
Essential spectra of difference operators on

Z
n-periodic graphs

V. S. Rabinovich, S. Roch

Vladimir S. Rabinovich, Instituto Politécnico Nacional,

ESIME-Zacatenco, Av. IPN, edif.1, México D.F.,
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Abstract

Let (X , ρ) be a discrete metric space. We suppose that the group Z
n

acts freely on X and that the number of orbits of X with respect to this
action is finite. Then we call X a Z

n-periodic discrete metric space. We
examine the Fredholm property and essential spectra of band-dominated
operators on lp(X) where X is a Z

n-periodic discrete metric space. Our
approach is based on the theory of band-dominated operators on Z

n and
their limit operators.

In case X is the set of vertices of a combinatorial graph, the graph
structure defines a Schrödinger operator on lp(X) in a natural way. We
illustrate our approach by determining the essential spectra of Schrödinger
operators with slowly oscillating potential both on zig-zag and on hexag-
onal graphs, the latter being related to nano-structures.

1 Introduction

In the last years, spectral properties of Schrödinger operators on quantum
graphs have attracted a lot of attention due to their interesting mathemati-
cal properties and due to existing and expected applications in nano-structures
as well (see, for instance, [4, 9, 38]). Quantum graph models also occur in chem-
istry [26, 37] and physics [4, 15] (see also the references therein). The spectral
properties of Schrödinger operators on quantum graphs considered by P. Kuch-
ment and collaborators in a series of papers [14, 15, 16, 17, 18, 19]. Direct and
inverse spectral problems for Schrödinger operators on graphs connected with
zig-zag carbon nano-tubes was considered in [12, 13].

It was shown in [16, 17] that the spectral analysis of quantum Hamiltonian
on periodic graphs splits into two parts: the spectral analysis of a Hamiltonian
on a single edge, and the spectral analysis on a combinatorial graph. This
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observation makes difference operators on combinatorial graphs to an essential
tool in the theory of differential operators on quantum graphs.

The main theme of this paper is the essential spectrum of difference oper-
ators (with the Schrödinger operators as a prominent example) acting on the
spaces lp(X) where X is the set of the vertices of a combinatorial graph Γ. We
exclusively consider discrete graphs Γ on which the group Zn acts freely and
which have a finite fundamental domain with respect to this action.

We introduce a Banach algebra Ap(X) of so-called band-dominated differ-
ence operators lp(X) for 1 < p < ∞. Following [31, 32] and [33], we introduce
for each operator A ∈ Ap(X) a family opp (A) of limit operators of A, and we
show that an operator A ∈ Ap(X) is Fredholm on lp(X) if and only if all oper-
ators in opp (A) are invertible and if the norms of their inverses are uniformly
bounded. In general, the limit operators of an operator A are simpler objects
than the operator A itself. Thus, the limit operators method often provides an
effective tool to study the Fredholmness of operators in Ap(X).

For operators in the so-called Wiener algebra W(X) (which is a non-closed
subalgebra of every algebra Ap(X), the uniform boundedness of norms of inverse
operators to limit operators follows already from their invertibility. This basic
fact implies the useful identity

spess A =
⋃

Ah∈op A

sp Ah (1)

where the set of the limit operators of A, the spectra spAh of the limit operators
of A and, hence, also the essential spectrum spess A of A are independent of p.

In case X = Zn, formula (1) was obtained in [31], see also [33]. In [29],
we applied this formula to study electromagnetic Schrödinger operators on the
lattice Zn. In particular, we determined the essential spectra of the Hamiltonian
of the 3-particle problem on Zn.

In [27], one of the authors obtained an identity similar to (1) for perturbed
pseudodifferential operators on Rn. He applied this result to study the location
of the essential spectra of electromagnetic Schrödinger operators, square-root
Klein-Gordon, and Dirac operators under general assumptions with respect to
the behavior of magnetic and electric potentials at infinity. By means of this
method, also a very simple and transparent proof of the well known Hunziker,
van Winter, Zjislin theorem (HWZ-Theorem) on the location of essential spectra
of multi-particle Hamiltonians was obtained.

It should be noted that formulas similar to (1) have been obtained indepen-
dently (but later) in [21] by means of admissible geometric methods. We also
mention the papers [8, 7, 23, 3] and the references therein where C∗-algebra
techniques have been applied to study essential spectra of Schrödinger opera-
tors.

The present paper is organized as follows. In Section 2 we collect some aux-
iliary material from [33] on matrix band-dominated operators on the lattice Zn.
In Section 3 we introduce the Banach algebra Ap(X) of band-dominated oper-
ators acting on lp(X) where X is a periodic discrete metric space on which the
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group Zn acts freely. We construct an isomorphism between the Banach alge-
bra Ap(X) and the Banach algebra Ap(Z

n, CN ) of all (block) band-dominated
operators on lp(Zn, CN ) where N is the number of points in the fundamen-
tal domain of X with respect to the action of Zn. Applying this isomorphism
and the results of Section 2, we derive necessary and sufficient conditions for
A ∈ Ap(X) to be a Fredholm operator. We also introduce a Wiener algebra
W(X) and derive formula (1) for operators in W(X).

In Section 4 we introduce the class of periodic band-dominated operators.
We say that A ∈ Ap(X) is a periodic operator if it commutes with each op-
erator Lh of left shift by h ∈ Zn on lp(X). Note that, for periodic operators,
spess A = spA. With each periodic operator A ∈ W(X), we associate a contin-
uous function σA : Tn → CN×N , called the symbol of A. In the terminology
of [15, 16], σA(t) is just the Floquet transform of A. We prefer to follow the
theory of discrete convolutions and use the discrete Fourier transform to define
σA.

Let λj(t), j = 1, . . . , N be the eigenvalues of σA(t). Then

sp A =
N
⋃

j=1

Cj(A)

where Cj(A) := {λ ∈ C : λ = λj(t), t ∈ T
n}. If A is a self-adjoint operator on

l2(X), then the Cj(A) can be identified with segments.
In Section 5 we consider operators in the Wiener algebra W(X) with slowly

oscillating coefficients. These operators are distinguished by two remarkable
properties: their limit operators are periodic operators, and all limit operators
belong to the Wiener algebra again. Via formula (1) we thus obtain a com-
plete description of the essential spectra of operators with slowly oscillating
coefficients.

