
Extrapolation Methods for Approximating

Arc Length and Surface Area

Michael S. Floater∗, Atgeirr F. Rasmussen† and Ulrich Reif‡

November 15, 2006

Abstract

A well-known method of estimating the length of a parametric curve in

R
d is to sample some points from it and compute the length of the polygon

passing through them. In this paper we show that for uniform sampling of

regular smooth curves Richardson extrapolation can be applied repeatedly

giving a sequence of derivative-free length estimates of arbitrarily high orders

of accuracy. Further, a similar result is derived for the approximation of the

area of parametric surfaces.

Math Subject Classification: Primary: 65D30, 65B05, Secondary: 41A58, 65D17.
Keywords: Richardson extrapolation, arc length, surface area

1 Introduction

Computing the arc length of a parametric curve is a standard task in applied
geometry, and many papers have been written about it or related issues, including
[12], [17], [16], [11], [13], [19], [18], [2], [5], [3], [8], [9] and [10]. The purpose of
this paper is to analyze the accumulated chord-length approximation to arc length,
and show that it has an asymptotic h2-expansion making it suitable for Richardson
extrapolation.

∗Centre of Mathematics for Applications, Department of Informatics, University of Oslo, PO

Box 1053, Blindern, 0316 Oslo, Norway, email: michaelf@ifi.uio.no
†Centre of Mathematics for Applications, Department of Informatics, University of Oslo, PO

Box 1053, Blindern, 0316 Oslo, Norway, email: atgeirr@math.uio.no
‡Department of Mathematics, Darmstadt University of Technology, Schlossgartenstraße 7,

64289 Darmstadt, Germany, email: reif@mathematik.tu-darmstadt.de

1

Let f : [0, 1] → R
d, d ≥ 2, be a regular parametric curve, by which we mean

that f is differentiable and f ′(t) 6= 0 for all t ∈ [0, 1]. Its length is given by the
integral formula

L(f) :=

∫ 1

0

|f ′(t)| dt,

where | · | denotes the Euclidean norm in R
d. It is typically difficult or even

impossible to find a close-form solution to this integral, and one has to resort to
numerical approximation. For example, polynomial curves of degree ≥ 2 are never
arc-length parametrized according to [7] and their speed functions are only easily
integrated if they are PH-curves, see [6]. One way of approximating L(f) is to apply
one of the many known quadrature methods to the scalar function q(t) := |f ′(t)|.
If f is smooth enough, one can obtain arbitrarily high rates of approximation this
way. For an analysis of this, see [10].

However, approximating the integral of q requires the computation of (first)
derivatives of f which can be awkward or time-consuming in practice. A popular
alternative which avoids this problem is to use the ‘chordal’ method: we choose
some uniform partition 0 = t0 < t1 < · · · < tn = 1, where ti = ih and h = 1/n,
and sum up the lengths of the chords (line segments) with end points f(ti), f(ti+1),
giving the approximation

Lh(f) :=

n−1
∑

i=0

|f(ti+1) − f(ti)| ≈ L(f), (1)

which is simply the length of the polygon passing through the sample points f(ti).
It can be shown that

L(f) − Lh(f) = O(h2)

as h → 0, provided f ∈ C2[0, 1]. Thus the method has second order accuracy. A
proof of this and generalizations can be found in [10].

In this paper we show that we can apply a standard extrapolation technique,
often known as Richardson extrapolation, to the chord length method on equally
spaced points in order to raise the order of accuracy first to O(h4), then to O(h6)
and so on, provided f has enough bounded derivatives. For example, consider the
first extrapolation. For small h, we would expect the finer approximation Lh/2(f)
to be more accurate by a factor of ≈ 4, but in order to increase the order of
approximation, we take a linear combination of it and the coarser approximation.
It turns out that if we weight the two approximations by the coefficients 4/3 and
−1/3, giving

L(f) ≈ 4

3
Lh/2(f) −

1

3
Lh(f), (2)

the order of approximation is raised to O(h4). In fact it was shown in [10] that
the error of the method (2) is O(h4) provided f ∈ C4[0, 1]. This was done by

2

recognizing this method as the result of using quadratic polynomial interpolation
and a certain open Newton-Cotes quadrature rule.

