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We investigate very weak solutions to the stationary Stokes and Stokes

resolvent problem in fun
tion spa
es with Mu
kenhoupt weights. The no-

tion used here is similar but even more general than the one used in [2℄ or

[14℄. Consequently the 
lass of solutions is enlarged. To des
ribe boundary


onditions we restri
t ourselves to more regular data. We introdu
e a Ba-

na
h spa
e that admits a restri
tion operator and that 
ontains the solutions

a

ording to su
h data.
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1 Introdu
tion

Let 
 be a bounded domain in R

n

, n � 2, with C

1;1

-boundary. We 
onsider the

stationary Stokes resolvent problem with inhomogeneous data

�u��u+rp = F in 


div u = K in 


u = g on �
:

(1.1)

It is our aim to �nd a large 
lass of solutions to (1.1) demanding as low regularity of the

data as possible. In the most general 
ase 
onsidered here the solutions possess a priori

no weak derivatives. Consequently the notion of weak solutions is no longer suitable in

this 
ontext. Thus one introdu
es the more general notion of very weak solutions.

To arrive at the de�nition of very weak solutions one multiplies the �rst equations in

(1.1) with a solenoidal test fun
tion � vanishing on the boundary, then formal integration

by parts yields

hu; ��i � hu;��i




= hF; �i




� hg;N � r�i

�


: (1.2)

�
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Applying the same method to the se
ond equation with a suÆ
iently smooth test fun
-

tion  we obtain

�hu;r i




= hK; i




� hg;N �  i

�


: (1.3)

The equations (1.2) and (1.3) 
an be used for the de�nition of very weak solutions.

This or similar formulations have been introdu
ed by Amann in [2℄, by Amrou
he and

Girault in [3℄ and by Galdi, Simader and Sohr in [14℄. In these arti
les as well as by

Farwig, Galdi and Sohr in [6℄, [5℄, [7℄ and by Giga in [16℄ solvability with low-regularity

data has been shown.

We use an even more general notion 
onsidering ea
h right hand side of (1.2) and

(1.3) as one fun
tional in � or  , respe
tively. Sin
e these right hand sides in (1.2)

and (1.3) 
ontain a 
omponent that is supported on the boundary, it is natural that

these fun
tionals are not 
ontained in spa
es of distributions on 
. The advantage

of this approa
h is a simple 
hara
terization of the spa
e of solutions, more pre
ise a

priori estimates and a shorter proof of the existen
e and uniqueness theorem. Moreover,

it is shown in Se
tions 4 and 5 that the 
lasses of strong and of very weak solutions


onsidered in [14℄ are 
ontained in the 
lass of very weak solutions 
orresponding to the

non-distributional data that are 
onsidered in Se
tion 3.

In the most general 
ontext 
onsidered here every L

q

-fun
tion 
an be 
onsidered as a

very weak solution with respe
t to appropriate data. Thus the restri
tion of a general

solution to the boundary is not well de�ned. However if one restri
ts oneself to more

regular data similar to those 
onsidered in [14℄ it is again possible to pres
ribe boundary

values. More pre
isely in Se
tion 5 it is shown that very weak solutions 
orresponding

to the restri
ted data are 
ontained in a Bana
h spa
e that permits restri
tions to the

boundary.

We investigate this problem in weighted fun
tion spa
es. More pre
isely, we 
onsider

Lebesgue and Sobolev spa
es with respe
t to the measure w dx, where w is a weight

fun
tion 
ontained in the Mu
kenhoupt 
lass A

q

. This is the 
lass of nonnegative and

lo
ally integrable weight fun
tions, for whi
h the expression

A

q

(w) := sup

Q

�

1

jQj

Z

Q

w dx

��

1

jQj

Z

Q

w

�

1

q�1

dx

�

q�1

(1.4)

is �nite, where the supremum is taken over all 
ubes Q in R

n

.

Classi
al tools for the treatment of partial di�erential equations extend to fun
tion

spa
es with Mu
kenhoupt weights. As important examples we mention the 
ontinuity

of the maximal operator [15℄, [26℄, the multiplier theorems [15℄, [26℄, extension theorems

of fun
tions on a domain to fun
tions on R

n

shown by Chua [4℄, extension theorems of

fun
tions on the boundary to fun
tions on the domain by Fr�ohli
h [11℄, see also [22℄ and

embedding theorems by Fr�ohli
h [12℄ using the 
ontinuity of singular integral operators

by Sawyer and Wheeden [21℄.

These tools were the base to treat the solvability of the Stokes and Navier-Stokes

equations in weighted fun
tion spa
es by Farwig and Sohr in [8℄ and by Fr�ohli
h in [9℄,

[10℄, [11℄.

As shown in [8℄ examples of Mu
kenhoupt weights are

w(x) = (1 + jxj)

�

; �n < � < n(q � 1) or

dist (x;M)

�

; �(n� k) < � < (n� k)(q � 1);
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where M is a 
ompa
t k-dimensional Lips
hitzian manifold. Thus, if one 
hooses a

parti
ular weight fun
tion, the developed theory 
an be used for a better 
ontrol of the

growth of the solution, for example for jxj ! 1, in the neighborhood of a point or 
lose

to the boundary.

2 Preliminaries

All over this paper let q 2 (1;1) and we 
onsider a Mu
kenhoupt weight w 2 A

q

, 
f.

(1.4). Moreover, let k 2 N

0

and let 
 � R

n

be a Lips
hitz domain. Then we de�ne the

following weighted versions of Lebesgue and Sobolev spa
es.

1. L

q

w

(
) :=

n

f 2 L

1

lo


(
) j kfk

q;w

:=

�
R




jf j

q

w dx

�

1

q

<1

o

. Then it is an easy 
on-

sequen
e of the 
orresponding result in the unweighted 
ase that

(L

q

w

(
))

0

= L

q

0

w

0

(
) with

1

q

+

1

q

0

= 1 and w

0

= w

�

1

q�1

: (2.1)

2. By C

1

0

(
) we denote the set of all smooth and 
ompa
tly supported fun
tions,

the spa
e C

1

0;�

(
) 
onsists of all fun
tions that are in addition divergen
e free.

3. Set W

k;q

w

(
) =

n

u 2 L

q

w

(
)

�

�

�

kuk

k;q;w

:=

P

j�j�k

kD

�

uk

q;w

<1

o

.

4. Moreover we set W

k;q

w;0

(
) = C

1

0

(
)

k�k

k;q;w

. The dual spa
e of it is denoted by

W

�k;q

w

(
) := (W

k;q

0

w

0

;0

(
))

0

.

5. Using this for k > 0 we set W

�k;q

w;0

(
) = C

1

0

(
)

k�k

W

�k;q

w

(R

n

)

.

