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Abstrat

We onsider the problem divu = f in a bounded Lipshitz domain 
, where f

with

R




f = 0 is given. It is shown that the solution u, that is onstruted as

in Bogowski's approah in [1℄ ful�lls estimates in the weighted Sobolev spaes

W

k;q

w

(
), where the weight funtion w is ontained in the lass of Mukenhoupt

weights A

q

.

1 Introdution and Main Results

Let 
 be a bounded Lipshitz domain in R

n

, n � 2. We onsider a given funtion f with

R




f = 0 and we are looking for solutions u to the divergene equation

divu = f in 
 and uj

�


= 0: (1.1)

It is an immediate onsequene of Green's formula that the ondition that f has mean

value 0 is neessary for the existene of a solution u to (1.1).

This problem has been studied by Bogowski [1℄, v. Wahl [12℄, Galdi [8℄ and Sohr [10℄,

they prove existene and estimates of a solution u to (1.1) in the framework of lassial

L

p

- and Sobolev spaes.

We investigate this problem in weighted funtion spaes. More preisely, we onsider

weighted Lebesgue spaes L

q

w

(
) and Sobolev spaes W

k;q

w

(
) whih means that we inte-

grate with respet to the measure w dx for an appropriate weight funtion w.

All weight funtions, that we use are ontained in the Mukenhoupt lass A

q

. This the

lass of nonnegative and loally integrable weight funtions, for whih the expression

A

q

(w) := sup

Q

�

1

jQj

Z

Q

w dx

��

1

jQj

Z

Q

w

�

1

q�1

dx

�

q�1

is �nite, where the supremum is taken over all ubes in R

n

.

As shown in [4℄ examples of Mukenhoupt weights are w(x) = (1 + jxj)

�

, with �n <

� < n(q � 1) or dist (x;M)

�

, �(n � k) < � < (n � k)(q � 1), where M is a ompat

k-dimensional Lipshitzian manifold. Thus suh weight funtions an be used for a better

desription of the solution lose to the boundary, in a neighborhood of a point or for

jxj ! 1.

One reason why the lass of Mukenhoupt weights is appropriate for analysis is that the

maximal operator is ontinuous in weighted L

q

-spaes, if and only if the weight funtion

is a Mukenhoupt weight. Thus the powerful tools of harmoni analysis may be applied,

f. Gar��a-Cuerva and Rubio de Frania [9℄ and Stein [11℄.

In this paper we follow Bogowski's approah in [1℄ and [8℄ using an expliit onstru-

tion in star shaped domains and a deomposition of Lipshitz domains into starshaped
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domains. The solution is represented by a non translation-invariant singular integral op-

erator. Before showing its ontinuity by the help of Theorem 3.1 below, it is neessary to

modify the kernel of this operator in a way whih does e�et the solution depending on

the ompatly supported right hand side f .

Denoting by W

k;q

w;0

(
) the losure of all smooth and ompatly supported funtions in

the norm of the Sobolev spae W

k;q

w

(
) our main result reads as follows.

Theorem 1.1. Let 
 � R

n

, n � 2, be a bounded and loally lipshitzian domain. Assume

f 2W

k;q

w;0

(
) suh that

R

f = 0. Then there exists a funtion u 2W

k+1;q

w;0

(
) suh that

divu = f and kuk

k+1;q;w

� kfk

k;q;w

;

where  = (
; q; w; k) > 0 depends A

q

-onsistently on w. Moreover, u an be hosen suh

that it depends linearly on f and suh that u 2 C

1

0

(
) if f 2 C

1

0

(
).

2 Weighted Funtion Spaes

In this setion we ollet the basi de�nitions of weight funtions and funtion spaes,

whih are needed in this text. Moreover, we quote the main theorem about the bounded-

ness of maximal operator.

De�nition 2.1. Let A

q

, 1 < q < 1, the set of Mukenhoupt weights, be given by all

0 � w 2 L

1

lo

(R

n

) for whih

A

q

(w) := sup

Q

�

1

jQj

Z

Q

w dx

��

1

jQj

Z

Q

w

�

1

q�1

dx

�

q�1

<1: (2.1)

The supremum is taken over all ubes in R

n

. To avoid trivial ases, we exlude the ase

where w vanishes almost everywhere.

A onstant C = C(w) is alled A

q

-onsistent if for every 

0

> 0 it an be hosen

uniformly for all w 2 A

q

with A

q

(w) < 

0

.

