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Abstract

We solve a mixed boundary value problem for the nonparametric prescribed
mean curvature equation, prescribing continuous Dirichlet boundary values at
some strictly convex boundary part and Neumann zero boundary values at
the remaining part of the boundary. We assume that Dirichlet and Neumann
boundary parts are some positive distance away from each other.

1. Introduction and the main result

For a given C?*®-domain  C R? we consider the following mixed boundary value problem for the
nonparametric prescribed mean curvature equation
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where n denotes the outer unit normal to 9Q and H = H (z,y, z) is the prescribed mean curvature
function. We prescribe Dirichlet boundary values g on some part I'; C 082 of the boundary and
Neumann zero boundary values on the other part I';, := 9Q\I'y. We will assume I'y # 0 since
otherwise one obtains a pure Neumann problem which is in general not solvable unless certain
compatibility conditions are satisfied.

If we define a function b by b,(z,y,z) = 2H(z,y,z), then the mixed boundary value problem
(1) is the Euler equation of the generalised nonparametric area functional

A(n) = / (\/ 1+ |Vn)?+ b(w,y,n))dwdy

Q

within the class of functions
C(Targ) == {n € CAAR NC' @R) =g onTa}.

As there are no boundary values prescribed on I';, within the class C, the Neumann boundary
condition % = 0 appears as the natural boundary condition on T',.

Using the continuity method we will construct a solution of (1) as in [16] (see also [17, §8 in
chapter XII]), where the case I';, = () is treated, i.e. pure Dirichlet problem. Two important
assumptions were needed there: The strict convexity of the domain 2 and monotonocity condition
H, > 0 on the prescribed mean curvature. The second assumption is needed for uniqueness of



solutions via the maximum principle but also for stability of solutions in the sence that a pertur-
bation result can be proved.

We will also assume H, > 0 in this work. However, the strict convexity is needed only at the
Dirichlet boundary part Iy, i.e. k(z,y) > 0 on T'y for the curvature k£ : 9Q — R of 9Q w.r.t.
the inner normal. Hence, no curvature assumption concering the Neumann boundary part I';, is
needed. Next we have to assume dist(I'g, ;) > 0, i.e. Dirichlet and Neumann boundary parts do
not touch each other. In case I', # () this directly implies that the domain €2 cannot be simply
connected. For the case of touching Dirichlet and Neumann boundary parts and simply connected
domains the mixed boundary value problem was solved in [8] and [9] for the minimal surface case
and in [11, Theorem 2] for the prescribed mean curvature case, where however a certain smallness
condition on H is needed. An existence result for convex domains € in higher dimensions n > 2
can be found in [3].

A typical domain suitable in this paper is the following annular domain: Considering two sim-
ply connected C?**-domains g, Q; such that Qg is strictly convex and Q; C Qg we define
Q := Q\Q;. Here, the Dirichlet boundary part is 'y := 9§y and the Neumann boundary part
is I'y, := 0. More generally, we can also consider domains with finitely many holes rather than
just one hole.

The main result of this paper is the following
Theorem 1: Assumptions:

a) Let Q C R? be a bounded C**®-domain with the Dirichlet and Neumann boundary parts
L'y # 0 and T, such that Ty is stricty convex and dist(Lgq,Ty,) > 0.

b) Let the prescribed mean curvature H € C'T*(R3,R) satisfy
H,>0 inQxR and 2|H(z,y,2)| < k(z,y) for(z,y,z) e g xR
where k(x,y) denotes the curvature of 02 w.r.t. the inner normal.

¢) Assume that the mized boundary value problem (1) has a solution ( € C?*T%(Q,R) for some
boundary values gy € C*T*(T'y, R).

Then there exists a unique solution ¢ € C***(QUT,,R) N C°(Q,R) for all boundary values g €
C%('g,R). In case g € C*T*(I'y,R), that solution belongs to the space C*T(Q, R).

An essential assumption of Theorem 1 is the existence of an initial solution for certain boundary
values gg. For the minimal surface case, i.e. H = 0, such an initial solution always exists with
( =0in Q for g9 = 0 on I'y. The same applies to all prescribed mean curvatures H with the
property H(z,y,0) =0 for (z,y) € Q.

