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We investigate very weak solutions to the stationary Stokes and Stokes
resolvent problem in function spaces with Muckenhoupt weights. The no-
tion used here is similar but even more general than the one used in [2] or
[14]. Consequently the class of solutions is enlarged. To describe boundary
conditions we restrict ourselves to more regular data. We introduce a Ba-
nach space that admits a restriction operator and that contains the solutions
according to such data.
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1 Introduction

Let © be a bounded domain in R®, n > 2, with C*!'-boundary. We consider the
stationary Stokes resolvent problem with inhomogeneous data

Au—Au+Vp =F in Q
dive =K in Q (1.1)
u =g on Of).

It is our aim to find a large class of solutions to (1.1) demanding as low regularity of the
data as possible. In the most general case considered here the solutions possess a priori
no weak derivatives. Consequently the notion of weak solutions is no longer suitable in
this context. Thus one introduces the more general notion of very weak solutions.

To arrive at the definition of very weak solutions one multiplies the first equations in
(1.1) with a solenoidal test function ¢ vanishing on the boundary, then formal integration
by parts yields

(u, Ap) = (u, Ad)a = (F, ¢)a — (9, N - V)aq. (1.2)
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Applying the same method to the second equation with a sufficiently smooth test func-
tion v we obtain

—<U, VWQ = <K7 1/)>Q - <97 N - w>8ﬂ (13)

The equations (1.2) and (1.3) can be used for the definition of very weak solutions.
This or similar formulations have been introduced by Amann in [2], by Amrouche and
Girault in [3] and by Galdi, Simader and Sohr in [14]. In these articles as well as by
Farwig, Galdi and Sohr in [6], [5], [7] and by Giga in [16] solvability with low-regularity
data has been shown.

We use an even more general notion considering each right hand side of (1.2) and
(1.3) as one functional in ¢ or ¢, respectively. Since these right hand sides in (1.2)
and (1.3) contain a component that is supported on the boundary, it is natural that
these functionals are not contained in spaces of distributions on 2. The advantage
of this approach is a simple characterization of the space of solutions, more precise a
priori estimates and a shorter proof of the existence and uniqueness theorem. Moreover,
it is shown in Sections 4 and 5 that the classes of strong and of very weak solutions
considered in [14] are contained in the class of very weak solutions corresponding to the
non-distributional data that are considered in Section 3.

In the most general context considered here every L?-function can be considered as a
very weak solution with respect to appropriate data. Thus the restriction of a general
solution to the boundary is not well defined. However if one restricts oneself to more
regular data similar to those considered in [14] it is again possible to prescribe boundary
values. More precisely in Section 5 it is shown that very weak solutions corresponding
to the restricted data are contained in a Banach space that permits restrictions to the
boundary.

We investigate this problem in weighted function spaces. More precisely, we consider
Lebesgue and Sobolev spaces with respect to the measure wdxz, where w is a weight
function contained in the Muckenhoupt class A,. This is the class of nonnegative and
locally integrable weight functions, for which the expression
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is finite, where the supremum is taken over all cubes @) in R™.

Classical tools for the treatment of partial differential equations extend to function
spaces with Muckenhoupt weights. As important examples we mention the continuity
of the maximal operator [15], [26], the multiplier theorems [15], [26], extension theorems
of functions on a domain to functions on R” shown by Chua [4], extension theorems of
functions on the boundary to functions on the domain by Frohlich [11], see also [22] and
embedding theorems by Frohlich [12] using the continuity of singular integral operators
by Sawyer and Wheeden [21].

These tools were the base to treat the solvability of the Stokes and Navier-Stokes
equations in weighted function spaces by Farwig and Sohr in [8] and by Frohlich in [9],
[10], [11].

As shown in [8] examples of Muckenhoupt weights are

w(z) = (1+|z])*, —-n<a<n(g—1) or
dist (x, M)®, —(n—k)<a<(n—k)(¢g—1),



where M is a compact k-dimensional Lipschitzian manifold. Thus, if one chooses a
particular weight function, the developed theory can be used for a better control of the
growth of the solution, for example for |z| — oo, in the neighborhood of a point or close
to the boundary.

2 Preliminaries

All over this paper let ¢ € (1,00) and we consider a Muckenhoupt weight w € A, cf.
(1.4). Moreover, let k£ € Ny and let 2 C R™ be a Lipschitz domain. Then we define the
following weighted versions of Lebesgue and Sobolev spaces.

loc

_ 1
1. LL(Q) := {f € Lio(Q) | 1fllgw = ([ |flfwdz)® < oo}. Then it is an easy con-
sequence of the corresponding result in the unweighted case that

/ 1 1
(L) = LL,(Q) with =+ = =1 and w' = w 7T, (2.1)
q g

2. By C§°(€2) we denote the set of all smooth and compactly supported functions,
the space CgY,(€2) consists of all functions that are in addition divergence free.

