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Abstract

We consider the problem divu = f in a bounded Lipschitz domain 2, where f
with fQ f =0 1is given. It is shown that the solution u, that is constructed as
in Bogowski’s approach in [1] fulfills estimates in the weighted Sobolev spaces
Wi’q(Q), where the weight function w is contained in the class of Muckenhoupt
weights A,.

1 Introduction and Main Results

Let €2 be a bounded Lipschitz domain in R™, n > 2. We consider a given function f with
fQ f =0 and we are looking for solutions u to the divergence equation

divu=f in © and u|pg =0. (1.1)

It is an immediate consequence of Green’s formula that the condition that f has mean
value 0 is necessary for the existence of a solution u to (1.1).

This problem has been studied by Bogowski [1], v. Wahl [12], Galdi [8] and Sohr [10],
they prove existence and estimates of a solution u to (1.1) in the framework of classical
LP- and Sobolev spaces.

We investigate this problem in weighted function spaces. More precisely, we consider
weighted Lebesgue spaces LY () and Sobolev spaces Wi?(€2) which means that we inte-
grate with respect to the measure w dz for an appropriate weight function w.

All weight functions, that we use are contained in the Muckenhoupt class A,. This the
class of nonnegative and locally integrable weight functions, for which the expression
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is finite, where the supremum is taken over all cubes in R".

As shown in [4] examples of Muckenhoupt weights are w(z) = (1 + |z|)®, with —n <
a < n(g—1) or dist (z, M)*, —(n — k) < a < (n — k)(¢ — 1), where M is a compact
k-dimensional Lipschitzian manifold. Thus such weight functions can be used for a better
description of the solution close to the boundary, in a neighborhood of a point or for
|z| — oo.

One reason why the class of Muckenhoupt weights is appropriate for analysis is that the
maximal operator is continuous in weighted L?-spaces, if and only if the weight function
is a Muckenhoupt weight. Thus the powerful tools of harmonic analysis may be applied,
cf. Garcia-Cuerva and Rubio de Francia [9] and Stein [11].

In this paper we follow Bogowski’s approach in [1] and [8] using an explicit construc-
tion in star shaped domains and a decomposition of Lipschitz domains into starshaped



domains. The solution is represented by a non translation-invariant singular integral op-
erator. Before showing its continuity by the help of Theorem 3.1 below, it is necessary to
modify the kernel of this operator in a way which does effect the solution depending on
the compactly supported right hand side f.

Denoting by Wf}:g(ﬁ) the closure of all smooth and compactly supported functions in

the norm of the Sobolev space Wa(2) our main result reads as follows.

Theorem 1.1. Let Q C R™, n > 2, be a bounded and locally lipschitzian domain. Assume
fe Wi:g(Q) such that [ f =0. Then there exists a function u € Wf}:gl’q(ﬁ) such that

dive = f and |ullpr1,0w < €l fllrgw;

where ¢ = ¢(2, q,w, k) > 0 depends A,-consistently on w. Moreover, u can be chosen such
that it depends linearly on f and such that u € C§°(Q) if f € C§°(Q).

2 Weighted Function Spaces

In this section we collect the basic definitions of weight functions and function spaces,
which are needed in this text. Moreover, we quote the main theorem about the bounded-
ness of maximal operator.

Definition 2.1. Let A;, 1 < ¢ < oo, the set of Muckenhoupt weights, be given by all
0 <w e L} (R") for which

Ayl) = s (ﬁ/@wﬁ (F;'/Qw—q%dxy_l < 0. (2.1)

The supremum is taken over all cubes in R"™. To avoid trivial cases, we exclude the case
where w vanishes almost everywhere.

A constant C = C(w) is called Ag-consistent if for every ¢y > 0 it can be chosen
uniformly for all w € A, with A,(w) < co.

The Ag-consistence is of great importance since it is needed for the application of the
Extrapolation Theorem [9, IV Lemma 5.18]. In particular this is used when showing
the continuity of operator-valued Fourier multipliers and the maximal regularity of an
operator; see e.g. [7] for details and applications.

