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Abstrat

We solve a mixed boundary value problem for the nonparametri presribed

mean urvature equation, presribing ontinuous Dirihlet boundary values at

some stritly onvex boundary part and Neumann zero boundary values at

the remaining part of the boundary. We assume that Dirihlet and Neumann

boundary parts are some positive distane away from eah other.

1. Introdution and the main result

For a given C

2+�

-domain 
 � R

2

we onsider the following mixed boundary value problem for the

nonparametri presribed mean urvature equation

div

r�

p

1 + jr�j

2

= 2H(x; y; �) in 
 (1)

� = g on �

d

;

��

�n

= 0 on �

n

;

where n denotes the outer unit normal to �
 and H = H(x; y; z) is the presribed mean urvature

funtion. We presribe Dirihlet boundary values g on some part �

d

� �
 of the boundary and

Neumann zero boundary values on the other part �

n

:= �
n�

d

. We will assume �

d

6= ; sine

otherwise one obtains a pure Neumann problem whih is in general not solvable unless ertain

ompatibility onditions are satis�ed.

If we de�ne a funtion b by b

z

(x; y; z) = 2H(x; y; z), then the mixed boundary value problem

(1) is the Euler equation of the generalised nonparametri area funtional

A(�) :=

Z




�

p

1 + jr�j

2

+ b(x; y; �)

�

dxdy

within the lass of funtions

C(
;�

d

; g) :=

n

� 2 C

2

(
;R) \ C

1

(
;R) j � = g on �

d

o

:

As there are no boundary values presribed on �

n

within the lass C, the Neumann boundary

ondition

��

�n

= 0 appears as the natural boundary ondition on �

n

.

Using the ontinuity method we will onstrut a solution of (1) as in [16℄ (see also [17, x8 in

hapter XII℄), where the ase �

n

= ; is treated, i.e. pure Dirihlet problem. Two important

assumptions were needed there: The strit onvexity of the domain 
 and monotonoity ondition

H

z

� 0 on the presribed mean urvature. The seond assumption is needed for uniqueness of

1



solutions via the maximum priniple but also for stability of solutions in the sene that a pertur-

bation result an be proved.

We will also assume H

z

� 0 in this work. However, the strit onvexity is needed only at the

Dirihlet boundary part �

d

, i.e. �(x; y) > 0 on �

d

for the urvature � : �
 ! R of �
 w.r.t.

the inner normal. Hene, no urvature assumption onering the Neumann boundary part �

n

is

needed. Next we have to assume dist(�

d

;�

n

) > 0, i.e. Dirihlet and Neumann boundary parts do

not touh eah other. In ase �

n

6= ; this diretly implies that the domain 
 annot be simply

onneted. For the ase of touhing Dirihlet and Neumann boundary parts and simply onneted

domains the mixed boundary value problem was solved in [8℄ and [9℄ for the minimal surfae ase

and in [11, Theorem 2℄ for the presribed mean urvature ase, where however a ertain smallness

ondition on H is needed. An existene result for onvex domains 
 in higher dimensions n � 2

an be found in [3℄.

A typial domain suitable in this paper is the following annular domain: Considering two sim-

ply onneted C

2+�

-domains 


0

, 


1

suh that 


0

is stritly onvex and 


1

� 


0

we de�ne


 := 


0

n


1

. Here, the Dirihlet boundary part is �

d

:= �


0

and the Neumann boundary part

is �

n

:= �


1

. More generally, we an also onsider domains with �nitely many holes rather than

just one hole.

The main result of this paper is the following

Theorem 1: Assumptions:

a) Let 
 � R

2

be a bounded C

2+�

-domain with the Dirihlet and Neumann boundary parts

�

d

6= ; and �

n

suh that �

d

is strity onvex and dist(�

d

;�

n

) > 0.

b) Let the presribed mean urvature H 2 C

1+�

(R

3

;R) satisfy

H

z

� 0 in 
� R and 2jH(x; y; z)j < �(x; y) for (x; y; z) 2 �

d

� R

where �(x; y) denotes the urvature of �
 w.r.t. the inner normal.

) Assume that the mixed boundary value problem (1) has a solution � 2 C

2+�

(
;R) for some

boundary values g

0

2 C

2+�

(�

d

;R).

