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Abstra
t

We 
onsider the Diri
hlet problem for two-dimensional graphs of pres
ribed

mean 
urvature in R

3

where the pres
ribed mean 
urvature fun
tion H =

H(X;N) may depend on the point X in spa
e and on the normal N of the

graph as well. In spe
ial situations this Diri
hlet problem arises as the Euler

equation of a generalised nonparametri
 area fun
ional. Under 
ertain small-

ness 
onditions we will solve the Diri
hlet problem and 
onstru
t minimizers

of the generalized area fun
tional.

Introdu
tion

In this paper we study the Diri
hlet problem for two-dimensional graphs of pres
ribed anisotropi


mean 
urvature in R

3

: Given a C

2+�

-domain 
 � R

2

and Diri
hlet boundary values g 2 C

2+�

(�
)

we want to �nd a solution � 2 C

2+�

(
) of

div

r�

p

1 + jr�j

2

= 2H(x; y; �;N) in 
 ;

N(x; y) =

1

p

1 + jr�j

2

(��

x

;��

y

; 1) in 
 ; (1)

� = g on �
 :

Here, N(x; y) denotes the upper unit normal ve
tor of the graph �. The fun
tion H : R

3

�R

3

! R,

whi
h is 
alled the pres
ribed mean 
urvature, depends on the point (x; y; �(x; y)) in spa
e and on

normal N(x; y) as well. At ea
h point (x; y) 2 
 the geometri
 mean 
urvature of the graph � is

equal to the value H(x; y; �(x; y); N(x; y)), thus a solution � is also 
alled a graph of pres
ribed

mean 
urvature H.

For the spe
ial 
ase H = H(x; y) several existen
e results based on di�erent methods have al-

ready been proven. Assuming the smallness 
ondition jHj � h for some 
onstant h > 0, the

Diri
hlet problem was solved in [6℄ with the Leray-S
hauder method for 
onvex domains satifying

an en
losing sphere 
ondition of radius

1

2h

. Furthermore, sin
e the Diri
hlet problem is in that


ase given by the Euler equation of the fun
tional

A(�) :=

Z




�

p

1 + jr�j

2

+ 2H(x; y)�

�

dxdy ;

dire
t methods from the 
al
ulus of variations 
an be applied to obtain a solution (see e.g. [5℄).
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The 
ase H = H(x; y; z) was treated in [10℄ by Sauvigny where a stable parametri
 solution

from the 
orresponding Plateau problem is taken and shown to be a graph over the x; y-plane.

Here one needs the monotono
ity assumption H

z

� 0, whi
h by the maximum prin
iple also guar-

antees the uniqueness of solutions.

In this paper we study and solve the Diri
hlet problem for graphs of pres
ribed mean 
urvature

H = H(X;N) depending on the point X in spa
e and on the normal N as well. In general this

problem does not ne
essarily arise as the Euler equation of some geometri
 fun
tional. However,

we want to point out that in spe
ial situations, namely when H depends linearly on N , su
h a

problem appears when 
onsidering 
ertain generalized nonparametri
 area fun
tionals su
h as

A(�) :=

Z




�

a(x; y; �)

p

1 + jr�j

2

+ b(x; y; �)

�

dxdy

with fun
tions a : R

3

! (0;+1) and b : R

3

! R. The Euler equation is then given by

div

r�

p

1 + jr�j

2

=

ra(x; y; �) �N + b

z

(x; y; �)

a(x; y; �)

=: 2H(x; y; �;N) in 
 :

When b � 0 minimizers of this nonparametri
 fun
tional A were 
onstru
ted in [13℄ and the Plateau

problem for the parametri
 version of this fun
tional was studied in [2℄. The fun
tional A then

measures area of the graph � in the Riemannian spa
e

(R

3

; ds

2

) ; ds

2

= a(x; y; z)(dx

2

+ dy

2

+ dz

2

)

and solutions of the Euler equation are minimal graphs in this Riemannian spa
e. The existen
e

theorem we will prove in this paper will also apply to the 
ase that b 6= 0. By making a spe
ial


hoi
e for the fun
tion b, namely if b

z

= 2ha

3

2

with h 2 R, this enables us also to 
onstru
t graphs

of 
onstant mean 
urvature h in the Riemannian spa
e (R

3

; ds

2

).