We introduce some function spaces. First by C§°(€2) we denote the space of smooth
functions with compact support in 2.

For 1 < g < oo, w € A, and an open set {2 we define the weighted Lebesgue and Sobolev
spaces as follows.

e The weighted Lebesgue spaces L{,() are given by

L3,(@) = {f € L@ |1 lw = ( [ Iflqwd$>; < oo}.

e Assume in addition & € INg, the set of nonnegative integers. The weighted Sobolev
spaces are defined by

W) = Sue L) | Tullkgw = Y 1Dy < 00
la|<k



e Finally, we set
Wes@) = or@ e

By [5], [7] and [3] the spaces LY (€2), Wi?(Q) and ng(Q) are reflexive Banach spaces in

which C§°(Q2) or C§°(€2), respectively, are dense.
For a locally integrable function f we define the maximal operator M by

1
M) @) =50 B0 e

[/ (z —y)|dy.
One has the following close connection between the Muckenhoupt class A, and the maximal
operator.

Theorem 2.2. Let 1 < g < oo and w € A,;. Then the mazimal operator M is continuous
on L{,(R™). More precisely, there exists an Aq-consistent constant ¢ such that

1M fllgw < ellfllgw — for every f € Ly, (R™).

Vice versa if p is a nonnegative Borel measure and M is bounded on LI(R™, ), then u is
absolutely continuous and dp = wdx for some w € A,.

Proof. See [9], Theorems 2.1 and 2.9. For the A,-consistence of the constants one has to
re-read the proof of [9], Theorem 2.9. The reverse inclusion can be found in [11, 2.2]. O

By [6] the following weighted analogue of the Poincaré inequality holds: there exists an
Ag-consistent constant ¢ = ¢(g,w) > 0 such that

|ullgw < €l|Vullgw for every u € Wl};’%(Q). (2.2)

3 Proof of Theorem 1.1

Throughout this section let 1 < ¢ < oo and w € A,.

The proof follows the same lines as the unweighted case [1], [8, Chapter II1.3]. It uses
non-translation-invariant singular integral operators. Thus we apply the following theorem
proved in [11, V.6.13] which ensures the continuity of a certain class of such operators.

Theorem 3.1. Let T be a bounded operator from L?(R™) into itself that is associated to
a kernel K in the sense that

(Tf)z)= | K(z,y)f(y)dy

]RTL

for all compactly supported f € L>(R™) and all = outside the support of f. Suppose that
for some v > 0 and some A > 0 the kernel K satisfies the inequalities

K(z,y)] < Al —y| (3.1)
and
K(z,y) - K@ y) < A= i _ < Loy (3.2)



as well as the symmetric version of the second inequality in which the roles of x and y are
interchanged. Writing

awmwzj K@@y nd (L)) = sup (1))
T—y|>e

e>0

we have that

/[(T*f)(w)]qw(w)dw < c/[(Mf)(ﬂv)]qUJ(:L")d:E, (3.3)

where f is bounded and has compact support, w € Ay, and 1 < g < oo. The constant c
depends Ag-consistently on w.

Proof. This Theorem is stated in [11, V.6.13]. The Aj-consistence of the constants is
not explicitly mentioned there, however, it is established with the same arguments if one
rereads the proof of Proposition 6 in [11, V.4.4]. O

Since the maximal operator M : L{(R") — L% (R™) is bounded, the inequality (3.3)
guarantees that the sublinear operator 7, can be extended to a continuous sublinear
operator T : Li,(2) — LL(Q).

However, to make use of the above theorem we have to modify the singular integral
operator which appears in the proof of Lemma 3.2 below outside the bounded set €2 such
that it possesses the properties assumed in Theorem 3.1.

In the proof of the following Lemma the occurring integral operators have to be under-
stood in the Cauchy principle value sense lim,_,o 7. f.

