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We investigate very weak solutions to the stationary Stokes and Stokes

resolvent problem in funtion spaes with Mukenhoupt weights. The no-

tion used here is similar but even more general than the one used in [2℄ or

[14℄. Consequently the lass of solutions is enlarged. To desribe boundary

onditions we restrit ourselves to more regular data. We introdue a Ba-

nah spae that admits a restrition operator and that ontains the solutions

aording to suh data.
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1 Introdution

Let 
 be a bounded domain in R

n

, n � 2, with C

1;1

-boundary. We onsider the

stationary Stokes resolvent problem with inhomogeneous data

�u��u+rp = F in 


div u = K in 


u = g on �
:

(1.1)

It is our aim to �nd a large lass of solutions to (1.1) demanding as low regularity of the

data as possible. In the most general ase onsidered here the solutions possess a priori

no weak derivatives. Consequently the notion of weak solutions is no longer suitable in

this ontext. Thus one introdues the more general notion of very weak solutions.

To arrive at the de�nition of very weak solutions one multiplies the �rst equations in

(1.1) with a solenoidal test funtion � vanishing on the boundary, then formal integration

by parts yields

hu; ��i � hu;��i




= hF; �i




� hg;N � r�i

�


: (1.2)

�
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Applying the same method to the seond equation with a suÆiently smooth test fun-

tion  we obtain

�hu;r i




= hK; i




� hg;N �  i

�


: (1.3)

The equations (1.2) and (1.3) an be used for the de�nition of very weak solutions.

This or similar formulations have been introdued by Amann in [2℄, by Amrouhe and

Girault in [3℄ and by Galdi, Simader and Sohr in [14℄. In these artiles as well as by

Farwig, Galdi and Sohr in [6℄, [5℄, [7℄ and by Giga in [16℄ solvability with low-regularity

data has been shown.

We use an even more general notion onsidering eah right hand side of (1.2) and

(1.3) as one funtional in � or  , respetively. Sine these right hand sides in (1.2)

and (1.3) ontain a omponent that is supported on the boundary, it is natural that

these funtionals are not ontained in spaes of distributions on 
. The advantage

of this approah is a simple haraterization of the spae of solutions, more preise a

priori estimates and a shorter proof of the existene and uniqueness theorem. Moreover,

it is shown in Setions 4 and 5 that the lasses of strong and of very weak solutions

onsidered in [14℄ are ontained in the lass of very weak solutions orresponding to the

non-distributional data that are onsidered in Setion 3.

In the most general ontext onsidered here every L

q

-funtion an be onsidered as a

very weak solution with respet to appropriate data. Thus the restrition of a general

solution to the boundary is not well de�ned. However if one restrits oneself to more

regular data similar to those onsidered in [14℄ it is again possible to presribe boundary

values. More preisely in Setion 5 it is shown that very weak solutions orresponding

to the restrited data are ontained in a Banah spae that permits restritions to the

boundary.

We investigate this problem in weighted funtion spaes. More preisely, we onsider

Lebesgue and Sobolev spaes with respet to the measure w dx, where w is a weight

funtion ontained in the Mukenhoupt lass A

q

. This is the lass of nonnegative and

loally integrable weight funtions, for whih the expression

A

q

(w) := sup

Q

�

1

jQj

Z

Q

w dx

��

1

jQj

Z

Q

w

�

1

q�1

dx

�

q�1

(1.4)

is �nite, where the supremum is taken over all ubes Q in R

n

.

Classial tools for the treatment of partial di�erential equations extend to funtion

spaes with Mukenhoupt weights. As important examples we mention the ontinuity

of the maximal operator [15℄, [26℄, the multiplier theorems [15℄, [26℄, extension theorems

of funtions on a domain to funtions on R

n

shown by Chua [4℄, extension theorems of

funtions on the boundary to funtions on the domain by Fr�ohlih [11℄, see also [22℄ and

embedding theorems by Fr�ohlih [12℄ using the ontinuity of singular integral operators

by Sawyer and Wheeden [21℄.

These tools were the base to treat the solvability of the Stokes and Navier-Stokes

equations in weighted funtion spaes by Farwig and Sohr in [8℄ and by Fr�ohlih in [9℄,

[10℄, [11℄.

As shown in [8℄ examples of Mukenhoupt weights are

w(x) = (1 + jxj)

�

; �n < � < n(q � 1) or

dist (x;M)

�

; �(n� k) < � < (n� k)(q � 1);
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where M is a ompat k-dimensional Lipshitzian manifold. Thus, if one hooses a

partiular weight funtion, the developed theory an be used for a better ontrol of the

growth of the solution, for example for jxj ! 1, in the neighborhood of a point or lose

to the boundary.

2 Preliminaries

All over this paper let q 2 (1;1) and we onsider a Mukenhoupt weight w 2 A

q

, f.

(1.4). Moreover, let k 2 N

0

and let 
 � R

n

be a Lipshitz domain. Then we de�ne the

following weighted versions of Lebesgue and Sobolev spaes.

1. L

q

w

(
) :=

n

f 2 L

1

lo

(
) j kfk

q;w

:=

�
R




jf j

q

w dx

�

1

q

<1

o

. Then it is an easy on-

sequene of the orresponding result in the unweighted ase that

(L

q

w

(
))

0

= L

q

0

w

0

(
) with

1

q

+

1

q

0

= 1 and w

0

= w

�

1

q�1

: (2.1)

2. By C

1

0

(
) we denote the set of all smooth and ompatly supported funtions,

the spae C

1

0;�

(
) onsists of all funtions that are in addition divergene free.

3. Set W

k;q

w

(
) =

n

u 2 L

q

w

(
)

�

�

�

kuk

k;q;w

:=

P

j�j�k

kD

�

uk

q;w

<1

o

.

4. Moreover we set W

k;q

w;0

(
) = C

1

0

(
)

k�k

k;q;w

. The dual spae of it is denoted by

W

�k;q

w

(
) := (W

k;q

0

w

0

;0

(
))

0

.

5. Using this for k > 0 we set W

�k;q

w;0

(
) = C

1

0

(
)

k�k

W

�k;q

w

(R

n

)

.

6. Moreover, we onsider the spaes of boundary values T

k;q

w

(�
) := (W

k;q

w

(
))j

�


,

equipped with the norm k � k

T

k;q

w

= k � k

T

k;q

w

(�
)

of the fator spae.

