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Abstra
t

Our 
on
ern in this paper lies with tra
e spa
es for weighted Sobolev

spa
es, when the weight is a power of the distan
e to a point at the

boundary. For a large range of powers we give a full des
ription of the

tra
e spa
e.
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1 Introdu
tion and main result

We 
onsider integer order weighted Sobolev spa
es with weights equal to a

power of the distan
e to a point of the boundary and more general weights

modelled upon su
h weights. Our 
on
ern in this paper lies with a 
hara
ter-

ization of tra
e spa
es of these weighted Sobolev spa
es. Rather surprisingly

there are not too many tra
e theorems for weighted Sobolev spa
es even

though tra
es belong to the fundamental 
on
epts both in the theory and

appli
ations, and they have been studied for a very long time. One of the

major reasons is that there are no straightforward analogs of methods known

from the non-weighted theory, whi
h allow a des
ription of values on man-

ifolds of lower dimensions. Note in passing that the study of tra
es has

been 
losely 
onne
ted with extension of integer order spa
es to spa
es with

non-integer derivatives, and it was one of the motivation for establishing the

general theory of Besov spa
es.
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2 1 INTRODUCTION AND MAIN RESULT

The non-weighted theory for the W

k

p

was studied in many papers and

it 
an be found in a number of well-known monographs. We shall make no

attempt to make an a

ount of that; let us 
olle
t just some of the important

referen
es. The pioneering works by Aronszajn [4℄ and Slobodetskii [25℄ for

the Hilbert 
ase and the papers by Gagliardo [11℄ and Stein [26℄ should be

mentioned. The theory for p = 2 based on abstra
t methods 
an be found

in Lions and Magenes' monograph [18℄. The 
ase of general p is treated

for instan
e in monographs by Ne�
as [20℄, Adams [2℄, Kufner, John and

Fu�
��k [16℄, Bergh and L�ofstr�om [5℄, Triebel [28℄. An immense work has been

done by the Soviet s
hool (Lizorkin, Besov, Nikol'skii, Il'in, Uspenskii, and

many others). We refer to [28℄ for a large list of referen
es.

Spa
es with weights whi
h equal to a power of the distan
e to the bound-

ary appeared in many papers; let us refer at least to [14℄ and [15℄. A standard

approa
h 
onsists in taking the tra
e spa
e as a fa
tor spa
e (modulo equal-

ity on the boundary). Nikol'skii in his monograph [21℄ (espe
ially its se
ond

edition) established a tra
e theorem for these Sobolev weighted spa
es: For a

suitable range of parameters and under assumption on the regularity on �
,

the boundary of 
, he identi�ed the tra
e spa
e with an unweighted Besov

spa
e with a modi�ed smoothness parameter|the e�e
t of the weight on the

domain (Hardy's inequality behind the s
enes).

Let us re
all the very basi
 setting of the tra
e problem. For simpli
ity

we shall 
onsider spa
es on R

n

and tra
es on R

n�1

, that is, on �R

n

+

, the

boundary of R

n

+

. By virtue of extension theorems the Sobolev spa
e on R

n

+

equals (up to equivalen
e of norms) to the restri
tion of the 
orresponding

Sobolev spa
e on R

n

, equipped with the fa
tornorm (modulo equality on R

n

+

).

This 
an be transferred to spa
es on a smooth domain 
 and its boundary

�
 in a standard way|using resolution of unity and lo
al 
oordinates. Let

s > 0 be a non-integer and denote by [s℄ the integer part of s. Let 1 < p � 1.

Then the Sobolev-Slobodetskii spa
e W

s

p

= W

s

p

(R

n

) is de�ned as the linear

spa
e of all fun
tions f 2 L

p

(R

n

) with

kf jW

s

p

(R

n

)k = kfk

L

p

(R

n

)

+

X

j�j=[s℄

�

Z

R

n

Z

R

n

jD

�

f(x)�D

�

f(y)j

p

jx� yj

(s�[s℄)p+N

dxdy

�

1=p

<1:

(Note that this is a spe
ial 
ase of a general Besov spa
e B

s

p;q

(R

n

) for p = q.)

Here and in the following we shall use the notation kf jXk instead of kfk

X

whenever it might improve legibility of the text. Re
all that C(R

n

+

)\W

1

p

(R

n

+

)

is dense in W

1

p

(R

n

+

). One 
an prove that there is a bounded linear operator

tr :W

1

p

(R

n

)!W

1�1=p

p

(�R

n

+

)
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su
h that tr f(y

0

) = f(y

0

) for every y

0

2 �R

n

+

and every f 2 C(R

n

+

). This

gives a natural meaning to values of a general f 2 W

1

p

(R

n

+

) on �R

n

+

. More-

over, it is well known that there exists a bounded linear operator

ext : W

1�1=p

p

(�R

n

+

)! W

1

p

(R

n

+

)

su
h that ext Æ tr = id on W

1�1=p

p

(�R

n

+

). Theorems of this kind are now well-

known in a general setting of Besov and Lizorkin-Triebel spa
es; we refer to

[28℄.