6. Moreover, we 
onsider the spa
es of boundary values T

k;q

w

(�
) := (W

k;q

w

(
))j

�


,

equipped with the norm k � k

T

k;q

w

= k � k

T

k;q

w

(�
)

of the fa
tor spa
e.

By [9℄, [11℄ and [4℄ the spa
es L

q

w

(
), W

k;q

w

(
), W

k;q

w;0

(
) and T

k;q

w

(�
) are re
exive

Bana
h spa
es in whi
h C

1

0

(
), (C

1

0

(
), C

1

(
)j

�


, respe
tively) are dense.

Note that by Ne�
as [20℄, Chapitre 2, x5, in the unweighted 
ase one has

T

k;q

1

(�
) =W

k�

1

q

;q

(�
) for k 2 N and T

0;q

1

(�
) = W

�

1

q

;q

(�
):

In parti
ular, the spa
e T

0;q

w

(�
) does not 
onsist of fun
tions but of distributions on

�
.

By [4℄ the following extension theorem holds for weighted Sobolev spa
es.

Theorem 2.1. Let 
 be a bounded Lips
hitz domain and N 2 N. Choose p

i

2 [1;1),

w

i

2 A

p

i

and k

i

2 N

0

, i = 1; :::; N . Then there exists an extension operator

E :

N

\

i=1

W

k

i

;p

i

w

i

(
)!

N

\

i=1

W

k

i

;p

i

w

i

(R

n

);

i.e., Euj




= u and kEuk

W

k

i

;p

i

w

i

(R

n

)

� 
kuk

W

k

i

;p

i

w

i

(
)

for i = 1; :::; N and for every u 2

T

N

i=1

W

k

i

;p

i

w

i

(
).
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Proof. This is a spe
ial 
ase of [4, Theorem 4.1℄. There Chua proves extension theorems

for the 
lass of (";1)-domains. By [19℄ this 
lass in
ludes Lips
hitz domains.

Lemma 2.2. Let 
 be a bounded Lips
hitz domain. For k 2 Z, q 2 (1;1) and w 2 A

q

one has

W

�k;q

w;0

(
) =

�

W

k;q

0

w

0

(
)

�

0

:

Proof. For k = 0 this follows from the density of C

1

0

(
) in L

q

w

(
) and (2.1).

If k < 0 it follows from the de�nition and the re
exivity of W

�k;q

w;0

(
).

It remains to prove the 
ase k > 0. By de�nition, W

�k;q

w;0

(
) is a 
losed subspa
e of

W

�k;q

w

(R

n

). Thus, for u 2

�

W

�k;q

w;0

(
)

�

0

there exists by the Hahn-Bana
h theorem a fun
-

tional U 2

�

W

�k;q

w

(R

n

)

�

0

= W

k;q

0

w

0

;0

(R

n

) = W

k;q

0

w

0

(R

n

) with kUk

W

k;q

0

w

0

(R

n

)

= kuk

(W

�k;q

w;0

(
))

0

and U j

C

1

0

(
)

= uj

C

1

0

(
)

.

This means u 
an be identi�ed with the fun
tion U j




2 W

k;q

0

w

0

(
) whi
h ful�lls

kU j




k

W

k;q

0

w

0

(
)

� 
kuk

(W

�k;q

w;0

(
))

0

:

Vi
e versa let u 2 W

k;q

0

w

0

(
). Then by Theorem 2.1 there exists U = Eu 2 W

k;q

0

w

0

(R

n

)

with U j




= u and we obtain by the 
ontinuity of E and the Hahn-Bana
h theorem


kuk

W

k;q

0

w

0

(
)

�kUk

W

k;q

0

w

0

(R

n

)

= sup

�2S;k�k

W

�k;q

w

(R

n

)

=1

jhU; �ij

� sup

�2C

1

0

(
);k�k

W

�k;q

w

(R

n

)

=1

jhu; �ij = kuk

(W

�k;q

w;0

(
))

0

:

Thus we have shown (W

�k;q

w;0

(
))

0

= W

k;q

0

w

0

(
). Now the re
exivity of the spa
es proves

the assertion.

By [22℄ one has the following extension theorem of fun
tions de�ned on the boundary

�
 to fun
tions de�ned on 
.

Theorem 2.3. Let 
 � R

n

be a bounded C

k�1;1

-domain, k � 1. Then there exists a


ontinuous linear operator

L :

k�1

Y

j=0

T

k�j;q

w

(�
)!W

k;q

w

(
)

su
h that

�

j

�N

j

L(g)j

�


= g

j

, 0 � j � k � 1, where g = (g

0

; :::; g

k�1

).

By [24℄ there holds the following weighted version of Bogowski's Theorem.

Theorem 2.4. Let 
 � R

n

, n � 2, be a bounded and lo
ally lips
hitzian domain.

Assume that f 2 W

k;q

w;0

(
) su
h that

R

f = 0. Then there exists a fun
tion u 2 W

k+1;q

w;0

(
)

su
h that

div u = f and kuk

k+1;q;w

� 
kfk

k;q;w

;

where 
 = 
(
; q; w; k). Moreover, u 
an be 
hosen su
h that it depends linearly on f

and su
h that u 2 C

1

0

(
) if f 2 C

1

0

(
).
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Theorem 2.5. Let 1 < q <1 and w 2 A

q

. Then the maximal operator M de�ned by

(Mf)(x) = sup

Q3x

1

jQj

Z

Q

jf(y)jdy

is 
ontinuous on L

q

w

(R

n

). More pre
isely, there exists a 
onstant 
 > 0 su
h that

kMfk

q;w

� 
kfk

q;w

for every f 2 L

q

w

(R

n

):

Vi
e versa if � is a nonnegative Borel measure and M is bounded on L

q

(R

n

; �), then �

is absolutely 
ontinuous and d� = w dx for some w 2 A

q

.

Proof. See [15℄, Theorems 2.1 and 2.9. The reverse in
lusion 
an be found in [26,

2.2℄.

3 Very Weak Solutions Con
erning Non-Distributional

Data

For a good formulation of our notion of very weak solutions, we need to de�ne some

spa
es of fun
tions and fun
tionals. Thus for w 2 A

q

we set

Y

2;q

0

w

0

(
) := fu 2 W

2;q

0

w

0

(
) j uj

�


= 0g;

Y

�2;q

w

(
) := (Y

2;q

0

w

0

(
))

0

and

W

�1;q

w;0

(
) = (W

1;q

0

w

0

(
))

0

:

(3.1)

Moreover, we de�ne the divergen
e-free versions

Y

2;q

0

w

0

;�

(
) := f� 2 Y

2;q

0

w

0

(
) j div� = 0g and Y

�2;q

w;�

(
) := (Y

2;q

0

w

0

;�

(
))

0

: (3.2)

Then for suitable F;K and g one obtains for the right hand sides of (1.2) and (1.3)

[� 7! hF; �i




� hg;N � r�i

�


℄ 2 Y

�2;q

w

(
)

[ 7! hK; i




� hg;N �  i

�


℄ 2 W

�1;q

w;0

(
):

In the sequel we 
onsider external for
es f 2 Y

�2;q

w

(
) and divergen
es k 2 W

�1;q

w;0

(
).