3. Set WE() = {u € L) | ullbgan = X 1Dl < 0.

4. Moreover we set Wu]fg(Q) = CSO(Q)Mk’q’w. The dual space of it is denoted by
W, k() = (WAE())'

5. Using this for k£ > 0 we set W;y’g’q((z) = CSO(Q)MWJk’q(‘R").

6. Moreover, we consider the spaces of boundary values T*4(9Q) := (WE4(Q))|s0,

equipped with the norm [ - [ zx.a = [| - || 70 (aq, Of the factor space.

By [9], [11] and [4] the spaces L2 (Q), W5e(Q), W) and T57(9Q) are reflexive

w,0
Banach spaces in which C§°(Q), (C$°(R2), C*(9Q)]sq, respectively) are dense.
Note that by Necas [20], Chapitre 2, §5, in the unweighted case one has

TH(9Q) = W 99(0Q) for ke N and T%(9Q) = W™ 9(9).

In particular, the space T4(9) does not consist of functions but of distributions on
09).
By [4] the following extension theorem holds for weighted Sobolev spaces.

Theorem 2.1. Let Q be a bounded Lipschitz domain and N € N. Choose p; € [1,00),
w; € Ay, and ki € Ny, t =1, ..., N. Then there exists an extension operator

N N
E: (Y Whr(Q) — [ Whri(RY),

i=1 i=1
i.e., Eulg = u and ||Eu||W£p

3
Mis, Wi ().

&) S c||u||W£§,pi(m for i =1,....N and for every u €



Proof. This is a special case of [4, Theorem 4.1]. There Chua proves extension theorems
for the class of (g, 00)-domains. By [19] this class includes Lipschitz domains. O

Lemma 2.2. Let 2 be a bounded Lipschitz domain. For k € Z, q € (1,00) and w € A,
one has

W) = (Wi (@)

w,0
Proof. For k = 0 this follows from the density of C§°(€2) in L () and (2.1).

If k < 0 it follows from the definition and the reflexivity of W;}g’q(Q).
It remains to prove the case k > 0. By definition, Wuj’g’q(Q) is a closed subspace of

!
W k4(R™). Thus, for u € (Wﬁk’q(ﬂ)> there exists by the Hahn-Banach theorem a func-

w,0
tional U € (Wy(R"))" = W% (R") = WEY (R") with ||U]|
and Ulcg () = tlcg@)-
This means u can be identified with the function Ulq € W7 (Q) which fulfills

whe (jn) T leell sy

w,0

||U|Q||W£;q’(m < CHUH(WJ,’B*‘?(Q))"

Vice versa let u € W57 (Q). Then by Theorem 2.1 there exists U = Eu € W57 (R™)
with Ul|g = v and we obtain by the continuity of F and the Hahn-Banach theorem

cllullyr gy 2NVl @y = sup - [(U,9)]
2(Q) W (R
w w ¢€S7”¢kujk,Q(]Rn):1
> sup [(u, 9)| = ||U||(W*’5’q(9))"
O b

Thus we have shown (W, 59(Q)) = Wu]f,’q’(Q). Now the reflexivity of the spaces proves

w,0
the assertion. O

By [22] one has the following extension theorem of functions defined on the boundary
0L to functions defined on €.

Theorem 2.3. Let Q C R" be a bounded C*~"'-domain, k > 1. Then there exists a
continuous linear operator

k—1
L:[[TE709) - whi(Q)

=0
such that aa—ZéjL(g)|ag =g, 0<j <k—1, where g = (go, ..., gk—1)-
By [24] there holds the following weighted version of Bogowski’s Theorem.

Theorem 2.4. Let 2 C R™, n > 2, be a bounded and locally lipschitzian domain.
Assume that | € Wﬁg(Q) such that [ f = 0. Then there exists a function u € Wu]fjgl’q(Q)
such that

divu = f and ||u||k+1,q,w S C||f||k,q,w;

where ¢ = ¢(2, ¢, w, k). Moreover, u can be chosen such that it depends linearly on f
and such that u € C3°(Q) if f € C5°(2).



Theorem 2.5. Let 1 < ¢ < 00 and w € A,. Then the mazimal operator M defined by

1
(M) (e) = sup /Q ) ldy

is continuous on L1 (R™). More precisely, there exists a constant ¢ > 0 such that
1M fllgw < €l fllgw — for every f e L (R").

Vice versa if ju is a nonnegative Borel measure and M is bounded on LY(R™, i), then p
is absolutely continuous and dp = w dx for some w € A,.

Proof. See [15], Theorems 2.1 and 2.9. The reverse inclusion can be found in [26,
2.2]. 0

3 Very Weak Solutions Concerning Non-Distributional
Data

For a good formulation of our notion of very weak solutions, we need to define some
spaces of functions and functionals. Thus for w € A, we set

Yot () i= {u € WP (Q) | ulon = 0},

Y, 20(0) == (Y27 (Q)) and (3.1)
Wa (@) = (W ().

Moreover, we define the divergence-free versions
YZ0(Q) = {p e Y27 (Q) | divg =0} and YV, 29(Q):= (Y21 ().  (3.2)
Then for suitable F, K and g one obtains for the right hand sides of (1.2) and (1.3)

[¢ = <F7 ¢>Q - <ga N V¢>39] S Yw_27q(9)
[ = (K. ¥)a — (9, N - ¢)aa] € W, 5"().