Then there exists a unique solution � 2 C

2+�

(
 [ �

n

;R) \ C

0

(
;R) for all boundary values g 2

C

0

(�

d

;R). In ase g 2 C

2+�

(�

d

;R), that solution belongs to the spae C

2+�

(
;R).

An essential assumption of Theorem 1 is the existene of an initial solution for ertain boundary

values g

0

. For the minimal surfae ase, i.e. H � 0, suh an initial solution always exists with

� � 0 in 
 for g

0

� 0 on �

d

. The same applies to all presribed mean urvatures H with the

property H(x; y; 0) = 0 for (x; y) 2 
.

On the other hand, note that under the assumptions a) and b) of Theorem 1 an initial solution

need not neessarily exist. Consider e.g. the presribed mean urvature H = H(x; y) = 4�x

2

�y

2

and the dis 
 = f(x; y) 2 R

2

jx

2

+ y

2

< 4g with �

d

:= �
 and �

n

= ;. Note that the assumption

2jH(x; y)j < �(x; y) on �
 of Theorem 1 is satis�ed sine H = 0 on �
. However, no graph of

presribed mean urvature H over 
 exists due to H(x; y) > 1 for x

2

+y

2

� 1. Hene, we may also

view Theorem 1 as a nonexistene theorem. Assuming that the mixed boundary value problem is

not solvable for ertain Dirihlet boundary values, it will not be solvable for any Dirihlet boundary

values.

2



Now to obtain a solution of problem (1), we will employ the ontinuity method and study the

following family P (t) of mixed boundary value problems

div

r�

p

1 + jr�j

2

= 2H(x; y; �) in 
 (2)

� = t g + (1� t)g

0

on �

d

;

��

�n

= 0 on �

n

with a parameter t 2 [0; 1℄. Let J � [0; 1℄ be the set of all t 2 [0; 1℄ for whih P (t) is solvable.

Note that by assumption ) of Theorem 1 we have 0 2 J . It remains to show that J is both

open and losed. The openness is basially a onsequene of a perturbation result for graphs

of presribed mean urvature, whih for the ase �

n

= ; is shown in [16, Proposition 2℄ or [17,

Hilfssatz 4 in x8, hapter XII℄. It an diretly be generalized to the ase �

n

6= ; using the assumption

dist(�

d

;�

n

) > 0. To show that J is losed a ompatness result for graphs of presribed mean

urvature has to be proved. As the behavior at the Dirihlet boundary is basially known and

studied we fous on the behavior at the Neumann boundary. In setion 2 we start with an a priori

C

2+�

-estimate up to the Neumann boundary for a onformal reparametrisation of the graph. We

use it in setion 3 to prove a ompatness result for graphs whih yields the loseness of the set J .

Finally, we give the proof of Theorem 1 in setion 4.

2. Loal estimates at the Neumann boundary

We start with a solution � 2 C

2+�

(
 [ �

d

;R) of problem (1) on a bounded C

2+�

-domain 
. We

now hoose a simply onneted part T � �

n

with its endpoint (x

0

; y

0

); (x

2

; y

2

) 2 T and some third

point (x

1

; y

1

) 2 T . Next, we hoose a simply onneted subset C

2+�

-domain � � 
 with the

properties T � �
 \ �� and dist(�;�

d

) > 0.

De�ning the open half dis B

+

:= f(u; v) 2 R

2

ju

2

+ v

2

< 1 ; v > 0g, we introdue onfor-

mal parameters on the graph �j

�

(see [15℄): There exists a positively oriented di�eomorphism

f : B

+

! � 2 C

0

(B

+

;R

2

) \ C

2+�

(B

+

nf(�1; 0); (1; 0)g;R

2

) (3)

satifying the three point ondition

f(�1; 0) = (x

0

; y

0

) ; f(0; 0) = (x

1

; y

1

) and f(1; 0) = (x

2

; y

2

) (4)

and having a positive Jakobi determinant J

f

:= det(f

u

; f

v

) > 0 in B

+

suh that the reparametrized

graph

X(u; v) := (f(u; v); � Æ f(u; v)) (5)

is given in onformal parameters. The vetor valued funtion X satis�es the presribed mean

urvature system together with the onformality relations

4X = 2H(X)X

u

^X

v

and jX

u

j

2

� jX

v

j

2

= X

u

�X

v

= 0 in B

+

:

From the three point ondition we infer f(I) � T � �
 for the interval I := (�1; 1)�f0g. We �rst

need the following lemma, whih shows how the Neumann ondition for the graph � translates to

the onformal reparametrisation.

