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Abstract

We consider the Dirichlet problem for two-dimensional graphs of prescribed
mean curvature in R® where the prescribed mean curvature function H =
H(X,N) may depend on the point X in space and on the normal N of the
graph as well. In special situations this Dirichlet problem arises as the Euler
equation of a generalised nonparametric area funcional. Under certain small-
ness conditions we will solve the Dirichlet problem and construct minimizers
of the generalized area functional.

Introduction

In this paper we study the Dirichlet problem for two-dimensional graphs of prescribed anisotropic
mean curvature in R*: Given a C?T%domain 2 C R? and Dirichlet boundary values g € C?T%(99)
we want to find a solution ¢ € C*t%(Q) of
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Here, N(z,y) denotes the upper unit normal vector of the graph ¢. The function H : R* x R® — R,
which is called the prescribed mean curvature, depends on the point (z,y,((z,y)) in space and on
normal N (z,y) as well. At each point (z,y) € Q the geometric mean curvature of the graph ( is
equal to the value H(z,y,((z,y), N(x,y)), thus a solution ( is also called a graph of prescribed
mean curvature H.

For the special case H = H(z,y) several existence results based on different methods have al-
ready been proven. Assuming the smallness condition |H| < h for some constant A > 0, the
Dirichlet problem was solved in [6] with the Leray-Schauder method for convex domains satifying
an enclosing sphere condition of radius ﬁ Furthermore, since the Dirichlet problem is in that
case given by the Euler equation of the functional

AQ) = [ (VIFIVEP + 28w, )C ) dady

Q

direct methods from the calculus of variations can be applied to obtain a solution (see e.g. [5]).



The case H = H(z,y,z) was treated in [10] by Sauvigny where a stable parametric solution
from the corresponding Plateau problem is taken and shown to be a graph over the x,y-plane.
Here one needs the monotonocity assumption H, > 0, which by the maximum principle also guar-
antees the uniqueness of solutions.

In this paper we study and solve the Dirichlet problem for graphs of prescribed mean curvature
H = H(X,N) depending on the point X in space and on the normal N as well. In general this
problem does not necessarily arise as the Euler equation of some geometric functional. However,
we want to point out that in special situations, namely when H depends linearly on N, such a
problem appears when considering certain generalized nonparametric area functionals such as

AQ) = [ (aler.y, )V TFTVEE + b)) dody
Q
with functions a : R® — (0, 4+00) and b : R*® — R. The Euler equation is then given by
VC o va(wayaC)N_*_bz(xayaC)

di =
A MR a(r,y,()

When b = 0 minimizers of this nonparametric functional A were constructed in [13] and the Plateau
problem for the parametric version of this functional was studied in [2]. The functional A then
measures area of the graph ¢ in the Riemannian space

=:2H(z,y,(,N) inQ.

(R3,ds?) , ds* = a(z,y, z)(dz® + dy* + dz?)

and solutions of the Euler equation are minimal graphs in this Riemannian space. The existence
theorem we will prove in this paper will alsg) apply to the case that b # 0. By making a special
choice for the function b, namely if b, = 2haz with h € R, this enables us also to construct graphs
of constant mean curvature h in the Riemannian space (R?, ds?).

This paper is organized as follows: In section 1 we prove a differential equation for the nor-
mal (Theorem 1) for a conformally parametrized surface. We use it to prove an interior gradient
bound of the graph in terms of its boundary gradient (Corollary 1). In section 2 we then solve
the Dirichlet problem (see Theorem 2) using the Leray-Schauder method from [6]. In section 3 we
then apply the existence theorem to the functional A and construct critical points and minimizers
of this functional (see Theorem 3).