In the sequel we consider external forces f € Y,729(Q) and divergences k € Wuj})’q(Q).
Lemma 3.1. C%(Q) is dense in Y, 29(Q) and in W, ().

Proof. inq,(Q) is reflexive being a closed subspace of the reflexive space WZ;qI(Q). Let
reY; Q) = Yj:ql(Q) such that (¢, z) = 0 for all ¢ € C>(Q). This yields x = 0 and
the assertion is proved. The assertion about Wuj})’q(ﬂ) is proved in the same way. [

Note that these spaces do not consist of distributions on € since C§°(2) is neither
dense in Y%7 () nor in W57 (). This leads to some difficulties when talking about
derivatives. However, restricting f or k to test functions ¢ € C§°(£2) one obtains an
element of W, %4(Q) or W 14(Q), respectively. If we say that equations are fulfilled in
the distributional sense, we consider these restrictions.



Definition 3.2. Let f € Y 29(Q) and k € Wl;,[l)’q(Q). A function u € L7 (€) is called

1. a very weak solution to the Stokes problem with respect to the data f and & if

—(u,A¢) = (f.¢), forallge Y22 (Q) and (3.3)
—(u, V) = (k,), forall » € W57 (Q). (3.4)

2. a very weak solution to the Stokes resolvent problem with respect to the data f
and k£ and A € C, if

(Au, ¢) — (u,Ag) = (f,¢), forall¢ €Y (Q) and (3.5)
—(u, VoY) = (k,), forall ¢ € W57 (Q). (3.6)

Setting ¢» = 1 in (3.4) and (3.6) it follows that a necessary condition for the existence
of such a very weak solution u is (k,1) = 0. This condition is the analogue to the
compatibility condition (k,1) = (g, N)sq between divergence and boundary values in
the case of weak solutions.

Remark 3.3. Some comments about the missing boundary values:

1. For every uw € L%(§2) one has
(6 (w,Ag)] € Y2U(Q) and [ {u, Vo)] € Wy g"(9).

Thus any u € LI () appears as a very weak solution to the Stokes problem
with respect to appropriate data. However, since C§°(£2) is dense in L (), it is
impossible to define boundary values for arbitrary LI-functions in the sense of a
continuous linear operator from L (2) into some boundary space which coincides
with the usual trace on smooth functions.

2. Dealing with very weak solutions one can define boundary values adding the term
(9, N - V@)sq on the right hand side of (3.3) and (g, N - )sq on the right hand
side of (3.4). This is done in e.g. in [2], [6] and [14] in the case of more regular
data. However, one easily sees that if g € T29(09) then

G=1[p— (9, N - Vd)oo] € Y, *(Q) and K =[¢p = (g, N - ¥)an] € W, (%),
the spaces of external forces and divergences, respectively. This means

—<U,A¢> = <f7¢>+<gan¢>8Q:<f+G,¢> and
—(u, Vo) = (k,¥)+ (g, N -)sq = (k+ K, ).

Hence, since the data is so irregular, it is impossible to distinguish between force
or divergence and boundary value.

3. In Section 5 we will consider the case of more regular (distributional) forces and
divergences. It will be described how to regain the possibility of prescribing bound-
ary data. Moreover, we will discuss why the existence and uniqueness of very weak
solutions in the sense of Definition 3.2 does not contradict the theory of strong
solutions to the Stokes equations in weighted spaces established in [9], [10].



In the following theorem it is stated that the constant in the a priori estimate is A,-
consistent. A constant C' = C(w) is called A,-consistent if for every ¢y > 0 it can be
chosen uniformly for all w € A, with A,(w) < co.

The A,-consistence is of great importance since it is needed for the application of the
Extrapolation Theorem [15, IV Lemma 5.18]. In particular this is used when showing
the continuity of operator-valued Fourier multipliers and the maximal regularity of an
operator; see e.g. [11] for details and applications.

Theorem 3.4. Let f € Y,;29(Q), k € W, ¢(Q) with (k,1) =0 and let A € . U {0} =
{xeC||arg(\)] <e+2}U{0} with0 <e < Z. Then there exists a unique very weak
solution u € LL(S2) to the Stokes resolvent problem in the sense of Definition 8.2.2. It
fulfills the a priori estimate

Ml sz + Tl < ¢ (1l 2oy + Wl 30 (37)

with ¢ = ¢(§2, q,w,e) > 0 depending A,-consistently on w.