In Section 6 we apply these results to Schrödinger operators with slowly
oscillating electrical potentials. As already mentioned, every Zn-periodic graph
induces a related Schrödinger operator in a natural way (it is only this place
where the graph structure becomes important). As illustrations we calculate the
essential spectra of Schrödinger operators with slowly oscillating potentials on
the zig-zag graph and on the hexagonal graph. Some other spectral problems on
such graphs which are connected with carbon nano-structures were considered
in [12, 13, 18].

In Section 7 we examine the essential spectrum of the Hamiltonian of the
motion of two particles on a periodic graph Γ around a heavy nucleus. For
the lattice Γ = Zn we considered this problem in [29]. See also the papers
[2, 1, 20, 24, 25] and the references therein which are devoted to discrete multi-
particle problems.

The limit operators approach does also apply to study the essential spectrum
of pseudodifferential operators on periodic quantum graphs. We plan to develop
these ideas in a forthcoming paper.

The authors are grateful for the support by CONACYT (Project 43432) and
by the German Research Foundation (Grant 444 MEX-112/2/05).
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2 Band-dominated operators on Zn

In this section we fix some notations and recall some facts concerning the Fred-
holm property of band-dominated operators on lp(Zn). The Fredholm properties
of these operators are fairly well understood. All details can be found in [31];
see also the monograph [33] for a comprehensive account.

We will use the following notations. Given a Banach space X , let L(X)
refer to the Banach algebra of all bounded linear operators on X and K(X)
to the closed ideal of the compact operators. An operator A ∈ L(X) is called
a Fredholm operator if its kernel kerA := {x ∈ X : Ax = 0} and its cokernel
cokerA := X/A(X) are finite dimensional linear spaces. Equivalently, A is
Fredholm if the coset A+K(X) is invertible in the Calkin algebra L(X)/K(X).
The essential spectrum of A is the set of all complex numbers λ for which
the operator A − λI is not Fredholm on X , whereas the discrete spectrum
of A consists of all isolated eigenvalues of finite multiplicity. We denote the
essential spectrum of A by spess A, the discrete spectrum by spdis A, and the
usual spectrum by spA. Sometimes we also write sp (A : X → X) instead of
spA in order to emphasize the underlying space X (with obvious modifications
for the essential and the discrete spectrum). Clearly,

spdis (A) ⊆ sp (A) \ spess (A)

for every operator A ∈ L(X). If A is a self-adjoint operator, then equality holds
in this inclusion.

Let p ≥ 1 be a real number and n a positive integer. As usual, we write
lp(Zn) for the Banach space of all functions u : Zn → C for which

‖u‖p

lp(Zn) :=
∑

x∈Zn

|u(x)|p < ∞

and l∞(ZN ) for the Banach space of all bounded functions u : Zn → C with
norm

‖u‖l∞(Zn) := sup
x∈Zn

|u(x)|.

For every positive integer N , let lp(Zn)N stand for the Banach space of all
vectors u = (u1, . . . , uN ) of functions ui ∈ lp(Zn) with norm

‖u‖p

lp(Zn)N :=

N
∑

i=1

‖ui‖
p

lp(Zn)

Likewise, one can identify lp(Z)N with the Banach space lp(Zn, C
N ) of all func-

tions u : Zn → CN for which

‖u‖p

lp(Zn, CN )
:=

∑

x∈Zn

N
∑

i=1

|uj(x)|p < ∞.

4



Clearly, the Banach spaces lp(Zn)N and lp(Zn, CN ) are isometric to each other.
We also consider the Banach spaces l∞(Zn)N and l∞(Zn, CN ) with norms

‖u‖l∞(Zn)N := sup
1≤i≤N

‖ui‖l∞(Zn)

and
‖u‖l∞(Zn, CN ) := sup

x∈Zn

sup
1≤i≤N

|ui(x)|.

Again, these spaces are isometric to each other in a natural way. Note also that
l∞(Zn, CN×N ) can be made to a C∗-algebra by providing the matrix algebra
CN×N with a C∗-norm.

We consider operators on lp(Zn, CN ) which are constituted by shift operators
and by operators of multiplication by bounded functions. The latter are defined
as follows: For α ∈ Zn, the shift operator Vα is the isometry acting on lp(Zn, CN )
by (Vαu)(x) := u(x − α). Further, each function a in l∞(Zn, CN×N) induces a
multiplication operator aI on lp(Zn, CN ) via (au)(x) := a(x)u(x). Clearly,

‖aI‖L(lp(Zn, CN )) = ‖a‖l∞(Zn, CN×N).

A band operator on lp(Zn, CN ) is an operator of the form

A =
∑

|α|≤m

aαVα (2)

with coefficients aα ∈ l∞(Zn, C
N×N). The closure in L(lp(Zn, C

N )) of the set of
all band operators is a subalgebra of L(lp(Zn, CN )). We denote this algebra by
A(lp(Zn, CN )) and call its elements band-dominated operators (BDO for short).
In a completely analogous way, band-dominated operators on l∞(Zn, CN ) are
defined.

Our main tool to study Fredholm properties of band-dominated operators
are the associated limit operators.

Definition 1 Let A ∈ L(lp(Zn, CN )), and let h : N → Zn be a sequence tending
to infinity. A linear operator Ah is called the limit operator of A with respect to
the sequence h if

V−h(m)AVh(m) → Ah and V−h(m)A
∗Vh(m) → A∗

h

strongly as m → ∞. We let opp A denote the set of all limit operators of A.

Here and in what follows, convergence of a sequence in Zn to infinity means
convergence of this sequence to infinity in the one-point compactification of Zn

(which makes sense since Zn is a locally compact metric space).
There are operators on lp(Zn, CN ) which do not possess limit operators at

all. But if A is a band-dominated operator then one can show via a Cantor
diagonal argument that every sequence h tending to infinity has a subsequence
g for which the limit operator Ag exists. Moreover, the operator spectrum of
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A stores the complete information on the Fredholmness of A, as the following
theorem states. (In case n = 1 there is also a sufficiently nice formula for the
Fredholm index of A which expresses this index in terms of local indices of the
limit operators of A, see [30].)