Lemma 1: The Neumann boundary ondition

��

�n

= 0 on T is equivalent to the boundary ondition

X

v

� e

3

= 0 on I where e

3

:= (0; 0; 1).

3



Proof:

1.) We assume r� � n = 0 and set X(u; v) = (f(u; v); z(u; v)) with z(u; v) = � Æ f(u; v). From

det(f

u

; f

v

) > 0 we �rst onlude jf

u

j > 0 and jf

v

j > 0. Using f(I) � �
 we obtain that the

vetor f

u

is perpendiular to n and hene r� = �f

u

for some � 2 R. Using the onformality

relations we ompute

0 = X

u

�X

v

= f

u

� f

v

+ z

u

z

v

= f

u

� f

v

+ (r� � f

u

)(r� � f

v

)

= f

u

� f

v

+ �

2

(f

u

� f

u

)(f

u

� f

v

) = (1 + �

2

jf

u

j

2

)(f

u

� f

v

)

onluding f

u

� f

v

= 0. Together with f

u

�n = 0 and jf

u

j > 0 we know that f

v

= �n for some

� 2 R. Noting the assumption r� � n = 0 this gives X

v

� e

3

= z

v

= r� � f

v

= �r� � n = 0.

2.) Assume X

v

�e

3

= z

v

= 0. From the onformality relation X

u

�X

v

= 0 we onlude f

u

�f

v

= 0.

Sine f

u

is a nonzero tangent vetor to �
 we obtain that the vetors f

v

and n are linearly

dependent. From the relation 0 = z

v

= r� � f

v

we onlude r� � n = 0, using jf

v

j > 0. �

We now de�ne B

+

r

:= B

r

(0; 0) \B

+

= f(u; v) 2 B

+

ju

2

+ v

2

< r

2

g and show an a priori estimate

of X in B

+

r

.

Lemma 2: Assume that the C

0

-estimate

j�(x; y)j �M in 
 (6)

holds. Then the exist onstants r > 0 and C <1 suh that the onformal reparametrisation X of

� in (5) satis�es the estimate

jjXjj

C

2+�

(B

+

r

)

� C :

The onstants r and C only depend on the data 
;M;H; � and the modulus of ontinuity of X.

Proof:

1.) Setting

X(u; v) = (x(u; v); y(u; v); z(u; v))

we note that f(u; v) = (x(u; v); y(u; v)) for f from (5). Lemma 1 yields the Neumann

boundary ondition X

3

v

= z

v

= 0 on I. Using the omplex di�erential operator

�

�w

:=

1

2

�

�u

�

i

2

�

�v

the onformality relations for X an be written equivalently in the form

0 = X

w

�X

w

= (x

w

)

2

+ (y

w

)

2

+ (z

w

)

2

:

Noting jx

2

w

j = jx

w

j

2

=

1

4

jrxj

2

and similar formulas for y and z we dedue the inequalities

jrxj

2

� jryj

2

+ jrzj

2

; jryj

2

� jrxj

2

+ jrzj

2

and jrzj

2

� jrxj

2

+ jryj

2

: (7)

Using this together with 4X = 2H(X)X

u

^X

v

we now estimate

j4Xj � 2jX

u

^X

v

j = jrXj

2

= (jrxj

2

+ jryj

2

+ jrzj

2

) � 2(jryj

2

+ jrzj

2

)

whih yields

j4xj+ j4yj+ j4zj � 3j4Xj � 6(jryj

2

+ jrzj

2

) : (8)

Here we have set

 := sup

(x;y)2
 ; jzj�M

jH(x; y; z)j <1 :

4



2.) We now prove an estimate for jrXj. We onsider the point (x

1

; y

1

) = f(0; 0) from the three

point ondition. After a suitable rotation in R

2

we an loally represent �
 in a neighborhood

of (x

1

; y

1

) by a graph of some funtion �, more preisely: There exists a onstant d > 0 and

a funtion � 2 C

2+�

(J;R) with J := [x

1

� d; x

1

+ d℄ suh that the following representation

holds

�
 \B

d

(x

1

; y

1

) � f(x; �(x)) 2 R

2

j x 2 Jg :