This paper is organized as follows: In se
tion 1 we prove a di�erential equation for the nor-

mal (Theorem 1) for a 
onformally parametrized surfa
e. We use it to prove an interior gradient

bound of the graph in terms of its boundary gradient (Corollary 1). In se
tion 2 we then solve

the Diri
hlet problem (see Theorem 2) using the Leray-S
hauder method from [6℄. In se
tion 3 we

then apply the existen
e theorem to the fun
tional A and 
onstru
t 
riti
al points and minimizers

of this fun
tional (see Theorem 3).

1. A di�erential equation for the normal and its appli
ation

Let B := f(u; v) 2 R

2

j u

2

+v

2

< 1g denote the open unit dis
 in R

2

. Given a solution � 2 C

2+�

(
)

of (1) on a simply 
onne
ted C

2+�

-domain 
, we 
an introdu
e 
onformal paramters on this graph

(see [11℄): There exists a positively oriented C

2+�

-di�eomorphism f : B ! 
 su
h that

X(u; v) = (x(u; v); y(u; v); z(u; v)) 2 C

2+�

(B;R

3

) ; X(u; v) := (f(u; v); � Æ f(u; v))

is given in 
onformal parameters. The ve
tor valued fun
tion X satis�es the pres
ribed mean


urvature system

4X = 2H(X;N)X

u

^X

v

in B (2)

where

N(u; v) :=

X

u

^X

v

jX

u

^X

v

j

(u; v) for (u; v) 2 B
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denotes the normal of X. Furthermore, we have the 
onformality relations

jX

u

j

2

� jX

v

j

2

= 0 = X

u

�X

v

in B : (3)

Note that, sin
e the surfa
e is a graph, the normal N satis�es N � e

3

= N

3

> 0 with e

3

= (0; 0; 1).

This also means that the image of the normal mapping is in
luded in the upper hemisphere

S

2

+

:= f(x; y; z) 2 R

3

j x

2

+ y

2

+ z

2

= 1 ; z > 0g :

For the 
ase of 
onstant mean 
urvature H � 
onst, it is well known that the normal ve
tor N

satis�es the di�erential equation

4N + 2W (2H

2

�K)N = 0 in B

withW := jX

u

^X

v

j and the Gaussian 
urvatureK. We now show a generalisation of this equation

for the 
ase of pres
ribed mean 
urvature.

Theorem 1: Let X 2 C

2+�

(B;R

3

) be a solution of (2) and (3) for the pres
ribed mean 
urvature

H 2 C

1+�

(R

3

� R

3

;R). Then the normal N of the surfa
e belongs to the spa
e C

2+�

(B;R

3

) and

it satis�es the di�erential equation

4N + 2(r

N

H �X

u

)N

u

+ 2(r

N

H �X

v

)N

v

+ 2W (2H

2

�K �r

X

H �N)N = �2Wr

X

H : (4)

Here, K = K(u; v) denotes the Gauss 
urvature and W is de�ned by W := jX

u

^X

v

j. Furthermore,

we have set rH = (r

X

H;r

N

H) 2 R

3

� R

3

.

Proof:

From X 2 C

2+�

(B;R

3

) we �rst 
on
lude that the right hand side of the di�erential equation

4X = 2H(X;N)X

u

^X

v

in B

belongs to C

1+�

(B;R

3

). By potential theory it followsX 2 C

3+�

(B;R

3

) and thusN 2 C

2+�

(B;R

3

).

Now at any point (u; v) 2 B the ve
tors X

u

;X

v

and N are linearly independent and form a or-

thogonal basis of R

3

. From the 
onformality relations for X we 
on
lude

X

v

^N = X

u

and N ^X

u

= X

v

: (5)

Furthermore we have the following Weingarten equations

N

u

= �

b

11

W

X

u

�

b

12

W

X

v

and N

v

= �

b

12

W

X

u

�

b

22

W

X

v

; (6)

where

b

11

= X

uu

�N ; b

12

= X

uv

�N and b

22

= X

vv

�N

are the 
oeÆ
ients of the se
ond fundamental form. For any given ve
tor 
 2 R

3

we now 
al
ulate

(
 �N

u

)X

u

+ (
 �N

v

)X

v

=

�

�

b

11

W

(X

u

� 
)�

b

12

W

(X

v

� 
)

�

X

u

+

�

�

b

12

W

(X

u

� 
)�

b

22

W

(X

v

� 
)

�

X

v

=

�

�

b

11

W

X

u

�

b

12

W

X

v

�

(X

u

� 
) +

�

�

b

12

W

X

u

�

b

22

W

X

v

�

(X

v

� 
)

