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Abstra
t

We 
onsider the problem divu = f in a bounded Lips
hitz domain 
, where f

with

R




f = 0 is given. It is shown that the solution u, that is 
onstru
ted as

in Bogowski's approa
h in [1℄ ful�lls estimates in the weighted Sobolev spa
es

W

k;q

w

(
), where the weight fun
tion w is 
ontained in the 
lass of Mu
kenhoupt

weights A

q

.

1 Introdu
tion and Main Results

Let 
 be a bounded Lips
hitz domain in R

n

, n � 2. We 
onsider a given fun
tion f with

R




f = 0 and we are looking for solutions u to the divergen
e equation

divu = f in 
 and uj

�


= 0: (1.1)

It is an immediate 
onsequen
e of Green's formula that the 
ondition that f has mean

value 0 is ne
essary for the existen
e of a solution u to (1.1).

This problem has been studied by Bogowski [1℄, v. Wahl [12℄, Galdi [8℄ and Sohr [10℄,

they prove existen
e and estimates of a solution u to (1.1) in the framework of 
lassi
al

L

p

- and Sobolev spa
es.

We investigate this problem in weighted fun
tion spa
es. More pre
isely, we 
onsider

weighted Lebesgue spa
es L

q

w

(
) and Sobolev spa
es W

k;q

w

(
) whi
h means that we inte-

grate with respe
t to the measure w dx for an appropriate weight fun
tion w.

All weight fun
tions, that we use are 
ontained in the Mu
kenhoupt 
lass A

q

. This the


lass of nonnegative and lo
ally integrable weight fun
tions, for whi
h the expression

A

q

(w) := sup

Q

�

1

jQj

Z

Q

w dx

��

1

jQj

Z

Q

w

�

1

q�1

dx

�

q�1

is �nite, where the supremum is taken over all 
ubes in R

n

.

As shown in [4℄ examples of Mu
kenhoupt weights are w(x) = (1 + jxj)

�

, with �n <

� < n(q � 1) or dist (x;M)

�

, �(n � k) < � < (n � k)(q � 1), where M is a 
ompa
t

k-dimensional Lips
hitzian manifold. Thus su
h weight fun
tions 
an be used for a better

des
ription of the solution 
lose to the boundary, in a neighborhood of a point or for

jxj ! 1.

One reason why the 
lass of Mu
kenhoupt weights is appropriate for analysis is that the

maximal operator is 
ontinuous in weighted L

q

-spa
es, if and only if the weight fun
tion

is a Mu
kenhoupt weight. Thus the powerful tools of harmoni
 analysis may be applied,


f. Gar
��a-Cuerva and Rubio de Fran
ia [9℄ and Stein [11℄.

In this paper we follow Bogowski's approa
h in [1℄ and [8℄ using an expli
it 
onstru
-

tion in star shaped domains and a de
omposition of Lips
hitz domains into starshaped
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domains. The solution is represented by a non translation-invariant singular integral op-

erator. Before showing its 
ontinuity by the help of Theorem 3.1 below, it is ne
essary to

modify the kernel of this operator in a way whi
h does e�e
t the solution depending on

the 
ompa
tly supported right hand side f .

Denoting by W

k;q

w;0

(
) the 
losure of all smooth and 
ompa
tly supported fun
tions in

the norm of the Sobolev spa
e W

k;q

w

(
) our main result reads as follows.

Theorem 1.1. Let 
 � R

n

, n � 2, be a bounded and lo
ally lips
hitzian domain. Assume

f 2W

k;q

w;0

(
) su
h that

R

f = 0. Then there exists a fun
tion u 2W

k+1;q

w;0

(
) su
h that

divu = f and kuk

k+1;q;w

� 
kfk

k;q;w

;

where 
 = 
(
; q; w; k) > 0 depends A

q

-
onsistently on w. Moreover, u 
an be 
hosen su
h

that it depends linearly on f and su
h that u 2 C

1

0

(
) if f 2 C

1

0

(
).

2 Weighted Fun
tion Spa
es

In this se
tion we 
olle
t the basi
 de�nitions of weight fun
tions and fun
tion spa
es,

whi
h are needed in this text. Moreover, we quote the main theorem about the bounded-

ness of maximal operator.

De�nition 2.1. Let A

q

, 1 < q < 1, the set of Mu
kenhoupt weights, be given by all

0 � w 2 L

1

lo


(R

n

) for whi
h

A

q

(w) := sup

Q

�

1

jQj

Z

Q

w dx

��

1

jQj

Z

Q

w

�

1

q�1

dx

�

q�1

<1: (2.1)

The supremum is taken over all 
ubes in R

n

. To avoid trivial 
ases, we ex
lude the 
ase

where w vanishes almost everywhere.