By [9℄, [11℄ and [4℄ the spaes L

q

w

(
), W

k;q

w

(
), W

k;q

w;0

(
) and T

k;q

w

(�
) are reexive

Banah spaes in whih C

1

0

(
), (C

1

0

(
), C

1

(
)j

�


, respetively) are dense.

Note that by Ne�as [20℄, Chapitre 2, x5, in the unweighted ase one has

T

k;q

1

(�
) =W

k�

1

q

;q

(�
) for k 2 N and T

0;q

1

(�
) = W

�

1

q

;q

(�
):

In partiular, the spae T

0;q

w

(�
) does not onsist of funtions but of distributions on

�
.

By [4℄ the following extension theorem holds for weighted Sobolev spaes.

Theorem 2.1. Let 
 be a bounded Lipshitz domain and N 2 N. Choose p

i

2 [1;1),

w

i

2 A

p

i

and k

i

2 N

0

, i = 1; :::; N . Then there exists an extension operator

E :

N

\

i=1

W

k

i

;p

i

w

i

(
)!

N

\

i=1

W

k

i

;p

i

w

i

(R

n

);

i.e., Euj




= u and kEuk

W

k

i

;p

i

w

i

(R

n

)

� kuk

W

k

i

;p

i

w

i

(
)

for i = 1; :::; N and for every u 2

T

N

i=1

W

k

i

;p

i

w

i

(
).
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Proof. This is a speial ase of [4, Theorem 4.1℄. There Chua proves extension theorems

for the lass of (";1)-domains. By [19℄ this lass inludes Lipshitz domains.

Lemma 2.2. Let 
 be a bounded Lipshitz domain. For k 2 Z, q 2 (1;1) and w 2 A

q

one has

W

�k;q

w;0

(
) =

�

W

k;q

0

w

0

(
)

�

0

:

Proof. For k = 0 this follows from the density of C

1

0

(
) in L

q

w

(
) and (2.1).

If k < 0 it follows from the de�nition and the reexivity of W

�k;q

w;0

(
).

It remains to prove the ase k > 0. By de�nition, W

�k;q

w;0

(
) is a losed subspae of

W

�k;q

w

(R

n

). Thus, for u 2

�

W

�k;q

w;0

(
)

�

0

there exists by the Hahn-Banah theorem a fun-

tional U 2

�

W

�k;q

w

(R

n

)

�

0

= W

k;q

0

w

0

;0

(R

n

) = W

k;q

0

w

0

(R

n

) with kUk

W

k;q

0

w

0

(R

n

)

= kuk

(W

�k;q

w;0

(
))

0

and U j

C

1

0

(
)

= uj

C

1

0

(
)

.

This means u an be identi�ed with the funtion U j




2 W

k;q

0

w

0

(
) whih ful�lls

kU j




k

W

k;q

0

w

0

(
)

� kuk

(W

�k;q

w;0

(
))

0

:

Vie versa let u 2 W

k;q

0

w

0

(
). Then by Theorem 2.1 there exists U = Eu 2 W

k;q

0

w

0

(R

n

)

with U j




= u and we obtain by the ontinuity of E and the Hahn-Banah theorem

kuk

W

k;q

0

w

0

(
)

�kUk

W

k;q

0

w

0

(R

n

)

= sup

�2S;k�k

W

�k;q

w

(R

n

)

=1

jhU; �ij

� sup

�2C

1

0

(
);k�k

W

�k;q

w

(R

n

)

=1

jhu; �ij = kuk

(W

�k;q

w;0

(
))

0

:

Thus we have shown (W

�k;q

w;0

(
))

0

= W

k;q

0

w

0

(
). Now the reexivity of the spaes proves

the assertion.

By [22℄ one has the following extension theorem of funtions de�ned on the boundary

�
 to funtions de�ned on 
.

Theorem 2.3. Let 
 � R

n

be a bounded C

k�1;1

-domain, k � 1. Then there exists a

ontinuous linear operator

L :

k�1

Y

j=0

T

k�j;q

w

(�
)!W

k;q

w

(
)

suh that

�

j

�N

j

L(g)j

�


= g

j

, 0 � j � k � 1, where g = (g

0

; :::; g

k�1

).

By [24℄ there holds the following weighted version of Bogowski's Theorem.

Theorem 2.4. Let 
 � R

n

, n � 2, be a bounded and loally lipshitzian domain.

Assume that f 2 W

k;q

w;0

(
) suh that

R

f = 0. Then there exists a funtion u 2 W

k+1;q

w;0

(
)

suh that

div u = f and kuk

k+1;q;w

� kfk

k;q;w

;

where  = (
; q; w; k). Moreover, u an be hosen suh that it depends linearly on f

and suh that u 2 C

1

0

(
) if f 2 C

1

0

(
).

4



Theorem 2.5. Let 1 < q <1 and w 2 A

q

. Then the maximal operator M de�ned by

(Mf)(x) = sup

Q3x

1

jQj

Z

Q

jf(y)jdy

is ontinuous on L

q

w

(R

n

). More preisely, there exists a onstant  > 0 suh that

kMfk

q;w

� kfk

q;w

for every f 2 L

q

w

(R

n

):

Vie versa if � is a nonnegative Borel measure and M is bounded on L

q

(R

n

; �), then �

is absolutely ontinuous and d� = w dx for some w 2 A

q

.

Proof. See [15℄, Theorems 2.1 and 2.9. The reverse inlusion an be found in [26,

2.2℄.

3 Very Weak Solutions Conerning Non-Distributional

Data

For a good formulation of our notion of very weak solutions, we need to de�ne some

spaes of funtions and funtionals. Thus for w 2 A

q

we set

Y

2;q

0

w

0

(
) := fu 2 W

2;q

0

w

0

(
) j uj

�


= 0g;

Y

�2;q

w

(
) := (Y

2;q

0

w

0

(
))

0

and

W

�1;q

w;0

(
) = (W

1;q

0

w

0

(
))

0

:

(3.1)

Moreover, we de�ne the divergene-free versions

Y

2;q

0

w

0

;�

(
) := f� 2 Y

2;q

0

w

0

(
) j div� = 0g and Y

�2;q

w;�

(
) := (Y

2;q

0

w

0

;�

(
))

0

: (3.2)

Then for suitable F;K and g one obtains for the right hand sides of (1.2) and (1.3)

[� 7! hF; �i




� hg;N � r�i

�


℄ 2 Y

�2;q

w

(
)

[ 7! hK; i




� hg;N �  i

�


℄ 2 W

�1;q

w;0

(
):

In the sequel we onsider external fores f 2 Y

�2;q

w

(
) and divergenes k 2 W

�1;q

w;0

(
).

