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Given a domain 
 of lass C

k;1

, k 2 N we onstrut a hart that maps

normals to the boundary of the half spae to normals to the boundary of 


in the sense that

�

�x

n

�(x

0

; 0) = �N(x

0

) and that still is of lass C

k;1

. As an

appliation we prove the existene of a ontinuous extension operator for all

normal derivatives of order 0 to k on domains of lass C

k;1

. The onstrution

of this operator is performed in weighted funtion spaes where the weight

funtion is taken from the lass of Mukenhoupt weights.
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1 Introdution

Let 
 � R

n

be a C

k;1

-domain, i.e., the boundary �
 an loally be expressed as the

graph of a C

k;1

-funtion

a : V \ (R

n�1

� f0g)! R

with an appropriate open set V � R

n

; here k 2 N. Then we are looking for a hart

� : V ! U � R

n

of regularity as high as possible suh that

�

�x

n

�(x

0

; 0) = �N(x

0

) whenever (x

0

; 0) 2 V; (1.1)

where N(x

0

) denotes the unit outer normal vetor at (x

0

; a(x

0

)) 2 �
. This means that

normals to the boundary of the half spae are mapped to normals to �
. The natural

mapping with this property is

x = (x

0

; x

n

) 7!

�

x

0

a(x

0

)

�

� x

n

�N(x

0

): (1.2)

�
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However, if a is a C

k;1

-funtion, then, sine it inludes the outer normal N , the hart

(1.2) is only of lass C

k�1;1

.

For this reason we introdue a di�erent hart whih onserves the C

k;1

-regularity and

still has the property (1.1).

Coordinate transforms as in (1.2) are used e.g. by Ne�as [13℄, to prove extension

theorems of normal derivatives, see also Chapter 4 of this paper. Moreover, in [12,

Chapter 4.1℄ Giga uses suh a oordinate transformation to obtain symbols of pseudo-

di�erential operators of a partiular form. In a similar ontext, aording to Abels,

the proof of results in [1℄ an be signi�antly simpli�ed by the use of a hart with the

property (1.1) but whih preserves the regularity of a.

In the seond part of this paper we present an appliation of the hart mentioned

above. We prove the existene of a ontinuous operator extending funtions de�ned on

the boundary in the following way. Given funtions g

1

; :::; g

m

on the boundary we �nd

a funtion u de�ned on 
 suh that

�

j

u

�N

j

= g

j

on �
; 0 � j � k:

In the ontext of lassial Sobolev spaes this result an be found in [13℄.

The result of [13℄ is generalized in two aspets. First, using the partiular hart

onstruted in the �rst part of this paper, one an deal with more general domains.

More preisely, one an permit domains with a boundary regularity that is of one order

lower than in the former results. Using this it is possible to show that the results on

very weak solutions to the Navier-Stokes equations by Galdi, Simader and Sohr in [10℄

and by Farwig, Galdi and Sohr in [5℄ hold not only in C

2;1

-domains but, more generally,

in C

1;1

-domains. This an be seen in [14℄ where a weighted approah to this problem is

given.

Seond, we onsider the problem in weighted funtion spaes. This means, we onsider

weighted Lebesgue spaes L

q

w

(
) and Sobolev spaes W

k;q

w

(
) whih means that we

integrate with respet to the measure w dx for an appropriate weight funtion w, see

Setion 3 below for the exat de�nition of these spaes.

All weight funtions, that we use are ontained in the Mukenhoupt lass A

q

. This is

the lass of nonnegative and loally integrable weight funtions, for whih the expression

A

q

(w) := sup

Q

�

1

jQj

Z

Q

w dx

��

1

jQj

Z

Q

w

�

1

q�1

dx

�

q�1

is �nite, where the supremum is taken over all ubes Q in R

n

. As shown in [6℄ examples

of Mukenhoupt weights are w(x) = (1+ jxj)

�

, with �n < � < n(q� 1) or dist (x;M)

�

,

�(n � k) < � < (n � k)(q � 1), where M is a ompat k-dimensional Lipshitzian

manifold.