Theorem 2 An operator A ∈ A(lp(Zn, CN )) is Fredholm if and only if all limit
operators of A are invertible and if

sup
Ah∈opp (A)

‖A−1
h ‖ < ∞. (3)

The uniform boundedness condition (3) is often difficult to check: It is one
thing to verify the invertibility of an operator and another one to provide a
good estimate for the norm of its inverse. It is therefore of vital importance
to single out classes of band-dominated operators for which this condition is
automatically satisfied. One of these classes is defined by imposing conditions
of the decay of the norms of the coefficients. More precisely, we consider band-
dominated operators of the form

A :=
∑

α∈Zn

aαVα

where
∑

α∈Zn

‖aα‖l∞(Zn, CN×N) < ∞. (4)

One can show that the set W (Zn, CN ) of all operators with property (4) forms
an algebra and that the term on the left-hand side of (4) defines a norm which
makes W (Zn, CN ) to a Banach algebra. We refer to this algebra as the Wiener
algebra and write ‖A‖W (Zn, CN ) for the norm of an operator in W (Zn, CN ).
Clearly, operators in the Wiener algebra act boundedly on each of the spaces
lp(Zn, CN ) (including p = ∞) and

‖A‖L(lp(Zn, CN )) ≤ ‖A‖W (Zn, CN ).

Hence, W (Zn, CN ) ⊆ A(lp(Zn, CN )) for every p.
One important property of the Wiener algebra is its inverse closedness in

each of the algebras L(lp(Zn, CN )), i.e., if A ∈ W (Zn, CN ) has an inverse in
L(lp(Zn, CN )), then A−1 belongs to W (Zn, CN ) again. This fact implies that
the spectrum of an operator A ∈ W (Zn, CN ) considered as acting on lp(Zn, CN )
does not depend on p ∈ (1, ∞). Also the operator spectrum opp (A) proves to
be independent of p, which justifies to write opA instead. Note finally that all
limit operators of operators in the Wiener algebra belong to the Wiener algebra
again.

For operators in the Wiener algebra, the Fredholm criterion in Theorem 2
reduces to the following much simpler assertion.

Theorem 3 Let A ∈ W (Zn, CN ). The operator A is Fredholm on lp(Zn, CN )
if and only if there exists a p0 ∈ [1, ∞] such that all limit operators of A are
invertible on lp0(Zn, CN ).
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Theorem 3 has the following useful consequence.

Theorem 4 For A ∈ W (Zn, CN ), the essential spectra of A : lp(Zn, CN ) →
lp(Zn, CN ) do not depend on p ∈ (1, ∞), and

spess A =
⋃

Ah∈op A

sp Ah. (5)

3 BDO on periodic discrete metric spaces

3.1 Periodic discrete metric spaces

By a discrete metric space we mean a countable set X together with a metric ρ
such that every ball

Br(x0) := {x ∈ X : ρ(x, x0) ≤ r}

is a finite set. For each discrete metric space X , we introduce some standard
Banach spaces over X . For p ∈ (1, ∞), let lp(X) denote the Banach space of
all complex-valued functions u on X with norm

‖u‖p

lp(X) :=
∑

x∈X

|u(x)|p,

and write l∞(X) for the Banach space of all bounded functions u of X with
norm

‖u‖l∞(X) := sup
x∈X

|u(x)|

A periodic discrete metric space is a discrete metric space provided with the free
action of the group Zn. More precisely, let X be a discrete metric space, and
let there be a mapping

Z
n × X → X, (α, x) → α · x

satisfying
0 · x = x and (α + β) · x = α · (β · x)

for arbitrary elements α, β ∈ Zn and x ∈ X , which leaves the metric invariant,

ρ(α · x, α · y) = ρ(x, y) (6)

for all elements α ∈ Zn and x, y ∈ X . Recall also that the group Zn acts freely
on X if whenever the equality x = α · x holds for elements x ∈ X and α ∈ Zn

then, necessarily, α = 0.
For each element x ∈ X , consider its orbit {α ·x ∈ X : α ∈ Zn} with respect

to the action of Zn. Any two orbits are either disjoint or identical. Hence, there
is a binary equivalence relation on X , by calling two points equivalent if they
belong to the same orbit. The set of all orbits of X with respect to the action of
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Zn is denoted by X/Zn. A basic assumption throughout what follows is that the
orbit space X/Zn is finite. Thus, there is a finite subset M := {x1, x2, . . . , xN}
of X such that the orbits

Xj := {α · xj ∈ X : α ∈ Z
n}

satisfy Xi ∩ Xj = ∅ if xi 6= xj and ∪N
i=1Xi = X . If all these conditions are

satisfied then we call X is a periodic discrete metric space with respect to Zn or
simply Zn-periodic.

The free action of Zn on X guarantees that the mapping

Uj : Z
n → Xj , α 7→ α · xj

is a bijection for every j = 1, . . . , N . For each complex-valued function f on
X , let Uf : Zn → CN be the function

(Uf)(α) := ((U1f)(α), . . . , (UNf)(α)).

Clearly, the mapping U is a linear isometry from lp(X) onto lp(Zn, CN ), and
the mapping A 7→ UAU−1 is an isometric isomorphism from L(lp(X)) onto
L(lp(Zn, CN )) for every p ∈ [1, ∞].

Another consequence of our assumptions is that

lim
Zn∋α→∞

ρ(α · x, y) = ∞. (7)

for all points x, y ∈ X . Indeed, suppose that (7) is wrong. Then there are
points x, y ∈ X , a positive constant M , and a sequence α of pairwise different
points in Zn such that

ρ(α(n) · x, y) ≤ M for all n ∈ N. (8)

The free action of Zn on X implies that (α(n) · x)n∈N is a sequence of pairwise
different points in X . Hence, (8) implies that the ball with center y and radius
M contains infinitely many points, a contradiction.

3.2 Band-dominated operators on X

Let X be a periodic discrete metric space and p ∈ [1, ∞). We consider linear
operators A on lp(X) for which there exists a function kA ∈ l∞(X × X) such
that

(Au)(x) =
∑

y∈X

kA(x, y)u(y) for all x ∈ X (9)

and for all finitely supported functions u on X (note that the latter form a
dense subspace of lp(X)). The function kA is called the generating function
of the operator A. It is easily seen that every bounded operator A on lp(X)
is of this form and is, thus, generated by a bounded function. The converse is
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certainly not true. It is also clear that every operator A determines its generating
function uniquely, since

(Aδy)(x) = kA(x, y)

where δy is the function on X which is 1 at y and 0 at all other points.
An operator A of the form (9) is called a band operator if there exists an

R > 0 such that kA(x, y) = 0 whenever ρ(x, y) > R.

