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Abstrat

We onsider the Dirihlet problem for two-dimensional graphs of presribed

mean urvature in R

3

where the presribed mean urvature funtion H =

H(X;N) may depend on the point X in spae and on the normal N of the

graph as well. In speial situations this Dirihlet problem arises as the Euler

equation of a generalised nonparametri area funional. Under ertain small-

ness onditions we will solve the Dirihlet problem and onstrut minimizers

of the generalized area funtional.

Introdution

In this paper we study the Dirihlet problem for two-dimensional graphs of presribed anisotropi

mean urvature in R

3

: Given a C

2+�

-domain 
 � R

2

and Dirihlet boundary values g 2 C

2+�

(�
)

we want to �nd a solution � 2 C

2+�

(
) of

div

r�

p

1 + jr�j

2

= 2H(x; y; �;N) in 
 ;

N(x; y) =

1

p

1 + jr�j

2

(��

x

;��

y

; 1) in 
 ; (1)

� = g on �
 :

Here, N(x; y) denotes the upper unit normal vetor of the graph �. The funtion H : R

3

�R

3

! R,

whih is alled the presribed mean urvature, depends on the point (x; y; �(x; y)) in spae and on

normal N(x; y) as well. At eah point (x; y) 2 
 the geometri mean urvature of the graph � is

equal to the value H(x; y; �(x; y); N(x; y)), thus a solution � is also alled a graph of presribed

mean urvature H.

For the speial ase H = H(x; y) several existene results based on di�erent methods have al-

ready been proven. Assuming the smallness ondition jHj � h for some onstant h > 0, the

Dirihlet problem was solved in [6℄ with the Leray-Shauder method for onvex domains satifying

an enlosing sphere ondition of radius

1

2h

. Furthermore, sine the Dirihlet problem is in that

ase given by the Euler equation of the funtional

A(�) :=

Z




�

p

1 + jr�j

2

+ 2H(x; y)�

�

dxdy ;

diret methods from the alulus of variations an be applied to obtain a solution (see e.g. [5℄).
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The ase H = H(x; y; z) was treated in [10℄ by Sauvigny where a stable parametri solution

from the orresponding Plateau problem is taken and shown to be a graph over the x; y-plane.

Here one needs the monotonoity assumption H

z

� 0, whih by the maximum priniple also guar-

antees the uniqueness of solutions.

In this paper we study and solve the Dirihlet problem for graphs of presribed mean urvature

H = H(X;N) depending on the point X in spae and on the normal N as well. In general this

problem does not neessarily arise as the Euler equation of some geometri funtional. However,

we want to point out that in speial situations, namely when H depends linearly on N , suh a

problem appears when onsidering ertain generalized nonparametri area funtionals suh as

A(�) :=

Z




�

a(x; y; �)

p

1 + jr�j

2

+ b(x; y; �)

�

dxdy

with funtions a : R

3

! (0;+1) and b : R

3

! R. The Euler equation is then given by

div

r�

p

1 + jr�j

2

=

ra(x; y; �) �N + b

z

(x; y; �)

a(x; y; �)

=: 2H(x; y; �;N) in 
 :

When b � 0 minimizers of this nonparametri funtional A were onstruted in [13℄ and the Plateau

problem for the parametri version of this funtional was studied in [2℄. The funtional A then

measures area of the graph � in the Riemannian spae

(R

3

; ds

2

) ; ds

2

= a(x; y; z)(dx

2

+ dy

2

+ dz

2

)

and solutions of the Euler equation are minimal graphs in this Riemannian spae. The existene

theorem we will prove in this paper will also apply to the ase that b 6= 0. By making a speial

hoie for the funtion b, namely if b

z

= 2ha

3

2

with h 2 R, this enables us also to onstrut graphs

of onstant mean urvature h in the Riemannian spae (R

3

; ds

2

).

This paper is organized as follows: In setion 1 we prove a di�erential equation for the nor-

mal (Theorem 1) for a onformally parametrized surfae. We use it to prove an interior gradient

bound of the graph in terms of its boundary gradient (Corollary 1). In setion 2 we then solve

the Dirihlet problem (see Theorem 2) using the Leray-Shauder method from [6℄. In setion 3 we

then apply the existene theorem to the funtional A and onstrut ritial points and minimizers

of this funtional (see Theorem 3).