One reason why the lass of Mukenhoupt weights is appropriate for analysis is that

the maximal operator is ontinuous in weighted L

q

-spaes, if and only if the weight

funtion is a Mukenhoupt weight. Thus the powerful tools of harmoni analysis may

be applied, f. Gar��a-Cuerva and Rubio de Frania [11℄ and Stein [16℄. Moreover, there

is a powerful extrapolation theorem by Curbera, Gar��a-Cuerva, Martell and P�erez [3℄

that guarantees estimates in very general Banah funtion spaes provided that the

estimates in weighted funtion spaes are known for all weights from the Mukenhoupt

lass A

q

.
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2 Constrution of the Chart

Let 
 � R

n

be a C

k;1

-domain, k 2 N. This means that for every x

0

2 �
 we an

rotate and shift the oordinate system suh that its origin is x

0

and suh that in a

neighborhood U(x

0

) of x

0

one has

�
 \ U(x

0

) = f(x

0

; a(x

0

)) j x

0

2 V (0)g; (2.1)

where V (0) is an appropriate ((n�1)-dimensional) neighborhood of 0 and a : V (0)! R

is a C

k;1

-funtion.

Lemma 2.1. For k 2 N let 
 � R

n

be a C

k;1

-domain. Then for every x

0

2 �
 there

exists a neighborhood U � R

n

of x

0

, a neighborhood V � R

n

of 0 and a bijetive map

� : V ! U suh that

�(0) = x

0

; �(V \ (R

n�1

� f0g)) = U \ �
; �(V \R

n

+

) = U \ 


and with the following properties:

(1) � 2 C

k;1

(V; U),

(2)

�

�x

n

�(x

0

; 0) = �N(x

0

) and

�

�

�x

n

�

j

�(x

0

; 0) = 0 for j � 2 even.

(3) With the notation of (2.1) one has

a) k�k

C

k;1

(V;U)

an be estimated by kak

C

k;1

(V \(R

n�1

�f0g))

.

b) There exists some r > 0 whih only depends on the sets U(x

0

), V (x

0

) and

the size of kak

C

k;1

(V \(R

n�1

�f0g))

suh that B

r

(x

0

) � U .

Proof. We use the notation x = (x

0

; x

n

) with x

0

2 R

n�1

and x

n

2 R and �



= �



1

x

1

�:::��



1

x

n

for  2 N

n

.

After rotating and shifting the oordinate system we may assume that x

0

= 0,

(0; a(0)) = 0 and ra(0) = 0.

Let 0 � � 2 C

1

0

(R

n�1

) be radially symmetri suh that

supp � � B

1

(0) and

Z

R

n�1

� = 1:

For t 6= 0 we set �

t

(x

0

) =

1

jtj

n�1

�(

x

0

t

). We de�ne the funtion � as follows:

�(x

0

; x

n

) =

(

�

x

0

a(x

0

)

�

� (x

n

�

x

n

�N)(x

0

) if x

n

6= 0

�

x

0

a(x

0

)

�

if x

n

= 0;

where the onvolution takes plae in R

n�1

.

Obviously, if V � R

n

is small enough, then �(x

0

; 0) 2 �
 for (x

0

; 0) 2 V . More-

over, sine �
 is at least of lass C

1;1

it follows easily from the onstrution of � that

�(x

0

; x

n

) 2 
 and �(x

0

;�x

n

) 62 
, if x

n

> 0 is small.
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Next we show (1) For every multi-index  = (

0

; 

n

) 2 N

0

, with jj � k and j

0

j < k

one has for x

n

6= 0

�



(x

n

�

x

n

�N)(x

0

) =

n

(�1)



n

�1

Z

�(�)r



n

�1

�



0

N(x

0

� x

n

�) (�; :::; �)

| {z }



n

�1

d�

+ x

n

�

�x

n

0

�

(�1)



n

�1

Z

�(�)r



n

�1

�



0

N(x

0

� x

n

�) (�; :::; �)

| {z }



n

�1

d�

1

A

:

Then using hange of variables an the fat that the map r



n

�1

�



0

N(x

0

� �) is (

n

� 1)-

linear, the seond summand is equal to

(�1)



n

�1

x

n

�

�x

n

Z

1

jx

n

j

n+

n

�2

�

�

�

x

n

�

r



n

�1

�



0

N(x

0

� �)(�; :::; �)d�

= (�1)



n

�1

Z

((�n� 

n

+ 2)�(�)�r�(�) � �)r



n

�1

�



0

N(x

0

� �x

n

) (�; :::; �)

| {z }



n

�1

d�:

Hene

�



(x

n

�

x

n

�N)(x

0

) =(�1)



n

�1

Z

((�n + 2)�(�)�r�(�) � �)

� r



n

�1

�



0

N(x

0

� �x

n

) (�; :::; �)

| {z }



n

�1

d�:

(2.2)

Still we have to onsider the ase j

0

j = k in whih the situation is easier. Integration

by parts yields

�



(x

n

�

x

n

�N)(x

0

) =

Z

�

�

1

�(�)�

�

2

N(x

0

� x

n

�)d�; (2.3)

where  = �

1

+ �

2

and j�

1

j = 1.

The map x 7!

�

x

0

a(x

0

)

�

is of type C

k;1

beause a is. It remains to show that �



(x

n

�

x

n

�

N(x

0

)) is Lipshitz ontinuous for every  2 N

n

, jj � k. This is an easy onsequene

of the representations (2.2) and (2.3) and of N 2 C

k�1;1

, e.g.,

j�



(x

n

�

x

n

�N(x

0

))� �



(y

n

�

y

n

�N(y

0

))j

�

Z

B

1

(0)

j

n

�(�)�r�(�) � �j jr



n

�1

�



0

N(x

0

� �x

n

)�r



n

�1

�



0

N(y

0

� �y

n

)jd�

� L



jx� yj:

A similar alulation shows that the right-hand side of (2.3) is Lipshitz ontinuous.
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It remains to show (2) From (2.2) we have for j > 1 even

�

�

�x

n

�

j

�(x

0

; 0) = (�1)

j�1

Z

((�n + 2)�(�)�r�(�) � �)r

j�1

N(x

0

)(�; :::; �)d�

=(�1)

j�1

�

Z

(�n + 2)�(�)r

j�1

N(x

0

)(�; :::; �)d�

+

n�1

X

k=1

Z

�(�)

�

r

j�1

N(x

0

)(�; :::; �) + (j � 1)�

k

r

j�1

N(x

0

)(e

k

; �; :::; �)

�

d�

�

=(�1)

j�1

j

Z

�(�)r

j�1

N(x

0

)(�; :::; �)d� = 0;

sine � is presumed to be rotationally symmetri and � 7! r

j�1

N(x

0

)(�; :::; �) is an odd

funtion for j � 1 odd. Similarly,

�

�x

n

�(x

0

; 0) = �N(x

0

)

 

(2� n)

Z

�(�)d� �

n�1

X

i=1

Z

�

i

�(�)�

i

d�

!

= �N(x

0

):

It remains to show (3) b).

By (2.2) and (2.3) one has, sine ra(0) = 0 and N(0) = �e

n

,

r�(0) = r

�

x

0

a(x

0

)

�

�r(x

n

�

x

n

�N(x

0

))

�

�

x=0

= id :

Sine r� is Lipshitz ontinuous with onstant K, we get for x; y 2 B

r

(0), r <

1

2K

, that

j�(x)� �(y)j = sup

jvj=1

jv � r�(�

v

)(x� y)j; �

v

2 f(1� t)x+ ty j t 2 (0; 1)g

� inf

�2B

r

(0)

�

jx� yj

2

jx� yj

�

�

�

�

�

(x� y)(r�(�)�r�(0))

x� y

jx� yj

�

�

�

�

�

>

1

2

jx� yj:

From this inequality it immediately follows that � is injetive on B

r

(0).

Moreover, it is easily seen that B

r

2

(x

0

) � �B

r

(0). Indeed for x 2 �B

r

(0) one has

j�(x)� x

0

j >

1

2

jx� 0j. Sine r�(x) is invertible for every x 2 B

r

(0) it follows from the

Inverse Funtion Theorem that �(B

r

(0)) is open. Together with the ontinuity of � we

obtain

B

r

2

(x

0

) \ ��(B

r

(0)) = B

r

2

(x

0

) \ �(�B

r

(0)) = ;:

Assume now that y 2 B

r

2

(x

0

) n �(B

r

(0)). Then the straight line from y to x

0

intersets

��(B

r

(0)). Thus this intersetion point is ontained in the intersetion whih we have

shown to be empty. This is a ontradition.