Now let w be a weight fun
tion (shortly a weight) in R

n

, that is, w 2 L

1;lo


and w > 0 a.e. in R

n

. Let W

k

p

(w) = W

k

p

(R

n

; w) be the weighted Sobolev

spa
e, i.e. the spa
e of all fun
tions f , whi
h together with their generalized

derivatives D

�

f up to the order k belong to

L

p

(w) = L

p

(R

n

;w) =

�

f : kfk

p

L

p

(w)

=

Z

R

n

jf(x)j

p

w(x) dx <1

�

;

with the norm

kf jW

k

p

(w)k =

X

j�j�k

kD

�

f jL

p

(w)k:

Only spe
ial weights (of type (1 + jxj

2

)

r=2

and their generalizations) and

rather sophisti
ated methods permit to 
on
lude that a fun
tion f belongs

to W

k

p

(w) if and only if fw

1=p

2 W

k

p

(�




) = W

k

p

, see [24℄ and [7℄ for the so


alledW

n


lasses (one has to assume that the weighted spa
e in question 
an

be extended to the whole of R

n

, too). In parti
ular, the 
lass W

n

ex
ludes

singularities so that another approa
h must be used for weights vanishing

or blowing-up at the boundary. The situation is now well understood for

weights, whi
h equal to a power of the distan
e to the boundary. (Note also

that su
h weights 
an be used to 
hara
terize zero tra
es, even in 
ase of a

quite general boundary; see e.g. [13℄.) The tra
e theorem for su
h weights was

proved by Nikol'skii in [21℄ with help of real analysis methods. Let us re
all

Nikol'skii's result. Assume that 
 is a domain with a suÆ
iently smooth

boundary � (as to the required smoothness we refer to [21℄ for details) and

let

%(x) = dist(x;�); x 2 
:

For k 2 N , 1 � p � 1, and 
 2 R, denote by W

k

p;


the weighted Sobolev

spa
e with the norm

kf jW

k

p;


k = kfk

L

p

(
)

+

X

j�j=k

k(D

�

f)%

�


k

L

p

(
)

:



4 1 INTRODUCTION AND MAIN RESULT

Suppose that

0 < k + 
 � 1=p < k:

Then

W

k

p;


(
) ,! W

k+
�1=p

p

(�)

and, moreover, there exists a bounded extension operator

ext




: W

k+
�1=p

p

(�)!W

k

p;


(
):

A by far more general setting|spa
es on fra
tals with this type of weights|

was re
ently 
onsidered by Piotrowska in [22℄.

In the following we shall make use of a Fourier analyti
 approa
h to

Sobolev spa
es and their weighted generalizations, therefore we re
all the

most important de�nitions and �x the notation.

Let f'

j

g

1

j=0

is the smooth (dyadi
) de
omposition of unity (see [28℄, [5℄):

supp'

j

� f2

j�1

� j�j � 2

j+1

g for j 2 N

0

and supp'

0

� B

1

(0) and '

j

(�) =

'

1

(2

�j+1

�) for j 2 N .

For 1 � p � 1, 1 � q � 1 and s 2 R

1

the Besov spa
e B

s

p q

= B

s

p q

(R

n

)

is the spa
e of all f 2 S

0

(R

n

) with the �nite norm

kf jB

s

p q

k =

�

1

X

k=0

2

ksq

kF

�1

('

k

b

f)k

q

L

p

�

1=q

(1.1)

if q <1 and with the �nite norm

kf jB

s

p1

k = sup

k

2

ks

kF

�1

('

k

b

f)k

L

p

(1.2)

if q = 1. Repla
ing the L

p

spa
e in the above de�nitions by L

p

(w) we

get a formal de�nition of the weighted Besov spa
e B

s

p q

(R

n

;w). Here S(R

n

)

denotes the spa
e of smooth rapidly de
reasing fun
tions f : R

n

! C and

S

0

(R

n

) = (S(R

n

))

0

its dual.

We shall also use the Bessel potential spa
es H

s

p

= H

s

p

(R

n

) and their

weighted 
lones: For s real and 1 < p <1,

H

s

p

(R

n

) =

n

f 2 S

0

(R

n

) :







F

�1

�

(1 + j�j

2

)

s=2

Ff

�







L

p

<1

o

;

H

s

p

(R

n

;w) =

n

f 2 S

0

(R

n

) :







F

�1

�

(1 + j�j

2

)

s=2

Ff

�







L

p

(w)

<1

o

normed in the obvious way.

