A Chart Preserving the Normal Vector
and Extensions of Normal Derivatives
in Weighted Function Spaces
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Given a domain € of class C*!, k € IN we construct a chart that maps
normals to the boundary of the half space to normals to the boundary of €2
in the sense that %a(aj’, 0) = —N(z') and that still is of class C*!. As an
application we prove the existence of a continuous extension operator for all
normal derivatives of order 0 to k on domains of class C*!. The construction
of this operator is performed in weighted function spaces where the weight
function is taken from the class of Muckenhoupt weights.
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1 Introduction

Let Q@ C R” be a C*'-domain, i.e., the boundary 02 can locally be expressed as the
graph of a C*!-function
a: VAR x{0}) =R

with an appropriate open set V' C R"™; here £k € IN. Then we are looking for a chart
a:V — U C R" of regularity as high as possible such that

0
a(z',0) = —N(2') whenever (2/,0) €V, (1.1)
oxy,
where N (z') denotes the unit outer normal vector at (z',a(2")) € Q2. This means that
normals to the boundary of the half space are mapped to normals to 9€2. The natural
mapping with this property is

.'17,

v = (2, 2,) <a(x,)> — 2, - N(2). (1.2)
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However, if a is a C*!'-function, then, since it includes the outer normal NN, the chart
(1.2) is only of class CF 1.1,

For this reason we introduce a different chart which conserves the C*!-regularity and
still has the property (1.1).

Coordinate transforms as in (1.2) are used e.g. by Necas [13], to prove extension
theorems of normal derivatives, see also Chapter 4 of this paper. Moreover, in [12,
Chapter 4.1] Giga uses such a coordinate transformation to obtain symbols of pseudo-
differential operators of a particular form. In a similar context, according to Abels,
the proof of results in [1] can be significantly simplified by the use of a chart with the
property (1.1) but which preserves the regularity of a.

In the second part of this paper we present an application of the chart mentioned
above. We prove the existence of a continuous operator extending functions defined on
the boundary in the following way. Given functions ¢y, ..., g,, on the boundary we find
a function u defined on 2 such that

j
%:gj on 00, 0<j<k.
In the context of classical Sobolev spaces this result can be found in [13].

The result of [13] is generalized in two aspects. First, using the particular chart
constructed in the first part of this paper, one can deal with more general domains.
More precisely, one can permit domains with a boundary regularity that is of one order
lower than in the former results. Using this it is possible to show that the results on
very weak solutions to the Navier-Stokes equations by Galdi, Simader and Sohr in [10]
and by Farwig, Galdi and Sohr in [5] hold not only in C?'-domains but, more generally,
in C''-domains. This can be seen in [14] where a weighted approach to this problem is
given.

Second, we consider the problem in weighted function spaces. This means, we consider
weighted Lebesgue spaces LI () and Sobolev spaces Wr4(2) which means that we
integrate with respect to the measure w dzr for an appropriate weight function w, see
Section 3 below for the exact definition of these spaces.

All weight functions, that we use are contained in the Muckenhoupt class A,. This is
the class of nonnegative and locally integrable weight functions, for which the expression

1 1 _1 !
A(w) == sgp <@/dex> (m/Qw a d:v)

is finite, where the supremum is taken over all cubes ) in R™. As shown in [6] examples
of Muckenhoupt weights are w(z) = (1+ |z])*, with —n < a < n(g —1) or dist (z, M)*,
—(n—Fk) < a < (n—=Fk)(g—1), where M is a compact k-dimensional Lipschitzian
manifold.

One reason why the class of Muckenhoupt weights is appropriate for analysis is that
the maximal operator is continuous in weighted L%-spaces, if and only if the weight
function is a Muckenhoupt weight. Thus the powerful tools of harmonic analysis may
be applied, cf. Garcia-Cuerva and Rubio de Francia [11] and Stein [16]. Moreover, there
is a powerful extrapolation theorem by Curbera, Garcia-Cuerva, Martell and Pérez [3]
that guarantees estimates in very general Banach function spaces provided that the
estimates in weighted function spaces are known for all weights from the Muckenhoupt
class A,.



2 Construction of the Chart

Let Q@ C R™ be a C®'-domain, k¥ € IN. This means that for every z, € 9Q we can
rotate and shift the coordinate system such that its origin is xy and such that in a
neighborhood U(xy) of z( one has

0NN U(xy) = {(2',a(z")) | 2" € V(0)}, (2.1)

where V'(0) is an appropriate ((n— 1)-dimensional) neighborhood of 0 and a : V/(0) — R
is a C*!-function.