Proof. Step 1. Let v € LZ;,(Q). By the existence of strong solutions to the Stokes
resolvent problem ([10, Theorem 3.3] in the case of weighted and [13], [25] in the case
of unweighted spaces) there are unique functions ¢ € Wiiq,(Q) and ¢ € Wul};q’(Q) which
depend linearly on v and such that

Ap—Ap+Vip=v and divg=0 inQ, ¢lsn=0 and /¢:0. (3.8)

This solution satisfies

M llgwr + 1PNl wr + 1] [1g70r < €llv]]gru

with an A,-consistent constant ¢ that is independent of A € ¥, U {0}.
Step 2. (Ezistence and a priori estimates) Setting for v € LI, (Q)

(u,v) :=(f,¢) — (k,¢), with (¢,¢) asin (3.8), (3.9)

we obtain
o) < 17, 8+ Gk, 03] < e (1l 2o+ bl 10 ) ol

Thus u € (L4,(Q)) = L8(Q) and fulfills lullgw < c(|flly-20 + [IFlly-1e) with ¢
independent of A and depending A,-consistently on w. ’

We now show that u is a very weak solution to the Stokes problem with respect
to f and k. Choose test functions ¢ € Yj;q;(Q) and ¢ € Wul);q,(Q). Then setting
v =MAp — A¢ + Vi) we obtain from the uniquéness of strong solutions

(U, Ao — A + V) = (u,v) = (f, ) — (k, ¥)
Since ¢ and v were chosen arbitrarily, (3.5) and (3.6) are fulfilled.



Moreover, let ¢ € Yj,q;(ﬂ) Then we obtain

O, ) < [ A) 4+ (£, D) < lullgws + 1 o2 |6l
1 llyzza + 1Elly 100019

Combining this with the previous estimate we get (3.7),
Step 3. (Uniqueness) Assume U € L4 () is a very weak solution to the Stokes resolvent

problem with respect to f and k. As above for every v € LZ;,(Q) we find ¢ € Yj,’f{,(Q)

and ¢ € Wul)iq,(Q) such that Au— A¢p+ Vi) = v. If we add the equations (3.5) and (3.6)
we obtain

<
<

2,¢'w'

(U,v) = (U, Ap = Ap + Vi) = (f, ) — (k, ¥) = (u, v).
Since v € Lz:,(Q) was arbitrary, we obtain u = U. O

Theorem 3.5. Let f and k be chosen as in Theorem 3.4 and let w € L1 () be the
assoctated very weak solution to the Stokes problem. Then there exists a unique pressure
functional p € Wuz%)’q(Q) (unique modulo constants) such that (u,p) solves

—(u, A¢) — (p,dive) = (f,6) forall ¢ €Y7 (9).
In particular
—Au+Vplege) = flog o)
in the sense of distributions. The functionals (u,p) fulfill the inequality

g + el < € (1 llygza + 1Elly-so ) (3.10)
where ¢ = ¢(Q, q,w) > 0.
Proof. By Lemma 3.1 there exist sequences (f,,)n, (kn)n C C*(£2) such that

[u

—2.q W_l’qQ
fo Yy () f oand k, w0 () 5

Then by [10, Theorem 3.3] there exist unique solutions (u,,p,) € W24(Q) x W1h4(Q)
such that

_Aun + Vpn = fn; div Up = kn; un|8§2 - 0; /pn =0.

Integration by parts implies that u,, is a very weak solution with respect to f,, k,. Now
a ’

the a priori estimate (3.2) shows wu,, L@, For ¢ € WL (Q) with [¢ =0let ¢ €

Yj,’q’(Q) be the solution to —A( + V7 = 0 and div({ = ¢. Then ||C||2,¢.w < ¢||@]|1.q w'-

Thus we obtain B

|<pn — Pm; ¢>|

[P = P, div Q) = V(P = P), €)
[{(A(un = wm), O+ [(Fa = fn, O]
c([lun = vmllgw + 1 fo = Frnllyz2a) |0l 1,070

n,Mm—00

Thus [[pn = pmll-10w0 < c(lun = tmllgw + [[fo = fmllyz20) = 0 and (pn)n is a
Cauchy sequence converging to some p € Wuj’é’q(Q). For this p

(1, AG) — (p,div 8) = lim (~(ur, AG) — (pn, div §)) = lim (£, ) = (£, 9)

holds for every ¢ € inq’(Q). The estimate (3.10) follows from the estimates for p, and
Uy, I

<
<



4 Regularity

The following Theorem 4.2 describes how strong solutions fit into the context of very
weak solutions considered in the previous section. Moreover, it prepares further consid-
erations about boundary values in the case of low regularity data.

Lemma 4.1. Let 1 < q,r < oo, w € A, and w € A, such that

W, (Q) = L (Q) = Li, (). (4.1)
Then
L(Q) = W, 5'(Q)  and Wy (Q) = Y, 29(Q)
Proof. Both assertions follow from (4.1) by duality. 0

The reason why we require these embeddings is that Sobolev-like inequalities in
weighted spaces need strong assumptions on the weight-functions. In [12] sufficient
conditions for such embeddings are proved using the continuity of singular integral op-
erators shown in [21].

Theorem 4.2. Assume that f € Y, 29(Q) and k € Wuj})’q(Q) allow a decomposition
into
(£.6) =(F.0)~ (9.N-Vo)on  forall 6 € Y27 (), )
(k,0) = (K0) = (g, N-t)an  for all € W1 (Q)
with g € T%9(0Q), F € W; " (Q), K € L7 (Q), where 1 <1 < 0o and i € A, are chosen
according to (4.1). Then one has:

1. Such a decomposition is uniquely defined by f and k.

2. For A € ¥. U {0} every strong solution u to the Stokes resolvent problem corre-
sponding to the data g € T>1(0R2), F € LL(Q) and K € WL(Q) is a very weak
solution corresponding to the data f and k with the notation of (4.2).