For Lips
hitz domains there exists a universal extension operator working

on Sobolev, Besov and Bessel potential spa
es (and also on the Lizorkin-

Triebel spa
es, even for all real s, see Ry
hkov [23℄); this means that many
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relevant properties of spa
es on Lips
hitz domains follow from the 
laims on

the whole of R

n

. That is, one 
an work either with a formal de�nition of

spa
es on domains as fa
torspa
es of spa
es on R

n

modulo equality on the

domain in question or with a spa
e on the domain with a usual intrinsi
 norm

(if it is available). This 
an be partly extended to weighted spa
es with the

Mu
kenhoupt weights. Re
all that a weight w belongs to the Mu
kenhoupt


lass A

p

(R

n

) (1 < p <1) if

sup

Q

�

1

jQj

Z

Q

w(x) dx

��

1

jQj

Z

Q

w(x)

1=(p�1)

dx

�

p�1

<1; (1.3)

where the supremum is taken over all 
ubes Q � R

n

with edges parallel to

the 
oordinate axes. We shall write simply A

p

if no misunderstanding 
an

o

ur. Note in passing that x

0

7! jx

0

j

�

belongs to A

q

in R

n�1

if and only if

�(n� 1) < � < (q � 1)(n� 1) (see e.g. [8℄).

We also refer to Chua [6℄ for an extension theorem for Sobolev spa
es

on domains and to Ry
hkov [23℄ as to the formulae for the norm in Sobolev

spa
es with A

p

weights in terms of a weighted Littlewood-Paley de
omposi-

tion. Spe
i�
ally, for a positive integer k, 1 < p <1, and w 2 A

p

,

kf jW

k

p

(R

n

;w)k �













�

1

X

k=0

2

2jk

jF

�1

('

k

b

f)(x)j

2

�

1=2













L

p

(w)

:

This holds even for a bigger 
lass of the so 
alled lo
al A

p

weights (see [23℄)

(one requires the 
ondition (1.3) only for small 
ubes).

In Se
tion 4 we also make use of weighted Sobolev spa
es of negative order.

It well-known that for 1 < p < 1 and w 2 A

p

, the dual spa
e of L

p

(w) is

given by L

p

0

(w

0

) where

1

p

+

1

p

0

= 1 and w

0

= w

�

1

p�1

2 A

p

0

. A

ordingly, for a

positive integer k we de�ne

W

�k

q

(R

n

;w) :=

�

W

k

q

0

(R

n

;w

0

)

�

0

:

For more details about weighted spa
es of negative order we refer to [23℄.

To avoid te
hni
alities we shall not deal with the 
ase of Lips
hitz domains

and we will 
on
entrate on the basi
 
ase of a Sobolev spa
e on R

n

and a

tra
e on the boundary of a half-spa
e R

n

+

.

Our main result is:

THEOREM 1.1 Let � 2 (�(n� 1); (q � 1)(n� 1)). Then

tr

R

n�1

W

1

q

(R

n

+

; jxj

�

) = B

1�

1

q

qq

(R

n�1

; jx

0

j

�

):
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For the pre
ise de�nition of the fun
tion spa
es we refer to Se
tion 2 below.

The stru
ture of the paper is as follows: In Se
tion 2 we prove some

preliminary results 
on
erning weighted spa
es. Then in Se
tion 3 the proof

of the Theorem 1.1 for � > 0 is given, based on a suitable estimate of the

solution operator to a Diri
hlet boundary value problem. Finally, in Se
tion 4

the 
ase � < 0 is proved by a duality argument.

2 Preliminary results on weighted fun
tion

spa
es

By Gar
ia-Cuerva and Rubio de Fran
ia [12℄, Theorem 3.9. the following

weighted version of the H�ormander-Mikhlin multiplier theorem holds.

THEOREM 2.1 Let m 2 C

n

(R

n

n f0g) ful�ll the property

j�

�

m(�)j � Kj�j

�j�j

; for every � 2 R

n

n f0g; j�j = 0; 1; :::; n;

for some 
onstant K > 0. Then T de�ned by




Tf = m

b

f for f 2 S(R

n

)

extends to a 
ontinuous operator on L

q

w

(R

n

) for every q 2 (1;1) and w 2 A

q

.

In [12℄ this theorem is stated for an even larger 
lass of multipliers m. The

assertion on the operator norm is not mentioned expli
itly, but it follows

from the same proof.

Moreover, re
all that a smooth fun
tion p : R

n

� R

n

! C is in the pseu-

dodi�erential symbol 
lass S

m

1;0

(R

n

� R

n

), m 2 R, if and only if for every

�; � 2 N

n

0

there is a 
onstant C

�;�

su
h that

j�

�

�

�

�

x

p(x; �)j � C

�;�

h�i

m�j�j

uniformly in x; � 2 R

n

, where h�i := (1 + j�j

2

)

1

2

. Moreover, S

m

1;0

(R

n

� R

n

) is

a Fr�e
het spa
e e.g. with respe
t to the semi-norms

jpj

(N)

S

m

1;0

= sup

j�j+j�j�N

sup

x;�2R

n

j�

�

�

�

�

x

p(x; �)jh�i

�m+j�j

;


f. e.g. [17, 27℄. It is well-known that h�i

m

2 S

m

1;0

(R

n

� R

n

), i.e., for every

� 2 N

n

0

j�

�

�

h�i

m

j � C

�

h�i

m�j�j

(2.1)
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uniformly in � 2 R

n

. This 
an e.g. be proved by using the fa
t that f(a; �) :=

j(a; �)j

m

, (a; �) 2 R

n+1

nf0g, is a smooth and homogeneous fun
tion of degree

m.