A 
onstant C = C(w) is 
alled A

q

-
onsistent if for every 


0

> 0 it 
an be 
hosen

uniformly for all w 2 A

q

with A

q

(w) < 


0

.

The A

q

-
onsisten
e is of great importan
e sin
e it is needed for the appli
ation of the

Extrapolation Theorem [9, IV Lemma 5.18℄. In parti
ular this is used when showing

the 
ontinuity of operator-valued Fourier multipliers and the maximal regularity of an

operator; see e.g. [7℄ for details and appli
ations.

We introdu
e some fun
tion spa
es. First by C

1

0

(
) we denote the spa
e of smooth

fun
tions with 
ompa
t support in 
.

For 1 < q <1, w 2 A

q

and an open set 
 we de�ne the weighted Lebesgue and Sobolev

spa
es as follows.

� The weighted Lebesgue spa
es L

q

w

(
) are given by

L

q

w

(
) :=

(

f 2 L

1

lo


(
) j kfk

q;w

:=

�

Z




jf j

q

w dx

�

1

q

<1

)

:

� Assume in addition k 2 N

0

, the set of nonnegative integers. The weighted Sobolev

spa
es are de�ned by

W

k;q

w

(
) =

8

<

:

u 2 L

q

w

(
)

�

�

�

kuk

k;q;w

:=

X

j�j�k

kD

�

uk

q;w

<1

9

=

;

:
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� Finally, we set

W

k;q

w;0

(
) = C

1

0

(
)

k�k

k;q;w

:

By [5℄, [7℄ and [3℄ the spa
es L

q

w

(
), W

k;q

w

(
) and W

k;q

w;0

(
) are re
exive Bana
h spa
es in

whi
h C

1

0

(
) or C

1

0

(
), respe
tively, are dense.

For a lo
ally integrable fun
tion f we de�ne the maximal operator M by

(Mf)(x) = sup

r>0

1

jB

r

(0)j

Z

jyj�r

jf(x� y)jdy:

One has the following 
lose 
onne
tion between the Mu
kenhoupt 
lassA

q

and the maximal

operator.

Theorem 2.2. Let 1 < q <1 and w 2 A

q

. Then the maximal operator M is 
ontinuous

on L

q

w

(R

n

). More pre
isely, there exists an A

q

-
onsistent 
onstant 
 su
h that

kMfk

q;w

� 
kfk

q;w

for every f 2 L

q

w

(R

n

):

Vi
e versa if � is a nonnegative Borel measure and M is bounded on L

q

(R

n

; �), then � is

absolutely 
ontinuous and d� = w dx for some w 2 A

q

.

Proof. See [9℄, Theorems 2.1 and 2.9. For the A

q

-
onsisten
e of the 
onstants one has to

re-read the proof of [9℄, Theorem 2.9. The reverse in
lusion 
an be found in [11, 2.2℄.

By [6℄ the following weighted analogue of the Poin
ar�e inequality holds: there exists an

A

q

-
onsistent 
onstant 
 = 
(q; w) > 0 su
h that

kuk

q;w

� 
kruk

q;w

for every u 2W

1;q

w;0

(
): (2.2)

3 Proof of Theorem 1.1

Throughout this se
tion let 1 < q <1 and w 2 A

q

.

The proof follows the same lines as the unweighted 
ase [1℄, [8, Chapter III.3℄. It uses

non-translation-invariant singular integral operators. Thus we apply the following theorem

proved in [11, V.6.13℄ whi
h ensures the 
ontinuity of a 
ertain 
lass of su
h operators.

Theorem 3.1. Let T be a bounded operator from L

2

(R

n

) into itself that is asso
iated to

a kernel K in the sense that

(Tf)(x) =

Z

R

n

K(x; y)f(y)dy

for all 
ompa
tly supported f 2 L

2

(R

n

) and all x outside the support of f . Suppose that

for some 
 > 0 and some A > 0 the kernel K satis�es the inequalities

jK(x; y)j � Ajx� yj

�n

(3.1)

and

jK(x; y)�K(x

0

; y)j � A

jx� x

0

j




jx� yj

n+


if jx� x

0

j �

1

2

jx� yj (3.2)
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as well as the symmetri
 version of the se
ond inequality in whi
h the roles of x and y are

inter
hanged. Writing

(T

"

f)(x) =

Z

jx�yj>"

K(x; y)f(y)dy and (T

�

f)(x) = sup

">0

j(T

"

f)(x)j;

we have that

Z

[(T

�

f)(x)℄

q

w(x)dx � 


Z

[(Mf)(x)℄

q

w(x)dx; (3.3)

where f is bounded and has 
ompa
t support, w 2 A

q

, and 1 < q < 1. The 
onstant 


depends A

q

-
onsistently on w.

