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Abstrat

Our onern in this paper lies with trae spaes for weighted Sobolev

spaes, when the weight is a power of the distane to a point at the

boundary. For a large range of powers we give a full desription of the

trae spae.
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1 Introdution and main result

We onsider integer order weighted Sobolev spaes with weights equal to a

power of the distane to a point of the boundary and more general weights

modelled upon suh weights. Our onern in this paper lies with a harater-

ization of trae spaes of these weighted Sobolev spaes. Rather surprisingly

there are not too many trae theorems for weighted Sobolev spaes even

though traes belong to the fundamental onepts both in the theory and

appliations, and they have been studied for a very long time. One of the

major reasons is that there are no straightforward analogs of methods known

from the non-weighted theory, whih allow a desription of values on man-

ifolds of lower dimensions. Note in passing that the study of traes has

been losely onneted with extension of integer order spaes to spaes with

non-integer derivatives, and it was one of the motivation for establishing the

general theory of Besov spaes.
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2 1 INTRODUCTION AND MAIN RESULT

The non-weighted theory for the W

k

p

was studied in many papers and

it an be found in a number of well-known monographs. We shall make no

attempt to make an aount of that; let us ollet just some of the important

referenes. The pioneering works by Aronszajn [4℄ and Slobodetskii [25℄ for

the Hilbert ase and the papers by Gagliardo [11℄ and Stein [26℄ should be

mentioned. The theory for p = 2 based on abstrat methods an be found

in Lions and Magenes' monograph [18℄. The ase of general p is treated

for instane in monographs by Ne�as [20℄, Adams [2℄, Kufner, John and

Fu���k [16℄, Bergh and L�ofstr�om [5℄, Triebel [28℄. An immense work has been

done by the Soviet shool (Lizorkin, Besov, Nikol'skii, Il'in, Uspenskii, and

many others). We refer to [28℄ for a large list of referenes.

Spaes with weights whih equal to a power of the distane to the bound-

ary appeared in many papers; let us refer at least to [14℄ and [15℄. A standard

approah onsists in taking the trae spae as a fator spae (modulo equal-

ity on the boundary). Nikol'skii in his monograph [21℄ (espeially its seond

edition) established a trae theorem for these Sobolev weighted spaes: For a

suitable range of parameters and under assumption on the regularity on �
,

the boundary of 
, he identi�ed the trae spae with an unweighted Besov

spae with a modi�ed smoothness parameter|the e�et of the weight on the

domain (Hardy's inequality behind the senes).

Let us reall the very basi setting of the trae problem. For simpliity

we shall onsider spaes on R

n

and traes on R

n�1

, that is, on �R

n

+

, the

boundary of R

n

+

. By virtue of extension theorems the Sobolev spae on R

n

+

equals (up to equivalene of norms) to the restrition of the orresponding

Sobolev spae on R

n

, equipped with the fatornorm (modulo equality on R

n

+

).

This an be transferred to spaes on a smooth domain 
 and its boundary

�
 in a standard way|using resolution of unity and loal oordinates. Let

s > 0 be a non-integer and denote by [s℄ the integer part of s. Let 1 < p � 1.

Then the Sobolev-Slobodetskii spae W

s

p

= W

s

p

(R

n

) is de�ned as the linear

spae of all funtions f 2 L

p

(R

n

) with

kf jW

s

p

(R

n

)k = kfk

L

p

(R

n

)

+

X

j�j=[s℄

�

Z

R

n

Z

R

n

jD

�

f(x)�D

�

f(y)j

p

jx� yj

(s�[s℄)p+N

dxdy

�

1=p

<1:

(Note that this is a speial ase of a general Besov spae B

s

p;q

(R

n

) for p = q.)

Here and in the following we shall use the notation kf jXk instead of kfk

X

whenever it might improve legibility of the text. Reall that C(R

n

+

)\W

1

p

(R

n

+

)

is dense in W

1

p

(R

n

+

). One an prove that there is a bounded linear operator

tr :W

1

p

(R

n

)!W

1�1=p

p

(�R

n

+

)
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suh that tr f(y

0

) = f(y

0

) for every y

0

2 �R

n

+

and every f 2 C(R

n

+

). This

gives a natural meaning to values of a general f 2 W

1

p

(R

n

+

) on �R

n

+

. More-

over, it is well known that there exists a bounded linear operator

ext : W

1�1=p

p

(�R

n

+

)! W

1

p

(R

n

+

)

suh that ext Æ tr = id on W

1�1=p

p

(�R

n

+

). Theorems of this kind are now well-

known in a general setting of Besov and Lizorkin-Triebel spaes; we refer to

[28℄.

