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Abstract

The main aim of this paper is to study the relations between the loca-
tion of the essential spectrum and the exponential decay of eigenfunctions
of pseudodifferential operators on Lp(Rn) perturbed by singular poten-
tials.

For a solution of this problem we apply the limit operators method.
This method associates with each band-dominated operator A a family
op(A) of so-called limit operators which reflect the properties of A at infin-
ity. Consider the compactification of R

n by the ”infinitely distant” sphere
Sn−1. Then the set op(A) can be written as the union of its components
opηω (A) where ω runs through the points of Sn−1 and where opηω (A) col-
lects all limit operators of A which reflect the properties of A one tends
to infinity ”in the direction of ω. Set spηωA := ∪Ah∈opηω (A)sp Ah.

We show that ”the distance” of an eigenvalue λ /∈ spessA to spηωA
determines the exponential decay of the λ-eigenfunctions of A in the di-
rection of ω. We apply these results to estimate the exponential decay of
eigenfunctions of electromagnetic Schrödinger operators for a large class
of electric potentials, in particular, for multiparticle Schrödinger opera-
tors and periodic Schrödinger operators perturbed by slowly oscillating at
infinity potentials.

1 Introduction

The main aim of this paper is to study the relations between the location of the
essential spectrum and the exponential decay of eigenfunctions of pseudodiffer-
ential operators perturbed by singular potentials. We are going to attack this
problem by the limit operators method. This method was already used earlier
to describe the location of essential spectra of perturbed pseudodifferential op-
erators, which has found applications to electromagnetic Schrödinger operators,
square-root Klein-Gordon operators and Dirac operators under quite general
assumptions on the behavior of magnetic and electric potentials at infinity. By
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means of the limit operators method, also a simple and transparent proof of
the celebrated Hunziker, van Winter, Zjislin (HWZ)-theorem for multi-particle
Hamiltonians has been obtained. In [27, 29], the limit operators method was
applied to study the location of the essential spectrum of discrete Schrödinger
operators.

The basic idea of the limit operators method is as follows. For 1 < p < ∞,
we consider the Banach algebras Ap of all band-dominated operators on the
Lebesgue spaces Lp(Rn) or lp(Zn). To each operator A ∈ Ap, there is associated
a family of so-called limit operators which are defined by sequences h tending
to infinity. We denote this family by op(A) and call it the operator spectrum of
A. The results of [30, 31] (see also [32] for a comprehensive account) yield that

spessA =
⋃

Ah∈op(A)

spAh (1)

for a large class of band-dominated operators on Rn or Zn. Since the limit oper-
ators of an operator are more simple objects than the operator itself, identity (1)
provides an effective tool to study the essential spectra for large classes of oper-
ators. For instance, differential and pseudodifferential operators of order m ∈ R

belong to the algebra Ap after multiplication by the operator (I − ∆)−m/2 of
order reduction.

It should be noted that formulas similar to (1) have been obtained indepen-
dently in [16] by means of admissible geometric methods. We also refer to the
papers [13, 12, 20, 3] and the references therein where C∗-algebra techniques
have been employed to study essential spectra of Schrödinger operators. The
methods of [16, 13, 12, 20, 3] are applicable only for self-adjoint or normal opera-
tors acting on Hilbert spaces, whereas the limit operators approach allows one to
consider non self-adjoint operators on Lp-type spaces, for example Schrödinger
operators with complex potentials.

Let R̃n be the compactification of Rn homeomorphic to the closed unit ball
Bn ⊂ Rn. Its boundary R̃n \ Rn is homeomorphic to the unit sphere Sn−1. We
denote the point in R̃n \Rn which corresponds to ω ∈ Sn−1 by ηω , and we write
opηω (A) for the set of all limit operators of A defined by sequences h tending to
ηω in the topology of the compactification. The set

spηωA :=
⋃

Ah∈opηω (A)

spAh. (2)

can be considered as the local essential spectrum of A at the point ηω. Note
that

spessA =
⋃

ω∈Sn−1

spηωA.

In this paper we are going to show that the ”distance” of an eigenvalue λ /∈
spessA to the local essential spectrum spηωA determines the exponential decay
of the λ-eigenfunction uλ of A in the direction of ηω. We apply this result
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to estimate the exponential decay of eigenfunctions for a large class of electro-
magnetic Schrödinger operators with electric potentials, in particular, for mul-
tiparticle Schrödinger operators and periodic Schrödinger operators perturbed
by slowly oscillating potentials. We plan to examine further applications of
the limit operators method to exponential decay estimates of eigenfunctions
of other operators important in mathematical physics (including Dirac, Pauli,
Klein-Gordon and Maxwell operators) in a forthcoming paper.

Exponential decay estimates are subject of an intensive research. We would
like to mention the work of Agmon [1, 2] where estimates of eigenfunctions of
second order elliptic operators have been obtained in terms of a special (Agmon)-
metric. In contrast to Agmon’s approach, we use pseudodifferential operators
with analytical symbols and limit operators. Pseudodifferential operators with
analytical symbols were employed earlier for exponential estimates of solutions
of pseudodifferential equations in [18, 25, 27, 26, 24, 19] and for the tunnel effect
in [22, 23, 24].

The paper is organized as follows. In Section 1 we collect some auxiliary
material on the Banach algebra Ap(R

n) of the band-dominated operators on
Lp(Rn) and on a related Wiener algebra Wp(R

n), and we recall a criterion from
[30, 31, 32] for operators in these algebras to be Fredholm on Lp(Rn). Then we
apply this criterion to derive the equality (1) on which all further considerations
are based. In Section 2 we employ this equality to study the essential spectrum
of elliptic pseudodifferential operators in the class OPSm

1, 0 which are perturbed
by measurable potentials. Section 3 is devoted to applications of limit opera-
tors to exponential estimates of solutions of pseudodifferential equations with
analytical symbols perturbed by singular potentials. In Section 4 we consider
the electromagnetic Schrödinger operator

(Hu)(x) := (i∂xj − aj(x))ρjk(x)(i∂xk
− ak(x))u(x) + Φ(x)u(x), x ∈ R

n,

as an unbounded operator on L2(Rn) with domain H2(Rn) where Rn is equipped
with a Riemann metric ρjk satisfying

inf
x∈Rn, ω∈Sn−1

ρjk(x)ωjωk > 0. (3)

Here we use the Einstein summation convention, and ρjk(x) is the tensor inverse
to ρjk(x). We suppose that the functions ρjk and ak are infinitely differentiable
and bounded with all of their derivatives and that they are slowly oscillating at
infinity. Under certain conditions on the electric potential, we prove that the
limit operator of H defined by a sequence g = (gm) is unitarily equivalent to
the operator

(Hgu)(x) := −ρjk
g ∂xj ∂xk

u(x) + Φg(x)u(x),

where the numbers ρjk
g are independent of x and Φg(x) is the limit of the

Φ(x + gm) in the sense that

s-limm→∞Φ(x + gm)(1 − ∆)−1 = Φg(x)(1 − ∆)−1
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with s-lim referring to the strong limit. Formula (1) then implies

spessH =
⋃

Hg∈op(H)

spHg. (4)

Set
µH(ω) := inf

Hg∈opηω (H)
spHg,

let g be a sequence tending to ηω, and assume that ρjk
g =: ρjk

ω depends on
ω only. The following theorem settles an exponential decay estimate for the
λ-eigenfunctions uλ of the operator H.

Theorem 1 Let the eigenfunction uλ of H correspond to an eigenvalue

λ < µ̂H := inf
ω∈Sn−1

µH(ω).

Then el(x/|x|))|x|uλ ∈ L2(Rn) where l : Sn−1 → R+ is an arbitrary smooth
positive function such that

l(ω) <

√
µH(ω) − λ

(ρωω, ω)
for all ω ∈ Sn−1. (5)

Here, (x, y) =
∑n

j=1 xjyj refers to the standard inner product on Rn.
We apply Theorem 1 to estimate eigenfunctions associated with points in

the discrete spectrum of multiparticle Schrödinger operators and of periodic
Schrödinger operators perturbed by slowly oscillating potentials. In particular
we will obtain an estimate of µH(ω) for a multiparticle Schrödinger operator
H, and then we apply Theorem 1 to get the exponential decay estimates for
eigenfunctions of H corresponding to eigenvalues λ < µ̂H. Different forms of ex-
ponential decay estimates for eigenfunctions related with the discrete spectrum
of multiparticle Schrödinger operators were obtained by Agmon [1], see also [9]
and [10].