The A

q

-onsistene is of great importane sine it is needed for the appliation of the

Extrapolation Theorem [9, IV Lemma 5.18℄. In partiular this is used when showing

the ontinuity of operator-valued Fourier multipliers and the maximal regularity of an

operator; see e.g. [7℄ for details and appliations.

We introdue some funtion spaes. First by C

1

0

(
) we denote the spae of smooth

funtions with ompat support in 
.

For 1 < q <1, w 2 A

q

and an open set 
 we de�ne the weighted Lebesgue and Sobolev

spaes as follows.

� The weighted Lebesgue spaes L

q

w

(
) are given by

L

q

w

(
) :=

(

f 2 L

1

lo

(
) j kfk

q;w

:=

�

Z




jf j

q

w dx

�

1

q

<1

)

:

� Assume in addition k 2 N

0

, the set of nonnegative integers. The weighted Sobolev

spaes are de�ned by

W

k;q

w

(
) =

8

<

:

u 2 L

q

w

(
)

�

�

�

kuk

k;q;w

:=

X

j�j�k

kD

�

uk

q;w

<1

9

=

;

:
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� Finally, we set

W

k;q

w;0

(
) = C

1

0

(
)

k�k

k;q;w

:

By [5℄, [7℄ and [3℄ the spaes L

q

w

(
), W

k;q

w

(
) and W

k;q

w;0

(
) are reexive Banah spaes in

whih C

1

0

(
) or C

1

0

(
), respetively, are dense.

For a loally integrable funtion f we de�ne the maximal operator M by

(Mf)(x) = sup

r>0

1

jB

r

(0)j

Z

jyj�r

jf(x� y)jdy:

One has the following lose onnetion between the Mukenhoupt lassA

q

and the maximal

operator.

Theorem 2.2. Let 1 < q <1 and w 2 A

q

. Then the maximal operator M is ontinuous

on L

q

w

(R

n

). More preisely, there exists an A

q

-onsistent onstant  suh that

kMfk

q;w

� kfk

q;w

for every f 2 L

q

w

(R

n

):

Vie versa if � is a nonnegative Borel measure and M is bounded on L

q

(R

n

; �), then � is

absolutely ontinuous and d� = w dx for some w 2 A

q

.

Proof. See [9℄, Theorems 2.1 and 2.9. For the A

q

-onsistene of the onstants one has to

re-read the proof of [9℄, Theorem 2.9. The reverse inlusion an be found in [11, 2.2℄.

By [6℄ the following weighted analogue of the Poinar�e inequality holds: there exists an

A

q

-onsistent onstant  = (q; w) > 0 suh that

kuk

q;w

� kruk

q;w

for every u 2W

1;q

w;0

(
): (2.2)

3 Proof of Theorem 1.1

Throughout this setion let 1 < q <1 and w 2 A

q

.

The proof follows the same lines as the unweighted ase [1℄, [8, Chapter III.3℄. It uses

non-translation-invariant singular integral operators. Thus we apply the following theorem

proved in [11, V.6.13℄ whih ensures the ontinuity of a ertain lass of suh operators.

Theorem 3.1. Let T be a bounded operator from L

2

(R

n

) into itself that is assoiated to

a kernel K in the sense that

(Tf)(x) =

Z

R

n

K(x; y)f(y)dy

for all ompatly supported f 2 L

2

(R

n

) and all x outside the support of f . Suppose that

for some  > 0 and some A > 0 the kernel K satis�es the inequalities

jK(x; y)j � Ajx� yj

�n

(3.1)

and

jK(x; y)�K(x

0

; y)j � A

jx� x

0

j



jx� yj

n+

if jx� x

0

j �

1

2

jx� yj (3.2)
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as well as the symmetri version of the seond inequality in whih the roles of x and y are

interhanged. Writing

(T

"

f)(x) =

Z

jx�yj>"

K(x; y)f(y)dy and (T

�

f)(x) = sup

">0

j(T

"

f)(x)j;

we have that

Z

[(T

�

f)(x)℄

q

w(x)dx � 

Z

[(Mf)(x)℄

q

w(x)dx; (3.3)

where f is bounded and has ompat support, w 2 A

q

, and 1 < q < 1. The onstant 

depends A

q

-onsistently on w.