1. A differential equation for the normal and its application

Let B := {(u,v) € R? | u?+v? < 1} denote the open unit disc in R2. Given a solution ¢ € C?*T*(Q)
of (1) on a simply connected C?T®domain €2, we can introduce conformal paramters on this graph
(see [11]): There exists a positively oriented C?*®-diffeomorphism f : B — © such that

X (u,v) = (2(u,v),y(u,v), 2(u,v)) € C*F*(B,R) , X (u,v) := (f(u,v),¢ o f(u,v))

is given in conformal parameters. The vector valued function X satisfies the prescribed mean
curvature system

AX =2H(X,N)X, A X, inB (2)

where A
N(u,v) == —=—""(u,v) for (u,v) € B
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denotes the normal of X. Furthermore, we have the conformality relations
| Xu> = |Xu*=0=X,-X, inB. (3)

Note that, since the surface is a graph, the normal N satisfies N - e3 = N3 > 0 with e3 = (0,0, 1).
This also means that the image of the normal mapping is included in the upper hemisphere

Si = {(z,y,2) ER® |2+ y? +2° =1, 2> 0}.

For the case of constant mean curvature H = const, it is well known that the normal vector N
satisfies the differential equation

AN +2W(2H? - K)N =0 inB

with W := | X, AX,| and the Gaussian curvature K. We now show a generalisation of this equation
for the case of prescribed mean curvature.

Theorem 1: Let X € C?*T*(B,R?) be a solution of (2) and (3) for the prescribed mean curvature
H € C'7(R3 x R}, R). Then the normal N of the surface belongs to the space C*T*(B,R3) and
it satisfies the differential equation

AN +2(VNH - Xu)Ny + 2(VNH - X,)N, + 2W (2H? — K —VxH-N)N = —2WVxH . (4)

Here, K = K (u,v) denotes the Gauss curvature and W is defined by W := | X, AX,|. Furthermore,
we have set VH = (VxH,VyH) € R3 x R3.

Proof:
From X € C?*%(B,R?) we first conclude that the right hand side of the differential equation

AX =2H(X,N)X, A X, inB

belongs to C1T%(B,R?). By potential theory it follows X € C3t%(B,R?) and thus N € C***(B,R?).
Now at any point (u,v) € B the vectors X,, X, and N are linearly independent and form a or-
thogonal basis of R®. From the conformality relations for X we conclude

Xy AN=X, and NAX,=X,. (5)
Furthermore we have the following Weingarten equations

b11 b12 b12 b22
Ny=—22x, —22x and N, = -—22x, - 2x,
W W A W W (6)

where
bi1 = Xyy N, bia=Xy N and by =Xy N

are the coefficients of the second fundamental form. For any given vector v € R? we now calculate

(v Nu)Xu + (7 Ny) Xy

= (B = 2 ) X (- B2 - P x, ) X,
= <_%Xu_%Xv)(Xu'7)+ <_%Xu_%Xv>(Xv'7)
= (v Xu)Ny + (v Xy) Ny (7)



For the Gauss curvature K (u,v) of the surface X we have the relation
N,AN, =KX, ANX,=KWN . (8)

Using (5) and (6) we now calculate

b b b b by + b
N/\Nu:—%XUJr%Xu:%Xu—k%Xv—%Xv:—Nv—2H(X,N)XU,
b b b b bin + b
NAN, = —-2X, + -2X, = ——X, - 12XU+MXu:Nu+2H(X,N)XU.

w w W w W
Differentiating the first equation w.r.t. v and the second one w.r.t. u we obtain

Nyy = —NyAN,—N AN, — (2H(X,N)X,),
Nuw = NyANy+N ANy — (2H(X,N)Xy)u -

The sum of the two equation yields

1 1

= Nu A Nv - (H(Xv N)Xu)u - (H(Xa N)Xv)v
= KWN — (VxH- X)Xy, — (VxH X)X,
—(VyH -N)X, — (VyH-N,)X, — H(X,N)AX
= KWN-WVxH+W(VxH-N)N
—(VyH - Xy,)N, — (VyH - X,)N, —2WH?N .

