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Abstract. Consider the Navier-Stokes flow past several moving obstacles. It is shown that
there exists a unique strong local solution in the Lp-setting, 1 < p < ∞. Moreover, it is proved
that the strong solution coincides with the known mild solution in the very weak sense.

1. Introduction

The mathematical description of the Navier-Stokes flow past rotating or moving obstacles
gained quite some attention in the last years. The motion hereby is described by the equations of
Navier-Stokes on an exterior domain depending on the time variable t. More precisely, consider
the equation

(1.1)















∂tv − ∆v + (v · ∇)v + ∇q = f in Ω(t), t ∈ (0, T ),
div v = 0 in Ω(t), t ∈ (0, T ),

v(x, t) = Mi(t)x on Γi(t), i = 1, . . . , m, t ∈ (0, T ),
v(x, 0) = v0(x) in Ω(0).

Here v = v(x, t) and q = q(x, t) denote the velocity and the pressure of the fluid, respectively.
The boundary condition on Γi(t) is the usual no-slip condition. In this paper we consider time-
dependent domains Ω(t) of the following form: let O1, . . . ,Om ⊂ R

n, n ≥ 2, be compact sets
with boundaries Γ1, . . . , Γm of class C1,1. We denote by Ω := R

n \
⋃m

i=1 Oi the exterior domain.
For time-dependent matrices

Mi ∈ C∞([0, T ]; Rn×n),

with tr Mi(t) = 0 for all t ∈ [0, T ], i ∈ {1, . . . , m}, we define the time dependent exterior domain

Ω(t) := R
n \

m
⋃

i=1

Oi(t)

with Oi(t) := {y = G(i)(t)x, x ∈ Oi}, Γi(t) := {y = G(i)(t)x, x ∈ Γi} for t ∈ [0, T ] and a suitably

defined isomorphism G(i)(t) : Oi → Oi(t), for details see (2.5). As the obstacles shall not collide,
we require

dist
(

Oi(t),Oj(t)
)

> 0, i 6= j, t ∈ [0, T ].

Our aim is to construct a strong Lp-solution to (1.1).
It is interesting to compare our solution to problem (1.1) with the results which have been

obtained recently by several different approaches. The situation of one obstacle rotating with
constant angular velocity (i.e. M equals the rotation matrix) was considered first by Hishida
[His99]. He proved the existence of a unique local mild solution to (1.1) in the context of L2.

Strong solutions, again in the L2-context and for one obstacle, were obtained by Galdi [Gal04],
Galdi and Silvestre [GS05] by Galerkin methods as well as by Cumsille and Tucsnak [CT06].
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In the case of two dimensions, these strong solutions are even global in time under appropriate
assumptions on the data.

The situation where the data belong to Lp for 1 < p < ∞, was considered first in [GHH06a],
where the existence of a unique mild Lp-solution to (1.1) was established. For a different approach
in this setting we refer to the recent work of Hishida and Shibata [HS06].

In this paper, we consider the situation of strong Lp-solutions. We prove that the existence of
a local, strong solution to (1.1) in Lp even for several non colliding obstacles which may rotate or
move with a time-dependent angular velocity. One of the main tools in the proof of our results
will be the maximal Lp − Lq-regularity of the Stokes operator in exterior domains.

It is a natural question to ask whether the strong solution to (1.1) obtained in Theorem 3.1
below coincides with the mild solution constructed in [GHH06a]. We give an affirmative answer to
this question in Theorem 3.3 below. Of course, we need to explain first the meaning of coincides,
since mild and strong solutions are defined on different spaces. In this section we make use of
the concept of very weak solutions which was introduced in [FJR72] for R

n and in [Ama00] for
domains.

For more information about the Navier-Stokes equation in the rotating framework of all of R
n

or R
n
+, we refer to the papers [CM97], [BMN99], [HS05], [GIMM04] and [GIMMS05] dealing in

particular with data non decaying at infinity.

2. Preliminaries

We start by transforming equation (1.1) on the time-dependent domain Ω(t) to an equation
on a fixed cylindrical domain. More precisely, following the approach introduced by Inoue and
Wakimoto [IW77], we introduce a change of coordinates which coincides in the special case of
pure rotation, i.e. M equals the rotation matrix, with the rotation in a neighborhood of the
rotating obstacle, but equals the identity far away from the rotating body; see also [CT06].

For the time being, assume there is only one moving obstacle. We then make the following
assumption.

(A1) Let O ⊂ R
n, n ≥ 2, be a compact set (the obstacle) with boundary Γ := ∂O of class C1,1.

Denote by Ω := R
n \ O the exterior domain corresponding to O. For M ∈ R

n×n with
tr M = 0 define Ω(t), Γ(t),O(t) as Ω(t) := {y = etMx, x ∈ Ω}, Γ(t) := {y = etMx, x ∈ Γ},
O(t) := {y = etMx, x ∈ O}.

We then consider a ball Br(0) of radius r > 0 such that Br(0) ⊃ O(t) for all t ∈ [0, T ] for some
T > 0. Choose a cut-off function η ∈ C∞

c (Rn) satisfying 0 ≤ η ≤ 1, η = 1 on Br(0) and η = 0 on
B2r(0)c. Define b : R

n → R
n by

b(y) := η(y)My − BK ((∇η)M ·) (y),(2.1)

where K := supp (∇η). Here BK denotes the Bogovskĭı operator; for details see [Bog79], [Gal94],

[GHH06b]. Note that b(y) = My for y ∈ O(t). Moreover, since
∫

K
(∇η)(y)My dy = 0 thanks to

tr M = 0, it follows from [Bog79] that div b = 0 in R
n and b ∈ C∞

c (Rn; Rn).
Consider then the initial value problem

(2.2)

{

∂tX(y, t) = b(X(y, t)), t > 0, y ∈ R
n,

X(y, 0) = y, y ∈ R
n.