On the other hand, note that under the assumptions a) and b) of Theorem 1 an initial solution
need not necessarily exist. Consider e.g. the prescribed mean curvature H = H(z,y) = 4 — 2% — 32
and the disc Q = {(z,y) € R? | 2% +y* < 4} with 'y := 9Q and T';, = (). Note that the assumption
2|H(z,y)| < k(z,y) on 02 of Theorem 1 is satisfied since H = 0 on 0€2. However, no graph of
prescribed mean curvature H over 2 exists due to H(z,y) > 1 for 22 +y? < 1. Hence, we may also
view Theorem 1 as a nonexistence theorem. Assuming that the mixed boundary value problem is
not solvable for certain Dirichlet boundary values, it will not be solvable for any Dirichlet boundary
values.



Now to obtain a solution of problem (1), we will employ the continuity method and study the
following family P(t) of mixed boundary value problems
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with a parameter ¢ € [0,1]. Let J C [0,1] be the set of all ¢t € [0,1] for which P(¢) is solvable.
Note that by assumption c¢) of Theorem 1 we have 0 € J. It remains to show that J is both
open and closed. The openness is basically a consequence of a perturbation result for graphs
of prescribed mean curvature, which for the case I', = () is shown in [16, Proposition 2] or [17,
Hilfssatz 4 in §8, chapter XII]. It can directly be generalized to the case ', # () using the assumption
dist(I'¢,I';) > 0. To show that J is closed a compactness result for graphs of prescribed mean
curvature has to be proved. As the behavior at the Dirichlet boundary is basically known and
studied we focus on the behavior at the Neumann boundary. In section 2 we start with an a priori
C?*°_estimate up to the Neumann boundary for a conformal reparametrisation of the graph. We
use it in section 3 to prove a compactness result for graphs which yields the closeness of the set J.
Finally, we give the proof of Theorem 1 in section 4.

2. Local estimates at the Neumann boundary

We start with a solution ¢ € C?T%(Q U 'y, R) of problem (1) on a bounded C?**-domain Q. We
now choose a simply connected part T C T',, with its endpoint (zg,yo), (z2,y2) € T and some third
point (z1,y1) € T. Next, we choose a simply connected subset C?*%domain © C Q with the
properties ' C 9 N 9O and dist(©, ;) > 0.

Defining the open half disc BT := {(u,v) € R?|u® +v? < 1, v > 0}, we introduce confor-
mal parameters on the graph (|g (see [15]): There exists a positively oriented diffeomorphism

f: BT -8 e C°(BT, ) n 2 (BF\{(~1,0), (1,0)}, 2) (3)
satifying the three point condition

f(—l,O) = (Q;anO) ’ f(0,0) = ($1,y1) and f(l,O) = ($27y2) (4)

and having a positive Jakobi determinant Jy := det(fy, fy) > 0 in BT such that the reparametrized
graph

X(u,v) := (f(u,v),¢ 0 f(u,v)) (5)
is given in conformal parameters. The vector valued function X satisfies the prescribed mean
curvature system together with the conformality relations

AX =2H(X)X,AX, and |X,)*—|X,) =X, -X,=0 inB".

From the three point condition we infer f(I) C T' C 02 for the interval I := (—1,1) x{0}. We first
need the following lemma, which shows how the Neumann condition for the graph { translates to
the conformal reparametrisation.

Lemma 1: The Neumann boundary condition % = 0 on T is equivalent to the boundary condition
Xy -e3 =0 on I where eg := (0,0,1).



Proof:

1.) We assume V(-n = 0 and set X (u,v) = (f(u,v), z(u,v)) with z(u,v) = (o f(u,v). From
det(fu, fu) > 0 we first conclude |f,| > 0 and |f,| > 0. Using f(I) C 0f2 we obtain that the
vector f, is perpendicular to n and hence V({ = Af, for some A € R. Using the conformality
relations we compute

0 = Xu'Xv:fu'fv+zuzv:fu'fv"i‘(vC'fu)(vC'fv)
= fu‘fv+>\2(fu‘fu)(fu'fv):(1+>\2|fu|2)(fu'fv)

concluding f, - f, = 0. Together with f,,-n =0 and |f,| > 0 we know that f, = on for some
o € R Noting the assumption V(- n = 0 this gives X, -e3 =2, = V(- f, =oV(-n=0.