Example 5 Every operator aI of multiplication by a function a ∈ l∞(X) is a
band operator.

Example 6 For α ∈ Z
n, let Tα be the operator of shift by α on lp(X), i.e.,

(Tαu)(x) := u((−α)·x). Clearly, Tα is a band operator which acts as an isometry
on lp(X). Hence, every operator of the form

∑

|α|≤m

aαTα (10)

with aα ∈ l∞(X) is a band operator (but there are band operators which can
not be represented of this form).

Proposition 7 If A is a band operator on lp(X), then UAU−1 is a band oper-
ator on lp(Zn, CN ).

Proof. The operator UAU−1 has the matrix representation

(UAU−1f)i(α) =
N

∑

j=1

∑

β∈Zn

rij
A (α, β)fj(β) (11)

where α ∈ Zn, i = 1, . . . , N and

rij
A (α, β) := kA(α · xi, β · xj). (12)

From (7) we conclude that

ρ(α · xi, β · xj) = ρ(xi, (β − α) · xj) → ∞

as |α−β| → ∞. Thus, there is an R1 > 0 such that rij
A (α, β) = 0 if |α−β| > R1.

In other words, every rij
A is the generating function of a band operator on lp(Zn),

implying that UAU−1 is a band operator on lp(Zn, CN).

The preceding proposition implies in particular that every band operator is
bounded on lp(X) for p ∈ [1, ∞].

For p ∈ [1, ∞], let Ap(X) stand for the closure in L(lp(X)) of the set of all
band operators. The operators in Ap(X) are called band-dominated operators
on X . Note that the class Ap(X) depends heavily on p (whereas the class of
the band operators is independent of p). One can show easily (for example, by
employing the preceding proposition and the well properties of band-dominated
operators on Z

n) that Ap(X) is a Banach algebra and even a C∗-algebra if
p = 2.
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Proposition 8 Let X be a periodic discrete metric space and p ∈ [1, ∞]. The
mapping A 7→ UAU−1 is an isomorphism between the Banach algebras Ap(X)
and Ap(Z

n, CN ).

Proof. Note that an operator A is a band operator on lp(X) if and only if
UAU−1 is a band operator on lp(Zn, CN ). The assertion follows since the map-
ping A 7→ UAU−1 is a continuous isomorphism between the Banach algebras
L(lp(X)) and L(lp(Zn, CN )).

3.3 Limit operators and Fredholmness

Let X be a Zn-periodic discrete metric space. The goal of this section is a
criterion for the Fredholmness of band-dominated operators on lp(X). This
criterion makes use of the limit operators of A which, in a sense, reflect the
behaviour of A at infinity. Here is the definition.

Definition 9 Let 1 < p < ∞, and h : N → Zn be a sequence tending to infinity.
We say that Ah is a limit operator of A ∈ L(lp(X)) defined by the sequence h if

T−1
h(m)ATh(m) → Ah and T−1

h(m)A
∗Th(m) → A∗

h as m → ∞

strongly on lp(X) and lp(X)∗ = lq(X) with 1/p + 1/q = 1, respectively. We
denote the set of all limit operators of A ∈ L(lp(X)) by opp (A) and call this set
the operator spectrum of A.

Note that the generating function of the shifted operator T−1
α ATα is related

with that of A by

kT
−1
α ATα

(x, y) = kA((−α) · x, (−α) · y) (13)

and that the generating functions of T−1
h(m)ATh(m) converge point-wise on X×X

to the generating function of the limit operator Ah if the latter exists.
It is an important property of band-dominated operators that their operator

spectrum is not empty. More general, one has the following result which can be
proved by an obvious Cantor diagonal argument (see [31, 32, 33]).

Proposition 10 Let p ∈ (1, ∞) and A ∈ Ap(X). Then every sequence h : N →
G which tends to infinity possesses a subsequence g such that the limit operator
Ag of A with respect to g exists.

The following theorem settles the basic relation between the Fredholmness of
a band-dominated operator A and the invertibility of its limit operators. It
follows easily from Theorem 2 if one takes into account that the mapping

Ap(X) → Ap(Z
n, C

N ), A 7→ UAU−1

is an isomorphism of Banach algebras and that the relation

(UAU−1)h = UAhU−1

between the limit operators of A and UAU−1 holds.
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Theorem 11 Let p ∈ (1, ∞) and A ∈ Ap(X). Then A is a Fredholm operator
on lp(X) if and only if all limit operators of A are invertible and if the norms
of their inverses are uniformly bounded,

sup
Ah∈op(A)

‖A−1
h ‖ < ∞. (14)

3.4 The Wiener algebra of X

The goal of this section is to single out a class of band-dominated operators for
which the uniform boundedness condition (14) is redundant.

Definition 12 Let X be a Zn-periodic discrete metric space. The set W(X)
consists of all linear operators A for which there is a function hA in l1(Zn) such
that

max
j∈{1, ..., N}

N
∑

i=1

|rij
A (α, β)| ≤ hA(α − β) (15)

for all α, β ∈ Zn.

We introduce a norm in W(X) by

‖A‖W(X) := inf ‖h‖l1(Zn) (16)

where the infimum is taken over all sequences h ∈ l1(Zn) for which inequality
(15) holds in place of hA.

Proposition 13 The set W(X) with the norm (16) is a Banach algebra, and
the mapping A 7→ UAU−1 is an isometrical isomorphism between the Banach
algebras W(X) and W(Zn, C

N ).

The proof is straightforward. We refer to the algebra W(X) as the Wiener
algebra.

Proposition 14 Let p ∈ [1, ∞].

(i) Every operator A ∈ W(X) is bounded on each of the spaces lp(X).

(ii) The algebra W(X) is inverse closed in each of the algebras L(lp(X)).

Proposition 14 follows from Proposition 13 and the related results for the special
case X = Z

n presented in [31, 32] and [33].

The following result highlights the importance of the Wiener algebra in our
context.

