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Abstract

The aim of this paper is to extend the global error estimation and control addressed in
Lang and Verver [SIAM J. Sci. Comput., 2007] for initial value problems to parabolic
partial differential equations. The classical ODE approach based on the first varia-
tional equation is combined with an estimation for the PDE spatial truncation error
to estimate the overall error in the computed solution. Control is achieved through
tolerance proportionality and uniform mesh refinement. Numerical examples are used
to illustrate the reliability of the estimation and control strategies.
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1 Introduction

We consider initial boundary value problems of parabolic type, which can be written as

∂tu(t, x) = f(t, x, u(t, x), ∂xu(t, x), ∂xxu(t, x)) , t ∈ (0, T ] , x ∈ Ω ⊂ R
d , (1.1)

equipped with an appropriate system of boundary conditions and with the initial condition

u(0, x) = u0(x) , x ∈ Ω. (1.2)

The PDE is assumed to be well posed and to have a unique continuous solution u(t, x).
The method of lines is used to solve (1.1) numerically. We first discretize the PDE in

space by means of finite differences or finite elements on a spatial mesh Ωh with character-
istic length h and solve the resulting system of ODEs using existing time integrators. For
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simplicity, we shall assume that this system of time-dependent ODEs can be written in the
general form

Mh U ′

h(t) = Fh(t, Uh(t)) , t ∈ (0, T ] ,

Uh(0) = Uh,0 ,
(1.3)

with a unique solution vector Uh(t) representing the spatial degrees of freedom. When finite
differences are applied then Mh is the identity matrix and the initial condition is defined by
evaluating the function u0(x) at the spatial mesh points. In the case of finite elements, Mh

represents the well-known (regular) mass matrix and the initial vector Uh,0 is derived from
a projection of u0(x) to the finite element space considered.

To solve the initial value problem (1.3), we apply a numerical integration method at a
certain time grid

0 = t0 < t1 < · · · < tn < · · · < tM−1 < tM = T , (1.4)

using local control of accuracy. This yields approximations Vh(tn) to Uh(tn), which may be
calculated for other values of t by using a suitable interpolation method provided by the
integrator. The global time error is then defined by

eh(t) = Vh(t) − Uh(t) . (1.5)

Numerical experiments in [7] for ODE systems have shown that classical global error esti-
mation based on the first variational equation is remarkably reliable. In addition, having
the property of tolerance proportionality, that is, there exists a linear relationship between
the global time error and the local accuracy tolerance, eh(t) can be successfully controlled
by a second run with an adjusted local tolerance. In order for the method of lines to be
used efficiently, it is necessary to take also into account the spatial discretization error.

Let Rh : u(t, · ) → Rhu(t) be the restriction operator which maps u(t) to its spatial
degrees of freedom. Defining the spatial discretization error by

ηh(t) = Uh(t) − Rhu(t) , (1.6)

the vector of overall global errors Eh(t) = Vh(t) − Rhu(t) may be written as sum of the
global time and spatial error, that is,

Eh(t) = eh(t) + ηh(t) . (1.7)

It is the purpose of this paper to present a new error control strategy for the global errors
Eh(t). This is achieved by iteratively improving the temporal and spatial discretizations
according to estimates of eh(t) and ηh(t). The global time error is estimated and controlled
along the way fully described in [7]. To estimate the global spatial error, we follow an
approach proposed in [2] (see also [8]) and use Richardson extrapolation to set up a linearized
error transport equation. Spatial mesh refinement based on expected convergence orders is
applied to control the global spatial error. In order to keep the description of the whole
algorithm as clear as possible we consider only uniform meshes, however our estimates can
be also used as a basis for adaptive mesh refinements.

In recent years goal-oriented adaptive control, that is, control of relevant quantities, has
gained popularity [1, 3, 4, 9, 10]. Understood as optimal control problem, this approach
naturally includes the backwards dual (or adjoint) system of ODEs or PDEs. The solution
of the dual problem can be used to find optimal meshes, however it requires the additional
storage of the approximate solution, which can be very demanding in practice. Nevertheless
this goal would clearly justify more computational work. On the other hand, our algorithm
uses only forward computations to control the overall global error.
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2 Spatial and time error

By making use of the restriction operator Rh, the spatial truncation error is defined by

αh(t) = Mh (Rhu)′(t) − Fh(t, Rhu(t)) . (2.1)