Lemma 3.1. C

1

(
) is dense in Y

�2;q

w

(
) and in W

�1;q

w;0

(
).

Proof. Y

2;q

0

w

0

(
) is re
exive being a 
losed subspa
e of the re
exive spa
e W

2;q

0

w

0

(
). Let

x 2 Y

�2;q

w

(
)

0

= Y

2;q

0

w

0

(
) su
h that h�; xi = 0 for all � 2 C

1

(
). This yields x = 0 and

the assertion is proved. The assertion about W

�1;q

w;0

(
) is proved in the same way.

Note that these spa
es do not 
onsist of distributions on 
 sin
e C

1

0

(
) is neither

dense in Y

2;q

0

w

0

(
) nor in W

1;q

0

w

0

(
). This leads to some diÆ
ulties when talking about

derivatives. However, restri
ting f or k to test fun
tions � 2 C

1

0

(
) one obtains an

element of W

�2;q

w

(
) or W

�1;q

w

(
), respe
tively. If we say that equations are ful�lled in

the distributional sense, we 
onsider these restri
tions.
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De�nition 3.2. Let f 2 Y

�2;q

w

(
) and k 2 W

�1;q

w;0

(
). A fun
tion u 2 L

q

w

(
) is 
alled

1. a very weak solution to the Stokes problem with respe
t to the data f and k if

�hu;��i = hf; �i; for all � 2 Y

2;q

0

w

0

;�

(
) and (3.3)

�hu;r i = hk;  i; for all  2 W

1;q

0

w

0

(
): (3.4)

2. a very weak solution to the Stokes resolvent problem with respe
t to the data f

and k and � 2 C, if

h�u; �i � hu;��i = hf; �i; for all � 2 Y

2;q

0

w

0

;�

(
) and (3.5)

�hu;r i = hk;  i; for all  2 W

1;q

0

w

0

(
): (3.6)

Setting  = 1 in (3.4) and (3.6) it follows that a ne
essary 
ondition for the existen
e

of su
h a very weak solution u is hk; 1i = 0. This 
ondition is the analogue to the


ompatibility 
ondition hk; 1i = hg;Ni

�


between divergen
e and boundary values in

the 
ase of weak solutions.

Remark 3.3. Some 
omments about the missing boundary values:

1. For every u 2 L

q

w

(
) one has

[� 7! hu;��i℄ 2 Y

�2;q

w

(
) and [ 7! hu;r i℄ 2 W

�1;q

w;0

(
):

Thus any u 2 L

q

w

(
) appears as a very weak solution to the Stokes problem

with respe
t to appropriate data. However, sin
e C

1

0

(
) is dense in L

q

w

(
), it is

impossible to de�ne boundary values for arbitrary L

q

w

-fun
tions in the sense of a


ontinuous linear operator from L

q

w

(
) into some boundary spa
e whi
h 
oin
ides

with the usual tra
e on smooth fun
tions.

2. Dealing with very weak solutions one 
an de�ne boundary values adding the term

hg;N � r�i

�


on the right hand side of (3.3) and hg;N �  i

�


on the right hand

side of (3.4). This is done in e.g. in [2℄, [6℄ and [14℄ in the 
ase of more regular

data. However, one easily sees that if g 2 T

0;q

w

(�
) then

G = [� 7! hg;N � r�i

�


℄ 2 Y

�2;q

w

(
) and K = [ 7! hg;N �  i

�


℄ 2 W

�1;q

w;0

(
);

the spa
es of external for
es and divergen
es, respe
tively. This means

�hu;��i = hf; �i+ hg;N � r�i

�


= hf +G; �i and

�hu;r i = hk;  i+ hg;N �  i

�


= hk +K; i:

Hen
e, sin
e the data is so irregular, it is impossible to distinguish between for
e

or divergen
e and boundary value.

3. In Se
tion 5 we will 
onsider the 
ase of more regular (distributional) for
es and

divergen
es. It will be des
ribed how to regain the possibility of pres
ribing bound-

ary data. Moreover, we will dis
uss why the existen
e and uniqueness of very weak

solutions in the sense of De�nition 3.2 does not 
ontradi
t the theory of strong

solutions to the Stokes equations in weighted spa
es established in [9℄, [10℄.
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In the following theorem it is stated that the 
onstant in the a priori estimate is A

q

-


onsistent. A 
onstant C = C(w) is 
alled A

q

-
onsistent if for every 


0

> 0 it 
an be


hosen uniformly for all w 2 A

q

with A

q

(w) < 


0

.

The A

q

-
onsisten
e is of great importan
e sin
e it is needed for the appli
ation of the

Extrapolation Theorem [15, IV Lemma 5.18℄. In parti
ular this is used when showing

the 
ontinuity of operator-valued Fourier multipliers and the maximal regularity of an

operator; see e.g. [11℄ for details and appli
ations.

Theorem 3.4. Let f 2 Y

�2;q

w

(
), k 2 W

�1;q

w;0

(
) with hk; 1i = 0 and let � 2 �

"

[ f0g =

�

� 2 C j j arg(�)j < "+

�

2

	

[f0g with 0 < " <

�

2

. Then there exists a unique very weak

solution u 2 L

q

w

(
) to the Stokes resolvent problem in the sense of De�nition 3.2.2. It

ful�lls the a priori estimate

�kuj

Y

2;q

0

w

0

;�

(
)

k

Y

�2;q

w;�

+ kuk

q;w

� 


�

kfk

Y

�2;q

w

(
)

+ kkk

W

�1;q

w;0

�

(3.7)

with 
 = 
(
; q; w; ") > 0 depending A

q

-
onsistently on w.

Proof. Step 1. Let v 2 L

q

0

w

0

(
). By the existen
e of strong solutions to the Stokes

resolvent problem ([10, Theorem 3.3℄ in the 
ase of weighted and [13℄, [25℄ in the 
ase

of unweighted spa
es) there are unique fun
tions � 2 W

2;q

0

w

0

(
) and  2 W

1;q

0

w

0

(
) whi
h

depend linearly on v and su
h that

�����+r = v and div � = 0 in 
; �j

�


= 0 and

Z

 = 0: (3.8)

This solution satis�es

�k�k

q

0

;w

0

+ k�k

2;q

0

;w

0

+ k k

1;q

0

;w

0

� 
kvk

q

0

;w

0

with an A

q

-
onsistent 
onstant 
 that is independent of � 2 �

"

[ f0g.