Here we have used (7) for vy = VyH and (8). After some regrouping we obtain the desired differ-
ential equation (4). O

Remark: This differential equation is a generalisation of one proven by Sauvigny in [10, Satz
1] for the case H = H(X). In [3, Theorem 1.1] a differential equation for the normal of surfaces
of so-called prescribed F-mean curvature is proven.

We now want to derive a lower bound for the function &(u,v) := N3(u,v) = N(u,v) -e3 > 0
in B in terms of the boundary values of £&. We note that by Theorem 1 £ satifies

AE+2(VNH - X)Eu +2(VNH - X,)6, +2W(2H? — K —VxH - N){ = —2WH, .

We first impose the following structural condition on the prescribed mean curvature:

Assumption (A):
The function H has to satisfy the structure condition

H(X,N)=H(X,N) + Hy(X,N)N; for (X,N) € R® x §%

with two functions Hy, Hy € C'(R? xR3,R) where H; is monotone in the z-variable, i.e. (Hy), > 0.
Remarks:

1.) If we assume H, > 0 then assumption (A) is satisfied with H; = H and Hy = 0. From
H, > 0 one can also deduce the unigeness of solutions to the Dirichlet problem using the
maximum principle for quasilinear elliptic equations (see [6, Theorem 10.2]). For a presribed
mean curvature H = H(X) only depending on the point in space, assumption (A) is actually
equivalent to H, > 0.



2.) In general assumption (A) is weaker then H, > 0. In fact, it does not imply uniqueness for
the Dirichlet problem. To see this, consider the disc Q := {(z,y) € R? | z* + y* < 3} and
the prescribed mean curvature

H(X,N):=—2(X-N)+1=—2(zN;, + yNy + zN3) + 1

satifying assumption (A). It is easy to see that the two graphs

1 _
Gloy) =5 and Gloy)i=VI—a? —y7 for (s,) €0
are graphs of prescribed mean curvature H. They also have the same boundary values
Clngzéonaﬁ.

Using assumption (A) together with the relation 2H? — K > 0 between mean and Gaussian
curvature, we now obtain for &(u,v) = N3(u,v) the differential inequality

AE+aly, +b8, +c€ <0 inB (9)
with the coefficients
a(u,v) :=2VNH - Xy , b(u,v) :=2VNH - X, and ¢(u,v) :=2W(-VxH - N + (Hz),) . (10)

We now want to give an interior lower bound for ¢ in terms of its boundary values. Since the
coefficient ¢ may have positive or negative sign, we cannot directly apply the maximum principle
to £. Instead, we use the following product ansatz

& L {(u,v)
{(u,v) T w(u,v)

for some positive function ¢ € C?(B,(0,+00)) to be choosen later. Then putting &(u,v) =

&(u,v)1(u,v) into (9) we obtain for ¢ the differential inequality
YAE + by + b, +E <0 (11)

for (u,v) € B

for some coefficients @, b, ¢ where in particular
¢ =AY+ apy, +bipy +cip .
To have a minimum principle for 5 we need to choose v such that ¢ > 0. Therefore, we show

Proposition 1: Let X (u,v) = (z(u,v),y(u,v), z(u,v)) € C*T(B,R?) be a solution of (2) and
(3) for the prescribed mean curvature H € C'*T(R3 x R3 R) satifying assumption (A) and the
estimates

|H <h , |VNH|<hy and |VxH|<h,

with constants h,hi,hy > 0. Defining Y (u,v) = (z(u,v),y(u,v),0) we assume the smallness
condition

Y (u,v)| <r inB

for a constant r < m.
Then there exists a constant X\ = A(h, hy,ho,r) > 0 such that

P(u,v) = MY’ for (u,v) € B
satisfies the differential inequality
AP+ apy + by +cp >0 (12)
with a,b and ¢ defined by (10).