Theorem 15 Let A ∈ W(X). Then A is a Fredholm operator on lp(X) with
p ∈ (1, ∞) if and only if there is a p0 ∈ [1, ∞] such that all limit operators of A
are invertible on lp0(X). Moreover spess A does not depend on p ∈ (1, ∞), and

spess A =
⋃

Ah∈op (A)

sp Ah. (17)
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Theorem 15 follows immediately from Proposition 13 and Theorems 3 and 4.
The following result states a sufficient condition for the absence of the dis-

crete spectrum of an operator A ∈ Ap(X).

Proposition 16 Let A ∈ Ap(X) and suppose there is a sequence h : N → Zn

for which the limit operator Ah exists in the sense of norm convergence,

lim
m→∞

‖T−1
hm

AThm
− Ah‖ = 0. (18)

Then spess A = sp A.

Proof. Let λ /∈ spess A. Then, by Theorem 11, λ /∈ sp Ah. It follows from (18)
that λ /∈ spA. Hence, sp A ⊆ spess A, which implies the assertion.

4 Periodic operators on periodic metric spaces

Let X be a Zn-periodic discrete metric space. An operator A ∈ L(lp(X)) is said
to be Z

n-periodic if it is invariant with respect to left shifts by elements of Z
n,

that is if
TαA = ATα for every α ∈ Z

n.

The following is a straightforward consequence of Proposition 16.

Proposition 17 Let A ∈ Ap(X) be a Zn-periodic operator. Then

spess A = sp A.

The explicit description of the spectrum (= the essential spectrum) of Zn-
periodic operators is possible by means of the Fourier transform. One easily
checks that A ∈ W(X) is Zn-periodic on X if and only if the generating func-
tion kA of A satisfies the following periodicity condition: For all group elements
γ ∈ Zn and all points x, y ∈ X ,

kA(γ · x, γ · y) = kA(x, y).

This equality implies that the functions rij
A (α, β) := kA(α · xi, β · xj) satisfy

rij
A (α, β) = kA((α − γ) · xi, (β − γ) · xj)

for all γ ∈ Zn, whence rij
A (α, β) = rij

A (α − β, 0). Hence, for i = 1, . . . , N ,

(UAU−1f)i(α) =
N

∑

j=1

∑

β∈Zn

rij
A (α, β) (Ujf)(β)

=

N
∑

j=1

∑

β∈Zn

rij
A (α − β, 0) (Ujf)(β)

=
N

∑

j=1

∑

β∈Zn

rij
A (β, 0) (VβUjf)(α)

12



where
|rij

A (β, 0)| ≤ h(β)

for a some non-negative function h ∈ l1(Zn). Thus, we arrived at the following
proposition.

Proposition 18 Every Zn-periodic operator A ∈ W(X) is isometrically equiv-
alent to the shift invariant matrix operator UAU−1 ∈ W (Zn, C

N).

Under the conditions of the previous proposition, we associate with A a function
σA : Tn → CN×N via

σA(t) :=
∑

β∈Zn

rA(β) tβ

where T is the torus {z ∈ C : |z| = 1}, rA(β) is the matrix (rij
A (β, 0))N

i, j=1,

and tβ := tβ1

1 . . . tβn
n for t = (t1, . . . , tn) ∈ T

n and β = (β1, . . . , βn) ∈ Z
n. The

function σA is referred to as the symbol of A. It is well known that the operator

(Ãu)(α) :=
∑

β∈Zn

rA(α − β, 0)u(β)

is invertible on lp(Zn, CN ) with p ∈ [1, ∞] if and only if detσA 6= 0 on Tn.
For t ∈ Tn, let λj

A(t) with j = 1, . . . , N denote the eigenvalues of the matrix
σA(t). The enumeration of the eigenvalues can be chosen in such a way that
λj

A(t) depends continuously on t for every j. Thus, the sets

Cj(A) := {λ ∈ C : λ = λj
A(t), t ∈ T

n}, j = 1, . . . , N (19)

are compact and connected curves in the complex plane, called the spectral or
dispersion curves of A.

Proposition 19 Let A ∈ W(X) be a Zn-periodic operator. Then

sp A = spess A =

N
⋃

j=1

Cj(A). (20)

If, moreover, A ∈ W(X) is a self-adjoint Zn-periodic operator on l2(X), then σA

is a Hermitian matrix-valued function. Hence, the λj
A are continuous real-valued

functions, and

Cj(A) = [αj(A), βj(A)] for j = 1, . . . , N

where αj(A) := mint∈Tn λj
A(t) and βj(A) := maxt∈Tn λj

A(t). Thus, the spec-
trum of a self-adjoint Zn-periodic operator on a periodic metric space is the
union of at most N compact intervals (with N the number of orbits of X under
the action of Z

n).

13



5 Operators with slowly oscillating coefficients

on periodic metric spaces

Let again X be a Zn-periodic discrete metric space. A function a ∈ l∞(X) is
called slowly oscillating if, for every two points x, y ∈ X ,

lim
α→∞

(a(α · x) − a(α · y)) = 0. (21)

The set of all slowly oscillating functions on X forms a C∗-subalgebra of l∞(X)
which we denote by SO(X). Note that the class SO(X) does not only depend
on X but also on the action of Zn on X .

Let a ∈ SO(X) and h : N → G be a sequence tending to infinity. The
Bolzano-Weierstrass Theorem and a Cantor diagonal argument imply that there
is a subsequence g of h such that the functions x 7→ a(g(m) · x) converge point-
wise to a function ag ∈ l∞(X) as m → ∞. The condition (21) ensures that the
limit function ag is Zn-periodic on X . Indeed, for every α ∈ Zn,

ag(x) − ag(α · x) = lim
m→∞

(a(g(m) · x) − (a(g(m) · (α · x))) = 0.

We consider the operators of the form

A =

∞
∑

k, l=1

bk Akl clI (22)

where the Akl are Zn-periodic operators in W(X) and the bk and cl are slowly
oscillating functions satisfying

∞
∑

k, l=1

‖bk‖l∞(X) ‖Akl‖W(X) ‖cl‖l∞(X) < ∞.

Let h : N → Zn be a sequence tending to infinity. Then

T−1
h(m)ATh(m) =

∞
∑

k, l=1

(T−1
h(m)bk)Akl (T−1

h(m)cl)I.