From (1.3) and (2.1), it follows that the global spatial error ηh(t) representing the accumu-
lation of the spatial discretization error is the solution of the initial value problem

Mh η′

h(t) = Fh(t, Uh(t)) − Fh(t, Rhu(t)) − αh(t) , t ∈ (0, T ] ,

ηh(0) = Uh,0 − Rhu0

(2.2)

Here and subsequently we use Uh,0 = Rhu0, which bears no restriction. Assuming Fh to be
continuously differentiable, the mean value theorem for vector functions yields

Mh η′

h(t) = ∂Uh
Fh(t, Uh(t)) ηh(t) − αh(t) + O(ηh(t)2), t ∈ (0, T ],

ηh(0) = 0 .
(2.3)

With Vh(t) being the continuous extension of the numerical approximation to (1.3), the
residual time error is defined by

rh(t) = MhV ′

h(t) − Fh(t, Vh(t)) . (2.4)

Thus the global time error eh(t) fulfills the initial value problem

Mh e′h(t) = Fh(t, Vh(t)) − Fh(t, Uh(t)) + rh(t) , t ∈ (0, T ] ,

eh(0) = 0 .
(2.5)

Again, the mean value theorem yields

Mh e′h(t) = ∂Uh
Fh(t, Vh(t)) eh(t) + rh(t) + O(eh(t)2), t ∈ (0, T ],

eh(0) = 0 .
(2.6)

Apparently, by implementing proper choices of the defects αh(t) and rh(t), solving (2.3) and
(2.6) will in leading order provide approximations to the true global error. The issue of how
to approximate the spatial truncation error and the residual time error will be discussed in
the next sections.

3 Estimation of the residual time error

We assume that the time integration method used to approximate the general ODE system
(1.3) is of order p ≤ 3. Following the approach proposed in [7] we define the interpolated
solution Vh(t) by piecewise cubic Hermite interpolation. Let Vh,n = Vh(tn) and Fh,n =
Fh(tn, Vh,n) for all n = 0, 1, . . . ,M . Then at every subinterval [tn, tn+1] we form

Vh(t) = Vh,n + An(t − tn) + Bn(t − tn)2 + Cn(t − tn)3, tn ≤ t ≤ tn+1, (3.1)

and choose the coefficients such that MhV ′

h(tn) = Fh,n and MhV ′

h(tn+1) = Fh,n+1. This
gives

Vh(tn + θτn) = v0(θ)Vh,n + v1(θ)Vh,n+1 + τnw0(θ)M
−1
h Fh,n + τnw1(θ)M

−1
h Fh,n+1 (3.2)
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with 0 ≤ θ ≤ 1, τn = tn+1 − tn, and

v0(θ) = (1 − θ)2(1 + 2θ), v1(θ) = θ2(3 − 2θ), w0(θ) = (1 − θ)2θ, w1(θ) = θ2(θ − 1). (3.3)

Now let Yh(t) be the (sufficiently smooth) solution of the ODE (1.3) with initial value
Y (tn) = Vh,n. Then the local error of the time integration method at time tn+1 is given by

len+1 = Vh,n+1 − Yh(tn+1) = O(τp+1
n ). (3.4)

Combining (3.2) and (3.4) gives

Vh(tn + θτn) − Yh(tn + θτn) =

v1(θ)len+1 − Yh(tn + θτn) + v0(θ)Yh(tn) + v1(θ)Yh(tn+1)

+τnw0(θ)M
−1
h Fh(tn, Yh(tn)) + τnw1(θ)M

−1
h Fh(tn+1, Yh(tn+1))

+τnw1(θ)M
−1
h (Fh(tn+1, Vh,n+1) − Fh(tn+1, Yh(tn+1))),

(3.5)

and by Taylor expansion we obtain

Vh(tn + θτn) − Yh(tn + θτn) = v1(θ)len+1 +
1

24
(2θ3 − θ2 − θ4)τ4

nY
(4)
h (tn) + O(τp+2

n ) . (3.6)

Recalling Mh Y ′

h(t) = Fh(t, Yh(t)) for t ∈ (tn, tn+1] and rewriting the residual time error as

rh(t) = Mh V ′

h(tn + θτn) − Mh Y ′

h(tn + θτn) + Fh(t, Yh(t)) − Fh(t, Vh(t)) , (3.7)

with θ = (t − tn)/τn, we find by differentiating the right hand side of (3.6)

rh(tn + θτn) = 6(θ − θ2)
Mh len+1

τn
+

1

12
(3θ2 − θ − 2θ3)τ3

nMhY
(4)
h (tn) + O(τp+1

n ) . (3.8)