For p 2 S

m

1;0

(R

n

� R

n

) the asso
iated pseuododi�erential operator is de-

�ned by

p(x;D

x

)f =

Z

R

n

e

ix��

p(x; �)

b

f(�)

d�

(2�)

n

; f 2 S(R

n

); (2.2)

where

b

f = F [f ℄(�) and D

x

=

1

i

�

x

. Then p(x;D

x

) 
an be extended to a

bounded operator on weighted Bessel potential spa
es by the following result

due to Mars
hall [19, Theorem 1℄:

THEOREM 2.2 Let 1 < q < 1, s 2 R, w 2 A

q

, and let p 2 S

m

1;0

(R

n

�

R

n

), m 2 R. Then p(x;D

x

) de�ned as above extends to a bounded linear

operator p(x;D

x

) : H

s+m

q

(R

n

;w) ! H

s

q

(R

n

;w). Moreover, there exists N =

N(s;m; n; q) 2 N

0

and C = C(s;m; n; q) > 0 su
h that

kp(x;D

x

)jL(H

s+m

q

(R

n

;w); H

s

q

(R

n

;w))k � Cjpj

(N)

S

m

1;0

uniformly in p 2 S

m

1;0

(R

n

� R

n

).

Proof: The �rst part follows dire
tly from [19, Theorem 1℄. The se
ond

part follows easily from the linearity of the mapping S

m

1;0

(R

n

� R

n

) 3 p 7!

p(x;D

x

) 2 L(H

s+m

q

(R

n

;w); H

s

q

(R

n

;w)) and the fa
t that the mapping is

bounded, whi
h 
an be easily 
he
ked by observing that all 
onstants in the

proof of [19, Theorem 1℄ only depend on some semi-norm jpj

(N)

S

m

1;0

with a suÆ-


iently large N 2 N

0

.

Let ! 2 A

q

(R

n

), let '

j

, j 2 N

0

, be a dyadi
 de
omposition of unity as

in the introdu
tion and let s 2 R, 1 � p; q � 1. Note that '

j

, j 2 N

0

, 
an

be 
hosen su
h that '

j

(�) = ('

1

(2

�j+1

�) for all j � 1. In parti
ular, this

implies

j�

�

�

'

j

(�)j � C

�

2

�jj�j

(2.3)

uniformly in j 2 N

0

and for all � 2 N

0

.

With the notation as in (2.2) we 
an de�ne weighted Besov spa
e by

B

s

pq

(R

n

;!) =

n

f 2 S

0

(R

n

) : kfk

B

s

pq

(R

n

;!)

<1

o

;

kfk

B

s

pq

(R

n

;!)

=

 

1

X

j=0

2

sqj

k'

j

(D

x

)fk

q

L

p

(R

n

;!)

!

1=q
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with the obvious modi�
ations if q =1. We note that B

s

pq

(R

n

;!) is a retra
t

of `

s

q

(N

0

;L

p

(R

n

;!)), where

`

s

q

(N

0

;X) =

n

(a

j

)

j2N

0

2 X

N

0

: k(a

j

)

j2N

0

k

`

s

q

(N

0

;X)

<1

o

;

k(a

j

)

j2N

0

k

`

s

q

(N

0

;X)

=

 

1

X

j=0

2

sjq

ka

k

k

q

X

!

1

q

if q <1;

k(a

j

)

j2N

0

k

`

s

1

(N

0

;X)

= sup

j2N

0

2

sj

ka

j

k

X

:

More pre
isely, the retra
tions and 
oretra
tions are given by

R : `

s

q

(N

0

;L

p

(R

n

;!))! B

s

pq

(R

n

;!); R((a

j

)

j2N

0

) =

1

X

j=0

 

j

(D

x

)a

j

;

S : B

s

pq

(R

n

;!)! `

s

q

(N

0

;L

p

(R

n

;!)); Sf = ('

j

(D

x

)f)

j2N

0

;

where  

j

(�) = '

j�1

(�) + '

j

(�) + '

j+1

(�), j 2 N

0

, and '

�1

(�) � 0.

2.1 Interpolation of weighted Besov spa
es

Lemma 2.3 Let 1 < q <1, s 2 R, and let ! 2 A

q

(R

n

). Then

B

s

q1

(R

n

;!) ,! H

s

q

(R

n

;!) ,! B

s

q1

(R

n

;!):

Proof: First of all,

j�

�

�

(h�i

s

'

j

(�))j � C

�;s

2

sj

h�i

�j�j

for all � 2 N

n

0

, s 2 R, be
ause of (2.1), (2.3), and sin
e 
2

j

� j�j � C2

j

on

supp'

j

. Hen
e

khD

x

i

s

'

j

(D

x

)fk

L

q

(R

n

;!)

