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Given a domain 
 of 
lass C

k;1

, k 2 N we 
onstru
t a 
hart that maps

normals to the boundary of the half spa
e to normals to the boundary of 


in the sense that

�

�x

n

�(x

0

; 0) = �N(x

0

) and that still is of 
lass C

k;1

. As an

appli
ation we prove the existen
e of a 
ontinuous extension operator for all

normal derivatives of order 0 to k on domains of 
lass C

k;1

. The 
onstru
tion

of this operator is performed in weighted fun
tion spa
es where the weight

fun
tion is taken from the 
lass of Mu
kenhoupt weights.
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1 Introdu
tion

Let 
 � R

n

be a C

k;1

-domain, i.e., the boundary �
 
an lo
ally be expressed as the

graph of a C

k;1

-fun
tion

a : V \ (R

n�1

� f0g)! R

with an appropriate open set V � R

n

; here k 2 N. Then we are looking for a 
hart

� : V ! U � R

n

of regularity as high as possible su
h that

�

�x

n

�(x

0

; 0) = �N(x

0

) whenever (x

0

; 0) 2 V; (1.1)

where N(x

0

) denotes the unit outer normal ve
tor at (x

0

; a(x

0

)) 2 �
. This means that

normals to the boundary of the half spa
e are mapped to normals to �
. The natural

mapping with this property is

x = (x

0

; x

n

) 7!

�

x

0

a(x

0

)

�

� x

n

�N(x

0

): (1.2)

�
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However, if a is a C

k;1

-fun
tion, then, sin
e it in
ludes the outer normal N , the 
hart

(1.2) is only of 
lass C

k�1;1

.

For this reason we introdu
e a di�erent 
hart whi
h 
onserves the C

k;1

-regularity and

still has the property (1.1).

Coordinate transforms as in (1.2) are used e.g. by Ne�
as [13℄, to prove extension

theorems of normal derivatives, see also Chapter 4 of this paper. Moreover, in [12,

Chapter 4.1℄ Giga uses su
h a 
oordinate transformation to obtain symbols of pseudo-

di�erential operators of a parti
ular form. In a similar 
ontext, a

ording to Abels,

the proof of results in [1℄ 
an be signi�
antly simpli�ed by the use of a 
hart with the

property (1.1) but whi
h preserves the regularity of a.

In the se
ond part of this paper we present an appli
ation of the 
hart mentioned

above. We prove the existen
e of a 
ontinuous operator extending fun
tions de�ned on

the boundary in the following way. Given fun
tions g

1

; :::; g

m

on the boundary we �nd

a fun
tion u de�ned on 
 su
h that

�

j

u

�N

j

= g

j

on �
; 0 � j � k:

In the 
ontext of 
lassi
al Sobolev spa
es this result 
an be found in [13℄.

The result of [13℄ is generalized in two aspe
ts. First, using the parti
ular 
hart


onstru
ted in the �rst part of this paper, one 
an deal with more general domains.

More pre
isely, one 
an permit domains with a boundary regularity that is of one order

lower than in the former results. Using this it is possible to show that the results on

very weak solutions to the Navier-Stokes equations by Galdi, Simader and Sohr in [10℄

and by Farwig, Galdi and Sohr in [5℄ hold not only in C

2;1

-domains but, more generally,

in C

1;1

-domains. This 
an be seen in [14℄ where a weighted approa
h to this problem is

given.

Se
ond, we 
onsider the problem in weighted fun
tion spa
es. This means, we 
onsider

weighted Lebesgue spa
es L

q

w

(
) and Sobolev spa
es W

k;q

w

(
) whi
h means that we

integrate with respe
t to the measure w dx for an appropriate weight fun
tion w, see

Se
tion 3 below for the exa
t de�nition of these spa
es.

All weight fun
tions, that we use are 
ontained in the Mu
kenhoupt 
lass A

q

. This is

the 
lass of nonnegative and lo
ally integrable weight fun
tions, for whi
h the expression

A

q

(w) := sup

Q

�

1

jQj

Z

Q

w dx

��

1

jQj

Z

Q

w

�

1

q�1

dx

�

q�1

is �nite, where the supremum is taken over all 
ubes Q in R

n

. As shown in [6℄ examples

of Mu
kenhoupt weights are w(x) = (1+ jxj)

�

, with �n < � < n(q� 1) or dist (x;M)

�

,

�(n � k) < � < (n � k)(q � 1), where M is a 
ompa
t k-dimensional Lips
hitzian

manifold.