Step 2. (Existen
e and a priori estimates) Setting for v 2 L

q

0

w

0

(
)

hu; vi := hf; �i � hk;  i; with (�;  ) as in (3:8); (3.9)

we obtain

jhu; vij � jhf; �ij+ jhk;  ij � 


�

kfk

Y

�2;q

w

+ kkk

W

�1;q

w;0

�

kvk

q

0

;w

0

:

Thus u 2 (L

q

0

w

0

(
))

0

= L

q

w

(
) and ful�lls kuk

q;w

� 
(kfk

Y

�2;q

w

+ kkk

W

�1;q

w;0

) with 


independent of � and depending A

q

-
onsistently on w.

We now show that u is a very weak solution to the Stokes problem with respe
t

to f and k. Choose test fun
tions � 2 Y

2;q

0

w

0

;�

(
) and  2 W

1;q

0

w

0

(
). Then setting

v = �����+r we obtain from the uniqueness of strong solutions

hu; ����� +r i = hu; vi = hf; �i � hk;  i:

Sin
e � and  were 
hosen arbitrarily, (3.5) and (3.6) are ful�lled.

7



Moreover, let � 2 Y

2;q

0

w

0

;�

(
). Then we obtain

jh�u; �ij � jhu;��ij+ jhf; �ij � (kuk

q;w

+ kfk

Y

�2;q

w

)k�k

2;q

0

;w

0

� 
(kfk

Y

�2;q

w

+ kkk

W

�1;q

w;0

(
)

)k�k

2;q

0

;w

0

:

Combining this with the previous estimate we get (3.7),

Step 3. (Uniqueness) Assume U 2 L

q

w

(
) is a very weak solution to the Stokes resolvent

problem with respe
t to f and k. As above for every v 2 L

q

0

w

0

(
) we �nd � 2 Y

2;q

0

w

0

;�

(
)

and  2 W

1;q

0

w

0

(
) su
h that �u���+r = v. If we add the equations (3.5) and (3.6)

we obtain

hU; vi = hU; �����+r i = hf; �i � hk;  i = hu; vi:

Sin
e v 2 L

q

0

w

0

(
) was arbitrary, we obtain u = U .

Theorem 3.5. Let f and k be 
hosen as in Theorem 3.4 and let u 2 L

q

w

(
) be the

asso
iated very weak solution to the Stokes problem. Then there exists a unique pressure

fun
tional p 2 W

�1;q

w;0

(
) (unique modulo 
onstants) su
h that (u; p) solves

�hu;��i � hp; div�i = hf; �i for all � 2 Y

2;q

0

w

0

(
):

In parti
ular

��u+rpj

C

1

0

(
)

= f j

C

1

0

(
)

in the sense of distributions. The fun
tionals (u; p) ful�ll the inequality

kuk

q;w

+ kpk

W

�1;q

w;0

� 


�

kfk

Y

�2;q

w

+ kkk

W

�1;q

w;0

�

; (3.10)

where 
 = 
(
; q; w) > 0.

Proof. By Lemma 3.1 there exist sequen
es (f

n

)

n

; (k

n

)

n

� C

1

(
) su
h that

f

n

Y

�2;q

w

(
)

�����! f and k

n

W

�1;q

w;0

(
)

�����! k:

Then by [10, Theorem 3.3℄ there exist unique solutions (u

n

; p

n

) 2 W

2;q

w

(
) �W

1;q

w

(
)

su
h that

��u

n

+rp

n

= f

n

; div u

n

= k

n

; u

n

j

�


= 0;

Z

p

n

= 0:

Integration by parts implies that u

n

is a very weak solution with respe
t to f

n

; k

n

. Now

the a priori estimate (3.2) shows u

n

L

q

w

(
)

���! u. For � 2 W

1;q

0

w

0

(
) with

R

� = 0 let � 2

Y

2;q

0

w

0

(
) be the solution to ��� +r� = 0 and div � = �. Then k�k

2;q

0

;w

0

� 
k�k

1;q

0

;w

0

.

Thus we obtain

jhp

n

� p

m

; �ij = jhp

n

� p

m

; div �ij = jhr(p

n

� p

m

); �ij

� jh�(u

n

� u

m

); �ij+ jhf

n

� f

m

; �ij

� 
(ku

n

� u

m

k

q;w

+ kf

n

� f

m

k

Y

�2;q

w

)k�k

1;q

0

;w

0

:

Thus kp

n

� p

m

k

�1;q;w;0

� 
(ku

n

� u

m

k

q;w

+ kf

n

� f

m

k

Y

�2;q

w

)

n;m!1

����! 0 and (p

n

)

n

is a

Cau
hy sequen
e 
onverging to some p 2 W

�1;q

w;0

(
). For this p

�hu;��i � hp; div �i = lim

n!1

(�hu

n

;��i � hp

n

; div�i) = lim

n!1

hf

n

; �i = hf; �i

holds for every � 2 Y

2;q

0

w

0

(
). The estimate (3.10) follows from the estimates for p

n

and

u

n

.
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4 Regularity

The following Theorem 4.2 des
ribes how strong solutions �t into the 
ontext of very

weak solutions 
onsidered in the previous se
tion. Moreover, it prepares further 
onsid-

erations about boundary values in the 
ase of low regularity data.

Lemma 4.1. Let 1 < q; r <1, w 2 A

q

and ~w 2 A

r

su
h that

W

1;q

0

w

0

(
) ,! L

r

0

~w

0

(
) ,! L

q

0

w

0

(
): (4.1)

Then

L

r

~w

(
) ,! W

�1;q

w;0

(
) and W

�1;r

~w

(
) ,! Y

�2;q

w

(
)

Proof. Both assertions follow from (4.1) by duality.

The reason why we require these embeddings is that Sobolev-like inequalities in

weighted spa
es need strong assumptions on the weight-fun
tions. In [12℄ suÆ
ient


onditions for su
h embeddings are proved using the 
ontinuity of singular integral op-

erators shown in [21℄.

Theorem 4.2. Assume that f 2 Y

�2;q

w

(
) and k 2 W

�1;q

w;0

(
) allow a de
omposition

into

hf; �i = hF; �i � hg;N � r�i

�


for all � 2 Y

2;q

0

w

0

(
);

hk;  i = hK; i � hg;N �  i

�


for all  2 W

1;q

0

w

0

(
)

(4.2)

with g 2 T

0;q

w

(�
); F 2 W

�1;r

~w

(
); K 2 L

r

~w

(
), where 1 < r <1 and ~w 2 A

r

are 
hosen

a

ording to (4.1). Then one has:

1. Su
h a de
omposition is uniquely de�ned by f and k.

2. For � 2 �

"

[ f0g every strong solution u to the Stokes resolvent problem 
orre-

sponding to the data g 2 T

2;q

w

(�
), F 2 L

q

w

(
) and K 2 W

1;q

w

(
) is a very weak

solution 
orresponding to the data f and k with the notation of (4.2).

