fact that u is a very
weak solution to the Stokes equations with respect to the data

f=l = (F,¢)+ Wu),d)— (9, N - Vo)aa]
k :[7/) '_><K7¢>_<97N1/)>3Q]7

where floso) = [@ = (F,¢) + (W(u), )] € W, (). Then the assertion about the
boundary values follows from Theorem 2.9.4. O

Definition 5.7. Let 1 < 8 < 2. Moreover, let F' € H=24(Q), K € H?~14(Q) and
g € TP1(98). Then u € HP4(RQ) is called a weak solution to the stationary Navier-
Stokes equations, if

(Vu, Vo) + (u-Vu,p) = (F,¢) forevery ¢ e Cgo, (),

tw 19/l g9 a0y + c(llullf g + 1K

taw

divu = K and u|gg = g¢.
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Theorem 5.8. Let1 < < 2andf > %—1 ifn>3and g > %—% ifn = 2. Moreover,
let F e HI79(Q), K € HJ~"(Q) and g € T)1(0Q) with [ K dx = [,,gN dS. Then

there exists a constant p > 0 such that, if
1 5-2.0 + [1K[5-1.00 + 9ll7g.0000) < P

then there exists a weak solution u € HP(Q) to the stationary Navier-Stokes equations.
This solution satisfies the estimate

ol e < ¢ (1F sz + 11000 + gl )
with ¢ = ¢(f,q, w,2) > 0.

Proof. This can be proved in the same way as Theorem 5.6 using Lemma 5.4.2. instead
of Lemma 5.4.1. and Theorem 4.3 instead of Theorem 4.4. O

The very weak solution is unique even without the assumption of the smallness of
the exterior force f and the boundary condition g. In the case n > 3 this follows from
the uniqueness of very weak solutions to the stationary Navier-Stokes equations in the
unweighted case which has been proved in [6]. This is shown in the following theorem.

Theorem 5.9. Let the data F,K and g be given as in Theorem 5.6 or Theorem 5.8,
respectively, and let u be a very weak solution to the stationary Nauvier-Stokes system
with respect to the data F, K and g.

Then there exists a constant p > 0 such that under the condition that

ullggw + [[ K ltw < p

there exists at most one very weak solution to the stationary Navier-Stokes equations
according to Definition 5.5.

Proof. By Lemma 5.3 and Lemma 2.2 one has for § < %

nsq

u e HPI(Q) < Lo ™ (Q) — L=ar+ns (Q) = L(Q),

where, by the assumptions on 3, one has 1 := —z& - > n.

For § > #%* the embedding HP4(Q) — L~ () holds for every u > 1. If we choose
i =mns with n > n, then we obtain that also in this case

HJ(Q) — L() (5.9)

We want to show that 7 > n in (5.9) can be chosen such that K € Lv+ () and F €

W bata (Q) is fulfilled additionally. If 8 < 1 then one has by assumption K € Lt (€2)

and F € W;(Q) and by the proof of Lemma 5.4 one has t > %* = 7?25 Thus we find

+n’
n with the asserted properties, since again by Lemma 2.2 one has the embeddings

L'(Q) < L+(Q) and W, " (Q) — W b:(Q).
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Now let 3 > 1. Then the embedding H?=14(Q) — Lt (Q) follows directly from Lemma
5.3 and Y,7~24(Q) — W, () follows when taking the dual spaces in the embedding
Wul),t’O(Q) — ijﬂ’q,(Q), that is shown in Lemma 5.3.

Moreover, from Corollary 4.6 we obtain that g € Wﬁ’"(aﬁ) .= T"(99). Hence data

and solution are contained in the same spaces as in [6, Theorem 1.5]. Thus exactly the
same proof as given there can be used to show that two solutions that correspond to

the same data coincide. O
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