Lemma 3.2. Let Q_C IR”,_TL > 2, be bounded and star-shaped with respect to every point
of some closed ball B with B C €.
Then for every f € Wlﬁig(ﬁ) with [o f =0 there exists a v € Wllfj)l’q(fl) with

dive = f and ||v||k+1,q,w < C“f |k,q,wa

where ¢ = ¢(, q,w, k) > 0 depends Agy-consistently on w. The function v depends linearly
on f and f € C§°(2) implies v € CF°(£2).

Proof. Without loss of generality we may assume, using a coordinate transformation, that
B = By(0).

First we assume that f € C5°(Q).

We choose a € C§°(B1(0)) such that [a =1 and define

z/Qf(y)(w—y) (/1wa(y+£(w—y))£"1d£> dy. (3.4)

In the proof of [8, Lemma III.3.1] it is shown that v € C§°(2) and divv = f.
It thus remains to prove the weighted estimates. To do this we use the following repre-
sentation of 0;v also shown in the proof of [8, Lemma ITL.3.1]:

@mwz/K” i+ 1) [ P gy
=: z) + Fy(x),



where

0;.i o0 T —
Kij(z,z —y) =—"2 /0 a (a: + TF — Z|> (Jz —y| + )" Ldr

|z —y|"

. . o0
-I—M/ 8a<x+r y>(|x—y|+r)"dr,
0 |z —y|

for every z,y € R™. To show the continuity of the integral operator f — Fi its kernel
must be modified. Set

(3.6)

E .= {zEQ | z=MXz1 + (1 — N)zo, 21 €supp f, 22 € B1(0), A € [0,1]}.

Since (2 is star-shaped with respect to B1(0), E is a compact subset of 2. For x ¢ F and
y € supp f we have

.’L'-l-?”

¢ B forallr >0,

|z — yl
which means K; j(x,z —y) = 0. Thus, if we choose a cut-off function ¢ € Cg°(R") with
P(x) =1 on Q and suppyp C Bg(0) for some R > 0, and set ¢(x,y) = ¥ (z)1(y) we obtain

FWKij(z,x—y) = fezy) K i@,z —y) = fy)Kij(z,z —y),

for z,y € R™, if f is assumed to be extended by 0 to R"™. Moreover, for z € Br(0) we
have

x+r$_y

|z -y

r>R+1 = ‘Zr—|$|>1:>a<m+r$_y>:0.

|z -y

Thus for = € ) one has
T Kij(z,z —y)dy = f) K j(z, o —y)dy
R R"
8 R+1 _
= [ st |2 [T e (a2 (ol
R» 0 |1U - y|

|z —y|
R+1
+ dia |z +r (lz —y|+7) dr] dy.
jz =yt Sy |z —y]

Now we have to prove that f(i,j satisfies the assumptions of Theorem 3.1. By the
Calder6n-Zygmund Theorem [2] we find that

[ o )(2)Kij(z, @ —y)f(y)dy : L*(R") — L*(R")

is continuous. Since the multiplication M, with the C§°-function 1 is a continuous oper-
ator on L?(R") we obtain the continuity of

fw/' Sz — ) f(y)dy



It remains to prove the estimates (3.1) and (3.2). For (3.1) we may assume |z|, |y| < R.
One has

|z — ?J|"|I~Q,j(33,$ -

R+1 oy
— ‘go(w,y)éiJ a (3: + rm> (|lz —y|+ r)"’ldr

R+1
+ o(z,y) |:; — yz| i dja (.’E +r|x — y|> (lz —y| +r)"dr

R+1 R+1
<c (/ 2R+ r)" ldr + / (2R + r)”dr) =c.
0 0

To prove (3.2) we take z,z',y € R" with |z — 2'| < 3|z —y|. If (z,y),(2',y) & suppep
nothing is to prove. Thus, without loss of generality we may assume that y < R and
z < 3R, since if y < R and z > 3R then

1 3 1
'] > 2| = o = | > [a] = S(lz| +1y) 2 SR - SR = R.