One reason why the 
lass of Mu
kenhoupt weights is appropriate for analysis is that

the maximal operator is 
ontinuous in weighted L

q

-spa
es, if and only if the weight

fun
tion is a Mu
kenhoupt weight. Thus the powerful tools of harmoni
 analysis may

be applied, 
f. Gar
��a-Cuerva and Rubio de Fran
ia [11℄ and Stein [16℄. Moreover, there

is a powerful extrapolation theorem by Curbera, Gar
��a-Cuerva, Martell and P�erez [3℄

that guarantees estimates in very general Bana
h fun
tion spa
es provided that the

estimates in weighted fun
tion spa
es are known for all weights from the Mu
kenhoupt


lass A

q

.
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2 Constru
tion of the Chart

Let 
 � R

n

be a C

k;1

-domain, k 2 N. This means that for every x

0

2 �
 we 
an

rotate and shift the 
oordinate system su
h that its origin is x

0

and su
h that in a

neighborhood U(x

0

) of x

0

one has

�
 \ U(x

0

) = f(x

0

; a(x

0

)) j x

0

2 V (0)g; (2.1)

where V (0) is an appropriate ((n�1)-dimensional) neighborhood of 0 and a : V (0)! R

is a C

k;1

-fun
tion.

Lemma 2.1. For k 2 N let 
 � R

n

be a C

k;1

-domain. Then for every x

0

2 �
 there

exists a neighborhood U � R

n

of x

0

, a neighborhood V � R

n

of 0 and a bije
tive map

� : V ! U su
h that

�(0) = x

0

; �(V \ (R

n�1

� f0g)) = U \ �
; �(V \R

n

+

) = U \ 


and with the following properties:

(1) � 2 C

k;1

(V; U),

(2)

�

�x

n

�(x

0

; 0) = �N(x

0

) and

�

�

�x

n

�

j

�(x

0

; 0) = 0 for j � 2 even.

(3) With the notation of (2.1) one has

a) k�k

C

k;1

(V;U)


an be estimated by kak

C

k;1

(V \(R

n�1

�f0g))

.

b) There exists some r > 0 whi
h only depends on the sets U(x

0

), V (x

0

) and

the size of kak

C

k;1

(V \(R

n�1

�f0g))

su
h that B

r

(x

0

) � U .

Proof. We use the notation x = (x

0

; x

n

) with x

0

2 R

n�1

and x

n

2 R and �




= �




1

x

1

�:::��




1

x

n

for 
 2 N

n

.

After rotating and shifting the 
oordinate system we may assume that x

0

= 0,

(0; a(0)) = 0 and ra(0) = 0.

Let 0 � � 2 C

1

0

(R

n�1

) be radially symmetri
 su
h that

supp � � B

1

(0) and

Z

R

n�1

� = 1:

For t 6= 0 we set �

t

(x

0

) =

1

jtj

n�1

�(

x

0

t

). We de�ne the fun
tion � as follows:

�(x

0

; x

n

) =

(

�

x

0

a(x

0

)

�

� (x

n

�

x

n

�N)(x

0

) if x

n

6= 0

�

x

0

a(x

0

)

�

if x

n

= 0;

where the 
onvolution takes pla
e in R

n�1

.

Obviously, if V � R

n

is small enough, then �(x

0

; 0) 2 �
 for (x

0

; 0) 2 V . More-

over, sin
e �
 is at least of 
lass C

1;1

it follows easily from the 
onstru
tion of � that

�(x

0

; x

n

) 2 
 and �(x

0

;�x

n

) 62 
, if x

n

> 0 is small.
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Next we show (1) For every multi-index 
 = (


0

; 


n

) 2 N

0

, with j
j � k and j


0

j < k

one has for x

n

6= 0

�




(x

n

�

x

n

�N)(x

0

) =


n

(�1)




n

�1

Z

�(�)r




n

�1

�




0

N(x

0

� x

n

�) (�; :::; �)

| {z }




n

�1

d�

+ x

n

�

�x

n

0

�

(�1)




n

�1

Z

�(�)r




n

�1

�




0

N(x

0

� x

n

�) (�; :::; �)

| {z }




n

�1

d�

1

A

:

Then using 
hange of variables an the fa
t that the map r




n

�1

�




0

N(x

0

� �) is (


n

� 1)-

linear, the se
ond summand is equal to

(�1)




n

�1

x

n

�

�x

n

Z

1

jx

n

j

n+


n

�2

�

�

�

x

n

�

r




n

�1

�




0

N(x

0

� �)(�; :::; �)d�

= (�1)




n

�1

Z

((�n� 


n

+ 2)�(�)�r�(�) � �)r




n

�1

�




0

N(x

0

� �x

n

) (�; :::; �)

| {z }




n

�1

d�:

Hen
e

�




(x

n

�

x

n

�N)(x

0

) =(�1)




n

�1

Z

((�n + 2)�(�)�r�(�) � �)

� r




n

�1

�




0

N(x

0

� �x

n

) (�; :::; �)

| {z }




n

�1

d�:

(2.2)

Still we have to 
onsider the 
ase j


0

j = k in whi
h the situation is easier. Integration

by parts yields

�




(x

n

�

x

n

�N)(x

0

) =

Z

�

�

1

�(�)�

�

2

N(x

0

� x

n

�)d�; (2.3)

where 
 = �

1

+ �

2

and j�

1

j = 1.

The map x 7!

�

x

0

a(x

0

)

�

is of type C

k;1

be
ause a is. It remains to show that �




(x

n

�

x

n

�

N(x

0

)) is Lips
hitz 
ontinuous for every 
 2 N

n

, j
j � k. This is an easy 
onsequen
e

of the representations (2.2) and (2.3) and of N 2 C

k�1;1

, e.g.,

j�




(x

n

�

x

n

�N(x

0

))� �




(y

n

�

y

n

�N(y

0

))j

�

Z

B

1

(0)

j


n

�(�)�r�(�) � �j jr




n

�1

�




0

N(x

0

� �x

n

)�r




n

�1

�




0

N(y

0

� �y

n

)jd�

� 
L




jx� yj:

A similar 
al
ulation shows that the right-hand side of (2.3) is Lips
hitz 
ontinuous.
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It remains to show (2) From (2.2) we have for j > 1 even

�

�

�x

n

�

j

�(x

0

; 0) = (�1)

j�1

Z

((�n + 2)�(�)�r�(�) � �)r

j�1

N(x

0

)(�; :::; �)d�

=(�1)

j�1

�

Z

(�n + 2)�(�)r

j�1

N(x

0

)(�; :::; �)d�

+

n�1

X

k=1

Z

�(�)

�

r

j�1

N(x

0

)(�; :::; �) + (j � 1)�

k

r

j�1

N(x

0

)(e

k

; �; :::; �)

�

d�

�

=(�1)

j�1

j

Z

�(�)r

j�1

N(x

0

)(�; :::; �)d� = 0;

sin
e � is presumed to be rotationally symmetri
 and � 7! r

j�1

N(x

0

)(�; :::; �) is an odd

fun
tion for j � 1 odd. Similarly,

�

�x

n

�(x

0

; 0) = �N(x

0

)

 

(2� n)

Z

�(�)d� �

n�1

X

i=1

Z

�

i

�(�)�

i

d�

!

= �N(x

0

):

It remains to show (3) b).

By (2.2) and (2.3) one has, sin
e ra(0) = 0 and N(0) = �e

n

,

r�(0) = r

�

x

0

a(x

0

)

�

�r(x

n

�

x

n

�N(x

0

))

�

�

x=0

= id :

Sin
e r� is Lips
hitz 
ontinuous with 
onstant K, we get for x; y 2 B

r

(0), r <

1

2K

, that

j�(x)� �(y)j = sup

jvj=1

jv � r�(�

v

)(x� y)j; �

v

2 f(1� t)x+ ty j t 2 (0; 1)g

� inf

�2B

r

(0)

�

jx� yj

2

jx� yj

�

�

�

�

�

(x� y)(r�(�)�r�(0))

x� y

jx� yj

�

�

�

�

�

>

1

2

jx� yj:

From this inequality it immediately follows that � is inje
tive on B

r

(0).

Moreover, it is easily seen that B

r

2

(x

0

) � �B

r

(0). Indeed for x 2 �B

r

(0) one has

j�(x)� x

0

j >

1

2

jx� 0j. Sin
e r�(x) is invertible for every x 2 B

r

(0) it follows from the

Inverse Fun
tion Theorem that �(B

r

(0)) is open. Together with the 
ontinuity of � we

obtain

B

r

2

(x

0

) \ ��(B

r

(0)) = B

r

2

(x

0

) \ �(�B

r

(0)) = ;:

Assume now that y 2 B

r

2

(x

0

) n �(B

r

(0)). Then the straight line from y to x

0

interse
ts

��(B

r

(0)). Thus this interse
tion point is 
ontained in the interse
tion whi
h we have

shown to be empty. This is a 
ontradi
tion.

