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Introduction

Symmetries play a decisive role in the natural sciences and throughout mathematics. Infinite-
dimensional Lie theory deals with symmetries depending on infinitely many parameters. Such
symmetries may be studied on an infinitesimal, local or global level, which amounts to studying
Lie algebras, local Lie groups and global Lie groups, respectively. Here the passage from the
infinitesimal to the local level requires a smooth structure on the symmetry group (such as a
Lie group structure as defined below), whereas the passage from the local to the global level is
purely topological.

Finite-dimensional Lie theory was created about 130 years ago by Marius Sophus Lie

and Friedrich Engel, who showed that in finite dimensions the local and the infinitesimal
theory are essentially equivalent ([Lie80/95]). The differential geometric approach to finite-
dimensional global Lie groups (as smooth or analytic manifolds) is naturally complemented by
the theory of algebraic groups with which it interacts most fruitfully. A crucial point of the finite-
dimensional theory is that finiteness conditions permit to develop a powerful structure theory of
finite-dimensional Lie groups in terms of the Levi splitting and the fine structure of semisimple
Lie groups ([Ho65], [Wa72]).

A substantial part of the literature on infinite-dimensional Lie theory exclusively deals
with the level of Lie algebras, their structure, and their representations (cf. [Ka90], [Neh96],
[Su97], [AABGP97], [DiPe99], [ABG00]). However, only special classes of groups, such as Kac–
Moody groups, can be approached with success by purely algebraic methods ([KP83], [Ka85]);
see also [Rod89] for an analytic approach to Kac–Moody groups. In mathematical physics, the
infinitesimal approach dealing mainly with Lie algebras and their representations is convenient
for calculations, but a global analytic perspective is required to understand global phenomena
(cf. [AI95], [Ot95], [CVLL98], [EMi99], [Go04], [Sch04]). A similar statement applies to non-
commutative geometry, throughout of which derivations and covariant derivatives are used. It
would be interesting to understand how global symmetry groups and the associated geometry fit
into the picture ([Co94], [GVF01]).

In infinite dimensions, the passage from the infinitesimal to the local and from there to the
global level is not possible in general, whence Lie theory splits into three properly distinct levels.
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It is a central point of this survey to explain some of the concepts and the results that can be
used to translate between these three levels.

We shall use a Lie group concept which is both simple and very general: A Lie group is
a manifold, endowed with a group structure such that multiplication and inversion are smooth
maps. The main difference, compared to the finite-dimensional theory, concerns the notion of
a manifold: The manifolds we consider are modeled on arbitrary locally convex spaces. As we
shall see later, it is natural to approach Lie groups from such a general perspective, because it
leads to a unified treatment of the basic aspects of the theory without unnatural restrictions on
model spaces or the notion of a Lie group. Although we shall simply call them Lie groups, a more
specific terminology is locally convex Lie groups. Depending on the type of the model spaces,
we obtain in particular the classes of finite-dimensional, Banach–, Fréchet–, LF– and Silva–Lie
groups.

The fundamental problems of Lie theory

As in finite dimensions, the Lie algebra L(G) of a Lie group G is identified with the
tangent space T1(G), where the Lie bracket it obtained by identification with the space of
left invariant vector fields. This turns L(G) into a locally convex (topological) Lie algebra.
Associating, furthermore, to a morphism ϕ of Lie groups its tangent map L(ϕ) := T1(ϕ), we
obtain the Lie functor from the category of (locally convex) Lie groups to the category of locally
convex topological Lie algebras. The core of Lie theory now consists in determining how much
information the Lie functor forgets and how much can be reconstructed. This leads to several
integration problems such as:

(FP1) When does a continuous homomorphism L(G) → L(H) between Lie algebras of connected
Lie groups integrate to a (local) group homomorphism G→ H ?

(FP2) Integrability Problem for subalgebras: Which Lie subalgebras h of the Lie algebra
L(G) of a Lie group G correspond to Lie group morphisms H → G with L(H) = h?

(FP3) Integrability Problem for Lie algebras (LIE III): For which locally convex Lie
algebras g does a local/global Lie group G with L(G) = g exist?

(FP4) Integrability Problem for extensions: When does an extension of the Lie algebra
L(G) of a Lie group G by the Lie algebra L(N) of a Lie group N integrate to a Lie
group extension of G by N ?

(FP5) Subgroup Problem: Which subgroups of a Lie group G carry natural Lie group
structures?

(FP6) When does a Lie group have an exponential map expG:L(G) → G?

(FP7) Integrability Problem for smooth actions: When does a homomorphism g → V(M)
into the Lie algebra V(M) of smooth vector fields on a manifold M integrate to a smooth
action of a corresponding Lie group?