This argument �nishes the proof.

3 Weighted Funtion Spaes

In Setion 4 we want to prove an extenstion theorem that presribes a low boundary

regularity. Sine this is done in weighted funtion spaes in this setion we ollet the

basi de�nitions of weight funtions and funtion spaes, whih are needed in this below.
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De�nition 3.1. Let A

q

, 1 < q < 1, the set of Mukenhoupt weights, be given by all

0 � w 2 L

1

lo

(R

n

) for whih

A

q

(w) := sup

Q

�

1

jQj

Z

Q

w dx

��

1

jQj

Z

Q

w

�

1

q�1

dx

�

q�1

<1: (3.1)

The supremum is taken over all ubes Q � R

n

and jQj denotes the Lebesgue measure

od Q. To avoid trivial ases, we exlude the ase where w vanishes almost everywhere.

We introdue some funtion spaes. First by C

1

0

(
) we denote the spae of smooth

funtions with ompat support in 
. For 1 < q < 1, w 2 A

q

and an open set 
 we

de�ne the weighted Lebesgue spae by

L

q

w

(
) :=

n

f 2 L

1

lo

(
) j kfk

q;w

:=

�

Z




jf j

q

w dx

�

1

q

<1

o

:

For k 2 N

0

, the set of nonnegative integers, the weighted Sobolev spaes are de�ned by

W

k;q

w

(
) =

n

u 2 L

q

w

(
)

�

�

�

kuk

k;q;w

:=

X

j�j�k

kD

�

uk

q;w

<1

o

:

Finally for k 2 N we de�ne the spae T

k;q

w

(�
) := (W

k;q

w

(
))j

�


equipped with the norm

k � k

T

k;q

w

= k � k

T

k;q

w

(�
)

of the fator spae, i.e.,

kgk

T

k;q

w

(�
)

:= inf

n

kuk

W

k;q

w

(
)

�

�

u 2 W

k;q

w

(
) and uj

�


= g

o

:

By [7℄, [9℄ and [2℄ the spaes L

q

w

(
), W

k;q

w

(
) and T

k;q

w

(�
) are reexive Banah spaes

in whih C

1

0

(
) or C

1

0

(
) or C

1

0

(
)j

�


, respetively, are dense.

Note that by Slobodeki�� [15℄ and Ne�as [13, Chapitre 2, x5℄ in the unweighted ase

one has

T

k;q

1

(�
) = W

k�

1

q

;q

(�
):

However, in the setting of Mukenhoupt weights suh a haraterization of the spaes

by an intrinsi norm is known only for few examples of weight funtions.

For weighted funtion spaes hange of variables is possible in the following sense.

Lemma 3.2. Let 
 and O be two domains in R

n

and

� : O ! 


a C

k�1;1

-di�eomorphism, k � 1.

1. The operator

T : u 7! u Æ � : W

k;q

w

(
)!W

k;q

wÆ�

(O)

is ontinuous.

2. The same is true for the operator

S : g 7! g Æ � : T

k;q

w

(�
)! T

k;q

wÆ�

(�O):
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Proof. The �rst assertion follows immediately from the hange of variables formula, the

seond follows from the �rst using the de�nition of T

k;q

w

(�
).

By [8℄ the following weighted analogue of the Poinar�e inequality holds: there exists

a onstant  = (q; w) > 0 suh that

kuk

q;w

� kruk

q;w

for every u 2 W

1;q

w;0

(
): (3.2)

Moreover the solvability of the following Laplae resolvent problem ontinues to hold

in weighted funtion spaes.

Theorem 3.3. (Regularity of the Dirihlet Problem)

Let 1 < q <1, k 2 Z, k � �1 and let f 2 W

k;q

w

(R

n

+

). Then there exists a unique weak

solution u 2 W

k+2;q

w

(R

n

+

) to the Dirihlet Problem

(1��)u = f and uj

R

n�1

= 0:

It ful�lls the estimate kuk

k+2;q;w

� kfk

k;q;w

, where  = (k; q; w).