In the next section, we derive more information about the error in the fourth
order rule (2) and show that for smooth f Richardson extrapolation can be applied
indefinitely, giving methods with accuracy O(h6), O(h8) and so on. This method
is an alternative to the general approach suggested in [10]. In Section 3, we for-
mulate an algorithm and assess its performance. Then, in Section 4, we apply the
idea of extrapolation to approximate surface area, where the basic approximation
scheme uses cross products of diagonals of quadrilateral facets obtained by uniform
sampling.

2 Approximation of Arc Length

Validating Richardson extrapolation according to (2) for the chord length rule (1)
is simply a matter of showing that its error L(f)−Lh(f) can be expanded in powers
of h, where the coefficients are independent of h. We will show in fact that the
expansion contains only even powers of h. Moreover the coefficient of the h2 term
can be expressed in terms of the curvature vector

κ :=
1

|f ′|

(

f ′

|f ′|

)′

, (3)

which is the derivative of the normalized tangent vector with respect to arc length.
A key part in proving this is the following expansion for the length of the vector

dh(t) := f(t + h/2) − f(t − h/2)

which, for given h ∈ (0, 1/2), is regarded as a function of t ∈ [h/2, 1 − h/2].

Lemma 1 Let f : [0, 1] → R
d, d ≥ 2, be a regular parametric curve with f ∈

C2k+1[0, 1]. Then there exist functions cr ∈ C2k−2r[0, 1] such that

|dh(t)|/h =
k
∑

r=0

cr(t)h
2r + o(h2k), t ∈ [h/2, 1 − h/2]. (4)

The first two coefficients are

c0 = |f ′|, c1 =
f ′ · f ′′′
24 |f ′| . (5)

Throughout, for an expression g(t, h) depending on t and h, the Landau symbol
o(hℓ) refers to uniform convergence with respect to t. That is, we write g(t, h) =
o(hℓ) if for all ε > 0, there is some h0 > 0 such that for all h ∈ (0, h0] and all
t ∈ [h/2, 1 − h/2],

|g(t, h)| ≤ εhℓ.

3

Proof. By Taylor’s theorem,

f(t ± h/2) =
2k+1
∑

j=0

(±h

2

)j
f (j)(t)

j!
+ o(h2k+1),

and so

dh/h =
k
∑

j=0

ajh
2j + o(h2k), aj :=

f (2j+1)

22j (2j + 1)!
. (6)

The first two aj are

a0 = f ′, a1 =
1

24
f ′′′.

Next, taking the inner product of dh with itself gives

|dh|2/h2 =

k
∑

j=0

bjh
2j + o(h2k), bj :=

j
∑

ℓ=0

aℓ · aj−ℓ. (7)

The first two bj are

b0 = a0 · a0 = |f ′|2, b1 = 2 a0 · a1 =
1

12
f ′ · f ′′′.

Taking square roots, (7) gives

|dh|/h = (b0 + ∆)1/2, ∆ :=

k
∑

j=1

bjh
2j + o(h2k)

where ∆ → 0 as h → 0. The Taylor expansion of the right hand side with respect
to ∆ reads

(b0 + ∆)1/2 =
k
∑

ℓ=0

γℓ b
1/2−ℓ
0 ∆ℓ + o(∆k), γℓ :=

1

ℓ!

ℓ−1
∏

p=0

(

1

2
− p

)

.

Again, the convergence of the remainder term o(∆k) is uniform with respect to
t because, by regularity of f , b0 is bounded from below by a positive constant.
Substituting in the definition of ∆ and collecting together powers of h2, we obtain
the expansion

|dh|/h =

k
∑

r=0

crh
2r + o(h2k)

with coefficients

c0 := b
1/2
0 = |f ′|, c1 :=

b1

2|f ′| =
f ′ · f ′′′
24 |f ′| ,

4

and in general, for r ≥ 1,

cr :=

r
∑

ℓ=1

γℓ |f ′|1−2ℓ
∑

j1+···+jℓ=r
jp≥1

bj1 · · · bjℓ
. (8)

By (6) and (7), we have bj ∈ C2k−2j[0, 1]. Hence, the least smooth term appearing
in the definition of cr is br, and thus, cr ∈ C2k−2r[0, 1]. ✷

Now, we are prepared to derive an expansion of the difference between the chord
length approximation Lh(f) according to (1) and the true length L(f) of a curve
f .