Proof:
Using the inequaltity | Y, |2+|Y,|? > | X,|?, which is a consequence of the conformal parametrization
of X, we first calculate

Ay = (2A&|Y\2 Y- Yu>u + (2>\e>‘|Y|2 Y. Y,,)v
- 2>\¢<AY Y A Y2+ |V 4 20(Y - V)2 4 20(Y - }fv)?)
> 2>\¢<AX Y 4 Y2+ |YU|2>
- 2>\¢<|Yu|2 Y, |? + 2H(X, N) Xy A X, - Y)
> 2>\¢<|Xu|2 - 2h|Xu|2|Y|) = W (1 — 2h|Y)) .
Next we estimate

ay +bipy = 2(VNH-X)2M\Y -Yy) + 2(VNH - X,)2A0 Y - Y,)
AMIVNH] | X [Y](1Yu] + [Vo])

<
< 8P |Y ]| Xuf* = 8AYWh Y] .

Combining these two estimates we reach

AP+ athy + bipy + ANPW (1 — 20|V | — 4l |Y]) + 2W (=V x H - N + (Hy),)
APW (1 — 2h|Y | — 4y |Y]) — 2W (3hs)p

2W (A(l —2h|Y| — 4y |Y]) — 3h2>

>
>

> 21/1W<>\(1 — {2h +4hi}r) — 3h2) .
Now, using the smallness assumption on r of this lemma, we can choose a A\ = A(h, hi, ha,7) > 0
large enough such that (12) holds. O

As a consequence we obtain the following gradient estimate.

Corollary 1: Given a simply connected C*T%-domain Q C R? let ¢ € C?*T%(Q,R) be a solution
of (1) for the prescribed mean curvature H € C*T*(R3 x R® | R) satisfying assumption (A) and the
estimates

|H|<h , |VxH|<h, and |VxH|<hs,.

Assume that the domain Q is included in a ball B,(0,0) C R? of some radius r < m. Then
there exists a constant C = C(h, hy, ho,r) such that

sup [Ve(a9)| < C(1+ sup [V((z,y)]) -
(z,y)eN (z,y)€002

Proof:

Given a solution ¢ of (1) we introduce conformal parameters X = X (u,v) = (f(u,v),(o f(u,v)) €
C?t2(B,R?) on the graph as mentioned in the beginning of this section. We consider the third
component of the normal {(u,v) := N3(u,v) and remark &(u,v) = (1 + |V(o f(u,v)|2)_%. Us-

ing (12) of Proposition 1 together with (11) we find a constant A > 0 such that for &(u,v) =
¢(u, v)e_’\(xz"'yZ) > 0 we have the differential inequality

WAE +a, + b€, <0 .



By the maximum principle £ must achieve its minimum on 9B, so for any (ug,v9) € B we have
g . nd . _ 2 2 _\r2 .
€0, o) > E(uto,0) > infE(u,v) = infE(u, 0)e ™) > e infe(u,0)

Setting (wo,y0) = f~*(up,v0) € 2 we conclude

VIF V(o y0)P < e sup 1+ |VC(z,y)P
(z,y)€002

which yields the desired estimate for C' := e |

Remarks: By a different choice of the function % in Lemma 1 it may be possible to improve
the assumption on the radius r of the ball containing 2. The smallness assumption on r can be
removed completely provided a global a priori estimate of W = | X, A X,| in B is first shown where
X is the conformal reparametrization of the graph (. Proposition 1 can then be proven for the
function 9 (u,v) := e**. Such a global estimate of W can be proven using interior estimates for
elliptic systems with quadratic growth in gradient (see [8]) combined with a boundary regularity
theorem for such systems (see [9]) and is worked out in the author’s dissertation thesis [1].

2. Solution of the Dirichlet problem

In the first section we have provided an interior gradient bound in terms of the boundary gradient.
We now need a boundary gradient estimate. Such an estimate holds for a large class of elliptic
differential equations including our one (see [6, chapter 14]). However, the following convexity
assumption on the domain must be imposed.