Proof. This Theorem is stated in [11, V.6.13℄. The A

q

-onsistene of the onstants is

not expliitly mentioned there, however, it is established with the same arguments if one

rereads the proof of Proposition 6 in [11, V.4.4℄.

Sine the maximal operator M : L

q

w

(R

n

) ! L

q

w

(R

n

) is bounded, the inequality (3.3)

guarantees that the sublinear operator T

�

an be extended to a ontinuous sublinear

operator T

�

: L

q

w

(
)! L

q

w

(
).

However, to make use of the above theorem we have to modify the singular integral

operator whih appears in the proof of Lemma 3.2 below outside the bounded set 
 suh

that it possesses the properties assumed in Theorem 3.1.

In the proof of the following Lemma the ourring integral operators have to be under-

stood in the Cauhy priniple value sense lim

"!0

T

"

f .

Lemma 3.2. Let 
 � R

n

, n � 2, be bounded and star-shaped with respet to every point

of some losed ball B with B � 
.

Then for every f 2W

k;q

w;0

(
) with

R




f = 0 there exists a v 2W

k+1;q

w;0

(
) with

div v = f and kvk

k+1;q;w

� kfk

k;q;w

;

where  = (
; q; w; k) > 0 depends A

q

-onsistently on w. The funtion v depends linearly

on f and f 2 C

1

0

(
) implies v 2 C

1

0

(
).

Proof. Without loss of generality we may assume, using a oordinate transformation, that

B = B

1

(0).

First we assume that f 2 C

1

0

(
).

We hoose a 2 C

1

0

(B

1

(0)) suh that

R

a = 1 and de�ne

v(x) :=

Z




f(y)(x� y)

�

Z

1

1

a (y + �(x� y)) �

n�1

d�

�

dy: (3.4)

In the proof of [8, Lemma III.3.1℄ it is shown that v 2 C

1

0

(
) and div v = f .

It thus remains to prove the weighted estimates. To do this we use the following repre-

sentation of �

j

v also shown in the proof of [8, Lemma III.3.1℄:

�

j

v

i

(x) =

Z




K

i;j

(x; x� y)f(y)dy + f(x)

Z




(x

j

� y

j

)(x

i

� y

i

)

jx� yj

2

a(y)dy

=: F

1

(x) + F

2

(x);

(3.5)
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where

K

i;j

(x; x� y) =

Æ

i;j

jx� yj

n

Z

1

0

a

�

x+ r

x� y

jx� yj

�

(jx� yj+ r)

n�1

dr

+

x

i

� y

i

jx� yj

n+1

Z

1

0

�

j

a

�

x+ r

x� y

jx� yj

�

(jx� yj+ r)

n

dr;

(3.6)

for every x; y 2 R

n

. To show the ontinuity of the integral operator f 7! F

1

its kernel

must be modi�ed. Set

E :=

n

z 2 
 j z = �z

1

+ (1� �)z

2

; z

1

2 supp f; z

2

2 B

1

(0); � 2 [0; 1℄

o

:

Sine 
 is star-shaped with respet to B

1

(0), E is a ompat subset of 
. For x 62 E and

y 2 supp f we have

x+ r

x� y

jx� yj

62 B for all r > 0;

whih means K

i;j

(x; x � y) = 0. Thus, if we hoose a ut-o� funtion  2 C

1

0

(R

n

) with

 (x) = 1 on 
 and supp � B

R

(0) for some R > 0, and set '(x; y) =  (x) (y) we obtain

f(y)K

i;j

(x; x� y) = f(y)'(x; y)K

i;j

(x; x� y) =: f(y)

~

K

i;j

(x; x� y);

for x; y 2 R

n

, if f is assumed to be extended by 0 to R

n

. Moreover, for x 2 B

R

(0) we

have

r > R+ 1 )

�

�

�

�

x+ r

x� y

jx� yj

�

�

�

�

� r � jxj > 1 ) a

�

x+ r

x� y

jx� yj

�

= 0:

Thus for x 2 
 one has

Z

R

n

f(y)K

i;j

(x; x� y)dy =

Z

R

n

f(y)

~

K

i;j

(x; x� y)dy

=

Z

R

n

f(y)'(x; y)

�

Æ

i;j

jx� yj

n

Z

R+1

0

a

�

x+ r

x� y

jx� yj

�

(jx� yj+ r)

n�1

dr

+

x

i

� y

i

jx� yj

n+1

Z

R+1

0

�

j

a

�

x+ r

x� y

jx� yj

�

(jx� yj+ r)

n

dr

�

dy:

Now we have to prove that

~

K

i;j

satis�es the assumptions of Theorem 3.1. By the

Calder�on-Zygmund Theorem [2℄ we �nd that

f 7!