Here we have assumed that Fh is Lipschitz. Setting θ = 1/2 in (3.8) will reveal

rh(tn+1/2) =
3

2

Mh len+1

τn
+ O(τp+1

n ) . (3.9)

Thus the cubic Hermite defect halfway the step interval can be used to retrieve in leading
order the local error of any one-step method of order 1 ≤ p ≤ 3 (see also [7], Section 2.2).
Following the arguments given in [7], Section 2.1, we consider instead of (2.6) the step size
frozen version

Mh ẽ′h(t) = ∂Uh
Fh(tn, Vh,n) ẽh(t) + 2

3rh(tn+ 1
2
), t ∈ (tn, tn+1], n = 0, . . . ,M−1,

ẽh(0) = 0
(3.10)

to approximate the global time error eh(t). Using

Vh(tn+1/2) =
1

2
(Vh,n + Vh,n+1) +

τ

8
M−1

h (Fh,n − Fh,n+1) (3.11)

and

V ′

h(tn+1/2) =
3

2τ
(Vh,n+1 − Vh,n) − 1

4
M−1

h (Fh,n + Fh,n+1) (3.12)
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we can compute the residual time error halfway the step interval from (2.4)

rh(tn+1/2) = 3
2τ Mh(Vh,n+1 − Vh,n) − 1

4 (Fh,n + Fh,n+1)

−Fh

(

tn+ 1
2
, 1

2 (Vh,n + Vh,n+1) + τ
8M−1

h (Fh,n − Fh,n+1)
)

.
(3.13)

Remark 3.1 From (3.8) we deduce

1

τn

∫ tn+1

tn

rh(t) dt =
Mhlen+1

τn
+ O(τp+1

n ) , (3.14)

showing, in the light of (3.9), that 2
3rh(tn+1/2) is in leading order equal to the time-averaged

residual. As long as this mean value is a sufficiently accurate approximation to rh(t) for
t ∈ [tn, tn+1], we can justify the use of the error equation (3.10) without the link to the first
variational equation.

4 Estimation of the spatial truncation error

An efficient strategy to estimate the spatial truncation error by Richardson extrapolation
was proposed in [2]. We will adopt this approach to our setting.

Suppose we are given a second semi-discretization of the PDE system (1.1), now with
characteristic length 2h,

M2h U ′

2h(t) = F2h(t, U2h(t)) , t ∈ (0, T ] ,

U2h(0) = U2h,0 .
(4.1)

The following two assumptions will be needed. (i) The solution U2h(t) to the discretised
PDE on the coarse mesh Ω2h exists and is unique. (ii) The spatial discretization error ηh(t)
is of order q with respect to h. We define the restriction operator Rh

2h from the fine grid Ωh

to the coarse grid Ω2h by the identity R2h = Rh
2hRh and set

ηc
h(t) = Rh

2hηh(t), U c
h(t) = Rh

2hUh(t), V c
h (t) = Rh

2hVh(t) . (4.2)

From the second assumption it follows that

ηc
h(t) = 2−qη2h(t) + O(hq+1) (4.3)

and therefore

R2hu(t) =
2q

2q − 1
U c

h(t) − 1

2q − 1
U2h(t) + O(hq+1) . (4.4)

The relation U c
h(t) − U2h(t) = ηc

h(t) − η2h(t) together with (4.3) gives

U c
h(t) − U2h(t) =

1 − 2q

2q
η2h(t) + O(hq+1) . (4.5)

The spatial truncation error on the coarse mesh Ω2h is analogously defined to (2.1) as

α2h(t) = M2h(R2hu)′(t) − F2h(t, R2hu(t)) . (4.6)
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Substituting R2hu(t) from (4.4) into the right-hand side, using the ODE system (4.1) to
replace M2hU ′

2h(t), and manipulating the expressions with (4.5) we get

α2h(t) = 2q

2q
−1

(

M2h(U c
h)′(t) − F2h

(

t, U c
h(t) − 1

2q η2h(t) + O(hq+1)
))

+ 1
2q

−1

(

F2h

(

t, U2h(t) − η2h(t) + O(hq+1)
)

− F2h(t, U2h(t))
)