Definition 1: Let Q C R? be a C%-domain and & : 9Q — R the curvature of 9 w.r.t. the inner
normal. Then 2 is called k-convex for a constant k£ > 0 if the inequality

k(z,y) > k for (z,y) € 0N
holds.
Remarks:
1.) A k-convex domain for £ > 0 is necessarily a convex domain.

2.) A k-convex domain satisfies a uniform enclosing sphere condition in the following sence: For
each point (z,y) € 0N there exists a ball B 1 (z1,y1) C R? of radius # centered at some point

(z1,71) € R? such that

QCB%(:vl,yl) and (:v,y)E@B%(:El,yl).

We can now solve the Dirichlet problem.
Theorem 2: Assumptions:
1.) Let a C?*T*-domain Q C R? be given.
2.) The prescribed mean curvature H € C'*T*(R3 x R3,R) satifies assumption (A) and
|H|<h , |VnH|<h inQxRxS3

for some constants h > 0 and hy > 0.



3.) The domain Q is 2h-convezr and contained in a ball B.(0,0) of some radius r < m.

Then for any Dirichlet boundary values g € C*T®(0Q, R) the Dirichlet problem (1) has a solution
¢ € C?*T(Q,R).

Proof:
Counsider the family of Dirichlet problems

V¢

div—=—
VI+ V(P

with a parameter ¢ € [0, 1] and let ¢ be a solution for some ¢ € [0, 1]. We define the spherical caps

¢ e CPO@LR) =2tH(z,y,(,N) inQ and (=tg on0f (13)

1 —
1 (@) i= = (llgllevon) + /75 — 0> = v?)  for (v,y) €0

which are well defined because € is contained in the ball B,.(0,0) of radius r < m < % Noting

n~ < ¢ <n' on 90 the comparision principle for quasilinear eliptic equations (see [6, Theorem
10.1]) yields n~ < ¢ < T in © and we obtain the C°-estimate

1
||C||CO(§) < llgllcoan) + n

Now, using the 2h-convexity of the domain together with this C%-estimate, a boundary gradient
estimate

[¢lletan) < Ch

can be proven with a constant C) only depending on ||g||c2(sq) and & (see [6, Corollary 14.5] and
the remark following there). Using Corollary 1 we obtain the global C''-estimate

<l @y < Co

with a constant Cy independent of ¢. The Leray-Schauder method [6, Theorem 13.8] yields a
solution of the Dirichlet problem (13) for each ¢ € [0,1]. For ¢ = 1 we obtain the desired solution
of (1). O

3. Ciritical points and minimizers of a generalized nonparametric area func-
tional

We consider the generalized nonparametric area functional
AQ) = [ (ale )V TFIVEE + b, ) ) dody
Q

for a domain Q C R? and given functions a : R — (0, +00) and b: R® — R.
Examples:

1.) In case @ = 1 and b = 0 we obtain the standard Euklidean area of a graph in R3. The Euler
equation is the nonparametric minimal surface equation.



2.) For a =1 and b = b(z,y, z) we obtain the functional
AQ) = [ (VIFTVCP + bo.,) ) dody.
Q

The corresponding Euler equation leads to graphs of prescribed mean curature H = H(z,y,z) =
1

2b,(z,y, 2).

2Vz\4y Y

3.) Taking some function for a = a(z,y,z) but b = 0 one obtains

A(C) = / oz, y,C) v/ I+ [V Pdady .

Q

This functional measures the area of the graph ( in the Riemannian space
(R?,ds?) , ds*=a(z,y,2z)(de? + dy?® + dz*?)

which is a space conformally equivalent to Euklidian R?. The Euler equation leads to minimal
graphs in this Riemannian space.