Lemma 3.1. C

1

(
) is dense in Y

�2;q

w

(
) and in W

�1;q

w;0

(
).

Proof. Y

2;q

0

w

0

(
) is reexive being a losed subspae of the reexive spae W

2;q

0

w

0

(
). Let

x 2 Y

�2;q

w

(
)

0

= Y

2;q

0

w

0

(
) suh that h�; xi = 0 for all � 2 C

1

(
). This yields x = 0 and

the assertion is proved. The assertion about W

�1;q

w;0

(
) is proved in the same way.

Note that these spaes do not onsist of distributions on 
 sine C

1

0

(
) is neither

dense in Y

2;q

0

w

0

(
) nor in W

1;q

0

w

0

(
). This leads to some diÆulties when talking about

derivatives. However, restriting f or k to test funtions � 2 C

1

0

(
) one obtains an

element of W

�2;q

w

(
) or W

�1;q

w

(
), respetively. If we say that equations are ful�lled in

the distributional sense, we onsider these restritions.
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De�nition 3.2. Let f 2 Y

�2;q

w

(
) and k 2 W

�1;q

w;0

(
). A funtion u 2 L

q

w

(
) is alled

1. a very weak solution to the Stokes problem with respet to the data f and k if

�hu;��i = hf; �i; for all � 2 Y

2;q

0

w

0

;�

(
) and (3.3)

�hu;r i = hk;  i; for all  2 W

1;q

0

w

0

(
): (3.4)

2. a very weak solution to the Stokes resolvent problem with respet to the data f

and k and � 2 C, if

h�u; �i � hu;��i = hf; �i; for all � 2 Y

2;q

0

w

0

;�

(
) and (3.5)

�hu;r i = hk;  i; for all  2 W

1;q

0

w

0

(
): (3.6)

Setting  = 1 in (3.4) and (3.6) it follows that a neessary ondition for the existene

of suh a very weak solution u is hk; 1i = 0. This ondition is the analogue to the

ompatibility ondition hk; 1i = hg;Ni

�


between divergene and boundary values in

the ase of weak solutions.

Remark 3.3. Some omments about the missing boundary values:

1. For every u 2 L

q

w

(
) one has

[� 7! hu;��i℄ 2 Y

�2;q

w

(
) and [ 7! hu;r i℄ 2 W

�1;q

w;0

(
):

Thus any u 2 L

q

w

(
) appears as a very weak solution to the Stokes problem

with respet to appropriate data. However, sine C

1

0

(
) is dense in L

q

w

(
), it is

impossible to de�ne boundary values for arbitrary L

q

w

-funtions in the sense of a

ontinuous linear operator from L

q

w

(
) into some boundary spae whih oinides

with the usual trae on smooth funtions.

2. Dealing with very weak solutions one an de�ne boundary values adding the term

hg;N � r�i

�


on the right hand side of (3.3) and hg;N �  i

�


on the right hand

side of (3.4). This is done in e.g. in [2℄, [6℄ and [14℄ in the ase of more regular

data. However, one easily sees that if g 2 T

0;q

w

(�
) then

G = [� 7! hg;N � r�i

�


℄ 2 Y

�2;q

w

(
) and K = [ 7! hg;N �  i

�


℄ 2 W

�1;q

w;0

(
);

the spaes of external fores and divergenes, respetively. This means

�hu;��i = hf; �i+ hg;N � r�i

�


= hf +G; �i and

�hu;r i = hk;  i+ hg;N �  i

�


= hk +K; i:

Hene, sine the data is so irregular, it is impossible to distinguish between fore

or divergene and boundary value.

3. In Setion 5 we will onsider the ase of more regular (distributional) fores and

divergenes. It will be desribed how to regain the possibility of presribing bound-

ary data. Moreover, we will disuss why the existene and uniqueness of very weak

solutions in the sense of De�nition 3.2 does not ontradit the theory of strong

solutions to the Stokes equations in weighted spaes established in [9℄, [10℄.
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In the following theorem it is stated that the onstant in the a priori estimate is A

q

-

onsistent. A onstant C = C(w) is alled A

q

-onsistent if for every 

0

> 0 it an be

hosen uniformly for all w 2 A

q

with A

q

(w) < 

0

.

The A

q

-onsistene is of great importane sine it is needed for the appliation of the

Extrapolation Theorem [15, IV Lemma 5.18℄. In partiular this is used when showing

the ontinuity of operator-valued Fourier multipliers and the maximal regularity of an

operator; see e.g. [11℄ for details and appliations.

Theorem 3.4. Let f 2 Y

�2;q

w

(
), k 2 W

�1;q

w;0

(
) with hk; 1i = 0 and let � 2 �

"

[ f0g =

�

� 2 C j j arg(�)j < "+

�

2

	

[f0g with 0 < " <

�

2

. Then there exists a unique very weak

solution u 2 L

q

w

(
) to the Stokes resolvent problem in the sense of De�nition 3.2.2. It

ful�lls the a priori estimate

�kuj

Y

2;q

0

w

0

;�

(
)

k

Y

�2;q

w;�

+ kuk

q;w

� 

�

kfk

Y

�2;q

w

(
)

+ kkk

W

�1;q

w;0

�

(3.7)

with  = (
; q; w; ") > 0 depending A

q

-onsistently on w.

Proof. Step 1. Let v 2 L

q

0

w

0

(
). By the existene of strong solutions to the Stokes

resolvent problem ([10, Theorem 3.3℄ in the ase of weighted and [13℄, [25℄ in the ase

of unweighted spaes) there are unique funtions � 2 W

2;q

0

w

0

(
) and  2 W

1;q

0

w

0

(
) whih

depend linearly on v and suh that

�����+r = v and div � = 0 in 
; �j

�


= 0 and

Z

 = 0: (3.8)

This solution satis�es

�k�k

q

0

;w

0

+ k�k

2;q

0

;w

0

+ k k

1;q

0

;w

0

� kvk

q

0

;w

0

with an A

q

-onsistent onstant  that is independent of � 2 �

"

[ f0g.

Step 2. (Existene and a priori estimates) Setting for v 2 L

q

0

w

0

(
)

hu; vi := hf; �i � hk;  i; with (�;  ) as in (3:8); (3.9)

we obtain

jhu; vij � jhf; �ij+ jhk;  ij � 

�

kfk

Y

�2;q

w

+ kkk

W

�1;q

w;0

�

kvk

q

0

;w

0

:

Thus u 2 (L

q

0

w

0

(
))

0

= L

q

w

(
) and ful�lls kuk

q;w

� (kfk

Y

�2;q

w

+ kkk

W

�1;q

w;0

) with 

independent of � and depending A

q

-onsistently on w.