+ O(hq+1).
(4.7)

Taylor expansions yield

α2h(t) =
2q

2q − 1

(

M2h(U c
h)′(t) − F2h(t, U c

h(t))
)

+ O(hq+1) . (4.8)

Analogously to (1.5), we set ec
h(t)=V c

h (t)−U c
h(t). Substituting U c

h(t) and its time derivative
into (4.8) it follows that

α2h(t) = 2q

2q
−1

(

M2h(V c
h )′(t) − F2h(t, V c

h (t))
)

+ O(hq+1)

− 2q

2q
−1

(

M2h(ec
h)′(t) − ∂Uh

F2h(t, V c
h (t))ec

h(t)
)

+ O(ec
h(t)2) .

(4.9)

From (2.6) we expect that the term on the right-hand side involving ec
h(t) is of the order of

the residual time error, that is, O(τp) for any one-step method of order p. Assuming this
expression to be sufficiently small, we can use

α̃2h(t) =
2q

2q − 1

(

M2h(V c
h )′(t) − F2h(t, V c

h (t))
)

(4.10)

as approximation for the spatial truncation error on the coarse mesh. Since Rh
2h is time-

independent we have (V c
h )′(t)=Rh

2hM−1
h Fh(t, Vh(t)). To guarantee a suitable quality of the

estimation (4.10) we shall first control the global time error for attempting that afterwards
the overall error is dominated by the spatial truncation error (see Section 6).

An approximation α̃h(t) of the spatial truncation error on the (original) fine mesh is
obtained by interpolation respecting the order of accuracy. Thus, to approximate the global
spatial error ηh(t) we consider instead of (2.3) the step-size frozen version

Mh η̃′

h(t) = ∂Uh
Fh(tn, Vh,n) η̃h(t) − α̃h(t), t ∈ (tn, tn+1], n = 0, . . . ,M−1,

η̃h(0) = 0
(4.11)

Remark 4.1 If an approximation ẽh(t) of the global time error has already been computed,
we could make use of U c

h(t) ≈ V c
h (t)+ ẽc

h(t) to obtain a better approximation of α2h(t) from
(4.8). However, we have found by experiments that even in the case when the global time
error was not small, using the step size frozen equations (3.10) and (4.11) to approximate
the global time and spatial error does not yield a significantly better approximation. Since
in practise the use of formula (4.8) requires additional function evaluations, equation (4.10)
appears to be more efficient.

Remark 4.2 We note that special care has to be taken in the handling with the spatial
truncation error at the boundary when derivative boundary conditions are present. In
general, this causes no problem for finite element methods but requests interpolation adopted
to the correct order of accuracy in the case of finite differences (see [2]).
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5 The example discretization formulas

In order to keep the illustration as simple as possible we restrict ourselves to one space
dimension. For the spatial discretization of (1.1) we use standard linear finite elements.
Hence we have q=2. As restriction operator Rh

2h from Ωh to Ω2h injection is applied.
The example time integration formulas are taken from [7]. For the sake of completeness

we shall give a short summary of the implementation used. To generate the time grid (1.4)
we have used as an example integrator the 3rd-order, A-stable Runge-Kutta-Rosenbrock
scheme ROS3P, see [5, 6] for more details. The property of tolerance proportionality [11] is
asymptotically ensured through working for the local error with

Est =
2

3
(Mh − γτnAh,n)−1rh(tn+1/2) , Ah,n = ∂Uh

Fh(tn, Vh,n) , (5.1)

where γ is the stability coefficient of ROS3P. The common filter (Mh − γτnAh,n) serves
to damp spurious stiff components which would otherwise be amplified through the Fh-
evaluations within rh(tn+1/2).

Let Dn = ‖Est‖ and Toln = TolA + TolR‖Vh,n‖ with TolA and TolR given tolerances
and the weighted L2-norm ‖vh‖2 =vT

h Mhvh. If Dn > Toln the step is rejected and redone.
Otherwise the step is accepted and we advance in time. In both cases the new step size is
determined by

τnew = min
(

1.5,max(2/3, 0.9 r)
)

τn , r = (Toln/Dn)1/3 . (5.2)

After each step size change we adjust τnew to τn+1 = (T − tn)/⌊(1 + (T − tn)/τnew)⌋ so as
to guarantee to reach the end point T with a step of averaged normal length. The initial
step size τ0 is prescribed and is adjusted similarly.