2.) Assume X, -e3 = z, = 0. From the conformality relation X, - X;,, = 0 we conclude f, - f,, = 0.
Since f, is a nonzero tangent vector to 02 we obtain that the vectors f, and n are linearly
dependent. From the relation 0 = z, = V( - f,, we conclude V(- n = 0, using |f,| > 0. O

We now define B;" := B,.(0,0) N BT = {(u,v) € B* |u? +v? < r?} and show an a priori estimate
of X in B

Lemma 2: Assume that the C°-estimate
IC(z,y)| <M inQ (6)

holds. Then the exist constants r > 0 and C' < co such that the conformal reparametrisation X of
¢ in (5) satisfies the estimate
||X||02+a(3j) <C.

The constants v and C only depend on the data 2, M, H, a and the modulus of continuity of X.
Proof:

1.) Setting
X(u,v) = (z(u,v),y(u,v), z(u,v))

we note that f(u,v) = (z(u,v),y(u,v)) for f from (5). Lemma 1 yields the Neumann

boundary condition X2 = z, = 0 on I. Using the complex differential operator % =

10 _ 10 the conformality relations for X can be written equivalently in the form

0=Xy Xo=(70)*+ (yu)* + (20)? .
Noting |22| = |zy|? = $|Vz|? and similar formulas for y and z we deduce the inequalities
Vol <[Vyl* + V2", |[Vy[ < |[Val* + Ve and [Ve]* <[Vaf* +[Vyl*.  (7)
Using this together with AX = 2H (X)X, A X, we now estimate
[AX] < 20| Xu A Xo| = el VX[” = e(|Val* + [Vyl* +[V2]*) < 2e(|Vy[* + | V2[")

which yields
|Az| + |Ay| +]Az] < 3|AX] < 6e(|Vyl® + V2l . (8)

Here we have set

c:= sup |H(z,y,2)| < o0 .
(z.y)€Q, |2|<M



2.) We now prove an estimate for |VX|. We consider the point (z1,y1) = f(0,0) from the three
point condition. After a suitable rotation in R? we can locally represent d€2 in a neighborhood
of (z1,y1) by a graph of some function 3, more precisely: There exists a constant d > 0 and
a function 8 € C?*t%(J,R) with J := [x; — d, 71 + d] such that the following representation
holds

992 N By(z1,51) C {(z,8(x)) €R* [z € J} .

Here, we may also assume that

1
5 fort € J and ||ﬂ||02+a(J) SK (9)
Since Q is a bounded C?*®-domain the constants d = d(2) > 0 and K = K(2) < oo can

be choosen independently of the point (z1,y;). Due to f(0,0) = (z1,y1) and the continuity
of f we can choose some constant r > 0, depending on the modulus of continuity of f, such

Bllz) =0 , |B'(#) <

that f(u,v) € By(z1,y1) for (u,v) € B;f holds. Hence, the following auxiliary function
heC*(BFR) , h(u,v) = y(u,v) — Boz(u,v) for (uuv) € B
is welldefined. From f(I) C 992 we obtain for h the boundary condition
h(u,0) =0 foru € (—r,r). (10)
Using (8) and (7) we estimate

| Az| + | Ak D] + |y = B'Da — B (a7 + a3)]

|Az| + |Ay| + | Az| + K|V:1c|2
6c(|Vy)* + |V2?) + K([Vy|* + |Vz[*)
(6c + K)(|Vy|? +|Vz]?) . (11)

VARPAN

To obtain a bound for |Vy|? in terms of [VA|? and |Vz|? we compute
2 2 1 2
Yy = |Vh+BVaf < (|9 + 3|Vel)

1 1 1
< 2|Vh|? + 5|vgc|2 < 2|Vh? + §|Vy|2 + §|Vz|2

which yields the inequality
|Vy|2 < 4|Vh|* +|Vz)? . (12)