The same is true for the solution u of (1��)u = 0; uj

R

n�1

= g, if g 2 T

k+2;q

w

(R

n�1

),

i.e., it ful�lls the estimate

kuk

k+2;q;w

� kgk

T

k+2;q

w

:

Proof. For k = �1 the �rst assertion has been proved by Fr�ohlih in [7℄. Using this, one

obtains the regularity of this boudary value problem as in the lassial unweighted ase

whih an be found e.g. in Evans [4℄.

For the seond assertion let v 2 W

k+2;q

w

(R

n

+

) be an extension of g. Then we �nd a

unique u 2 W

k+2;q

w

(R

n

+

) with (id ��)u = (id ��)v and uj

R

n�1

= 0. Thus v� u solves

the problem and by the �rst assertion it ful�lls the estimate.

4 Extensions of Funtions on the Boundary

Our next objetive is to onstrut a linear extension operator that maps funtions de�ned

on the boundary �
 to a funtion de�ned on the domain 
 whose boundary values or

normal derivatives are the given preimages.

We start with the half spae.

Theorem 4.1. Let 1 < q < 1, w 2 A

q

and k 2 N. Then there exists a ontinuous

linear operator

T :

k�1

Y

j=0

T

k�j;q

w

(R

n�1

)! W

k;q

w

(R

n

+

)

suh that

�

j

�x

j

n

T (g

0

; :::; g

k�1

)j

x

n

=0

= g

j

, j = 0; :::; k � 1.

Proof. It suÆes to show that for every g 2 T

k�j;q

w

(R

n�1

), j = 0; :::; k � 1, there exists

u 2 W

k;q

w

(R

n

+

) depending ontinuously and linearly on g suh that

�

j

�x

j

n

u = g and

�

i

�x

i

n

u =

7



0 for every i = 0; :::; j � 1. To see this assume that for every j = 0; :::; k� 1 there exists

a ontinuous linear operator

T

j

: T

k�j;q

w

(R

n�1

)!W

k;q

w

(R

n

+

);

�

i

�x

i

n

T

j

(h)

�

�

x

n

=0

=

(

0; if i < j

h; if i = j

:

For g = (g

0

; :::; g

k�1

) we an de�ne S

0

(g) := T

0

(g) and

S

j+1

(g) := S

j

(g) + T

j+1

�

g

j+1

�

�

j+1

�x

j+1

n

S

j

(g)

�

:

Then T = S

k�1

solves our problem.

Next we show the weaker assertion. For g 2 T

k�j;q

w

(R

n�1

) let v 2 W

k�j;q

w

(R

n

+

) with

(1��)v = 0 and vj

R

n�1

= g whih is uniquely de�ned by Theorem 3.3. Let � 2 C

1

(R

+

)

be a ut-o� funtion with �(t) = 1 for t < 1 and �(t) = 0 for t > 2. We set

�(x) = �(x

n

) =

1

j!

x

j

n

� �(x

n

) and u(x) = �(x)v(x): (4.1)

We show that �u solves the problem. More preisely we prove the following laim:

If � 2 C

1

(R

n

+

) with �(x) = �(x

n

), supp � � R

n�1

� [0; 2℄ and (

�

�x

n

)

m

�j

x

n

=0

=

0 for m = 0; :::; l and v 2 W

k;q

w

(R

n

+

) with (1 ��)v = 0 then �v 2 W

k+l;q

w

(R

n

+

) with

k�vk

k+l;q;w

� kvk

k;q;w

.

To prove this we use mathematial indution with respet to l and assume that we

already know the assertion is true for l � 1, l � 2 and all k.

Sine (1��)v = 0 we obtain

(1��)(�v) = ���v � 2rv � r�: (4.2)

As (

�

�x

n

)

m

��j

x

n

=0

= 0 for m = 0; :::; l � 2, (

�

�x

n

)

m

r�j

x

n

=0

= 0 for m = 0; :::; l � 1 and

(1��)rv = 0, (4.2) and the indution hypothesis yield (1��)(�v) 2 W

k+l�2;q

w

(R

n

+

).