Here, we may also assume that

�

0

(x

1

) = 0 ; j�

0

(t)j �

1

2

for t 2 J and jj�jj

C

2+�

(J)

� K : (9)

Sine 
 is a bounded C

2+�

-domain the onstants d = d(
) > 0 and K = K(
) < 1 an

be hoosen independently of the point (x

1

; y

1

). Due to f(0; 0) = (x

1

; y

1

) and the ontinuity

of f we an hoose some onstant r > 0, depending on the modulus of ontinuity of f , suh

that f(u; v) 2 B

d

(x

1

; y

1

) for (u; v) 2 B

+

r

holds. Hene, the following auxiliary funtion

h 2 C

2+�

(B

+

r

;R) ; h(u; v) := y(u; v)� � Æ x(u; v) for (u; v) 2 B

+

r

is wellde�ned. From f(I) � �
 we obtain for h the boundary ondition

h(u; 0) = 0 for u 2 (�r; r) : (10)

Using (8) and (7) we estimate

j4zj+ j4hj = j4zj+ j4y � �

0

4x� �

00

(x

2

u

+ x

2

v

)j

� j4zj+ j4yj+ j4xj+Kjrxj

2

� 6(jryj

2

+ jrzj

2

) +K(jryj

2

+ jrzj

2

)

= (6 +K)(jryj

2

+ jrzj

2

) : (11)

To obtain a bound for jryj

2

in terms of jrhj

2

and jrzj

2

we ompute

jryj

2

= jrh+ �

0

rxj

2

�

�

jrhj+

1

2

jrxj

�

2

� 2jrhj

2

+

1

2

jrxj

2

� 2jrhj

2

+

1

2

jryj

2

+

1

2

jrzj

2

whih yields the inequality

jryj

2

� 4jrhj

2

+ jrzj

2

: (12)

Combining this estimate with (11) we obtain

j4hj+ j4zj � (24 + 4K)jrhj

2

+ (12 + 2K)jrzj

2

in B

+

r

:

We now de�ne another auxiliary funtion

 : B

+

r

! R

2

;  (u; v) := (h(u; v); z(u; v))

and note the di�erential inequality j4 j � (24 + 4K)jr j

2

. We want to apply the interior

a priori estimates for systems with quadrati growth in the gradient (see [1, hapter 7.2℄ or

[17, hapter XII, x2℄). To obtain the required smallness ondition for these estimates, we

redue the onstant r > 0 suh that

j (u; v) �  (0; 0)j �

1

2(24 + 4K)

in B

+

r

0

5



holds. Here, the hoie of r

0

is determined by the modulus of ontinuity for  whih is

ontrolled by the modulus of ontinuity of X. We now reet  aross I by

~

 (u; v) :=

(

(h(u; v); z(u; v)) if (u; v) 2 B

+

r

0

(�h(u;�v); z(u;�v)) if (u;�v) 2 B

+

r

0

; (u; v) 2 B

r

0

:

By the Dirihlet boundary ondition (10) for h and the Neumann boundary ondition z

v

= 0

on I we onlude the regularity

~

 2 C

1;1

(B

r

0

;R

2

), i.e. the �rst derivatives of

~

 exist in

B

r

0

and they are Lipshitz ontinuous. Furthermore, we have the inequality j4

~

 j � (24 +

4K)jr

~

 j

2

in B

r

0

nI. Now the a priori estimates for systems with quadrati growth in the

gradient, whih in general hold only for C

2

-funtions, an also be applied to the funtion

~

 

after a suitable approximation proess by C

2

-funtions, e.g. by the Friedrih's molli�ers of

~

 . For any r < r

0

there exists a onstant C

1

= C

1

(;K; r; �) suh that

jjzjj

C

1+�

(B

+

r

)

+ jjhjj

C

1+�

(B

+

r

)

� C

1

: (13)

Together with (12) and (7) we an �nd a onstant C

2

suh that

jrxj+ jryj+ jrzj � C

2

in B

+

r

:

3.) In the next step we show a H�older estimate for rx and ry. To do this, we �rst derive a

boundary ondition for x

v

on I. By the onformality relations, we have

0 = x

u

x

v

+ y

u

y

v

+ z

u

z

v

= x

u

x

v

+ y

u

y

v

on I

using z

v

= 0 on I. Putting y = h+ � Æ x into this equation yields

0 = x

u

x

v

+ (h

u

+ �

0

x

u

)(h

v

+ �

0

x

v

) = x

u

x

v

+ (h

v

+ �

0

x

v

)�

0

x

u

= x

u

x

v

(1 + (�

0

)

2

) + h

v

�

0

x

u

on I (14)

taking h

u

= 0 on I into aount. We now laim x

u

6= 0 on I. Otherwhise we would have

0 = h

u

= y

u

� �

0

x

u

and so y

u

= 0, ontraditing det(f

u

; f

v

) = x

u

y

v

� x

v

y

u

> 0 whih holds

beause f is a positively oriented di�eomorphism. Dividing by x

u

in (14) we obtain for x

the Neumann boundary ondition

x

v

= �

�

0

(x)h

v

1 + (�

0

)

2

on I : (15)

By (13) there exists a C

�

-bound on the right hand side of this equation. Noting (8) poten-

tialtheoreti estimates give a onstant C

3

suh that

jjxjj

C

1+�

(B

+

r

)

� C

3

:

Using y = h+ � Æ x we an then also bound the C

1+�

(B

+

r

)-norm of y.

4.) Finally we will show the C

2+�

-estimate for x, y and z. Due to 4z = 2H(X)(x

u

y

v

� x

v

y

v

)

and the boundary ondition z

v

= 0 on I, we an �rst �nd a onstant C

4

suh that

jjzjj

C

2+�

(B

+

r

)

� C

4

holds, employing Shauder a priori estimates for Neumann boundary values. Next, using the

di�erential equation

4h = 4y � �

0

4x� �

00

jrxj

2

= 2H(X)(z

u

x

v

� z

v

x

u

)� 2�

0

H(X)(y

u

z

v

� z

u

y

v

)� �

00

jrxj

2

6



together with the Dirihlet boundary ondition (10) we an give a bound for the C

2+�

(B

+

r

)-

norm of h. The Neumann ondition (15) together the di�erential equation4x = 2H(X)(y

u

z

v

�

z

u

y

v

) then yield the estimate

jjxjj

C

2+�

(B

+

r

)

� C

5

for some onstant C

5

. Finally, using y = h+�Æx we an �nd a bound for the C

2+�

(B

+

r

)-norm

of y. �

Remarks:

1.) Some of the arguments of the proof are similar to those of the boundary regularity theorem [1,

Theorem 2 in setion 7.3℄ for surfaes of presribed mean urvature with a Plateau boundary

(see also [7℄).

2.) The proof of this result does not need the graph property of the solution. Hene it an also

be applied to any onformally parametrized H-surfae X meeting the boundary of ylinder

Z




:= f(x; y; z) 2 R

3

j (x; y) 2 
g orthogonally on I. Suh surfaes appear as ritial points

of the parametri funtional

E

Q

(X) :=

Z

B

+

�

jrXj

2

+Q(X) �X

u

^X

v

�

dudv

within a ertain lass of funtions. The vetor �eld Q must satisfy divQ(x; y; z) = 2H(x; y; z)

and meet the boundary of the ylinder Z




orthogonally (see [11℄ for more details). When

onsidering ritial points of the funtional E

Q

, the ruial part is �rst to obtain a modulus

of ontinuity of X, as our a priori estimate depends on it.

3.) As we are dealing with graphs, it is relatively easy to obtain a modulus of ontinuity for the

onformal reparametrisation X of the graph � (see the proof of Theorem 2).

3. Two ompatness results

We start this setion with the following result.

Theorem 2:

Assumptions:

a) A bounded C

2+�

-domain 
 � R

2

is given with the Dirihlet boundary part �

d

� �
 and the

Neumann boundary part �

n

:= �
n�

d

.

b) The presribed mean urvature H 2 C

1+�

(R

3

;R) satis�es

�

�z

H = H

z

� 0 in 
� R :

) A given sequene of boundary values g

n

2 C

2+�

(�

d

;R) onverges uniformly to some limit

funtion g 2 C

0

(�

d

;R).

d) Let �

n

2 C

2+�

(
;R) be a solution of problem (1) for Dirihlet boundary values g

n

on �

d

.