Combining this estimate with (11) we obtain
|AR| +|Az| < (24¢ + 4K)|VR|? + (12¢ +2K)|Vz|* in B} .
We now define another auxiliary function
Y:BF =R, 9(u,v) := (h(u,v), z(u,v))

and note the differential inequality |Ay| < (24¢ + 4K)|Vp|?. We want to apply the interior
a priori estimates for systems with quadratic growth in the gradient (see [1, chapter 7.2] or
[17, chapter XII, §2]). To obtain the required smallness condition for these estimates, we
reduce the constant r > 0 such that

Bt

in B

1
|9 (u, v) —4(0,0)] < m



holds. Here, the choice of 7’ is determined by the modulus of continuity for ¢ which is
controlled by the modulus of continuity of X. We now reflect ¢ across I by

o) e 4 (B(u,v), 2(u, ) if (u,0) € B, . |
P(u,v) : { (=h(u, —v),2(u, —v)) if (u,—v) € B (u,v) € By .

By the Dirichlet boundary condition (10) for & and the Neumann boundary condition z, = 0
on I we conclude the regularity ¢ € CYY(B,,R?), i.e. the first derivatives of 9 exist in
B, and they are Lipschitz continuous. Furthermore, we have the inequality |A1/~J| < (24c +
4K)|V4|? in By\I. Now the a priori estimates for systems with quadratic growth in the
gradient, which in general hold only for C2-functions, can also be applied to the function 1/7
after a suitable approximation process by C?-functions, e.g. by the Friedrich’s mollifiers of
. For any r < ' there exists a constant C; = Ci(c, K,r,a) such that

||z||cl+a(Bj) + ||h||cl+a(3r+) <Ci. (13)
Together with (12) and (7) we can find a constant C5 such that

|Vz|+ |Vy| +|Vz| < Cy in B .

In the next step we show a Holder estimate for Vo and Vy. To do this, we first derive a
boundary condition for x, on I. By the conformality relations, we have

0=2uTy + YulYo + 2u2p = TyTy + YuYo onl
using z, = 0 on [. Putting y = h 4+ f o x into this equation yields
0 = zyzy+ (hu + 5,$u)(hv + /6,3711) = TyTy + (hv + /lev)ﬁlxu
= zuz,(1+ (B} + hyfzy onl (14)

taking h, = 0 on [ into account. We now claim z, # 0 on I. Otherwhise we would have
0 = hy = yu — 'z, and so y, = 0, contradicting det(fy, fv) = TuYy — ToYy > 0 which holds
because f is a positively oriented diffeomorphism. Dividing by z, in (14) we obtain for x
the Neumann boundary condition

Ty = B@h onl. (15)

1+ ()2
By (13) there exists a C®-bound on the right hand side of this equation. Noting (8) poten-
tialtheoretic estimates give a constant C3 such that

||$||cl+a(3;r) <Cs.
Using y = h + 8 0 2 we can then also bound the C**%(B;)-norm of y.

Finally we will show the C?*®-estimate for z, y and z. Due to Az = 2H(X)(zyyy — Toyo)
and the boundary condition z, = 0 on I, we can first find a constant Cy such that

||Z||c2+a(3r+) <y

holds, employing Schauder a priori estimates for Neumann boundary values. Next, using the
differential equation

Ah = Ay—p'Ax— "V
= 2H(X)(zuZy — 20my) — 20" H(X) (Yuzo — 2ulYv) — ﬁ"|V$|2



together with the Dirichlet boundary condition (10) we can give a bound for the C?*%(B;")-
norm of A. The Neumann condition (15) together the differential equation Az = 2H (X)) (yyzy—
ZuYy) then yield the estimate

||x||c2+a(3j) < Cs

for some constant C5. Finally, using y = h+ oz we can find a bound for the C**%(B,})-norm
of y. O

Remarks:

1)

2.)

3.)

Some of the arguments of the proof are similar to those of the boundary regularity theorem [1,
Theorem 2 in section 7.3] for surfaces of prescribed mean curvature with a Plateau boundary
(see also [7]).