One can assume without loss that the point-wise limits

lim
m→∞

(T−1
h(m)bk)(x) =: bh

k , lim
m→∞

(T−1
h(m)cl)(x) =: ch

l

exist (otherwise we pass to a suitable subsequence of h). As we have seen
above, the limit functions bh

k and ch
l are Zn-periodic on X . Consequently, the

limit operators Ah of A are Zn-periodic operators of the form

Ah =

∞
∑

k, l=1

bh
k Akl ch

l I.

Now, the following is an immediate consequence of Theorem 15.

14



Theorem 20 Let A be an operator with slowly oscillating coefficients of the
form (22). Then A is a Fredholm operator on lp(X) if and only if, for every
operator Ah ∈ op A,

detσAh
(t) 6= 0 for every t ∈ T

n.

Moreover,

spess A =
⋃

Ah∈op (A)

sp Ah =
⋃

Ah∈op (A)

N
⋃

j=1

Cj(Ah).

6 Schrödinger operators on periodic graphs

By a discrete infinite graph we mean a countable set X together with a binary
relation ∼ which is anti-reflexive (i.e., there is no x ∈ X such that x ∼ x)
and symmetric and which has the property that for each x ∈ X there are only
finitely many y ∈ X such that x ∼ y. The points of X are called the vertices
and the pairs (x, y) with x ∼ y the edges of the graph. Due to anti-reflexivity,
the graphs under consideration do not possess loops. We write m(x) for the
number of edges starting (or ending) at the vertex x of X . If x ∼ y, we say that
the vertices x, y are adjacent.

For technical reasons it will be convenient to assume that the graph (X, ∼)
is connected, i.e., given distinct points x, y ∈ X , there are finitely many points
x0, x1, . . . , xn ∈ X such that x0 = x, xn = y and xi ∼ xi+1 for i = 0, . . . , n.
The smallest number n with this property defines the graph distance ρ(x, y) of
x and y. Together with ρ(x, x) := 0, this defines a metric ρ on X which makes
X to discrete metric space.

We call (X, ∼) a Zn-periodic discrete graph if it is a connected discrete
infinite graph, if the group Zn operates freely from the left on X , and if the
group action respects the graph structure, i.e.,

x ∼ y if and only if α · x ∼ α · y

for arbitrary vertices x, y ∈ X and group elements α ∈ Zn. Clearly, every group
with these properties leaves the graph distance invariant, that is, X becomes a
Z

n-periodic discrete metric space. If (X, ∼) is a Z
n-periodic graph, then the

function m is Zn-periodic, too, that is, m(α · x) = m(x) for every x ∈ X and
α ∈ Zn.

Every Zn-periodic discrete graph Γ := (X, ∼) induces a canonical difference
operator ∆Γ on lp(X), called the (discrete) Laplace operator or Laplacian of Γ,
via

(∆Γu)(x) :=
1

m(x)

∑

y∼x

u(y), x ∈ X. (23)

Evidently, ∆Γ is a Z
n-periodic band operator.

Let v ∈ l∞(X). The operator HΓ := ∆Γ + vI is referred to as the (discrete)
Schrödinger operator with electric potential v on the graph X . Given a sequence

15



h : N → Zn tending to infinity, there exist a subsequence g of h and a function
vg ∈ l∞(X) such that v(g(m) · x) → vg(x) as m → ∞ for every x ∈ X . It turns
out that the operator

Hg
Γ := ∆Γ + vgI

is the limit operator of HΓ defined by the sequence g and that every limit
operator of HΓ is of this form. Thus, Theorem 15 implies the following.

Theorem 21 The Schrödinger operator HΓ = ∆Γ + vI with bounded potential
v is a Fredholm operator on lp(X) with p ∈ (1, ∞) if and only if there is a
p0 ∈ [1, ∞] such that all limit operators of HΓ are invertible on lp0(X). The
essential spectrum of HΓ does not depend on p ∈ (1, ∞), and

spess HΓ =
⋃

Hh
Γ
∈op (HΓ)

spHh
Γ. (24)

For an explicit description of the essential spectrum of the Schrödinger operator
HΓ we first assume that v is a periodic potential. Then the operator UvU−1 is
the operator of multiplication by the diagonal matrix diag (v(x1), . . . , v(xN )).
Hence,

UHΓU−1 =
∑

α∈{−1, 0, 1}n

aαVα + diag (v(x1), . . . , v(xN )),

where the aα are certain constant N×N matrices which depend on the structure
of the graph Γ. Consequently,

σHΓ
(t) =

∑

α∈{−1, 0, 1}n

aαtα + diag (v(x1), . . . , v(xN )), t ∈ T
n.

If the potential v is real-valued, then HΓ acts as a self-adjoint operator on l2(X),
and σHΓ

is a Hermitian matrix-valued function on Tn. From Proposition 19 we
conclude that

spHΓ =

N
⋃

j=1

Cj(HΓ)

where Cj(HΓ) is the real interval [aj , bj ] with aj := mint∈Tn λj
HΓ

(t) and bj :=

maxt∈Tn λj
HΓ

(t).
Next we consider Schrödinger operators HΓ = ∆Γ+vI with slowly oscillating

potential v. As we have seen in the previous section, all limit operators of HΓ

are of the form
Hg

Γ = ∆Γ + vgI

with periodic potentials vg. Theorem 21 together with Theorem 15 yield the
following.

Theorem 22 Let HΓ = ∆Γ + vI with v ∈ SO(X). Then

spess HΓ =
⋃

Hg

Γ
∈op (HΓ)

N
⋃

j=1

Cj(H
g
Γ)
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with the spectral curves Cj(H
g
Γ) defined as in (19).

If the slowly oscillating potential v is real-valued, then the spectral curves
Cj(H

g
Γ) are (possibly overlapping) intervals on the real line.

The following examples clarify the structure of the essential spectrum of
Schrödinger operators on some special periodic graphs. The graphs under con-
sideration are embedded into Rn for some n. This embedding allows one to
consider the vertices of the graph as vectors and to use the linear structure of
Rn in order to describe the group action.