3. If � 2 �

"

[f0g, g 2 T

2;q

w

(�
), F 2 L

q

w

(
) and K 2 W

1;q

w

(
) with

R




K =

R

�


N �g,

then the very weak solution u to the Stokes resolvent problem with respe
t to f and

k is a strong solution with respe
t to F;K and g. In parti
ular u 2 W

2;q

w

(
) and

j�jkuk

q;w

+kuk

2;q;w

� 
(kFk

q;w

+kKk

1;q;w

+k�Kk

W

�1;q

w;0

+kgk

T

2;q

w

+k�gk

T

0;q

w

): (4.3)

Proof. 1. Let hf; �i = hF

i

; �i�hg

i

; N �r�i

�


for i = 1; 2 with F

i

, g

i

as in the assumption.

Then

hF

1

� F

2

; �i = hg

1

� g

2

; N � r�i

�


for � 2 Y

2;q

0

w

0

(
):

The latter fun
tional vanishes on C

1

0

(
) and sin
e F

1

� F

2

is a distribution on 
, it

follows that F

1

� F

2

= 0 and hen
e hg

1

� g

2

; N � r�i = 0 for every � 2 Y

2;q

0

w

0

(
). By

Theorem 2.3 the mapping

� 7! N � r� : Y

2;q

0

w

0

(
)! T

1;q

0

w

0

(�
)
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is surje
tive, hen
e g

1

= g

2

. Analogously one shows that the de
omposition of the

divergen
e k is unique.

2. This follows immediately by integration by parts.

3. By Theorem 2.3 there exists v

1

2 W

2;q

w

(
) with v

1

j

�


= g and kv

1

k

2;q;w

� 
kgk

T

2;q

w

and one has

hK � div v

1

; 1i = hK; 1i � hg;Ni

�


= 0:

Hen
e, by [10, Theorem 3.3℄ there exists a strong solution v

2

2 Y

2;q

w

(
) with respe
t to

the exterior for
e F � �v

1

+�v

1

and divergen
e K � div v

1

. It ful�lls the estimate

j�jkv

2

k

q;w

+ kv

2

k

2;q;w

� 


�

kFk

q;w

+ k�v

1

k

q;w

+ j�jkv

1

k

q;w

+ kK � div v

1

k

1;q;w

+ j�jkK � div v

1

k

W

�1;q

w;0

�

� 


�

kFk

q;w

+ j�jkv

1

k

q;w

+ kKk

1;q;w

+ j�jkK � div v

1

k

W

�1;q

w;0

+ kgk

T

2;q

w

�

:

(4.4)

Then u = v

1

+ v

2

is a strong solution to the Stokes resolvent problem with respe
t to

the given data. Moreover, in the 
ase � = 0, also the estimate is proved.

Now we repeat the above arguments with v

1

repla
ed by the solution to the Stokes

problem

��v

1

+rp = 0; div v

1

= 0 and v

1

j

�


= g:

Then v

1

ful�lls the estimate kv

1

k

2;q;w

� 
kgk

T

2;q

w

(�
)

. In addition, by 2. we know that v

1

is also a very weak solution with respe
t to the data

~

f = [� 7! hg;N � r�i℄ and

~

k = [ 7! hg;N �  i℄:

Thus we obtain the estimate

kv

1

k

q;w

� 


�

k

~

fk

Y

�2;q

w

+ k

~

kk

W

�1;q

w;0

�

� 
kgk

T

0;q

w

:

Inserting this in (4.4) we obtain

j�jkuk

q;w

+ kuk

2;q;w

�j�jkv

1

k

q;w

+ kv

1

k

2;q;w

+ j�jkv

2

k

q;w

+ kv

2

k

2;q;w

�


�

kFk

q;w

+ kKk

1;q;w

+ j�jkKk

W

�1;q

w;0

+ kgk

T

2;q

w

+ j�jkgk

T

0;q

w

�

:

Thus there exists a strong solution to the Stokes resolvent problem with respe
t to the

given data whi
h ful�lls the estimate.

The uniqueness of very weak solutions proved in Theorem 3.4 together with 2. yields

that u 
oin
ides with the very weak solution. In parti
ular the very weak solution is

regular a

ording to the data.

Remark 4.3. If there exist de
ompositions for the data f and k as in (4.2) even with

smooth fun
tions F;K; g this does not mean that f and k are smooth. The reason is

that if g 6= 0, then � 7! hg;N � r�i 
an never be a fun
tion sin
e it is a fun
tional

supported by the boundary and depending on derivatives.

Vi
e versa, if f and k are regular, e.g. f 2 W

�1;q

w

(
) and k 2 L

q

w

(
) then they also

allow a de
omposition a

ording to (4.2) and we automati
ally obtain g = 0, whi
h

means that the very weak solution with respe
t to f and k has zero boundary values.
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5 Boundary Values in the Case of More Regular Data

Our next aim is to de�ne boundary values for very weak solutions to the Stokes problem

presumed the data is suÆ
iently regular. To this aim we �nd a Bana
h spa
e 
ontaining

all solutions 
orresponding to su
h data and a 
ontinuous linear operator on this spa
e

that 
oin
ides with the usual tra
e on C

1

(
).

From now on let 1 < r <1, ~w 2 A

r

su
h that (4.1) is ful�lled and take F 2 W

�1;r

~w

(
)

and K 2 L

r

~w

(
) and g 2 T

0;q

w

(�
). Then

[� 7! hF; �i � hg;N � r�i

�


℄ 2 Y

�2;q

w

(
) and

[ 7! hK; i � hg;N �  i

�


℄ 2 W

�1;q

w;0

(
):

Thus by Theorem 3.4 there exists a unique fun
tion u 2 L

q

w

(
) su
h that

�hu;��i = hF; �i � hg;N � r�i

�


8� 2 Y

2;q

0

w

0

;�

(
) and

�hu;r i = hK; i � hg;N �  i

�


8 2 W

1;q

0

w

(
):

However, the question arises in whi
h sense this solution u ful�lls uj

�


= g.

As a large spa
e of fun
tions in whi
h the de�nition of tangential boundary 
onditions

is possible we de�ne

~

W

q;r

w; ~w

(
) :=

�

u 2 L

q

w

(
)

�

�

(�u)j

C

1

0;�

(
)

extends to an element of (W

1;r

0

~w

0

;0;�

(
))

0

	

=

�

u 2 L

q

w

(
)

�

�

9
 > 0; jhu;��ij � 
k�k

1;r

0

; ~w

0

8� 2 C

1

0;�

(
)

	

;

(5.1)

where we denote W

k;r

0

~w

0

;0;�

(
) :=

n

u 2 W

k;r

0

~w

0

;0

(
) j div u = 0

o

. We will omit the symbol 


and write

~

W

q;r

w; ~w

if no 
onfusion 
an o

ur.