Proof. This Theorem is stated in [11, V.6.13℄. The A

q

-
onsisten
e of the 
onstants is

not expli
itly mentioned there, however, it is established with the same arguments if one

rereads the proof of Proposition 6 in [11, V.4.4℄.

Sin
e the maximal operator M : L

q

w

(R

n

) ! L

q

w

(R

n

) is bounded, the inequality (3.3)

guarantees that the sublinear operator T

�


an be extended to a 
ontinuous sublinear

operator T

�

: L

q

w

(
)! L

q

w

(
).

However, to make use of the above theorem we have to modify the singular integral

operator whi
h appears in the proof of Lemma 3.2 below outside the bounded set 
 su
h

that it possesses the properties assumed in Theorem 3.1.

In the proof of the following Lemma the o

urring integral operators have to be under-

stood in the Cau
hy prin
iple value sense lim

"!0

T

"

f .

Lemma 3.2. Let 
 � R

n

, n � 2, be bounded and star-shaped with respe
t to every point

of some 
losed ball B with B � 
.

Then for every f 2W

k;q

w;0

(
) with

R




f = 0 there exists a v 2W

k+1;q

w;0

(
) with

div v = f and kvk

k+1;q;w

� 
kfk

k;q;w

;

where 
 = 
(
; q; w; k) > 0 depends A

q

-
onsistently on w. The fun
tion v depends linearly

on f and f 2 C

1

0

(
) implies v 2 C

1

0

(
).

Proof. Without loss of generality we may assume, using a 
oordinate transformation, that

B = B

1

(0).

First we assume that f 2 C

1

0

(
).

We 
hoose a 2 C

1

0

(B

1

(0)) su
h that

R

a = 1 and de�ne

v(x) :=

Z




f(y)(x� y)

�

Z

1

1

a (y + �(x� y)) �

n�1

d�

�

dy: (3.4)

In the proof of [8, Lemma III.3.1℄ it is shown that v 2 C

1

0

(
) and div v = f .

It thus remains to prove the weighted estimates. To do this we use the following repre-

sentation of �

j

v also shown in the proof of [8, Lemma III.3.1℄:

�

j

v

i

(x) =

Z




K

i;j

(x; x� y)f(y)dy + f(x)

Z




(x

j

� y

j

)(x

i

� y

i

)

jx� yj

2

a(y)dy

=: F

1

(x) + F

2

(x);

(3.5)
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where

K

i;j

(x; x� y) =

Æ

i;j

jx� yj

n

Z

1

0

a

�

x+ r

x� y

jx� yj

�

(jx� yj+ r)

n�1

dr

+

x

i

� y

i

jx� yj

n+1

Z

1

0

�

j

a

�

x+ r

x� y

jx� yj

�

(jx� yj+ r)

n

dr;

(3.6)

for every x; y 2 R

n

. To show the 
ontinuity of the integral operator f 7! F

1

its kernel

must be modi�ed. Set

E :=

n

z 2 
 j z = �z

1

+ (1� �)z

2

; z

1

2 supp f; z

2

2 B

1

(0); � 2 [0; 1℄

o

:

Sin
e 
 is star-shaped with respe
t to B

1

(0), E is a 
ompa
t subset of 
. For x 62 E and

y 2 supp f we have

x+ r

x� y

jx� yj

62 B for all r > 0;

whi
h means K

i;j

(x; x � y) = 0. Thus, if we 
hoose a 
ut-o� fun
tion  2 C

1

0

(R

n

) with

 (x) = 1 on 
 and supp � B

R

(0) for some R > 0, and set '(x; y) =  (x) (y) we obtain

f(y)K

i;j

(x; x� y) = f(y)'(x; y)K

i;j

(x; x� y) =: f(y)

~

K

i;j

(x; x� y);

for x; y 2 R

n

, if f is assumed to be extended by 0 to R

n

. Moreover, for x 2 B

R

(0) we

have

r > R+ 1 )

�

�

�

�

x+ r

x� y

jx� yj

�

�

�

�

� r � jxj > 1 ) a

�

x+ r

x� y

jx� yj

�

= 0:

Thus for x 2 
 one has

Z

R

n

f(y)K

i;j

(x; x� y)dy =

Z

R

n

f(y)

~

K

i;j

(x; x� y)dy

=

Z

R

n

f(y)'(x; y)

�

Æ

i;j

jx� yj

n

Z

R+1

0

a

�

x+ r

x� y

jx� yj

�

(jx� yj+ r)

n�1

dr

+

x

i

� y

i

jx� yj

n+1

Z

R+1

0

�

j

a

�

x+ r

x� y

jx� yj

�

(jx� yj+ r)

n

dr

�

dy:

Now we have to prove that

~

K

i;j

satis�es the assumptions of Theorem 3.1. By the

Calder�on-Zygmund Theorem [2℄ we �nd that

f 7!