Example 23 (The Cayley graph of Zn) As every finitely generated group,
the group Z

n induces a graph (called the Cayley graph of the group) the vertices
of which are the points in Zn and with edges (α, α±ei) where α ∈ Zn and where
ei := (0, . . . , 0, 1, 0, . . . , 0) with the 1 at the ith position and i = 1, . . . , n. The
Laplace operator ∆Zn is of the form

(∆Znu)(x) =
1

2n

n
∑

i=1

(u(x + ei) + u(x − ei)),

which leads to the symbol

σ∆Zn (t) :=
1

2n

n
∑

i=1

(ti + t−1
i ), t ∈ T

n.

Hence, sp∆Zn = [−1, 1].

Example 24 (The zigzag graph) Let Γ = (X,∼) be the zigzag graph in the
plane R2 as shown in Figure 24. The graph Γ is periodic with respect to the
action g · xn := xn+2g of the group Z, and the set M = {x1, x2} of vertices
represents the fundamental domain.

x1 x3

x0 x2

One should mention that, as a graph, the zigzag graph is isomorphic to the
Cayley graph of the group Z and, in both cases, it is the same group Z which
acts on the graph. The difference lies in the way in which Z acts. For the Cayley
graph, the group element α maps the vertex x to α + x, whereas α maps x to
2α + x for the zigzag graph. The latter action is visualized by the zigzag form.

The operator U∆ΓU−1 has the matrix representation

U∆ΓU−1 =
1

2

(

0 I + V(1, 0)

I + V(−1, 0) 0

)
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in the basis induced by M. Hence,

σ∆Γ
(t) =

1

2

(

0 1 + t
1 + t−1 0

)

, t ∈ T,

and a straightforward calculation shows that the spectral curves of ∆Γ are

{λ ∈ C : λ = ± cos2 ϕ/2, ϕ ∈ [0, 2π]}.

Hence, the spectrum of the Laplacian ∆Γ of the zigzag graph is the interval
[−1, 1].

Next consider the Schrödinger operator HΓ := ∆Γ + vI with Z-periodic
potential v. Thus, v is completely determined by its values on M, and we write
v1 := v(x1) and v2 := v(x2). Then

σHΓ−λI(t) =

(

v1 − λ (1 + t)/2
(1 + t−1)/2 v2 − λ

)

, t ∈ T,

which implies that the spectral curves of HΓ are
{

λ ∈ C : λ =
1

2
±

√

(v1 − v2)2 + 4 cos2 ϕ/2

2(v1 + v2)
, ϕ ∈ [0, 2π]

}

.

If, for example, v1 and v2 are real numbers with v1 < v2, then spess HΓ = spHΓ

is the union of the disjoint intervals
[

1

2
−

√

(v1 − v2)2 + 4

2(v1 + v2)
,

v1

v1 + v2

]

⋃

[

v2

v1 + v2
,

1

2
+

√

(v1 − v2)2 + 4

2(v1 + v2)

]

, (25)

that is, one observes a gap ( v1

v1+v2

, v2

v1+v2

) in the spectrum.
Finally, let the potential v be slowly oscillating. Then the essential spectrum

of HΓ is the union

⋃

h

[

1

2
−

√

(vh
1 − vh

2 )2 + 4

2(vh
1 + vh

2 )
,

min {vh
1 , vh

2 }

vh
1 + vh

2

]

(26)

⋃

h

[

max {vh
1 , vh

2 }

vh
1 + vh

2

,
1

2
+

√

(vh
1 − vh

2 )2 + 4

2(vh
1 + vh

2 )

]

where the unions are taken with respect to all sequences h for which the limits

vh
j := lim

m→∞
v(h(m) · xj), j = 1, 2, (27)

exist. Set

aHΓ
:= lim sup

Z∋α→∞

v(α · x1)

v(α · x1) + v(α · x2)
,

bHΓ
:= lim inf

Z∋α→∞

v(α · x2)

v(α · x1) + v(α · x2)
.
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Thus, if the inequality
aHΓ

< bHΓ
(28)

holds, then the operator HΓ has the gap (aHΓ
, bHΓ

) in its essential spectrum.
Of course, this interval can contain points of the discrete spectrum of HΓ.

Example 25 (The honeycomb graph) Let Γ = (X, ∼) be the hexagonal
graph shown in Figure 25. We consider this graph as embedded into R

2 and let
e1 and e2 be the vectors indicated in the figure. The group Z2 operates on Γ
via

(α1, α2) · x := x + α1e1 + α2e2

(where α1, α2 ∈ Z and x ∈ X). A fundamental domain M for this action is
provided by any two vertices x1, x2 as marked in the figure.

�
�
�
�

����

����

��

��

��
��
��
��

x2

x1

~e1

~e2

x0

η2

ω1

ω2

η1

Hence, we have to identify lp(X) with lp(Z2, C2), and the Laplacian ∆Γ has
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the following matrix representation with respect to M

U∆ΓU−1 =
1

3

(

0 I + Ve1
+ Ve2

I + V −1
e1

+ V −1
e2

0

)

.

Consequently,

σ∆Γ
(t) =

1

3

(

0 1 + t1 + t2
1 + t−1

1 + t−1
2 0

)

, t = (t1, t2) ∈ T
2,

and the spectral curves of the Laplacian ∆Γ are

C± := {λ ∈ C : λ = ±|1 + eiϕ1 + eiϕ2 |/3, ϕ1, ϕ2 ∈ [0, 2π]}.

The curves C± coincide with the intervals [0, 1] and [−1, 0], respectively, whence
sp∆Γ = [−1, 1].

Let now v be a Z2-periodic potential and set vj := v(xj) for j = 1, 2. A cal-
culation similar to Example 24 yields that the spectral curves of the Schrödinger
operator HΓ := ∆Γ + vI are

{

λ ∈ C : λ =
1

2
±

√

(v1 − v2)2 + 4µ(ϕ1, ϕ2)

2(v1 + v2)

}

,

where
µ(ϕ1, ϕ2) := |1 + eiϕ1 + eiϕ2 |2/9, ϕ1, ϕ2 ∈ [0, 2π].

Hence, as in Example 24, spess HΓ = spHΓ is given by the union (25). Let
finally v be a slowly oscillating potential on X . Since the image of the function
µ is the interval [0, 1], the essential spectrum of the Schrödinger operator on
the honeycomb graph Γ is given by formulas (26) and (27). If the condition (28)
holds, then a gap (aHΓ

, bHΓ
) occurs in the essential spectrum of HΓ.

