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Abstra
t

We solve a mixed boundary value problem for the nonparametri
 pres
ribed

mean 
urvature equation, pres
ribing 
ontinuous Diri
hlet boundary values at

some stri
tly 
onvex boundary part and Neumann zero boundary values at

the remaining part of the boundary. We assume that Diri
hlet and Neumann

boundary parts are some positive distan
e away from ea
h other.

1. Introdu
tion and the main result

For a given C

2+�

-domain 
 � R

2

we 
onsider the following mixed boundary value problem for the

nonparametri
 pres
ribed mean 
urvature equation

div

r�

p

1 + jr�j

2

= 2H(x; y; �) in 
 (1)

� = g on �

d

;

��

�n

= 0 on �

n

;

where n denotes the outer unit normal to �
 and H = H(x; y; z) is the pres
ribed mean 
urvature

fun
tion. We pres
ribe Diri
hlet boundary values g on some part �

d

� �
 of the boundary and

Neumann zero boundary values on the other part �

n

:= �
n�

d

. We will assume �

d

6= ; sin
e

otherwise one obtains a pure Neumann problem whi
h is in general not solvable unless 
ertain


ompatibility 
onditions are satis�ed.

If we de�ne a fun
tion b by b

z

(x; y; z) = 2H(x; y; z), then the mixed boundary value problem

(1) is the Euler equation of the generalised nonparametri
 area fun
tional

A(�) :=

Z




�

p

1 + jr�j

2

+ b(x; y; �)

�

dxdy

within the 
lass of fun
tions

C(
;�

d

; g) :=

n

� 2 C

2

(
;R) \ C

1

(
;R) j � = g on �

d

o

:

As there are no boundary values pres
ribed on �

n

within the 
lass C, the Neumann boundary


ondition

��

�n

= 0 appears as the natural boundary 
ondition on �

n

.

Using the 
ontinuity method we will 
onstru
t a solution of (1) as in [16℄ (see also [17, x8 in


hapter XII℄), where the 
ase �

n

= ; is treated, i.e. pure Diri
hlet problem. Two important

assumptions were needed there: The stri
t 
onvexity of the domain 
 and monotono
ity 
ondition

H

z

� 0 on the pres
ribed mean 
urvature. The se
ond assumption is needed for uniqueness of
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solutions via the maximum prin
iple but also for stability of solutions in the sen
e that a pertur-

bation result 
an be proved.

We will also assume H

z

� 0 in this work. However, the stri
t 
onvexity is needed only at the

Diri
hlet boundary part �

d

, i.e. �(x; y) > 0 on �

d

for the 
urvature � : �
 ! R of �
 w.r.t.

the inner normal. Hen
e, no 
urvature assumption 
on
ering the Neumann boundary part �

n

is

needed. Next we have to assume dist(�

d

;�

n

) > 0, i.e. Diri
hlet and Neumann boundary parts do

not tou
h ea
h other. In 
ase �

n

6= ; this dire
tly implies that the domain 
 
annot be simply


onne
ted. For the 
ase of tou
hing Diri
hlet and Neumann boundary parts and simply 
onne
ted

domains the mixed boundary value problem was solved in [8℄ and [9℄ for the minimal surfa
e 
ase

and in [11, Theorem 2℄ for the pres
ribed mean 
urvature 
ase, where however a 
ertain smallness


ondition on H is needed. An existen
e result for 
onvex domains 
 in higher dimensions n � 2


an be found in [3℄.

A typi
al domain suitable in this paper is the following annular domain: Considering two sim-

ply 
onne
ted C

2+�

-domains 


0

, 


1

su
h that 


0

is stri
tly 
onvex and 


1

� 


0

we de�ne


 := 


0

n


1

. Here, the Diri
hlet boundary part is �

d

:= �


0

and the Neumann boundary part

is �

n

:= �


1

. More generally, we 
an also 
onsider domains with �nitely many holes rather than

just one hole.

The main result of this paper is the following

Theorem 1: Assumptions:

a) Let 
 � R

2

be a bounded C

2+�

-domain with the Diri
hlet and Neumann boundary parts

�

d

6= ; and �

n

su
h that �

d

is stri
ty 
onvex and dist(�

d

;�

n

) > 0.

b) Let the pres
ribed mean 
urvature H 2 C

1+�

(R

3

;R) satisfy

H

z

� 0 in 
� R and 2jH(x; y; z)j < �(x; y) for (x; y; z) 2 �

d

� R

where �(x; y) denotes the 
urvature of �
 w.r.t. the inner normal.