Then, by standard theory of ODE’s, there exists a unique vector field X ∈ C∞(Rn×R+) satisfying
(2.2). Moreover, X(·, t) is a C∞-diffeomorphism from Ω onto Ω(t). Its inverse Y (·, t) is of the
same class of regularity and satisfies the initial value problem

(2.3)

{

∂tY (x, t) = −b(Y (x, t)), t > 0, x ∈ R
n,

Y (x, 0) = x, x ∈ R
n.
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In fact, we only need the restrictions of X and Y on [0, T ], nevertheless (2.2) and (2.3) even can
be solved on the whole of R

n × R+.
Denote by JX(·, t) and JY (·, t) the Jacobian of X(·, t) and Y (·, t), respectively. Since div b = 0,

Liouville’s theorem, see e. g. [Arn92], implies that

(2.4) JX(y, t)JY (X(y, t), t) = id and det JX(y, t) = det JY (x, t) = 1

for all t ≥ 0 and x, y ∈ R
n.

In the situation of several obstacles moving with time dependent velocity we make the following
assumption:

(A2) Let O1, . . . ,Om ⊂ R
n, n ≥ 2, be compact sets with boundaries Γ1, . . . , Γm of class C1,1.

We denote by Ω := R
n \
⋃m

i=1 Oi the exterior domain. For time-dependent matrices

Mi ∈ C∞([0, T ]; Rn×n),

with tr Mi(t) = 0 for all t ∈ [0, T ], i ∈ {1, . . . , m}, we define the time-dependent sets

Ω(t), Γi(t) and Oi(t) for t ∈ [0, T ] by aid ot the unique solution G(i)(t) : Oi → Oi(t) of
the following ODE:

(2.5)

{

G′
(i)(t)x = Mi(t)G(i)(t)x, x ∈ Oi, t ∈ (0, T ),

G(i)(0)x = x, x ∈ Oi.

Note, that G(i)(t) : Oi → Oi(t) is an isomorphism, as
{

[G′
(i)(t)x]k = Mi(t)[G(i)(t)x]k, x ∈ Oi, t ∈ (0, T ),

[G(i)(0)x]k = xk, x ∈ Oi,

with 1 ≤ k ≤ n, i ∈ {1, . . . , m}, has a unique fundamental system of linear independent

solutions G(i)(t) =
(

G1
(i)(t), . . . , G

n
(i)(t)

)

, due to the non-vanishing Wronski-determinant

at zero. In particular, for the case of constant matrices Mi ∈ R
n×n, we are left with

G(i)(t) = etMi and inverse G−1
(i) (t) = e−tMi .

As the obstacles shall not collide, we require

dist
(

Oi(t),Oj(t)
)

> 0, i 6= j, t ∈ [0, T ].

We now choose open sets B1i , B2i ⊂ R
n, such that Oi ⊂ B1i ⊂ B1i ⊂ B2i and set

Bki(t) :=
{

y = G(i)(t)x, x ∈ Bki

}

, t ∈ [0, T ], k = 1, 2, i ∈ {1, . . . , m}.

Then

Oi(t) ⊂ B1i(t) ⊂ B1i(t) ⊂ B2i(t)

for t ∈ [0, T ]. Moreover, we demand the sets B2i to be that small, that
m
⋂

i=1

B2i(t) = ∅, t ∈ [0, T ].

Next, we introduce a time-dependent cut-off function η ∈ C∞(Rn × [0, T ]), 0 ≤ η ≤ 1, such that

η(y, t) :=

{

1 on
⋃m

i=1 B1i(t), t ∈ [0, T ],
0 on R

n \
⋃m

i=1 B2i(t), t ∈ [0, T ].

We define the sets

Ki(t) := (supp∇yη(t, ·)) ∩ B2i(t), t ∈ [0, T ], i ∈ {1, . . . , m},

and the time dependent vector field b : R
n × [0, T ] → R

n by

b(y, t) := η(y, t)

m
∑

i=1

Mi(t)y −
m
∑

i=1

BKi(t) ((∇yη)(·, t)Mi(t)·) (y).
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Note, that due to tr Mi(t) = 0, t ∈ [0, T ], i = 1, . . . , m, and properties of the Bogovskĭı operator,

the vector field b is solenoidal for t ∈ [0, T ] on all of R
n. Further, b(y, t) = Mi(t)y for y ∈ Oi(t), t ∈

[0, T ], i ∈ {1, . . . , m}.
Note that for fixed t∗ ∈ [0, T ]

b(y, t∗) = η(y, t∗)

m
∑

i=1

Mi(t
∗)y −

m
∑

i=1

BK∗

i
((∇yη)(·, t∗)Mi(t

∗)·) (y).

Since η is smooth in the first variable, the mapping properties of the Bogovskĭı operator imply
that b(·, t∗) ∈ C∞

c (Rn). Now, freeze y∗ ∈ R
n and consider

b(y∗, t) = η(y∗, t)
m
∑

i=1

Mi(t)y
∗ −

m
∑

i=1

BK∗

i
((∇yη)(·, t)Mi(t)·) (y∗).

The smoothness of the cut-off function η and the matrices Mi(·) inherits to b and we thus see
that

b ∈ C∞
c,σ (Rn × [0, T ]; Rn) .

In particular, b is uniformly Lipschitz continous with respect to the first variable and bounded
on [0, T ]× R

n.
Thus, the ordinary differential equation

(2.6)

{

∂tX(y, t) = b(X(y, t), t), t > 0, y ∈ R
n,

X(y, 0) = y, y ∈ R
n.

admits a unique solution by the Picard-Lindelöf theorem. Moreover, X ∈ C∞(Rn × R+).
As above, let Y (·, t) be the inverse of X(·, t). Then Y satisfies

(2.7)

{

∂tY (x, t) = −b(Y (x, t), t), t > 0, x ∈ R
n,

Y (x, 0) = x, x ∈ R
n,

and (2.4). Again, only the restrictions of X , Y to [0, T ] will be relevant in the sequel.
We set

U(y, t) := JY (X(y, t), t) v (X(y, t), t) , y ∈ Ω, t ∈ [0, T ],
π(y, t) := q(X(y, t), t), y ∈ Ω, t ∈ [0, T ].