Now let w be a weight funtion (shortly a weight) in R

n

, that is, w 2 L

1;lo

and w > 0 a.e. in R

n

. Let W

k

p

(w) = W

k

p

(R

n

; w) be the weighted Sobolev

spae, i.e. the spae of all funtions f , whih together with their generalized

derivatives D

�

f up to the order k belong to

L

p

(w) = L

p

(R

n

;w) =

�

f : kfk

p

L

p

(w)

=

Z

R

n

jf(x)j

p

w(x) dx <1

�

;

with the norm

kf jW

k

p

(w)k =

X

j�j�k

kD

�

f jL

p

(w)k:

Only speial weights (of type (1 + jxj

2

)

r=2

and their generalizations) and

rather sophistiated methods permit to onlude that a funtion f belongs

to W

k

p

(w) if and only if fw

1=p

2 W

k

p

(�




) = W

k

p

, see [24℄ and [7℄ for the so

alledW

n

lasses (one has to assume that the weighted spae in question an

be extended to the whole of R

n

, too). In partiular, the lass W

n

exludes

singularities so that another approah must be used for weights vanishing

or blowing-up at the boundary. The situation is now well understood for

weights, whih equal to a power of the distane to the boundary. (Note also

that suh weights an be used to haraterize zero traes, even in ase of a

quite general boundary; see e.g. [13℄.) The trae theorem for suh weights was

proved by Nikol'skii in [21℄ with help of real analysis methods. Let us reall

Nikol'skii's result. Assume that 
 is a domain with a suÆiently smooth

boundary � (as to the required smoothness we refer to [21℄ for details) and

let

%(x) = dist(x;�); x 2 
:

For k 2 N , 1 � p � 1, and  2 R, denote by W

k

p;

the weighted Sobolev

spae with the norm

kf jW

k

p;

k = kfk

L

p

(
)

+

X

j�j=k

k(D

�

f)%

�

k

L

p

(
)

:



4 1 INTRODUCTION AND MAIN RESULT

Suppose that

0 < k +  � 1=p < k:

Then

W

k

p;

(
) ,! W

k+�1=p

p

(�)

and, moreover, there exists a bounded extension operator

ext



: W

k+�1=p

p

(�)!W

k

p;

(
):

A by far more general setting|spaes on fratals with this type of weights|

was reently onsidered by Piotrowska in [22℄.

In the following we shall make use of a Fourier analyti approah to

Sobolev spaes and their weighted generalizations, therefore we reall the

most important de�nitions and �x the notation.

Let f'

j

g

1

j=0

is the smooth (dyadi) deomposition of unity (see [28℄, [5℄):

supp'

j

� f2

j�1

� j�j � 2

j+1

g for j 2 N

0

and supp'

0

� B

1

(0) and '

j

(�) =

'

1

(2

�j+1

�) for j 2 N .

For 1 � p � 1, 1 � q � 1 and s 2 R

1

the Besov spae B

s

p q

= B

s

p q

(R

n

)

is the spae of all f 2 S

0

(R

n

) with the �nite norm

kf jB

s

p q

k =

�

1

X

k=0

2

ksq

kF

�1

('

k

b

f)k

q

L

p

�

1=q

(1.1)

if q <1 and with the �nite norm

kf jB

s

p1

k = sup

k

2

ks

kF

�1

('

k

b

f)k

L

p

(1.2)

if q = 1. Replaing the L

p

spae in the above de�nitions by L

p

(w) we

get a formal de�nition of the weighted Besov spae B

s

p q

(R

n

;w). Here S(R

n

)

denotes the spae of smooth rapidly dereasing funtions f : R

n

! C and

S

0

(R

n

) = (S(R

n

))

0

its dual.

We shall also use the Bessel potential spaes H

s

p

= H

s

p

(R

n

) and their

weighted lones: For s real and 1 < p <1,

H

s

p

(R

n

) =

n

f 2 S

0

(R

n

) :





F

�1

�

(1 + j�j

2

)

s=2

Ff

�





L

p

<1

o

;

H

s

p

(R

n

;w) =

n

f 2 S

0

(R

n

) :





F

�1

�

(1 + j�j

2

)

s=2

Ff

�





L

p

(w)

<1

o

normed in the obvious way.

For Lipshitz domains there exists a universal extension operator working

on Sobolev, Besov and Bessel potential spaes (and also on the Lizorkin-

Triebel spaes, even for all real s, see Ryhkov [23℄); this means that many
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relevant properties of spaes on Lipshitz domains follow from the laims on

the whole of R

n

. That is, one an work either with a formal de�nition of

spaes on domains as fatorspaes of spaes on R

n

modulo equality on the

domain in question or with a spae on the domain with a usual intrinsi norm

(if it is available). This an be partly extended to weighted spaes with the

Mukenhoupt weights. Reall that a weight w belongs to the Mukenhoupt

lass A

p

(R

n

) (1 < p <1) if

sup

Q

�

1

jQj

Z

Q

w(x) dx

��

1

jQj

Z

Q

w(x)

1=(p�1)

dx

�

p�1

<1; (1.3)

where the supremum is taken over all ubes Q � R

n

with edges parallel to

the oordinate axes. We shall write simply A

p

if no misunderstanding an

our. Note in passing that x

0

7! jx

0

j

�

belongs to A

q

in R

n�1

if and only if

�(n� 1) < � < (q � 1)(n� 1) (see e.g. [8℄).