We now show that u is a very weak solution to the Stokes problem with respet

to f and k. Choose test funtions � 2 Y

2;q

0

w

0

;�

(
) and  2 W

1;q

0

w

0

(
). Then setting

v = �����+r we obtain from the uniqueness of strong solutions

hu; ����� +r i = hu; vi = hf; �i � hk;  i:

Sine � and  were hosen arbitrarily, (3.5) and (3.6) are ful�lled.
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Moreover, let � 2 Y

2;q

0

w

0

;�

(
). Then we obtain

jh�u; �ij � jhu;��ij+ jhf; �ij � (kuk

q;w

+ kfk

Y

�2;q

w

)k�k

2;q

0

;w

0

� (kfk

Y

�2;q

w

+ kkk

W

�1;q

w;0

(
)

)k�k

2;q

0

;w

0

:

Combining this with the previous estimate we get (3.7),

Step 3. (Uniqueness) Assume U 2 L

q

w

(
) is a very weak solution to the Stokes resolvent

problem with respet to f and k. As above for every v 2 L

q

0

w

0

(
) we �nd � 2 Y

2;q

0

w

0

;�

(
)

and  2 W

1;q

0

w

0

(
) suh that �u���+r = v. If we add the equations (3.5) and (3.6)

we obtain

hU; vi = hU; �����+r i = hf; �i � hk;  i = hu; vi:

Sine v 2 L

q

0

w

0

(
) was arbitrary, we obtain u = U .

Theorem 3.5. Let f and k be hosen as in Theorem 3.4 and let u 2 L

q

w

(
) be the

assoiated very weak solution to the Stokes problem. Then there exists a unique pressure

funtional p 2 W

�1;q

w;0

(
) (unique modulo onstants) suh that (u; p) solves

�hu;��i � hp; div�i = hf; �i for all � 2 Y

2;q

0

w

0

(
):

In partiular

��u+rpj

C

1

0

(
)

= f j

C

1

0

(
)

in the sense of distributions. The funtionals (u; p) ful�ll the inequality

kuk

q;w

+ kpk

W

�1;q

w;0

� 

�

kfk

Y

�2;q

w

+ kkk

W

�1;q

w;0

�

; (3.10)

where  = (
; q; w) > 0.

Proof. By Lemma 3.1 there exist sequenes (f

n

)

n

; (k

n

)

n

� C

1

(
) suh that

f

n

Y

�2;q

w

(
)

�����! f and k

n

W

�1;q

w;0

(
)

�����! k:

Then by [10, Theorem 3.3℄ there exist unique solutions (u

n

; p

n

) 2 W

2;q

w

(
) �W

1;q

w

(
)

suh that

��u

n

+rp

n

= f

n

; div u

n

= k

n

; u

n

j

�


= 0;

Z

p

n

= 0:

Integration by parts implies that u

n

is a very weak solution with respet to f

n

; k

n

. Now

the a priori estimate (3.2) shows u

n

L

q

w

(
)

���! u. For � 2 W

1;q

0

w

0

(
) with

R

� = 0 let � 2

Y

2;q

0

w

0

(
) be the solution to ��� +r� = 0 and div � = �. Then k�k

2;q

0

;w

0

� k�k

1;q

0

;w

0

.

Thus we obtain

jhp

n

� p

m

; �ij = jhp

n

� p

m

; div �ij = jhr(p

n

� p

m

); �ij

� jh�(u

n

� u

m

); �ij+ jhf

n

� f

m

; �ij

� (ku

n

� u

m

k

q;w

+ kf

n

� f

m

k

Y

�2;q

w

)k�k

1;q

0

;w

0

:

Thus kp

n

� p

m

k

�1;q;w;0

� (ku

n

� u

m

k

q;w

+ kf

n

� f

m

k

Y

�2;q

w

)

n;m!1

����! 0 and (p

n

)

n

is a

Cauhy sequene onverging to some p 2 W

�1;q

w;0

(
). For this p

�hu;��i � hp; div �i = lim

n!1

(�hu

n

;��i � hp

n

; div�i) = lim

n!1

hf

n

; �i = hf; �i

holds for every � 2 Y

2;q

0

w

0

(
). The estimate (3.10) follows from the estimates for p

n

and

u

n

.
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4 Regularity

The following Theorem 4.2 desribes how strong solutions �t into the ontext of very

weak solutions onsidered in the previous setion. Moreover, it prepares further onsid-

erations about boundary values in the ase of low regularity data.

Lemma 4.1. Let 1 < q; r <1, w 2 A

q

and ~w 2 A

r

suh that

W

1;q

0

w

0

(
) ,! L

r

0

~w

0

(
) ,! L

q

0

w

0

(
): (4.1)

Then

L

r

~w

(
) ,! W

�1;q

w;0

(
) and W

�1;r

~w

(
) ,! Y

�2;q

w

(
)

Proof. Both assertions follow from (4.1) by duality.

The reason why we require these embeddings is that Sobolev-like inequalities in

weighted spaes need strong assumptions on the weight-funtions. In [12℄ suÆient

onditions for suh embeddings are proved using the ontinuity of singular integral op-

erators shown in [21℄.

Theorem 4.2. Assume that f 2 Y

�2;q

w

(
) and k 2 W

�1;q

w;0

(
) allow a deomposition

into

hf; �i = hF; �i � hg;N � r�i

�


for all � 2 Y

2;q

0

w

0

(
);

hk;  i = hK; i � hg;N �  i

�


for all  2 W

1;q

0

w

0

(
)

(4.2)

with g 2 T

0;q

w

(�
); F 2 W

�1;r

~w

(
); K 2 L

r

~w

(
), where 1 < r <1 and ~w 2 A

r

are hosen

aording to (4.1). Then one has:

1. Suh a deomposition is uniquely de�ned by f and k.

2. For � 2 �

"

[ f0g every strong solution u to the Stokes resolvent problem orre-

sponding to the data g 2 T

2;q

w

(�
), F 2 L

q

w

(
) and K 2 W

1;q

w

(
) is a very weak

solution orresponding to the data f and k with the notation of (4.2).