Then, (similarly to [IW77], [CT06, Prop.3.5]), a function

v ∈ Lp(0, T ; W 2,q(Ω(·))) ∩ W 1,p(0, T ; Lq(Ω(·))), q ∈ Lp(0, T ; Ŵ 1,q(Ω(·)))

is a solution to (1.1) if and only if

U ∈ Lp(0, T ; W 2,q(Ω)) ∩ W 1,p(0, T ; Lq(Ω)), π ∈ Lp(0, T ; Ŵ 1,q(Ω))

and (U, π) satisfies the following set of equations

(2.8)















∂tU + (M−L) U = f −NU − Gπ, in Ω × (0, T ),
div U = 0, in Ω × (0, T ),

U = Mi(t)x, on Γi × (0, T ), i = 1, . . . , m,
U(0) = v0, in Ω.

Here
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(LU)i :=

n
∑

j,k=1

∂j(g
jk∂kUi) + 2

n
∑

j,k,l=1

gklΓi
jk∂lUj +

n
∑

j,k,l=1

(

∂k(gklΓi
jl) +

n
∑

m=1

gklΓm
jl Γ

i
km

)

Uj ,

(NU)i :=
n
∑

j=1

Uj∂jUi +
n
∑

j,k=1

Γi
jkUjUk,

(MU)i :=

n
∑

j=1

Ẏj∂jUi +

n
∑

j,k=1

(

Γi
jkẎk + (∂kYi)(∂jẊk)

)

Uj ,

(Gπ)i :=

n
∑

j=1

gij∂jπ,

with the metric contravariant tensor

gij =
n
∑

k=1

(∂kYi)(∂kYj),

the metric covariant tensor

gij =

n
∑

k=1

(∂iXk)(∂jXk)

and the Christoffel’s symbol

Γk
ij = 1/2

n
∑

l=1

gkl (∂jgil + ∂igjl − ∂lgij) .

Note that L is the transformed Stokes operator, while M arises from transforming the time
derivative. The nonlinearity N and modified gradient G correspond to (v·∇)v and ∇, respectively.

Setting u(y, t) := U(y, t) − b(y, t), we see that

U ∈ Lp(0, T ; W 2,q(Ω)) ∩ W 1,p(0, T ; Lq(Ω)), π ∈ Lp(0, T ; Ŵ 1,q(Ω))

is a solution of (2.8) if and only if

u ∈ Lp(0, T ; W 2,q(Ω)) ∩ W 1,p(0, T ; Lq(Ω)), π ∈ Lp(0, T ; Ŵ 1,q(Ω))

and (u, π) solves

(2.9)























∂tu − ∆u + ∇π = F −Nu − Bu + (L − ∆)u
−Mu + (∇− G)π in Ω × (0, T ),

div u = 0 in Ω × (0, T ),
u = 0 on Γi × (0, T ), i = 1, . . . , m,

u(0) = v0 − b(0) in Ω,

with

(Bu)i =

n
∑

j=1

(uj∂jbi + bj∂jui) + 2

n
∑

j,k=1

Γi
jkbkuj, F = f − ∂tb − (M−L)b −N b.

In the sequel, maximal Lp-regularity of the Stokes operator in Lq
σ(Ω) plays an important role.

More precisely, for 1 < q < ∞, we define the Stokes operator Aq in Lq
σ(Ω) by

{

Aqu := Pq∆u,

D(Aq) := W 2,q(Ω) ∩ W 1,q
0 (Ω) ∩ Lq

σ(Ω).

As usual, Pq denotes the Helmholtz projection on Lq(Ω).
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Let now T0 > 0, 1 < p < ∞, T ∈ (0, T0), f ∈ Lp(0, T ; Lq
σ(Ω)) and u0 ∈ (Lq

σ(Ω), D(Aq))1− 1

p ,p.

Then it follows from a classical result of Solonnikov [Sol77] (also see [Gig81] and [Frö02]) that
there exists a unique solution

u ∈ XT
p,q := W 1,p (0, T ; Lq

σ(Ω)) ∩ Lp(0, T ; W 2,q(Ω) ∩ W 1,q
0 (Ω) ∩ Lq

σ(Ω))

of the instationary Stokes problem
{

u′(t) − Aqu(t) = f(t), t ∈ (0, T ),
u(0) = u0.

Moreover, there exists C > 0, independent of T , f and u0, such that

‖u‖XT
p,q

≤ C(‖f‖Lp(0,T ;Lq(Ω)) + ‖u0‖(Lq
σ(Ω),D(Aq))

1−
1

p
,p

).

Setting ∇π := (Id − Pq)∆u, we see that (u, π) is a solution to
{

u′(t) − ∆u(t) −∇π(t) = f(t), t ∈ (0, T ),
u(0) = u0,

satisfying

(2.10) ‖u‖XT
p,q

+ ‖π‖Y T
p,q

≤ C(‖f‖Lp(0,T ;Lq(Ω)) + ‖u0‖(Lq
σ,(Ω)D(Aq))

1−
1

p
,p

),

where Y T
p,q := Lp(0, T ; Ŵ 1,q(Ω)) and C > 0 is a constant independent of T ∈ (0, T0), f and u0.

For the rest of this section, assume that M = −M t, (A1) holds and consider

(2.11)















∂tv − ∆v + (v · ∇)v + ∇q = 0 in Ω(t), t ∈ (0, T ),
div v = 0 in Ω(t), t ∈ (0, T ),

v(x, t) = Mx on Γ(t), t ∈ (0, T ),
v(x, 0) = v0(x) in Ω(0).

It was shown in [GHH06a] that (2.11) admits a unique, local, mild solution w. In order
to compare the solutions obtained in [GHH06a] and in Corollary 3.2 we introduce the notion
of very weak solutions to equation (2.11). To this end, let 1 < p, q < ∞. A function u ∈
Lp(0, T0; L

q
σ(Ω(·))) is called a very weak solution to (2.11) if

< v0, ϕ >Ω −

T0
∫

0

< u(t), ϕ′(t) + ∆ϕ(t) + (u(t) · ∇)ϕ(t) >Ω(t) dt

+

T0
∫

0

< Mx,∇ϕ(t) >Γ(t) dt = 0,

for ϕ ∈ D, where

D :=
{

ϕ ∈ C1
(

[0, T0]; C
∞
c (Ω(·))

)

: ϕ(T0) = 0, div ϕ(t) = 0, ϕ(t)|Γ(t) = 0 for all t ∈ [0, T0]
}

.