Then using the triangle inequality together with the fact that a, ¢ and (|z — y| + )™ are
Lipschitz continuous on compact sets we can estimate

BTl TR )U/R+1a (24rE=L) (o=l +rya
SD .'L',y 0 i 7" :IJ—y T 'S
|a; —y|”+1 0 I | y|

.’E _yZ ( )/R+18 ( + , y>(| / |+ )nd
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< ¢ _ i 9 B ng
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xh — Yi R+1 T —
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=h+L+1;+ 1.

Using the Lipschitz continuity of J;a and |z — y| < 4R we obtain

R+1 ! li

c |z — 2’| |z — 2’|
13_7/ L<|a;—a;'|+ >(|x—y|+r)”dr§c7.
|z —y[" |z —y |z — y|nt!



I and 14 can be estimated analogously. For I; we estimate

i —Yi x;_yi |$Z_$;| 1 _ 1 |:v'-—y~|
e e T i e e e | R
o m=al ey oy 7! — i
R TR e TR TS
o —a'|  fle =yl =l —yl| e —yl"
|z — y[nt! +c |z — y[2nt2 |z — il
|z — ']
|z — y[

where we used that |2/ — y| > |z — y|. The estimate ||/ — y|"™ — |z — y[*T!] < ¢||2’ -
y| — |z — y|| - |# — y|™ follows from an elementary induction with respect to n.

The first summand in (3.6) can treated in the same way. Moreover, interchanging the
roles of z and y the same kind of estimates can be done.

Combining the above and using Theorem 3.1 we obtain

[ llgw < T F

gw S M fllgw < ellfllgw

where T™ is the operator given by Theorem 3.1 and associated to the kernel f(i,j. The
function Fy appearing in (3.5) is easily estimated since

/ (zj —yj) (@i — vi)
Q

|z — yl?

a(y)dy

is bounded. Thus using the Poincaré inequality (2.2) we obtain ||v||1,q.w < ¢/l fll¢w-

Now the general case with f € Li,(2) follows easily, since we can approximate f by
C§°-functions (f,) with [ f, = 0.

It remains to prove the estimate in the spaces Wﬁ’q(Q). Using Leibniz’ formula one can
show (see [8, Remark III.3.2])

O u() = ; (g) /Q Ny, 9)0° { (y)dy,
where ~
No(z,y) = (& — v) / P aly +r(z — y)rdr.

Clearly 9°a € C§°(B1(0)). Hence the same proof as above yields

10%0]|1,g,0 < €l ll,g0

for f € C§°(2) and every a with || < k. Approximating an arbitrary f € ng(Q) with
[ f =0 by C§°-functions (f,) with [ f,, = 0 finishes the proof. O

The following Lemma is the weighted analogue to [8, Lemma II1.3.4.]. Its proof works
in exactly the same way as in the case of unweighted function spaces.

Lemma 3.3. Let Q be a bounded and locally lipschitzian domain.



1. There exist open sets Q, ..., Qy with @ = U~ Q; such that each Q; is star-shaped
with respect to an open ball B; with B; C ;.

2. For every f € C§°(Q) with [, = 0 there exist f; € C§(Q;), © = 1,...,m, with
F="0f [ fi=0 and || fillkgw < || fllegw for every k € Ng and ¢ > 1 and an
A,-consistent constant ¢ = c(k, ¢, w, ).

Proof of Theorem 1.1. Let f € C§°(?) with [ f = 0 and take €, fi, i = 1,...,m, as in
Lemma 3.3. We denote by v; the solution to divv; = f; given by Lemma 3.2. Then we
have

Nvillkt 1,90 < cll fillk,gw < cllf

|k g.0-
Then v = Y"1, v; solves diveo = f with [[v]|k+1,9.0 < ¢||fllk,qw- For arbitrary f € Wi:g(Q)

with [ f = 0 use again approximations with C§°-functions. U
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