Then problem (1) has a solution � 2 C

2+�

(
[�

n

;R) \C

0

(
;R) for Dirihlet boundary boundary

values g on �

d

.

Proof:

7



1.) Eah �

n

is solution of the quasilinear, ellipti equation (1). Then the di�erene funtion

~

� := �

n

� �

m

for �xed n;m is the solution of M(

~

�) = 0 in 
 for some linear, ellipti

di�erential operatorM (see [17, hapter VI, x2℄) whih by the assumption H

z

� 0 is subjet

to the maximum priniple. The maximum priniple together with Hopf's boundary point

lemma then gives the estimate

jj�

m

� �

n

jj

C

0

(
)

� jj�

m

� �

n

jj

C

0

(�
)

� jj�

m

� �

n

jj

C

0

(�

d

)

= jjg

m

� g

n

jj

C

0

(�

d

)

! 0 for m;n!1 :

Thus the sequene �

n

onverges uniformly to some limit funtion � 2 C

0

(
;R) with � = g

on �

d

. Furthermore, we an �nd a onstant M 2 (0;+1) independent of n suh that

jj�

n

jj

C

0

(
)

�M holds.

2.) By interior estimates for graphs of presribed mean urvature (see e.g. [14℄) there is a

onstant C

1

= C

1

(r) for eah r > 0 suh that

jj�

n

jj

C

2+�

(


r

)

� C

1

holds where 


r

:= f(x; y) 2 
 jdist((x; y); �
) � rg. We onlude that � 2 C

2+�

(
;R) and

that � satis�es the di�erential equation (1) in 
.

3.) We now show that � is smooth up to the Neumann boundary �

n

and that the Neumann

boundary ondition is satis�ed. To do this, we introdue onformal parameters

X

n

(u; v) = (f

n

(u; v); �

n

Æ f

n

(u; v)) for (u; v) 2 B

+

on eah graph �

n

j

�

for some simply onneted domain � � 
 having the properties desribed

in the beginning of setion 2. Employing the area estimate for graphs of bounded mean

urvature (see [13, Hilfssatz 11℄)

A(�

n

) =

Z




p

1 + jr�

n

j

2

dxdy � C

2

(
;H;M)

we �rst obtain a bound on the Dirihlet integral

D(f

n

) =

Z

B

+

jrf

n

j

2

dudv �

Z

B

+

jrX

n

j

2

dudv = 2

Z

B

+

jX

n

u

^X

n

v

jdudv = 2A(X

n

) � 2C

2

using the onformal parametrization of X

n

. Similarly to [6, Lemma 16℄, one an now derive

a uniform modulus of ontinuity for f

n

with the Courant-Lebesgue-Lemma using the three

point ondition and the fat that f

n

is injetive. Noting X

n

= (f

n

; �

n

Æ f

n

) and the uniform

onvergene of �

n

, we an derive a uniform modulus of ontinuity for the sequene X

n

.

Hene, by Lemma 2 there are onstants r > 0 and C

3

<1 independent of n suh that

jjXjj

C

2+�

(B

+

r

)

� C

3

holds. After extrating a onvergent subsequene we have the onvergene X

n

! X in

C

2

(B

+

r

;R

3

) with some limit funtion X 2 C

2+�

(B

+

r

;R

3

). We set

X(u; v) = (x(u; v); y(u; v); z(u; v)) and f(u; v) = (x(u; v); y(u; v))

8



and obtain z(u; v) = � Æ f(u; v) in B

+

r

. Due to the C

2

-onvergene X satis�es the presribed

mean urvature system as well as the onformality relations

4X = 2H(X)X

u

^X

v

; jX

u

j

2

� jX

v

j

2

= 0 = X

u

�X

v

in B

+

r

:

Using an interior lower bound of the area elementW

n

= jX

n

u

^X

n

v

j (see [17, Satz 1 in hapter

XII, x9℄) one an exlude interior branhs point for X, i.e. jX

u

^X

v

j > 0 in B

+

r

. De�ning

the interval  := (�r; r)� f0g we onlude from f

n

(B

+

) � 
 and f

n

() � �
 that

f(B

+

r

) � 
 and f() � �


holds. Now with the same reasoning as in the proof of [11, Lemma 5℄ one an exlude

boundary branh points on  and show that J

f

(u; v) = det(f

u

; f

v

) > 0 on  holds. By

the inverse funtion theorem then f is loally invertible. Noting that both z and f are of

regularity lass C

2+�

then the relation �(x; y) = z Æ f

�1

(x; y) gives � 2 C

2+�

(
 \ U;R)

for some open neighborhood U = U(x

1

; y

1

) of the point f(0; 0) = (x

1

; y

1

). Sine the point

(x

1

; y

1

) 2 �

n

from the three point ondition an be hoosen arbitrarily, we get � 2 C

2+�

(
[

�

n

;R). Finally, noting the Neumann boundary ondition X

n

v

� e

3

= 0 on  we obtain for

n!1 the ondition X

v

�e

3

= 0 on  and from Lemma 1 we dedue the Neumann boundary

ondition

��

�n

= 0 on �

n

;

ending the proof. �

The next result treats the boundary regularity at the Dirihlet boundary part �

d

.

Corollary 1: Let the assumptions of Theorem 2 be sati�ed and additionally g 2 C

2+�

(�

d

;R) as

well as

2jH(x; y; z)j < �(x; y) for (x; y; z) 2 �

d

� R (16)

where � : �
! R denotes the urvature of �
 w.r.t. the inner normal.

Then problem (1) has a solution � 2 C

2+�

(
;R) for Dirihlet boundary values g on �

d

.

Proof:

By Theorem 1, there exists a solution � 2 C

2+�

(
 [ �

d

;R) \ C

0

(
;R) and we only have to show

that � is smooth up to the Dirihlet boundary �

d

. We hoose a simply onneted subset T � �

d

with its endpoint (x

0

; y

0

) and (x

2

; y

2

) and some other point (x

1

; y

1

) 2 T . Next we hoose a simply

onneted domain � � 
 suh that T � �
 \ ��. We introdue onformal parameters

X

n

(u; v) = (f

n

(u; v); �

n

Æ f

n

(u; v)) for (u; v) 2 B

+

on eah graph �

n

j

�

with f

n

satisfying (3) and the three point ondition (4), whih yields the

following Plateau-type boundary ondition

X

n

(I) � �

n

:= f(x; y; g

n

(x; y)) 2 R

3

j (x; y) 2 �

d

g : (17)

As in the proof of Theorem 2, we �rst derive a uniform modulus of ontinuity for the sequene X

n

and obtain a limit mapping X 2 C

0

(B

+

;R

3

). Due to interior estimates for systems with quadrati

growth in gradient we have the regularity X 2 C

2+�

(B

+

;R

3

). Furthermore, from (17) we derive

the boundary ondition

X(I) � � := f(x; y; g(x; y)) 2 R

3

j (x; y) 2 �

d

g

9



with the C

2+�

-urve �. The boundary regularity theorem [1, Theorem 2 in setion 7.3℄ yields

X 2 C

2+�

(B

+

[ I;R

3

). We now de�ne the ylinder

Z := f(x; y; z) 2 R

3

j (x; y) 2 
g

and note X(B

+

) � Z and X(I) � �Z. De�ning

~

H : �Z ! R to be the mean urvature of �Z

w.r.t. the inner normal we have the relation

~

H(x; y; z) =

1

2

�(x; y) and by assumption (16) we

obtain

jH(x; y; z)j <

~

H(x; y; z) for (x; y; z) 2 �

d

� R :

Using the ylinder Z as barrier, we an derive the ondition of transversality (X

u

^ X

v

) � e

3

=

det(f

u

; f

v

) > 0 on I (see [13, Satz 2℄ or [5, x2℄). The same arguments as in the end of proof

of Theorem 2 yield the boundary regularity � 2 C

2+�

(
 \ U;R) for some open neighborhood

U = U(x

1

; y

1

). As (x

1

; y

1

) 2 �

d

was hoosen arbitrarily, we obtain � 2 C

2+�

(
;R). �

4. The proof of Theorem 1

1.) We �rst prove Theorem 1 for Dirihlet boundary values g 2 C

2+�

(�

d

;R). For a parameter

t 2 [0; 1℄ we onsider the family P (t) of mixed boundary value problems (2) and set

J := ft 2 [0; 1℄ j P (t) has a solution � 2 C

2+�

(
;R)g :

Note that by assumption ) of Theorem 1 we have 0 2 J . Hene it remains to show that J

is both open and losed.