8. IfAe X .uU{0}, g€ T>(09Q), F € L1 (Q) and K € WL1(Q) with fQK = faQN-g,
then the very weak solution u to the Stokes resolvent problem with respect to f and
k is a strong solution with respect to F, K and g. In particular v € W2(Q) and

| Alllll g+l

2,90 < C(|[Fllguw+[ K

g HIME o+ lgllza+ IAglga). (43)

Proof. 1. Let (f, ) = (F;, ¢)—{g;, N-Vp)aq for i = 1,2 with Fj, g; as in the assumption.
Then

(Fy — Fy,¢) = (g1 — g2, N - Vo for ¢ € Y27 (Q).

The latter functional vanishes on C§°(Q2) and since Fy — Fy is a distribution on €, it
follows that F; — F5 = 0 and hence (g; — g2, N - V¢) = 0 for every ¢ € Yj,’q’(Q). By
Theorem 2.3 the mapping

¢ N-Vo: Y2 (Q) = TL (50)



is surjective, hence g = ¢go. Analogously one shows that the decomposition of the
divergence k is unique.
2. This follows immediately by integration by parts.
3. By Theorem 2.3 there exists v; € W29(Q) with vi]sq = g and [Jvi[l2,40 < cllg]l2.
and one has

(K —divey, 1) = (K, 1) — (g, N)sg = 0.

Hence, by [10, Theorem 3.3] there exists a strong solution vy € Y,24(Q2) with respect to
the exterior force F' — A\v; + Av; and divergence K — divvy. It fulfills the estimate

Alles
< (I g + 1801l + NIlo1lqgo + 1K = div o1 g0 + AN = div o[-

|q,w + ||U2 2,q,w

< ¢ (IFlgao + I llen

s+ 1T go + INIK = divon s + llllza)
(4.4)
Then u = vy + vy is a strong solution to the Stokes resolvent problem with respect to
the given data. Moreover, in the case A = 0, also the estimate is proved.
Now we repeat the above arguments with v; replaced by the solution to the Stokes

problem
—Av; +Vp=0, divey =0 and v|sn = g.

Then vy fulfills the estimate [|v1[[2,,0 < ¢[|l9l724(50)- In addition, by 2. we know that v,
is also a very weak solution with respect to the data

f=1p— (g, N-Ve)] and k= [t~ (g, N-)].

Thus we obtain the estimate

o < ¢ (Il 20 + Il 30) < ellgllggo

01
Inserting this in (4.4) we obtain

Al + llzqa Sl + Totllag + Nl
<c(IIF

|q,w + ||U2||2,q,w

o + A s+ llgllrgo + M lglloge)

lgw + 1K

Thus there exists a strong solution to the Stokes resolvent problem with respect to the
given data which fulfills the estimate.

The uniqueness of very weak solutions proved in Theorem 3.4 together with 2. yields
that u coincides with the very weak solution. In particular the very weak solution is
regular according to the data. O

Remark 4.3. If there exist decompositions for the data f and k as in (4.2) even with
smooth functions F) K, g this does not mean that f and k are smooth. The reason is
that if ¢ # 0, then ¢ — (g, N - V@) can never be a function since it is a functional
supported by the boundary and depending on derivatives.

Vice versa, if f and k are regular, e.g. f € W;(Q) and k € L% (Q) then they also
allow a decomposition according to (4.2) and we automatically obtain ¢ = 0, which
means that the very weak solution with respect to f and k£ has zero boundary values.

10



5 Boundary Values in the Case of More Regular Data

Our next aim is to define boundary values for very weak solutions to the Stokes problem
presumed the data is sufficiently regular. To this aim we find a Banach space containing
all solutions corresponding to such data and a continuous linear operator on this space
that coincides with the usual trace on C*°(€2).
From now on let 1 < r < 0o, @ € A, such that (4.1) is fulfilled and take F' € W;""(Q)
and K € L (Q) and g € T>7(952). Then
[0 = (F,¢) — (9, N - V§)an] € Y,;>!(Q) and
[ = (K, 9) = {9, N - ¥)aa] € W, 5"(%).
Thus by Theorem 3.4 there exists a unique function v € L% (Q) such that
—(u, Ap) = (F,¢) — (9, N - Vo)ag V¢ € Y0 (Q) and
—(u, V) = (K, 9) = (9, N - ¥)on Vi € W7 (Q).

However, the question arises in which sense this solution w fulfills u|gq = g.
As a large space of functions in which the definition of tangential boundary conditions
is possible we define

Wf,z)(Q) ={ue LL(Q) | (Au) )lcge () extends to an element of (Wul),r(l)g(Q))'}

5.1
:{ueLq ‘ dec > 0, uA¢> < ,,w'VQﬁGCg?a(Q)}v o)

where we denote Ww, 0, G(Q) = {u € Wi,r(;(ﬂ) | divu = 0}. We will omit the symbol

and write Wf}w if no confusion can occur.
To guarantee that the extension in (5.1) is uniquely defined by the values of (u, A¢@)
for ¢ € Cg%(Q2) we use the following Lemma.