For periodic Schrödinger operators, it is well known that their spectrum has
a band structure with at most countably many spectral gaps and that their
discrete spectrum is empty (see, for instance, [33], XIII.16, and the excellent
survey by Kuchment [14] on spectral theory of periodic operators). Consider
perturbations H+ ΦI of a periodic Schrödinger operator H by potentials Φ for
which Φ(I − ∆)−1 is a compact operator in L2(Rn). Perturbations of this kind
do not influence essential spectra, but points of the discrete spectrum of H+ΦI
can emerge in spectral gaps of the operator H. The structure of the discrete
spectrum in spectral gaps of perturbed periodic operators is studied in [4, 5, 6].

Let the interval (α, β) be a spectral gap of the periodic Schrödinger oper-
ator H and λ ∈ (α, β) be an eigenvalue of H + ΦI. Then Theorem 1 implies
the inclusion el|x|uλ ∈ L2(Rn) for every λ-eigenfunction uλ of H + ΦI where
l < β−λ is arbitrary positive number. Note that exponential estimates of eigen-
functions of periodic Schrödinger operators perturbed by decreasing potentials
were considered in [21].
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We also study perturbations H+ΦI of the periodic operator H by bounded
potentials Φ which are slowly oscillating. Let

mΦ(ω) := lim inf
x→ηω

Φ(x), MΦ(ω) := lim sup
x→ηω

a(x),

mΦ := inf
ω∈Sn−1

mΦ(ω), MΦ := inf
ω∈Sn−1

MΦ(ω),

and let [γ, δ] be a spectral band of H. Then formula (4) implies that [γ +
mΦ, δ+MΦ] is a band of the essential spectrum of the operator H+ΦI. Hence,
if the oscillation of the potential Φ at infinity is large enough, then the essential
spectrum of H + ΦI is the semi-axis [µ + mΦ, +∞) where µ is the minimum
of the spectrum of H. If MΦ − mΦ < β − α, then the perturbed operator
H + ΦI has a gap (α + MΦ, β + mΦ) in the essential spectrum. Moreover, if
λ ∈ (α + MΦ, β + mΦ) is an eigenvalue of H+ ΦI, then Theorem 1 implies that
the associated λ-eigenfunction uλ satisfies the inclusion el(x/|x|)|x|uλ ∈ L2(Rn)
where l is a positive smooth function on the unit sphere Sn−1 such that

l(ω) < β − λ + mΦ(ω)

for every ω ∈ Sn−1.

2 Local invertibility at infinity and Fredholm-

ness of band-dominated operators on Rn

In what follows we thoroughly suppose that p ∈ (1, ∞), and we use the following
standard notations. For each Banach space X , let L(X) stand for the Banach
algebra of all bounded linear operators on X and K(X) for the associated ideal
of the compact operators. For h ∈ Rn, consider the shift operator (Vhu)(x) :=
u(x−h) which acts as an isometry on Lp(Rn). Further, let Cu

b (Rn) refer to the
C∗-algebra of all bounded and uniformly continuous functions on Rn, C0(R

n)
to its subalgebra consisting of all functions with compact support, SO(Rn) to
the subalgebra of Cu

b (Rn) of all functions a which are slowly oscillating in the
sense that

lim
x→∞

sup
y∈K

|a(x + y) − a(x)| = 0

for every compact K ⊂ Rn, C∞
b (Rn) to the space of all infinitely differentiable

functions which are bounded together with all of their derivatives, and finally
SO∞(Rn) to the intersection C∞

b (Rn) ∩ SO(Rn).

Definition 2 An operator A ∈ L(Lp(Rn)) is band-dominated if, for every func-
tion ϕ ∈ Cu

b (Rn),
lim
t→0

‖ϕtA − AϕtI‖L(Lp(Rn)) = 0

where ϕt(x) := ϕ(t1x1, . . . , tnxn) for t = (t1, . . . , tn) ∈ Rn.
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The set of all band-dominated operators is a Banach subalgebra of L(Lp(Rn))
which we denote by Ap(R

n). This algebra is inverse closed in L(Lp(Rn)), and
it contains the ideal K(Lp(Rn)).

Let Ip(R
n) denote the set of all operators A ∈ L(Lp(Rn)) such that

lim
t→0

‖ϕtA‖L(Lp(Rn)) = lim
t→0

‖AϕtI‖L(Lp(Rn)) = 0

for every function ϕ ∈ Cu
b (Rn) with ϕ(0) = 0. One easily checks that Ip(R

n) ⊂
Ap(R

n) and that Ip(R
n) is a two sided ideal of Ap(R

n).
For R > 0, let PR denote the operator of multiplication by the characteristic

function of the ball BR := {x ∈ R
n : |x| < R}, which acts as a projection on

Lp(Rn).

Definition 3 Let A ∈ L(Lp(Rn)), and let h = (hm) be a sequence tending to
infinity. The linear operator Ah is called a limit operator of A defined by the
sequence h if, for every R > 0,

lim
m→∞

‖(Ah − V−hmAVhm)PR‖L(Lp(Rn))

= lim
m→∞

‖PR(Ah − V−hmAVhm)‖L(Lp(Rn)) = 0. (6)

Evidently, every operator A has at most one limit operator with respect to
a given sequence h, which justifies the notation Ah. It is immediate from the
definition that Ah is a bounded linear operator on Lp(Rn) and that ‖Ah‖ ≤ ‖A‖.
We denote the set of all limit operators of A by op(A).

An operator A ∈ L(Lp(Rn)) is called rich if every sequence h tending to
infinity has a subsequence g for which the limit operator Ag exists. The set of
all rich operators in Ap(R

n) is a closed subalgebra of Ap(R
n) which we denote

by A$
p(R

n).

Theorem 4 Let A ∈ A$
p(R

n). Then the coset A + Ip(R
n) is invertible in the

quotient algebra Ap(R
n)/Ip(R

n) if and only if all limit operators Ah ∈ op(A)
are invertible and if the norms of their inverses are uniformly bounded,

sup
Ah∈op(A)

‖A−1
h ‖ < ∞. (7)

Note that the invertibility of the coset A + Ip(R
n) in Ap(R

n)/Ip(R
n) is equiv-

alent to the existence of an operator R ∈ Ap(R
n) such that

RA − I, AR − I ∈ Ip(R
n).

An operator A ∈ Ap(R
n) which satisfies (one of) the equivalent conditions of

Theorem 4 is said to be locally invertible at infinity on Lp(Rn).
Let χ0 denote the characteristic function of the semi-open cube (0, 1]n and

set χα(x) := χ0(x − α) for α ∈ Zn.
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Definition 5 Let Wp(R
n) stand for the set of all operators A ∈ L(Lp(Rn)) with

‖A‖Wp(Rn) :=
∑

γ∈Zn

sup
α∈Zn

‖χ0V−αAVα−γχ0I‖L(Lp(Rn))

=
∑

γ∈Zn

sup
α∈Zn

‖χαAχα−γI‖L(Lp(Rn)) < ∞.

Provided with the operations inherited from L(Lp(Rn)) and with the above de-
fined norm, the set Wp(R

n) becomes a Banach algebra, the so-called Wiener
algebra. The importance of the Wiener algebra lies in the fact that the bound-
edness condition (7) in Theorem 4 is redundant for rich operators in Wp(R

n).

Theorem 6 Let A ∈ W $
p (Rn) := Wp(R

n)∩A$
p(R

n). Then A is locally invertible
at infinity on Lp(Rn) if and only if all limit operators of A are invertible on
Lp(Rn).

The local invertibility at infinity coincides with the common Fredholm property
for operators which are locally compact.

Definition 7 An operator Q ∈ L(Lp(Rn)) is locally compact if aQ and QaI
are compact operators on Lp(Rn) for every function a ∈ C0(R

n). We denote
the set of all locally compact operators by LCp(R

n).

Proposition 8 LCp(R
n) ∩Ap(R

n) is a closed ideal of Ap(R
n).

Proof. Let Q ∈ LCp(R
n)∩Ap(R

n), A ∈ Ap(R
n), and a ∈ C0(R

n). Then aQA
is clearly a compact operator. We show that the operator QAaI is compact,
too. Let ϕ ∈ C∞

0 (Rn) be a function with ϕ(x) = 1 if |x| ≤ 1 and ϕ(x) = 0 if
|x| ≥ 2, and set ϕR(x) := ϕ(x/R) for R > 0. Choose R0 such that ϕRa = a for
all R > R0. Since A ∈ Ap(R

n),

QAaI = QAϕRaI = QϕRAaI + TR for R > R0

where the TR are operators with limR→∞ ‖TR‖L(Lp(Rn)) = 0. Since the operators
AϕRI are compact for every R > R0, the operator QAaI is compact.