) Assume that the mixed boundary value problem (1) has a solution � 2 C

2+�

(
;R) for some

boundary values g

0

2 C

2+�

(�

d

;R).

Then there exists a unique solution � 2 C

2+�

(
 [ �

n

;R) \ C

0

(
;R) for all boundary values g 2

C

0

(�

d

;R). In 
ase g 2 C

2+�

(�

d

;R), that solution belongs to the spa
e C

2+�

(
;R).

An essential assumption of Theorem 1 is the existen
e of an initial solution for 
ertain boundary

values g

0

. For the minimal surfa
e 
ase, i.e. H � 0, su
h an initial solution always exists with

� � 0 in 
 for g

0

� 0 on �

d

. The same applies to all pres
ribed mean 
urvatures H with the

property H(x; y; 0) = 0 for (x; y) 2 
.

On the other hand, note that under the assumptions a) and b) of Theorem 1 an initial solution

need not ne
essarily exist. Consider e.g. the pres
ribed mean 
urvature H = H(x; y) = 4�x

2

�y

2

and the dis
 
 = f(x; y) 2 R

2

jx

2

+ y

2

< 4g with �

d

:= �
 and �

n

= ;. Note that the assumption

2jH(x; y)j < �(x; y) on �
 of Theorem 1 is satis�ed sin
e H = 0 on �
. However, no graph of

pres
ribed mean 
urvature H over 
 exists due to H(x; y) > 1 for x

2

+y

2

� 1. Hen
e, we may also

view Theorem 1 as a nonexisten
e theorem. Assuming that the mixed boundary value problem is

not solvable for 
ertain Diri
hlet boundary values, it will not be solvable for any Diri
hlet boundary

values.
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Now to obtain a solution of problem (1), we will employ the 
ontinuity method and study the

following family P (t) of mixed boundary value problems

div

r�

p

1 + jr�j

2

= 2H(x; y; �) in 
 (2)

� = t g + (1� t)g

0

on �

d

;

��

�n

= 0 on �

n

with a parameter t 2 [0; 1℄. Let J � [0; 1℄ be the set of all t 2 [0; 1℄ for whi
h P (t) is solvable.

Note that by assumption 
) of Theorem 1 we have 0 2 J . It remains to show that J is both

open and 
losed. The openness is basi
ally a 
onsequen
e of a perturbation result for graphs

of pres
ribed mean 
urvature, whi
h for the 
ase �

n

= ; is shown in [16, Proposition 2℄ or [17,

Hilfssatz 4 in x8, 
hapter XII℄. It 
an dire
tly be generalized to the 
ase �

n

6= ; using the assumption

dist(�

d

;�

n

) > 0. To show that J is 
losed a 
ompa
tness result for graphs of pres
ribed mean


urvature has to be proved. As the behavior at the Diri
hlet boundary is basi
ally known and

studied we fo
us on the behavior at the Neumann boundary. In se
tion 2 we start with an a priori

C

2+�

-estimate up to the Neumann boundary for a 
onformal reparametrisation of the graph. We

use it in se
tion 3 to prove a 
ompa
tness result for graphs whi
h yields the 
loseness of the set J .

Finally, we give the proof of Theorem 1 in se
tion 4.

2. Lo
al estimates at the Neumann boundary

We start with a solution � 2 C

2+�

(
 [ �

d

;R) of problem (1) on a bounded C

2+�

-domain 
. We

now 
hoose a simply 
onne
ted part T � �

n

with its endpoint (x

0

; y

0

); (x

2

; y

2

) 2 T and some third

point (x

1

; y

1

) 2 T . Next, we 
hoose a simply 
onne
ted subset C

2+�

-domain � � 
 with the

properties T � �
 \ �� and dist(�;�

d

) > 0.

De�ning the open half dis
 B

+

:= f(u; v) 2 R

2

ju

2

+ v

2

< 1 ; v > 0g, we introdu
e 
onfor-

mal parameters on the graph �j

�

(see [15℄): There exists a positively oriented di�eomorphism

f : B

+

! � 2 C

0

(B

+

;R

2

) \ C

2+�

(B

+

nf(�1; 0); (1; 0)g;R

2

) (3)

satifying the three point 
ondition

f(�1; 0) = (x

0

; y

0

) ; f(0; 0) = (x

1

; y

1

) and f(1; 0) = (x

2

; y

2

) (4)

and having a positive Jakobi determinant J

f

:= det(f

u

; f

v

) > 0 in B

+

su
h that the reparametrized

graph

X(u; v) := (f(u; v); � Æ f(u; v)) (5)

is given in 
onformal parameters. The ve
tor valued fun
tion X satis�es the pres
ribed mean


urvature system together with the 
onformality relations

4X = 2H(X)X

u

^X

v

and jX

u

j

2

� jX

v

j

2

= X

u

�X

v

= 0 in B

+

:

From the three point 
ondition we infer f(I) � T � �
 for the interval I := (�1; 1)�f0g. We �rst

need the following lemma, whi
h shows how the Neumann 
ondition for the graph � translates to

the 
onformal reparametrisation.