This argument �nishes the proof.

3 Weighted Fun
tion Spa
es

In Se
tion 4 we want to prove an extenstion theorem that pres
ribes a low boundary

regularity. Sin
e this is done in weighted fun
tion spa
es in this se
tion we 
olle
t the

basi
 de�nitions of weight fun
tions and fun
tion spa
es, whi
h are needed in this below.
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De�nition 3.1. Let A

q

, 1 < q < 1, the set of Mu
kenhoupt weights, be given by all

0 � w 2 L

1

lo


(R

n

) for whi
h

A

q

(w) := sup

Q

�

1

jQj

Z

Q

w dx

��

1

jQj

Z

Q

w

�

1

q�1

dx

�

q�1

<1: (3.1)

The supremum is taken over all 
ubes Q � R

n

and jQj denotes the Lebesgue measure

od Q. To avoid trivial 
ases, we ex
lude the 
ase where w vanishes almost everywhere.

We introdu
e some fun
tion spa
es. First by C

1

0

(
) we denote the spa
e of smooth

fun
tions with 
ompa
t support in 
. For 1 < q < 1, w 2 A

q

and an open set 
 we

de�ne the weighted Lebesgue spa
e by

L

q

w

(
) :=

n

f 2 L

1

lo


(
) j kfk

q;w

:=

�

Z




jf j

q

w dx

�

1

q

<1

o

:

For k 2 N

0

, the set of nonnegative integers, the weighted Sobolev spa
es are de�ned by

W

k;q

w

(
) =

n

u 2 L

q

w

(
)

�

�

�

kuk

k;q;w

:=

X

j�j�k

kD

�

uk

q;w

<1

o

:

Finally for k 2 N we de�ne the spa
e T

k;q

w

(�
) := (W

k;q

w

(
))j

�


equipped with the norm

k � k

T

k;q

w

= k � k

T

k;q

w

(�
)

of the fa
tor spa
e, i.e.,

kgk

T

k;q

w

(�
)

:= inf

n

kuk

W

k;q

w

(
)

�

�

u 2 W

k;q

w

(
) and uj

�


= g

o

:

By [7℄, [9℄ and [2℄ the spa
es L

q

w

(
), W

k;q

w

(
) and T

k;q

w

(�
) are re
exive Bana
h spa
es

in whi
h C

1

0

(
) or C

1

0

(
) or C

1

0

(
)j

�


, respe
tively, are dense.

Note that by Slobode
ki�� [15℄ and Ne�
as [13, Chapitre 2, x5℄ in the unweighted 
ase

one has

T

k;q

1

(�
) = W

k�

1

q

;q

(�
):

However, in the setting of Mu
kenhoupt weights su
h a 
hara
terization of the spa
es

by an intrinsi
 norm is known only for few examples of weight fun
tions.

For weighted fun
tion spa
es 
hange of variables is possible in the following sense.

Lemma 3.2. Let 
 and O be two domains in R

n

and

� : O ! 


a C

k�1;1

-di�eomorphism, k � 1.

1. The operator

T : u 7! u Æ � : W

k;q

w

(
)!W

k;q

wÆ�

(O)

is 
ontinuous.

2. The same is true for the operator

S : g 7! g Æ � : T

k;q

w

(�
)! T

k;q

wÆ�

(�O):
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Proof. The �rst assertion follows immediately from the 
hange of variables formula, the

se
ond follows from the �rst using the de�nition of T

k;q

w

(�
).

By [8℄ the following weighted analogue of the Poin
ar�e inequality holds: there exists

a 
onstant 
 = 
(q; w) > 0 su
h that

kuk

q;w

� 
kruk

q;w

for every u 2 W

1;q

w;0

(
): (3.2)

Moreover the solvability of the following Lapla
e resolvent problem 
ontinues to hold

in weighted fun
tion spa
es.

Theorem 3.3. (Regularity of the Diri
hlet Problem)

Let 1 < q <1, k 2 Z, k � �1 and let f 2 W

k;q

w

(R

n

+

). Then there exists a unique weak

solution u 2 W

k+2;q

w

(R

n

+

) to the Diri
hlet Problem

(1��)u = f and uj

R

n�1

= 0:

It ful�lls the estimate kuk

k+2;q;w

� 
kfk

k;q;w

, where 
 = 
(k; q; w).