Theorem 1 Let f : [0, 1] → R
d, d ≥ 2, be a regular parametric curve with f ∈

C2k+1[0, 1]. Then there exist coefficients dℓ independent of h such that

L(f) − Lh(f) =
k
∑

ℓ=1

dℓh
2ℓ + o(h2k). (9)

In particular,

d1 =
1

24

∫ 1

0

|κ(t)|2|f ′(t)|3 dt. (10)

In [10], results closely resembling the theorem above were shown for k = 1
and k = 2, requiring only f ∈ C2 and f ∈ C4, respectively. We conjecture
that in Theorem 1, the smoothness requirement may be relaxed for all k to f ∈
C2k. This conjecture is supported by the following observation: One can show
that the coefficients dℓ depend only on derivatives of f up to order 2ℓ. This is
remarkable since the corresponding coefficients cℓ appearing in the expansion for a
single segment involve also derivatives of order 2ℓ + 1. Hence, the sum

∑k
ℓ=1 dℓh

2ℓ

in (9) is well defined for f ∈ C2k.

Proof. We apply (4) with t = ui := ti + h/2 and sum over i to obtain

Lh(f) =
n−1
∑

i=0

|d(ui)| =
k
∑

j=0

h2j+1
n−1
∑

i=0

cj(ui) + o(h2k). (11)

where, as above, n = 1/h. In order to convert the terms in this expansion into
integrals, let us briefly review the second Euler-Maclaurin expansion concerning
quadrature by the midpoint rule. We start from the more familiar first Euler-
Maclaurin expansion concerning quadrature by the trapezoidal rule. From Theo-
rem 2.2 of [1], p. 64, it can be shown that if φ ∈ C2m[0, 1], then

h

(

1

2
φ(0) +

n−1
∑

i=1

φ(ti) +
1

2
φ(1)

)

=

m
∑

ℓ=0

B2ℓ

(2ℓ)!
h2ℓ

∫ 1

0

φ(2ℓ)(t) dt + o(h2m),

5

where the coefficients B2k are the Bernoulli numbers

B0 = 1, B2 =
1

6
, B4 = − 1

30
, B6 =

1

42
, B8 = − 1

30
,

Now, following Davis and Rabinowitz [4], pp. 108–109 and 327–331, we subtract
this formula from twice the formula obtained by replacing h by h/2 to get an
expansion for the midpoint rule,

h
n−1
∑

i=0

φ(ui) = −
m
∑

ℓ=0

Cℓh
2ℓ

∫ 1

0

φ(2ℓ)(t) dt + o(h2m), (12)

where Cℓ := (1 − 21−2ℓ)B2ℓ/(2ℓ)!. Applying the expansion (12) to the function
cj ∈ C2k−2j[0, 1] and setting m = k − j gives

h

n−1
∑

i=0

cj(ui) = −
k−j
∑

ℓ=0

Cℓh
2ℓ

∫ 1

0

c
(2ℓ)
j (t) dt + o(h2k−2j),

and substituting this into (11) yields

Lh(f) = −
k
∑

ℓ=0

dℓh
2ℓ − o(h2k), dℓ :=

∫ 1

0

ℓ
∑

j=0

Cjc
(2j)
ℓ−j (t) dt. (13)

Since c0(t) = |f ′(t)|, we have

d0 = −
∫ 1

0

|f ′(t)| dt = −L(f),

and therefore

L(f) − Lh(f) =
k
∑

ℓ=1

dℓh
2ℓ + o(h2k),

which is the required expansion. Finally, we compute d1. Since

d1 =

∫ 1

0

(

−c1(t) +
1

24
c′′0(t)

)

dt,

and

c1 =
1

24

f ′ · f ′′′
|f ′| , c′′0 =

f ′ · f ′′′ + |f ′′|2
|f ′| − (f ′ · f ′′)2

|f ′|3 ,

we find that

d1 =
1

24

∫ 1

0

(|f ′′(t)|2
|f ′(t)| − (f ′(t) · f ′′(t))2

|f ′(t)|3
)

dt.