We also refer to Chua [6℄ for an extension theorem for Sobolev spaes

on domains and to Ryhkov [23℄ as to the formulae for the norm in Sobolev

spaes with A

p

weights in terms of a weighted Littlewood-Paley deomposi-

tion. Spei�ally, for a positive integer k, 1 < p <1, and w 2 A

p

,

kf jW

k

p

(R

n

;w)k �









�

1

X

k=0

2

2jk

jF

�1

('

k

b

f)(x)j

2

�

1=2









L

p

(w)

:

This holds even for a bigger lass of the so alled loal A

p

weights (see [23℄)

(one requires the ondition (1.3) only for small ubes).

In Setion 4 we also make use of weighted Sobolev spaes of negative order.

It well-known that for 1 < p < 1 and w 2 A

p

, the dual spae of L

p

(w) is

given by L

p

0

(w

0

) where

1

p

+

1

p

0

= 1 and w

0

= w

�

1

p�1

2 A

p

0

. Aordingly, for a

positive integer k we de�ne

W

�k

q

(R

n

;w) :=

�

W

k

q

0

(R

n

;w

0

)

�

0

:

For more details about weighted spaes of negative order we refer to [23℄.

To avoid tehnialities we shall not deal with the ase of Lipshitz domains

and we will onentrate on the basi ase of a Sobolev spae on R

n

and a

trae on the boundary of a half-spae R

n

+

.

Our main result is:

THEOREM 1.1 Let � 2 (�(n� 1); (q � 1)(n� 1)). Then

tr

R

n�1

W

1

q

(R

n

+

; jxj

�

) = B

1�

1

q

qq

(R

n�1

; jx

0

j

�

):
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For the preise de�nition of the funtion spaes we refer to Setion 2 below.

The struture of the paper is as follows: In Setion 2 we prove some

preliminary results onerning weighted spaes. Then in Setion 3 the proof

of the Theorem 1.1 for � > 0 is given, based on a suitable estimate of the

solution operator to a Dirihlet boundary value problem. Finally, in Setion 4

the ase � < 0 is proved by a duality argument.

2 Preliminary results on weighted funtion

spaes

By Garia-Cuerva and Rubio de Frania [12℄, Theorem 3.9. the following

weighted version of the H�ormander-Mikhlin multiplier theorem holds.

THEOREM 2.1 Let m 2 C

n

(R

n

n f0g) ful�ll the property

j�

�

m(�)j � Kj�j

�j�j

; for every � 2 R

n

n f0g; j�j = 0; 1; :::; n;

for some onstant K > 0. Then T de�ned by



Tf = m

b

f for f 2 S(R

n

)

extends to a ontinuous operator on L

q

w

(R

n

) for every q 2 (1;1) and w 2 A

q

.

In [12℄ this theorem is stated for an even larger lass of multipliers m. The

assertion on the operator norm is not mentioned expliitly, but it follows

from the same proof.

Moreover, reall that a smooth funtion p : R

n

� R

n

! C is in the pseu-

dodi�erential symbol lass S

m

1;0

(R

n

� R

n

), m 2 R, if and only if for every

�; � 2 N

n

0

there is a onstant C

�;�

suh that

j�

�

�

�

�

x

p(x; �)j � C

�;�

h�i

m�j�j

uniformly in x; � 2 R

n

, where h�i := (1 + j�j

2

)

1

2

. Moreover, S

m

1;0

(R

n

� R

n

) is

a Fr�ehet spae e.g. with respet to the semi-norms

jpj

(N)

S

m

1;0

= sup

j�j+j�j�N

sup

x;�2R

n

j�

�

�

�

�

x

p(x; �)jh�i

�m+j�j

;

f. e.g. [17, 27℄. It is well-known that h�i

m

2 S

m

1;0

(R

n

� R

n

), i.e., for every

� 2 N

n

0

j�

�

�

h�i

m

j � C

�

h�i

m�j�j

(2.1)
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uniformly in � 2 R

n

. This an e.g. be proved by using the fat that f(a; �) :=

j(a; �)j

m

, (a; �) 2 R

n+1

nf0g, is a smooth and homogeneous funtion of degree

m.