= (
 �X

u

)N

u

+ (
 �X

v

)N

v

: (7)
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For the Gauss 
urvature K(u; v) of the surfa
e X we have the relation

N

u

^N

v

= KX

u

^X

v

= KWN : (8)

Using (5) and (6) we now 
al
ulate

N ^N

u

= �

b

11

W

X

v

+

b

12

W

X

u

=

b

12

W

X

u

+

b

22

W

X

v

�

b

11

+ b

22

W

X

v

= �N

v

� 2H(X;N)X

v

;

N ^N

v

= �

b

12

W

X

v

+

b

22

W

X

u

= �

b

11

W

X

u

�

b

12

W

X

v

+

b

11

+ b

22

W

X

u

= N

u

+ 2H(X;N)X

v

:

Di�erentiating the �rst equation w.r.t. v and the se
ond one w.r.t. u we obtain

N

vv

= �N

v

^N

u

�N ^N

uv

� (2H(X;N)X

v

)

v

N

uu

= N

u

^N

v

+N ^N

uv

� (2H(X;N)X

u

)

u

:

The sum of the two equation yields

1

2

4N =

1

2

(N

uu

+N

vv

)

= N

u

^N

v

� (H(X;N)X

u

)

u

� (H(X;N)X

v

)

v

= KWN � (r

X

H �X

u

)X

u

� (r

X

H �X

v

)X

v

�(r

N

H �N

u

)X

u

� (r

N

H �N

v

)X

v

�H(X;N)4X

= KWN �Wr

X

H +W (r

X

H �N)N

�(r

N

H �X

u

)N

u

� (r

N

H �X

v

)N

v

� 2WH

2

N :

Here we have used (7) for 
 = r

N

H and (8). After some regrouping we obtain the desired di�er-

ential equation (4). �

Remark: This di�erential equation is a generalisation of one proven by Sauvigny in [10, Satz

1℄ for the 
ase H = H(X). In [3, Theorem 1.1℄ a di�erential equation for the normal of surfa
es

of so-
alled pres
ribed F -mean 
urvature is proven.

We now want to derive a lower bound for the fun
tion �(u; v) := N

3

(u; v) = N(u; v) � e

3

> 0

in B in terms of the boundary values of �. We note that by Theorem 1 � sati�es

4� + 2(r

N

H �X

u

)�

u

+ 2(r

N

H �X

v

)�

v

+ 2W (2H

2

�K �r

X

H �N)� = �2WH

z

:

We �rst impose the following stru
tural 
ondition on the pres
ribed mean 
urvature:

Assumption (A):

The fun
tion H has to satisfy the stru
ture 
ondition

H(X;N) = H

1

(X;N) +H

2

(X;N)N

3

for (X;N) 2 R

3

� S

2

+

with two fun
tionsH

1

;H

2

2 C

1

(R

3

�R

3

;R) where H

1

is monotone in the z-variable, i.e. (H

1

)

z

� 0.

Remarks:

1.) If we assume H

z

� 0 then assumption (A) is satis�ed with H

1

� H and H

2

� 0. From

H

z

� 0 one 
an also dedu
e the uniqeness of solutions to the Diri
hlet problem using the

maximum prin
iple for quasilinear ellipti
 equations (see [6, Theorem 10.2℄). For a presribed

mean 
urvature H = H(X) only depending on the point in spa
e, assumption (A) is a
tually

equivalent to H

z

� 0.
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2.) In general assumption (A) is weaker then H

z

� 0. In fa
t, it does not imply uniqueness for

the Diri
hlet problem. To see this, 
onsider the dis
 
 := f(x; y) 2 R

2

j x

2

+ y

2

<

3

4

g and

the pres
ribed mean 
urvature

H(X;N) := �2(X �N) + 1 = �2(xN

1

+ yN

2

+ zN

3

) + 1

satifying assumption (A). It is easy to see that the two graphs

�

1

(x; y) :=

1

2

and �

2

(x; y) :=

p

1� x

2

� y

2

for (x; y) 2 


are graphs of pres
ribed mean 
urvature H. They also have the same boundary values

�

1

= �

2

=

1

2

on �
.