As noticed above, the terms involving third derivatives of f are canceled, and the
formula (10) follows easily using the definition (3) of the curvature vector. ✷

6

3 Numerical Methods and Examples

Due to Theorem 1, we may now obtain numerical approximations to the curve
length of any order, assuming regularity and sufficient smoothness of the curves.
The basic underlying insight is, that if we may write the error of a method as a
function of h, then by computing with different values of h we obtain data from
which we may extrapolate to h = 0 by canceling the leading term in the error
expansion. We give one way to construct such approximations, based on halving
the interval length h for every iteration. Alternative ways of choosing h exist, and
may be more efficient, but halving h is easy to analyze and program.

Assume that an approximation scheme Lh,j of order 2j is given which for curves
in C2k+1 provides the expansion

L(f) − Lh,j(f) =

k
∑

ℓ=j

dℓ,jh
2ℓ + o(h2k)

with some coefficients dℓ,j. Define the approximation Lh,j+1(f) by

Lh,j+1(f) := αjLh,j(f) + βjLh/2,j+1(f),

where αj := 1 − βj and βj := 4j/(4j − 1). Then

L(f) − Lh,j+1 = (αj + βj)L(f) − αjLh,j(f) − βjLh/2,j(f)

=
k
∑

ℓ=j

(αj + βj/4ℓ)dℓ,jh
2ℓ + o(h2k) =

k
∑

ℓ=j+1

dℓ,j+1h
2ℓ + o(h2k),

where dℓ,j+1 := (αj + βj/4ℓ)dℓ. So Lh,j+1 is an approximation scheme of order
2(j + 1). Clearly the expansion for L − Lh,j+1 has the same form as the one for
L−Lh,j . So we may iterate the process until obtaining Lh,k with an error of order
2k.

3.1 The Romberg table

We will now provide an algorithm for approximating the arc length of a curve
which is very similar to Romberg integration in the sense that it uses the same
extrapolation technique. This is possible since in both cases the underlying basic
approximation schemes (composite chord length and composite trapezoidal rule,
respectively) yield an error expansion in even powers of h. Of course, our method
is best suited for C∞-curves, such as Bézier curves, or piecewise C∞-curves, such
as spline curves. In the latter case, the lengths of the smooth segments can be
computed separately and are then added up. For curves of finite smoothness the
size of the Romberg table has to be limited appropriately.

7

We will compute a table of the form

R(0, 0)
R(1, 0) R(1, 1)
R(2, 0) R(2, 1) R(2, 2)

...
...

...
. . .

R(N, 0) R(N, 1) R(N, 2) · · · R(N, N)

(14)

where R(i, 0) is the composite chordal approximation over 2i intervals. The other
table entries are given by

R(i, j) = R(i, j − 1) +
1

4j − 1

(

R(i, j − 1) − R(i − 1, j − 1)
)

. (15)

This formula is the same as for Romberg integration, only the computation of
the leftmost column is different. There is an essential difference in the storage re-
quirements, though. In Romberg integration, there is no need to store the function
evaluations – R(i, 0) can be computed from R(i− 1, 0) and a sum of new function
evaluations. For chord-lengths however, we need to store all evaluated points in
order to compute their distances to new points.

The entry R(i, j) corresponds to Lh,j+1 with h = 2j−i that was described earlier.
That is, we expect a scheme of order 2(j + 1) in the column with index j.

3.2 The Romberg algorithm

In the pseudocode following, we have assumed the following conventions: Arrays
are indexed from 0. The notation for k = k1 to k2 is to be interpreted as letting
k take on all integer values in [k1, k2], including in particular the value k2.

Algorithm 3.1 takes an array P of points and returns the accumulated chord-
length.

Algorithm 3.2 takes an array P of points and returns a new array of size
2 · Arraylength(P) − 1. The new array includes (at its even indices) all the
points of P , and (at its odd indices) points evaluated half-way between the original
points.