Note that the coset A+(LCp(R
n)∩Ap(Rn)) is invertible in the quotient algebra

Ap(R
n)/(LCp(R

n)∩Ap(R
n)) if and only if there exist an operator R ∈ Ap(R

n)
and operators Q1, Q2 ∈ LCp(R

n) ∩ Ap(R
n) such that

RA = I + Q1, AR = I + Q2. (8)

Theorem 9 The operator A ∈ Ap(R
n) is Fredholm on Lp(Rn) if and only if

the following conditions hold:

(i) A is invertible modulo the ideal LCp(R
n) ∩ Ap(R

n) of Ap(R
n),

(ii) A is invertible modulo the ideal Ip(R
n) of Ap(R

n).
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Proof. Let the conditions (i) and (ii) be fulfilled. Then there exist operators
R′, R′′ ∈ Ap(R

n) such that

R′A = I + Q′
1, AR′ = I + Q′

2, (9)

R′′A = I + Q′′
1 , AR′′ = I + Q′′

2 (10)

where Q′
j ∈ LCp(R

n) ∩ Ap(R
n) and Q′′

j ∈ Ip(R
n). Set R := R′ + R′′ − R′AR′′.

Then

RA − I = R′A + R′′A − R′AR′′A − I

= (I − R′′A) (R′A − I) = −Q′′
1Q′

1.

In the same way one gets
AR − I = −Q′

2Q
′′
2 .

The operators Q′′
1Q′

1 and Q′
2Q

′′
2 are compact. Indeed, since Q′′

1 ∈ Ip(R
n),

lim
R→∞

‖Q′′
1Q′

1 − ϕRQ′′
1Q′

1‖L(Lp(Rn)) = 0.

Moreover, since Q′′
1 ∈ Ap(R

n),

lim
R→∞

‖Q′′
1Q′

1 − Q′′
1ϕRQ′

1‖L(Lp(Rn)) = 0.

Since, finally, Q′
1 ∈ LCp(R

n)∩Ap(R
n), the operator Q′′

1ϕRQ′
1 is compact. Hence,

Q′′
1Q′

1 is a compact operator. Analogously, the compactness of Q′
2Q

′′
2 can be

checked. Thus, A is a Fredholm operator, and R is (one of its) inverses modulo
compact operators.

Conversely, let A ∈ Ap(R
n) be a Fredholm operator. Then there are opera-

tors R ∈ Ap(R
n) and T1, T2 ∈ K(Lp(Rn)) such that

RA = I + T1, AR = I + T2. (11)

Because of K(Lp(Rn)) ⊂ LCp(R
n) ∩ Ap(R

n) and K(Lp(Rn)) ⊂ Ip(R
n), the

equalities (11) imply conditions (i) and (ii).

Theorems 6 and 9 have the following consequences.

Theorem 10 Let A ∈ W $
p (Rn). Then A is a Fredholm operator on Lp(Rn) if

and only if

(i) A is invertible modulo the ideal LCp(R
n) ∩ Ap(R

n) of Ap(R
n),

(ii) all limit operators of A are invertible.

Theorem 11 Let A ∈ W $
p (Rn), and let condition (i) of Theorem 10 be satisfied.

Then
spessA =

⋃

Ah∈op(A)

sp Ah. (12)
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Let R̃n denote the compactification of Rn homeomorphic to the unit ball Bn :=
{x ∈ Rn : |x| ≤ 1}, and let ηω ∈ R̃n \ Rn be the infinitely distant point which
corresponds to the point ω ∈ Sn−1. We denote by opηω (A) the set of the limit
operators of A which correspond to sequences h tending to ηω in the topology
of R̃

n. Then, under the conditions of Theorem 11, equality (12) can be written
as

spessA =
⋃

ω∈Sn−1

⋃

Ah∈opηω (A)

sp Ah. (13)

3 Applications to pseudodifferential operators

3.1 Basics

We start with recalling some facts about pseudodifferential operators. Standard
references are [37, 34, 36]. We will use the following standard notations. The
n-tuple α := (α1, . . . , αn), αj ∈ N ∪ {0}, is a multi-index, |α| := α1 + . . . + αn

is its length, ∂α
x := ∂α1

x1
. . . ∂αn

xn
is the operator of αth partial derivative, and

〈ξ〉 := (1 + |ξ|2)1/2.
We say that a C∞-function a on Rn × Rn is a symbol in the Hörmander

class Sm
1, 0 if

|a|N :=
∑

|α|+|β|≤N

sup
(x, ξ)∈Rn×Rn

∣∣∂β
x ∂α

ξ a(x, ξ)
∣∣ 〈ξ〉−m+|α| < ∞

for every N ∈ N ∪ {0}. The class of all pseudodifferential operators

(Op(a)u)(x) = (2π)−n

∫

Rn

∫

Rn

a(x, ξ) ei(x−y, ξ)u(y) dy dξ, u ∈ C∞
0 (Rn),

with symbols in Sm
1, 0 is denoted by OPSm

1, 0. For m ∈ R, we use the notation
〈D〉m to refer to the pseudodifferential operator with symbol a(x, ξ) = 〈ξ〉m.

It is well known (see, for instance, [36], Chap. VI) that pseudodifferential
operators with symbols in S0

1, 0 are bounded on Lp(Rn) for p ∈ (1, ∞) and there
are a constant Cp and a number N ∈ N such that

‖Op(a)‖L(Lp(Rn)) ≤ Cp|a|N . (14)

We will also have to work with pseudodifferential operators with double symbols
a on Rn × Rn × Rn which satisfy the estimates

∣∣∂β
x∂γ

y ∂α
ξ a(x, y, ξ)

∣∣ ≤ Cαβγ 〈ξ〉m−|α|

for every choice of multi-indices α, β, γ. We denote the class of these symbols by
Sm

1, 0, 0 and write OPSm
1, 0, 0 for the associated class of pseudodifferential operators

with double symbols. The latter act on C∞
0 (Rn) via

(Opd(a)u)(x) = (2π)−n

∫

Rn

∫

Rn

a(x, y, ξ) ei(x−y, ξ)u(y) dy dξ. (15)
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One knows that OPSm
1, 0, 0 ⊂ OPSm

1, 0. More precisely, every pseudodifferential
operator Opd(a) with double symbol can be viewed as a common pseudodiffer-
ential operator, Op(b), with

b(x, ξ) := (2π)−n

∫

Rn

∫

Rn

a(x, x + y, ξ + η) e−i(y, η) dy dη (16)

a symbol in Sm
1, 0. The double integral in (16) is understood as an oscillatory

integral.
An important example of a pseudodifferential operator with double symbol

in Sm
1, 0, 0 is the Weyl quantization operator OpW (a) with a ∈ Sm

1, 0 which acts
on C∞

0 (Rn) by

(OpW (a)u)(x) := (2π)−n

∫

Rn

∫

Rn

a

(
x + y

2
, ξ

)
ei(x−y, ξ) u(y) dy dξ.

Theorem 12 OPS0
1, 0 ⊂ Wp(R

n) for every p ∈ (1, ∞).

Proof. Let A = Op(a) ∈ OPSm
1, 0. Then A acts on C∞

0 (Rn) by

(Au)(x) =

∫

Rn

kA(x, x − y)u(y) dy, (17)

and the kernel function kA ∈ C∞(Rn × R
n \ {0}) satisfies the estimates

∣∣∂β
x ∂α

z kA(x, z)
∣∣ ≤ C|a|M |z|−n−m−|α|−N (18)

for all multi-indices α and β and for all N ≥ 0 such that n+m+|α|+N > 0. The
constant C > 0 in (18) is independent of A, whereas M depends on n, m, α, β
and N ([36], p. 241). We set

κ
γ(A) := sup

α∈Zn

‖χ0V−αAVα−γχ0I‖L(Lp(Rn)).

Hence, for the operator A in (17),

κ
0(A) ≤ ‖A‖L(Lp(Rn)) ≤ C|a|M ,

whereas for γ 6= 0,

κ
γ(A) ≤

(∫

I0

(∫

I0

|kA(x − y + γ)|p
′

dy

) p

p′

dx

)1/p

with 1/p + 1/p′ = 1. Applying estimate (18) with α = β = 0, m = 0 and N = 1
we obtain

κ
γ(A) ≤ C|a|M |γ|−n−1 for γ 6= 0.

Hence,
∑

γ∈Zn

sup
α∈Zn

‖χ0V−αAVα−γχ0I‖L(Lp(Rn)) ≤
∑

γ∈Zn

κ
γ(A) ≤ C|a|M

for some M ∈ N.
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Definition 13 Let S0
1, 0(R̃

n) (resp. S0
1, 0, 0(R̃

n)) denote the class of all symbols
in S0

1, 0 (resp. in S0
1, 0, 0) which can be extended to a continuous function on Rn×

R̃n (resp. on Rn × Rn × R̃n). We further say that a belongs to Sm
1, 0(R̃

n) (resp.

to Sm
1, 0, 0(R̃

n)) if the function a〈ξ〉−m lies in S0
1, 0(R̃

n) (resp. in S0
1, 0, 0(R̃

n)).