We say that two very weak solutions u, v ∈ Lp(0, T0; L
q
σ(Ω(·))) to (2.11) with initial value v0 ∈

Lq
σ(Ω) coincide in the very weak sense if there exists T ∈ (0, T0) such that u(t) = v(t) for a.a.

t ∈ (0, T ).
In [GHH06a], problem (2.11) is transformed into the equation

(2.12)

{

û′ − AΩ,bû + (û · ∇û) = F2, t ∈ (0, T ),
û(0) = v0 − b,

where û(x, t) := e−tMv(etMx, t) − b(x). Here,

AΩ,bû := Pq(∆û + Mx · ∇û − Mû − b · ∇û − û · ∇b)



STRONG Lp-SOLUTIONS TO THE NAVIER-STOKES FLOW PAST MOVING OBSTACLES 7

with D(AΩ,b) :=
{

û ∈ W 2,q(Ω) ∩ W 1,q
0 (Ω) ∩ Lp

σ(Ω) : Mx · ∇û ∈ Lq(Ω)
}

and F2 := ∆b + Mx ·

∇b−Mb− b · ∇b. It is proved that, for v0 − b ∈ Lr
σ(Ω) with r ≥ n, there exists a mild solution û

to (2.12), i.e., û ∈ C([0, T ]; Lr
σ(Ω)) satisfies the integral equation

(2.13) û(t) = TΩ,b(v0 − b) −

∫ t

0

TΩ,b(t − s)Pq(û · ∇û)(s) ds +

∫ t

0

TΩ,bPqF2(s) ds, t ∈ (0, T ).

Here, (TΩ,b(t))t≥0 :=
(

etAΩ,b
)

t≥0
is the semigroup generated by (AΩ,b, D (AΩ,b)) in Lr

σ(Ω). More-

over, this solution û satisfies:

t 7→ t
n
2 ( 1

r −
1

q )û(·) ∈ C([0, T ]; Lq
σ(Ω)),(2.14)

t 7→ t
n
2 ( 1

r − 1

q )+ 1

2∇û(·) ∈ C([0, T ]; Lq(Ω)).(2.15)

We show in Section 4 that w given by

(2.16) w(x, t) := etM û(e−tMx, t) + etMb(e−tMx),

with û given by the variation-of-constants formula (2.13) is a very weak solution to (2.11) for
suitable choices of p, q and n. We are in the position to state our main results.

3. Main Results

Our existence and uniqueness result for equation (1.1) reads as follows.

Theorem 3.1. Assume (A2) and let p, q ∈ (1,∞) such that n
2q + 1

p ≤ 3
2 . Assume that

a) f ∈ Lp(0, T ; Lq
σ(Ω(·))),

b) v0 − b(·, 0) ∈ (Lq
σ(Ω), W 1,q

0 (Ω) ∩ W 2,q(Ω) ∩ Lq
σ(Ω))1−1/p,p.

Then there exists T > 0 such that the problem (1.1) admits a unique strong solution

v ∈ Lp(0, T ; W 2,q(Ω(·))) ∩ W 1,p(0, T ; Lq
σ(Ω(·))), q ∈ Lp(0, T ; Ŵ 1,q(Ω(·))).

Moreover, we can choose T > 0 sucht that either T = +∞ or the function

t 7→ ‖v(t)‖(Lq
σ(Ω(t)),W 1,q

0
(Ω(t))∩W 2,q(Ω(t)∩Lq

σ(Ω(t))))
1−1/p,p

is unbounded on its maximal interval of existence [0, T ).

Corollary 3.2. Assume (A1) and let p, q ∈ (1,∞) such that n
2q + 1

p ≤ 3
2 . Assume that

a) f ∈ Lp(0, T ; Lq
σ(Ω(·))),

b) v0 − b ∈ (Lq
σ(Ω), W 1,q

0 (Ω) ∩ W 2,q(Ω) ∩ Lq
σ(Ω))1−1/p,p.

Then there exists T > 0 such that the problem (2.11) admits a unique strong solution

v ∈ Lp(0, T ; W 2,q(Ω(·))) ∩ W 1,p(0, T ; Lq
σ(Ω(·))), q ∈ Lp(0, T ; Ŵ 1,q(Ω(·))).

We have either T = +∞ or

t 7→ ‖v(t)‖(Lq
σ(Ω(t)),W 1,q

0
(Ω(t))∩W 2,q(Ω(t)∩Lq

σ(Ω(t))))
1−1/p,p

is unbounded on its maximal interval of existence [0, T ).

The following theorem says that the two solutions v and w coincide in the very weak sense.
More precisely, the following holds true.

Theorem 3.3. Let 1 < p, q < ∞ such that n
2q + 1

p ≤ 3
2 . Assume that

a) v0 − b ∈ (Lq
σ(Ω), D(Aq))1− 1

p ,p,

b) v0 − b ∈ Lr
σ(Ω) for some r > n provided n

2q + 1
p = 3

2 .

Then w given by (2.16) and v given in Corollary 3.2 coincide in the very weak sense.
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4. Proof of the first main result

Note that in order to prove our main result it suffices to construct a unique solution (u, π)
to (2.9). The strategy of the proof is as follows: First, we derive estimates on the coefficients
of the operators N ,B,L,M and G in the problem (2.9). Then, a fixed point argument in a
suitable closed subspace of XT

p,q × Y T
p,q yields a unique solution (u, π) ∈ XT

p,q × Y T
p,q via maximal

Lp-regularity of the Stokes operator.
Observe, that for a multi-index α and k ∈ N there is some constant K|α|,k,T > 0 such that

∥

∥∂α
y ∂k

t b
∥

∥

L∞(Rn×[0,T ])
≤ K|α|,k,T , |α| + k > 0.