3. If � 2 �

"

[f0g, g 2 T

2;q

w

(�
), F 2 L

q

w

(
) and K 2 W

1;q

w

(
) with

R




K =

R

�


N �g,

then the very weak solution u to the Stokes resolvent problem with respet to f and

k is a strong solution with respet to F;K and g. In partiular u 2 W

2;q

w

(
) and

j�jkuk

q;w

+kuk

2;q;w

� (kFk

q;w

+kKk

1;q;w

+k�Kk

W

�1;q

w;0

+kgk

T

2;q

w

+k�gk

T

0;q

w

): (4.3)

Proof. 1. Let hf; �i = hF

i

; �i�hg

i

; N �r�i

�


for i = 1; 2 with F

i

, g

i

as in the assumption.

Then

hF

1

� F

2

; �i = hg

1

� g

2

; N � r�i

�


for � 2 Y

2;q

0

w

0

(
):

The latter funtional vanishes on C

1

0

(
) and sine F

1

� F

2

is a distribution on 
, it

follows that F

1

� F

2

= 0 and hene hg

1

� g

2

; N � r�i = 0 for every � 2 Y

2;q

0

w

0

(
). By

Theorem 2.3 the mapping

� 7! N � r� : Y

2;q

0

w

0

(
)! T

1;q

0

w

0

(�
)
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is surjetive, hene g

1

= g

2

. Analogously one shows that the deomposition of the

divergene k is unique.

2. This follows immediately by integration by parts.

3. By Theorem 2.3 there exists v

1

2 W

2;q

w

(
) with v

1

j

�


= g and kv

1

k

2;q;w

� kgk

T

2;q

w

and one has

hK � div v

1

; 1i = hK; 1i � hg;Ni

�


= 0:

Hene, by [10, Theorem 3.3℄ there exists a strong solution v

2

2 Y

2;q

w

(
) with respet to

the exterior fore F � �v

1

+�v

1

and divergene K � div v

1

. It ful�lls the estimate

j�jkv

2

k

q;w

+ kv

2

k

2;q;w

� 

�

kFk

q;w

+ k�v

1

k

q;w

+ j�jkv

1

k

q;w

+ kK � div v

1

k

1;q;w

+ j�jkK � div v

1

k

W

�1;q

w;0

�

� 

�

kFk

q;w

+ j�jkv

1

k

q;w

+ kKk

1;q;w

+ j�jkK � div v

1

k

W

�1;q

w;0

+ kgk

T

2;q

w

�

:

(4.4)

Then u = v

1

+ v

2

is a strong solution to the Stokes resolvent problem with respet to

the given data. Moreover, in the ase � = 0, also the estimate is proved.

Now we repeat the above arguments with v

1

replaed by the solution to the Stokes

problem

��v

1

+rp = 0; div v

1

= 0 and v

1

j

�


= g:

Then v

1

ful�lls the estimate kv

1

k

2;q;w

� kgk

T

2;q

w

(�
)

. In addition, by 2. we know that v

1

is also a very weak solution with respet to the data

~

f = [� 7! hg;N � r�i℄ and

~

k = [ 7! hg;N �  i℄:

Thus we obtain the estimate

kv

1

k

q;w

� 

�

k

~

fk

Y

�2;q

w

+ k

~

kk

W

�1;q

w;0

�

� kgk

T

0;q

w

:

Inserting this in (4.4) we obtain

j�jkuk

q;w

+ kuk

2;q;w

�j�jkv

1

k

q;w

+ kv

1

k

2;q;w

+ j�jkv

2

k

q;w

+ kv

2

k

2;q;w

�

�

kFk

q;w

+ kKk

1;q;w

+ j�jkKk

W

�1;q

w;0

+ kgk

T

2;q

w

+ j�jkgk

T

0;q

w

�

:

Thus there exists a strong solution to the Stokes resolvent problem with respet to the

given data whih ful�lls the estimate.

The uniqueness of very weak solutions proved in Theorem 3.4 together with 2. yields

that u oinides with the very weak solution. In partiular the very weak solution is

regular aording to the data.

Remark 4.3. If there exist deompositions for the data f and k as in (4.2) even with

smooth funtions F;K; g this does not mean that f and k are smooth. The reason is

that if g 6= 0, then � 7! hg;N � r�i an never be a funtion sine it is a funtional

supported by the boundary and depending on derivatives.

Vie versa, if f and k are regular, e.g. f 2 W

�1;q

w

(
) and k 2 L

q

w

(
) then they also

allow a deomposition aording to (4.2) and we automatially obtain g = 0, whih

means that the very weak solution with respet to f and k has zero boundary values.

10



5 Boundary Values in the Case of More Regular Data

Our next aim is to de�ne boundary values for very weak solutions to the Stokes problem

presumed the data is suÆiently regular. To this aim we �nd a Banah spae ontaining

all solutions orresponding to suh data and a ontinuous linear operator on this spae

that oinides with the usual trae on C

1

(
).

From now on let 1 < r <1, ~w 2 A

r

suh that (4.1) is ful�lled and take F 2 W

�1;r

~w

(
)

and K 2 L

r

~w

(
) and g 2 T

0;q

w

(�
). Then

[� 7! hF; �i � hg;N � r�i

�


℄ 2 Y

�2;q

w

(
) and

[ 7! hK; i � hg;N �  i

�


℄ 2 W

�1;q

w;0

(
):

Thus by Theorem 3.4 there exists a unique funtion u 2 L

q

w

(
) suh that

�hu;��i = hF; �i � hg;N � r�i

�


8� 2 Y

2;q

0

w

0

;�

(
) and

�hu;r i = hK; i � hg;N �  i

�


8 2 W

1;q

0

w

(
):

However, the question arises in whih sense this solution u ful�lls uj

�


= g.

As a large spae of funtions in whih the de�nition of tangential boundary onditions

is possible we de�ne

~

W

q;r

w; ~w

(
) :=

�

u 2 L

q

w

(
)

�

�

(�u)j

C

1

0;�

(
)

extends to an element of (W

1;r

0

~w

0

;0;�

(
))

0

	

=

�

u 2 L

q

w

(
)

�

�

9 > 0; jhu;��ij � k�k

1;r

0

; ~w

0

8� 2 C

1

0;�

(
)

	

;

(5.1)

where we denote W

k;r

0

~w

0

;0;�

(
) :=

n

u 2 W

k;r

0

~w

0

;0

(
) j div u = 0

o

. We will omit the symbol 


and write

~

W

q;r

w; ~w

if no onfusion an our.

To guarantee that the extension in (5.1) is uniquely de�ned by the values of hu;��i

for � 2 C

1

0;�

(
) we use the following Lemma.