Lemma 5.1. Let ' > 1, w € A, and k € N. Then one has

wi @
)

55 (Q = W, ().

Proof. We have to prove the density Cg5, () — WS,TQU(Q) To do this let
ve (Wh, (@), (v,6) =0 forall ¢€C5(Q).

By the Hahn-Banach theorem v extends to an element V € W;""(Q). Since (V,¢) =0
for every ¢ € Cg5,(Q), it follows by de Rham’s theorem [27] that V' = VU for some
U € C§°()'. By Theorem 2.4 there exists for every ¢ € C§°(Q) with [, ¢ = 0 some
¢ € C(Q) with div(¢ = ¢ and ||C||k.a < c||¢||k_1,.4- Thus we can estimate

(U, é)| = [{U, div G} = [(VU, ()| <
for every ¢ with fQ ¢ = 0. This proves U € Wu}fk’r(ﬂ) and we obtain for every 1) €
Wﬁ,r(;g(Q) using the definition of the distributional derivative and the fact that we can
approximate ¢ by C§°(€)-functions in the norm of Wﬁ,r(;(Q)

<,0777b> = (‘/7 1/)> = <VU7 77b> = _<U7 div 1/)> = 0.

Now the Hahn-Banach Theorem proves the assertion. O

T/
—Lrw
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Lemma 5.2. Wf,:u is a Banach space equipped with the norm
g, = Bl + 1 Aulcgs @0l oy

Proof. Let (un), be a Cauchy sequence in W, Then there exists u € LZ(Q2) and

, q wbr' (@)
v E (WUI)SU(Q))’ with wu, Le@®, ) and Auy, M) v. From the continuity of
A LL(Q) — W, 29(Q) it follows that (v, ¢) = (Au, ¢) for all ¢ € C§%(Q). O

The following Lemma is crucial when proving the well-definedness of the tangential
component of the trace on W7

Lemma 5.3. C*(Q) is dense in Wf};

As a preparation for the proof of Lemma 5.3 we need two auxiliary results. The first
one concerns the solvability of the Laplace equation in the very weak context.

Theorem 5.4. For every f € Y, 29(Q) there exists a unique very weak solution u €
L1 () to the Laplace equation Au = f, i.e.,

(u, Ag) = (F, ¢) (5.2)
holds for every ¢ € inql(ﬂ). This solution fulfills

lullgw < C||f||yuj2*q(ﬂ)

with ¢ = ¢(q, w, Q) > 0.

Proof. As shown in [23, Al] one has that the existence of solutions to the Laplace
equation extends to weighted function spaces. More precisely, the operator

A:Y2(Q) — LT, (Q)
is invertible, we denote its inverse by A,'. Thus we can define a functional u by
(u,v) = (f, Aptv) for every v € LZ;,(Q). Then

(o) = [(F, AR < [1flly 2@ |1 AL 0llzgrar < el fllyz2agyllvllyr

Thus u € (L%,()) = L4(Q) and [[ullgw < ¢l f[ly-20(0)-
To show that u is a very weak solution to the Laplace equation we see that for any

6 €Yo (Q)
(u, Ag) = (f, A5 A) = ([, 0).

Vice versa every very weak solution to the Laplace equation fulfills

(u, ) = (u, AAL' ) = (f, AL b).

This proves the uniqueness. O

One problem in the weighted context is that if uw € L (R™), then the dilated function
ux(x) = u(Ax) is in general not contained in L (R™). However, if u is harmonic, the
situation is better. More precisely one has the following Lemma.

12



Lemma 5.5. Let Q2 C R" be strictly star-shaped, i.e., 2 is star-shaped with respect to
every point of a ball B,(0), r > 0, with B,(0) C Q. Moreover, let u € L%(2) with
Au=0. For A <1 we set uy(x) := u(A\x). Then

AN L1(Q).

Proof. Let d = sup,eq |z| and choose K < L. Then for every A with 3 < A <1 one has

Br-ne|(Az) C Q for every z € (. (5.3)
To show this let y € R”, |y — Az| < K(1 — A)|z|. For z = yl__):\x we have
1—=X)E%
1—-A

Since € is star-shaped with respect to z € B,(0), we have y = Az + (1 — A\)z € Q. This
proves (5.3). Now we denote by @ the extension of u by 0 outside 2. Take x € Q and
A < 1 fixed. Since u is harmonic, we can estimate using the mean value property [18, I.
Theorem 2.1] and (5.3)

1
lup(z)] = |u(Az)| = / u(t)dt
|BK(1—/\)\x\()‘x)| Br(1-2)]z|(A)
(K +1)? 1

< la()]dt < eMi(z).
K? [ Br1ya-2el (O] B s sxa @)