The proof of this result does not need the graph property of the solution. Hence it can also
be applied to any conformally parametrized H-surface X meeting the boundary of cylinder
Zg = {(z,y,2) € R®|(z,y) € Q} orthogonally on I. Such surfaces appear as critical points
of the parametric functional

Eqg(X) == / (|VX|2 +Q(X) -Xu/\XU>dudv

Bt

within a certain class of functions. The vector field Q must satisfy divQ(z,y, z) = 2H(z,y, z)
and meet the boundary of the cylinder Zg orthogonally (see [11] for more details). When
considering critical points of the functional Eg, the crucial part is first to obtain a modulus
of continuity of X, as our a priori estimate depends on it.

As we are dealing with graphs, it is relatively easy to obtain a modulus of continuity for the
conformal reparametrisation X of the graph ¢ (see the proof of Theorem 2).

3. Two compactness results

We start this section with the following result.

Theorem 2:
Assumptions:

a) A bounded C*T*-domain Q C R? is given with the Dirichlet boundary part I'q C 0Q and the

Neumann boundary part T'y, := 0Q\I'y.

b) The prescribed mean curvature H € C1T*(R3 | R) satisfies

I _H.>0 inQxR.
0z

c) A given sequence of boundary values g" € C*T%(I'y,R) converges uniformly to some limit

function g € C°(T'y,R).

d) Let (™ € C?*T*(Q,R) be a solution of problem (1) for Dirichlet boundary values g™ on I'g.

Then problem (1) has a solution ¢ € C*T*(QUT,,R) NC°(Q, R) for Dirichlet boundary boundary
values g on T'y.

Proof:



1)

Each (" is solution of the quasilinear, elliptic equation (1). Then the difference function
¢ = (" — (™ for fixed n,m is the solution of M(¢) = 0 in € for some linear, elliptic
differential operator M (see [17, chapter VI, §2]) which by the assumption H, > 0 is subject
to the maximum principle. The maximum principle together with Hopf’s boundary point
lemma then gives the estimate

11C™ = ¢lleogy < 1IE™ = ¢"lleoqany < IIC™ = C"llcowr,)
g™ — g"llcor,) — 0 form,n — oco.

Thus the sequence (" converges uniformly to some limit function ¢ € C°(2,R) with ¢ = ¢
on I'y. Furthermore, we can find a constant M € (0,+00) independent of n such that
||Cn||C0(Q) S M holds.

By interior estimates for graphs of prescribed mean curvature (see e.g. [14]) there is a
constant C; = Cy(r) for each r > 0 such that

¢ [|c2ta(n,) < C1

holds where €, := {(z,y) € Q|dist((z,y), Q) > r}. We conclude that ¢ € C*T*(Q,R) and
that ¢ satisfies the differential equation (1) in €2.

We now show that ( is smooth up to the Neumann boundary I';, and that the Neumann
boundary condition is satisfied. To do this, we introduce conformal parameters

X"(u,v) = (f"(u,v),(" o f*(u,v)) for (u,v) € B+

on each graph ("|g for some simply connected domain © C Q having the properties described
in the beginning of section 2. Employing the area estimate for graphs of bounded mean
curvature (see [13, Hilfssatz 11])

A" = / V14|V 2dzdy < Co(Q H, M)
Q

we first obtain a bound on the Dirichlet integral

D(f") = / IV " Pdudy < / VX" 2dudv = 2 / | XD A XD dudv = 2A(X™) < 2C,
B+ B+ B+

using the conformal parametrization of X™. Similarly to [6, Lemma 16], one can now derive
a uniform modulus of continuity for f™ with the Courant-Lebesgue-Lemma using the three
point condition and the fact that f™ is injective. Noting X™ = (f™,(" o f™) and the uniform
convergence of (", we can derive a uniform modulus of continuity for the sequence X".
Hence, by Lemma 2 there are constants r > 0 and (3 < oo independent of n such that

||X||02+a(3r+) < 03

holds. After extracting a convergent subsequence we have the convergence X" — X in
C%(B;f,R?) with some limit function X € C***(B,",R3). We set

X(u,v) = (z(u,v),y(u,v), z(u,v)) and f(u,v) = (x(u,v),y(u,v))



and obtain z(u,v) = (o f(u,v) in B;f. Due to the C?-convergence X satisfies the prescribed
mean curvature system as well as the conformality relations

AX =2HX)X, AX, , |Xu*-|X,* =0=X,-X, inB'.