Lemma 2.1. For k € IN let Q C R" be a C*'-domain. Then for every x, € 0 there
exists a neighborhood U C R™ of xy, a neighborhood V- C R™ of 0 and a bijective map
a:V — U such that

a(0) =29, a(VAR"''x{0}))=UNno2, oVARL)=UNQ

and with the following properties:
(1) a € CHY(V,U),

(2) ge-a(a',0) = —N(a') and (ai)] a(2',0) = 0 for j > 2 even.

(3) With the notation of (2.1) one has

a) |allceivy can be estimated by ||allcrrvamn-1xf0})) -

b) There exists some r > 0 which only depends on the sets U(xg), V(zo) and
the size of ||allcr.1(van—1x10y)) such that B,(xz) C U.

Proof. We use the notation z = (2/, z,) with #’ € R"' and z, € Rand 9" = 97" -...-0]*
for v € N™.

After rotating and shifting the coordinate system we may assume that zy = 0,
(0,a(0)) = 0 and Va(0) = 0.

Let 0 < p € C°(R™™!) be radially symmetric such that

supp p C B1(0) and / p=1.

Rr—1

For t # 0 we set py(z') = W%Ip(%') We define the function « as follows:

a(r',x,) = {

where the convolution takes place in R"~.

Obviously, if V' C R™ is small enough, then «(z',0) € 9Q for (z/,0) € V. More-
over, since 9€) is at least of class C'b! it follows easily from the construction of « that
alx',x,) € Qand a(a’, —x,) € Q, if z, > 0 is small.

(o) = (Enpa, = N) (') if 2 £0

(ag;’,)) if x,=0,



Next we show (1) For every multi-index v = (v, v,) € Ny, with |y| < k and |7/| < k
one has for z, # 0

0 (wap,  N)(@) =10 [ PO 10N~ ,6) (€ )
Yn—1
0 ,
+m"6—xn (—1)7"1/p(§)v7"187 N(z' — z,8) (€, ...,6) dE

Tn—1

Then using change of variables an the fact that the map V197" N (2' — €) is (y, — 1)-
linear, the second summand is equal to

0 1 ,
g [ e () TN (6
= 1 [ (2000 - V) O VRN ) (6 )
——

Yn—1
Hence
0 (api, + M) =177 [ (=0 +2)0(6) = V6() - )
VTN (&~ ) (€, E) . (22
——
Yn—1
Still we have to consider the case || = &k in which the situation is easier. Integration
by parts yields
0 (wupe, + N)(&) = [ PPN — )i (2.3

where v = 1 + (s apd 61| = 1.

The map = — (a(’;,)) is of type C®! because a is. It remains to show that 07 (z,p,, *

N(z')) is Lipschitz continuous for every v € IN", |y| < k. This is an easy consequence
of the representations (2.2) and (2.3) and of N € C* 1! eg.,

|07 (20, * N (")) = 07" (Ynpy, * N(y'))|
< / lcap(€) = Vp(&) - & [V 7 N (2! — Ex,) — V" 10V N(y' — Ey,)|dE

B1(0)

A similar calculation shows that the right-hand side of (2.3) is Lipschitz continuous.



[t remains to show (2) From (2.2) we have for j > 1 even

(o) ale'0) = (17 [ (4 200(6) = Tp(©)- 7 N6,
(1 ( [Cn+ 2009 W@ - e
+Z [ ) TN 5>+<j—1)§kvj—w(x'>(ek,s,...,o]dg)

=@Djﬁ/ﬁ@nﬂleM&m@M5=m

since p is presumed to be rotationally symmetric and & — VI7IN(2/)(&, ..., €) is an odd
function for j — 1 odd. Similarly,

aina(@“',o) = —N(') ((2 —n)//)(if)df— ;/&'P(ﬁ)&df) = —N(z').

[t remains to show (3) b).
By (2.2) and (2.3) one has, since Va(0) = 0 and N(0) = —e,,

Va(0) = v(ax, ) — V(@npr, * N(@))|,_, = id.

Since Ve is Lipschitz continuous with constant K, we get for z,y € B,(0), r < 7, that

) =alp)] = swlo-Vole)e—ul. & {1-Armlte 0.0}
7= e - vao) LY ) > L -
>t (K20 o= (a0 - Vo) £ =4 ) > Sl -l

From this inequality it immediately follows that « is injective on B, (0).

Moreover, it is easily seen that Br(zg) C aB,(0). Indeed for z € 9B,(0) one has
la(z) — xo| > 3|z — 0| Since Va(z) is invertible for every = € B,(0) it follows from the
Inverse Function Theorem that a(B,(0)) is open. Together with the continuity of o we
obtain

Br (9) N 0a(B,(0)) = Bz (o) N (9B,(0)) = 0.