1. A di�erential equation for the normal and its appliation

Let B := f(u; v) 2 R

2

j u

2

+v

2

< 1g denote the open unit dis in R

2

. Given a solution � 2 C

2+�

(
)

of (1) on a simply onneted C

2+�

-domain 
, we an introdue onformal paramters on this graph

(see [11℄): There exists a positively oriented C

2+�

-di�eomorphism f : B ! 
 suh that

X(u; v) = (x(u; v); y(u; v); z(u; v)) 2 C

2+�

(B;R

3

) ; X(u; v) := (f(u; v); � Æ f(u; v))

is given in onformal parameters. The vetor valued funtion X satis�es the presribed mean

urvature system

4X = 2H(X;N)X

u

^X

v

in B (2)

where

N(u; v) :=

X

u

^X

v

jX

u

^X

v

j

(u; v) for (u; v) 2 B

2



denotes the normal of X. Furthermore, we have the onformality relations

jX

u

j

2

� jX

v

j

2

= 0 = X

u

�X

v

in B : (3)

Note that, sine the surfae is a graph, the normal N satis�es N � e

3

= N

3

> 0 with e

3

= (0; 0; 1).

This also means that the image of the normal mapping is inluded in the upper hemisphere

S

2

+

:= f(x; y; z) 2 R

3

j x

2

+ y

2

+ z

2

= 1 ; z > 0g :

For the ase of onstant mean urvature H � onst, it is well known that the normal vetor N

satis�es the di�erential equation

4N + 2W (2H

2

�K)N = 0 in B

withW := jX

u

^X

v

j and the Gaussian urvatureK. We now show a generalisation of this equation

for the ase of presribed mean urvature.

Theorem 1: Let X 2 C

2+�

(B;R

3

) be a solution of (2) and (3) for the presribed mean urvature

H 2 C

1+�

(R

3

� R

3

;R). Then the normal N of the surfae belongs to the spae C

2+�

(B;R

3

) and

it satis�es the di�erential equation

4N + 2(r

N

H �X

u

)N

u

+ 2(r

N

H �X

v

)N

v

+ 2W (2H

2

�K �r

X

H �N)N = �2Wr

X

H : (4)

Here, K = K(u; v) denotes the Gauss urvature and W is de�ned by W := jX

u

^X

v

j. Furthermore,

we have set rH = (r

X

H;r

N

H) 2 R

3

� R

3

.

Proof:

From X 2 C

2+�

(B;R

3

) we �rst onlude that the right hand side of the di�erential equation

4X = 2H(X;N)X

u

^X

v

in B

belongs to C

1+�

(B;R

3

). By potential theory it followsX 2 C

3+�

(B;R

3

) and thusN 2 C

2+�

(B;R

3

).

Now at any point (u; v) 2 B the vetors X

u

;X

v

and N are linearly independent and form a or-

thogonal basis of R

3

. From the onformality relations for X we onlude

X

v

^N = X

u

and N ^X

u

= X

v

: (5)

Furthermore we have the following Weingarten equations

N

u

= �

b

11

W

X

u

�

b

12

W

X

v

and N

v

= �

b

12

W

X

u

�

b

22

W

X

v

; (6)

where

b

11

= X

uu

�N ; b

12

= X

uv

�N and b

22

= X

vv

�N

are the oeÆients of the seond fundamental form. For any given vetor  2 R

3

we now alulate

( �N

u

)X

u

+ ( �N

v

)X

v

=

�

�

b

11

W

(X

u

� )�

b

12

W

(X

v

� )

�

X

u

+

�

�

b

12

W

(X

u

� )�

b

22

W

(X

v

� )

�

X

v

=

�

�

b

11

W

X

u

�

b

12

W

X

v

�

(X

u

� ) +

�

�

b

12

W

X

u

�

b

22

W

X

v

�

(X

v

� )

= ( �X

u

)N

u

+ ( �X

v

)N

v

: (7)
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For the Gauss urvature K(u; v) of the surfae X we have the relation

N

u

^N

v

= KX

u

^X

v

= KWN : (8)