Lemma 5.1. Let r

0

> 1, ~w 2 A

r

0

and k 2 N. Then one has

C

1

0;�

(
)

W

k;r

0

~w

0

(
)

= W

k;r

0

~w

0

;0;�

(
):

Proof. We have to prove the density C

1

0;�

(
) ,! W

k;r

0

~w

0

;0;�

(
). To do this let

v 2 (W

k;r

0

~w

0

;0;�

(
))

0

; hv; �i = 0 for all � 2 C

1

0;�

(
):

By the Hahn-Banah theorem v extends to an element V 2 W

�k;r

~w

(
). Sine hV; �i = 0

for every � 2 C

1

0;�

(
), it follows by de Rham's theorem [27℄ that V = rU for some

U 2 C

1

0

(
)

0

. By Theorem 2.4 there exists for every � 2 C

1

0

(
) with

R




� = 0 some

� 2 C

1

0

(
) with div � = � and k�k

k;r

0

; ~w

0

� k�k

k�1;r

0

; ~w

0

. Thus we an estimate

jhU; �ij = jhU; div �ij = jhrU; �ij � kV k

�k;r; ~w

k�k

k�1;r

0

; ~w

0

for every � with

R




� = 0. This proves U 2 W

1�k;r

~w

(
) and we obtain for every  2

W

k;r

0

~w

0

;0;�

(
) using the de�nition of the distributional derivative and the fat that we an

approximate  by C

1

0

(
)-funtions in the norm of W

k;r

0

~w

0

;0

(
)

hv;  i = hV;  i = hrU;  i = �hU; div i = 0:

Now the Hahn-Banah Theorem proves the assertion.
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Lemma 5.2.

~

W

q;r

w; ~w

is a Banah spae equipped with the norm

kuk

~

W

q;r

w; ~w

= kuk

q;w

+ k�uj

C

1

0;�

(
)

k

(W

1;r

0

~w

0

;0;�

(
))

0

:

Proof. Let (u

n

)

n

be a Cauhy sequene in W

q;r

w; ~w

. Then there exists u 2 L

q

w

(
) and

v 2 (W

1;r

0

~w;0;�

(
))

0

with u

n

L

q

w

(
)

���! u and �u

n

(W

1;r

0

~w;0;�

(
))

0

�������! v. From the ontinuity of

� : L

q

w

(
)!W

�2;q

w

(
) it follows that hv; �i = h�u; �i for all � 2 C

1

0;�

(
).

The following Lemma is ruial when proving the well-de�nedness of the tangential

omponent of the trae on

~

W

q;r

w; ~w

.

Lemma 5.3. C

1

(
) is dense in

~

W

q;r

w; ~w

.

As a preparation for the proof of Lemma 5.3 we need two auxiliary results. The �rst

one onerns the solvability of the Laplae equation in the very weak ontext.

Theorem 5.4. For every f 2 Y

�2;q

w

(
) there exists a unique very weak solution u 2

L

q

w

(
) to the Laplae equation �u = f , i.e.,

hu;��i = hF; �i (5.2)

holds for every � 2 Y

2;q

0

w

0

(
). This solution ful�lls

kuk

q;w

� kfk

Y

�2;q

w

(
)

with  = (q; w;
) > 0.

Proof. As shown in [23, A1℄ one has that the existene of solutions to the Laplae

equation extends to weighted funtion spaes. More preisely, the operator

� : Y

2;q

0

w

0

(
)! L

q

0

w

0

(
)

is invertible, we denote its inverse by �

�1

D

. Thus we an de�ne a funtional u by

hu; vi := hf;�

�1

D

vi for every v 2 L

q

0

w

0

(
). Then

jhu; vij = jhf;�

�1

D

vij � kfk

Y

�2;q

w

(
)

k�

�1

D

vk

2;q

0

;w

0

� kfk

Y

�2;q

w

(
)

kvk

q

0

;w

0

:

Thus u 2 (L

q

0

w

0

(
))

0

= L

q

w

(
) and kuk

q;w

� kfk

Y

�2;q

w

(
)

.

To show that u is a very weak solution to the Laplae equation we see that for any

� 2 Y

2;q

0

w

0

(
)

hu;��i = hf;�

�1

D

��i = hf; �i:

Vie versa every very weak solution to the Laplae equation ful�lls

hu; �i = hu;��

�1

D

�i = hf;�

�1

D

�i:

This proves the uniqueness.

One problem in the weighted ontext is that if u 2 L

q

w

(R

n

), then the dilated funtion

u

�

(x) = u(�x) is in general not ontained in L

q

w

(R

n

). However, if u is harmoni, the

situation is better. More preisely one has the following Lemma.
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Lemma 5.5. Let 
 � R

n

be stritly star-shaped, i.e., 
 is star-shaped with respet to

every point of a ball B

r

(0), r > 0, with B

r

(0) � 
. Moreover, let u 2 L

q

w

(
) with

�u = 0. For � < 1 we set u

�

(x) := u(�x). Then

u

�

�!1;�<1

�����! u in L

q

w

(
):

Proof. Let d = sup

x2


jxj and hoose K <

r

d

. Then for every � with

1

2

< � < 1 one has

B

K(1��)jxj

(�x) � 
 for every x 2 
: (5.3)

To show this let y 2 R

n

, jy � �xj < K(1� �)jxj. For z =

y��x

1��

we have

jzj �

(1� �)

r

d

jxj

1� �

� r:

Sine 
 is star-shaped with respet to z 2 B

r

(0), we have y = �x+ (1� �)z 2 
. This

proves (5.3). Now we denote by ~u the extension of u by 0 outside 
. Take x 2 
 and

� < 1 �xed. Sine u is harmoni, we an estimate using the mean value property [18, I.

Theorem 2.1℄ and (5.3)

ju

�

(x)j = ju(�x)j =

1

jB

K(1��)jxj

(�x)j

�

�

�

�

�

Z

B

K(1��)jxj

(�x)

u(t)dt

�

�

�

�

�

�

(K + 1)

3

K

3

1

jB

(K+1)(1��)jxj

(x)j

Z

B

jxj(1��)+K(1��))

(x)

j~u(t)jdt � M ~u(x):

Sine M , the maximal operator in L

q

w

(
) is bounded by Theorem 2.5, one has M ~u 2

L

q

w

(R

n

). Thus, we have found a majorant. Moreover, sine the harmoni funtion

u 2 C

1

(
), the onvergene u

�

! u is pointwise. By Lebesgue's Theorem we �nd

u

�

! u in L

q

w

(
).