(FP8) Small Subgroup Problem: Which Lie groups have identity neighborhoods containing
no non-trivial subgroup?

(FP9) Locally Compact Subgroup Problem: For which Lie groups are locally compact
subgroups (finite-dimensional) Lie groups?

(FP10) Automatic Smoothness Problem: When are continuous homomorphisms between Lie
groups smooth?

An important tool in the finite-dimensional and Banach context is the exponential map, but
as vector fields on locally convex manifolds need not possess integral curves, there is no general
theorem that guarantees the existence of a (smooth) exponential map, i.e., a smooth function

expG:L(G) → G,

for which the curves γx(t) := expG(tx) are homomorphisms (R,+) → G with γ′x(0) = x .
Therefore the existence of an exponential function has to be treated as an additional requirement
(cf. (FP6)). Even stronger is the requirement of regularity, meaning that, for each smooth curve
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ξ: [0, 1] → L(G), the initial value problem

γ′(t) = γ(t).ξ(t) := T1(λγ(t))ξ(t), γ(0) = 1

has a solution γξ: [0, 1] → G and that γξ(1) depends smoothly on ξ . Regularity is a natural
assumption that provides a good deal of methods to pass from the infinitesimal to the global
level. This regularity concept is due to Milnor ([Mil84]). It weakens the µ-regularity (in our
terminology) introduced by Omori et al. in [OMYK82/83a] (see [KYMO85] for a survey), but
it is still strong enough for the essential Lie theoretic applications. Presently, we do not know
of any Lie group modeled on a complete space which is not regular. For all major concrete
classes discussed below, one can prove regularity, but there is no general theorem saying that
each locally convex Lie group with a complete model space is regular or even that it has an
exponential function. To prove or disprove such a theorem is another fundamental open problem
of the theory. An assumption of a different nature than regularity, and which can be used
to develop a profound Lie theory, is that G is locally exponential in the sense that it has an
exponential function which is a local diffeomorphism in 0. Even stronger is the assumption that,
in addition, G is analytic and that the exponential function is an analytic local diffeomorphism
in 0. Groups with this property are called BCH–Lie groups, because the local multiplication in
canonical local coordinates is given by the Baker–Campbell–Hausdorff series. This class contains
in particular all Banach–Lie groups.

Important classes of infinite-dimensional Lie groups

Each general theory lives from the concrete classes of objects it can be applied to. Therefore
it is good to have certain major classes of Lie groups in mind to which the general theory should
apply. Here we briefly describe four such classes:

Linear Lie groups: Loosely speaking, linear Lie groups are Lie groups of operators on
locally convex spaces, but this has to be made more precise.

Let E be a locally convex space and L(E) the unital associative algebra of all continuous
linear endomorphisms of E . Its unit group is the general linear group GL(E) of E . If E is not
normable, there is no vector topology on L(E), for which the composition map is continuous
([Mais63, Satz 2]). In general, the group GL(E) is open for no vector topology on L(E), as
follows from the observation that if the spectrum of the operator D is unbounded, then 1 + tD
is not invertible for arbitrarily small values of t . Therefore we need a class of associative algebras
which are better behaved than L(E) to define a natural class of linear Lie groups.

The most natural class of associative algebras for infinite-dimensional Lie theory are con-
tinuous inverse algebras (CIAs for short), introduced in [Wae54a/b/c] by Waelbroeck in the
context of commutative spectral theory. A CIA is a unital associative locally convex alge-
bra A with continuous multiplication, for which the unit group A× is open and the inversion
A× → A, a 7→ a−1 is a continuous map. As this implies the smoothness of the inversion map,
A× carries a natural Lie group structure. It is not hard to see that the CIA property is inherited
by matrix algebras Mn(A) over A ([Swa62]), so that GLn(A) = Mn(A)× also is a Lie group,
and under mild completeness assumptions (sequential completeness) on A , the Lie group A× is
regular and locally exponential ([Gl02b], [GN06]). This leads to natural classes of Lie subgroups
of CIAs and hence to a natural concept of a linear Lie group.