7 A three-particle problem

Let Γ := (X, ∼) be a Zn-periodic discrete graph. We consider the Schrödinger
operator

Hu := ∆Γ ⊗ IX + IX ⊗ ∆Γ + (29)

+(W1IX) ⊗ IX + IX ⊗ (W2IX) + W12I

on l2(X ×X). This operator describes the motion of two particles with coordi-
nates x1, x2 ∈ X with masses 1 on the graph Γ around a heavy nuclei located at
the point x0 ∈ X . Therefore, H is also called a 3-particle Schrödinger operator.
In (29), ∆Γ is again the Laplacian on the graph Γ, IX is the identity operator
on l2(X), I = IX ⊗ IX is the identity operator on l2(X × X), W1 and W2 are
real-valued functions on X defined by

Wj(x
j) = wj(ρ(xj , x0)), j = 1, 2,
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and W12 is a real-valued function on X × X given by

W12(x
1, x2) = w12(ρ(x1, x2)).

Here ρ denotes the given metric on X , and w1, w2 and w12 are functions on the
real interval [0, ∞) which satisfy

lim
z→∞

w1(z) = lim
z→∞

w2(z) = lim
z→∞

w12(z) = 0.

Clearly, H is a band operator on l2(X×X). We are going to describe its essential
spectrum via formula (24), for which we need the limit operators of H and their
spectra. Note that the spectrum of the Laplacian ∆Γ depends on the structure
of the graph Γ and that this spectrum has a band structure (= is the union of
closed intervals). In Examples 23 – 25 we had sp∆Γ = [−1, 1].

We agree upon the following notation. For non-empty subsets E, F of R,
we let

E + F := {z ∈ R : z = x + y, x ∈ E, y ∈ F}

denote their algebraic sum, and we set 2E := E + E.
Let g = (g1, g2) : N → Zn×Zn be a sequence tending to infinity. We have to

distinguish the following cases (all other possible cases can be reduced to these
cases by passing to suitable subsequences of g):

Case 1. The sequence g1 tends to infinity, whereas g2 is constant. Then the
limit operator Hg of H is unitarily equivalent to the operator

H2 := ∆Γ ⊗ IX + IX ⊗ (∆Γ + W2IX). (30)

Case 2. Here g2 tends to infinity and g1 is constant. Then the limit operator
Hg of H is unitarily equivalent to the operator

H1 := (∆Γ + W1IX) ⊗ IX + IX ⊗ ∆Γ. (31)

Case 3. Both g1 and g2 tend to infinity. There are two subcases:

Case 3a. The sequence g1− g2 tends to infinity. In this case the limit operator
is the free discrete Hamiltonian

∆Γ ⊗ IX + IX ⊗ ∆Γ

the spectrum of which is equal to 2 sp∆Γ.

Case 3b. The sequence g1 − g2 is constant. Then the limit operator Hg of H
is unitarily equivalent to the operator of interaction

H12 := ∆Γ ⊗ IX + IX ⊗ ∆Γ + W12I. (32)

Note that the operators H1, H2 and H12 are invariant with respect to shifts by
elements of the form (0, g), (g, 0) and (g, g) of Zn ×Zn, respectively. It follows
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from Proposition 16 that these operators do not possess discrete spectra. From
formula (24) we further conclude

spess H = spH1 ∪ spH2 ∪ spH12. (33)

The following proposition is well known. For a proof see [34], Theorem VIII.33
and its corollary.

Proposition 26 Let A ∈ L(H) and B ∈ L(K) be bounded self-adjoint opera-
tors on Hilbert spaces H, K. Then

sp (A ⊗ IK + IH ⊗ B) = sp A + spB.

This proposition implies in our setting that

spH2 = sp ∆Γ + sp (∆Γ + W2IX).

Since the Schrödinger operator ∆Γ + W2IX is a compact perturbation of the
Laplacian ∆Γ, one has

spess (∆Γ + W2IX) = sp ∆Γ ∪ {λ
(2)
k }∞k=1

where {λ
(2)
k }∞k=1 is the sequence of the eigenvalues of ∆Γ + W2IX which are

located outside the spectrum of ∆Γ. Thus,

spH2 = 2 sp∆Γ + ∪∞
k=1(λ

(2)
k + sp∆Γ).

In the same way one finds

spH1 = 2 sp∆Γ + ∪∞
k=1(λ

(1)
k + sp ∆Γ)

where the λ
(1)
k run through the points of the discrete spectrum of ∆Γ + W1IX

which are located outside the spectrum of ∆Γ.
Recall that in Examples 23 – 25, sp∆Γ = [−1, 1]. Hence, in the context of

these examples,

spHj = [−2, 2]

∞
⋃

k=1

[λ
(j)
k − 1, λ

(j)
k + 1].

One can also give a simple estimate for the location of the spectrum of H12 by
means of the following well-known result (see, e.g., [22], p. 357).

Proposition 27 Let A be a bounded self-adjoint operator on the Hilbert space
H. Then {a, b} ⊆ spA ⊆ [a, b] where

a := inf
‖h‖=1

〈Ah, h〉, b := sup
‖h‖=1

〈Ah, h〉.
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This observation implies the following inclusions for the spectra of the operators
H1, H2 and H12. For j = 1, 2 one has

2 sp∆Γ ⊆ spHj ⊆ 2 sp ∆Γ +

[

inf
x∈X

Wj(x), sup
x∈X

Wj(x)

]

,

whereas

2 sp∆Γ ⊆ spH12 ⊆ 2 sp∆Γ +

[

inf
y∈X×X

W12(y), sup
y∈X×X

W12(y)

]

.

In the context of Examples 23 – 25, these inclusions specify to

[−2, 2] ⊆ spHj ⊆

[

−2 + inf
x∈X

Wj(x), 2 + sup
x∈X

Wj(x)

]

,

[−2, 2] ⊆ spH12 ⊆

[

−2 + inf
x∈X×X

W12(x), 2 + sup
x∈X×X

W12(x)

]

.

Thus, Theorem 21 yields for these examples

spess H ⊆ [m − 2, M + 2]

where

m := min

{

inf
x∈X

W1(x), inf
x∈X

W2(x), inf
x∈X×X

W12(x)

}

,

M := max

{

sup
x∈X

W1(x), sup
x∈X

W2(x), sup
x∈X×X

W12(x)

}

.
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