The following lemma yields estimates of the transformation mappings X and Y , respectively,
that are defined by (2.6) and (2.7). Clearly, the assertions remain true in the case of b being
independent from the time variable and X , Y defined as in (2.2) and (2.3).

Lemma 4.1. Let T0 > 0, k ∈ N and α a multi-index satisfying |α| + k > 0. Then there exists
C|α|,k,T0

> 0 such that

‖∂α
y ∂k

t X‖L∞(Rn×[0,T0]) ≤ C|α|,k,T0
.

The above estimates remain valid when X(·, t) is replaced by its inverse Y (·, t).

Proof. Let T0 > 0, k ∈ N and α a multi-index satisfying |α|+ k > 0. By a direct calculation, we
see that X(t, y) = y for y /∈ supp b. Hence,

‖∂α
y ∂k

t X‖L∞((supp b)c×[0,T0]) ≤ 1.

Since supp b is compact and X ∈ C∞(Rn × R+), there exists C|α|,k,T0
, such that

‖∂α
y ∂k

t X‖L∞((supp b)×[0,T0]) ≤ C|α|,k,T0
.

�

It follows from the definition of gij , gij and Γk
ij and the previous lemma that all coefficients

of L, M, N , B and G are smooth and bounded on finite time intervals [0, T0] for any T0 > 0.
Moreover, by the mean value theorem, for x ∈ R

n we have gij(x, t) − δij = t∂τgij(x, τ) for some
τ ∈ (0, t). Hence, it follows from Lemma 4.1 that

(4.1) ‖gij − δij‖L∞(Rn×[0,T0]) ≤ t‖∂tg
ij‖L∞(Rn×[0,T0]) ≤ Ct, t ∈ (0, T0).

The following embedding of XT
p,q in Lk(0, T ; W s,m(Ω)) is needed to cope with the gradient

terms. It mainly relies on the mixed derivatives theorem. Precisely, the following lemma holds:

Lemma 4.2. Let 1 < p, q < ∞, T0 > 0 and s = 0 or s = 1. Assume that k, m ∈ (1,∞)
obey 2−s

2 + n
2m − n

2q ≥ 1
p − 1

k . Then XT
p,q is continously embedded in Lk (0, T ; W s,m(Ω)) for any

T ∈ (0, T0). Moreover, there exists CT0
> 0 such that

‖u‖Lk(0,T ;W s,m(Ω)) ≤ CT0
‖u‖XT

p,q
, T ∈ (0, T0), u ∈ XT

p,q, u(0) = 0.

Proof. By the mixed derivative theorem (see [Sob75], [DHP05]), for θ ∈ (0, 1) there exists C > 0
such that

‖u‖Hθ,p(0,T0;H2−2θ,q(Ω)) ≤ C‖u‖
X

T0
p,q

, u ∈ XT0

p,q.

It then follows from Sobolev embeddings that

‖u‖Lk(0,T ;W s,m(Ω)) ≤ CT0
‖u‖

X
T0
p,q

, u ∈ XT0

p,q.

Let S :
{

u ∈ XT
p,q : u(0) = 0

}

→ XT0

p,q be defined by

Su(t) :=

{

u(t − (T0 − T )), t ≥ T0 − T,

0, 0 ≤ t < T0 − T.
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Then ‖Su‖
X

T0
p,q

= ‖u‖XT
p,q

and ‖Su‖Lk(0,T ;W s,m(Ω)) = ‖u‖Lk(0,T0;W s,m(Ω)). We thus obtain

‖u‖Lk(0,T0;W s,m(Ω)) = ‖Su‖Lk(0,T ;W s,m(Ω)) ≤ CT0
‖Su‖

X
T0
p,q

= CT0
‖u‖XT

p,q

for all u ∈ XT
p,q satisfying u(0) = 0. �

Next we prove estimates for the terms on the right-hand side of (2.9).

Lemma 4.3. Let T0 > 0. Then there exists C > 0 such that for T ∈ (0, T0) and (v1, q1), (v2, q2) ∈
XT

p,q × Y T
p,q satisfying v1(0) = v2(0) = 0

(a) ‖Nv1 −Nv2‖Lp(0,T ;Lq(Ω)) ≤ C
(

‖v1‖XT
p,q

+ ‖v2‖XT
p,q

)

‖v1 − v2‖XT
p,q

,

(b) ‖B(v1 − v2)‖Lp(0,T ;Lq(Ω)) ≤ CT
1

3p ‖v1 − v2‖XT
p,q

,

(c) ‖M(v1 − v2)‖Lp(0,T ;Lq(Ω)) ≤ CT
1

3p ‖v1 − v2‖XT
p,q

,

(d) ‖(L − ∆)(v1 − v2)‖Lp(0,T ;Lq(Ω)) ≤ C(T + T
1

3p )‖v1 − v2‖XT
p,q

,

(e) ‖(∇− G)(q1 − q2)‖Lp(0,T ;Lq(Ω)) ≤ CT ‖q1 − q2‖Y T
p,q

.

The estimates above are valid even if v1(0) 6= 0 and v2(0) 6= 0. However, in this case, C depends
on T as well.

Proof. Set k = 3p, k′ = 3p/2, m = 3q and m′ = 3q/2. By Hölder’s inequality, we obtain for the
first term of Nv1 −Nv2

‖v1 · ∇v1 − v2 · ∇v2‖Lp(0,T ;Lq(Ω)) ≤ ‖(v1 − v2) · ∇v1 + v2 · (∇v1 −∇v2)‖Lp(0,T ;Lq(Ω))

≤ ‖v1‖Lk′(0,T ;W 1,m′ (Ω))‖v1 − v2‖Lk(0,T ;Lm(Ω))

+ ‖v2‖Lk(0,T ;Lm(Ω))‖v1 − v2‖Lk′(0,T ;W 1,m′ (Ω)).

Hence, by Lemma 4.2, there exists C > 0, independent of T ∈ (0, T0) and v1, v2, such that

‖v1 · ∇v1 − v2 · ∇v2‖Lp(0,T ;Lq(Ω)) ≤ C
(

‖v1‖XT
p,q

+ ‖v2‖XT
p,q

)

‖v1 − v2‖XT
p,q

.