Algorithm 3.3 computes an approximation to the arc-length of the parametric
curve f on the interval [0, 1]. The maximum number of Romberg table rows
computed is N +1, like in (14). The optional tolerance parameter τ together with
the code block marked as optional give a way to terminate the iteration once the
error estimate e := |R(i, i) − R(i − 1, i − 1)| is less than τ . In fact, e estimates
the error of R(i − 1, i − 1) since, presumably, R(i, i) is much more accurate than
this value. For the same reason, e should over-estimate the error of R(i, i) so that
it makes sense to return R(i, i) together with e. It should be noted that e is not
an error bound. In pathological cases, it can be far smaller that the actual error

8

– one of the examples will show that quite clearly. Of course, the given basic
implementation can (and should) be improved in various ways. In particular, if
error estimates indicate that the values in the first rows of the table are far from the
true length, those values should be discarded so that the extrapolation starts from a
sufficiently good approximation, for which the asymptotic expansion makes sense.
Also adaptive variants are conceivable: If for a given value of N the error estimate
indicates insufficient accuracy, then the curve is split at the interval midpoint and
the two parts are treated separately. For instance, the resulting recursive algorithm
can avoid excessive global refinement of curves with few isolated fine features.

3.3 Numerical examples

In order to investigate convergence properties of our scheme, we first consider
Pythagorean hodograph curves (PH-curves) [6]. These are polynomial curves f :
R → R

d with the property that their speed functions |f ′(t)| are polynomials. So
their arc length is easy to compute exactly. For α ∈ R,

fα(t) =

(

1

3
(t + α)3 − 1

5
(t + α)5,

1

2
(t + α)4

)

, t ∈ [0, 1] (16)

is a PH-curve with speed function |f ′α| = (t+α)2+(t+α)4. We obtain, for instance,
L(f0) = 8/15 and L(f1) = 128/15.

Let us consider the case α = 1. Figure 1, left, shows the actual error obtained
for the Romberg table generated by Algorithm 3.3 with N = 5. Remarkably,
the true length L(f1) = 128/15 is approximated with an error of less than 3e-13
using only 33 function evaluations. In Table 1 we show the experimental rates of
convergence (ERC) for the schemes found in the columns of the Romberg table. At
least in the first four columns, the theoretical prediction R(i, j)/R(i+1, j) ≈ 4j+1 is
matched quite well. The ratios of the actual errors of R(i, i) on the diagonal and its
estimates e = |R(i+1, i+1)−R(i, i)| all lie in the interval [1, 1.02] indicating that,
in this case, e is a reliable estimate. Of course, the actual accuracy L(f1)−R(4, 4) ≈
3e-13 of the returned value is much higher than the final estimate e ≈ 1e-09.

On the right hand side, Figure 1 and Table 1 show the according results for
the parameter value α = 0. We see that the ERCs in the third and fourth column
are much smaller than before. The values suggest that in this case convergence is
limited to the order h5. This behavior is due to the fact that f0 is not a regular
curve since f ′0(0) = 0.

As a second example, let us consider the helix

g(t) =
(

cos(50 t), sin(50 t), t
)

, t ∈ [0, 1].

It has approximately 8 windings and length L(g) =
√

2501 ≈ 50.01. Calling
Algorithm 3.3 with the optional tolerance parameter τ = 1e-10, the iteration is

9

Algorithm 3.1: Chordal(P)

n = Arraylength(P) − 1
l = 0
for i = 1 to n

do l = l + |P (i) − P (i − 1)|
return (l)

Algorithm 3.2: Newpoints(P, f)

n = Arraylength(P) − 1
for i = 0 to n − 1

do

{

Q(2i) = P (i)
Q(2i + 1) = f((2i + 1)/(2n))

Q(2n) = P (n)
return (Q)

Algorithm 3.3: Romberg chord-length(f, N, [τ])

P = [f(0), f(1)]
R(0, 0) = Chordal(P)
for i = 1 to N

do



















































P = Newpoints(P, f)
R(i, 0) = Chordal(P)
for j = 1 to i

do

{

r =
(

R(i, j − 1) − R(i − 1, j − 1)
)

/(4j − 1)
R(i, j) = R(i, j − 1) + r

optional







e = |R(i, i) − R(i − 1, i − 1)|
if e < τ

then return (R(i, i), e)

return (R(N, N), [e])

10

0 1 2 3 4 5

10
−13

10
−10

10
−7

10
−4

10
−1

0 1 2 3 4 5

10
−13

10
−10

10
−7

10
−4

10
−1

Figure 1: Error of Romberg table for PH-curves f1 (left), and f0 (right).