Z

R

n

 (x)K

i;j

(x; x� y)f(y)dy : L

2

(R

n

)! L

2

(R

n

)

is ontinuous. Sine the multipliation M

 

with the C

1

0

-funtion  is a ontinuous oper-

ator on L

2

(R

n

) we obtain the ontinuity of

f 7!

Z

R

n

~

K

i;j

(x; x� y)f(y)dy

=

Z

R

n

 (x)K

i;j

(x; x� y)M

 

f(y)dy : L

2

(R

n

)! L

2

(R

n

):
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It remains to prove the estimates (3.1) and (3.2). For (3.1) we may assume jxj; jyj < R.

One has

jx� yj

n

j

~

K

i;j

(x; x� y)j

=

�

�

�

�

'(x; y)Æ

i;j

Z

R+1

0

a

�

x+ r

x� y

jx� yj

�

(jx� yj+ r)

n�1

dr

+ '(x; y)

x

i

� y

i

jx � yj

Z

R+1

0

�

j

a

�

x+ r

x� y

jx� yj

�

(jx� yj+ r)

n

dr

�

�

�

�

�

�

Z

R+1

0

(2R + r)

n�1

dr +

Z

R+1

0

(2R + r)

n

dr

�

= 

0

:

To prove (3.2) we take x; x

0

; y 2 R

n

with jx � x

0

j �

1

2

jx � yj. If (x; y); (x

0

; y) 62 supp'

nothing is to prove. Thus, without loss of generality we may assume that y � R and

x � 3R, sine if y � R and x � 3R then

jx

0

j � jxj � jx� x

0

j � jxj �

1

2

(jxj+ jyj) �

3

2

R�

1

2

R = R:

Then using the triangle inequality together with the fat that a, ' and (jx� yj+ r)

n

are

Lipshitz ontinuous on ompat sets we an estimate

�

�

�

�

x

i

� y

i

jx� yj

n+1

'(x; y)

Z

R+1

0

�

j

a

�

x+ r

x� y

jx� yj

�

(jx� yj+ r)

n

dr

�

x

0

i

� y

i

jx

0

� yj

n+1

'(x

0

; y)

Z

R+1

0

�

j

a

�

x

0

+ r

x

0

� y

jx

0

� yj

�

(jx

0

� yj+ r)

n

dr

�

�

�

�

�

�

�

�

�

�

x

i

� y

i

jx� yj

n+1

�

x

0

i

� y

i

jx

0

� yj

n+1

�

'(x; y)

Z

R+1

0

�

j

a

�

x+ r

x� y

jx� yj

�

(jx� yj+ r)

n

dr

�

�

�

�

+

�

�

�

�

x

0

i

� y

i

jx

0

� yj

n+1

('(x; y) � '(x

0

; y)

Z

R+1

0

�

j

a

�

x+ r

x� y

jx� yj

�

(jx� yj+ r)

n

dr

�

�

�

�

+

jx

0

i

� y

i

j

jx

0

� yj

n+1

'(x

0

; y)

Z

R+1

0

�

�

�

�

�

j

a

�

x+ r

x� y

jx� yj

�

� �

j

a

�

x

0

+ r

x

0

� y

jx

0

� yj

�

�

�

�

�

(jx� yj+ r)

n

dr

+

jx

0

i

� y

i

j

jx

0

� yj

n+1

'(x

0

; y)

Z

R+1

0

�

�

�

�

�

j

a

�

x

0

+ r

x

0

� y

jx

0

� yj

�

�

�

�

�

j(jx� yj+ r)

n

� (jx

0

� yj+ r)

n

jdr

= I

1

+ I

2

+ I

3

+ I

4

:

Using the Lipshitz ontinuity of �

i

a and jx� yj � 4R we obtain

I

3

�



jx� yj

n

Z

R+1

0

L

�

jx� x

0

j+

jx� x

0

j

jx� yj

�

(jx� yj+ r)

n

dr � 

jx� x

0

j

jx� yj

n+1

:
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I

2

and I

4

an be estimated analogously. For I

1

we estimate

�

�

�

�

x

i

� y

i

jx� yj

n+1

�

x

0

i

� y

i

jx

0

� yj

n+1

�

�

�

�

�

jx

i

� x

0

i

j

jx� yj

n+1

+

�

�

�

�

1

jx� yj

n+1

�

1

jx

0

� yj

n+1

�

�

�

�

jx

0

i

� y

i

j

�

jx� x

0

j

jx� yj

n+1

+

�

�

�

�

jx

0

� yj

n+1

� jx� yj

n+1

jx� yj

n+1

jx

0

� yj

n+1

�

�

�

�

jx

0

i

� y

i

j

�

jx� x

0

j

jx� yj

n+1

+ 

�

�

jx

0

� yj � jx� yj

�

�

� jx� yj

n

jx� yj

2n+2

jx

0

i

� y

i

j

� 

jx� x

0

j

jx� yj

n+1

;

where we used that jx

0

� yj �

1

2

jx� yj. The estimate

�

�

jx

0

� yj

n+1

� jx� yj

n+1

�

�

� 

�

�

jx

0

�

yj � jx� yj

�

�

� jx� yj

n

follows from an elementary indution with respet to n.

The �rst summand in (3.6) an treated in the same way. Moreover, interhanging the

roles of x and y the same kind of estimates an be done.

Combining the above and using Theorem 3.1 we obtain

kF

1

k

q;w

� kT

�

fk

q;w

� kMfk

q;w

� kfk

q;w

where T

�

is the operator given by Theorem 3.1 and assoiated to the kernel

~

K

i;j

. The

funtion F

2

appearing in (3.5) is easily estimated sine

Z




(x

j

� y

j

)(x

i

� y

i

)

jx� yj

2

a(y)dy

is bounded. Thus using the Poinar�e inequality (2.2) we obtain kvk

1;q;w

� kfk

q;w

.

Now the general ase with f 2 L

q

w

(
) follows easily, sine we an approximate f by

C

1

0

-funtions (f

n

) with

R

f

n

= 0.

It remains to prove the estimate in the spaes W

k;q

w

(
). Using Leibniz' formula one an

show (see [8, Remark III.3.2℄)

�

�

v(x) =

X

���

�

�

�

�

Z




N

�

(x; y)�

���

f(y)dy;

where

N

�

(x; y) = (x� y)

Z

1

1

�

�

a(y + r(x� y))r

n�1

dr:

Clearly �

�

a 2 C

1

0

(B

1

(0)). Hene the same proof as above yields

k�

�

vk

1;q;w

� kfk

k;q;w

for f 2 C

1

0

(
) and every � with j�j � k. Approximating an arbitrary f 2 W

k;q

w;0

(
) with

R

f = 0 by C

1

0

-funtions (f

n

) with

R

f

n

= 0 �nishes the proof.

The following Lemma is the weighted analogue to [8, Lemma III.3.4.℄. Its proof works

in exatly the same way as in the ase of unweighted funtion spaes.

Lemma 3.3. Let 
 be a bounded and loally lipshitzian domain.
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1. There exist open sets 


1

; :::;


m

with 
 =

S

m

i=1




i

suh that eah 


i

is star-shaped

with respet to an open ball B

i

with B

i

� 


i

.

2. For every f 2 C

1

0

(
) with

R




= 0 there exist f

i

2 C

1

0

(


i

), i = 1; :::;m, with

f =

P

m

i=1

f

i

,

R

f

i

= 0 and kf

i

k

k;q;w

� kfk

k;q;w

for every k 2 N

0

and q � 1 and an

A

q

-onsistent onstant  = (k; q; w;
).

Proof of Theorem 1.1. Let f 2 C

1

0

(
) with

R

f = 0 and take 


i

; f

i

, i = 1; :::;m, as in

Lemma 3.3. We denote by v

i

the solution to div v

i

= f

i

given by Lemma 3.2. Then we

have

kv

i

k

k+1;q;w

� kf

i

k

k;q;w

� kfk

k;q;w

:

Then v =

P

m

i=1

v

i

solves div v = f with kvk

k+1;q;w

� kfk

k;q;w

. For arbitrary f 2W

k;q

w;0

(
)

with

R

f = 0 use again approximations with C

1

0

-funtions.
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