Since the second term of Nv1 −Nv2 can be estimated similary, assertion (a) follows.
Similarly, (b) and (c) follow from the estimates

‖B(v1 − v2)‖Lp(0,T ;Lq(Ω)) ≤ CT
1

k ‖v1 − v2‖Lk′(0,T ;W 1,q(Ω)) ≤ CT
1

k ‖v1 − v2‖XT
p,q

and

‖M(v1 − v2)‖Lp(0,T ;Lq(Ω)) ≤ CT
1

k ‖v1 − v2‖Lk′(0,T ;W 1,q(Ω)) ≤ CT
1

k ‖v1 − v2‖XT
p,q

,

respectively, where C > 0 is independent of T ∈ (0, T0) and v1, v2.
As all coefficients of L are smooth we may rewrite it in non-divergence form and, by (4.1), we

obtain

‖(L− ∆)(v1 − v2)‖Lp(0,T ;Lq(Ω))

≤ C‖gjk − δjk‖L∞(Rn×(0,T ))‖D
2(v1 − v2)‖Lp(0,T ;Lq(Ω)) + CT

1

k ‖v1 − v2‖Lp(0,T ;W 1,q(Ω))

≤ C(T + T
1

k )‖v1 − v2‖XT
p,q

, T ∈ (0, T0), v1, v2 ∈ XT
p,q, v1(0) = 0, v2(0) = 0.

Hence (d) follows. Assertion (e) similarly follows from (4.1). �
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Let T0 > 0, T ∈ (0, T0) and p, q ∈ (1,∞) satisfy n
2q + 1

p ≤ 3
2 . Next, we introduce the space for

the fixed point argument. In order to do this, consider














∂tu
∗ − ∆u∗ + ∇π∗ = F̂ (0, 0) in Ω × (0, T ),

div u∗ = 0 in Ω × (0, T ),
u∗ = 0 on Γ × (0, T ),

u∗(0) = u0 in Ω,

where F̂ : XT0

p,q × Y T0

p,q → Lp(0, T0; L
q(Ω)) is defined by

F̂ (v, q) := F −Nv − Bv + (L − ∆)v −Mv + (∇− G)q.

Note that F̂ is well-defined by Lemma 4.3 thanks to n
2q + 1

p ≤ 3
2 . Hence, by (2.10), there exists a

unique solution (u∗, π∗) ∈ XT
p,q × Y T

p,q.

Furthermore, let (u∗∗, π∗∗) ∈ XT
p,q × Y T

p,q denote the unique solution to














∂tu
∗∗ − ∆u∗∗ + ∇π∗∗ = F̂ (u∗, π∗) in Ω × (0, T ),

div u∗∗ = 0 in Ω × (0, T ),
u∗∗ = 0 on Γ × (0, T ),

u∗∗(0) = u0 in Ω.

We rewrite (2.9) in terms of a fixed point problem equivalently by

(4.2)















∂tũ − ∆ũ + ∇π̃ = F̂ (v, q) − F̂ (u∗, π∗) in Ω × (0, T ),
div ũ = 0 in Ω × (0, T ),

ũ = 0 on Γ × (0, T ),
ũ(0) = 0 in Ω,

where we used the notation
ũ := u − u∗∗, π̃ := π − π∗∗.

In view of the Banach fixed point theorem we define for a given radius R > 0 and T ∈ (0, T0)
the closed set

KR,T :=
{

(v, q) ∈ XT
p,q × Y T

p,q : v(0) = 0 and ‖v‖XT
p,q

+ ‖q‖Y T
p,q

≤ R
}

and a mapping

ΦR,T :

{

KR,T → XT
p,q × Y T

p,q,
(v, q) 7→ (ũ, π̃) such that (4.2) holds.

In order to apply the Banach fixed point theorem to ΦR,T we have to show that the mapping
is well-defined, maps KR,T into itself and is a contraction.

While φR,T is well-defined due to Lemma 4.3 and (2.10), the other two outstanding debits are
shown in the two lemmata given below.

The next lemma shows that for suitable choices of R > 0 and T > 0 the closed set KR,T is
mapped by ΦR,T into itself.

Lemma 4.4. There exist R > 0 and T1 > 0, such that ΦR,T : KR,T → KR,T for all T ∈ (0, T1).

Proof. By (2.10) and Lemma 4.3, we obtain

‖ΦR,T (v, q)‖XT
p,q×Y T

p,q
≤ C‖F̂ (v, q)‖Lp(0,T ;Lq(Ω))

≤ C
(

‖F‖Lp(0,T ;Lq(Ω)) + ‖Nv‖Lp(0,T ;Lq(Ω))

+ ‖Bv‖Lp(0,T ;Lq(Ω)) + ‖(L− ∆)v‖Lp(0,T ;Lq(Ω)) + ‖Mv‖Lp(0,T ;Lq(Ω))

+ ‖(∇− G)q‖Lp(0,T ;Lq(Ω))

)

≤ C
(

‖F‖Lp(0,T ;Lq(Ω)) + R2 + T
1

3p R + TR
)

, (v, q) ∈ KR,T .
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Since limT→0 ‖F‖Lp(0,T ;Lq(Ω)) = 0, we obtain ‖ΦR,T (v, q)‖XT
p,q×Y T

p,q
≤ R provided R and T are

small enough. �

Lemma 4.5. There exists T0 > 0 such that ΦR,T : KR,T → KR,T is a contraction for all
T ∈ (0, T0).

Proof. Again, by (2.10) and Lemma 4.3, we obtain

‖ΦR,T (v1, q1) − ΦR,T (v2, q2)‖XT
p,q×Y T

p,q

≤ C

(

‖Nv1 −Nv2‖Lp(0,T ;Lq(Ω)) + ‖B(v1 − v2)‖Lp(0,T ;Lq(Ω))

+ ‖(L − ∆)(v1 − v2)‖Lp(0,T ;Lq(Ω)) + ‖M(v1 − v2)‖Lp(0,T ;Lq(Ω))

+ ‖(∇− G)(q1 − q2)‖Lp(0,T ;Lq(Ω))

)

≤ C(R + T + T
1

3p ) ‖(v1, q1) − (v2, q2)‖XT
p,q×Y T

p,q
, (v1, q1), (v2, q2) ∈ KR,T .