Lemma 1: The Neumann boundary 
ondition

��

�n

= 0 on T is equivalent to the boundary 
ondition

X

v

� e

3

= 0 on I where e

3

:= (0; 0; 1).
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Proof:

1.) We assume r� � n = 0 and set X(u; v) = (f(u; v); z(u; v)) with z(u; v) = � Æ f(u; v). From

det(f

u

; f

v

) > 0 we �rst 
on
lude jf

u

j > 0 and jf

v

j > 0. Using f(I) � �
 we obtain that the

ve
tor f

u

is perpendi
ular to n and hen
e r� = �f

u

for some � 2 R. Using the 
onformality

relations we 
ompute

0 = X

u

�X

v

= f

u

� f

v

+ z

u

z

v

= f

u

� f

v

+ (r� � f

u

)(r� � f

v

)

= f

u

� f

v

+ �

2

(f

u

� f

u

)(f

u

� f

v

) = (1 + �

2

jf

u

j

2

)(f

u

� f

v

)


on
luding f

u

� f

v

= 0. Together with f

u

�n = 0 and jf

u

j > 0 we know that f

v

= �n for some

� 2 R. Noting the assumption r� � n = 0 this gives X

v

� e

3

= z

v

= r� � f

v

= �r� � n = 0.

2.) Assume X

v

�e

3

= z

v

= 0. From the 
onformality relation X

u

�X

v

= 0 we 
on
lude f

u

�f

v

= 0.

Sin
e f

u

is a nonzero tangent ve
tor to �
 we obtain that the ve
tors f

v

and n are linearly

dependent. From the relation 0 = z

v

= r� � f

v

we 
on
lude r� � n = 0, using jf

v

j > 0. �

We now de�ne B

+

r

:= B

r

(0; 0) \B

+

= f(u; v) 2 B

+

ju

2

+ v

2

< r

2

g and show an a priori estimate

of X in B

+

r

.

Lemma 2: Assume that the C

0

-estimate

j�(x; y)j �M in 
 (6)

holds. Then the exist 
onstants r > 0 and C <1 su
h that the 
onformal reparametrisation X of

� in (5) satis�es the estimate

jjXjj

C

2+�

(B

+

r

)

� C :

The 
onstants r and C only depend on the data 
;M;H; � and the modulus of 
ontinuity of X.

Proof:

1.) Setting

X(u; v) = (x(u; v); y(u; v); z(u; v))

we note that f(u; v) = (x(u; v); y(u; v)) for f from (5). Lemma 1 yields the Neumann

boundary 
ondition X

3

v

= z

v

= 0 on I. Using the 
omplex di�erential operator

�

�w

:=

1

2

�

�u

�

i

2

�

�v

the 
onformality relations for X 
an be written equivalently in the form

0 = X

w

�X

w

= (x

w

)

2

+ (y

w

)

2

+ (z

w

)

2

:

Noting jx

2

w

j = jx

w

j

2

=

1

4

jrxj

2

and similar formulas for y and z we dedu
e the inequalities

jrxj

2

� jryj

2

+ jrzj

2

; jryj

2

� jrxj

2

+ jrzj

2

and jrzj

2

� jrxj

2

+ jryj

2

: (7)

Using this together with 4X = 2H(X)X

u

^X

v

we now estimate

j4Xj � 2
jX

u

^X

v

j = 
jrXj

2

= 
(jrxj

2

+ jryj

2

+ jrzj

2

) � 2
(jryj

2

+ jrzj

2

)

whi
h yields

j4xj+ j4yj+ j4zj � 3j4Xj � 6
(jryj

2

+ jrzj

2

) : (8)

Here we have set


 := sup

(x;y)2
 ; jzj�M

jH(x; y; z)j <1 :
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2.) We now prove an estimate for jrXj. We 
onsider the point (x

1

; y

1

) = f(0; 0) from the three

point 
ondition. After a suitable rotation in R

2

we 
an lo
ally represent �
 in a neighborhood

of (x

1

; y

1

) by a graph of some fun
tion �, more pre
isely: There exists a 
onstant d > 0 and

a fun
tion � 2 C

2+�

(J;R) with J := [x

1

� d; x

1

+ d℄ su
h that the following representation

holds

�
 \B

d

(x

1

; y

1

) � f(x; �(x)) 2 R

2

j x 2 Jg :