Using assumption (A) together with the relation 2H

2

� K � 0 between mean and Gaussian


urvature, we now obtain for �(u; v) = N

3

(u; v) the di�erential inequality

4� + a�

u

+ b�

v

+ 
� � 0 in B (9)

with the 
oeÆ
ients

a(u; v) := 2r

N

H �X

u

; b(u; v) := 2r

N

H �X

v

and 
(u; v) := 2W (�r

X

H �N + (H

2

)

z

) : (10)

We now want to give an interior lower bound for � in terms of its boundary values. Sin
e the


oeÆ
ient 
 may have positive or negative sign, we 
annot dire
tly apply the maximum prin
iple

to �. Instead, we use the following produ
t ansatz

~

�(u; v) :=

�(u; v)

 (u; v)

for (u; v) 2 B

for some positive fun
tion  2 C

2

(B; (0;+1)) to be 
hoosen later. Then putting �(u; v) =

~

�(u; v) (u; v) into (9) we obtain for

~

� the di�erential inequality

 4

~

� + ~a

~

�

u

+

~

b

~

�

v

+ ~


~

� � 0 (11)

for some 
oeÆ
ients ~a;

~

b; ~
 where in parti
ular

~
 = 4 + a 

u

+ b 

v

+ 
 :

To have a minimum prin
iple for

~

� we need to 
hoose  su
h that ~
 � 0. Therefore, we show

Proposition 1: Let X(u; v) = (x(u; v); y(u; v); z(u; v)) 2 C

2+�

(B;R

3

) be a solution of (2) and

(3) for the pres
ribed mean 
urvature H 2 C

1+�

(R

3

� R

3

;R) satifying assumption (A) and the

estimates

jHj � h ; jr

N

Hj � h

1

and jr

X

Hj � h

2

with 
onstants h; h

1

; h

2

� 0. De�ning Y (u; v) := (x(u; v); y(u; v); 0) we assume the smallness


ondition

jY (u; v)j � r in B

for a 
onstant r <

1

2h+4h

1

.

Then there exists a 
onstant � = �(h; h

1

; h

2

; r) > 0 su
h that

 (u; v) := e

�jY j

2

for (u; v) 2 B

satis�es the di�erential inequality

4 + a 

u

+ b 

v

+ 
 � 0 (12)

with a; b and 
 de�ned by (10).
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Proof:

Using the inequaltity jY

u

j

2

+jY

v

j

2

� jX

u

j

2

, whi
h is a 
onsequen
e of the 
onformal parametrization

of X, we �rst 
al
ulate

4 =

�

2�e

�jY j

2

Y � Y

u

�

u

+

�

2�e

�jY j

2

Y � Y

v

�

v

= 2� 

�

4Y � Y + jY

u

j

2

+ jY

v

j

2

+ 2�(Y � Y

u

)

2

+ 2�(Y � Y

v

)

2

�

� 2� 

�

4X � Y + jY

u

j

2

+ jY

v

j

2

�

= 2� 

�

jY

u

j

2

+ jY

v

j

2

+ 2H(X;N)X

u

^X

v

� Y

�

� 2� 

�

jX

u

j

2

� 2hjX

u

j

2

jY j

�

= 2� W (1� 2hjY j) :

Next we estimate

a 

u

+ b 

v

= 2(r

N

H �X

u

)(2� Y � Y

u

) + 2(r

N

H �X

v

)(2� Y � Y

v

)

� 4� jr

N

Hj jX

u

j jY j(jY

u

j+ jY

v

j)

� 8� h

1

jY j jX

u

j

2

= 8� Wh

1

jY j :

Combining these two estimates we rea
h

4 + a 

u

+ b 

v

+ 
 � 2� W (1 � 2hjY j � 4h

1

jY j) + 2W (�r

X

H �N + (H

2

)

z

) 

� 2� W (1 � 2hjY j � 4h

1

jY j)� 2W (3h

2

) 

= 2 W

�

�(1� 2hjY j � 4h

1

jY j)� 3h

2

�

� 2 W

�

�(1� f2h + 4h

1

gr)� 3h

2

�

:

Now, using the smallness assumption on r of this lemma, we 
an 
hoose a � = �(h; h

1

; h

2

; r) > 0

large enough su
h that (12) holds. �

As a 
onsequen
e we obtain the following gradient estimate.