To guarantee that the extension in (5.1) is uniquely de�ned by the values of hu;��i

for � 2 C

1

0;�

(
) we use the following Lemma.

Lemma 5.1. Let r

0

> 1, ~w 2 A

r

0

and k 2 N. Then one has

C

1

0;�

(
)

W

k;r

0

~w

0

(
)

= W

k;r

0

~w

0

;0;�

(
):

Proof. We have to prove the density C

1

0;�

(
) ,! W

k;r

0

~w

0

;0;�

(
). To do this let

v 2 (W

k;r

0

~w

0

;0;�

(
))

0

; hv; �i = 0 for all � 2 C

1

0;�

(
):

By the Hahn-Bana
h theorem v extends to an element V 2 W

�k;r

~w

(
). Sin
e hV; �i = 0

for every � 2 C

1

0;�

(
), it follows by de Rham's theorem [27℄ that V = rU for some

U 2 C

1

0

(
)

0

. By Theorem 2.4 there exists for every � 2 C

1

0

(
) with

R




� = 0 some

� 2 C

1

0

(
) with div � = � and k�k

k;r

0

; ~w

0

� 
k�k

k�1;r

0

; ~w

0

. Thus we 
an estimate

jhU; �ij = jhU; div �ij = jhrU; �ij � 
kV k

�k;r; ~w

k�k

k�1;r

0

; ~w

0

for every � with

R




� = 0. This proves U 2 W

1�k;r

~w

(
) and we obtain for every  2

W

k;r

0

~w

0

;0;�

(
) using the de�nition of the distributional derivative and the fa
t that we 
an

approximate  by C

1

0

(
)-fun
tions in the norm of W

k;r

0

~w

0

;0

(
)

hv;  i = hV;  i = hrU;  i = �hU; div i = 0:

Now the Hahn-Bana
h Theorem proves the assertion.
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Lemma 5.2.

~

W

q;r

w; ~w

is a Bana
h spa
e equipped with the norm

kuk

~

W

q;r

w; ~w

= kuk

q;w

+ k�uj

C

1

0;�

(
)

k

(W

1;r

0

~w

0

;0;�

(
))

0

:

Proof. Let (u

n

)

n

be a Cau
hy sequen
e in W

q;r

w; ~w

. Then there exists u 2 L

q

w

(
) and

v 2 (W

1;r

0

~w;0;�

(
))

0

with u

n

L

q

w

(
)

���! u and �u

n

(W

1;r

0

~w;0;�

(
))

0

�������! v. From the 
ontinuity of

� : L

q

w

(
)!W

�2;q

w

(
) it follows that hv; �i = h�u; �i for all � 2 C

1

0;�

(
).

The following Lemma is 
ru
ial when proving the well-de�nedness of the tangential


omponent of the tra
e on

~

W

q;r

w; ~w

.

Lemma 5.3. C

1

(
) is dense in

~

W

q;r

w; ~w

.

As a preparation for the proof of Lemma 5.3 we need two auxiliary results. The �rst

one 
on
erns the solvability of the Lapla
e equation in the very weak 
ontext.

Theorem 5.4. For every f 2 Y

�2;q

w

(
) there exists a unique very weak solution u 2

L

q

w

(
) to the Lapla
e equation �u = f , i.e.,

hu;��i = hF; �i (5.2)

holds for every � 2 Y

2;q

0

w

0

(
). This solution ful�lls

kuk

q;w

� 
kfk

Y

�2;q

w

(
)

with 
 = 
(q; w;
) > 0.

Proof. As shown in [23, A1℄ one has that the existen
e of solutions to the Lapla
e

equation extends to weighted fun
tion spa
es. More pre
isely, the operator

� : Y

2;q

0

w

0

(
)! L

q

0

w

0

(
)

is invertible, we denote its inverse by �

�1

D

. Thus we 
an de�ne a fun
tional u by

hu; vi := hf;�

�1

D

vi for every v 2 L

q

0

w

0

(
). Then

jhu; vij = jhf;�

�1

D

vij � kfk

Y

�2;q

w

(
)

k�

�1

D

vk

2;q

0

;w

0

� 
kfk

Y

�2;q

w

(
)

kvk

q

0

;w

0

:

Thus u 2 (L

q

0

w

0

(
))

0

= L

q

w

(
) and kuk

q;w

� 
kfk

Y

�2;q

w

(
)

.

To show that u is a very weak solution to the Lapla
e equation we see that for any

� 2 Y

2;q

0

w

0

(
)

hu;��i = hf;�

�1

D

��i = hf; �i:

Vi
e versa every very weak solution to the Lapla
e equation ful�lls

hu; �i = hu;��

�1

D

�i = hf;�

�1

D

�i:

This proves the uniqueness.

One problem in the weighted 
ontext is that if u 2 L

q

w

(R

n

), then the dilated fun
tion

u

�

(x) = u(�x) is in general not 
ontained in L

q

w

(R

n

). However, if u is harmoni
, the

situation is better. More pre
isely one has the following Lemma.
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Lemma 5.5. Let 
 � R

n

be stri
tly star-shaped, i.e., 
 is star-shaped with respe
t to

every point of a ball B

r

(0), r > 0, with B

r

(0) � 
. Moreover, let u 2 L

q

w

(
) with

�u = 0. For � < 1 we set u

�

(x) := u(�x). Then

u

�

�!1;�<1

�����! u in L

q

w

(
):

Proof. Let d = sup

x2


jxj and 
hoose K <

r

d

. Then for every � with

1

2

< � < 1 one has

B

K(1��)jxj

(�x) � 
 for every x 2 
: (5.3)

To show this let y 2 R

n

, jy � �xj < K(1� �)jxj. For z =

y��x

1��

we have

jzj �

(1� �)

r

d

jxj

1� �

� r:

Sin
e 
 is star-shaped with respe
t to z 2 B

r

(0), we have y = �x+ (1� �)z 2 
. This

proves (5.3). Now we denote by ~u the extension of u by 0 outside 
. Take x 2 
 and

� < 1 �xed. Sin
e u is harmoni
, we 
an estimate using the mean value property [18, I.

Theorem 2.1℄ and (5.3)

ju

�

(x)j = ju(�x)j =

1

jB

K(1��)jxj

(�x)j

�

�

�

�

�

Z

B

K(1��)jxj

(�x)

u(t)dt

�

�

�

�

�

�

(K + 1)

3

K

3

1

jB

(K+1)(1��)jxj

(x)j

Z

B

jxj(1��)+K(1��))

(x)

j~u(t)jdt � 
M ~u(x):

Sin
e M , the maximal operator in L

q

w

(
) is bounded by Theorem 2.5, one has M ~u 2

L

q

w

(R

n

). Thus, we have found a majorant. Moreover, sin
e the harmoni
 fun
tion

u 2 C

1

(
), the 
onvergen
e u

�

! u is pointwise. By Lebesgue's Theorem we �nd

u

�

! u in L

q

w

(
).