The linear error transport equations (3.10) and (4.11) are simultaneously solved by means
of the implicit midpoint rule, which gives approximations ẽh,n and η̃h,n to the global time
and spatial error at time t= tn. We use the implementations

(Mh − 1
2τnAh,n) δen+1 = 2Mhẽh,n + 2

3τnr(tn+1/2) ,

ẽh,n+1 = δen+1 − ẽh,n ,
(5.3)

and
(Mh − 1

2τnAh,n) δηn+1 = 2Mhη̃h,n − τnα̃h(tn+1/2) ,

η̃h,n+1 = δηn+1 − η̃h,n .
(5.4)

Clearly, the matrices Mh and Ah,n already computed within ROS3P can be reused. The
spatial truncation error α̃2h(t) at t= tn+1/2 is given by

α̃2h(tn+1/2) =
4

3

(

Rh
2hM−1

h Fh

(

tn+1/2, Vh(tn+1/2)
)

− F2h

(

tn+1/2, R
h
2hVh(tn+1/2)

))

. (5.5)

Since Vh(tn+1/2) and Fh(tn+1/2, Vh(tn+1/2) are available from the computation of rh(tn+1/2)
in (3.13), this requires only one linear solve with Mh and one function evaluation on the
coarse grid. The vector α̃2h(tn+1/2) on the coarse mesh is prolongated to the fine mesh by
linear interpolation of the coarse grid values and is then divided by 2. Note that since a
weak formulation is used for the finite element method we have αh(t)=O(h).

Due to freezing the coefficients in each time step, the second-order midpoint rule is a
first-order method when interpreted for solving the linearized equations (2.6) (or likewise
the first variational equation) and (2.3). Thus if all is going well, we asymptotically have
ẽh,n =eh(tn) + O(τ4

max) and η̃h,n =ηh(tn) + O(τmaxhq) + O(hq+1).
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6 The control rules

Like for the ODE case studied in [7] our aim is to provide global error estimations and to
control the accuracy of the solution numerically computed to the imposed tolerance level.
Suppose the numerical schemes have delivered an approximate solution Vh,M and global
estimates ẽh,M and η̃h,M for the time and spatial error at time tM = T . We then verify
whether

‖ẽh,M‖ ≤ CT CcontrolTolM , T olM = TolA + TolR‖Vh,M‖, (6.1)

where Ccontrol ≈ 1, typically > 1, and CT ∈ (0, 1) denotes the fraction desired for the global
time error with respect to the tolerance TolM . If (6.1) does not hold, the whole computation
is redone over [0, T ] with the same initial step τ0 and the adjusted tolerances

TolA = TolA · fac, TolR = TolR · fac, fac = CT TolM/‖ẽh,M‖. (6.2)

Based on tolerance proportionality, reducing the local error estimates with the factor fac

will reduce eh(T ) by fac [11].
If (6.1) holds, we check whether

‖ẽh,M + η̃h,M‖ ≤ CcontrolTolM . (6.3)

If it is true, the overall error Eh(T ) = Vh(T )−Rhu(T ) = eh(T )+ηh(T ) is considered small
enough relative to the chosen tolerance and Vh,M is accepted. Otherwise, the whole compu-
tation is redone with the adjusted tolerances (6.2) and the new (uniform) spatial resolution

hnew = q

√

(1 − CT )TolM
‖η̃h,M‖ h (6.4)

to account for achieving ηhnew
(T ) ≈ (1 − CT )TolM . To check the convergence behavior in

space and therefore also the quality of the approximation of the spatial truncation error, we
compute the numerically observed order

qnum = log

( ‖η̃h,M‖
‖η̃hnew,M‖

)

/

log

(

h

hnew

)

. (6.5)

If qnum computed for the final run is not close to the expected value q used for our Richardson
extrapolation, we reason that the approximation of the spatial truncation errors has failed
due to a dominating global time error, which happens, e.g., if the initial spatial mesh is
already too fine. Consequently, we coarsen the initial mesh by a factor two and start again.
If the control approach stops without a mesh refinement, we perform an additional control
run on the coarse mesh and compute qnum from (6.5) with hnew = 2h. It turned out that
this simple strategy works quite robust, provided that the meshes used are able to resolve
the basic behavior of the solution.