Since M, the maximal operator in L% (£2) is bounded by Theorem 2.5, one has Ma €
L% (R™). Thus, we have found a majorant. Moreover, since the harmonic function
u € C*°(Q), the convergence uy, — u is pointwise. By Lebesgue’s Theorem we find
uy — u in LL(). O

Proof of Lemma 5.3. Let u € Wuq,:u Then by definition and Lemma 4.1 we have
Aulog, € (Wily,, () = ¥, 2(9).
The Hahn-Banach theorem yields the existence of some

f e Wylh(@) =Wz (Q) € Y, >9(9)

such that (f, #) = (Au, ¢) for all ¢ € CF%(12).
Using Hahn Banach’s Theorem combined with Theorem 2.4 one shows that there
exists an extension F € Y, 2(Q) of ((u,A-) — f) vanishing on C§°(§2). By

Theorem 5.4 there exists a v € L% () such that

2,q/
|Yw,1,(n>

(v, Ad) = (F,¢) forall ¢e Y2 (Q).

This v is harmonic on € because (F, ¢) =0 for all ¢ € C§°(Q).
Now we assume temporarily that € is star-shaped with respect to some ball B,.(0)
with center 0 and radius r. So we may set vy(z) = v(Az), where A € (0,1) and

13



vn(2) := vy, (z), where (A\,) C (0,1) is a sequence converging to 1. Then by Theorem
2.4 we have v, — v in L%(f2). Moreover, since every v, is harmonic, we have
Av, — Av = 0 for all n which yields the convergence in W7,

For an arbitrary bounded C'-domain Q one uses a decomposition Q@ = [J¥, Q;
with strictly star-shaped domains €2; and a partition of unity («;); subordinate to this
covering. For ¢ =1,..., N let (v,(f))n be the sequences of harmonic functions constructed
above converging to v := v|q, in WgL(QZ) Then using the embeddings L7 () —
W b"(Q) and W 4(Q) < W, " (Q) ons shows that

N
Uy, 1= Zajv,(lj) 27 vin Wgz}(Q)
j=1

Moreover, we have

(u—v,A¢) = (f,0) + (F.0) — (F, ¢) = (f,¢) for ¢ € Y2 (Q)
(u—v, Vo) = (k, ) for ¢ € Wh7(Q).
Let (fu)n, (kn)n C C®(Q) such that f, “== fin W " (Q) and k,, “= k in W, 7% ().

The embedding W' (Q) < Y,-29(Q) and the a priori estimate for very weak solutions
to the Stokes equations (3.7) yields that the sequence of very weak solutions (u,), to
the Stokes problem with respect to f, and k, converges to u — v in L%(2). By the
regularity of the data and of the boundary (Theorem 4.2) one has u,, € W2%(Q).

Since (u,, Ag) = (fn, ¢) for all ¢ € CF, (), it follows that the sequence (up +vn)n C

W24(Q) approximates u in the norm of W27, Since C*(Q) is dense in W29((), the
assertion is proved. O

It is not difficult to see that if ¢ € W24(Q) with ¢|sq = 0 and div ¢ = 0, then N - V¢
is purely tangential. The next Lemma shows that vice versa every purely tangential
function on the boundary is a normal derivative of such a function.

Lemma 5.6. Let Q be a bounded CY*-domain, 1 < q < oo and w € A,. For every
h € T21(0Q) with N - h = 0 there exists a function ¢, € W21(Q) such that

¢h|89 = 0, N - V¢h = h and diV¢h =0.
Moreover ¢y, can be chosen depending linearly on h and fulfilling the estimate

| b

with a constant ¢ = ¢(2, ¢, w) > 0.

Proof. For h € T}(9) there exists by Theorem 2.3 a function ¢, € W24(Q2) depending
linearly on h such that

Unlog =0, N - Vb, = h and ||[¥n]l2.4,0 < cl[hll 1 50)-

Since in addition h = N - V1), is purely tangential, one can show (see [14]) that div ¢, €
WL4(Q). Thus by Theorem 2.4 there exists a function ¢ € WUZ)%(Q) with div{ =

20w < Cllhllga 50

w,0
div ¢y, depending linearly on v, and satisfying the estimate ||(||2,4.0 < ¢||div ¢p||1,gw <
cllonl2,q.w-

Now ¢y, := v, — ( solves the problem. O
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Using this lemma we define the tangential component of u € Wuq)fu on the boundary
as follows. If u € Wq " and ¢ € Yu?,’:{;(ﬂ) we use the notation

(Aju, @) == lim (u, Agy,) (5.4)

n—oo
where (¢,,), € Cg%(€2) converges to ¢ in WJ},T[’)U(Q) This is possible by Lemma 5.1, and
by the definition of ngu the functional A,u is independent of the approximation (¢y,).

Theorem 5.7. There exists a continuous linear operator

v 3,:1, — T21(09), such that
(v(w), h)ag = (u, Agn) — (Agu, dp)  if N-h =0, (5.5)
(v(u),h)aa =0 if h=hN

forh € Tijiq’(aﬁ), for some scalar-valued h € Tijiq’(aﬁ), and where ¢y, is given by Lemma
9.0. Moreover, this tangential trace is independent of the choice of the extension ¢y, and
coincides with the tangential component of the usual restriction if u € C*®(S).