Proposition 14 OPS0
1, 0(R̃

n) ⊆ W $
p (Rn).

Proof. Let a ∈ S0
1, 0(R̃

n), and let h = (hj) be a sequence tending to infinity.
Then

V−hj Op(a)Vhj = Op(a(x + hj , ξ)).

For every compact subset K of Rn, the sequence of the functions a(x + hj , ξ),

j ∈ N, is uniformly bounded and equicontinuous on the compact subset K × R̃n

of Rn × R̃n. By the Arcela-Ascoli theorem, there are a subsequence g = (gj) of

h and a function ag ∈ C∞(Rn × R̃
n) such that

lim
j→∞

sup
K×Rn

∣∣∂β
x ∂α

ξ a(x + gj, ξ) − ∂β
x∂α

ξ ag(x, ξ)
∣∣ = 0 (19)

for all multi-indices α, β. The limit (19) implies that ag ∈ S0
1, 0 and that

Op(ag) is the limit operator of Op(a) with respect to the sequence g. Hence,

OPS0
1, 0(R̃

n) ⊆ W $
p (Rn) for every p ∈ (1, ∞).

Let a ∈ S0
1, 0, 0(R̃

n) and let h : N → Zn be a sequence tending to infinity. Then
there exists a subsequence g = (gj) of h such that

lim
j→∞

sup
K1×K2×Rn

∣∣∂β
x ∂α

ξ a(x + gj, y + gj , ξ) − ∂β
x ∂α

ξ ag(x, y, ξ)
∣∣ = 0 (20)

for every compact set K1 × K2 ⊂ Rn × Rn and all multi-indices α, β. One can
prove as above that Opd(ag) is the limit operator of Opd(a) with respect to the
sequence g.

3.2 Essential spectra of elliptic pseudodifferential opera-

tors of zero order

A pseudodifferential operator Opd(a) ∈ OPSm
1, 0, 0 is said to be uniformly elliptic

on Rn if
lim

R→∞
inf

(x, y)∈Rn×Rn, |ξ|≥R
|a(x, y, ξ)| > 0. (21)

Theorem 15 An operator Opd(a) ∈ OPS0
1, 0, 0 is Fredholm on Lp(Rn) if and

only if it is

(i) uniformly elliptic on Rn, and

(ii) locally invertible at infinity.

Proof. Let the ellipticity condition (21) hold. It is easy to show that then
there is a double symbol b ∈ S0

1, 0, 0 such that

Opd(b)Opd(a) = I + Opd(t1), Opd(a)Opd(b) = I + Opd(t2)

11



where the operators Opd(t1) and Opd(t2) belong to OPS−1
1,0,0 and are therefore

locally compact on Lp(Rn). Hence, by Theorem 10, Opd(a) is a Fredholm
operator on Lp(Rn).

Conversely, it is well known that the Fredholmness of an operator Opd(a) in
OPS0

1, 0, 0 implies its uniform ellipticity (21). Since K(Lp(Rn)) ⊂ Ip(R
n), the

Fredholmness of Opd(a) also implies the local invertibility at infinity of Opd(a).

The previous results imply the following.

Theorem 16 Let A = Op(a) ∈ OPS0
1, 0, 0(R̃

n) be a uniformly elliptic pseudod-
ifferential operator. Then A is a Fredholm operator on Lp(Rn) for p ∈ (1, ∞)
if and only if all limit operators of A are invertible. Moreover,

spess(A : Lp(Rn) → Lp(Rn)) =
⋃

Ah∈op(A)

sp (Ah : Lp(Rn) → Lp(Rn)). (22)

3.3 Essential spectra of perturbed elliptic pseudodifferen-

tial operators of nonzero order

Here we consider a class of pseudodifferential operators of order m ≥ 0 perturbed
by a singular potential Φ, i.e., operators of the form A = B + ΦI where

(A) B = Opd(b) ∈ OPSm
1, 0, 0 and b〈ξ〉−m ∈ S0

1, 0, 0(R̃
n);

(B) the operator Φ〈D〉−m is locally compact on Lp(Rn), and it belongs to
W $

p (Rn).

We consider A as a bounded operator from Hm, p(Rn) into Lp(Rn) where
Hm, p(Rn) is the Sobolev space with norm

‖u‖Hm, p(Rn) := ‖〈D〉mu‖Lp(Rn).

Theorem 15 implies the following.

Theorem 17 Let the operator A = Opd(b) + ΦI satisfy conditions (A) and
(B). Then A, considered as acting from Hm, p(Rn) to Lp(Rn), is a Fredholm
operator if and only if

(i) the operator Opd(b) is uniformly elliptic on Rn, and

(ii) all limit operators of the operator A〈D〉−m are invertible on Lp(Rn).

Let A satisfy conditions (A) and (B), and let m ≥ 0. Then A can be considered
as an unbounded closed operator on Lp(Rn) with domain Hm, p(Rn). A point
λ ∈ C is said to belong to the essential spectrum of A if the operator A − λI
is not a Fredholm operator on Lp(Rn) in the sense of unbounded operators.
We denote the spectrum and the essential spectrum of A acting on Lp(Rn) by
sppA and spp

essA, respectively. Further we agree upon the following notations.
Let A = Opd(b) + ΦI be of order m ≥ 0, and let Ãh be a limit operator of

12



Ã := A〈D〉−m with respect to a sequence h. Then we call Ah := Ãh〈D〉m the
limit operator of A defined by the sequence h. In general, Ah is an unbounded
closed operator on Lp(Rn) with domain Hm, p(Rn). We write op(A) for the set
of all limit operators of A defined in this way. The following is a consequence
of Theorem 17.

Theorem 18 Let the operator A = Opd(b) + ΦI satisfy conditions (A) and
(B), and let the operator Opd(b) be uniformly elliptic on Rn. Then

spp
essA =

⋃

Ah∈op(A)

spp Ah. (23)

The next proposition states some sufficient conditions for a potential Φ to be
subject of condition (B). In case p = 2, similar results have been obtained [8],
p. 62 – 71.

Proposition 19 (i) If m > 0 and Φ ∈ L∞(Rn), then the operator Φ〈D〉−m

belongs to Wp(R
n) and is locally compact.

(ii) If m < n and Φ ∈ Ln/m(Rn), then the operator Φ〈D〉−m belongs to Wp(R
n)

and is compact on Lp(Rn).

(iii) If m > n and Φ ∈ Lp(Rn), then the operator Φ〈D〉−m belongs to Wp(R
n)

and is compact on Lp(Rn).

Proof. (i) One has

κ
γ(Φ〈D〉−m) ≤ ‖Φ‖L∞(Rn)〈γ〉

−n−1,

which implies Φ〈D〉−m ∈ Wp(R
n). The local compactness of this operator

follows since m is positive.

(ii) The operator 〈D〉−m acts boundedly from Lp(Rn) into Lq(Rn) ∩ Lp(Rn) if
1
q = 1

p − m
n . Indeed, 〈ξ〉−m is an Lp-Fourier multiplier for every p ∈ (1, ∞).

Write
〈ξ〉−m = |ξ|−m

(
|ξ|m〈ξ〉−m

)
.

The operator |ξ|m〈ξ〉−m is an Lp-Fourier multiplier, too, whereas Op(|ξ|−m) is
a Riesz potential which is bounded as an operator from Lp(Rn) into Lq(Rn) by
the Hardy-Littlewood-Sobolev theorem (see, for instance, [36], Chap. V).

The generalized Hölder inequality

‖uv‖Ls(Rn) ≤ ‖u‖Lp(Rn)‖v‖Lq(Rn)

holding if 1
s = 1

p + 1
q implies

‖Φ〈D〉−m‖L(Lp(Rn)) ≤ Cp ‖Φ‖Ln/m(Rn). (24)

Further, for x ∈ I0,

χ0V−αΦ〈D〉−mVα−γχ0v(x) = Φ(x + α)

∫

I0

k〈D〉−m(x − y + γ) v(y) dy.

13



In case γ = 0 we conclude from the equality ‖Φ(·+ α)‖Ln/m(Rn) = ‖Φ‖Ln/m(Rn)

and from estimate (24) that

‖χ0V−αΦ〈D〉−mVαχ0I‖L(Lp(Rn)) ≤ ‖Φ‖Ln/m(Rn).

Let now γ 6= 0. Then, for u ∈ Lp(Rn),

‖χ0V−αΦ〈D〉−mVα−γχ0u‖Lp(Rn) ≤ ‖Φ‖Ln/m(Rn)‖χ0V−α〈D〉−mVα−γχ0u‖Lq(Rn)

where 1
p = 1

q + m
n . Further, with 1

p + 1
p′ = 1, one has

‖χ0V−α〈D〉−mVα−γχ0u‖Lq(Rn)

≤

(∫

I0

(∫

I0

∣∣k〈D〉−m(x − y + γ)
∣∣p′

dy

) q

p′

dx

) 1

q

‖u‖Lp(Rn).