For p 2 S

m

1;0

(R

n

� R

n

) the assoiated pseuododi�erential operator is de-

�ned by

p(x;D

x

)f =

Z

R

n

e

ix��

p(x; �)

b

f(�)

d�

(2�)

n

; f 2 S(R

n

); (2.2)

where

b

f = F [f ℄(�) and D

x

=

1

i

�

x

. Then p(x;D

x

) an be extended to a

bounded operator on weighted Bessel potential spaes by the following result

due to Marshall [19, Theorem 1℄:

THEOREM 2.2 Let 1 < q < 1, s 2 R, w 2 A

q

, and let p 2 S

m

1;0

(R

n

�

R

n

), m 2 R. Then p(x;D

x

) de�ned as above extends to a bounded linear

operator p(x;D

x

) : H

s+m

q

(R

n

;w) ! H

s

q

(R

n

;w). Moreover, there exists N =

N(s;m; n; q) 2 N

0

and C = C(s;m; n; q) > 0 suh that

kp(x;D

x

)jL(H

s+m

q

(R

n

;w); H

s

q

(R

n

;w))k � Cjpj

(N)

S

m

1;0

uniformly in p 2 S

m

1;0

(R

n

� R

n

).

Proof: The �rst part follows diretly from [19, Theorem 1℄. The seond

part follows easily from the linearity of the mapping S

m

1;0

(R

n

� R

n

) 3 p 7!

p(x;D

x

) 2 L(H

s+m

q

(R

n

;w); H

s

q

(R

n

;w)) and the fat that the mapping is

bounded, whih an be easily heked by observing that all onstants in the

proof of [19, Theorem 1℄ only depend on some semi-norm jpj

(N)

S

m

1;0

with a suÆ-

iently large N 2 N

0

.

Let ! 2 A

q

(R

n

), let '

j

, j 2 N

0

, be a dyadi deomposition of unity as

in the introdution and let s 2 R, 1 � p; q � 1. Note that '

j

, j 2 N

0

, an

be hosen suh that '

j

(�) = ('

1

(2

�j+1

�) for all j � 1. In partiular, this

implies

j�

�

�

'

j

(�)j � C

�

2

�jj�j

(2.3)

uniformly in j 2 N

0

and for all � 2 N

0

.

With the notation as in (2.2) we an de�ne weighted Besov spae by

B

s

pq

(R

n

;!) =

n

f 2 S

0

(R

n

) : kfk

B

s

pq

(R

n

;!)

<1

o

;

kfk

B

s

pq

(R

n

;!)

=

 

1

X

j=0

2

sqj

k'

j

(D

x

)fk

q

L

p

(R

n

;!)

!

1=q
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with the obvious modi�ations if q =1. We note that B

s

pq

(R

n

;!) is a retrat

of `

s

q

(N

0

;L

p

(R

n

;!)), where

`

s

q

(N

0

;X) =

n

(a

j

)

j2N

0

2 X

N

0

: k(a

j

)

j2N

0

k

`

s

q

(N

0

;X)

<1

o

;

k(a

j

)

j2N

0

k

`

s

q

(N

0

;X)

=

 

1

X

j=0

2

sjq

ka

k

k

q

X

!

1

q

if q <1;

k(a

j

)

j2N

0

k

`

s

1

(N

0

;X)

= sup

j2N

0

2

sj

ka

j

k

X

:

More preisely, the retrations and oretrations are given by

R : `

s

q

(N

0

;L

p

(R

n

;!))! B

s

pq

(R

n

;!); R((a

j

)

j2N

0

) =

1

X

j=0

 

j

(D

x

)a

j

;

S : B

s

pq

(R

n

;!)! `

s

q

(N

0

;L

p

(R

n

;!)); Sf = ('

j

(D

x

)f)

j2N

0

;

where  

j

(�) = '

j�1

(�) + '

j

(�) + '

j+1

(�), j 2 N

0

, and '

�1

(�) � 0.

2.1 Interpolation of weighted Besov spaes

Lemma 2.3 Let 1 < q <1, s 2 R, and let ! 2 A

q

(R

n

). Then

B

s

q1

(R

n

;!) ,! H

s

q

(R

n

;!) ,! B

s

q1

(R

n

;!):

Proof: First of all,

j�

�

�

(h�i

s

'

j

(�))j � C

�;s

2

sj

h�i

�j�j

for all � 2 N

n

0

, s 2 R, beause of (2.1), (2.3), and sine 2

j

� j�j � C2

j

on

supp'

j

. Hene

khD

x

i

s

'

j

(D

x

)fk

L

q

(R

n

;!)

� C

s

2

sj

kfk

L

q

(R

n

;!)

(2.4)

by the Mikhlin multiplier theorem for weighted L

q

-spaes, Theorem 2.1, or

Theorem 2.2 withC

s

independent of j 2 N

0

. Sine '

j

(D

x

)f = '

j

(D

x

)('

j�1

(D

x

)f+

'

j

(D

x

)f + '

j+1

(D

x

)f),

khD

x

i

s

'

j

(D

x

)fk

L

q

(R

n

;!)