Corollary 1: Given a simply 
onne
ted C

2+�

-domain 
 � R

2

let � 2 C

2+�

(
;R) be a solution

of (1) for the pres
ribed mean 
urvature H 2 C

1+�

(R

3

�R

3

;R) satisfying assumption (A) and the

estimates

jHj � h ; jr

N

Hj � h

1

and jr

X

Hj � h

2

:

Assume that the domain 
 is in
luded in a ball B

r

(0; 0) � R

2

of some radius r <

1

2h+4h

1

. Then

there exists a 
onstant C = C(h; h

1

; h

2

; r) su
h that

sup

(x;y)2


jr�(x; y)j � C

�

1 + sup

(x;y)2�


jr�(x; y)j

�

:

Proof:

Given a solution � of (1) we introdu
e 
onformal parameters X = X(u; v) = (f(u; v); � Æ f(u; v)) 2

C

2+�

(B;R

3

) on the graph as mentioned in the beginning of this se
tion. We 
onsider the third


omponent of the normal �(u; v) := N

3

(u; v) and remark �(u; v) = (1 + jr� Æ f(u; v)j

2

)

�

1

2

. Us-

ing (12) of Proposition 1 together with (11) we �nd a 
onstant � > 0 su
h that for

~

�(u; v) =

�(u; v)e

��(x

2

+y

2

)

> 0 we have the di�erential inequality

 4

~

� + ~a

~

�

u

+

~

b

~

�

v

� 0 :

6



By the maximum prin
iple

~

� must a
hieve its minimum on �B, so for any (u

0

; v

0

) 2 B we have

�(u

0

; v

0

) �

~

�(u

0

; v

0

) � inf

�B

~

�(u; v) = inf

�B

�(u; v)e

��(x

2

+y

2

)

� e

��r

2

inf

�B

�(u; v) :

Setting (x

0

; y

0

) = f

�1

(u

0

; v

0

) 2 
 we 
on
lude

p

1 + jr�(x

0

; y

0

)j

2

� e

�r

2

sup

(x;y)2�


p

1 + jr�(x; y)j

2

whi
h yields the desired estimate for C := e

�r

2

. �

Remarks: By a di�erent 
hoi
e of the fun
tion  in Lemma 1 it may be possible to improve

the assumption on the radius r of the ball 
ontaining 
. The smallness assumption on r 
an be

removed 
ompletely provided a global a priori estimate ofW = jX

u

^X

v

j in B is �rst shown where

X is the 
onformal reparametrization of the graph �. Proposition 1 
an then be proven for the

fun
tion  (u; v) := e

�u

. Su
h a global estimate of W 
an be proven using interior estimates for

ellipti
 systems with quadrati
 growth in gradient (see [8℄) 
ombined with a boundary regularity

theorem for su
h systems (see [9℄) and is worked out in the author's dissertation thesis [1℄.

2. Solution of the Diri
hlet problem

In the �rst se
tion we have provided an interior gradient bound in terms of the boundary gradient.

We now need a boundary gradient estimate. Su
h an estimate holds for a large 
lass of ellipti


di�erential equations in
luding our one (see [6, 
hapter 14℄). However, the following 
onvexity

assumption on the domain must be imposed.

De�nition 1: Let 
 � R

2

be a C

2

-domain and � : �
! R the 
urvature of �
 w.r.t. the inner

normal. Then 
 is 
alled k-
onvex for a 
onstant k � 0 if the inequality

�(x; y) � k for (x; y) 2 �


holds.

Remarks:

1.) A k-
onvex domain for k � 0 is ne
essarily a 
onvex domain.

2.) A k-
onvex domain satis�es a uniform en
losing sphere 
ondition in the following sen
e: For

ea
h point (x; y) 2 �
 there exists a ball B
1

k

(x

1

; y

1

) � R

2

of radius

1

k


entered at some point

(x

1

; y

1

) 2 R

2

su
h that


 � B
1

k

(x

1

; y

1

) and (x; y) 2 �B
1

k

(x

1

; y

1

) :

We 
an now solve the Diri
hlet problem.

Theorem 2: Assumptions:

1.) Let a C

2+�

-domain 
 � R

2

be given.

2.) The pres
ribed mean 
urvature H 2 C

1+�

(R

3

� R

3

;R) sati�es assumption (A) and

jHj � h ; jr

N

Hj � h

1

in 
� R � S

2

+

for some 
onstants h > 0 and h

1

� 0.
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3.) The domain 
 is 2h-
onvex and 
ontained in a ball B

r

(0; 0) of some radius r <

1

2h+4h

1

.

Then for any Diri
hlet boundary values g 2 C

2+�

(�
;R) the Diri
hlet problem (1) has a solution

� 2 C

2+�

(
;R).