Using (5) and (6) we now alulate

N ^N

u

= �

b

11

W

X

v

+

b

12

W

X

u

=

b

12

W

X

u

+

b

22

W

X

v

�

b

11

+ b

22

W

X

v

= �N

v

� 2H(X;N)X

v

;

N ^N

v

= �

b

12

W

X

v

+

b

22

W

X

u

= �

b

11

W

X

u

�

b

12

W

X

v

+

b

11

+ b

22

W

X

u

= N

u

+ 2H(X;N)X

v

:

Di�erentiating the �rst equation w.r.t. v and the seond one w.r.t. u we obtain

N

vv

= �N

v

^N

u

�N ^N

uv

� (2H(X;N)X

v

)

v

N

uu

= N

u

^N

v

+N ^N

uv

� (2H(X;N)X

u

)

u

:

The sum of the two equation yields

1

2

4N =

1

2

(N

uu

+N

vv

)

= N

u

^N

v

� (H(X;N)X

u

)

u

� (H(X;N)X

v

)

v

= KWN � (r

X

H �X

u

)X

u

� (r

X

H �X

v

)X

v

�(r

N

H �N

u

)X

u

� (r

N

H �N

v

)X

v

�H(X;N)4X

= KWN �Wr

X

H +W (r

X

H �N)N

�(r

N

H �X

u

)N

u

� (r

N

H �X

v

)N

v

� 2WH

2

N :

Here we have used (7) for  = r

N

H and (8). After some regrouping we obtain the desired di�er-

ential equation (4). �

Remark: This di�erential equation is a generalisation of one proven by Sauvigny in [10, Satz

1℄ for the ase H = H(X). In [3, Theorem 1.1℄ a di�erential equation for the normal of surfaes

of so-alled presribed F -mean urvature is proven.

We now want to derive a lower bound for the funtion �(u; v) := N

3

(u; v) = N(u; v) � e

3

> 0

in B in terms of the boundary values of �. We note that by Theorem 1 � sati�es

4� + 2(r

N

H �X

u

)�

u

+ 2(r

N

H �X

v

)�

v

+ 2W (2H

2

�K �r

X

H �N)� = �2WH

z

:

We �rst impose the following strutural ondition on the presribed mean urvature:

Assumption (A):

The funtion H has to satisfy the struture ondition

H(X;N) = H

1

(X;N) +H

2

(X;N)N

3

for (X;N) 2 R

3

� S

2

+

with two funtionsH

1

;H

2

2 C

1

(R

3

�R

3

;R) where H

1

is monotone in the z-variable, i.e. (H

1

)

z

� 0.

Remarks:

1.) If we assume H

z

� 0 then assumption (A) is satis�ed with H

1

� H and H

2

� 0. From

H

z

� 0 one an also dedue the uniqeness of solutions to the Dirihlet problem using the

maximum priniple for quasilinear ellipti equations (see [6, Theorem 10.2℄). For a presribed

mean urvature H = H(X) only depending on the point in spae, assumption (A) is atually

equivalent to H

z

� 0.
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2.) In general assumption (A) is weaker then H

z

� 0. In fat, it does not imply uniqueness for

the Dirihlet problem. To see this, onsider the dis 
 := f(x; y) 2 R

2

j x

2

+ y

2

<

3

4

g and

the presribed mean urvature

H(X;N) := �2(X �N) + 1 = �2(xN

1

+ yN

2

+ zN

3

) + 1

satifying assumption (A). It is easy to see that the two graphs

�

1

(x; y) :=

1

2

and �

2

(x; y) :=

p

1� x

2

� y

2

for (x; y) 2 


are graphs of presribed mean urvature H. They also have the same boundary values

�

1

= �

2

=

1

2

on �
.