Using an interior lower bound of the area element W = | X' A X'| (see [17, Satz 1 in chapter
XII, §9]) one can exclude interior branchs point for X, i.e. |Xy A Xy[ > 0 in B;. Defining
the interval v := (—r,r) x {0} we conclude from f*(B*) C @ and f"(y) C 99 that

f(BH cQ and f(y) C o9

holds. Now with the same reasoning as in the proof of [11, Lemma 5] one can exclude
boundary branch points on v and show that Jy(u,v) = det(fy, f,) > 0 on v holds. By
the inverse function theorem then f is locally invertible. Noting that both z and f are of
regularity class C?*® then the relation ((z,y) = z o f (z,y) gives ( € C*T*(Q N U,R)
for some open neighborhood U = U(z1,y;) of the point f(0,0) = (z1,y1). Since the point
(z1,y1) € T, from the three point condition can be choosen arbitrarily, we get ¢ € C*t*(QuU
I'y,R). Finally, noting the Neumann boundary condition X' - e3 = 0 on 7 we obtain for
n — oo the condition X, -e3 = 0 on v and from Lemma 1 we deduce the Neumann boundary
condition
o¢

—=0 on I,

on
ending the proof. O

The next result treats the boundary regularity at the Dirichlet boundary part ['y.

Corollary 1: Let the assumptions of Theorem 2 be satified and additionally g € C?*T*(I'y,R) as
well as

2|H(£E,y,2’)| < K’(‘(E7y) fO’F ($7y7z) €lg xR (16)

where r : I — R denotes the curvature of O w.r.t. the inner normal.
Then problem (1) has a solution ¢ € C?>T%(Q,R) for Dirichlet boundary values g on I'y.

Proof:

By Theorem 1, there exists a solution ¢ € C?T*(QUT 4, R) N CY(Q,R) and we only have to show
that ¢ is smooth up to the Dirichlet boundary I'y. We choose a simply connected subset T C I'y
with its endpoint (z¢,y¢) and (x2,y2) and some other point (z1,y1) € T. Next we choose a simply
connected domain © C €2 such that T" C 92 N 0O. We introduce conformal parameters

X" (u,v) = (f"(u,v),¢" o f*(u,v)) for (u,v) € Bt

on each graph ("|g with f" satisfying (3) and the three point condition (4), which yields the
following Plateau-type boundary condition

X"(I) B = {(z,y, 9" (z,9)) € B | (z,y) € Ly} . (17)

As in the proof of Theorem 2, we first derive a uniform modulus of continuity for the sequence X"
and obtain a limit mapping X € C°(B+,R?). Due to interior estimates for systems with quadratic
growth in gradient we have the regularity X € C?*®(B* ,R?). Furthermore, from (17) we derive
the boundary condition

X(I) 2= {(z,y,9(z,y) €R | (z,y) € Ta}



with the C?*@-curve 3. The boundary regularity theorem [1, Theorem 2 in section 7.3] yields
X € C?T(BT UI,R?). We now define the cylinder

Z :={(z,y,2) € R3 | (z,y) € Q}

and note X(B1) € Z and X(I) C dZ. Defining H : Z — R to be the mean curvature of 9Z
w.r.t. the inner normal we have the relation H(z,y,z) = %n(w,y) and by assumption (16) we
obtain

|H(x,y,2)| < H(z,y,z) for (z,y,2z) €4 xR.