0 1 2 3 4
3.53
3.87 13.65
3.97 15.31 51.92
3.99 15.82 60.29 196.38
4.00 15.95 63.01 236.74 731.70

0 1 2 3 4
2.19
3.42 10.75
3.84 13.48 28.02
3.96 14.76 30.05 31.84
3.99 15.39 31.47 32.84 32.99

Table 1: ERC of Romberg table for PH-curves f1 (left), and f0 (right).

−0.5

0

0.5

1
−0.5

0

0.5

0

0.5

1

Figure 2: Helix with shortcut.

11

stopped after only three steps, and the return value is R(3, 3) ≈ 1.03. This is
completely off the target since the error estimate fails spectacularly here. The
point is that, incidentally, the 9 points used to compute the approximations up
to the third row are all very close to a straight line, see Figure 2. This shortcut
is resolved only if more points are included, disregard the far too optimistic error
estimate. With N = 8, we obtain the true length with error < 2e-09. As always,
the phenomenon of false error estimation cannot be excluded for a discrete method
unless further information on the considered curve is available.

4 Approximation of Surface Area

In this section, we consider the problem of computing the area

A(s) :=

∫

D

|su(u, v) × sv(u, v)| du dv, (17)

of a parametric surface s : D → R
3 defined on the unit square D = [0, 1]2. We

assume that s is regular, by which we mean that the integrand in (17) is never
zero. For any chosen n, let ui = (i + 1/2)h and vj = (j + 1/2)h, where h = 1/n.
We then make the approximation

Ah(s) :=
1

2

n−1
∑

i,j=0

|δh,−hs(ui, vj) × δh,hs(ui, vj)| ≈ A(s),

where
δα,βs(u, v) := s(u + α/2, v + β/2) − s(u − α/2, v − β/2).

That is, the surface s is sampled on a square grid, and the area of each quadrilateral
facet is approximated by half the norm of the cross product of its two diagonals.

Theorem 2 Let s : D → R
3 be a regular parametric surface with s ∈ C2k+1(D).

Then there exist coefficients dp independent of h such that

A(s) − Ah(s) =
k
∑

p=1

dph
2p + o(h2k). (18)

Unlike in the curve case, the first coefficient d1 involves third derivatives of s

as well as first and second ones and we do not write down an explicit expression.
We note that in [15] it was shown that the above method is second order, if

the surface s ∈ C2,2. So as in the curve case, we conjecture that the smoothness
requirement above may be relaxed, but make no attempt to prove this. Also,
a similar expansion was studied by Lyness in [14] for the purpose of quadrature

12

on surfaces. Applying the basic approximation in that paper to integrating the
constant function 1 over a surface reduces to, for every quad, adding the areas
of the two triangles obtained by splitting the quad. So the basic approximation
is different. In particular, it requires the computation of two cross products per
quad, instead of only one cross product in our approach.

Proof. Using four Taylor expansions around the point s(ui, vj) with remainder of
order 2k + 1, one easily finds that

δh,−hs(ui, vj) × δh,hs(ui, vj) =

k
∑

p=0

ap(ui, vj)h
2p+2 + o(h2k+2)

for certain coefficients ap(u, v), where a0 := 2(su × sv). The dot product of this
with itself is

|δh,−hs(ui, vj) × δh,hs(ui, vj)|2 =
k
∑

p=0

bp(ui, vj)h
2p+4 + o(h2k+4),

for coefficients bp(u, v) with b0 = 4|su × sv|2. Then, analogous to the curve case,
since the leading term h4b0(ui, vj) is positive by the regularity of s, there is an
expansion

|δh,−hs(ui, vj) × δh,hs(ui, vj)| =
k
∑

p=0

cp(ui, vj)h
2p+2 + o(h2k+2)

for some coefficients cp(u, v) with c0 = 2|su × sv|. Summing over i and j gives

1

2

n−1
∑

i,j=0

|δh,−hs(ui, vj) × δh,hs(ui, vj)| =
1

2

k
∑

p=0

h2p+2
n−1
∑

i,j=0

cp(ui, vj) + o(h2k). (19)