Using assumption (A) together with the relation 2H

2

� K � 0 between mean and Gaussian

urvature, we now obtain for �(u; v) = N

3

(u; v) the di�erential inequality

4� + a�

u

+ b�

v

+ � � 0 in B (9)

with the oeÆients

a(u; v) := 2r

N

H �X

u

; b(u; v) := 2r

N

H �X

v

and (u; v) := 2W (�r

X

H �N + (H

2

)

z

) : (10)

We now want to give an interior lower bound for � in terms of its boundary values. Sine the

oeÆient  may have positive or negative sign, we annot diretly apply the maximum priniple

to �. Instead, we use the following produt ansatz

~

�(u; v) :=

�(u; v)

 (u; v)

for (u; v) 2 B

for some positive funtion  2 C

2

(B; (0;+1)) to be hoosen later. Then putting �(u; v) =

~

�(u; v) (u; v) into (9) we obtain for

~

� the di�erential inequality

 4

~

� + ~a

~

�

u

+

~

b

~

�

v

+ ~

~

� � 0 (11)

for some oeÆients ~a;

~

b; ~ where in partiular

~ = 4 + a 

u

+ b 

v

+  :

To have a minimum priniple for

~

� we need to hoose  suh that ~ � 0. Therefore, we show

Proposition 1: Let X(u; v) = (x(u; v); y(u; v); z(u; v)) 2 C

2+�

(B;R

3

) be a solution of (2) and

(3) for the presribed mean urvature H 2 C

1+�

(R

3

� R

3

;R) satifying assumption (A) and the

estimates

jHj � h ; jr

N

Hj � h

1

and jr

X

Hj � h

2

with onstants h; h

1

; h

2

� 0. De�ning Y (u; v) := (x(u; v); y(u; v); 0) we assume the smallness

ondition

jY (u; v)j � r in B

for a onstant r <

1

2h+4h

1

.

Then there exists a onstant � = �(h; h

1

; h

2

; r) > 0 suh that

 (u; v) := e

�jY j

2

for (u; v) 2 B

satis�es the di�erential inequality

4 + a 

u

+ b 

v

+  � 0 (12)

with a; b and  de�ned by (10).
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Proof:

Using the inequaltity jY

u

j

2

+jY

v

j

2

� jX

u

j

2

, whih is a onsequene of the onformal parametrization

of X, we �rst alulate

4 =

�

2�e

�jY j

2

Y � Y

u

�

u

+

�

2�e

�jY j

2

Y � Y

v

�

v

= 2� 

�

4Y � Y + jY

u

j

2

+ jY

v

j

2

+ 2�(Y � Y

u

)

2

+ 2�(Y � Y

v

)

2

�

� 2� 

�

4X � Y + jY

u

j

2

+ jY

v

j

2

�

= 2� 

�

jY

u

j

2

+ jY

v

j

2

+ 2H(X;N)X

u

^X

v

� Y

�

� 2� 

�

jX

u

j

2

� 2hjX

u

j

2

jY j

�

= 2� W (1� 2hjY j) :

Next we estimate

a 

u

+ b 

v

= 2(r

N

H �X

u

)(2� Y � Y

u

) + 2(r

N

H �X

v

)(2� Y � Y

v

)

� 4� jr

N

Hj jX

u

j jY j(jY

u

j+ jY

v

j)

� 8� h

1

jY j jX

u

j

2

= 8� Wh

1

jY j :

Combining these two estimates we reah

4 + a 

u

+ b 

v

+  � 2� W (1 � 2hjY j � 4h

1

jY j) + 2W (�r

X

H �N + (H

2

)

z

) 

� 2� W (1 � 2hjY j � 4h

1

jY j)� 2W (3h

2

) 

= 2 W

�

�(1� 2hjY j � 4h

1

jY j)� 3h

2

�

� 2 W

�

�(1� f2h + 4h

1

gr)� 3h

2

�

:

Now, using the smallness assumption on r of this lemma, we an hoose a � = �(h; h

1

; h

2

; r) > 0

large enough suh that (12) holds. �

As a onsequene we obtain the following gradient estimate.

Corollary 1: Given a simply onneted C

2+�

-domain 
 � R

2

let � 2 C

2+�

(
;R) be a solution

of (1) for the presribed mean urvature H 2 C

1+�

(R

3

�R

3

;R) satisfying assumption (A) and the

estimates

jHj � h ; jr

N

Hj � h

1

and jr

X

Hj � h

2

:

Assume that the domain 
 is inluded in a ball B

r

(0; 0) � R

2

of some radius r <

1

2h+4h

1

. Then

there exists a onstant C = C(h; h

1

; h

2

; r) suh that

sup

(x;y)2


jr�(x; y)j � C

�

1 + sup

(x;y)2�


jr�(x; y)j

�

:

Proof:

Given a solution � of (1) we introdue onformal parameters X = X(u; v) = (f(u; v); � Æ f(u; v)) 2

C

2+�

(B;R

3

) on the graph as mentioned in the beginning of this setion. We onsider the third

omponent of the normal �(u; v) := N

3

(u; v) and remark �(u; v) = (1 + jr� Æ f(u; v)j

2

)

�

1

2

. Us-

ing (12) of Proposition 1 together with (11) we �nd a onstant � > 0 suh that for

~

�(u; v) =

�(u; v)e

��(x

2

+y

2

)

> 0 we have the di�erential inequality

 4

~

� + ~a

~

�

u

+

~

b

~

�

v

� 0 :

6



By the maximum priniple

~

� must ahieve its minimum on �B, so for any (u

0

; v

0

) 2 B we have

�(u

0

; v

0

) �

~

�(u

0

; v

0

) � inf

�B

~

�(u; v) = inf

�B

�(u; v)e

��(x

2

+y

2

)

� e

��r

2

inf

�B

�(u; v) :

Setting (x

0

; y

0

) = f

�1

(u

0

; v

0

) 2 
 we onlude

p

1 + jr�(x

0

; y

0

)j

2

� e

�r

2

sup

(x;y)2�


p

1 + jr�(x; y)j

2

whih yields the desired estimate for C := e

�r

2

. �

Remarks: By a di�erent hoie of the funtion  in Lemma 1 it may be possible to improve

the assumption on the radius r of the ball ontaining 
. The smallness assumption on r an be

removed ompletely provided a global a priori estimate ofW = jX

u

^X

v

j in B is �rst shown where

X is the onformal reparametrization of the graph �. Proposition 1 an then be proven for the

funtion  (u; v) := e

�u

. Suh a global estimate of W an be proven using interior estimates for

ellipti systems with quadrati growth in gradient (see [8℄) ombined with a boundary regularity

theorem for suh systems (see [9℄) and is worked out in the author's dissertation thesis [1℄.

2. Solution of the Dirihlet problem

In the �rst setion we have provided an interior gradient bound in terms of the boundary gradient.

We now need a boundary gradient estimate. Suh an estimate holds for a large lass of ellipti

di�erential equations inluding our one (see [6, hapter 14℄). However, the following onvexity

assumption on the domain must be imposed.

De�nition 1: Let 
 � R

2

be a C

2

-domain and � : �
! R the urvature of �
 w.r.t. the inner

normal. Then 
 is alled k-onvex for a onstant k � 0 if the inequality

�(x; y) � k for (x; y) 2 �


holds.

Remarks:

1.) A k-onvex domain for k � 0 is neessarily a onvex domain.

2.) A k-onvex domain satis�es a uniform enlosing sphere ondition in the following sene: For

eah point (x; y) 2 �
 there exists a ball B
1

k

(x

1

; y

1

) � R

2

of radius

1

k

entered at some point

(x

1

; y

1

) 2 R

2

suh that


 � B
1

k

(x

1

; y

1

) and (x; y) 2 �B
1

k

(x

1

; y

1

) :

We an now solve the Dirihlet problem.

Theorem 2: Assumptions:

1.) Let a C

2+�

-domain 
 � R

2

be given.

2.) The presribed mean urvature H 2 C

1+�

(R

3

� R

3

;R) sati�es assumption (A) and

jHj � h ; jr

N

Hj � h

1

in 
� R � S

2

+

for some onstants h > 0 and h

1

� 0.
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3.) The domain 
 is 2h-onvex and ontained in a ball B

r

(0; 0) of some radius r <

1

2h+4h

1

.

Then for any Dirihlet boundary values g 2 C

2+�

(�
;R) the Dirihlet problem (1) has a solution

� 2 C

2+�

(
;R).