Choosing T and R small enough, we obtain C(R + T + T
1

3p ) < 1. �

Proof of Theorem 3.1. The existence of a unique strong solution now follows from Lemma 4.4,
Lemma 4.5 and the Banach fixed point theorem. Now, the theorem follows in a standard way
from the fact, that T > 0 is uniform with respect to v0, provided

‖v0‖(Lq
σ(Ω),W 1,q

0
(Ω)∩W 2,q(Ω)∩Lq

σ(Ω))
1−1/p,p

< C0,

and the continuous embedding

XT
p,q →֒ C

(

0, T ;
(

W 1,q
0 (Ω) ∩ W 2,q(Ω) ∩ Lq

σ(Ω), Lq
σ(Ω)

)

1−1/p,p

)

.

�

5. Comparison of strong and mild solutions

In this section we prove Theorem 3.3. For the notion of very weak solutions we refer back to
Section 2. In a first step, we show that a mild solution is a very weak solution.

Lemma 5.1. Let (v0 − b) ∈ Lq
σ(Ω) for some q ≥ n and denote the mild solution to (2.12) on

[0, T ] for some T > 0 by û (for a representation by the variation-of-constants formula see (2.13)).
Then w, defined by (2.16), is a very weak solution to (2.11).

Proof. By (2.14) and (2.15), we obtain û ∈ C([0, T ]; Lq
σ(Ω)) and ∇û ∈ L1(0, T ; Lq(Ω)).

Choose û1
n ∈ C1([0, T ]; C∞

c,σ(Ω)) and û2
n ∈ C1([0, T ]; C∞

c (Ω)) such that

(5.1) lim
n→∞

‖û1
n − û‖C([0,T ];Lq(Ω)) = 0 and lim

n→∞
‖∇û2

n −∇û‖L1(0,T,Lq(Ω)) = 0.

Then, by [Paz83, Chapter 4, Theorem 2.9], there exists a solution v̂n ∈ L1(0, T ; D(AΩ,b)) ∩
W 1,1(0, T ; Lq

σ(Ω)) satisfying
{

v̂′n(t) − AΩ,bv̂n(t) + Pq

(

(û1
n · ∇û2

n)(t)
)

= PqF2(t), t ∈ (0, T ),
v̂n(0) = û1

n(0).

By the representation of v̂n via variation-of-constants formula, we obtain

(5.2) lim
n→∞

‖v̂n − û‖
L1(0,T ;L

q
2 (K))

= 0
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for any compact K ⊂ Ω. Setting

∇π̂n = (Id − Pq)[F2(t) + û1
n · ∇û2

n(t) − ∆v̂n(t) − Mx · ∇v̂n(t)

+ Mv̂n(t) + b · ∇v̂n(t) + v̂n(t) · ∇b]

for t ∈ (0, T ), we see that (v̂n, π̂n) solves






















v̂′n − ∆v̂n − Mx · ∇v̂n + Mv̂n

+ b · ∇v̂n + v̂n · ∇b + û1
n · ∇û2

n + ∇π̂n = F2 in Ω, t ∈ (0, T ),
div vn = 0 in Ω, t ∈ (0, T ),

v̂n = 0 on Γ, t ∈ (0, T ),
v̂n(0) = û1

n(0) in Ω.

Hence, (vn, πn) := (etM v̂n(e−tMx, t) + etM b(e−tMx), π̂(e−tMx, t)) is a solution to






















∂tvn − ∆vn + u1
n · ∇u2

n + (b · ∇)(vn − u2
n)

+
(

(vn − u1
n) · ∇

)

b + ∇πn = 0 in Ω(t), t ∈ (0, T )
div vn = 0 in Ω(t), t ∈ (0, T )

vn = Mx on Γ(t), t ∈ (0, T )
vn(0) = u1

n(0) in Ω,

where u1
n := etM û1

n(e−tMx, t) + etMb(e−tMx) and u2
n := etM û2

n(e−tMx, t) + etMb(e−tMx). More-
over,

(vn, πn) ∈
(

L1(0, T ; W 2,q(Ω(·))) ∩ W 1,1(0, T ; Lq(Ω(·)))
)

× L1(0, T ; Ŵ 1,q(Ω(·)))

thanks to v̂n ∈ L1(0, T ; D(AΩ,b)) ∩ W 1,1(0, T ; Lq(Ω)). Therefore, integration by parts yields

< vn(0), ϕ >Ω −

T
∫

0

< vn(t), ϕ′(t) + ∆ϕ(t) > + < u2
n(t), (u1

n(t) · ∇)ϕ(t) >Ω(t) dt

+

T
∫

0

< (b · ∇)(vn − u2
n) +

(

(vn − u1
n) · ∇

)

b, ϕ >Ω(t) dt

+

T
∫

0

< Mx,∇ϕ(t) >Γ(t) dt = 0, ϕ ∈ D.

Letting n → ∞, it follows from (5.1) and (5.2) that u is a very weak solution. �

In a second step, the following lemma shows uniqueness of the very weak solution for suitable
values of p and q. Especially, we will conclude coincidence of the mild and strong notion of
solutions, as stated in Theorem 3.3.

Lemma 5.2. Let 1 < p, q < ∞ satisfy n
2q + 1

p ≤ 1
2 and let v1, v2 ∈ Lp(0, T0; L

q(Ω(·))) be two

very weak solutions to (2.11) for some T0 > 0 with initial value v0 ∈ Lq(Ω). Assume that
v1 − v2 ∈ Lp(0, T0; L

q
σ(Ω(·))). Then there exists T ∈ (0, T0) such that v1(t) = v2(t) for a.e.

t ∈ (0, T ).