Applying estimates (18) and (24) we obtain

sup
α∈Zn

‖χ0V−αΦ〈D〉−mVα−γχ0I‖L(Lp(Rn)) ≤ C0‖Φ‖Ln/m(Rn)〈γ〉
−n−1.

Hence, Φ〈D〉−m ∈ Wp(R
n).

In order to prove the compactness of Φ〈D〉−m, choose a sequence of functions
Φk in C∞

0 (Rn) such that limk→∞ ‖Φ − Φk‖Ln/m(Rn) = 0. Employing estimate
(24) once again we find

lim
k→∞

‖Φ〈D〉−m − Φk〈D〉−m‖L(Lp(Rn)) = 0.

Since the operators Φk〈D〉−m are compact on Lp(Rn), so is Φ〈D〉−m.

(iii) Let m > n. Then the function k〈D〉−m is continuous at the point 0, and it
satisfies estimate (18). We claim that then 〈D〉−m is a bounded operator from
Lp(Rn) into Lp(Rn) ∩ L∞(Rn). For u ∈ Lp(Rn), let

v(x) :=

∫

Rn

k〈D〉−m(x − y + γ)u(y) dy.

By the Hölder inequality,

|v(x)| ≤ ‖k〈D〉−m‖Lp′(Rn)‖u‖Lp(Rn).

Thus, if Φ ∈ Lp(Rn), then

‖Φ〈D〉−m‖L(Lp(Rn)) ≤ Cp‖Φ‖Lp(Rn),

verifying the claim. The compactness of Φ〈D〉−m on Lp(Rn) for p < ∞ can be
shown as in (ii).
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4 Exponential estimates for perturbed pseudod-

ifferential equations

4.1 Weights

Let w be a positive measurable function on Rn which we call a weight. We
denote by Lp(Rn, w) the space of all measurable functions u on Rn for which

‖u‖Lp(Rn, w) := ‖wu‖Lp(Rn) < ∞.

Let D be a convex domain in R
n which contains the point 0 ∈ R

n. In what
follows we consider weights of the form w(x) := exp v(x) where v is a function
satisfying ∂xj v ∈ C∞

b (Rn) for j = 1, . . . , n and ∇v(x) ∈ D for every x ∈ Rn.
We denote the class of these weights by R(D), and we write Rsl(D) for the class
of all weights in R(D) such that

lim
x→∞

∂2
xixj

v(x) = 0 (25)

for 1 ≤ i, j ≤ n. The weights in Rsl(D) are called slowly oscillating.
Let l : Sn−1 → R be a positive C∞-function. We associate with l the weight

wl(x) := exp vl(x) where vl(x) := l(x/|x|) |x| (26)

and consider the open star-like domain

Ωl := {x ∈ R
n : x = tl(ω)ω, t ∈ [0, 1), ω ∈ Sn−1}.

One can show that

vl(x) = max
y∈Ωl

(x, y) for all x ∈ R
n

where (x, y) =
∑n

j=1 xjyj is a standard scalar product on R
n.

Proposition 20 (i) The function vl is positively homogeneous, that is vl(tx) =
tvl(x) for all t > 0 and x ∈ Rn. Moreover, vl ∈ C∞(Rn \ {0}).

(ii) ∇vl(x) ∈ Ωl for every x ∈ Rn and ∇vl(ω) = l(ω)ω ∈ ∂Ωl for every point
ω ∈ Sn−1.

Proof. Statement (i) is evident. To prove (ii), fix x ∈ Rn. The continuous
function y 7→ (x, y) attains its maximum over Ωl at some point ξ(x) ∈ Ωl.
Thus, vl(x) = (x, ξ(x)). In particular, ξ(x) is a stationary point of the function

y 7→ (x, y) on Ωl, that is, ∂(x, ξ(x))
∂yi

= 0 for i = 1, . . . , n, whence

∂vl(x)

∂xj
= ξj(x) +

n∑

i=1

∂(x, ξ(x))

∂yi

∂ξi(x)

∂xj
= ξj(x).

This shows that ∇vl(x) = ξ(x) ∈ Ωl for every x ∈ R
n. It is further evident that

ξ is a homogeneous function of order zero. Hence, ∇vl(ω) = ξ(ω) = l(ω)ω.
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Let ṽl be a C∞-function on Rn which coincides with vl outside a certain neigh-
borhood of the origin. Then the weight w̃l := exp ṽl belongs to the class Rsl(D).
Moreover,

lim
x→ηω

∇ṽΩl
(x) = ∇vΩl

(ω) = l(ω)ω. (27)

4.2 ΨDO with analytical symbols

Let D ⊂ Rn be a convex domain, and abbreviate 〈ξ〉 := (1 + |ξ|2)1/2. We say
that a symbol a belongs to Sm

1, 0, 0(D) if the function ξ 7→ a(x, y, ξ) extends
analytically into the tube domain Rn + iD and if

|∂β
x ∂β

y ∂α
ξ a(x, y, ξ + iη)| ≤ Cαβ〈ξ〉

m−|α|

for all triples (x, y, ξ + iη) ∈ Rn × Rn × (Rn + iD). For proofs of the following
propositions see Section 4.5 in [32] and page 308 in [11], respectively.

Proposition 21 Let a be a symbol in Sm
1, 0, 0(D) and w a weight in R(D). Then

w−1Op(a)wI = Opd(a(x, y, ξ + iθw(x, y))) (28)

is a pseudodifferential operator in OPSm
1, 0, 0, and

θw(x, y) =

∫ 1

0

(∇v)((1 − t)x + ty) dt.

Proposition 22 Let Banach spaces X1 and Y1 be densely embedded into Ba-
nach spaces X2 and Y2, respectively. Further let A : X2 → Y2 and A|X1

: X1 →
Y1 be Fredholm operators with the same index,

ind (A : X2 → Y2) = ind (A|X1
: X1 → Y1).

Then every solution u ∈ X2 of the equation Au = f with f ∈ Y1 belongs already
to X1.

Theorem 23 Let w be a weight in R(D) with limx→∞ w(x) = ∞, and let
A := Opd(b) + ΦI be an operator which satisfies the following conditions:

(i) b ∈ Sm
1, 0, 0(D), b〈ξ〉−m ∈ S0

1, 0, 0(R̃
n), and conditions (A) and (B) hold;

(ii) Op(b) is an elliptic operator on Rn;

(iii) for every t ∈ [−1, 1], all limit operators Ah
tw : Hm, p(Rn) → Lp(Rn) of the

operator
Atw := Op(a(x, y, ξ + itθw(x, y)) + ΦI

are invertible.

If u is a function in Hm, p(Rn, w−1) for which Opd(a)u ∈ Lp(Rn, w), then u
belongs to Hm, p(Rn, w).
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Proof. Note that A : Hm, p(Rn, wt) → Lp(Rn, wt) is a Fredholm operator if
and only if w−tAwtI : Hm, p(Rn) → Lp(Rn) is a Fredholm operator, and that
the Fredholm indices of these operator coincide. The conditions of the theorem
guarantee that w−tAwtI : Hm, p(Rn) → Lp(Rn) is a Fredholm operator for
every t ∈ [−1, 1]. The representation (28) and the estimate (14) for the norm
of pseudodifferential operators imply that the mapping

[−1, 1] ∋ t → w−tAwtI : Hm, p(Rn) → Lp(Rn)

is norm continuous. Thus, the Fredholm index of the operators w−tAwtI :
Hm, p(Rn) → Lp(Rn) is independent of t ∈ [−1, 1], and so is the index of the
operators A : Hm, p(Rn, wt) → Lp(Rn, wt). Hence,

ind (A : Hm, p(Rn, w−1) → Lp(Rn, w−1))

= ind (A : Hm, p(Rn, w) → Lp(Rn, w)).

Moreover, the embedding of Hm, p(Rn, w) into Hm, p(Rn, w−1) is dense. Propo-
sition 22 implies that all solutions of the equation Au = f with f ∈ Lp(Rn, w),
which a priori lie in Hm, p(Rn, w−1), already belong to Hm, p(Rn, w).

Corollary 24 Let the conditions of Theorem 23 hold for every t ∈ [0, 1]. If
u ∈ Lp(Rn) is a solution of the equation Au = 0 then u ∈ Hm, p(Rn, w).

The next theorem follows from Corollary 24 if one takes into account that

lim
gk→ηω

∇vl(x + gk) = l(ω)ω

for every sequence g tending to ηω.