Thus and sine �vj

R

n�1

= 0, one has �v 2 W

k+l;q

w

(R

n

+

) by the regularity of the Laplae

resolvent problem. Moreover

k�vk

k+l;q;w

� k(��)v + 2rvr�k

k+l�2;q;w

� (kvk

k;q;w

+ krvk

k�1;q;w

) � kvk

k;q;w

:

For the start of indution we need the ases l = 0 and l = 1. The ase l = 0 is trivial,

the ase l = 1 is proved in the same way as the indution step.

If one applies the above laim to u�v given by (4.1) we get u 2 W

k;q

w

(
). Moreover,

�

l

�x

l

n

u(x

0

; 0) =

l

X

�=0

�

l

�

�

�

�

�x

�

n

v

�

l��

�x

l��

n

�(x

0

; 0) =

(

0 if l < j

g(x

0

) if l = j:

This shows the assertion about the boundary values.

Theorem 4.2. Let 
 � R

n

be a bounded C

k�1;1

-domain, k � 1. Then there exists a

ontinuous linear operator

L :

k�1

Y

j=0

T

k�j;q

w

(�
)!W

k;q

w

(
)

suh that

�

j

�N

j

L(g)j

�


= (�1)

j

g

j

, 0 � j � k � 1, where g = (g

0

; :::; g

k�1

).

8



Proof. As in the proof of Theorem 4.1 we onstrut an operator

L

j

: T

k�j;q

w

(�
)!W

k;q

w

(
);

�

k

�N

j

L

j

(g) =

(

(�1)

j

g if k = j

0 if k < j:

Then the general ase follows as in the proof of Theorem 4.1.

We hoose the olletion of harts (�

i

; V

i

; U

i

)

m

i=1

aording to Lemma 2.1 and a de-

omposition of unity (�

i

)

m

i=1

subordinate to the overing fU

i

g.

To simplify the notation we �x i and set  = �

i

, U = U

i

, V = V

i

and � = �

i

. Moreover,

for g 2 T

k�j;q

w

(�
) we set ~g = (g � �) Æ . By Lemma 3.2 we know ~g

j

2 T

k�j;q

wÆ

(R

n�1

).

Thus we may apply the operator T from Theorem 4.1 and set

v := v

i

:= L

i;j

(g) := ( 

i

T (0; :::; 0; ~g; 0; :::; 0)) Æ 

�1

;

meaning, that the j'th omponent of (0; :::; 0; ~g; 0; :::; 0) is ~g.

Moreover, ( 

i

)

i

� C

1

0

(R

n

+

) with  

i

= 1 in a neighborhood of supp ~g and supp 

i

� V

i

.

Here  

i

an be hosen suh that

�

k

�x

k

n

 

i

(x

0

; 0) = 0 for every k 2 N.

Then we have by the hoie of  aording to Lemma 2.1 for every k � j.

(�1)

k

Æ

j;k

~g(x

0

) =

�

k

�x

k

n

T (:::0; ~g; 0:::)(x

0

; 0) =

�

�

k

�x

k

n

(v Æ )

�

(x

0

; 0)

= (r

k

v Æ ) � (�

n

; :::; �

n

)(x

0

; 0) + terms ontaining r

i

v Æ (x

0

; 0), i < j

= (r

k

v((x

0

; 0)))(�N(x

0

); :::;�N(x

0

)

| {z }

k

) = (�1)

k

�

�

k

�

k

N

v

�

((x

0

; 0)):

The terms ontaining r

i

v Æ (x

0

; 0) vanish for i < j, sine

r

i

(v Æ )(x

0

; 0) = r

i

( 

i

T (0; :::; 0; ~g; 0; :::; 0))(x

0

; 0) = 0

for i = 1; :::; j � 1 by the de�nition of T .

Finally we set L

j

(g) =

P

m

i=1

L

i;j

(g), and obtain

�

k

�N

k

L

j

(g)j

�


=

m

X

i=1

�

k

�N

k

L

i;j

(g)j

�


=

(

g if k = j

0 if k < j:

The ontinuity of L

j

follows from Lemma 3.2 and the ontinuity of T in Theorem

4.1.
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