4.) Setting
U:={(z,y,2) € R | (z,y) € 2, min(0,((z,y)) < z < max(0,((z,y))}

the oriented volume vol(U) of U in the Riemannian space (R?,ds?) is computed by

(@) (@)
vol(U) :/ / Va(z,y, z)3dzdzdy :/ / a(m,y,z)%dzda;dy.
Q 0 Q 0

We now define

z
boy2) i= [ alo.y,s)bds
0
and consider the functional
AQ) = [ (alo,5. ) VIFVCP + 2hblz,3,0)) dady

Q

with a parameter h € R. Here one looks for critical points of the area under a volume
constraint in the Riemannian space (R?,ds?) if one considers h to be a Lagrange parameter.
The corresponding Euler equation leads to graphs of constant mean curvature h in the
Riemannian space.

We now derive the Euler equation of the functional A which in the case b = 0 was already
established in [2].

Lemma 1: Given two functions a,b € C*(R3,R) with a > 0 in R®, the Euler equation of the
functional A is given by

. aV({ .
div——=—=0a,/1+|V(2+b, inQ
V1+|V(P? Vel



or equivalenty

\%4 Va-N+b, .
= in )

v
V1+[VEP a

with the upper unit normal of the graph

N =N(z,y) = (1+ |VC|2)7%(_C% —Cy, 1) -

Proof:
Setting
F(z,y,2,p,q) = a(z,y,2)V1+p?> +¢> + b(z,y,z) forz,y,z,p, €R,

the functional can written in the form

A(Q) = / F(2,y,C, Cor G)derdy

Q

We first calculate

FZ:az\/1+p2+q2+bz ) Fp:L and FQZL
VI+p?+¢ L+p*+¢°

Given a test function § € C§°(€2) and a parameter t € R we set ¢! := ( + t§ and obtain for the
first variation

0 = 1A(gt)‘ - / (F.6 + Fy0, + F,8,)dzdy
dt t=0
Q
- / (Fzé — div(F,, F,) 5) dedy = / (Fz - div(Fp,Fq)>5dmdy :
Q Q

In the last step we have integrated by parts and used the zero boundary values of §. As this
equation has to hold for all function 0 € C§°(§2) we obtain as the Euler equation

: : V¢
0 = F,—div(F,,F)) =a;/1+Z+(2+b,—d AL S
iv(F,, Fy) =a ; iv oG
az(1+§£+§5) V( _ (az + a.Ce)Ce + (be+asz)Cy

= +b, —adiv

J1+3+¢ 1+¢2+¢ L+ +¢

a; — azCy — ayCy . V(
= +b, —adiv——=m——m—
J1+aE+¢ JI+G@+E
= Va-N+b, —adiv V¢ in Q
L+ 2+ ¢

with the normal N(z,y) of the graph. Using the assumption a > 0 in R?, after some regrouping
we obtain

1
divL =—(Va-N+b,) inQ,
VIHIVEP? e
which is the Euler equation in the desired form. O
If we now define Ya(X) . N+ b(X
H = H(x,N) = YUE) N +b:(X) (14)

2a(X)



then by Lemma 1 we see that any critical point the functional A is a solution of

divL—2H($,y,C,N) in2 inQ. (15)

VIHIVCR
We now want to apply Theorem 2, but we first have to check when the special function H here
satisfies assumption (A) needed for Theorem 2. We therefore write
_VaN—i—bz ale-I—ayNg—i-bz

2a - 2a + 2a

Gy

H N3 =: H{(X,N) + Hy(X,N) Ny .

Now, since assumption (A) is satisfies if (Hy), > 0, we calculate

b,,a — b,a,

a a
Hy), = (—I> N (—y> - —_———==>0.
(H1)- 2a/ 2 1+ 2a/ 2 2+ 2a2 -
As this inequality must hold for all Ny, Ny € (—1,1) we assume both b,,a — b,a, > 0 as well as

Qg

0= (;)z = (loga),; and 0= (%)Z = (loga).y ,

which is equivalent to the product representation a(z,y,z) = a1(x,y)az(z) with certain functions
a; : R? = (0,4+00) and as : R — (0, +00). We can now prove