2.) To show that J is open, we need to generalize the perturbation result for surfaes of presribed

mean urvature of [17, Hilfssatz 4 in x9 of hapter XII℄ or [16, Proposition 2℄ to the ase of

mixed boundary values. As this is straightforward, we will only give the basi ideas. Given a

solution � of the problem P (t) for some t 2 [0; 1℄, we want to �nd a funtion Æ 2 C

2+�

(
;R)

suh that

~

� := � + Æ is a solution of the problem P (t

�

) for some t

�

2 [0; 1℄. We put

~

� = � + Æ

into the presribed mean urvature equation and develop in terms of Æ. Putting all linear

terms in Æ on the left side and all quadrati or higher order terms on the right side, we obtain

for Æ the following mixed boundary value problem

L(Æ) = �(Æ) in 
 ; Æ = (t

�

� t)(g � g

0

) on �

d

and

�Æ

�n

= 0 on �

n

: (18)

Here, L(Æ) is some linear, uniformly ellipti di�erential operator, whih by the assumption

H

z

� 0 is subjet to the maximum priniple. The expression �(Æ) ontains all terms of order

higher than linear in Æ and hene satis�es a ontration ondition of the following type

jj�(Æ

1

)� �(Æ

2

)jj

C

�

(
)

� C(r)jjÆ

1

� Æ

2

jj

C

2+�

(
)

(19)

whenever jjÆ

1

jj

C

2+�

(
)

+ jjÆ

2

jj

C

2+�

(
)

� r

for some onstant C(r) with C(r)! 0 for r ! 0.

We now onsider the following mixed boundary value problem

Æ 2 C

2+�

(
;R) ; L(Æ) = f in 


Æ = (t

�

� t)(g � g

0

) on �

d

and

�Æ

�n

= 0 on �

n

10



whih is uniquely solvable due to Shauder theory for all f 2 C

�

(
;R). The solution of

this problem we denote by L

�1

(f) := Æ. Combining interior Shauder estimates with loal

Shauder estimates at the Dirihlet boundary (see [2, hapter 6.2℄) and at the Neumann

boundary (see [2, hapter 6.7℄), the following estimate an be shown

jjL

�1

(f)jj

C

2+�

(
)

�M

�

jjf jj

C

�

(
)

+ jj(t

�

� t)(g � g

0

)jj

C

2+�

(�

d

)

�

(20)

for some onstant M , if we use the assumption dist(�

d

;�

n

) > 0. Now problem (18) is

equivalent to the �xed point equation L

�1

Æ �(Æ) = Æ. Using the ontration ondition

(19) together with the estimate (20) a �xed point of L

�1

Æ � an be onstruted using the

ontration mapping priniple. To make the mapping L

�1

Æ � a ontration from a set into

itself one has to assume jt

�

� tj � " for suÆiently small " > 0.

3.) To prove that J is losed, let �

n

be a sequene of solutions for of P (t

n

) with t

n

2 J and

assume that t

n

! t

�

for n!1. Then by Theorem 2 together with Corollary 1 there exists

a solution � 2 C

2+�

(
;R) of problem P (t

�

) showing the loseness of the set J . We onlude

J = [0; 1℄ and for t = 1 we obtain the desired solution of problem (1).

4.) Finally, we solve problem (1) for ontinuous Dirihlet boundary values g 2 C

0

(�

d

;R). Let

g

n

2 C

2+�

(�

d

;R) be a sequene of boundary values onverging uniformly on �

d

to g. By

solving the mixed boundary value problem for g

n

and applying Theorem 2, we obtain a

solution � 2 C

2+�

(
 [ �

d

;R) \ C

0

(
;R) for the Dirihlet boundary values g. �

Remark: Using methods from the alulus of variations it is relatively easy to show that the

solution � 2 C

2+�

(
;R) for Dirihlet boundary values g 2 C

2+�

(�

d

;R) of Theorem 1 is the unique

minimizer of the generalized nonparametri area funtional

A(�) :=

Z




�

p

1 + jr�j

2

+ b(x; y; �)

�

dxdy

within the lass of funtions

C(
;�

d

; g) :=

n

� 2 C

2

(
;R) \ C

1

(
;R) j � = g on �

d

o

:

Here, we have to hoose b = b(x; y; z) suh that b

z

= 2H holds.
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