Proof. For the time being let us assume that for some T ∈ (0, T0) and all f ∈ Lp′

(0, T ; Lq′

(Ω(·))),
1
p + 1

p′
= 1, 1

q + 1
q′

= 1, there exists a solution

(ϕ, π) ∈ Dext :=
(

W 1,p′

(0, T ; Lq′

σ (Ω(·))) ∩ Lp′

(0, T ; W 2,q′

(Ω(·)))
)

× Lp′

(0, T ; Ŵ 1,q′

(Ω(·)))
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to the dual backward problem

(5.3)















−∂tϕ − ∆ϕ + ∇π − (v1 + v2) · ∇ϕ = f in Ω(t), t ∈ (0, T ),
div ϕ = 0 in Ω(t), t ∈ (0, T ),

ϕ = 0 on Γ(t), t ∈ (0, T ),
ϕ(T ) = 0 in Ω.

Then, we obtain for all f ∈ Lp′

(0, T ; Lq′

(Ω(·)))

T
∫

0

< v1(t) − v2(t), f(t) >Ω(t) dt

=

T
∫

0

< v1(t) − v2(t), (−∂tϕ − ∆ϕ + ∇π − (v1 + v2) · ∇ϕ) (t) >Ω(t) dt

=

T
∫

0

< v1(t) − v2(t), (−∂tϕ − ∆ϕ − (v1 + v2) · ∇ϕ) (t) >Ω(t) dt = 0.

Here, we have used that ϕ can be approximated by functions in D. This implies v1 = v2 in (0, T ).

It thus remains to show that for f ∈ Lp′

(0, T ; Lq′

(Ω(·))), there exists a solution (ϕ, π) ∈ Dext

to (5.3). In order to do so, we first consider the forward problem

(5.4)















∂tϕ − ∆ϕ + ∇π − (vT
1 + vT

2 ) · ∇ϕ = fT in Ω(t), t ∈ (0, T ),
div ϕ = 0 in Ω(t), t ∈ (0, T ),

ϕ = 0 on Γ(t), t ∈ (0, T ),
ϕ(0) = 0 in Ω,

where vT
1 (t) = v1(T − t), vT

2 (t) = v2(T − t) and fT(t) = f(T − t) for t ∈ (0, T ). Note first, that, by
a scaling argument, we may assume that ‖fT ‖Lp′(0,T ;Lq′ (Ω(·))) is arbitrary small. Then, similar

to the proof of Theorem 3.1, it follows that there exists T > 0, independent of fT and a solution
(ϕ, π) ∈ Dext to (5.3). Indeed, we have an additional term coming from fT , which is no problem
since fT is arbitrary small. Moreover, the nonlinear term has to be replaced by a term coming
from (vT

1 + vT
2 ) · ∇ϕ. For convenience of the reader, we will give the estimates for (ṽT

1 + ṽT
2 ) · ∇ϕ̃.

We choose r, s ∈ (1,∞) such that 1
p′

= 1
p + 1

r and 1
q′

= 1
q + 1

s . Then, it follows from Hölder’s

inequality and Lemma 4.2

‖(ṽT
1 − ṽT

2 ) · ∇ϕ̃‖Lp′(0,T ;Lq′ (Ω)) ≤ ‖ṽT
1 − ṽT

2 ‖Lp(0,T ;Lq(Ω))‖∇ϕ̃‖Lr(0,T ;Ls(Ω))

≤ C‖ṽT
1 − ṽT

2 ‖Lp(0,T ;Lq(Ω))‖ϕ̃‖XT
p′,q′

.

Since ‖ṽT
1 −ṽT

2 ‖Lp(0,T ;Lq(Ω)) → 0 for T → 0, we get a solution (ϕT, πT) to (5.4) for some T > 0. Fi-

nally, (ϕ, π), where ϕ(t) := ϕT(T−t) and π(t) := πT(T−t) for t ∈ (0, T ), is a solution to (5.3). �

We finally prove Theorem 3.3.
Proof of Theorem 3.3. Let us first assume that n

2q + 1
p < 3

2 . Then, by Sobolev embeddings,

(Lq
σ(Ω), D(Aq))1− 1

p ,p →֒ Lr̃
σ(Ω)

for some r̃ > n. Hence, v, w ∈ C([0, T0]; L
r̃(Ω) for some T0 > 0. In particular, v, w satisfy the

assumption of Lemma 5.2. Hence, the assertion follows from iteration in this case.
Let us now assume that n

2q + 1
p = 3

2 and v0−b ∈ Lr
σ(Ω) for some r > n. By Sobolev embeddings,

we have

v ∈ Ls(0, T ; Ls̃(Ω))
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for some s̃ ∈ (n, r) and 1 < s < ∞ satisfying n
2s̃ + 1

s ≤ 1
2 . Moreover, since v0 − b ∈ Ls̃

σ(Ω), we

have v ∈ C([0, T ]; Ls̃(Ω)). Hence, the assertion follows similar to above in this case. �
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[Bog79] M. E. Bogovskĭı, Solution of the first boundary value problem for an equation of continuity of an

incompressible medium, Dokl. Akad. Nauk SSSR 248 (1979), (5), 1037–1040.
[CT06] P. Cumsille and M. Tucsnak, Wellposedness for the Navier-Stokes flow in the exterior of a rotating

obstacle. Math. Methods Appl. Sci. 29 (2006), (5), 595–623.
[CM97] Z. Chen and T. Miyakawa, Decay properties of weak solutions to a perturbed Navier-Stokes system

in R
n. Adv. Math. Sci. Appl. 7 (1997), 741–770.

[DHP03] R. Denk, M. Hieber and J. Prüss, R-boundedness, Fourier multipliers and problems of elliptic and

parabolic type, Mem. Amer. Math. Soc., 45, (2003).
[DHP05] , Optimal Lp-Lq-Estimates for parabolic boundary value problems with inhomogeneous data,

Konstanzer Schriften in Mathematik und Informatik, (2005), Preprint.
[FJR72] E.B. Fabes, B.F. Jones and N.M. Riviere, The initial value problem for the Navier-Stokes equations

with data in Lp. Arch. Rational Mech. Anal., 45 (1972), 222–240.
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