Proof:

Consider the family of Diri
hlet problems

� 2 C

2+�

(
;R) ; div

r�

p

1 + jr�j

2

= 2tH(x; y; �;N) in 
 and � = t g on �
 (13)

with a parameter t 2 [0; 1℄ and let � be a solution for some t 2 [0; 1℄. We de�ne the spheri
al 
aps

�

�

(x; y) := �

�

jjgjj

C

0

(�
)

+

r

1

h

2

� x

2

� y

2

�

for (x; y) 2 


whi
h are well de�ned be
ause 
 is 
ontained in the ball B

r

(0; 0) of radius r <

1

2h+4h

1

<

1

h

. Noting

�

�

� � � �

+

on �
 the 
omparision prin
iple for quasilinear elipti
 equations (see [6, Theorem

10.1℄) yields �

�

� � � �

+

in 
 and we obtain the C

0

-estimate

jj�jj

C

0

(
)

� jjgjj

C

0

(�
)

+

1

h

:

Now, using the 2h-
onvexity of the domain together with this C

0

-estimate, a boundary gradient

estimate

jj�jj

C

1

(�
)

� C

1


an be proven with a 
onstant C

1

only depending on jjgjj

C

2

(�
)

and h (see [6, Corollary 14.5℄ and

the remark following there). Using Corollary 1 we obtain the global C

1

-estimate

jj�jj

C

1

(
)

� C

2

with a 
onstant C

2

independent of t. The Leray-S
hauder method [6, Theorem 13.8℄ yields a

solution of the Diri
hlet problem (13) for ea
h t 2 [0; 1℄. For t = 1 we obtain the desired solution

of (1). �

3. Ciriti
al points and minimizers of a generalized nonparametri
 area fun
-

tional

We 
onsider the generalized nonparametri
 area fun
tional

A(�) :=

Z




�

a(x; y; �)

p

1 + jr�j

2

+ b(x; y; �)

�

dxdy

for a domain 
 � R

2

and given fun
tions a : R

3

! (0;+1) and b : R

3

! R.

Examples:

1.) In 
ase a � 1 and b � 0 we obtain the standard Euklidean area of a graph in R

3

. The Euler

equation is the nonparametri
 minimal surfa
e equation.
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2.) For a � 1 and b = b(x; y; z) we obtain the fun
tional

A(�) =

Z




�

p

1 + jr�j

2

+ b(x; y; �)

�

dxdy :

The 
orresponding Euler equation leads to graphs of pres
ribedmean 
uratureH = H(x; y; z) =

1

2

b

z

(x; y; z).

3.) Taking some fun
tion for a = a(x; y; z) but b � 0 one obtains

A(�) =

Z




a(x; y; �)

p

1 + jr�j

2

dxdy :

This fun
tional measures the area of the graph � in the Riemannian spa
e

(R

3

; ds

2

) ; ds

2

= a(x; y; z)(dx

2

+ dy

2

+ dz

2

)

whi
h is a spa
e 
onformally equivalent to Euklidian R

3

. The Euler equation leads to minimal

graphs in this Riemannian spa
e.

4.) Setting

U := f(x; y; z) 2 R

3

j (x; y) 2 
 ; min(0; �(x; y)) < z < max(0; �(x; y))g

the oriented volume vol(U) of U in the Riemannian spa
e (R

3

; ds

2

) is 
omputed by

vol(U) =

Z




�(x;y)

Z

0

p

a(x; y; z)

3

dzdxdy =

Z




�(x;y)

Z

0

a(x; y; z)

3

2

dzdxdy :

We now de�ne

b(x; y; z) :=

z

Z

0

a(x; y; s)

3

2

ds

and 
onsider the fun
tional

A(�) =

Z




�

a(x; y; �)

p

1 + jr�j

2

+ 2h b(x; y; �)

�

dxdy

with a parameter h 2 R. Here one looks for 
riti
al points of the area under a volume


onstraint in the Riemannian spa
e (R

3

; ds

2

) if one 
onsiders h to be a Lagrange parameter.

The 
orresponding Euler equation leads to graphs of 
onstant mean 
urvature h in the

Riemannian spa
e.

We now derive the Euler equation of the fun
tional A whi
h in the 
ase b � 0 was already

established in [2℄.