The same is true for the solution u of (1��)u = 0; uj

R

n�1

= g, if g 2 T

k+2;q

w

(R

n�1

),

i.e., it ful�lls the estimate

kuk

k+2;q;w

� 
kgk

T

k+2;q

w

:

Proof. For k = �1 the �rst assertion has been proved by Fr�ohli
h in [7℄. Using this, one

obtains the regularity of this boudary value problem as in the 
lassi
al unweighted 
ase

whi
h 
an be found e.g. in Evans [4℄.

For the se
ond assertion let v 2 W

k+2;q

w

(R

n

+

) be an extension of g. Then we �nd a

unique u 2 W

k+2;q

w

(R

n

+

) with (id ��)u = (id ��)v and uj

R

n�1

= 0. Thus v� u solves

the problem and by the �rst assertion it ful�lls the estimate.

4 Extensions of Fun
tions on the Boundary

Our next obje
tive is to 
onstru
t a linear extension operator that maps fun
tions de�ned

on the boundary �
 to a fun
tion de�ned on the domain 
 whose boundary values or

normal derivatives are the given preimages.

We start with the half spa
e.

Theorem 4.1. Let 1 < q < 1, w 2 A

q

and k 2 N. Then there exists a 
ontinuous

linear operator

T :

k�1

Y

j=0

T

k�j;q

w

(R

n�1

)! W

k;q

w

(R

n

+

)

su
h that

�

j

�x

j

n

T (g

0

; :::; g

k�1

)j

x

n

=0

= g

j

, j = 0; :::; k � 1.

Proof. It suÆ
es to show that for every g 2 T

k�j;q

w

(R

n�1

), j = 0; :::; k � 1, there exists

u 2 W

k;q

w

(R

n

+

) depending 
ontinuously and linearly on g su
h that

�

j

�x

j

n

u = g and

�

i

�x

i

n

u =

7



0 for every i = 0; :::; j � 1. To see this assume that for every j = 0; :::; k� 1 there exists

a 
ontinuous linear operator

T

j

: T

k�j;q

w

(R

n�1

)!W

k;q

w

(R

n

+

);

�

i

�x

i

n

T

j

(h)

�

�

x

n

=0

=

(

0; if i < j

h; if i = j

:

For g = (g

0

; :::; g

k�1

) we 
an de�ne S

0

(g) := T

0

(g) and

S

j+1

(g) := S

j

(g) + T

j+1

�

g

j+1

�

�

j+1

�x

j+1

n

S

j

(g)

�

:

Then T = S

k�1

solves our problem.

Next we show the weaker assertion. For g 2 T

k�j;q

w

(R

n�1

) let v 2 W

k�j;q

w

(R

n

+

) with

(1��)v = 0 and vj

R

n�1

= g whi
h is uniquely de�ned by Theorem 3.3. Let � 2 C

1

(R

+

)

be a 
ut-o� fun
tion with �(t) = 1 for t < 1 and �(t) = 0 for t > 2. We set

�(x) = �(x

n

) =

1

j!

x

j

n

� �(x

n

) and u(x) = �(x)v(x): (4.1)

We show that �u solves the problem. More pre
isely we prove the following 
laim:

If � 2 C

1

(R

n

+

) with �(x) = �(x

n

), supp � � R

n�1

� [0; 2℄ and (

�

�x

n

)

m

�j

x

n

=0

=

0 for m = 0; :::; l and v 2 W

k;q

w

(R

n

+

) with (1 ��)v = 0 then �v 2 W

k+l;q

w

(R

n

+

) with

k�vk

k+l;q;w

� 
kvk

k;q;w

.

To prove this we use mathemati
al indu
tion with respe
t to l and assume that we

already know the assertion is true for l � 1, l � 2 and all k.

Sin
e (1��)v = 0 we obtain

(1��)(�v) = ���v � 2rv � r�: (4.2)

As (

�

�x

n

)

m

��j

x

n

=0

= 0 for m = 0; :::; l � 2, (

�

�x

n

)

m

r�j

x

n

=0

= 0 for m = 0; :::; l � 1 and

(1��)rv = 0, (4.2) and the indu
tion hypothesis yield (1��)(�v) 2 W

k+l�2;q

w

(R

n

+

).