Here, we may also assume that

�

0

(x

1

) = 0 ; j�

0

(t)j �

1

2

for t 2 J and jj�jj

C

2+�

(J)

� K : (9)

Sin
e 
 is a bounded C

2+�

-domain the 
onstants d = d(
) > 0 and K = K(
) < 1 
an

be 
hoosen independently of the point (x

1

; y

1

). Due to f(0; 0) = (x

1

; y

1

) and the 
ontinuity

of f we 
an 
hoose some 
onstant r > 0, depending on the modulus of 
ontinuity of f , su
h

that f(u; v) 2 B

d

(x

1

; y

1

) for (u; v) 2 B

+

r

holds. Hen
e, the following auxiliary fun
tion

h 2 C

2+�

(B

+

r

;R) ; h(u; v) := y(u; v)� � Æ x(u; v) for (u; v) 2 B

+

r

is wellde�ned. From f(I) � �
 we obtain for h the boundary 
ondition

h(u; 0) = 0 for u 2 (�r; r) : (10)

Using (8) and (7) we estimate

j4zj+ j4hj = j4zj+ j4y � �

0

4x� �

00

(x

2

u

+ x

2

v

)j

� j4zj+ j4yj+ j4xj+Kjrxj

2

� 6
(jryj

2

+ jrzj

2

) +K(jryj

2

+ jrzj

2

)

= (6
 +K)(jryj

2

+ jrzj

2

) : (11)

To obtain a bound for jryj

2

in terms of jrhj

2

and jrzj

2

we 
ompute

jryj

2

= jrh+ �

0

rxj

2

�

�

jrhj+

1

2

jrxj

�

2

� 2jrhj

2

+

1

2

jrxj

2

� 2jrhj

2

+

1

2

jryj

2

+

1

2

jrzj

2

whi
h yields the inequality

jryj

2

� 4jrhj

2

+ jrzj

2

: (12)

Combining this estimate with (11) we obtain

j4hj+ j4zj � (24
 + 4K)jrhj

2

+ (12
 + 2K)jrzj

2

in B

+

r

:

We now de�ne another auxiliary fun
tion

 : B

+

r

! R

2

;  (u; v) := (h(u; v); z(u; v))

and note the di�erential inequality j4 j � (24
 + 4K)jr j

2

. We want to apply the interior

a priori estimates for systems with quadrati
 growth in the gradient (see [1, 
hapter 7.2℄ or

[17, 
hapter XII, x2℄). To obtain the required smallness 
ondition for these estimates, we

redu
e the 
onstant r > 0 su
h that

j (u; v) �  (0; 0)j �

1

2(24
 + 4K)

in B

+

r

0

5



holds. Here, the 
hoi
e of r

0

is determined by the modulus of 
ontinuity for  whi
h is


ontrolled by the modulus of 
ontinuity of X. We now re
e
t  a
ross I by

~

 (u; v) :=

(

(h(u; v); z(u; v)) if (u; v) 2 B

+

r

0

(�h(u;�v); z(u;�v)) if (u;�v) 2 B

+

r

0

; (u; v) 2 B

r

0

:

By the Diri
hlet boundary 
ondition (10) for h and the Neumann boundary 
ondition z

v

= 0

on I we 
on
lude the regularity

~

 2 C

1;1

(B

r

0

;R

2

), i.e. the �rst derivatives of

~

 exist in

B

r

0

and they are Lips
hitz 
ontinuous. Furthermore, we have the inequality j4

~

 j � (24
 +

4K)jr

~

 j

2

in B

r

0

nI. Now the a priori estimates for systems with quadrati
 growth in the

gradient, whi
h in general hold only for C

2

-fun
tions, 
an also be applied to the fun
tion

~

 

after a suitable approximation pro
ess by C

2

-fun
tions, e.g. by the Friedri
h's molli�ers of

~

 . For any r < r

0

there exists a 
onstant C

1

= C

1

(
;K; r; �) su
h that

jjzjj

C

1+�

(B

+

r

)

+ jjhjj

C

1+�

(B

+

r

)

� C

1

: (13)

Together with (12) and (7) we 
an �nd a 
onstant C

2

su
h that

jrxj+ jryj+ jrzj � C

2

in B

+

r

:

3.) In the next step we show a H�older estimate for rx and ry. To do this, we �rst derive a

boundary 
ondition for x

v

on I. By the 
onformality relations, we have

0 = x

u

x

v

+ y

u

y

v

+ z

u

z

v

= x

u

x

v

+ y

u

y

v

on I

using z

v

= 0 on I. Putting y = h+ � Æ x into this equation yields

0 = x

u

x

v

+ (h

u

+ �

0

x

u

)(h

v

+ �

0

x

v

) = x

u

x

v

+ (h

v

+ �

0

x

v

)�

0

x

u

= x

u

x

v

(1 + (�

0

)

2

) + h

v

�

0

x

u

on I (14)

taking h

u

= 0 on I into a

ount. We now 
laim x

u

6= 0 on I. Otherwhise we would have

0 = h

u

= y

u

� �

0

x

u

and so y

u

= 0, 
ontradi
ting det(f

u

; f

v

) = x

u

y

v

� x

v

y

u

> 0 whi
h holds

be
ause f is a positively oriented di�eomorphism. Dividing by x

u

in (14) we obtain for x

the Neumann boundary 
ondition

x

v

= �

�

0

(x)h

v

1 + (�

0

)

2

on I : (15)

By (13) there exists a C

�

-bound on the right hand side of this equation. Noting (8) poten-

tialtheoreti
 estimates give a 
onstant C

3

su
h that

jjxjj

C

1+�

(B

+

r

)

� C

3

:

Using y = h+ � Æ x we 
an then also bound the C

1+�

(B

+

r

)-norm of y.

4.) Finally we will show the C

2+�

-estimate for x, y and z. Due to 4z = 2H(X)(x

u

y

v

� x

v

y

v

)

and the boundary 
ondition z

v

= 0 on I, we 
an �rst �nd a 
onstant C

4

su
h that

jjzjj

C

2+�

(B

+

r

)

� C

4

holds, employing S
hauder a priori estimates for Neumann boundary values. Next, using the

di�erential equation

4h = 4y � �

0

4x� �

00

jrxj

2

= 2H(X)(z

u

x

v

� z

v

x

u

)� 2�

0

H(X)(y

u

z

v

� z

u

y

v

)� �

00

jrxj

2

6



together with the Diri
hlet boundary 
ondition (10) we 
an give a bound for the C

2+�

(B

+

r

)-

norm of h. The Neumann 
ondition (15) together the di�erential equation4x = 2H(X)(y

u

z

v

�

z

u

y

v

) then yield the estimate

jjxjj

C

2+�

(B

+

r

)

� C

5

for some 
onstant C

5

. Finally, using y = h+�Æx we 
an �nd a bound for the C

2+�

(B

+

r

)-norm

of y. �

Remarks:

1.) Some of the arguments of the proof are similar to those of the boundary regularity theorem [1,

Theorem 2 in se
tion 7.3℄ for surfa
es of pres
ribed mean 
urvature with a Plateau boundary

(see also [7℄).

2.) The proof of this result does not need the graph property of the solution. Hen
e it 
an also

be applied to any 
onformally parametrized H-surfa
e X meeting the boundary of 
ylinder

Z




:= f(x; y; z) 2 R

3

j (x; y) 2 
g orthogonally on I. Su
h surfa
es appear as 
riti
al points

of the parametri
 fun
tional

E

Q

(X) :=

Z

B

+

�

jrXj

2

+Q(X) �X

u

^X

v

�

dudv

within a 
ertain 
lass of fun
tions. The ve
tor �eld Q must satisfy divQ(x; y; z) = 2H(x; y; z)

and meet the boundary of the 
ylinder Z




orthogonally (see [11℄ for more details). When


onsidering 
riti
al points of the fun
tional E

Q

, the 
ru
ial part is �rst to obtain a modulus

of 
ontinuity of X, as our a priori estimate depends on it.

3.) As we are dealing with graphs, it is relatively easy to obtain a modulus of 
ontinuity for the


onformal reparametrisation X of the graph � (see the proof of Theorem 2).

3. Two 
ompa
tness results

We start this se
tion with the following result.

Theorem 2:

Assumptions:

a) A bounded C

2+�

-domain 
 � R

2

is given with the Diri
hlet boundary part �

d

� �
 and the

Neumann boundary part �

n

:= �
n�

d

.

b) The pres
ribed mean 
urvature H 2 C

1+�

(R

3

;R) satis�es

�

�z

H = H

z

� 0 in 
� R :


) A given sequen
e of boundary values g

n

2 C

2+�

(�

d

;R) 
onverges uniformly to some limit

fun
tion g 2 C

0

(�

d

;R).

d) Let �

n

2 C

2+�

(
;R) be a solution of problem (1) for Diri
hlet boundary values g

n

on �

d

.