Summarizing, the first check (6.1) and the possibly second control computation serve to
significantly reduce the global time error. This enables us to make use of the approximation
(4.10) for the spatial truncation error, which otherwise could no be trusted. The second
step based on suitable spatial mesh improvement attempts to bring the overall error down
to the imposed tolerance. This is controlled by the spatial order of convergence numerically
computed from (6.5). Using the sum of the approximate global time and spatial error inside
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the norm in (6.3), we take advantage of favorable effects of error cancelation. These two
steps are successively repeated until the second check is successful. Additionally, we take
into account the numerically observed order in space to assess the approximation of the
spatial truncation error.

7 Numerical illustrations

To illustrate the performance of the global error estimators and the control strategy, we
consider three test problems: (i) the Allen-Cahn equation modelling a diffusion-reaction
problem [7] , (ii) the highly stable heat equation with nonhomogeneous Neumann bound-
ary conditions [2], and (iii) the nonlinear convection-dominated Burgers’ equation [2, 8].
Analytic solutions are known for all three problems.

We set TolA = TolR = Tol for Tol = 10−l, l = 2, . . . , 7 and start with one and the same
initial step size τ0 = 10−5. Equally spaced meshes of 25, 51, 103, 207, 415, 831, and 1663
points are used as initial mesh. The control parameters introduced above for the control
rules are CT = 1/3 and Ccontrol = 1.2. All runs were performed, but for convenience we
only select a representative set of them for our presentation.

We define the estimated global error Ẽh,M = ẽh,M +η̃h,M at time t = T and set indicators

Θest = ‖Ẽh,M‖/‖Eh(T )‖ for the ratio of the estimated global error and the true global error,
and Θctr = TolM/‖Eh(T )‖ for the ratio of the desired tolerance and the true global error.
Thus, Θctr ≥ 1/Ccontrol = 5/6 indicates control of the true global error.

The tables of results contain the following quantities, TolM = Tol (1 + ‖Vh,M‖) from

(6.1), the estimated global error Ẽh,M , the estimated time error ẽh,M , and the estimated
spatial truncation error η̃h,M . The ratios Θest and Θctr serve to illustrate the quality of
the global error estimation and the control. In addition, the numerically observed order
qnum for the spatial error is given. It will be clear from the tables of results whether a
tolerance-adapted run to control the global time error, a spatial mesh adaption step or an
additional control run on a coarser grid was necessary.

7.1 The Allen-Cahn equation

The first problem is the bi-stable Allen-Cahn equation which is defined by

∂tu = 10−2 ∂xxu + 100u (1 − u2) , 0 < x < 2.5 , 0 < t ≤ T = 0.5 , (7.1)

with the initial function and Dirichlet boundary values taken from the exact wave front
solution u(x, t) = (1 + eλ (x−α t))−1, λ = 50

√
2, α = 1.5

√
2. This problem was also used in

[7].
Table 7.1 reveals a high quality of the global error estimation and also the control process

works quite well. The ratios for Θest = ‖Ẽh,M‖/‖Eh(T )‖ lie between 1.04 and 1.21, after
the control runs. Control of the global error, that is ‖Eh(T )‖ ≤ CcontrolTolM , is in general
achieved after two steps (one step to adjust the time grid and one step to control the space
discretization), whereas the efficiency index Θctr = TolM/‖Eh(T )‖ is improved for finer
initial meshes. This results from a better approximation of the spatial truncation error
in this case, which yields a more favourable hnew from (6.4). Also observe that for the
extremely coarse or fine initial meshes chosen for the tolerance Tol=1.0e− 4, the approach
performs excellent with respect to estimation and control. Similar results are obtained for
other combinations of tolerances and initial spatial meshes.
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Tol N TolM ‖Ẽh,M‖ ‖ẽh,M‖ ‖η̃h,M‖ Θest Θctr qnum

1.00e−2 51 1.64e−2 1.84e+1 2.89e−1 1.81e+1 20.76 0.02
1.89e−4 51 1.64e−2 2.22e+0 1.02e−3 2.22e+0 2.54 0.02
1.89e−4 741 1.65e−2 3.84e−3 3.41e−4 3.50e−3 1.14 4.90 2.43

1.00e−2 207 1.63e−2 5.65e−1 2.03e−1 3.61e−1 7.75 0.22
2.68e−4 207 1.64e−2 6.48e−2 4.96e−4 6.43e−2 1.69 0.43
2.68e−4 505 1.64e−2 8.48e−3 5.12e−4 7.97e−3 1.21 2.35 2.35