� C

s

2

sj

k'

j�1

(D

x

)f +'

j

(D

x

)f +'

j+1

(D

x

)fk

L

q

(R

n

;!)

Therefore

kfk

H

s

q

(R

n

;!)

�

1

X

j=0

khD

x

i

s

'

j

(D

x

)fk

L

q

(R

n

;!)

� C

1

X

j=0

2

sj

k'

j�1

(D

x

)f + '

j

(D

x

)f + '

j+1

(D

x

)fk

L

q

(R

n

;!)

� Ckfk

B

s

q1

(R

n

;!)

:
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Moreover,

kfk

B

s

q1

(R

n

;!)

= sup

j2N

0

2

sj

khD

x

i

�s

'

j

(D

x

)hD

x

i

s

fk

L

q

(R

n

;!)

� CkhD

x

i

s

fk

L

q

(R

n

;!)

= Ckfk

H

s

q

(R

n

;!)

by (2.4), whih �nishes the proof.

Lemma 2.4 Let s

0

; s

1

2 R, s

0

6= s

1

, 1 < p < 1, 1 � q; q

0

; q

1

� 1,

� 2 (0; 1), and let s = (1� �)s

0

+ �s

1

. Then

(B

s

0

pq

0

(R

n

;!); B

s

1

pq

1

(R

n

;!))

�;q

= B

s

pq

(R

n

;!)

for any weight funtion ! 2 A

p

.

Proof: Use that B

s

j

pq

j

(R

n

;!) is a retrat of `

s

j

q

j

(N

0

;L

p

(R

n

;!)) and apply [5,

Theorem 5.6.1℄.

Corollary 2.5 Let 1 < q < 1, s

0

; s

1

2 R, s

0

6= s

1

, � 2 (0; 1) and let

s = (1� �)s

0

+ �s

1

and let ! 2 A

q

(R

n

). Then

(H

s

0

q

(R

n

;!); H

s

1

q

(R

n

;!))

�;q

= B

s

qq

(R

n

;!):

Proof: The orollary follows diretly from Lemma 2.3 and Lemma 2.4.

Corollary 2.6 Let 1 < q <1 and let ! = !(x

0

) 2 A

q

(R

n�1

). Then

tr

R

n�1

W

1

q

(R

n

+

;!) = (L

q

(R

n�1

;!);W

1

q

(R

n�1

;!))

1�

1

q

;q

= B

1�

1

q

qq

(R

n�1

;!)

Proof: The �rst equality follows from

W

1

q

(R

n

+

;!) = L

q

(R

+

;W

1

q

(R

n�1

;!)) \W

1

q

(R

+

;L

q

(R

n�1

;!))

and Lions' trae method for real interpolation, f. [5, Corollary 3.12.3℄ or

apply [3, Chapter III, Corollary 4.10.2℄. The seond equality follows from the

previous orollary and the fat that W

1

q

(R

n

;!) = H

1

q

(R

n

;!) = ff 2 S

0

(R

n

) :

hD

x

if 2 L

q

(R

n

;!)g, f. Fr�ohlih [10, Lemma 3.1℄ or [9℄.
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2.2 An Embedding for L

q

(R

n

; jxj

�

)

Let (M;B; �) be a measure spae and let L

p;1

, 1 � p < 1, be the or-

responding weak L

p

-spae (the Marinkiewiz spae) as e.g. de�ned in [5,

Setion 1.3℄.

Lemma 2.7 Let 1 � p; p

1

; p

2

<1 suh that

1

p

=

1

p

1

+

1

p

2

. Then there exists

C > 0 suh that

kfgk

L

p;1

(M;�)

� Ckfk

L

p

1

;1

(M;�)

kgk

L

p

2

;1

(M;�)

:

Proof: Sine the mapping (f; g) 7! fg is bilinear, it is suÆient to onsider

the ase kfk

L

p

1

;1

(M;�)

; kgk

L

p

2

;1

(M;�)

� 1. Let � =

p

1

p

2

. Then we either have

jf(x)j � jg(x)j

�

or jf(x)j < jg(x)j

�

. Hene

� (fx : jf(x)g(x)j � �g) � �

�

fx : jf(x)j

1+�

� �g

�

+ �

�

fjg(x)j

1+

1

�

� �g

�

� �

�

p

1

1+�

+ �

�

�p

2

1+�

= 2�

�p

for every � > 0, whih �nishes the proof.