Then problem (1) has a solution � 2 C

2+�

(
[�

n

;R) \C

0

(
;R) for Diri
hlet boundary boundary

values g on �

d

.

Proof:

7



1.) Ea
h �

n

is solution of the quasilinear, ellipti
 equation (1). Then the di�eren
e fun
tion

~

� := �

n

� �

m

for �xed n;m is the solution of M(

~

�) = 0 in 
 for some linear, ellipti


di�erential operatorM (see [17, 
hapter VI, x2℄) whi
h by the assumption H

z

� 0 is subje
t

to the maximum prin
iple. The maximum prin
iple together with Hopf's boundary point

lemma then gives the estimate

jj�

m

� �

n

jj

C

0

(
)

� jj�

m

� �

n

jj

C

0

(�
)

� jj�

m

� �

n

jj

C

0

(�

d

)

= jjg

m

� g

n

jj

C

0

(�

d

)

! 0 for m;n!1 :

Thus the sequen
e �

n


onverges uniformly to some limit fun
tion � 2 C

0

(
;R) with � = g

on �

d

. Furthermore, we 
an �nd a 
onstant M 2 (0;+1) independent of n su
h that

jj�

n

jj

C

0

(
)

�M holds.

2.) By interior estimates for graphs of pres
ribed mean 
urvature (see e.g. [14℄) there is a


onstant C

1

= C

1

(r) for ea
h r > 0 su
h that

jj�

n

jj

C

2+�

(


r

)

� C

1

holds where 


r

:= f(x; y) 2 
 jdist((x; y); �
) � rg. We 
on
lude that � 2 C

2+�

(
;R) and

that � satis�es the di�erential equation (1) in 
.

3.) We now show that � is smooth up to the Neumann boundary �

n

and that the Neumann

boundary 
ondition is satis�ed. To do this, we introdu
e 
onformal parameters

X

n

(u; v) = (f

n

(u; v); �

n

Æ f

n

(u; v)) for (u; v) 2 B

+

on ea
h graph �

n

j

�

for some simply 
onne
ted domain � � 
 having the properties des
ribed

in the beginning of se
tion 2. Employing the area estimate for graphs of bounded mean


urvature (see [13, Hilfssatz 11℄)

A(�

n

) =

Z




p

1 + jr�

n

j

2

dxdy � C

2

(
;H;M)

we �rst obtain a bound on the Diri
hlet integral

D(f

n

) =

Z

B

+

jrf

n

j

2

dudv �

Z

B

+

jrX

n

j

2

dudv = 2

Z

B

+

jX

n

u

^X

n

v

jdudv = 2A(X

n

) � 2C

2

using the 
onformal parametrization of X

n

. Similarly to [6, Lemma 16℄, one 
an now derive

a uniform modulus of 
ontinuity for f

n

with the Courant-Lebesgue-Lemma using the three

point 
ondition and the fa
t that f

n

is inje
tive. Noting X

n

= (f

n

; �

n

Æ f

n

) and the uniform


onvergen
e of �

n

, we 
an derive a uniform modulus of 
ontinuity for the sequen
e X

n

.

Hen
e, by Lemma 2 there are 
onstants r > 0 and C

3

<1 independent of n su
h that

jjXjj

C

2+�

(B

+

r

)

� C

3

holds. After extra
ting a 
onvergent subsequen
e we have the 
onvergen
e X

n

! X in

C

2

(B

+

r

;R

3

) with some limit fun
tion X 2 C

2+�

(B

+

r

;R

3

). We set

X(u; v) = (x(u; v); y(u; v); z(u; v)) and f(u; v) = (x(u; v); y(u; v))

8



and obtain z(u; v) = � Æ f(u; v) in B

+

r

. Due to the C

2

-
onvergen
e X satis�es the pres
ribed

mean 
urvature system as well as the 
onformality relations

4X = 2H(X)X

u

^X

v

; jX

u

j

2

� jX

v

j

2

= 0 = X

u

�X

v

in B

+

r

:

Using an interior lower bound of the area elementW

n

= jX

n

u

^X

n

v

j (see [17, Satz 1 in 
hapter

XII, x9℄) one 
an ex
lude interior bran
hs point for X, i.e. jX

u

^X

v

j > 0 in B

+

r

. De�ning

the interval 
 := (�r; r)� f0g we 
on
lude from f

n

(B

+

) � 
 and f

n

(
) � �
 that

f(B

+

r

) � 
 and f(
) � �


holds. Now with the same reasoning as in the proof of [11, Lemma 5℄ one 
an ex
lude

boundary bran
h points on 
 and show that J

f

(u; v) = det(f

u

; f

v

) > 0 on 
 holds. By

the inverse fun
tion theorem then f is lo
ally invertible. Noting that both z and f are of

regularity 
lass C

2+�

then the relation �(x; y) = z Æ f

�1

(x; y) gives � 2 C

2+�

(
 \ U;R)

for some open neighborhood U = U(x

1

; y

1

) of the point f(0; 0) = (x

1

; y

1

). Sin
e the point

(x

1

; y

1

) 2 �

n

from the three point 
ondition 
an be 
hoosen arbitrarily, we get � 2 C

2+�

(
[

�

n

;R). Finally, noting the Neumann boundary 
ondition X

n

v

� e

3

= 0 on 
 we obtain for

n!1 the 
ondition X

v

�e

3

= 0 on 
 and from Lemma 1 we dedu
e the Neumann boundary


ondition

��

�n

= 0 on �

n

;

ending the proof. �

The next result treats the boundary regularity at the Diri
hlet boundary part �

d

.

Corollary 1: Let the assumptions of Theorem 2 be sati�ed and additionally g 2 C

2+�

(�

d

;R) as

well as

2jH(x; y; z)j < �(x; y) for (x; y; z) 2 �

d

� R (16)

where � : �
! R denotes the 
urvature of �
 w.r.t. the inner normal.

Then problem (1) has a solution � 2 C

2+�

(
;R) for Diri
hlet boundary values g on �

d

.

Proof:

By Theorem 1, there exists a solution � 2 C

2+�

(
 [ �

d

;R) \ C

0

(
;R) and we only have to show

that � is smooth up to the Diri
hlet boundary �

d

. We 
hoose a simply 
onne
ted subset T � �

d

with its endpoint (x

0

; y

0

) and (x

2

; y

2

) and some other point (x

1

; y

1

) 2 T . Next we 
hoose a simply


onne
ted domain � � 
 su
h that T � �
 \ ��. We introdu
e 
onformal parameters

X

n

(u; v) = (f

n

(u; v); �

n

Æ f

n

(u; v)) for (u; v) 2 B

+

on ea
h graph �

n

j

�

with f

n

satisfying (3) and the three point 
ondition (4), whi
h yields the

following Plateau-type boundary 
ondition

X

n

(I) � �

n

:= f(x; y; g

n

(x; y)) 2 R

3

j (x; y) 2 �

d

g : (17)

As in the proof of Theorem 2, we �rst derive a uniform modulus of 
ontinuity for the sequen
e X

n

and obtain a limit mapping X 2 C

0

(B

+

;R

3

). Due to interior estimates for systems with quadrati


growth in gradient we have the regularity X 2 C

2+�

(B

+

;R

3

). Furthermore, from (17) we derive

the boundary 
ondition

X(I) � � := f(x; y; g(x; y)) 2 R

3

j (x; y) 2 �

d

g

9



with the C

2+�

-
urve �. The boundary regularity theorem [1, Theorem 2 in se
tion 7.3℄ yields

X 2 C

2+�

(B

+

[ I;R

3

). We now de�ne the 
ylinder

Z := f(x; y; z) 2 R

3

j (x; y) 2 
g

and note X(B

+

) � Z and X(I) � �Z. De�ning

~

H : �Z ! R to be the mean 
urvature of �Z

w.r.t. the inner normal we have the relation

~

H(x; y; z) =

1

2

�(x; y) and by assumption (16) we

obtain

jH(x; y; z)j <

~

H(x; y; z) for (x; y; z) 2 �

d

� R :

Using the 
ylinder Z as barrier, we 
an derive the 
ondition of transversality (X

u

^ X

v

) � e

3

=

det(f

u

; f

v

) > 0 on I (see [13, Satz 2℄ or [5, x2℄). The same arguments as in the end of proof

of Theorem 2 yield the boundary regularity � 2 C

2+�

(
 \ U;R) for some open neighborhood

U = U(x

1

; y

1

). As (x

1

; y

1

) 2 �

d

was 
hoosen arbitrarily, we obtain � 2 C

2+�

(
;R). �

4. The proof of Theorem 1

1.) We �rst prove Theorem 1 for Diri
hlet boundary values g 2 C

2+�

(�

d

;R). For a parameter

t 2 [0; 1℄ we 
onsider the family P (t) of mixed boundary value problems (2) and set

J := ft 2 [0; 1℄ j P (t) has a solution � 2 C

2+�

(
;R)g :

Note that by assumption 
) of Theorem 1 we have 0 2 J . Hen
e it remains to show that J

is both open and 
losed.