Lemma 1: Given two fun
tions a; b 2 C

1

(R

3

;R) with a > 0 in R

3

, the Euler equation of the

fun
tional A is given by

div

ar�

p

1 + jr�j

2

= a

z

p

1 + jr�j

2

+ b

z

in 
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or equivalenty

div

r�

p

1 + jr�j

2

=

ra �N + b

z

a

in 


with the upper unit normal of the graph

N = N(x; y) = (1 + jr�j

2

)

�

1

2

(��

x

;��

y

; 1) :

Proof:

Setting

F (x; y; z; p; q) := a(x; y; z)

p

1 + p

2

+ q

2

+ b(x; y; z) for x; y; z; p; q 2 R ;

the fun
tional 
an written in the form

A(�) =

Z




F (x; y; �; �

x

; �

y

)dxdy :

We �rst 
al
ulate

F

z

= a

z

p

1 + p

2

+ q

2

+ b

z

; F

p

=

a p

p

1 + p

2

+ q

2

and F

q

=

a q

p

1 + p

2

+ q

2

:

Given a test fun
tion Æ 2 C

1

0

(
) and a parameter t 2 R we set �

t

:= � + tÆ and obtain for the

�rst variation

0 =

d

dt

A(�

t

)

�

�

�

t=0

=

Z




(F

z

Æ + F

p

Æ

x

+ F

q

Æ

y

)dxdy

=

Z




�

F

z

Æ � div(F

p

; F

q

) Æ

�

dxdy =

Z




�

F

z

� div(F

p

; F

q

)

�

Æ dxdy ;

In the last step we have integrated by parts and used the zero boundary values of Æ. As this

equation has to hold for all fun
tion Æ 2 C

1

0

(
) we obtain as the Euler equation

0 = F

z

� div(F

p

; F

q

) = a

z

q

1 + �

2

x

+ �

2

y

+ b

z

� div

ar�

q

1 + �

2

x

+ �

2

y

=

a

z

(1 + �

2

x

+ �

2

y

)

q

1 + �

2

x

+ �

2

y

+ b

z

� adiv

r�

q

1 + �

2

x

+ �

2

y

�

(a

x

+ a

z

�

x

)�

x

+ (a

y

+ a

z

�

y

)�

y

q

1 + �

2

x

+ �

2

y

=

a

z

� a

x

�

x

� a

y

�

y

q

1 + �

2

x

+ �

2

y

+ b

z

� adiv

r�

q

1 + �

2

x

+ �

2

y

= ra �N + b

z

� adiv

r�

q

1 + �

2

x

+ �

2

y

in 


with the normal N(x; y) of the graph. Using the assumption a > 0 in R

3

, after some regrouping

we obtain

div

r�

p

1 + jr�j

2

=

1

a

(ra �N + b

z

) in 
 ;

whi
h is the Euler equation in the desired form. �

If we now de�ne

H = H(X;N) :=

ra(X) �N + b

z

(X)

2a(X)

(14)
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then by Lemma 1 we see that any 
riti
al point the fun
tional A is a solution of

div

r�

p

1 + jr�j

2

= 2H(x; y; �;N) in 
 in 
 : (15)

We now want to apply Theorem 2, but we �rst have to 
he
k when the spe
ial fun
tion H here

satis�es assumption (A) needed for Theorem 2. We therefore write

H =

ra �N + b

z

2a

=

a

x

N

1

+ a

y

N

2

+ b

z

2a

+

a

z

2a

N

3

=: H

1

(X;N) +H

2

(X;N)N

3

:

Now, sin
e assumption (A) is satis�es if (H

1

)

z

� 0, we 
al
ulate

(H

1

)

z

=

�

a

x

2a

�

z

N

1

+

�

a

y

2a

�

z

N

2

+

b

zz

a� b

z

a

z

2a

2

� 0 :

As this inequality must hold for all N

1

; N

2

2 (�1; 1) we assume both b

zz

a� b

z

a

z

� 0 as well as

0 =

�

a

x

a

�

z

= (log a)

zx

and 0 =

�

a

y

a

�

z

= (log a)

zy

;

whi
h is equivalent to the produ
t representation a(x; y; z) = a

1

(x; y)a

2

(z) with 
ertain fun
tions

a

1

: R

2

! (0;+1) and a

2

: R ! (0;+1). We 
an now prove

Theorem 3:

Assumptions:

a) Let a; b 2 C

2+�

(R

3

;R) satisfy a(x; y; z) = a

1

(x; y)a

2

(z) with fun
tions a

1

: R

2

! (0;+1),

a

2

: R ! (0;+1) and

b

zz

a� b

z

a

z

� 0 in R

3

:

b) For some 
onstant 
; d � 0 let

jraj+ jb

z

j

a

� d and

jraj

a

� 
 in R

3

:


) Let a d-
onvex C

2+�

-domain 
 � R

2

be given whi
h is in
luded in a ball B

r

(0; 0) of radius

r <

1

d+2


.