Z

R

n

 (x)K

i;j

(x; x� y)f(y)dy : L

2

(R

n

)! L

2

(R

n

)

is 
ontinuous. Sin
e the multipli
ation M

 

with the C

1

0

-fun
tion  is a 
ontinuous oper-

ator on L

2

(R

n

) we obtain the 
ontinuity of

f 7!

Z

R

n

~

K

i;j

(x; x� y)f(y)dy

=

Z

R

n

 (x)K

i;j

(x; x� y)M

 

f(y)dy : L

2

(R

n

)! L

2

(R

n

):
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It remains to prove the estimates (3.1) and (3.2). For (3.1) we may assume jxj; jyj < R.

One has

jx� yj

n

j

~

K

i;j

(x; x� y)j

=

�

�

�

�

'(x; y)Æ

i;j

Z

R+1

0

a

�

x+ r

x� y

jx� yj

�

(jx� yj+ r)

n�1

dr

+ '(x; y)

x

i

� y

i

jx � yj

Z

R+1

0

�

j

a

�

x+ r

x� y

jx� yj

�

(jx� yj+ r)

n

dr

�

�

�

�

�


�

Z

R+1

0

(2R + r)

n�1

dr +

Z

R+1

0

(2R + r)

n

dr

�

= 


0

:

To prove (3.2) we take x; x

0

; y 2 R

n

with jx � x

0

j �

1

2

jx � yj. If (x; y); (x

0

; y) 62 supp'

nothing is to prove. Thus, without loss of generality we may assume that y � R and

x � 3R, sin
e if y � R and x � 3R then

jx

0

j � jxj � jx� x

0

j � jxj �

1

2

(jxj+ jyj) �

3

2

R�

1

2

R = R:

Then using the triangle inequality together with the fa
t that a, ' and (jx� yj+ r)

n

are

Lips
hitz 
ontinuous on 
ompa
t sets we 
an estimate

�

�

�

�

x

i

� y

i

jx� yj

n+1

'(x; y)

Z

R+1

0

�

j

a

�

x+ r

x� y

jx� yj

�

(jx� yj+ r)

n

dr

�

x

0

i

� y

i

jx

0

� yj

n+1

'(x

0

; y)

Z

R+1

0

�

j

a

�

x

0

+ r

x

0

� y

jx

0

� yj

�

(jx

0

� yj+ r)

n

dr

�

�

�

�

�

�

�

�

�

�

x

i

� y

i

jx� yj

n+1

�

x

0

i

� y

i

jx

0

� yj

n+1

�

'(x; y)

Z

R+1

0

�

j

a

�

x+ r

x� y

jx� yj

�

(jx� yj+ r)

n

dr

�

�

�

�

+

�

�

�

�

x

0

i

� y

i

jx

0

� yj

n+1

('(x; y) � '(x

0

; y)

Z

R+1

0

�

j

a

�

x+ r

x� y

jx� yj

�

(jx� yj+ r)

n

dr

�

�

�

�

+

jx

0

i

� y

i

j

jx

0

� yj

n+1

'(x

0

; y)

Z

R+1

0

�

�

�

�

�

j

a

�

x+ r

x� y

jx� yj

�

� �

j

a

�

x

0

+ r

x

0

� y

jx

0

� yj

�

�

�

�

�

(jx� yj+ r)

n

dr

+

jx

0

i

� y

i

j

jx

0

� yj

n+1

'(x

0

; y)

Z

R+1

0

�

�

�

�

�

j

a

�

x

0

+ r

x

0

� y

jx

0

� yj

�

�

�

�

�

j(jx� yj+ r)

n

� (jx

0

� yj+ r)

n

jdr

= I

1

+ I

2

+ I

3

+ I

4

:

Using the Lips
hitz 
ontinuity of �

i

a and jx� yj � 4R we obtain

I

3

�




jx� yj

n

Z

R+1

0

L

�

jx� x

0

j+

jx� x

0

j

jx� yj

�

(jx� yj+ r)

n

dr � 


jx� x

0

j

jx� yj

n+1

:
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I

2

and I

4


an be estimated analogously. For I

1

we estimate

�

�

�

�

x

i

� y

i

jx� yj

n+1

�

x

0

i

� y

i

jx

0

� yj

n+1

�

�

�

�

�

jx

i

� x

0

i

j

jx� yj

n+1

+

�

�

�

�

1

jx� yj

n+1

�

1

jx

0

� yj

n+1

�

�

�

�

jx

0

i

� y

i

j

�

jx� x

0

j

jx� yj

n+1

+

�

�

�

�

jx

0

� yj

n+1

� jx� yj

n+1

jx� yj

n+1

jx

0

� yj

n+1

�

�

�

�

jx

0

i

� y

i

j

�

jx� x

0

j

jx� yj

n+1

+ 


�

�

jx

0

� yj � jx� yj

�

�

� jx� yj

n

jx� yj

2n+2

jx

0

i

� y

i

j

� 


jx� x

0

j

jx� yj

n+1

;

where we used that jx

0

� yj �

1

2

jx� yj. The estimate

�

�

jx

0

� yj

n+1

� jx� yj

n+1

�

�

� 


�

�

jx

0

�

yj � jx� yj

�

�

� jx� yj

n

follows from an elementary indu
tion with respe
t to n.

The �rst summand in (3.6) 
an treated in the same way. Moreover, inter
hanging the

roles of x and y the same kind of estimates 
an be done.

Combining the above and using Theorem 3.1 we obtain

kF

1

k

q;w

� kT

�

fk

q;w

� 
kMfk

q;w

� 
kfk

q;w

where T

�

is the operator given by Theorem 3.1 and asso
iated to the kernel

~

K

i;j

. The

fun
tion F

2

appearing in (3.5) is easily estimated sin
e

Z




(x

j

� y

j

)(x

i

� y

i

)

jx� yj

2

a(y)dy

is bounded. Thus using the Poin
ar�e inequality (2.2) we obtain kvk

1;q;w

� 
kfk

q;w

.

Now the general 
ase with f 2 L

q

w

(
) follows easily, sin
e we 
an approximate f by

C

1

0

-fun
tions (f

n

) with

R

f

n

= 0.

It remains to prove the estimate in the spa
es W

k;q

w

(
). Using Leibniz' formula one 
an

show (see [8, Remark III.3.2℄)

�

�

v(x) =

X

���

�

�

�

�

Z




N

�

(x; y)�

���

f(y)dy;

where

N

�

(x; y) = (x� y)

Z

1

1

�

�

a(y + r(x� y))r

n�1

dr:

Clearly �

�

a 2 C

1

0

(B

1

(0)). Hen
e the same proof as above yields

k�

�

vk

1;q;w

� 
kfk

k;q;w

for f 2 C

1

0

(
) and every � with j�j � k. Approximating an arbitrary f 2 W

k;q

w;0

(
) with

R

f = 0 by C

1

0

-fun
tions (f

n

) with

R

f

n

= 0 �nishes the proof.

The following Lemma is the weighted analogue to [8, Lemma III.3.4.℄. Its proof works

in exa
tly the same way as in the 
ase of unweighted fun
tion spa
es.

Lemma 3.3. Let 
 be a bounded and lo
ally lips
hitzian domain.
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1. There exist open sets 


1

; :::;


m

with 
 =

S

m

i=1




i

su
h that ea
h 


i

is star-shaped

with respe
t to an open ball B

i

with B

i

� 


i

.

2. For every f 2 C

1

0

(
) with

R




= 0 there exist f

i

2 C

1

0

(


i

), i = 1; :::;m, with

f =

P

m

i=1

f

i

,

R

f

i

= 0 and kf

i

k

k;q;w

� 
kfk

k;q;w

for every k 2 N

0

and q � 1 and an

A

q

-
onsistent 
onstant 
 = 
(k; q; w;
).

Proof of Theorem 1.1. Let f 2 C

1

0

(
) with

R

f = 0 and take 


i

; f

i

, i = 1; :::;m, as in

Lemma 3.3. We denote by v

i

the solution to div v

i

= f

i

given by Lemma 3.2. Then we

have

kv

i

k

k+1;q;w

� 
kf

i

k

k;q;w

� 
kfk

k;q;w

:

Then v =

P

m

i=1

v

i

solves div v = f with kvk

k+1;q;w

� 
kfk

k;q;w

. For arbitrary f 2W

k;q

w;0

(
)

with

R

f = 0 use again approximations with C

1

0

-fun
tions.
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