2.) To show that J is open, we need to generalize the perturbation result for surfa
es of pres
ribed

mean 
urvature of [17, Hilfssatz 4 in x9 of 
hapter XII℄ or [16, Proposition 2℄ to the 
ase of

mixed boundary values. As this is straightforward, we will only give the basi
 ideas. Given a

solution � of the problem P (t) for some t 2 [0; 1℄, we want to �nd a fun
tion Æ 2 C

2+�

(
;R)

su
h that

~

� := � + Æ is a solution of the problem P (t

�

) for some t

�

2 [0; 1℄. We put

~

� = � + Æ

into the pres
ribed mean 
urvature equation and develop in terms of Æ. Putting all linear

terms in Æ on the left side and all quadrati
 or higher order terms on the right side, we obtain

for Æ the following mixed boundary value problem

L(Æ) = �(Æ) in 
 ; Æ = (t

�

� t)(g � g

0

) on �

d

and

�Æ

�n

= 0 on �

n

: (18)

Here, L(Æ) is some linear, uniformly ellipti
 di�erential operator, whi
h by the assumption

H

z

� 0 is subje
t to the maximum prin
iple. The expression �(Æ) 
ontains all terms of order

higher than linear in Æ and hen
e satis�es a 
ontra
tion 
ondition of the following type

jj�(Æ

1

)� �(Æ

2

)jj

C

�

(
)

� C(r)jjÆ

1

� Æ

2

jj

C

2+�

(
)

(19)

whenever jjÆ

1

jj

C

2+�

(
)

+ jjÆ

2

jj

C

2+�

(
)

� r

for some 
onstant C(r) with C(r)! 0 for r ! 0.

We now 
onsider the following mixed boundary value problem

Æ 2 C

2+�

(
;R) ; L(Æ) = f in 


Æ = (t

�

� t)(g � g

0

) on �

d

and

�Æ

�n

= 0 on �

n

10



whi
h is uniquely solvable due to S
hauder theory for all f 2 C

�

(
;R). The solution of

this problem we denote by L

�1

(f) := Æ. Combining interior S
hauder estimates with lo
al

S
hauder estimates at the Diri
hlet boundary (see [2, 
hapter 6.2℄) and at the Neumann

boundary (see [2, 
hapter 6.7℄), the following estimate 
an be shown

jjL

�1

(f)jj

C

2+�

(
)

�M

�

jjf jj

C

�

(
)

+ jj(t

�

� t)(g � g

0

)jj

C

2+�

(�

d

)

�

(20)

for some 
onstant M , if we use the assumption dist(�

d

;�

n

) > 0. Now problem (18) is

equivalent to the �xed point equation L

�1

Æ �(Æ) = Æ. Using the 
ontra
tion 
ondition

(19) together with the estimate (20) a �xed point of L

�1

Æ � 
an be 
onstru
ted using the


ontra
tion mapping prin
iple. To make the mapping L

�1

Æ � a 
ontra
tion from a set into

itself one has to assume jt

�

� tj � " for suÆ
iently small " > 0.

3.) To prove that J is 
losed, let �

n

be a sequen
e of solutions for of P (t

n

) with t

n

2 J and

assume that t

n

! t

�

for n!1. Then by Theorem 2 together with Corollary 1 there exists

a solution � 2 C

2+�

(
;R) of problem P (t

�

) showing the 
loseness of the set J . We 
on
lude

J = [0; 1℄ and for t = 1 we obtain the desired solution of problem (1).

4.) Finally, we solve problem (1) for 
ontinuous Diri
hlet boundary values g 2 C

0

(�

d

;R). Let

g

n

2 C

2+�

(�

d

;R) be a sequen
e of boundary values 
onverging uniformly on �

d

to g. By

solving the mixed boundary value problem for g

n

and applying Theorem 2, we obtain a

solution � 2 C

2+�

(
 [ �

d

;R) \ C

0

(
;R) for the Diri
hlet boundary values g. �

Remark: Using methods from the 
al
ulus of variations it is relatively easy to show that the

solution � 2 C

2+�

(
;R) for Diri
hlet boundary values g 2 C

2+�

(�

d

;R) of Theorem 1 is the unique

minimizer of the generalized nonparametri
 area fun
tional

A(�) :=

Z




�

p

1 + jr�j

2

+ b(x; y; �)

�

dxdy

within the 
lass of fun
tions

C(
;�

d

; g) :=

n

� 2 C

2

(
;R) \ C

1

(
;R) j � = g on �

d

o

:

Here, we have to 
hoose b = b(x; y; z) su
h that b

z

= 2H holds.
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