� C

s

2

sj

kfk

L

q

(R

n

;!)

(2.4)

by the Mikhlin multiplier theorem for weighted L

q

-spa
es, Theorem 2.1, or

Theorem 2.2 withC

s

independent of j 2 N

0

. Sin
e '

j

(D

x

)f = '

j

(D

x

)('

j�1

(D

x

)f+

'

j

(D

x

)f + '

j+1

(D

x

)f),

khD

x

i

s

'

j

(D

x

)fk

L

q

(R

n

;!)

� C

s

2

sj

k'

j�1

(D

x

)f +'

j

(D

x

)f +'

j+1

(D

x

)fk

L

q

(R

n

;!)

Therefore

kfk

H

s

q

(R

n

;!)

�

1

X

j=0

khD

x

i

s

'

j

(D

x

)fk

L

q

(R

n

;!)

� C

1

X

j=0

2

sj

k'

j�1

(D

x

)f + '

j

(D

x

)f + '

j+1

(D

x

)fk

L

q

(R

n

;!)

� Ckfk

B

s

q1

(R

n

;!)

:
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Moreover,

kfk

B

s

q1

(R

n

;!)

= sup

j2N

0

2

sj

khD

x

i

�s

'

j

(D

x

)hD

x

i

s

fk

L

q

(R

n

;!)

� CkhD

x

i

s

fk

L

q

(R

n

;!)

= Ckfk

H

s

q

(R

n

;!)

by (2.4), whi
h �nishes the proof.

Lemma 2.4 Let s

0

; s

1

2 R, s

0

6= s

1

, 1 < p < 1, 1 � q; q

0

; q

1

� 1,

� 2 (0; 1), and let s = (1� �)s

0

+ �s

1

. Then

(B

s

0

pq

0

(R

n

;!); B

s

1

pq

1

(R

n

;!))

�;q

= B

s

pq

(R

n

;!)

for any weight fun
tion ! 2 A

p

.

Proof: Use that B

s

j

pq

j

(R

n

;!) is a retra
t of `

s

j

q

j

(N

0

;L

p

(R

n

;!)) and apply [5,

Theorem 5.6.1℄.

Corollary 2.5 Let 1 < q < 1, s

0

; s

1

2 R, s

0

6= s

1

, � 2 (0; 1) and let

s = (1� �)s

0

+ �s

1

and let ! 2 A

q

(R

n

). Then

(H

s

0

q

(R

n

;!); H

s

1

q

(R

n

;!))

�;q

= B

s

qq

(R

n

;!):

Proof: The 
orollary follows dire
tly from Lemma 2.3 and Lemma 2.4.

Corollary 2.6 Let 1 < q <1 and let ! = !(x

0

) 2 A

q

(R

n�1

). Then

tr

R

n�1

W

1

q

(R

n

+

;!) = (L

q

(R

n�1

;!);W

1

q

(R

n�1

;!))

1�

1

q

;q

= B

1�

1

q

qq

(R

n�1

;!)

Proof: The �rst equality follows from

W

1

q

(R

n

+

;!) = L

q

(R

+

;W

1

q

(R

n�1

;!)) \W

1

q

(R

+

;L

q

(R

n�1

;!))

and Lions' tra
e method for real interpolation, 
f. [5, Corollary 3.12.3℄ or

apply [3, Chapter III, Corollary 4.10.2℄. The se
ond equality follows from the

previous 
orollary and the fa
t that W

1

q

(R

n

;!) = H

1

q

(R

n

;!) = ff 2 S

0

(R

n

) :

hD

x

if 2 L

q

(R

n

;!)g, 
f. Fr�ohli
h [10, Lemma 3.1℄ or [9℄.
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2.2 An Embedding for L

q

(R

n

; jxj

�

)

Let (M;B; �) be a measure spa
e and let L

p;1

, 1 � p < 1, be the 
or-

responding weak L

p

-spa
e (the Mar
inkiewi
z spa
e) as e.g. de�ned in [5,

Se
tion 1.3℄.

Lemma 2.7 Let 1 � p; p

1

; p

2

<1 su
h that

1

p

=

1

p

1

+

1

p

2

. Then there exists

C > 0 su
h that

kfgk

L

p;1

(M;�)

� Ckfk

L

p

1

;1

(M;�)

kgk

L

p

2

;1

(M;�)

:

Proof: Sin
e the mapping (f; g) 7! fg is bilinear, it is suÆ
ient to 
onsider

the 
ase kfk

L

p

1

;1

(M;�)

; kgk

L

p

2

;1

(M;�)

� 1. Let � =

p

1

p

2

. Then we either have

jf(x)j � jg(x)j

�

or jf(x)j < jg(x)j

�

. Hen
e

� (fx : jf(x)g(x)j � �g) � �

�

fx : jf(x)j

1+�

� �g

�

+ �

�

fjg(x)j

1+

1

�

� �g

�

� �

�

p

1

1+�

+ �

�

�p

2

1+�

= 2�

�p

for every � > 0, whi
h �nishes the proof.