Assume now that y € Bz (o) \ a(B,(0)). Then the straight line from y to y intersects
Oda(B,(0)). Thus this intersection point is contained in the intersection which we have
shown to be empty. This is a contradiction.

This argument finishes the proof. O

3 Weighted Function Spaces

In Section 4 we want to prove an extenstion theorem that prescribes a low boundary
regularity. Since this is done in weighted function spaces in this section we collect the
basic definitions of weight functions and function spaces, which are needed in this below.



Definition 3.1. Let A,, 1 < q¢ < oo, the set of Muckenhoupt weights, be given by all
0 <we L. (R™) for which

Aqfu) 1= sup <ﬁ/@wdm> <6/Qw—q—%dx>ql < . (3.1)

The supremum is taken over all cubes Q@ C R™ and |Q| denotes the Lebesque measure
od Q. To avoid trivial cases, we exclude the case where w vanishes almost everywhere.

We introduce some function spaces. First by C§°(€2) we denote the space of smooth
functions with compact support in Q. For 1 < ¢ < oo, w € A, and an open set () we
define the weighted Lebesgue space by

1406 = {1 € L@ | Il o= ( [ 7w r)" < oo}

For k£ € INy, the set of nonnegative integers, the weighted Sobolev spaces are defined by

g 1= O 1D%ulg < o0}

la|<k

wia(Q) = {u e L) | Ju

Finally for £ € IN we define the space T5(99Q) := (W54(Q))|sq equipped with the norm
|- Mzt = 1l - lzkaaq) of the factor space, ie.,

190l 50(0m) 2= inF { ull gy | € WE(S) and ulog = g}

By [7], [9] and [2] the spaces LZ(Q), Wr9() and T,»9(0Q) are reflexive Banach spaces
in which C§°(Q) or C§°(€2) or C§°(Q2)|sq, respectively, are dense.
Note that by Slobodeckii [15] and Necas [13, Chapitre 2, §5] in the unweighted case

one has .
TFU9Q) = WFa9(8Q).

However, in the setting of Muckenhoupt weights such a characterization of the spaces
by an intrinsic norm is known only for few examples of weight functions.
For weighted function spaces change of variables is possible in the following sense.

Lemma 3.2. Let Q and O be two domains in R™ and
a:0—Q
a C*=Vl_diffeomorphism, k > 1.

1. The operator
T:uruoa: WH(Q)—Wh (O)

wor

1S continuous.
2. The same is true for the operator

S:grrgoa: TF(0Q) — TH (00).

wor



Proof. The first assertion follows immediately from the change of variables formula, the
second follows from the first using the definition of T%9(952). O

By [8] the following weighted analogue of the Poincaré inequality holds: there exists
a constant ¢ = ¢(¢, w) > 0 such that

|u]lgw < €||Vu||gw for every u e WJJ%(Q) (3.2)

Moreover the solvability of the following Laplace resolvent problem continues to hold
in weighted function spaces.

Theorem 3.3. (Regularity of the Dirichlet Problem)
Let 1< qg<oo,k€Z, k>—1andlet f € WHU(R"). Then there exists a unique weak
solution u € WET24(R't) to the Dirichlet Problem

(1-Au=f and u|lg.— =0.

It fulfills the estimate ||u||k42,9.0 < C||f|lk.qw, where ¢ =c(k,q,w).
The same is true for the solution u of (1 — A)u =0, ulga—1 = g, if g € TFT2I(R"1),
i.e., it fulfills the estimate
[ellera,gw < cllgllprza-

Proof. For k = —1 the first assertion has been proved by Frohlich in [7]. Using this, one
obtains the regularity of this boudary value problem as in the classical unweighted case
which can be found e.g. in Evans [4].

For the second assertion let v € W T24(R") be an extension of g. Then we find a
unique u € WE24(R") with (id — A)u = (id — A)v and u|gs—1 = 0. Thus v — u solves
the problem and by the first assertion it fulfills the estimate. O

4 Extensions of Functions on the Boundary

Our next objective is to construct a linear extension operator that maps functions defined
on the boundary 02 to a function defined on the domain 2 whose boundary values or
normal derivatives are the given preimages.

We start with the half space.

Theorem 4.1. Let 1 < ¢ < oo, w € A, and k € N. Then there exists a continuous

linear operator
k—1

7 [T R = Wh(Re)

J=0

such that %T(go, ooy Gk—1)|wn=0 = g5, 7 =0,...,k — 1.