Mapping groups and gauge groups: There are many natural classes of groups of
maps with values in Lie groups which can be endowed with Lie group structures. The most
important cases are the following: If M is a compact manifold and K a Lie group (possibly
infinite-dimensional) with Lie algebra L(K) = k , then the group C∞(M,K) always carries a
natural Lie group structure such that C∞(M, k), endowed with the pointwise bracket, is its Lie
algebra ([GG61], [Mil82/84]; see also [Mi80]). A prominent class of such groups are the smooth
loop groups C∞(S1,K), which, for finite-dimensional simple groups K , are closely related to
Kac–Moody groups ([PS86], [Mick87/89]).
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If, more generally, q:P → M is a smooth principal bundle over a compact manifold M
with locally exponential structure group K , then its gauge group

Gau(P ) := {ϕ ∈ Diff(P ): q ◦ ϕ = q, (∀p ∈ P, k ∈ K) ϕ(p.k) = ϕ(p).k}

also carries a natural Lie group structure. For trivial bundles, we obtain the mapping groups
C∞(M,K) as special cases. Natural generalizations are the groups C∞c (M,K) of compactly
supported smooth maps on a σ -compact finite-dimensional manifold ([Mi80], [Gl02c]) and also
Sobolev completions of the groups C∞(M,K) ([Sch04]).

Direct limit groups: A quite natural method to obtain infinite-dimensional groups
from finite-dimensional ones is to consider a sequence (Gn)n∈N of finite-dimensional Lie groups
and morphisms ϕn:Gn → Gn+1 , so that we can define a direct limit group G := lim

−→
Gn

whose representations correspond to compatible sequences of representations of the groups Gn .
According to a recent theorem of Glöckner ([Gl05]), generalizing previous work of J. Wolf and
his coauthors ([NRW91/93]), the direct limit group G can always be endowed with a natural Lie
group structure. Its Lie algebra L(G) is the countably dimensional direct limit space lim

−→
L(Gn),

endowed with the finest locally convex topology. This provides an interesting class of infinite-
dimensional Lie groups which is still quite close to finite-dimensional groups and has a very rich
representation theory ([DiPe99], [NRW99], [Wol05]).

Groups of diffeomorphisms: In a similar fashion as linear Lie groups arise as symmetry
groups of linear structures, such as bilinear forms on modules of CIAs, Lie groups of diffeo-
morphisms arise as symmetry groups of geometric structures on manifolds, such as symplectic
structures, contact structures or volume forms.

A basic result is that, for any compact manifold M , the group Diff(M) can be turned
into a Lie group modeled on the Fréchet space V(M) of smooth vector fields on M (cf. [Les67],
[Omo70], [EM69/70], [Gu77], [Mi80], [Ham82]).

If M is non-compact and finite-dimensional, but σ -compact, then there is no natural Lie
group structure on Diff(M) such that smooth actions of Lie groups G on M correspond to Lie
group homomorphisms G → Diff(M). Nevertheless, it is possible to turn Diff(M) into a Lie
group with Lie algebra Vc(M), the Lie algebra of all smooth vector fields with compact support,
endowed with the natural test function topology, turning it into an LF space (cf. [Mi80], [Mil82],
[Gl02d]). If M is compact, this yields the aforementioned Lie group structure on Diff(M), but
if M is not compact, then the corresponding topology on Diff(M) is so fine that the global
flow generated by a vector field whose support is not compact does not lead to a continuous
homomorphism R → Diff(M). For this Lie group structure, the normal subgroup Diffc(M) of
all diffeomorphisms which coincide with idM outside a compact set is an open subgroup.

By groups of diffeomorphisms we mean groups of the type Diffc(M), as well as natural
subgroups defined as symmetry groups of geometric structures, such as groups of symplectomor-
phisms, groups of contact transformations and groups of volume preserving diffeomorphisms. Of
a different nature, but also locally convex Lie groups, are groups of formal diffeomorphism as
studied by Lewis ([Lew39]), Sternberg ([St61]) and Kuranishi ([Kur59]), groups of germs
of smooth and analytic diffeomorphisms of Rn fixing 0 ([RK97], [Rob02]), and also germs of
biholomorphic maps of Cn fixing 0 ([Pis76/77/79]).

As the discussion of these classes of examples shows, the concept of a locally convex Lie
group subsumes quite different classes of Lie groups: Banach–Lie groups, groups of diffeomor-
phisms (modeled on Fréchet and LF spaces), groups of germs (modeled on Silva spaces) and
formal groups (modeled on Fréchet spaces such as RN ).

In this survey article, we present our personal view of the current state of several aspects of
the Lie theory of locally convex Lie groups. We shall focus on the general structures and concepts
related to the fundamental problems (FP1)-(FP10) and on what can be said for the classes of
Lie groups mentioned above.