Corollary 2.8 Let 1 < q <1 and let 0 � � < (q � 1)n. Then

L

q

(R

n

; jxj

�

) ,! L

r;1

(R

n

) where

1

r

=

1

q

+

�

qn

: (2.5)

Proof: Let p =

qn

�

. Then jxj

�

�

q

2 L

p;1

(R

n

) and therefore

kfk

L

r;1

(R

n

)

� kjxj

�

�

q

k

L

p;1

(R

n

)

kjxj

�

q

k

L

q;1

(R

n

)

� Ckfk

L

q

(R

n

;jxj

�

)

:

For the following we denote

B

s

pq;(r)

(R

n

; !) =

�

f 2 S

0

(R

n

) : kf jB

s

pq;(r)

(R

n

;!)k <1

	

;

kf jB

s

pq;(r)

(R

n

;!)k =

 

1

X

j=0

k'

j

(D

x

)f jL

p;r

(R

n

;!)k

q

!

1=q

with the obvious modi�
ation if q = 1, where 1 � p; q; r � 1 and s 2 R,


f. [28, Se
tion 2.4.1℄. We need the following simple lemma.
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q

(R

n

; jxj

�
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Lemma 2.9 Let s

0

; s

1

2 R, 1 � q

0

; q

1

; r

0

; r

1

� 1, q

0

6= q

1

, � 2 (0; 1), and

let s = (1� �)s

0

+ �s

1

,

1

q

=

1��

q

0

+

�

q

1

. Then

(B

s

0

q

0

q

0

;(r

0

)

(R

n

;!); B

s

1

q

1

q

1

;(r

1

)

(R

n

;!))

�;q

= B

s

qq

(R

n

;!):

Proof: First of all, we note that B

s

j

q

j

q

j

;(r

j

)

(R

n

;!) and B

s

qq

(R

n

;!) are retra
ts

of `

s

j

q

j

(N

0

;L

q

j

;r

j

(R

n

;!)), `

s

q

(N

0

;L

q

(R

n

;!)), resp., with respe
t to the same

retra
tion mappings. Hen
e the statement follows from

�

`

s

0

q

0

(N

0

;L

q

0

;r

0

(R

n

;!)); `

s

1

q

1

(N

0

;L

q

1

;r

1

(R

n

;!))

�

�;q

= `

s

q

(N

0

; (L

q

0

;r

0

(R

n

;!); L

q

1

;r

1

(R

n

;!)))

�;q

) = `

s

q

(N

0

;L

q

(R

n

;!))

where we have used [5, Theorem 5.6.2℄ and [5, Theorem 5.3.1℄.

The following theorem is a key result for the proof of Theorem 1.1.

THEOREM 2.10 Let s 2 R, 1 < q <1, and let 0 < � < (q � 1)n. Then

B

s+

�

q

qq

(R

n

; jxj

�

) ,! B

s

qq

(R

n

) \H

s

q

(R

n

): (2.6)

Proof: By Corollary 2.8 L

q

(R

n

; jxj

�

) ,! L

r;1

(R

n

) for all 0 < � < (q � 1)n

and

1

r

=

1

q

+

�

qn

. Using the generalized Mar
inkiewi
z interpolation theorem,


f. [5, Theorem 5.3.2℄ for di�erent values of q yields

L

q;r

(R

n

; jxj

�

) ,! L

r

(R

n

) where

1

r

=

1

q

+

�

qn

(2.7)

for all 0 < � < (q � 1)n. Hen
e for all 0 < � < (q � 1)n and

1

r

=

1

q

+

�

qn

B

s+

�

q

qq;(r)

(R

n

; jxj

�

) ,! B

s+

�

q

rq

(R

n

) ,! B

s

qq

(R

n

) \H

s

q

(R

n

)

due to [28, Se
tion 2.8.2, Equation (2) and (18)℄. Hen
e using Lemma 2.9

for B

s+

�

q

qq;(r)

(R

n

; jxj

�

) with di�erent values of q together with

(B

s

q

0

q

0

(R

n

); B

s

q

1

q

1

(R

n

))

�;q

= B

s

qq

(R

n

); (H

s

q

0

(R

n

); H

s

q

1

(R

n

))

�;q

= H

s

q

(R

n

);

(2.8)

where

1

q

=

1��

q

0

+

�

q

1

, 
f. [28, Theorem 2.4.1℄ and [5, Theorem 6.4.5℄, we 
on-


lude (2.6).
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3 Proof for positive �

If 0 < � < (q � 1)(n� 1), then jxj

�

� jx

0

j

�

and therefore

trW

1

q

(R

n

+

; jxj

�

) � trW

1

q

(R

n

+

; jx

0

j

�

) = B

1�

1

q

qq

(R

n�1

; jx

0

j

�

) (3.1)

by Corollary 2.6. Hen
e it remains to prove the 
onverse in
lusion. To

this end we use the following extension operator: We denote by u = K

D

a,

a 2 S(R

n�1

), the solution of

(1��)u = 0 in R

n

+

;

uj

�R

n

+

= a on R

n�1

:

Using partial Fourier transformation ~a(�

0

) = F

x

0

7!�

0

[a℄(�

0

) the solution u =

K

D

a 
an be easily 
al
ulated as

u(x

0

; x

n

) = K

D

a = F

�1

�

0

7!x

0

h

e

�h�

0

ix

n

~a(�

0

)

i

; x = (x

0

; x

n

) 2 R

n

+

:

Note that h�

0

i = (1+ j�

0

j

2

)

1

2

as above. It is well known that the symbol-kernel

~

k(�

0

; x

n

) := e

�h�

0

ix

n

satis�es the following estimate

sup

x

n

�0

jx

s

n

�

l

x

n

�

�

�

0

~

k(�

0

; x

n

)j � C

�;s;l

h�

0

i

l�s�j�j

(3.2)

uniformly in �

0

2 R

n�1

and for all � 2 N

n�1

0

, s � 0, l 2 N

0

, see e.g. [1,

Lemma 2.9℄. Using the latter estimate we show

Lemma 3.1 Let 1 < q < 1, let s � 0, and let ! 2 A

q

(R

n�1

). Then

x

s

n

(rK

D

; K

D

) extends to a bounded operator

x

s

n

�

rK

D

K

D

�

: B

1�

1

q

qq

(R

n�1

;!)! L

q

(R

+

;B

s

qq

(R

n�1

;!) \H

s

q

(R

n�1

;!)):

Proof: First of all,

�

rK

D

K

D

�

a = F

�1

�

0

7!x

0

2

4

0

�

i�

0

�h�

0

i

1

1

A

e

�h�

0

ix

n

~a(�

0

)

3

5

� F

�1

�

0

7!x

0

h

~

k

0

(�

0

; x

n

)~a(�

0

)

i

:

Here

~

k

0

(�

0

; x

n

) satis�es

j�

�

�

0

~

k

0

(�

0

; x

n

)j � C

�;s;l

h�

0

i

1�s�j�j

jx

n

j

�s

(3.3)
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uniformly in �

0

2 R

n�1

, x

n

> 0, and for all � 2 N

n�1

0

, s � 0, l 2 N

0

,

by virtue of (3.2), (2.1), and the produ
t rule. Hen
e for every x

n

> 0

~

k

0

(�

0

; x

n

) 2 S

1�s

1;0

(R

n�1

� R

n�1

) is a pseudodi�erential symbol with semi-

norms bounded by Cjx

n

j

�s

. Hen
e

krK

D

a(:; x

n

)k

H

s�

1

p

q

(R

n�1

;!)

� Cjx

n

j

�s

kak

H

1�

1

p

q

(R

n�1

;!)

by Theorem 2.2. Repla
ing s by s+

1

p

we 
on
lude

kx

s

n

rK

D

a(:; x

n

)k

H

s

q

(R

n�1

;!)

� Cjx

n

j

�

1

p

kak

H

1�

1

p

q

(R

n�1

;!)

:

Sin
e kfk

L

p;1

(R

+

)

� kt

�

1

p

k

L

p;1

kfk

L

1

� C sup

t>0

t

1

p

jf(t)j, we get

kx

s

n

rK

D

a(:; x

n

)k

L

p;1

(R

+

;H

s

q

(R

n�1

;!))

� Ckak

H

1�

1

p

q

(R

n�1

;!)

:

Using real interpolation for di�erent values of p and setting p = q afterwards,

we 
on
lude

x

s

n

rK

D

: B

1�

1

q

qq

(R

n�1

;!)! L

q

(R

+

;H

s

q

(R

n�1

;!));

where we have used Corollary 2.5, [28, Se
tion 1.18.6, Theorem 2℄, and (2.8).

One more real interpolation with di�erent values of q yields

x

s

n

rK

D

: B

1�

1

q

qq

(R

n�1

;!)! L

q

(R

+

;B

s

qq

(R

n�1

;!));

whi
h 
ompletes the proof.

Proof of Theorem 1.1, 
ase � > 0: Using Lemma 3.1 with s = 0,

we 
on
lude K

D

: B

1�

1

q

qq

(R

n�1

; jx

0

j

�

) ! W

1

q

(R

n

+

; jx

0

j

�

). Moreover, applying

Lemma 3.1 with s =

�

q

, we 
on
lude

x

�

q

n

�

rK

D

K

D

�

: B

1�

1

q

qq

(R

n�1

; jx

0

j

�

)! L

q

(R

+

;B

�

q

qq

(R

n�1

; jx

0

j

�

))) ,! L

q

(R

n

+

);

where we have also used Theorem 2.10. Hen
e K

D

: B

1�

1

q

qq

(R

n�1

; jx

0

j

�

) !

W

1

q

(R

n

+

; x

�

n

). Sin
e jxj

�

� C

�

(jx

0

j

�

+ x

�

n

), the result for � > 0 follows.
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4 The result for negative �

The 
ase � < 0 is derived from the 
ase � � 0 by a duality argument. More

pre
isely, we use the following abstra
t lemma.