Thus and sin
e �vj

R

n�1

= 0, one has �v 2 W

k+l;q

w

(R

n

+

) by the regularity of the Lapla
e

resolvent problem. Moreover

k�vk

k+l;q;w

� 
k(��)v + 2rvr�k

k+l�2;q;w

� 
(kvk

k;q;w

+ krvk

k�1;q;w

) � 
kvk

k;q;w

:

For the start of indu
tion we need the 
ases l = 0 and l = 1. The 
ase l = 0 is trivial,

the 
ase l = 1 is proved in the same way as the indu
tion step.

If one applies the above 
laim to u�v given by (4.1) we get u 2 W

k;q

w

(
). Moreover,

�

l

�x

l

n

u(x

0

; 0) =

l

X

�=0

�

l

�

�

�

�

�x

�

n

v

�

l��

�x

l��

n

�(x

0

; 0) =

(

0 if l < j

g(x

0

) if l = j:

This shows the assertion about the boundary values.

Theorem 4.2. Let 
 � R

n

be a bounded C

k�1;1

-domain, k � 1. Then there exists a


ontinuous linear operator

L :

k�1

Y

j=0

T

k�j;q

w

(�
)!W

k;q

w

(
)

su
h that

�

j

�N

j

L(g)j

�


= (�1)

j

g

j

, 0 � j � k � 1, where g = (g

0

; :::; g

k�1

).

8



Proof. As in the proof of Theorem 4.1 we 
onstru
t an operator

L

j

: T

k�j;q

w

(�
)!W

k;q

w

(
);

�

k

�N

j

L

j

(g) =

(

(�1)

j

g if k = j

0 if k < j:

Then the general 
ase follows as in the proof of Theorem 4.1.

We 
hoose the 
olle
tion of 
harts (�

i

; V

i

; U

i

)

m

i=1

a

ording to Lemma 2.1 and a de-


omposition of unity (�

i

)

m

i=1

subordinate to the 
overing fU

i

g.

To simplify the notation we �x i and set 
 = �

i

, U = U

i

, V = V

i

and � = �

i

. Moreover,

for g 2 T

k�j;q

w

(�
) we set ~g = (g � �) Æ 
. By Lemma 3.2 we know ~g

j

2 T

k�j;q

wÆ


(R

n�1

).

Thus we may apply the operator T from Theorem 4.1 and set

v := v

i

:= L

i;j

(g) := ( 

i

T (0; :::; 0; ~g; 0; :::; 0)) Æ 


�1

;

meaning, that the j'th 
omponent of (0; :::; 0; ~g; 0; :::; 0) is ~g.

Moreover, ( 

i

)

i

� C

1

0

(R

n

+

) with  

i

= 1 in a neighborhood of supp ~g and supp 

i

� V

i

.

Here  

i


an be 
hosen su
h that

�

k

�x

k

n

 

i

(x

0

; 0) = 0 for every k 2 N.

Then we have by the 
hoi
e of 
 a

ording to Lemma 2.1 for every k � j.

(�1)

k

Æ

j;k

~g(x

0

) =

�

k

�x

k

n

T (:::0; ~g; 0:::)(x

0

; 0) =

�

�

k

�x

k

n

(v Æ 
)

�

(x

0

; 0)

= (r

k

v Æ 
) � (�

n


; :::; �

n


)(x

0

; 0) + terms 
ontaining r

i

v Æ 
(x

0

; 0), i < j

= (r

k

v(
(x

0

; 0)))(�N(x

0

); :::;�N(x

0

)

| {z }

k

) = (�1)

k

�

�

k

�

k

N

v

�

(
(x

0

; 0)):

The terms 
ontaining r

i

v Æ 
(x

0

; 0) vanish for i < j, sin
e

r

i

(v Æ 
)(x

0

; 0) = r

i

( 

i

T (0; :::; 0; ~g; 0; :::; 0))(x

0

; 0) = 0

for i = 1; :::; j � 1 by the de�nition of T .

Finally we set L

j

(g) =

P

m

i=1

L

i;j

(g), and obtain

�

k

�N

k

L

j

(g)j

�


=

m

X

i=1

�

k

�N

k

L

i;j

(g)j

�


=

(

g if k = j

0 if k < j:

The 
ontinuity of L

j

follows from Lemma 3.2 and the 
ontinuity of T in Theorem

4.1.
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