Theorem 3:
Assumptions:

a) Let a,b € C*T(R3,R) satisfy a(z,y,z) = a1(z,y)az(z) with functions a; : R? — (0, +00),

az : R = (0,400) and
b,,a —bya, >0 in R3 .

b) For some constant ¢,d > 0 let
b
Méd and @Sc in R .
a a
c¢) Let a d-conver C*T*-domain Q C R? be given which is included in a ball B,(0,0) of radius
1
r < di2c-

Then for any Dirichlet boundary values g € C?*T*(9Q,R) there exists at least one solution ¢ €
C?t2(Q,R) of the Euler equation (15) of the functional A.
In the case a = a(z,y), i.e. az(z) =1, that solution ( is unique and minimizes the functional A
in the class of C*(Q, R)-functions with boundary values g.

Proof:
We set

H(X,N (va(X) N+ bz(X)> .

1
)= %)

From a,b € C?*%(R3,R) it follows H € C'T%(R3 x R* R). We have already shown that this H
satisfies assumption (A) needed for Theorem 1. Now note that

|Va| 1
< —
2a — 2

C.

1 1
H| < o (1Va| + |b.]) < 5d and Vv H| =
2a 2

Since by assumption €2 is d-convex and contained in a ball of radius r < ﬁ, Theorem 2 yields a
solution of (15) having prescribed boundary values g € C?+*(99Q, R).

11



We now consider the case a = a(z,y). Assumption a) of this theorem then gives b,, > 0. By
Lemma 1 the Euler equation reads

v 7{1VC
V1+|V(P?

For any function n € C'(Q, R) with n = g on 9Q we will now show A(¢) < A(n) and use arguments
similar to those given in [7, chapter 13] for the standard nonparametric area functional. By the
divergence theorem we first have

0 — div T] CVC /((7] 0)d A4 +aV77-VC—a|VC|2>d
V1 |VC|2 \/ |V§|2 V1+|V(P

_ _ aVn - V¢ — a|V¢[?
- Q/((n b+ e )dady .

We use this to obtain

A(Q) =

bz(z,y,() inQ.

rdy

ala,y) VTV + bla,y,C) ) drdy

1+ V(P
( (z y)m +b($,y,C)>d$dy
14+V(-Vp
(a(%y)m + (n = Q)b.(z,y,¢) + b($7y7C)>d$dy
(a(z,9)

a

alw, y) T+ VP + () = Oba(2,4,C) + blz,y, () ) dady

a(z,y)\/1+ |Vn]?2 +b(z,y,n )da;dy—A(n).

I
O O O O O —

In the last step we have used the assumption b,, > 0. Thus we have shown A({) < A(n) and
equality can only hold if V{ = V7 which by the same boundary values of g is only possible for
¢ = n. This also shows the uniqueness of the solution (. 0

Remarks:

1.) In the paper [13] of Tausch a minimizer for functionals including

A() = / a(z,y,C) /I [V Pddy
Q

in the class C?(2) N C%1(Q2) was constructed using nonparametric variational methods. This
corresponds to our functional for the case b = 0. However, the existence result proven there
is not applicable in the case b # 0.

2.) Uniqueness of solutions still holds under the assumption H, > 0 on the prescribed mean
curvature function H of (14). This is, under the assumptions of Theorem 3, equivalent to
(loga),, > 0, i.e. the function loga is convex as a function of the z-variable. Under this
assumption one can also show that the second variation of the functional A is positive (see

[1])-
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3.)

4)

However, if one does not assume the function log a to be convex in the z-variable, the solution
may not be unique anymore. Also, critical points of the functional A may not be minimizers
anymore.

In [2] the Plateau problem for the parametric version of our functional

A(X) == [ a(X)| Xy A Xy|dudv
/

was treated (see also [4]). For more general parametric functionals of the form

A(X) = /F(X,Xu A Xy)dudv
B

a projectability theorem can be found in [3], which says that under certain assumptions any
stable parametric solution X of the Plauteau problem must be a graph over the z, y-plane.
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