Lemma 4.1 Let !

1

; !

2

2 A

q

be given su
h that one has tr

R

n�1

W

1

q

(R

n

+

;!

1

) =

tr

R

n�1

W

1

q

(R

n

+

;!

2

) with equivalent norms. Then

tr

R

n�1

W

1

q

0

(R

n

+

;!

0

1

) = tr

R

n�1

W

1

q

0

(R

n

+

;!

0

2

) (4.1)

with equivalent norms, where

1

q

+

1

q

0

and !

0

j

= !

�

1

q�1

j

.

Proof: Let g 2

�

tr

R

n�1

W

1

q

0

(R

n

+

;!

0

1

)

�

0

then

G := [� 7! hg; �i

R

n�1

℄ 2

�

W

1

q

0

(R

n

;!

0

1

)

�

0

= W

�1

q

(R

n

;!

1

)

with kgk

�

tr

R

n�1

W

1

q

0

(R

n

+

;!

0

1

)

�

0

= kGk

W

�1

q

(R

n

;!

1

)

.

By [9℄ one has that (1 ��) : W

1

q

(R

n

;!

j

) ! W

�1

p

(R

n

;!

j

), j = 1; 2 is an

isomorphism. Sin
e G has its support in R

n�1

, it follows that (1��)

�1

G is

a weak solution to the boundary value problem

(1��)(1��)

�1

G = 0 on 
 and (1��)

�1

G 2 tr

R

n�1

W

1

q

(R

n

+

;!

1

);

where 
 = R

n

+

or 
 = R

n

�

. By the a priori estimate of this boundary value

problem in [9℄ one has

k(1��)

�1

Gk

W

1

q

(R

n

;!

1

)

� 
k tr

R

n�1

(1��)

�1

Gk

tr

R

n�1

W

1

q

(R

n

+

;!

1

)

:

Thus we may estimate using the assumption (4.1)

kgk

�

tr

R

n�1

W

1

q

0

(R

n

+

;!

0

1

)

�

0

= kGk

W

�1

q

(R

n

;!

1

)

� 
k(1��)

�1

Gk

W

1

q

(R

n

;!

1

)

� 
k tr

R

n�1

(1��)

�1

Gk

tr

R

n�1

W

1

q

(R

n

;!

1

)

� 
k tr

R

n�1

(1��)

�1

Gk

tr

R

n�1

W

1

q

(R

n

;!

2

)

� 
k(1��)

�1

Gk

W

1

q

(R

n

;!

2

)

� 
kGk

W

�1

q

(R

n

;!

2

)

= 
kgk

�

tr

R

n�1

W

1

q

0

(R

n

+

;!

0

2

)

�

0

:

Inter
hanging the roles of !

1

and !

2

, we obtain the reverse estimate

kgk

�

tr

R

n�1

W

1

q

0

(R

n

+

;!

0

2

)

�

0

� 
kgk

�

tr

R

n�1

W

1

q

0

(R

n

+

;!

0

1

)

�

0
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for some 
 > 0. We have shown that

�

tr

R

n�1

W

1

q

0

(R

n

+

;!

0

2

)

�

0

=

�

tr

R

n�1

W

1

q

0

(R

n

+

;!

0

1

)

�

0

:

Thus, sin
e tr

R

n�1

W

1

q

0

(R

n

+

;!

0

j

), j = 1; 2, is a fa
tor spa
e of the re
exive

Bana
h spa
e W

1

q

0

(R

n

+

;!

0

2

) with respe
t to a 
losed subspa
e, it is re
exive

and we obtain

tr

R

n�1

W

1

q

0

(R

n

+

;!

0

1

) = tr

R

n�1

W

1

q

0

(R

n

+

;!

0

2

)

as asserted.

Corollary 4.2 Let �(n� 1) < � < 0. Then

tr

R

n�1

W

1

q

(R

n

+

; jxj

�

) = B

1�

1

q

qq

(R

n�1

; jx

0

j

�

):

Proof: Let � := �

�

q�1

= �(q

0

�1)�. Then 0 < � < (n�1)(q

0

�1). Thus we

are in the range of indi
es that have already been 
onsidered and one obtains

from the results of Se
tion 3 that

tr

R

n�1

W

1

q

0

(R

n

+

; jxj

�

) = B

1�

1

q

0

q

0

q

0

(R

n�1

; jx

0

j

�

) = tr

R

n�1

W

1

q

0

(R

n

+

; jx

0

j

�

);

using Corollary 2.6 and jx

0

j

�

2 A

q

0

(R

n�1

). Thus by Lemma 4.1 we obtain

tr

R

n�1

W

1

q

(R

n

+

; jxj

�

) = tr

R

n�1

W

1

q

(R

n

+

; jx

0

j

�

) = B

1�

1

q

qq

(R

n�1

; jx

0

j

�

);

where we again applied Corollary 2.6. This �nishes the proof of Theorem

1.1.
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