Proof:

Consider the family of Dirihlet problems

� 2 C

2+�

(
;R) ; div

r�

p

1 + jr�j

2

= 2tH(x; y; �;N) in 
 and � = t g on �
 (13)

with a parameter t 2 [0; 1℄ and let � be a solution for some t 2 [0; 1℄. We de�ne the spherial aps

�

�

(x; y) := �

�

jjgjj

C

0

(�
)

+

r

1

h

2

� x

2

� y

2

�

for (x; y) 2 


whih are well de�ned beause 
 is ontained in the ball B

r

(0; 0) of radius r <

1

2h+4h

1

<

1

h

. Noting

�

�

� � � �

+

on �
 the omparision priniple for quasilinear elipti equations (see [6, Theorem

10.1℄) yields �

�

� � � �

+

in 
 and we obtain the C

0

-estimate

jj�jj

C

0

(
)

� jjgjj

C

0

(�
)

+

1

h

:

Now, using the 2h-onvexity of the domain together with this C

0

-estimate, a boundary gradient

estimate

jj�jj

C

1

(�
)

� C

1

an be proven with a onstant C

1

only depending on jjgjj

C

2

(�
)

and h (see [6, Corollary 14.5℄ and

the remark following there). Using Corollary 1 we obtain the global C

1

-estimate

jj�jj

C

1

(
)

� C

2

with a onstant C

2

independent of t. The Leray-Shauder method [6, Theorem 13.8℄ yields a

solution of the Dirihlet problem (13) for eah t 2 [0; 1℄. For t = 1 we obtain the desired solution

of (1). �

3. Ciritial points and minimizers of a generalized nonparametri area fun-

tional

We onsider the generalized nonparametri area funtional

A(�) :=

Z




�

a(x; y; �)

p

1 + jr�j

2

+ b(x; y; �)

�

dxdy

for a domain 
 � R

2

and given funtions a : R

3

! (0;+1) and b : R

3

! R.

Examples:

1.) In ase a � 1 and b � 0 we obtain the standard Euklidean area of a graph in R

3

. The Euler

equation is the nonparametri minimal surfae equation.

8



2.) For a � 1 and b = b(x; y; z) we obtain the funtional

A(�) =

Z




�

p

1 + jr�j

2

+ b(x; y; �)

�

dxdy :

The orresponding Euler equation leads to graphs of presribedmean uratureH = H(x; y; z) =

1

2

b

z

(x; y; z).

3.) Taking some funtion for a = a(x; y; z) but b � 0 one obtains

A(�) =

Z




a(x; y; �)

p

1 + jr�j

2

dxdy :

This funtional measures the area of the graph � in the Riemannian spae

(R

3

; ds

2

) ; ds

2

= a(x; y; z)(dx

2

+ dy

2

+ dz

2

)

whih is a spae onformally equivalent to Euklidian R

3

. The Euler equation leads to minimal

graphs in this Riemannian spae.

4.) Setting

U := f(x; y; z) 2 R

3

j (x; y) 2 
 ; min(0; �(x; y)) < z < max(0; �(x; y))g

the oriented volume vol(U) of U in the Riemannian spae (R

3

; ds

2

) is omputed by

vol(U) =

Z




�(x;y)

Z

0

p

a(x; y; z)

3

dzdxdy =

Z




�(x;y)

Z

0

a(x; y; z)

3

2

dzdxdy :

We now de�ne

b(x; y; z) :=

z

Z

0

a(x; y; s)

3

2

ds

and onsider the funtional

A(�) =

Z




�

a(x; y; �)

p

1 + jr�j

2

+ 2h b(x; y; �)

�

dxdy

with a parameter h 2 R. Here one looks for ritial points of the area under a volume

onstraint in the Riemannian spae (R

3

; ds

2

) if one onsiders h to be a Lagrange parameter.

The orresponding Euler equation leads to graphs of onstant mean urvature h in the

Riemannian spae.

We now derive the Euler equation of the funtional A whih in the ase b � 0 was already

established in [2℄.