Proof. Assume that + is defined by (5.5). Let m € T.57 (02). The function m can be
decomposed into its normal and tangential components, i.e.,

m=(N-m)N+h with N-h=0

with ||A| < c[|ml]| Then one obtains

qu (69) qu CON

[(v(u), m)aal = [{v(u), h)oal
= [(u, Adp) — (Asu, ¢p)|
< ullgwll@nllzq e + ||Aau||(w3;r(') yl1Dnll1rm o

S CHUHVVZ,’,Z, m”Tul)’,ql(aQ)'

Thus 7y is continuous.

By Gauss’ Theorem one obtains that for u € C®(Q) and a purely tangential h €
Tul);q’(aQ) one has (y(u),h)sq = (ulsq, h)sq. Thus the tangential component of ~(u)
is equal to the tangential component of u|sn which is in particular independent of the
extension of h. Since by Lemma 5.3 the space C*°(€Q) is dense in Wf}; the same is true

for every u € W2, O
The definition of normal traces is easier. If
u€ By ={veLi(Q) |dive e L;(Q)}
then we can define the normal trace u — N - u|gq using Green’s formula by
(N - ulaq, v)oa = (u]an, Nv)sq := (divu,v) + (u, Vo) for all v e Wul};ql(Q). (5.6)

This defines a functional in T2(92) since by Theorem 2.3 for every ¢ € Tul};q’(GQ) there
exists v € W,4(Q) with

vlpo = ¢ and |loflgw < ellCllpe (5.7)
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Moreover, it is known that there exists r € (1,00) such that W14(Q) — W (Q). Thus
we obtain from the corresponding result in the unweighted case [25] that the right hand
side in (5.6) is independent of the extension v.

Then it follows from (5.7) that the mapping

ur— N-ulpg EZ;?;I) — Tg’q(aﬁ)

T

is continuous. Using the above theorem for u € W2 N EY" we write ulpn = g if

(y(u), Byoa = (g, hYaq for all h e THY(8Q) with h-N =0 and u-N|sq = g-N. (5.8)
With this notation we also define the operator
tr: WoL N ES = To(Q), ue g

Proposition 5.8. Let u be a very weak solution to the Stokes problem corresponding

to the data <f7 ¢> = (Fa ¢> - <gaN ’ v¢>39 and <k777b> = <K777b> - <gaN : ¢>89 with
FeW;"(Q), K € Li(Q), g € T2(09).
Then uw € Wiy N EL'y and ulag = g.

Proof. By definition, u is the solution to the variational problem
—(u, Ap) = (F, ¢) — (g, N - V)aq, forall ¢ € Y37 (Q) and
—(u, Vo) =(K,¥) = (9, N - ¥)pq,  for all € W7 (Q).

Inserting ¢ € CFY, () into the first equation we obtain that [¢ — (Au, ) = —(F) ¢)] is

extendable to an element of (WJ}S’G(Q))’ Thus u € Wf}; and by the definition of the
tangential trace we have

(Y(u), N - Voo = (u, Ap) — (Asu, ¢) = (u, Ad) + (F,9) = (9, N - Vo)an
for all ¢ € Yj,q;(ﬂ) Using the second equation one shows that N - ulsg = N - g. O

Remark 5.9. 1. It is not difficult to see that the space Wl‘f,z} is equal to the space of
very weak solutions to the Stokes problem with respect to data

f=1o—(F.¢) = (9, N - V)]
with F € W5 (Q) and g € T29(9Q) and k € W, (). Indeed, let u € W27 and

w,w

let ' € W;""(Q) be an extension of —Au|cs (o). Then setting g := yu € T94(Q) we
obtain by the definition of

—(u, Ap) = (F,¢) — (9, N - V@)aq for every ¢ € Y27 (Q).

2. In [14] the unweighted case is treated. There the space in which the traces are
well-defined is defined in a different way. We repeat this definition and show that the
out-coming space is the same in the case w = w = 1.
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For v € WH(Q) one sets

1
|A; 2P Au

_1
((Vu, VA2 v>>
Lr(Q) = Sup />

0#£veL? ||U||Lg;’(§z)

where A, stands for the Stokes operator and P, for the Helmholtz projection in L"(12)
and £ < L4 %. Note that 7 is chosen such that by the Sobolev embedding theorems [1]
one has W"(Q) < L4(Q2). Then following [14] one defines

= =<l 1.q -1
Wh(Q) = W) 7 where [[ullgag, = llully + 147 P Aull,.

For u € C*(2) one has

| Au|ceo || 1, = sup [(Au, @)
A T I R

_1 _1
~  sup (P Au, ALY = (A P Al
1/1608?0—7”1/)"7“’:1

1
where we have used that by [17] one has ||AZ - ||, ~ ||V - ||
Thus in the unweighted case these norms are equivalent and by the density shown in
Lemma 5.3 the spaces are equal.
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