Corollary 2.8 Let 1 < q <1 and let 0 � � < (q � 1)n. Then

L

q

(R

n

; jxj

�

) ,! L

r;1

(R

n

) where

1

r

=

1

q

+

�

qn

: (2.5)

Proof: Let p =

qn

�

. Then jxj

�

�

q

2 L

p;1

(R

n

) and therefore

kfk

L

r;1

(R

n

)

� kjxj

�

�

q

k

L

p;1

(R

n

)

kjxj

�

q

k

L

q;1

(R

n

)

� Ckfk

L

q

(R

n

;jxj

�

)

:

For the following we denote

B

s

pq;(r)

(R

n

; !) =

�

f 2 S

0

(R

n

) : kf jB

s

pq;(r)

(R

n

;!)k <1

	

;

kf jB

s

pq;(r)

(R

n

;!)k =

 

1

X

j=0

k'

j

(D

x

)f jL

p;r

(R

n

;!)k

q

!

1=q

with the obvious modi�ation if q = 1, where 1 � p; q; r � 1 and s 2 R,

f. [28, Setion 2.4.1℄. We need the following simple lemma.
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�
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Lemma 2.9 Let s

0

; s

1

2 R, 1 � q

0

; q

1

; r

0

; r

1

� 1, q

0

6= q

1

, � 2 (0; 1), and

let s = (1� �)s

0

+ �s

1

,

1

q

=

1��

q

0

+

�

q

1

. Then

(B

s

0

q

0

q

0

;(r

0

)

(R

n

;!); B

s

1

q

1

q

1

;(r

1

)

(R

n

;!))

�;q

= B

s

qq

(R

n

;!):

Proof: First of all, we note that B

s

j

q

j

q

j

;(r

j

)

(R

n

;!) and B

s

qq

(R

n

;!) are retrats

of `

s

j

q

j

(N

0

;L

q

j

;r

j

(R

n

;!)), `

s

q

(N

0

;L

q

(R

n

;!)), resp., with respet to the same

retration mappings. Hene the statement follows from

�

`

s

0

q

0

(N

0

;L

q

0

;r

0

(R

n

;!)); `

s

1

q

1

(N

0

;L

q

1

;r

1

(R

n

;!))

�

�;q

= `

s

q

(N

0

; (L

q

0

;r

0

(R

n

;!); L

q

1

;r

1

(R

n

;!)))

�;q

) = `

s

q

(N

0

;L

q

(R

n

;!))

where we have used [5, Theorem 5.6.2℄ and [5, Theorem 5.3.1℄.

The following theorem is a key result for the proof of Theorem 1.1.

THEOREM 2.10 Let s 2 R, 1 < q <1, and let 0 < � < (q � 1)n. Then

B

s+

�

q

qq

(R

n

; jxj

�

) ,! B

s

qq

(R

n

) \H

s

q

(R

n

): (2.6)

Proof: By Corollary 2.8 L

q

(R

n

; jxj

�

) ,! L

r;1

(R

n

) for all 0 < � < (q � 1)n

and

1

r

=

1

q

+

�

qn

. Using the generalized Marinkiewiz interpolation theorem,

f. [5, Theorem 5.3.2℄ for di�erent values of q yields

L

q;r

(R

n

; jxj

�

) ,! L

r

(R

n

) where

1

r

=

1

q

+

�

qn

(2.7)

for all 0 < � < (q � 1)n. Hene for all 0 < � < (q � 1)n and

1

r

=

1

q

+

�

qn

B

s+

�

q

qq;(r)

(R

n

; jxj

�

) ,! B

s+

�

q

rq

(R

n

) ,! B

s

qq

(R

n

) \H

s

q

(R

n

)

due to [28, Setion 2.8.2, Equation (2) and (18)℄. Hene using Lemma 2.9

for B

s+

�

q

qq;(r)

(R

n

; jxj

�

) with di�erent values of q together with

(B

s

q

0

q

0

(R

n

); B

s

q

1

q

1

(R

n

))

�;q

= B

s

qq

(R

n

); (H

s

q

0

(R

n

); H

s

q

1

(R

n

))

�;q

= H

s

q

(R

n

);

(2.8)

where

1

q

=

1��

q

0

+

�

q

1

, f. [28, Theorem 2.4.1℄ and [5, Theorem 6.4.5℄, we on-

lude (2.6).
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3 Proof for positive �

If 0 < � < (q � 1)(n� 1), then jxj

�

� jx

0

j

�

and therefore

trW

1

q

(R

n

+

; jxj

�

) � trW

1

q

(R

n

+

; jx

0

j

�

) = B

1�

1

q

qq

(R

n�1

; jx

0

j

�

) (3.1)

by Corollary 2.6. Hene it remains to prove the onverse inlusion. To

this end we use the following extension operator: We denote by u = K

D

a,

a 2 S(R

n�1

), the solution of

(1��)u = 0 in R

n

+

;

uj

�R

n

+

= a on R

n�1

:

Using partial Fourier transformation ~a(�

0

) = F

x

0

7!�

0

[a℄(�

0

) the solution u =

K

D

a an be easily alulated as

u(x

0

; x

n

) = K

D

a = F

�1

�

0

7!x

0

h

e

�h�

0

ix

n

~a(�

0

)

i

; x = (x

0

; x

n

) 2 R

n

+

:

Note that h�

0

i = (1+ j�

0

j

2

)

1

2

as above. It is well known that the symbol-kernel

~

k(�

0

; x

n

) := e

�h�

0

ix

n

satis�es the following estimate

sup

x

n

�0

jx

s

n

�

l

x

n

�

�

�

0

~

k(�

0

; x

n

)j � C

�;s;l

h�

0

i

l�s�j�j

(3.2)

uniformly in �

0

2 R

n�1

and for all � 2 N

n�1

0

, s � 0, l 2 N

0

, see e.g. [1,

Lemma 2.9℄. Using the latter estimate we show

Lemma 3.1 Let 1 < q < 1, let s � 0, and let ! 2 A

q

(R

n�1

). Then

x

s

n

(rK

D

; K

D

) extends to a bounded operator

x

s

n

�

rK

D

K

D

�

: B

1�

1

q

qq

(R

n�1

;!)! L

q

(R

+

;B

s

qq

(R

n�1

;!) \H

s

q

(R

n�1

;!)):

Proof: First of all,

�

rK

D

K

D

�

a = F

�1

�

0

7!x

0

2

4

0

�

i�

0

�h�

0

i

1

1

A

e

�h�

0

ix

n

~a(�

0

)

3

5

� F

�1

�

0

7!x

0

h

~

k

0

(�

0

; x

n

)~a(�

0

)

i

:

Here

~

k

0

(�

0

; x

n

) satis�es

j�

�

�

0

~

k

0

(�

0

; x

n

)j � C

�;s;l

h�

0

i

1�s�j�j

jx

n

j

�s

(3.3)
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uniformly in �

0

2 R

n�1

, x

n

> 0, and for all � 2 N

n�1

0

, s � 0, l 2 N

0

,

by virtue of (3.2), (2.1), and the produt rule. Hene for every x

n

> 0

~

k

0

(�

0

; x

n

) 2 S

1�s

1;0

(R

n�1

� R

n�1

) is a pseudodi�erential symbol with semi-

norms bounded by Cjx

n

j

�s

. Hene

krK

D

a(:; x

n

)k

H

s�

1

p

q

(R

n�1

;!)

� Cjx

n

j

�s

kak

H

1�

1

p

q

(R

n�1

;!)

by Theorem 2.2. Replaing s by s+

1

p

we onlude

kx

s

n

rK

D

a(:; x

n

)k

H

s

q

(R

n�1

;!)

� Cjx

n

j

�

1

p

kak

H

1�

1

p

q

(R

n�1

;!)

:

Sine kfk

L

p;1

(R

+

)

� kt

�

1

p

k

L

p;1

kfk

L

1

� C sup

t>0

t

1

p

jf(t)j, we get

kx

s

n

rK

D

a(:; x

n

)k

L

p;1

(R

+

;H

s

q

(R

n�1

;!))

� Ckak

H

1�

1

p

q

(R

n�1

;!)

:

Using real interpolation for di�erent values of p and setting p = q afterwards,

we onlude

x

s

n

rK

D

: B

1�

1

q

qq

(R

n�1

;!)! L

q

(R

+

;H

s

q

(R

n�1

;!));

where we have used Corollary 2.5, [28, Setion 1.18.6, Theorem 2℄, and (2.8).

One more real interpolation with di�erent values of q yields

x

s

n

rK

D

: B

1�

1

q

qq

(R

n�1

;!)! L

q

(R

+

;B

s

qq

(R

n�1

;!));

whih ompletes the proof.

Proof of Theorem 1.1, ase � > 0: Using Lemma 3.1 with s = 0,

we onlude K

D

: B

1�

1

q

qq

(R

n�1

; jx

0

j

�

) ! W

1

q

(R

n

+

; jx

0

j

�

). Moreover, applying

Lemma 3.1 with s =

�

q

, we onlude

x

�

q

n

�

rK

D

K

D

�

: B

1�

1

q

qq

(R

n�1

; jx

0

j

�

)! L

q

(R

+

;B

�

q

qq

(R

n�1

; jx

0

j

�

))) ,! L

q

(R

n

+

);

where we have also used Theorem 2.10. Hene K

D

: B

1�

1

q

qq

(R

n�1

; jx

0

j

�

) !

W

1

q

(R

n

+

; x

�

n

). Sine jxj

�

� C

�

(jx

0

j

�

+ x

�

n

), the result for � > 0 follows.
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4 The result for negative �

The ase � < 0 is derived from the ase � � 0 by a duality argument. More

preisely, we use the following abstrat lemma.