Proof. It suffices to show that for every g € T 74(R" '), j = 0, ...,k — 1, there exists

u € Wk(R") depending continuously and linearly on g such that aawj% u =g and 83;1 u=




0 for every ¢ =0, ..., 7 — 1. To see this assume that for every 7 =0, ...,k — 1 there exists
a continuous linear operator

T, TH IR - WEI(RY),

a_i_()‘ o, ifi<y
Ot "7 an=0 " p =

For g = (g0, ..., gk—1) we can define Sy(g) := Ty(g) and

oi+1
Sals) = 55(0) + Ty (91— 2r(0) ).
Then T = Sj_; solves our problem.
Next we show the weaker assertion. For g € TE729(R" ) let v € W)E74(R"}) with
(1—A)v = 0 and v|gn—1 = g which is uniquely defined by Theorem 3.3. Let ¢ € C*(R,)
be a cut-off function with ((¢) =1 for ¢t < 1 and ((t) = 0 for t > 2. We set

(@) = 0(e) = 5ah- (o) and - ula) = B(o)(e). (4.)

We show that ¢u solves the problem. More precisely we prove the following claim:

If € C°(R") with ¢(z) = ¢(x,), suppp C R* ! x [0,2] and (%)mqﬁunzo =
0 for m =0,...,l and v € WFY(R") with (1 — A)v =0 then ¢v € WF(R") with
[6v]lk+1.g0 < €llv]lkg-

To prove this we use mathematical induction with respect to [ and assume that we
already know the assertion is true for [ — 1, [ — 2 and all &.

Since (1 — A)v = 0 we obtain
(1—A)(¢v) = —A¢v — 2Vv - V. (4.2)
As (322)"A¢ly,=0 = 0 for m = 0,...,1 =2, (3-)"V|s,=0 = 0 for m = 0,...,1 = 1 and

Oy
(1—A)Vuv =0, (4.2) and the induction hypothesis yield (1 — A)(¢pv) € WEH=24(R").
Thus and since ¢v|g.-1 = 0, one has ¢v € WEH4(R") by the regularity of the Laplace

resolvent problem. Moreover

160t < AD)0 + 2V0V0llksi20 < cll0lgun + (V0 llirg0) < el

For the start of induction we need the cases [ = 0 and [ = 1. The case [ = 0 is trivial,
the case [ =1 is proved in the same way as the induction step.
If one applies the above claim to ugv given by (4.1) we get u € WF4(Q). Moreover,

o A AN N, 0 if 1<
a—x%u(x,()) = VZ; <V> a—%v—ax%_yﬂx,()) = {g(x,) T

k,qw+

This shows the assertion about the boundary values. O

Theorem 4.2. Let Q C R" be a bounded C*~"'-domain, k > 1. Then there exists a
continuous linear operator

k—1
L:[]Ti7(09) —» Wi (Q)

=0

such that 88—]éjL(g)|ag = (—1)g;, 0<j <k —1, where g = (go, - Gr—1)-



Proof. As in the proof of Theorem 4.1 we construct an operator

y o (~1)ig if k=
. k=3 k.q T —
L T;779(08) — W,1(Q), 8NjL](g)_ {O k<
Then the general case follows as in the proof of Theorem 4.1.

We choose the collection of charts (a4, V;, U;)™, according to Lemma 2.1 and a de-
composition of unity (¢;)™, subordinate to the covering {U;}.

To simplify the notation we fix s and set vy = «;, U = U;, V =V, and ¢ = ¢;. Moreover,
for g € Th=71(9Q) we set § = (g - ¢) 0. By Lemma 3.2 we know g; € TEZ74(R").
Thus we may apply the operator 1" from Theorem 4.1 and set

v:=v; := Li j(g9) :== ($:T(0,...,0,3,0,...,0)) oy,

meaning, that the j’th component of (0, ...,0,,0,...,0) is g.
Moreover, (¢;); C CgO(IRi) with ¢; = 1 in a neighborhood of supp § and supp ¢; C V;.

Here 1; can be chosen such that %wi (2',0) = 0 for every k € IN.

Then we have by the choice of v according to Lemma 2.1 for every k£ < j.

(=1)f0;,9(2") = ;?T(...O,LZ],O...)(JJ',O) = (%(v o 7)) (z,0)

= (Vv 07) - (0,7, ..., 0p7) (2, 0) + terms containing Vv o y(x',0), i < j

— (V50 0NN, =N = (1) (0] 0

The terms containing Vv o (2, 0) vanish for 7 < j, since
Vi(voy)(z,0) = V' (HT(0,...,0,3,0,..,0))(z',0) =
for i =1,...,5 — 1 by the definition of T'.
Finally we set L;(g) = Y-, L; ;(¢9), and obtain

ok = ok g if k=j
iy _ L. _
ai Li9loa = 2 g last9)loe {o if k<.

The continuity of L; follows from Lemma 3.2 and the continuity of 7" in Theorem
4.1. O
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