Theorem 25 Let the operator A = Opd(b) + ΦI be such that b ∈ Sm
1, 0, 0(D),

b〈ξ〉−m ∈ S0
1, 0, 0(R̃

n), and Opd(b) is uniformly elliptic. Let further conditions
(A) and (B) be satisfied. Moreover, let Opd(b

g) + ΦgI be a limit operator of A
defined by the sequence g, and let l be a positive C∞-function on the unit sphere
Sn−1. If λ ∈ spp

disA, but

λ /∈ spp(Opd(bg(x, y, ξ + itl(ω)ω)) + ΦgI)

for every ω ∈ Sn−1, every t ∈ [0, 1] and every sequence g tending to ηω, then

the λ-eigenfunction uλ of A lies in Hm, p(Rn, el( x
|x| )|x|).

4.3 ΨDO with slowly oscillating symbols

Here we introduce a class of pseudodifferential operators for which the state-
ments of Theorems 23 – 25 can be formulated more explicitly. We say that a
double symbol a ∈ Sm

1, 0, 0 is slowly oscillating if

lim
x→∞

sup
ξ∈Rn, y∈K

|∂β
x ∂α

ξ a(x, x + y, ξ)|〈ξ〉−m = 0
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for all multi-indices α, β 6= 0 and for every compact subset K of Rn. We denote
the class of these symbols by SOm

1, 0, 0 and write OPSOm
1, 0, 0 for the correspond-

ing class of pseudodifferential operators. Further we set OPSOm
1, 0, 0(R̃

n) :=

OPSOm
1, 0, 0 ∩ OPSm

1, 0, 0(R̃
n).

We consider perturbed pseudodifferential operators of the form

A = Opd(b) + ΦI

where Opd(b) ∈ OPSOm
1, 0, 0(R̃

n) for some m > 0 and where Φ := Φ1 + Φ2 with
Φ1〈D〉−m a compact operator and Φ2 ∈ SO(Rn).

Let h : N → Zn be a sequence tending to infinity. There is a subsequence g
of h and a function bg on Rn such that

b(x + gk, y + gk, ξ) → bg(ξ) (29)

in the topology of the space C∞(Rn × Rn × Rn) (see [32], p. 228, for details).
Since the values bg(ξ) of the limit function are independent of x and y, the limit
operators of Opd(b) ∈ OPSOm

1, 0, 0(R̃
n) have symbols which are independent of

x and y, too. Similarly, the limit operators of the potential Φ are operators of
multiplication by the constants

Φg
2 := lim

k→∞
Φ2(x + gk) = lim

k→∞
Φ2(gk). (30)

Thus, all limit operators Ag := Op(bg(ξ)) + Φg
2 of A are invariant with respect

to shifts. One can prove that then the spectrum of the limit operator Ag,
considered as an unbounded operator on Lp(Rn) with domain Hm, p(Rn), is
independent of p ∈ (1, ∞) and that

spAg = {λ ∈ C : λ = bg(ξ) + Φg
2, ξ ∈ R

n}.

This implies the following result.

Theorem 26 Let A = Opd(b) + ΦI where Opd(b) ∈ OPSOm
1, 0, 0(R̃

n) for some
m > 0 is a uniformly elliptic operator, Φ := Φ1 + Φ2 with Φ1〈D〉−m being
compact on Lp(Rn) and Φ2 ∈ SO(Rn). Then the essential spectrum of A, the
latter considered as an unbounded operator on Lp(Rn) with domain Hm, p(Rn),
is independent of p ∈ (1, ∞), and

spessA =
⋃

Ag∈op(A)

{λ ∈ C : λ = bg(ξ) + Φg
2, ξ ∈ R

n} (31)

where the constant functions Φg
2 are defined by (30).

Our next goal are estimates of the exponential decay of eigenfunctions of pseu-
dodifferential operators with slowly oscillating symbols acting on spaces with
slowly oscillating weights.
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Theorem 27 Let A = Opd(b) + ΦI where b ∈ SOm
1, 0, 0 ∩ Sm

1, 0, 0(D), b〈ξ〉−m ∈

S0
1, 0, 0(R̃

n), and Opd(b) is a uniformly elliptic operator. Let further w = exp v
be a weight in Rsl(D). Finally, let λ ∈ spp

disA and uλ be a λ-eigenfunction of
A. If

inf
ξ∈Rn

|bg(ξ + itθg
w) + Φg

2 − λ| > 0

for every sequence g tending to infinity such that the limits (29), (30) and the
limit

θg
W := lim

k→∞
∇v(x + gk)

exist, then uλ lies in Lp(Rn, wl).

Let l be a positive C∞-function on the unit sphere Sn−1 such that Ωl ⊂ D,
and let wl := exp vl where vl(x) = l( x

|x|)|x|. Modifying wl in a neighborhood of

the origin, we obtain a weight in Rsl(D). Then Theorem 27 gives the following
result.

Theorem 28 Let A = Opd(b) + ΦI where b ∈ SOm
1, 0, 0 ∩ Sm

1, 0, 0(D), b〈ξ〉−m ∈

S0
1, 0, 0(R̃

n), and Opd(b) is uniformly elliptic. Let λ ∈ spp
disA, and let uλ be

a λ-eigenfunction of A. For every t ∈ [0, 1], every ω ∈ Sn−1, and for every
sequence g tending to ηω such that the limits (29) and (30) exist, let

inf
ξ∈Rn

|bg(ξ + itl(ω)ω) + Φg
2 − λ| > 0.

Then uλ ∈ Lp(Rn, wl).

5 Schrödinger operators

5.1 Essential spectra

Consider the electromagnetic Schrödinger operator

H := (i∂xj − aj)ρ
jk(i∂xk

− ak) + ΦI

on Rn equipped with the Riemann metric ρjk such that

inf
x∈Rn, ω∈Sn−1

ρjk(x)ωjωk > 0. (32)

Here we use again the Einstein summation convention, and ρjk(x) refers to the
tensor inverse to ρjk(x).

We suppose that the functions aj and ρjk ∈ SO∞(Rn) are real-valued,
whereas Φ is a complex-valued electric potential such that Φ〈D〉−2 is a locally
compact operator on Lp(Rn) for some p ∈ (1, ∞) which, moreover, belongs
to W $

p (Rn). We consider H as a closed unbounded operator on Lp(Rn) with
domain H2, p(Rn). Then it follows from Theorem 18 that

spp
essH =

⋃

Hg∈op(H)

sppHg (33)

19



where
Hg = (i∂xj − ag

j I)ρjk
g (i∂xk

− ag
k) + ΦgI,

ρjk
g := lim

l→∞
ρjk(gl) ∈ R, ag

k := lim
l→∞

ak(gl) ∈ R, (34)

and where ΦgI is the limit operator of the operator ΦI with respect to g. It is
not hard to show that

s-limΦ(x + gl)〈D〉−2 = Φg(x)〈D〉−2 (35)

where the s-lim refers to the strong limit.
For ag = (ag

1, . . . , ag
n) ∈ Rn, set (Tagu)(x) := ei(ag, x)u(x). The so-defined

operator Tag acts as an isometry on Lp(Rn), and

TagHgT
−1
ag = −∂xj ρ

jk
g ∂xk

+ Φg
1.

Consequently, the limit operator Hg is isometrically equivalent to the operator

H′
g := −ρjk

g ∂xj ∂xk
+ ΦgI

without magnetic field. This shows that

spp
essH =

⋃

Hg∈op(H)

sppH′
g

and that the essential spectrum of H is independent of the magnetic field.
Let Φ = Φ1 + Φ2 where Φ2〈D〉−2 is a compact operator on Lp(Rn) operator

and where Φ1 ∈ SO(Rn). Then the limit operators H′
g = −ρjk

g ∂xj ∂xk
+ΦgI are

operators with constant coefficients. Hence, the essential spectrum

spp
essH =

⋃

g

{λ ∈ R : λ = −ρjk
g ξjξk + Φg

1, ξ ∈ R
n} (36)

is independent of p ∈ (1, ∞).
Let ΓΦ1

⊂ C denote the set of all partial limits at infinity of the function Φ1.
It turns out that ΓΦ1

is a closed connected set of the complex plane. Identity
(36) implies the following.

Theorem 29 (i) spp
essH = {λ ∈ C : λ = λ1 + iλ2, λ1 ∈ [0, ∞), λ2 ∈ ΓΦ1

}, and
spp

essH does not depend on p.

(ii) If the function Φ1 is real-valued, then spp
essH is the interval

spp
essH = [lim inf

x→∞
Φ1(x), +∞).
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5.2 Exponential estimates of eigenfunctions of the discrete

spectrum

In what follows we restrict our attention to Schrödinger operators acting on
L2(Rn). We suppose that the functions ρjk and aj as well as the weight w are
slowly oscillating, that is, condition (25) holds. The limit operators (w−1Hw)g

of w−1Hw are unitarily equivalent to the operators

Hg
w := ρjk

g (i∂xj + i(∇v)g
j )(i∂xk

+ i(∇v)g
k) + ΦgI

where
(∇v)g := lim

k→∞
(∇v)(gk) ∈ R

n. (37)

Below we will need the following evident observation.