Lemma 1: Given two funtions a; b 2 C

1

(R

3

;R) with a > 0 in R

3

, the Euler equation of the

funtional A is given by

div

ar�

p

1 + jr�j

2

= a

z

p

1 + jr�j

2

+ b

z

in 
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or equivalenty

div

r�

p

1 + jr�j

2

=

ra �N + b

z

a

in 


with the upper unit normal of the graph

N = N(x; y) = (1 + jr�j

2

)

�

1

2

(��

x

;��

y

; 1) :

Proof:

Setting

F (x; y; z; p; q) := a(x; y; z)

p

1 + p

2

+ q

2

+ b(x; y; z) for x; y; z; p; q 2 R ;

the funtional an written in the form

A(�) =

Z




F (x; y; �; �

x

; �

y

)dxdy :

We �rst alulate

F

z

= a

z

p

1 + p

2

+ q

2

+ b

z

; F

p

=

a p

p

1 + p

2

+ q

2

and F

q

=

a q

p

1 + p

2

+ q

2

:

Given a test funtion Æ 2 C

1

0

(
) and a parameter t 2 R we set �

t

:= � + tÆ and obtain for the

�rst variation

0 =

d

dt

A(�

t

)

�

�

�

t=0

=

Z




(F

z

Æ + F

p

Æ

x

+ F

q

Æ

y

)dxdy

=

Z




�

F

z

Æ � div(F

p

; F

q

) Æ

�

dxdy =

Z




�

F

z

� div(F

p

; F

q

)

�

Æ dxdy ;

In the last step we have integrated by parts and used the zero boundary values of Æ. As this

equation has to hold for all funtion Æ 2 C

1

0

(
) we obtain as the Euler equation

0 = F

z

� div(F

p

; F

q

) = a

z

q

1 + �

2

x

+ �

2

y

+ b

z

� div

ar�

q

1 + �

2

x

+ �

2

y

=

a

z

(1 + �

2

x

+ �

2

y

)

q

1 + �

2

x

+ �

2

y

+ b

z

� adiv

r�

q

1 + �

2

x

+ �

2

y

�

(a

x

+ a

z

�

x

)�

x

+ (a

y

+ a

z

�

y

)�

y

q

1 + �

2

x

+ �

2

y

=

a

z

� a

x

�

x

� a

y

�

y

q

1 + �

2

x

+ �

2

y

+ b

z

� adiv

r�

q

1 + �

2

x

+ �

2

y

= ra �N + b

z

� adiv

r�

q

1 + �

2

x

+ �

2

y

in 


with the normal N(x; y) of the graph. Using the assumption a > 0 in R

3

, after some regrouping

we obtain

div

r�

p

1 + jr�j

2

=

1

a

(ra �N + b

z

) in 
 ;

whih is the Euler equation in the desired form. �

If we now de�ne

H = H(X;N) :=

ra(X) �N + b

z

(X)

2a(X)

(14)
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then by Lemma 1 we see that any ritial point the funtional A is a solution of

div

r�

p

1 + jr�j

2

= 2H(x; y; �;N) in 
 in 
 : (15)

We now want to apply Theorem 2, but we �rst have to hek when the speial funtion H here

satis�es assumption (A) needed for Theorem 2. We therefore write

H =

ra �N + b

z

2a

=

a

x

N

1

+ a

y

N

2

+ b

z

2a

+

a

z

2a

N

3

=: H

1

(X;N) +H

2

(X;N)N

3

:

Now, sine assumption (A) is satis�es if (H

1

)

z

� 0, we alulate

(H

1

)

z

=

�

a

x

2a

�

z

N

1

+

�

a

y

2a

�

z

N

2

+

b

zz

a� b

z

a

z

2a

2

� 0 :

As this inequality must hold for all N

1

; N

2

2 (�1; 1) we assume both b

zz

a� b

z

a

z

� 0 as well as

0 =

�

a

x

a

�

z

= (log a)

zx

and 0 =

�

a

y

a

�

z

= (log a)

zy

;

whih is equivalent to the produt representation a(x; y; z) = a

1

(x; y)a

2

(z) with ertain funtions

a

1

: R

2

! (0;+1) and a

2

: R ! (0;+1). We an now prove

Theorem 3:

Assumptions:

a) Let a; b 2 C

2+�

(R

3

;R) satisfy a(x; y; z) = a

1

(x; y)a

2

(z) with funtions a

1

: R

2

! (0;+1),

a

2

: R ! (0;+1) and

b

zz

a� b

z

a

z

� 0 in R

3

:

b) For some onstant ; d � 0 let

jraj+ jb

z

j

a

� d and

jraj

a

�  in R

3

:

) Let a d-onvex C

2+�

-domain 
 � R

2

be given whih is inluded in a ball B

r

(0; 0) of radius

r <

1

d+2

.