1.00e−3 103 1.62e−3 5.83e−1 2.72e−3 5.80e−1 4.59 0.01
1.99e−4 103 1.62e−3 5.88e−1 3.62e−4 5.88e−1 4.67 0.01
1.99e−4 2425 1.65e−3 6.80e−4 3.62e−4 3.19e−4 1.11 2.69 2.39

1.00e−3 415 1.64e−3 1.69e−2 2.69e−3 1.42e−2 1.44 0.14
2.04e−4 415 1.64e−3 1.23e−2 3.70e−4 1.20e−2 1.23 0.16
2.04e−4 1375 1.65e−3 1.37e−3 3.72e−4 9.98e−4 1.12 1.35 2.08

1.00e−4 25 1.78e−4 6.19e−2 7.07e−7 6.19e−2 0.06 0.00
1.00e−4 595 1.65e−4 5.52e−3 1.64e−4 5.36e−3 1.13 0.03 0.78
3.33e−5 595 1.65e−4 5.25e−3 4.91e−5 5.20e−3 1.10 0.03
3.33e−5 4103 1.65e−4 1.54e−4 4.91e−5 1.04e−4 1.04 1.12 2.03

1.00e−4 1663 1.65e−4 8.23e−4 1.65e−4 6.58e−4 1.08 0.22
3.33e−5 1663 1.65e−4 6.87e−4 4.91e−5 6.38e−4 1.05 0.25
3.33e−5 4013 1.65e−4 1.58e−4 4.90e−5 1.09e−4 1.04 1.09 2.01

Table 7.1: Selected data for the Allen-Cahn problem.

7.2 Heat equation with Neumann boundary conditions

This heat equation provides an example with inhomogeneous Neumann boundary conditions:

∂tu = ∂xxu , 0 < x < 1.0 , 0 < t ≤ T = 0.2 , (7.2)

and boundary conditions ∂xu = π e−π2t cos(πx) at x=0 and x=1. The initial condition is

consistent with the analytic solution u(x, t) = e−π2t sin(πx). Although the solution is very
stable, it is not easy to provide good error estimators as stated in [2, 8].

Due to the high stability of the problem the global time errors are much smaller than
imposed local tolerances. So, control of the global time error is redundant here and control
runs were only carried out in case of insufficient spatial resolutions. Table 7.2 shows results
for various tolerances and initial meshes. The global error estimation and control appear
to work very well for this problem, where the influence of the initial mesh points is less
strong. This holds also for other combinations of tolerances and initial meshes. Note the
high quality of the estimator Ẽh,M (and therefore also of η̃h,M ), showing that the derivative
boundary condition is well resolved within the Richardson extrapolation. For the runs with
tolerances Tol=10−2, 10−3, 10−4, 10−5, the order of the spatial convergence was successfully
checked with a second run on the coarse mesh, that is, we can trust the first run.

7.3 Burgers’ equation

The third problem is the nonlinear Burgers’ equation

∂tu = ε ∂xxu − u∂xu , 0 < x < 1.0 , 0 < t ≤ T = 1.0 , (7.3)
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Tol N TolM ‖Ẽh,M‖ ‖ẽh,M‖ ‖η̃h,M‖ Θest Θctr qnum

1.00e−2 25 1.09e−2 6.63e−4 1.06e−4 7.48e−4 0.99 16.35
1.00e−2 13 1.09e−2 2.77e−3 1.01e−4 2.85e−3 0.98 3.86 1.93

1.00e−3 51 1.10e−3 1.62e−4 1.87e−5 1.77e−4 1.00 6.77
1.00e−3 25 1.09e−3 7.34e−4 1.83e−5 7.49e−4 0.99 1.48 1.97

1.00e−4 103 1.10e−4 4.15e−5 1.93e−6 4.29e−5 1.00 2.64
1.00e−4 51 1.10e−4 1.75e−4 1.89e−6 1.77e−4 1.00 0.62 1.99

1.00e−5 207 1.10e−5 1.05e−5 1.96e−7 1.06e−5 1.00 1.05
1.00e−5 103 1.10e−5 4.28e−5 1.94e−7 4.29e−5 1.00 0.26 1.99

1.00e−6 415 1.10e−6 2.61e−6 1.80e−8 2.62e−6 1.00 0.42
1.00e−6 787 1.10e−6 7.19e−7 1.81e−8 7.29e−7 1.00 1.53 2.00