Proof of Lemma 5.3. Let u 2

~

W

q;r

w; ~w

. Then by de�nition and Lemma 4.1 we have

�uj

C

1

0;�

2 (W

1;r

0

~w

0

;0;�

(
))

0

,! Y

�2;q

w;�

(
):

The Hahn-Banah theorem yields the existene of some

f 2 (W

1;r

0

~w

0

;0

(
))

0

= W

�1;r

~w

(
) � Y

�2;q

w

(
)

suh that hf; �i = h�u; �i for all � 2 C

1

0;�

(
).

Using Hahn Banah's Theorem ombined with Theorem 2.4 one shows that there

exists an extension F 2 Y

�2;q

w

(
) of (hu;��i � f)j

Y

2;q

0

w

0

;�

(
)

vanishing on C

1

0

(
). By

Theorem 5.4 there exists a v 2 L

q

w

(
) suh that

hv;��i = hF; �i for all � 2 Y

2;q

0

w

0

(
):

This v is harmoni on 
 beause hF; �i = 0 for all � 2 C

1

0

(
).

Now we assume temporarily that 
 is star-shaped with respet to some ball B

r

(0)

with enter 0 and radius r. So we may set v

�

(x) := v(�x), where � 2 (0; 1) and

13



v

n

(x) := v

�

n

(x), where (�

n

) � (0; 1) is a sequene onverging to 1. Then by Theorem

2.4 we have v

n

n!1

���! v in L

q

w

(
). Moreover, sine every v

n

is harmoni, we have

�v

n

��v = 0 for all n whih yields the onvergene in

~

W

q;r

w; ~w

.

For an arbitrary bounded C

1;1

-domain 
 one uses a deomposition 
 =

S

N

i=1




i

with stritly star-shaped domains 


i

and a partition of unity (�

i

)

i

subordinate to this

overing. For i = 1; :::; N let (v

(i)

n

)

n

be the sequenes of harmoni funtions onstruted

above onverging to v

(i)

:= vj




i

in

~

W

q;r

w; ~w

(


i

). Then using the embeddings L

q

w

(
) ,!

W

�1;r

~w

(
) and W

�1;q

w

(
) ,! W

�1;r

~w

(
) ons shows that

v

n

:=

N

X

j=1

�

j

v

(j)

n

n!1

���! v in

~

W

q;r

w; ~w

(
):

Moreover, we have

hu� v;��i = hf; �i+ hF; �i � hF; �i = hf; �i for � 2 Y

2;q

0

w

0

;�

(
)

hu� v;r i =: hk;  i for  2 W

1;q

0

w

0

(
):

Let (f

n

)

n

; (k

n

)

n

� C

1

(
) suh that f

n

n!1

���! f inW

�1;r

~w

(
) and k

n

n!1

���! k inW

�1;q

w;0

(
).

The embedding W

�1;r

~w

(
) ,! Y

�2;q

w

(
) and the a priori estimate for very weak solutions

to the Stokes equations (3.7) yields that the sequene of very weak solutions (u

n

)

n

to

the Stokes problem with respet to f

n

and k

n

onverges to u � v in L

q

w

(
). By the

regularity of the data and of the boundary (Theorem 4.2) one has u

n

2 W

2;q

w

(
).

Sine hu

n

;��i = hf

n

; �i for all � 2 C

1

0;�

(
), it follows that the sequene (u

n

+ v

n

)

n

�

W

2;q

w

(
) approximates u in the norm of

~

W

q;r

w; ~w

. Sine C

1

(
) is dense in W

2;q

w

(
), the

assertion is proved.

It is not diÆult to see that if � 2 W

2;q

w

(
) with �j

�


= 0 and div � = 0, then N � r�

is purely tangential. The next Lemma shows that vie versa every purely tangential

funtion on the boundary is a normal derivative of suh a funtion.

Lemma 5.6. Let 
 be a bounded C

1;1

-domain, 1 < q < 1 and w 2 A

q

. For every

h 2 T

1;q

w

(�
) with N � h = 0 there exists a funtion �

h

2 W

2;q

w

(
) suh that

�

h

j

�


= 0; N � r�

h

= h and div �

h

= 0:

Moreover �

h

an be hosen depending linearly on h and ful�lling the estimate

k�

h

k

2;q;w

� khk

T

1;q

w

(�
)

with a onstant  = (
; q; w) > 0.

Proof. For h 2 T

1;q

w

(�
) there exists by Theorem 2.3 a funtion  

h

2 W

2;q

w

(
) depending

linearly on h suh that

 

h

j

�


= 0; N � r 

h

= h and k 

h

k

2;q;w

� khk

T

1;q

w

(�
)

:

Sine in addition h = N �r 

h

is purely tangential, one an show (see [14℄) that div 

h

2

W

1;q

w;0

(
). Thus by Theorem 2.4 there exists a funtion � 2 W

2;q

w;0

(
) with div � =

div 

h

, depending linearly on  

h

and satisfying the estimate k�k

2;q;w

� kdiv 

h

k

1;q;w

�

k 

h

k

2;q;w

.

Now �

h

:=  

h

� � solves the problem.
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Using this lemma we de�ne the tangential omponent of u 2

~

W

q;r

w; ~w

on the boundary

as follows. If u 2

~

W

q;r

w; ~w

and � 2 Y

2;q

0

w

0

;�

(
) we use the notation

h�

�

u; �i := lim

n!1

hu;��

n

i (5.4)

where (�

n

)

n

2 C

1

0;�

(
) onverges to � in W

1;r

0

~w

0

;0;�

(
). This is possible by Lemma 5.1, and

by the de�nition of

~

W

q;r

w; ~w

the funtional �

�

u is independent of the approximation (�

n

).

Theorem 5.7. There exists a ontinuous linear operator

 :

~

W

q;r

w; ~w

! T

0;q

w

(�
); suh that

h(u); hi

�


= hu;��

h

i � h�

�

u; �

h

i if N � h = 0;

h(u); hi

�


= 0 if h =

~

hN

(5.5)

for h 2 T

1;q

0

w

0

(�
), for some salar-valued

~

h 2 T

1;q

0

w

0

(�
), and where �

h

is given by Lemma

5.6. Moreover, this tangential trae is independent of the hoie of the extension �

h

and

oinides with the tangential omponent of the usual restrition if u 2 C

1

(
).