Proof of Lemma 5.3. Let u 2

~

W

q;r

w; ~w

. Then by de�nition and Lemma 4.1 we have

�uj

C

1

0;�

2 (W

1;r

0

~w

0

;0;�

(
))

0

,! Y

�2;q

w;�

(
):

The Hahn-Bana
h theorem yields the existen
e of some

f 2 (W

1;r

0

~w

0

;0

(
))

0

= W

�1;r

~w

(
) � Y

�2;q

w

(
)

su
h that hf; �i = h�u; �i for all � 2 C

1

0;�

(
).

Using Hahn Bana
h's Theorem 
ombined with Theorem 2.4 one shows that there

exists an extension F 2 Y

�2;q

w

(
) of (hu;��i � f)j

Y

2;q

0

w

0

;�

(
)

vanishing on C

1

0

(
). By

Theorem 5.4 there exists a v 2 L

q

w

(
) su
h that

hv;��i = hF; �i for all � 2 Y

2;q

0

w

0

(
):

This v is harmoni
 on 
 be
ause hF; �i = 0 for all � 2 C

1

0

(
).

Now we assume temporarily that 
 is star-shaped with respe
t to some ball B

r

(0)

with 
enter 0 and radius r. So we may set v

�

(x) := v(�x), where � 2 (0; 1) and

13



v

n

(x) := v

�

n

(x), where (�

n

) � (0; 1) is a sequen
e 
onverging to 1. Then by Theorem

2.4 we have v

n

n!1

���! v in L

q

w

(
). Moreover, sin
e every v

n

is harmoni
, we have

�v

n

��v = 0 for all n whi
h yields the 
onvergen
e in

~

W

q;r

w; ~w

.

For an arbitrary bounded C

1;1

-domain 
 one uses a de
omposition 
 =

S

N

i=1




i

with stri
tly star-shaped domains 


i

and a partition of unity (�

i

)

i

subordinate to this


overing. For i = 1; :::; N let (v

(i)

n

)

n

be the sequen
es of harmoni
 fun
tions 
onstru
ted

above 
onverging to v

(i)

:= vj




i

in

~

W

q;r

w; ~w

(


i

). Then using the embeddings L

q

w

(
) ,!

W

�1;r

~w

(
) and W

�1;q

w

(
) ,! W

�1;r

~w

(
) ons shows that

v

n

:=

N

X

j=1

�

j

v

(j)

n

n!1

���! v in

~

W

q;r

w; ~w

(
):

Moreover, we have

hu� v;��i = hf; �i+ hF; �i � hF; �i = hf; �i for � 2 Y

2;q

0

w

0

;�

(
)

hu� v;r i =: hk;  i for  2 W

1;q

0

w

0

(
):

Let (f

n

)

n

; (k

n

)

n

� C

1

(
) su
h that f

n

n!1

���! f inW

�1;r

~w

(
) and k

n

n!1

���! k inW

�1;q

w;0

(
).

The embedding W

�1;r

~w

(
) ,! Y

�2;q

w

(
) and the a priori estimate for very weak solutions

to the Stokes equations (3.7) yields that the sequen
e of very weak solutions (u

n

)

n

to

the Stokes problem with respe
t to f

n

and k

n


onverges to u � v in L

q

w

(
). By the

regularity of the data and of the boundary (Theorem 4.2) one has u

n

2 W

2;q

w

(
).

Sin
e hu

n

;��i = hf

n

; �i for all � 2 C

1

0;�

(
), it follows that the sequen
e (u

n

+ v

n

)

n

�

W

2;q

w

(
) approximates u in the norm of

~

W

q;r

w; ~w

. Sin
e C

1

(
) is dense in W

2;q

w

(
), the

assertion is proved.

It is not diÆ
ult to see that if � 2 W

2;q

w

(
) with �j

�


= 0 and div � = 0, then N � r�

is purely tangential. The next Lemma shows that vi
e versa every purely tangential

fun
tion on the boundary is a normal derivative of su
h a fun
tion.

Lemma 5.6. Let 
 be a bounded C

1;1

-domain, 1 < q < 1 and w 2 A

q

. For every

h 2 T

1;q

w

(�
) with N � h = 0 there exists a fun
tion �

h

2 W

2;q

w

(
) su
h that

�

h

j

�


= 0; N � r�

h

= h and div �

h

= 0:

Moreover �

h


an be 
hosen depending linearly on h and ful�lling the estimate

k�

h

k

2;q;w

� 
khk

T

1;q

w

(�
)

with a 
onstant 
 = 
(
; q; w) > 0.

Proof. For h 2 T

1;q

w

(�
) there exists by Theorem 2.3 a fun
tion  

h

2 W

2;q

w

(
) depending

linearly on h su
h that

 

h

j

�


= 0; N � r 

h

= h and k 

h

k

2;q;w

� 
khk

T

1;q

w

(�
)

:

Sin
e in addition h = N �r 

h

is purely tangential, one 
an show (see [14℄) that div 

h

2

W

1;q

w;0

(
). Thus by Theorem 2.4 there exists a fun
tion � 2 W

2;q

w;0

(
) with div � =

div 

h

, depending linearly on  

h

and satisfying the estimate k�k

2;q;w

� 
kdiv 

h

k

1;q;w

�


k 

h

k

2;q;w

.

Now �

h

:=  

h

� � solves the problem.
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Using this lemma we de�ne the tangential 
omponent of u 2

~

W

q;r

w; ~w

on the boundary

as follows. If u 2

~

W

q;r

w; ~w

and � 2 Y

2;q

0

w

0

;�

(
) we use the notation

h�

�

u; �i := lim

n!1

hu;��

n

i (5.4)

where (�

n

)

n

2 C

1

0;�

(
) 
onverges to � in W

1;r

0

~w

0

;0;�

(
). This is possible by Lemma 5.1, and

by the de�nition of

~

W

q;r

w; ~w

the fun
tional �

�

u is independent of the approximation (�

n

).

Theorem 5.7. There exists a 
ontinuous linear operator


 :

~

W

q;r

w; ~w

! T

0;q

w

(�
); su
h that

h
(u); hi

�


= hu;��

h

i � h�

�

u; �

h

i if N � h = 0;

h
(u); hi

�


= 0 if h =

~

hN

(5.5)

for h 2 T

1;q

0

w

0

(�
), for some s
alar-valued

~

h 2 T

1;q

0

w

0

(�
), and where �

h

is given by Lemma

5.6. Moreover, this tangential tra
e is independent of the 
hoi
e of the extension �

h

and


oin
ides with the tangential 
omponent of the usual restri
tion if u 2 C

1

(
).