1.00e−7 25 1.09e−7 7.50e−4 1.56e−9 7.50e−4 1.00 0.00
1.00e−7 2637 1.10e−7 6.40e−8 1.59e−9 6.48e−8 1.00 1.72 1.99

1.00e−7 1663 1.10e−7 1.62e−7 1.59e−9 1.63e−7 1.00 0.68
1.00e−7 2485 1.10e−7 7.22e−8 1.59e−9 7.30e−8 1.00 1.52 2.00

Table 7.2: Selected data for the heat equation with Neumann boundary conditions.

where ε = 0.015 as in [1] is used in the experiments. Dirichlet boundary conditions and
initial conditions are consistent with the analytic solution defined by

u(x, t) =
r1 + 5r2 + 10r3

10(r1 + r2 + r3)
(7.4)

where r1(x) = e0.45x/ε, r2(t, x) = e0.01(10+6t+25x)/ε, and r3(t) = e0.025(6.5+9.9t)/ε.
In Table 7.3 we present results for all tolerances used and the 51-point initial mesh.

The use of a relatively coarse mesh at the beginning is the natural choice in practice. No
adaptation in time is necessary, which is mainly due to the small first time step and the
maximum factor 1.5 which is allowed in (5.2) for a step size enlargement. For the tolerances
Tol = 10−2, 10−3, the numerical solution is accepted since the corresponding control run
shows qnum ≈ 2, the expected value. Remarkably excellent estimators are obtained for
higher tolerances. Here, control is always achieved after one spatial mesh improvement.

8 Summary

We have developed an error control strategy for the solution of parabolic equations, involv-
ing both temporal and spatial discretization errors. The global time error strategy discussed
in [7] appears to provide an excellent starting point for the development of such an algo-
rithm. The classical ODE approach based on the first variational equation and the principle
of tolerance proportionality is combined with an efficient estimation of the spatial error
and uniform refinement to control the overall global error. Inspired by [2], we have used
Richardson extrapolation to approximate the spatial truncation error within the method of
lines. Our control strategy aims at balancing the spatial and temporal discretization error
in order to achieve an accuracy imposed by the user.

The key ingredients are: (i) linearized error transport equations equipped with sufficiently
accurate defects to approximate the global time error and global spatial error and (ii) uniform

11



Tol N TolM ‖Ẽh,M‖ ‖ẽh,M‖ ‖η̃h,M‖ Θest Θctr qnum

1.00e−2 51 1.93e−2 2.82e−3 2.69e−3 3.27e−4 1.26 8.59
1.00e−2 25 1.92e−2 3.06e−3 2.23e−3 1.29e−3 1.21 7.63 1.99

1.00e−3 51 1.93e−3 3.55e−4 1.22e−4 3.03e−4 1.04 5.69
1.00e−3 25 1.92e−3 1.21e−3 1.19e−4 1.17e−3 0.98 1.55 1.95

1.00e−4 51 1.93e−4 3.02e−4 1.02e−5 3.00e−4 1.01 0.65
1.00e−4 79 1.93e−4 1.28e−4 1.15e−5 1.26e−4 1.01 1.52 2.02

1.00e−5 51 1.93e−5 2.99e−4 9.91e−7 2.99e−4 1.01 0.07
1.00e−5 251 1.94e−5 1.28e−5 1.02e−6 1.26e−5 1.00 1.52 2.01

1.00e−6 51 1.93e−6 2.99e−4 1.01e−7 2.99e−4 1.01 0.01
1.00e−6 791 1.94e−6 1.29e−6 9.34e−8 1.28e−6 1.00 1.51 2.00

1.00e−7 51 1.93e−7 2.98e−4 9.94e−9 2.98e−4 1.01 0.00
1.00e−7 2503 1.94e−7 1.29e−7 8.57e−9 1.28e−7 1.00 1.51 2.00

Table 7.3: Selected data for Burgers’ equation with 51 initial mesh points.

mesh refinement and local error control in time based on tolerance proportionality to achieve
global error control. For illustration of the performance and effectiveness of our approach, we
have implemented linear finite elements in one space dimension and the example integrator
ROS3P [6]. On the basis of three different test problems we could observe that our approach
is very reliable, both with respect to estimate and control. In forthcoming work we will also
include adaptive mesh refinement in space, which is especially more efficient for solutions
having a strongly nonuniform nature in space.
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