Finally, we apply the expansion for the midpoint rule in (12) in both parameters
to get the bivariate midpoint rule expansion

h2
n−1
∑

i,j=0

φ(ui, vj) =
m
∑

p=0

h2p

p
∑

q=0

CqCp−q

∫

D

∂2q
u ∂2p−2q

v φ(u, v) du dv + o(h2m)

Substitution of this expansion with φ = cp and m = k − p into (19) gives

1

2

n−1
∑

i,j=0

|δh,−hs(ui, vj) × δh,hs(ui, vj)| = −
k
∑

q=0

dqh
2q + o(h2k),

where

d0 = −
∫

D

|su × sv| du dv.

✷

13

References

[1] D. N. Arnold. A concise introduction to numerical analysis. Lecture notes,
IMA, Minnesota.

[2] G. Casciola and S. Morigi. Reparametrization of nurbs curves. Int. Journal
of Shape Modelling, 2:103–116, 1996.

[3] P. Constantini, R. T. Farouki, C. Manni, and A. Sestini. Computation of
optimal composite re-parametrizations. Computer Aided Geometric Design,
18:875–897, 2001.

[4] Philip J. Davis and Philip Rabinowitz. Methods of Numerical Integration.
Academic Press, 1975.

[5] R. T. Farouki. Optimal parametrizations. Computer Aided Geometric Design,
8:153–168, 1997.

[6] R. T. Farouki. Pythagorean-hodograph curves. In Handbook of Computer
Aided Geometric Design, pages 405–427, 2002.

[7] R. T. Farouki and T. Sakkalis. Real rational curves are not ’unit speed’.
Computer Aided Geometric Design, 8:151–157, 1991.

[8] M. S. Floater. Arc length estimation and the convergence of polynomial curve
interpolation. To appear in BIT.

[9] M. S. Floater. Chordal cubic spline interpolation is fourth order accurate. To
appear in IMA J. Numer. Anal., 2005.

[10] M. S. Floater and A. F. Rasmussen. Point-based methods for estimating the
length of a parametric curve. J. Comp. Appl. Math., 196:512–522, 2006.

[11] Jens Gravesen. Adaptive subdivision and the length and energy of Bézier
curves. Comput. Geom., 8:13–31, 1997.

[12] B. Guenter and R. Parent. Computing the arc length of parametric curves.
IEEE Comp. Graph. and Appl., 5:72–78, 1990.

[13] J. Kearney H. Wang and K. Atkinson. Arc-length parameterized spline curves
for real-time simulation. In Curve and Surface Design, Saint-Malo, pages 387–
396, 2002.

[14] J. N. Lyness. Quadrature over curved surfaces by extrapolation. Math.Comp.,
63:727–740, 1994.

14

[15] A. F. Rasmussen and M. S. Floater. A point-based method for estimating
surface area. In Proceedings of the SIAM conference on Geometric Design
and Computing, Phoenix 2005.

[16] R. J. Sharpe and R. W. Thorne. Numerical method for extracting an arc
length parameterization from parametric curves. Computer-Aided Design,
14(2):79–81, 1982.

[17] S. Vincent and D. Forsey. Fast and accurate parametric curve length compu-
tation. J. Graph. Tools, 6(4):29–40, 2002.

[18] M. Walter and A. Fournier. Approximate arc length parameterization. In
Proceedings of the 9th Brazilian symposium on computer graphics and image
processing, pages 143–150, 1996.

[19] F.-C. Wang and D. C. H. Yang. Nearly arc-length parameterized quintic-spline
interpolation for precision machining. Computer-Aided Design, 25(5):281–288,
1993.

15