Proof. Assume that 
 is de�ned by (5.5). Let m 2 T

1;q

0

w

(�
). The fun
tion m 
an be

de
omposed into its normal and tangential 
omponents, i.e.,

m = (N �m)N + h with N � h = 0

with khk

T

1;q

0

w

0

(�
)

� 
kmk

T

1;q

0

w

0

(�
)

. Then one obtains

jh
(u); mi

�


j = jh
(u); hi

�


j

= jhu;��

h

i � h�

�

u; �

h

ij

� kuk

q;w

k�

h

k

2;q

0

;w

0

+ k�

�

uk

(W

1;r

0

~w

0

;0;�

)

0

k�

h

k

1;r

0

; ~w

0

� 
kuk

~

W

q;r

w; ~w

kmk

T

1;q

0

w

0

(�
)

:

Thus 
 is 
ontinuous.

By Gauss' Theorem one obtains that for u 2 C

1

(
) and a purely tangential h 2

T

1;q

0

w

0

(�
) one has h
(u); hi

�


= huj

�


; hi

�


. Thus the tangential 
omponent of 
(u)

is equal to the tangential 
omponent of uj

�


whi
h is in parti
ular independent of the

extension of h. Sin
e by Lemma 5.3 the spa
e C

1

(
) is dense in

~

W

q;r

w; ~w

the same is true

for every u 2

~

W

q;r

w; ~w

.

The de�nition of normal tra
es is easier. If

u 2 E

q;r

w; ~w

:= fv 2 L

q

w

(
) j div v 2 L

r

~w

(
)g

then we 
an de�ne the normal tra
e u 7! N � uj

�


using Green's formula by

hN � uj

�


; vi

�


:= huj

�


; Nvi

�


:= hdiv u; vi+ hu;rvi for all v 2 W

1;q

0

w

0

(
): (5.6)

This de�nes a fun
tional in T

0;q

w

(�
) sin
e by Theorem 2.3 for every � 2 T

1;q

0

w

0

(�
) there

exists v 2 W

1;q

w

(
) with

vj

�


= � and kvk

1;q

0

;w

0

� 
k�k

T

1;q

0

w

0

: (5.7)

15



Moreover, it is known that there exists r 2 (1;1) su
h that W

1;q

w

(
) ,! W

1;r

(
). Thus

we obtain from the 
orresponding result in the unweighted 
ase [25℄ that the right hand

side in (5.6) is independent of the extension v.

Then it follows from (5.7) that the mapping

u 7! N � uj

�


: E

q;r

w; ~w

! T

0;q

w

(�
)

is 
ontinuous. Using the above theorem for u 2

~

W

q;r

w; ~w

\ E

q;r

w; ~w

we write uj

�


= g if

h
(u); hi

�


= hg; hi

�


for all h 2 T

1;q

0

w

0

(�
) with h�N = 0 and u�N j

�


= g �N: (5.8)

With this notation we also de�ne the operator

tr :

~

W

q;r

w; ~w

\ E

q;r

w; ~w

! T

0;q

w

(
); u 7! g:

Proposition 5.8. Let u be a very weak solution to the Stokes problem 
orresponding

to the data hf; �i = hF; �i � hg;N � r�i

�


and hk;  i = hK; i � hg;N �  i

�


with

F 2 W

�1;r

~w

(
), K 2 L

r

~w

(
), g 2 T

0;q

w

(�
).

Then u 2

~

W

q;r

w; ~w

\ E

q;r

w; ~w

and uj

�


= g.

Proof. By de�nition, u is the solution to the variational problem

�hu;��i = hF; �i � hg;N � r�i

�


; for all � 2 Y

2;q

0

w

0

;�

(
) and

�hu;r i =hK; i � hg;N �  i

�


; for all  2 W

1;q

0

w

0

(
):

Inserting � 2 C

1

0;�

(
) into the �rst equation we obtain that [� 7! h�u; �i = �hF; �i℄ is

extendable to an element of (W

1;r

0

~w;0;�

(
))

0

. Thus u 2

~

W

q;r

w; ~w

and by the de�nition of the

tangential tra
e we have

h
(u); N � r�i

�


= hu;��i � h�

�

u; �i = hu;��i+ hF; �i = hg;N � r�i

�


for all � 2 Y

2;q

0

w

0

;�

(
). Using the se
ond equation one shows that N � uj

�


= N � g.

Remark 5.9. 1. It is not diÆ
ult to see that the spa
e

~

W

q;r

w; ~w

is equal to the spa
e of

very weak solutions to the Stokes problem with respe
t to data

f = [� 7! hF; �i � hg;N � r�i

�


℄

with F 2 W

�1;r

~w

(
) and g 2 T

0;q

w

(�
) and k 2 W

�1;q

w;0

(
). Indeed, let u 2

~

W

q;r

w; ~w

and

let F 2 W

�1;r

~w

(
) be an extension of ��uj

C

1

0;�

(
)

. Then setting g := 
u 2 T

0;q

w

(
) we

obtain by the de�nition of 


�hu;��i = hF; �i � hg;N � r�i

�


for every � 2 Y

2;q

0

w

0

;�

(
):

2. In [14℄ the unweighted 
ase is treated. There the spa
e in whi
h the tra
es are

well-de�ned is de�ned in a di�erent way. We repeat this de�nition and show that the

out-
oming spa
e is the same in the 
ase w = ~w = 1.
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For u 2 W

1;q

(
) one sets

kA

�

1

2

r

P

r

�uk

L

r

�

(
)

= sup

06=v2L

r

0

�

 

hru;rA

�

1

2

r

0

vi

kvk

L

r

0

�

(
)

!

;

where A

r

stands for the Stokes operator and P

r

for the Helmholtz proje
tion in L

r

(
)

and

1

r

�

1

n

+

1

q

. Note that r is 
hosen su
h that by the Sobolev embedding theorems [1℄

one has W

1;r

(
) ,! L

q

(
). Then following [14℄ one de�nes




W

1;q

(
) := W

1;q

(
)

k�k




W

1;q

(
)

where kuk




W

1;q

(
)

:= kuk

q

+ kA

�

1

2

r

P

r

�uk

r

:

For u 2 C

1

(
) one has

k�uj

C

1

0;�

k

(W

1;r

0

0;�

)

0

= sup

�2C

1

0;�

;k�k

1;r

0

=1

jh�u; �ij

� sup

 2C

1

0;�

;k k

r

0

=1

jhP

r

�u;A

�

1

2

r

0

 ij = kA

�

1

2

r

P

r

�uk

r

;

where we have used that by [17℄ one has kA

1

2

r

0

� k

r

0

� kr � k

r

0

.

Thus in the unweighted 
ase these norms are equivalent and by the density shown in

Lemma 5.3 the spa
es are equal.
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