Then for any Dirihlet boundary values g 2 C

2+�

(�
;R) there exists at least one solution � 2

C

2+�

(
;R) of the Euler equation (15) of the funtional A.

In the ase a = a(x; y), i.e. a

2

(z) � 1, that solution � is unique and minimizes the funtional A

in the lass of C

1

(
;R)-funtions with boundary values g.

Proof:

We set

H(X;N) :=

1

2a(X)

�

ra(X) �N + b

z

(X)

�

:

From a; b 2 C

2+�

(R

3

;R) it follows H 2 C

1+�

(R

3

� R

3

;R). We have already shown that this H

satis�es assumption (A) needed for Theorem 1. Now note that

jHj �

1

2a

�

jraj+ jb

z

j

�

�

1

2

d and jr

N

Hj =

jraj

2a

�

1

2

 :

Sine by assumption 
 is d-onvex and ontained in a ball of radius r <

1

d+2

, Theorem 2 yields a

solution of (15) having presribed boundary values g 2 C

2+�

(�
;R).
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We now onsider the ase a = a(x; y). Assumption a) of this theorem then gives b

zz

� 0. By

Lemma 1 the Euler equation reads

div

ar�

p

1 + jr�j

2

= b

z

(x; y; �) in 
 :

For any funtion � 2 C

1

(
;R) with � = g on �
 we will now show A(�) � A(�) and use arguments

similar to those given in [7, hapter 13℄ for the standard nonparametri area funtional. By the

divergene theorem we �rst have

0 =

Z




div

a(� � �)r�

p

1 + jr�j

2

dxdy =

Z




�

(� � �) div

ar�

p

1 + jr�j

2

+

ar� � r� � ajr�j

2

p

1 + jr�j

2

�

dxdy

=

Z




�

(� � �)b

z

+

ar� � r� � ajr�j

2

p

1 + jr�j

2

�

dxdy :

We use this to obtain

A(�) =

Z




�

a(x; y)

p

1 + jr�j

2

+ b(x; y; �)

�

dxdy

=

Z




�

a(x; y)

1 + jr�j

2

p

1 + jr�j

2

+ b(x; y; �)

�

dxdy

=

Z




�

a(x; y)

1 +r� � r�

p

1 + jr�j

2

+ (� � �)b

z

(x; y; �) + b(x; y; �)

�

dxdy

�

Z




�

a(x; y)

p

1 + jr�j

2

+ (� � �)b

z

(x; y; �) + b(x; y; �)

�

dxdy

�

Z




�

a(x; y)

p

1 + jr�j

2

+ b(x; y; �)

�

dxdy = A(�) :

In the last step we have used the assumption b

zz

� 0. Thus we have shown A(�) � A(�) and

equality an only hold if r� � r� whih by the same boundary values of g is only possible for

� � �. This also shows the uniqueness of the solution �. �

Remarks:

1.) In the paper [13℄ of Taush a minimizer for funtionals inluding

A(�) =

Z




a(x; y; �)

p

1 + jr�j

2

dxdy

in the lass C

2

(
)\C

0;1

(
) was onstruted using nonparametri variational methods. This

orresponds to our funtional for the ase b � 0. However, the existene result proven there

is not appliable in the ase b 6= 0.

2.) Uniqueness of solutions still holds under the assumption H

z

� 0 on the presribed mean

urvature funtion H of (14). This is, under the assumptions of Theorem 3, equivalent to

(log a)

zz

� 0, i.e. the funtion log a is onvex as a funtion of the z-variable. Under this

assumption one an also show that the seond variation of the funtional A is positive (see

[1℄).
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3.) However, if one does not assume the funtion log a to be onvex in the z-variable, the solution

may not be unique anymore. Also, ritial points of the funtional A may not be minimizers

anymore.

4.) In [2℄ the Plateau problem for the parametri version of our funtional

A(X) :=

Z

B

a(X)jX

u

^X

v

jdudv

was treated (see also [4℄). For more general parametri funtionals of the form

A(X) :=

Z

B

F (X;X

u

^X

v

)dudv

a projetability theorem an be found in [3℄, whih says that under ertain assumptions any

stable parametri solution X of the Plauteau problem must be a graph over the x; y-plane.
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