Proof. Assume that  is de�ned by (5.5). Let m 2 T

1;q

0

w

(�
). The funtion m an be

deomposed into its normal and tangential omponents, i.e.,

m = (N �m)N + h with N � h = 0

with khk

T

1;q

0

w

0

(�
)

� kmk

T

1;q

0

w

0

(�
)

. Then one obtains

jh(u); mi

�


j = jh(u); hi

�


j

= jhu;��

h

i � h�

�

u; �

h

ij

� kuk

q;w

k�

h

k

2;q

0

;w

0

+ k�

�

uk

(W

1;r

0

~w

0

;0;�

)

0

k�

h

k

1;r

0

; ~w

0

� kuk

~

W

q;r

w; ~w

kmk

T

1;q

0

w

0

(�
)

:

Thus  is ontinuous.

By Gauss' Theorem one obtains that for u 2 C

1

(
) and a purely tangential h 2

T

1;q

0

w

0

(�
) one has h(u); hi

�


= huj

�


; hi

�


. Thus the tangential omponent of (u)

is equal to the tangential omponent of uj

�


whih is in partiular independent of the

extension of h. Sine by Lemma 5.3 the spae C

1

(
) is dense in

~

W

q;r

w; ~w

the same is true

for every u 2

~

W

q;r

w; ~w

.

The de�nition of normal traes is easier. If

u 2 E

q;r

w; ~w

:= fv 2 L

q

w

(
) j div v 2 L

r

~w

(
)g

then we an de�ne the normal trae u 7! N � uj

�


using Green's formula by

hN � uj

�


; vi

�


:= huj

�


; Nvi

�


:= hdiv u; vi+ hu;rvi for all v 2 W

1;q

0

w

0

(
): (5.6)

This de�nes a funtional in T

0;q

w

(�
) sine by Theorem 2.3 for every � 2 T

1;q

0

w

0

(�
) there

exists v 2 W

1;q

w

(
) with

vj

�


= � and kvk

1;q

0

;w

0

� k�k

T

1;q

0

w

0

: (5.7)
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Moreover, it is known that there exists r 2 (1;1) suh that W

1;q

w

(
) ,! W

1;r

(
). Thus

we obtain from the orresponding result in the unweighted ase [25℄ that the right hand

side in (5.6) is independent of the extension v.

Then it follows from (5.7) that the mapping

u 7! N � uj

�


: E

q;r

w; ~w

! T

0;q

w

(�
)

is ontinuous. Using the above theorem for u 2

~

W

q;r

w; ~w

\ E

q;r

w; ~w

we write uj

�


= g if

h(u); hi

�


= hg; hi

�


for all h 2 T

1;q

0

w

0

(�
) with h�N = 0 and u�N j

�


= g �N: (5.8)

With this notation we also de�ne the operator

tr :

~

W

q;r

w; ~w

\ E

q;r

w; ~w

! T

0;q

w

(
); u 7! g:

Proposition 5.8. Let u be a very weak solution to the Stokes problem orresponding

to the data hf; �i = hF; �i � hg;N � r�i

�


and hk;  i = hK; i � hg;N �  i

�


with

F 2 W

�1;r

~w

(
), K 2 L

r

~w

(
), g 2 T

0;q

w

(�
).

Then u 2

~

W

q;r

w; ~w

\ E

q;r

w; ~w

and uj

�


= g.

Proof. By de�nition, u is the solution to the variational problem

�hu;��i = hF; �i � hg;N � r�i

�


; for all � 2 Y

2;q

0

w

0

;�

(
) and

�hu;r i =hK; i � hg;N �  i

�


; for all  2 W

1;q

0

w

0

(
):

Inserting � 2 C

1

0;�

(
) into the �rst equation we obtain that [� 7! h�u; �i = �hF; �i℄ is

extendable to an element of (W

1;r

0

~w;0;�

(
))

0

. Thus u 2

~

W

q;r

w; ~w

and by the de�nition of the

tangential trae we have

h(u); N � r�i

�


= hu;��i � h�

�

u; �i = hu;��i+ hF; �i = hg;N � r�i

�


for all � 2 Y

2;q

0

w

0

;�

(
). Using the seond equation one shows that N � uj

�


= N � g.

Remark 5.9. 1. It is not diÆult to see that the spae

~

W

q;r

w; ~w

is equal to the spae of

very weak solutions to the Stokes problem with respet to data

f = [� 7! hF; �i � hg;N � r�i

�


℄

with F 2 W

�1;r

~w

(
) and g 2 T

0;q

w

(�
) and k 2 W

�1;q

w;0

(
). Indeed, let u 2

~

W

q;r

w; ~w

and

let F 2 W

�1;r

~w

(
) be an extension of ��uj

C

1

0;�

(
)

. Then setting g := u 2 T

0;q

w

(
) we

obtain by the de�nition of 

�hu;��i = hF; �i � hg;N � r�i

�


for every � 2 Y

2;q

0

w

0

;�

(
):

2. In [14℄ the unweighted ase is treated. There the spae in whih the traes are

well-de�ned is de�ned in a di�erent way. We repeat this de�nition and show that the

out-oming spae is the same in the ase w = ~w = 1.
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For u 2 W

1;q

(
) one sets

kA

�

1

2

r

P

r

�uk

L

r

�

(
)

= sup

06=v2L

r

0

�

 

hru;rA

�

1

2

r

0

vi

kvk

L

r

0

�

(
)

!

;

where A

r

stands for the Stokes operator and P

r

for the Helmholtz projetion in L

r

(
)

and

1

r

�

1

n

+

1

q

. Note that r is hosen suh that by the Sobolev embedding theorems [1℄

one has W

1;r

(
) ,! L

q

(
). Then following [14℄ one de�nes



W

1;q

(
) := W

1;q

(
)

k�k



W

1;q

(
)

where kuk



W

1;q

(
)

:= kuk

q

+ kA

�

1

2

r

P

r

�uk

r

:

For u 2 C

1

(
) one has

k�uj

C

1

0;�

k

(W

1;r

0

0;�

)

0

= sup

�2C

1

0;�

;k�k

1;r

0

=1

jh�u; �ij

� sup

 2C

1

0;�

;k k

r

0

=1

jhP

r

�u;A

�

1

2

r

0

 ij = kA

�

1

2

r

P

r

�uk

r

;

where we have used that by [17℄ one has kA

1

2

r

0

� k

r

0

� kr � k

r

0

.

Thus in the unweighted ase these norms are equivalent and by the density shown in

Lemma 5.3 the spaes are equal.
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