Then for any Diri
hlet boundary values g 2 C

2+�

(�
;R) there exists at least one solution � 2

C

2+�

(
;R) of the Euler equation (15) of the fun
tional A.

In the 
ase a = a(x; y), i.e. a

2

(z) � 1, that solution � is unique and minimizes the fun
tional A

in the 
lass of C

1

(
;R)-fun
tions with boundary values g.

Proof:

We set

H(X;N) :=

1

2a(X)

�

ra(X) �N + b

z

(X)

�

:

From a; b 2 C

2+�

(R

3

;R) it follows H 2 C

1+�

(R

3

� R

3

;R). We have already shown that this H

satis�es assumption (A) needed for Theorem 1. Now note that

jHj �

1

2a

�

jraj+ jb

z

j

�

�

1

2

d and jr

N

Hj =

jraj

2a

�

1

2


 :

Sin
e by assumption 
 is d-
onvex and 
ontained in a ball of radius r <

1

d+2


, Theorem 2 yields a

solution of (15) having pres
ribed boundary values g 2 C

2+�

(�
;R).
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We now 
onsider the 
ase a = a(x; y). Assumption a) of this theorem then gives b

zz

� 0. By

Lemma 1 the Euler equation reads

div

ar�

p

1 + jr�j

2

= b

z

(x; y; �) in 
 :

For any fun
tion � 2 C

1

(
;R) with � = g on �
 we will now show A(�) � A(�) and use arguments

similar to those given in [7, 
hapter 13℄ for the standard nonparametri
 area fun
tional. By the

divergen
e theorem we �rst have

0 =

Z




div

a(� � �)r�

p

1 + jr�j

2

dxdy =

Z




�

(� � �) div

ar�

p

1 + jr�j

2

+

ar� � r� � ajr�j

2

p

1 + jr�j

2

�

dxdy

=

Z




�

(� � �)b

z

+

ar� � r� � ajr�j

2

p

1 + jr�j

2

�

dxdy :

We use this to obtain

A(�) =

Z




�

a(x; y)

p

1 + jr�j

2

+ b(x; y; �)

�

dxdy

=

Z




�

a(x; y)

1 + jr�j

2

p

1 + jr�j

2

+ b(x; y; �)

�

dxdy

=

Z




�

a(x; y)

1 +r� � r�

p

1 + jr�j

2

+ (� � �)b

z

(x; y; �) + b(x; y; �)

�

dxdy

�

Z




�

a(x; y)

p

1 + jr�j

2

+ (� � �)b

z

(x; y; �) + b(x; y; �)

�

dxdy

�

Z




�

a(x; y)

p

1 + jr�j

2

+ b(x; y; �)

�

dxdy = A(�) :

In the last step we have used the assumption b

zz

� 0. Thus we have shown A(�) � A(�) and

equality 
an only hold if r� � r� whi
h by the same boundary values of g is only possible for

� � �. This also shows the uniqueness of the solution �. �

Remarks:

1.) In the paper [13℄ of Taus
h a minimizer for fun
tionals in
luding

A(�) =

Z




a(x; y; �)

p

1 + jr�j

2

dxdy

in the 
lass C

2

(
)\C

0;1

(
) was 
onstru
ted using nonparametri
 variational methods. This


orresponds to our fun
tional for the 
ase b � 0. However, the existen
e result proven there

is not appli
able in the 
ase b 6= 0.

2.) Uniqueness of solutions still holds under the assumption H

z

� 0 on the pres
ribed mean


urvature fun
tion H of (14). This is, under the assumptions of Theorem 3, equivalent to

(log a)

zz

� 0, i.e. the fun
tion log a is 
onvex as a fun
tion of the z-variable. Under this

assumption one 
an also show that the se
ond variation of the fun
tional A is positive (see

[1℄).
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3.) However, if one does not assume the fun
tion log a to be 
onvex in the z-variable, the solution

may not be unique anymore. Also, 
riti
al points of the fun
tional A may not be minimizers

anymore.

4.) In [2℄ the Plateau problem for the parametri
 version of our fun
tional

A(X) :=

Z

B

a(X)jX

u

^X

v

jdudv

was treated (see also [4℄). For more general parametri
 fun
tionals of the form

A(X) :=

Z

B

F (X;X

u

^X

v

)dudv

a proje
tability theorem 
an be found in [3℄, whi
h says that under 
ertain assumptions any

stable parametri
 solution X of the Plauteau problem must be a graph over the x; y-plane.
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