Proposition 30 Let A = A1 + iA2 be a closed and densely defined unbounded
operator on a Hilbert space H where A1 = ℜA = (1/2)(A+A∗) and A2 = ℑA =
(1/2i)(A−A∗) are symmetric operators on H. Let λ be a real number which is
not in sp A1. Then λ /∈ sp A.

Note that
ℜHg

w = −ρjk
g ∂xj ∂xk

− |(∇v)g |2ρg
+ ΦgI (38)

where
|(∇v)g(x)|2ρg

= ρjk
g (∇v)g

j (∇v)g
k = (ρg(∇v)g , (∇v)g)

and ρg = (ρjk
g )n

j, k=1. From Theorem 23 we conclude the following.

Theorem 31 Let λ ∈ spdisH, and let the above conditions for the metric ρ,
the vector potential a and the weight w = exp v hold. Further assume that

λ + t|(∇v)g |2ρg
/∈ sp (−ρjk

g ∂xj ∂xk
+ ΦgI) (39)

for every t ∈ [0, 1] and every sequence g for which the limits (34), (35) and (37)
exist. Then the λ-eigenfunction uλ of H belongs to H2(Rn, w).

Corollary 32 Let λ ∈ spdisH and let the above conditions for the metric ρ, the
vector potential a and the weight w = exp v hold. Further let Φ = Φ1 + Φ2 be a
real-valued function for which Φ1 ∈ SO(Rn) and Φ2〈D〉−2 is a compact operator
on L2(Rn), and assume that

|(∇v)g |ρg <
√

Φg
1 − λ (40)

for every sequence g as in the previous theorem. Then every λ-eigenfunction uλ

of H belongs to H2(Rn, w).

Next we introduce a function which describes the local distribution of the es-
sential spectrum of the operator H by

µH(ω) := inf
Hg∈opηω (H)

spHg.
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Clearly,
µ̂H := inf

ω∈Sn−1

µH(ω)

is the infimum of the essential spectrum of H.

Theorem 33 Let the above conditions for the metric ρ and the vector potential
a hold. Moreover, assume that the limit limx→ηω ρjk(x) =: ρjk

ω exists for every
ω ∈ Sn−1 and set ρω := (ρjk

ω )n
j, k=1. Let λ < µ̂H be an eigenvalue of H and uλ

an associated λ-eigenfunction. Let finally l be a positive C∞-function on Sn−1

for which

l(ω) <

√
µH(ω) − λ

(ρωω, ω)
for all ω ∈ Sn−1. (41)

Then uλ ∈ H2(Rn, wl) where wl(x) := exp(l(x/|x|)|x|).

Proof. Let the sequence g tend to ηω. According to formula (38),

ℜHg
wl

= −ρjk
ω ∂xj ∂xk

− |(∇v)(ω)|2ρω
+ ΦgI.

By means of Proposition 20 (ii) we obtain further that

|(∇v)(ω)|2ρω
= (ρω(∇v)(ω), (∇v)(ω)) = l2(ω)(ρωω, ω).

Thus, condition (41) implies condition (39) of Theorem 31. By the latter theo-
rem, uλ is indeed in H2(Rn, wl).

Theorem 33 associates to each eigenvalue λ(< µ̂H) and to the distribution func-
tion µH a weight wl(x) = exp(l(x/|x|)|x|) such that uλ ∈ H2(Rn, wl). If only
the infimum µ̂H of the essential spectrum of H is available, then one still gets a
rough ”isotropic” exponential decay estimate of the λ-eigenfunction uλ, namely

uλ ∈ H2(Rn, el|x|) where 0 < l <

√
µ̂H − λ

infω∈Sn−1(ρωω, ω)
.

5.3 Multiparticle Schrödinger operators

We consider an atomic type system of N +1 particles with coordinates xi ∈ Rν ,
0 ≤ i ≤ N , and interacting real-valued potentials ϕij , 0 ≤ i < j ≤ N , defined
on Rn. The particle x0 (considered as the ”nucleus”) has infinite mass and is
fixed at x0 = 0. We assume that the functions ϕij are subject to the following
conditions:

(i) the functions ϕij are measurable on Rν , and the operators ϕij〈D〉−2 are
compact on L2(Rν),

(ii) ϕij ≥ 0 for 0 ≤ i < j ≤ N .
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The configuration space of the system consists of the product of N copies of
Rν which we identify with RNν and denote by X . The generic point in X
is x = (x1, . . . , xN ), where the xi = (xi

1, . . . , xi
ν) are the coordinates of the

particles. The Schrödinger operator of the system is the elliptic operator H on
X defined by

H = −

N∑

i=1

1

2mi
∆i −

N∑

i=1

ϕ0j(x
i) +

N∑

1≤i<j≤N

ϕij(x
i − xj) (42)

where ∆i is the usual Laplace operator with respect to the variable xi and the
mi are positive numbers representing the mass of the particles. We consider
potentials Φ which are functions on X of the form

Φ(x) =
∑

0≤i<j≤N

Φij(x)

where

Φij(x) =

{
ϕ0j(x

i) if 1 ≤ j ≤ N,
ϕij(x

i − xj) if 1 ≤ i < j ≤ N.

Let r ≤ N . For each r-tuple (i1, . . . , ir) of integers 1 ≤ i1 < . . . < ir ≤ N , we
let Σ(i1, ..., ir) stand for the set of all ω ∈ SνN−1 with ωk 6= 0 if k ∈ {i1, . . . , ir}

and ωk = 0 for k /∈ {i1, . . . , ir}.

Proposition 34 (i) Let 1 ≤ r ≤ N − 1 and ω ∈ Σ(i1 ..., ir). Then

µH(ω) = inf spAi1, i2, ..., ir and µH(ω) ≤ 0

where

Ai1, ..., ir = −
∑

1≤j≤N, j 6=i1, ..., ir

(
1

2mj
∆j − ϕ0j(x

j)

)

+
∑

1≤i<j≤N, i6=i1, ..., ir , j 6=i1, ... ir

ϕij(x
i − xj).

(ii) Let r = N and ω ∈ Σ(1, ..., N). Then µH(ω) = 0.

Proof. (i) Let h = (hm) = (h1
m, . . . , hN

m) be a sequence in ZNν which tends
to ηω. We distinguish between two cases.

Case (a): The coordinate sequences (hi1
m), . . . (hir

m) tend to infinity, whereas all
other coordinate sequences (hj

m) with j /∈ {i1, . . . , ir} remain bounded.
Denote by Li1, ..., ir the set of all pairs (iµ, iν) with iµ, iν ∈ {i1, . . . , ir}

for which the sequence (h
iµ
m − hiν

m) is bounded. We can assume that then

limm→∞(h
iµ
m − hiν

m) = ∞ for all pairs (iµ, iν) /∈ Li1, ..., ir (otherwise we pass
to a suitable subsequence of h). Then there is a subsequence of h, for which the
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limit operator of H exists and is unitarily equivalent to the operator

Hh = −
∑

1≤j≤N

1

2mj
∆xj −

∑

1≤j≤N, j 6=i1, ..., ir

ϕ0j(x
j)

+
∑

1≤i<j≤N, i6=i1, ..., ir , j 6=i1, ..., ir

ϕij(x
i − xj)

+
∑

(i, j)∈Li1, ..., ir

ϕij(x
i − xj).

The non-negativity of the potentials ϕij implies that the spectrum of Hh is a
subset of the spectrum of the operator H′

h defined by

H′
h = −

∑

1≤j≤N

1

2mj
∆xj −

∑

1≤j≤N, j 6=i1, ..., ir

ϕ0j(x
j)

+
∑

1≤i<j≤N, i6=i1, ..., ir , j 6=i1, ..., ir

ϕij(x
i − xj).

For the reverse inclusion of spectra, note that there exists a limit operator H̃g

of Hh which equals H′
h. Theorem 18 implies that spHh ⊇ spess Hh ⊇ sp H̃g =

spH′
h. Hence, the spectra of Hh and H′

h coincide.