Using the cylinder Z as barrier, we can derive the condition of transversality (X, A X,) - e3 =
det(fy, fy) > 0 on I (see [13, Satz 2] or [5, §2]). The same arguments as in the end of proof
of Theorem 2 yield the boundary regularity ¢ € C?*T*(Q N U,R) for some open neighborhood
U =U(x1,y1). As (z1,y1) € T'y was choosen arbitrarily, we obtain ¢ € C?**(Q, R). O

4. The proof of Theorem 1

1.) We first prove Theorem 1 for Dirichlet boundary values g € C?7%(I'y,R). For a parameter
t € [0,1] we consider the family P(¢) of mixed boundary value problems (2) and set

J :={t €[0,1] | P(¢) has a solution ¢ € C2+0‘(§7 R)} .

Note that by assumption ¢) of Theorem 1 we have 0 € J. Hence it remains to show that J
is both open and closed.

2.) To show that J is open, we need to generalize the perturbation result for surfaces of prescribed
mean curvature of [17, Hilfssatz 4 in §9 of chapter XII] or [16, Proposition 2] to the case of
mixed boundary values. As this is straightforward, we will only give the basic ideas. Given a
solution ¢ of the problem P(t) for some ¢ € [0, 1], we want to find a function § € C?T%(Q, R)
such that ¢ := ¢ +4 is a solution of the problem P(t*) for some t* € [0,1]. We put (=(C+0
into the prescribed mean curvature equation and develop in terms of §. Putting all linear
terms in § on the left side and all quadratic or higher order terms on the right side, we obtain
for ¢ the following mixed boundary value problem

LO)=®0) inQ , 6d=(t"—1t)(¢g—¢go) onTy and %:0 onT}, . (18)

Here, £(d) is some linear, uniformly elliptic differential operator, which by the assumption
H, > 0 is subject to the maximum principle. The expression ®(4) contains all terms of order
higher than linear in ¢ and hence satisfies a contraction condition of the following type

1(81) — (62l oy < CONI01 — Boll o (19)

whenever |[01|] 24 @ T |62]] e @=T

for some constant C(r) with C(r) — 0 for r — 0.
We now consider the following mixed boundary value problem

§€ C* QR , L) =f inQ

d=(t"—t)(g—¢go) only and 3—5:0 onl,
n

10



which is uniquely solvable due to Schauder theory for all f € C%(2,R). The solution of
this problem we denote by £7!(f) := 6. Combining interior Schauder estimates with local
Schauder estimates at the Dirichlet boundary (see [2, chapter 6.2]) and at the Neumann
boundary (see [2, chapter 6.7]), the following estimate can be shown

17 (Pllczraay < M (I llon@) + 16 =15 = g)llcrar,) (20)

for some constant M, if we use the assumption dist(I'g,I';,) > 0. Now problem (18) is
equivalent to the fixed point equation £ ! o ®(§) = . Using the contraction condition
(19) together with the estimate (20) a fixed point of £~ o @ can be constructed using the
contraction mapping principle. To make the mapping £~ ! o ® a contraction from a set into
itself one has to assume |t* — ¢| < ¢ for sufficiently small € > 0.

To prove that J is closed, let ("™ be a sequence of solutions for of P(¢") with t" € J and
assume that " — t* for n — oo. Then by Theorem 2 together with Corollary 1 there exists
a solution ¢ € C?1*(Q, R) of problem P(t*) showing the closeness of the set .J. We conclude
J =10,1] and for t = 1 we obtain the desired solution of problem (1).

Finally, we solve problem (1) for continuous Dirichlet boundary values g € C°(T'y,R). Let
g" € C*(I'4,R) be a sequence of boundary values converging uniformly on Iy to g. By
solving the mixed boundary value problem for ¢" and applying Theorem 2, we obtain a
solution ¢ € C?T*(QUTy, R) N CY(Q,R) for the Dirichlet boundary values g. O

Remark: Using methods from the calculus of variations it is relatively easy to show that the
solution ¢ € C?+%(Q, R) for Dirichlet boundary values g € C?7%(I'4, R) of Theorem 1 is the unique
minimizer of the generalized nonparametric area functional

A(n) = / (\/ 1+ |Vn|?2 + b(w,y,n))dwdy

Q

within the class of functions

C(Tq,9) = {17 € C*(LR) NCYQ,R) [n=g on Fd} .

Here, we have to choose b = b(z,y, z) such that b, = 2H holds.
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