Lemma 4.1 Let !

1

; !

2

2 A

q

be given suh that one has tr

R

n�1

W

1

q

(R

n

+

;!

1

) =

tr

R

n�1

W

1

q

(R

n

+

;!

2

) with equivalent norms. Then

tr

R

n�1

W

1

q

0

(R

n

+

;!

0

1

) = tr

R

n�1

W

1

q

0

(R

n

+

;!

0

2

) (4.1)

with equivalent norms, where

1

q

+

1

q

0

and !

0

j

= !

�

1

q�1

j

.

Proof: Let g 2

�

tr

R

n�1

W

1

q

0

(R

n

+

;!

0

1

)

�

0

then

G := [� 7! hg; �i

R

n�1

℄ 2

�

W

1

q

0

(R

n

;!

0

1

)

�

0

= W

�1

q

(R

n

;!

1

)

with kgk

�

tr

R

n�1

W

1

q

0

(R

n

+

;!

0

1

)

�

0

= kGk

W

�1

q

(R

n

;!

1

)

.

By [9℄ one has that (1 ��) : W

1

q

(R

n

;!

j

) ! W

�1

p

(R

n

;!

j

), j = 1; 2 is an

isomorphism. Sine G has its support in R

n�1

, it follows that (1��)

�1

G is

a weak solution to the boundary value problem

(1��)(1��)

�1

G = 0 on 
 and (1��)

�1

G 2 tr

R

n�1

W

1

q

(R

n

+

;!

1

);

where 
 = R

n

+

or 
 = R

n

�

. By the a priori estimate of this boundary value

problem in [9℄ one has

k(1��)

�1

Gk

W

1

q

(R

n

;!

1

)

� k tr

R

n�1

(1��)

�1

Gk

tr

R

n�1

W

1

q

(R

n

+

;!

1

)

:

Thus we may estimate using the assumption (4.1)

kgk

�

tr

R

n�1

W

1

q

0

(R

n

+

;!

0

1

)

�

0

= kGk

W

�1

q

(R

n

;!

1

)

� k(1��)

�1

Gk

W

1

q

(R

n

;!

1

)

� k tr

R

n�1

(1��)

�1

Gk

tr

R

n�1

W

1

q

(R

n

;!

1

)

� k tr

R

n�1

(1��)

�1

Gk

tr

R

n�1

W

1

q

(R

n

;!

2

)

� k(1��)

�1

Gk

W

1

q

(R

n

;!

2

)

� kGk

W

�1

q

(R

n

;!

2

)

= kgk

�

tr

R

n�1

W

1

q

0

(R

n

+

;!

0

2

)

�

0

:

Interhanging the roles of !

1

and !

2

, we obtain the reverse estimate

kgk

�

tr

R

n�1

W

1

q

0

(R

n

+

;!

0

2

)

�

0

� kgk

�

tr

R

n�1

W

1

q

0

(R

n

+

;!

0

1

)

�

0
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for some  > 0. We have shown that

�

tr

R

n�1

W

1

q

0

(R

n

+

;!

0

2

)

�

0

=

�

tr

R

n�1

W

1

q

0

(R

n

+

;!

0

1

)

�

0

:

Thus, sine tr

R

n�1

W

1

q

0

(R

n

+

;!

0

j

), j = 1; 2, is a fator spae of the reexive

Banah spae W

1

q

0

(R

n

+

;!

0

2

) with respet to a losed subspae, it is reexive

and we obtain

tr

R

n�1

W

1

q

0

(R

n

+

;!

0

1

) = tr

R

n�1

W

1

q

0

(R

n

+

;!

0

2

)

as asserted.

Corollary 4.2 Let �(n� 1) < � < 0. Then

tr

R

n�1

W

1

q

(R

n

+

; jxj

�

) = B

1�

1

q

qq

(R

n�1

; jx

0

j

�

):

Proof: Let � := �

�

q�1

= �(q

0

�1)�. Then 0 < � < (n�1)(q

0

�1). Thus we

are in the range of indies that have already been onsidered and one obtains

from the results of Setion 3 that

tr

R

n�1

W

1

q

0

(R

n

+

; jxj

�

) = B

1�

1

q

0

q

0

q

0

(R

n�1

; jx

0

j

�

) = tr

R

n�1

W

1

q

0

(R

n

+

; jx

0

j

�

);

using Corollary 2.6 and jx

0

j

�

2 A

q

0

(R

n�1

). Thus by Lemma 4.1 we obtain

tr

R

n�1

W

1

q

(R

n

+

; jxj

�

) = tr

R

n�1

W

1

q

(R

n

+

; jx

0

j

�

) = B

1�

1

q

qq

(R

n�1

; jx

0

j

�

);

where we again applied Corollary 2.6. This �nishes the proof of Theorem

1.1.
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