Case (b): Again we assume that the coordinate sequences (hi1
m), . . . (hir

m) tend
to infinity, but now we also allow that the sequences (hj1

m), . . . (hjl
m) tend to

infinity for some indices j1, . . . , jl /∈ {i1, . . . , ir}.
Since the potentials ϕij(x

j) are non-negative, the inclusion spH′
h ⊆ spHh

follows as in case (a). Applying the Fourier transform with respect to the vari-
ables xk, k = i1, . . . , ir we obtain that the operator H′

h is unitarily equivalent
to the operator of multiplication by operator-valued function which is defined
at (ξi1 , . . . , ξir ) ∈ R

r by

Ĥ′
h(ξi1 , . . . , ξir ) :=

1

2mi1

ξ2
i1 + . . . +

1

2mir

ξ2
ir

+ Ai1, ..., ir . (43)

It follows from (43) that

spHh = spH′
h = [inf spAi1, ..., ir , +∞)

for 1 ≤ r ≤ N −1. Note that the spectrum of the operator H′
h contains the semi

axis [0, +∞). Indeed, there exists a limit operator −
∑

1≤j≤q
1

2mj
∆xj of H′

h the

spectrum of which is [0, +∞), and by Theorem 18, spH′
h ⊇ spess H

′
h ⊃ [0, +∞).

Thus,
µH(ω) = inf spAi1, ..., ir ≤ 0.

(ii) Let h = (hm) = (h1
m, . . . , hN

m) be a sequence in ZNν which tends to ηω for
some point ω ∈ Σ(1, ..., N). Then each of the sequences (h1

m), . . . , (hN
m) tends

to infinity. Let U be the set of all pairs for which the sequence (hj
m − hk

m) is

24



bounded. Then there exists a subsequence of h for which the limit operator of
H exists and is unitarily equivalent to the operator

BU := −
∑

1≤j≤N

1

2mj
∆xj +

∑

(i, j)∈U

ϕij(x
i − xj).

The non-negativity of the potentials ϕij implies that sp BU ⊆ [0, +∞). For the
reverse inclusion, note that there exists a limit operator of BU which is equal to
−
∑

1≤j≤q
1

2mj
∆xj and which, thus, has the interval [0, +∞) as its spectrum.

Hence,
sp BU = [0, +∞) (44)

which implies in particular that µH(ω) = 0.

As a corollary we obtain the Hunziker, van Winter, Zjislin theorem (see, for
instance, [7], 3.3.3) on the location of the essential spectrum of the multiparticle
Schrödinger operators.

Theorem 35 (HWZ theorem) The infimum µ̂H of the essential spectrum of
the multiparticle Schrödinger operator H is

µ̂H = inf
1≤i1<...<ir≤N, 1≤r≤N−1

inf spAi1, ..., ir .

Theorem 36 Let λ < µ̂H < 0 be an eigenvalue of H and l : Sn−1 → R be a
positive C∞-function such that

l(ω) <

√
µH(ω) − λ

(ρω, ω)

where

ρ = diag

{
1

2m1
, . . . ,

1

2m1
, . . . ,

1

2mN
, . . . ,

1

2mN

}

is a diagonal matrix with each value occurring ν times, and µH(ω) is given in

Proposition 34. Then each λ-eigenfunction uλ of H belongs to L2(Rn, el( x
|x|

)|x|).

5.4 Perturbed periodic Schrödinger operators

In this concluding subsection we consider Schrödinger operators

HΦ = −∆ + ΦI

with potential Φ = Φ1 + Φ2 + Φ3 where Φ1 ∈ L∞(Rn) is a real-valued func-
tion which is periodic with respect to a lattice Γ of periods (or Γ-periodic for
short), Φ2 is a real-valued measurable function such that the operator Φ2〈D〉−2

is compact on L2(Rn), and Φ3 is a real-valued function in SO(Rn).
First we consider the periodic operator

HΦ1
:= −∆ + Φ1I = P1(x, D).
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For simplicity we suppose that Φ1 is a periodic function with respect to the
lattice Zn. We shall need the Floquet transform

(Ff)(x, k) :=
∑

α∈Zn

Vα(fe−i(x, k)) for x, k ∈ R
n.

The function (x, k) 7→ Ff(x, k) is Zn-periodic with respect to x and satisfies
the following cyclic condition with respect to the quasi-impuls k,

(Ff)(x, k + γ) = e−i(γ, x)(Ff)(x, k)

for all γ ∈ 2πZn and k ∈ Rn. It is well known that F acts as a unitary operator
from L2(Rn) to L2(T∗, L2(T)) where T∗ = Rn/2πZn is the so-called Brillouin
zone and where T = Rn/Zn. The inverse Floquet transform is given by

(F−1v)(x) =
1

(2π)n

∫

[0, 2π]n
v(x, k)ei(x, k) dk

where the function v(x, k) ∈ L2(T∗, L2(T)) is continued to a periodic function
with respect to the variable x ∈ Rn. A straightforward calculation yields

(FP1(x, D)F−1f)(x, k) = P1(x, Dx + k)f(x, k).

Hence, the operator P1(x, D), considered as an unbounded operator on L2(Rn),
is unitarily equivalent to the ”direct integral”

∫

T∗

P1(x, Dx + k) dk

of the unbounded self-adjoint operators P1(x, Dx + k) on L2(T) with domain
C2(T). The operators P1(x, Dx +k) have a discrete and real spectrum for every
k ∈ T∗. For k ∈ T∗, let λj(k), j ≥ 1, refer to the eigenvalues of the operator
P1(x, Dx + k).

A basic property of spectra of periodic Schrödinger operators is that

spH1 = spess H1 =

∞⋃

j=1

[νj , µj ]

where
νj := min

k∈[0, 2π]n
λj(k), µj := max

k∈[0, 2π]n
λj(k), (45)

and
min

k∈[0, 2π]n
λj(k) → ∞ as j → ∞

(see, for instance, Section XIII.16 in [33] and [14]). Hence, the spectrum (= the
essential spectrum) of a periodic Schrödinger operator is the union of intervals
[νj , µj ] which are also called spectral bands.
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The existence of spectral gaps, i.e., of intervals of the real axis which do not
intersect any of the spectral bands is what makes a crystal a semi-conductor.
Note that there is also a semi-infinite gap (−∞, infj νj) left of the spectrum.

In the one-dimensional setting, it is known that generically there exist in-
finitely many spectral gaps. The long standing Bethe-Sommerfeld conjecture
claims that in dimensions 2 and 3 only finitely many gaps occur. This conjec-
ture has been verified in the affirmative for Schrödinger operators with periodic
electric potentials.

Next we consider potentials Φ = Φ1 + Φ2 where Φ1 is as above and Φ2 is
such that the operator Φ2〈D〉−2 is compact on L2(Rn). Then, clearly,

spess(−∆ + (Φ1 + Φ2)I) = spess(−∆ + Φ1I),

but points of the discrete spectrum of −∆ + (Φ1 + Φ2)I can appear in spectral
gaps of the operator −∆ + Φ1I.

Theorem 37 Let (µj , νj+1) be a spectral gap of the operator −∆ + Φ1I, and
let λ ∈ (µj , νj+1) be an eigenvalue of −∆ + (Φ1 + Φ2)I and uλ an associated
eigenfunction. Then el|x|uλ ∈ L2(Rn) for each positive number l < νj+1 − λ.

Finally we consider the general case of potentials Φ = Φ1+Φ2+Φ3 where Φ1 and
Φ2 are as above and Φ3 is a real-valued function in SO(Rn). For a ∈ L∞(Rn),
set

ma(ω) := lim inf
x→ηω

a(x), Ma(ω) := lim sup
x→ηω

a(x),

ma := inf
ω∈Sn−1

ma(ω), Ma := inf
ω∈Sn−1

Ma(ω).

Theorem 38 Let HΦ = −∆ + ΦI with Φ = Φ1 + Φ2 + Φ3 where Φ1 ∈ L∞(Rn)
is real-valued and Zn-periodic, Φ2 is a real-valued measurable function for which
the operator Φ2〈D〉−2 is compact on L2(Rn), and Φ3 is a real-valued function
in SO(Rn). Then

spessHΦ =

∞⋃

j=1

[νj + mΦ3
, µj + MΦ3

]

where the µj and νj are given by (45).

Corollary 39 Let (µj , νj+1) be a spectral gap of the operator HΦ1
. If

νj+1 − µj > MΦ3
− mΦ3

then the interval (µj + MΦ3
, νj+1 + mΦ3

) is a spectral gap in the essential spec-
trum of HΦ. In the opposite case

νj+1 − µj ≤ MΦ3
− mΦ3

,

the spectral gap (µj , νj+1) of the unperturbed operator is contained in the spec-
trum of the perturbed operator (thus, the gap closes).
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Note that
spessHΦ = spessHΦ1+Φ3

.

Theorem 40 Suppose that the spectral gap (µj + MΦ3
, νj+1 + mΦ3

) is not
empty, and let λ ∈ (µj +MΦ3

, νj+1 +mΦ3
) be an eigenvalue of HΦ. Further let

l : Sn−1 → R be a positive smooth function with

l(ω) < νj+1 − λ + mΦ2
(ω) for every ω ∈ Sn−1.

Then the λ-eigenfunction uλ of HΦ belongs to H2(Rn, exp(l(x/|x|)|x|)).
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