Due to limited space and time, we had to make choices, and as a result, we could not take
up many interesting directions such as the modern theory of symmetries of differential equations
as exposed in Olver’s beautiful book [Olv93] and the fine structure and the geometry of specific
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groups of diffeomorphisms, such as the group Diff(M,ω) of symplectomorphisms of a symplectic
manifold (M,ω) ([Ban97], [MDS98], [Pol01] are recent textbooks on this topic). We do not
go into (unitary) representation theory (cf. [AHMTT93], [Is96], [DP03], [Pic00a/b], [Ki05]) and
connections to physics, which are nicely described in the recent surveys of Goldin [Go04] and
Schmid [Sch04]. Other topics are only mentioned very briefly, such as the ILB and ILH-theory
of Lie groups of diffeomorphisms which plays an important role in geometric analysis (cf. [AK98],
[EMi99]) and the group of invertible Fourier integral operators of order zero, whose Lie group
property was the main goal of the series of papers [OMY80/81], [OMYK81/82/83a/b], completed
in [MOKY85]. An alternative approach to these groups is described in [ARS84,86a/b]. More
recently, very interesting results concerning diffeomorphism groups and Fourier integral operators
on non-compact manifolds (with bounded geometry) have been obtained by Eichhorn and
Schmid ([ES96/01]).

Some history

To put the Lie theory of locally convex groups into proper perspective, we take a brief look
at the historical development of infinite-dimensional Lie theory. Infinite-dimensional Lie algebras,
such as Lie algebras of vector fields, where present in Lie theory right from the beginning, when
Sophus Lie started to study (local) Lie groups as groups “generated” by finite-dimensional Lie
algebras of vector fields ([Lie80]). The general global theory of finite-dimensional Lie groups
started to develop in the late 19th century, driven substantially by É. Cartan’s work on
symmetric spaces ([CaE98]). The first exposition of a global theory, including the description of
all connected groups with a given Lie algebra and analytic subgroups, was given by Mayer and
Thomas ([MaTh35]). After the combination with the structure theory of Lie algebras, the theory
reached its mature form in the middle of the 20th century, which is exposed in the fundamental
books of Chevalley ([Ch46]) and Hochschild ([Ho65]) (see also [Po39] for an early textbook
situated on the borderline between topological groups and Lie groups).

Already in the work of S. Lie infinite-dimensional groups show up as groups of (local)
diffeomorphisms of open domains in Rn (cf. [Lie95]) and later É. Cartan undertook a more
systematic study of certain types of infinite-dimensional Lie algebras, resp., groups of diffeo-
morphisms preserving geometric structures on a manifold, such a symplectic, contact or volume
forms (cf. [CaE04]). On the other hand, the advent of Quantum Mechanics in the 1920s created
a need to understand the structure of groups of operators on Hilbert spaces, which is a quite
different class of infinite-dimensional groups (cf. [De32]).

The first attempt to deal with infinite-dimensional groups as Lie groups, i.e., as a smooth
manifolds, was undertaken by Birkhoff in [Bir36/38], where he developed the local Lie theory
of Banach–Lie groups, resp., Banach–Lie algebras (see also [MiE37] for first steps in extending
Lie’s theory of local transformation groups to the Banach setting). In particular, he proved that
(locally) C1 -Banach–Lie groups admit exponential coordinates which leads to analytic Lie group
structures, that continuous homomorphisms are analytic and that, for every Banach–Lie algebra,
the BCH series defines an analytic local group structure. He also defines the Lie algebra of such a
local group, derives its functoriality properties and establishes the correspondence between closed
subalgebras/ideals and the corresponding local subgroups. Even product integrals, which play
a central role in the modern theory, appear in his work as solutions of left invariant differential
equations. The local theory of Banach–Lie groups was continued by Dynkin ([Dy47/53]) who
developed the algebraic theory of the BCH series further and by Laugwitz ([Lau55/56]) who
developed a differential geometric perspective, which is quite close in spirit to the theory of
locally exponential Lie groups described in Section IV below. Put in modern terms, he uses the
Maurer–Cartan form and integrability conditions on (partial) differential equations on Banach
space, developed by Michal and Elconin ([MiE37], [MicA48]), to derive the existence of the
local group structure from the Maurer–Cartan form, which in turn is obtained from the Lie
bracket. In the finite-dimensional case, this strategy is due to F. Schur ([SchF90a]) and quite
close to Lie’s original approach. In [Lau55], Laugwitz shows in particular that the center and
any locally compact subgroup of a Banach–Lie group is a Banach–Lie subgroup. Formal Lie



6 japsurv.tex May 23, 2006

groups of infinitely many parameters were introduced by Ritt a few years earlier ([Ri50]).

The global theory of Banach–Lie groups started in the early 1960s with Maissen’s paper
[Mais62] which contains the first basic results on the Lie functor on the global level, such as the
existence of integral subgroups for closed Lie subalgebras and the integrability of Lie algebra
homomorphisms for simply connected groups. Later van Est and Korthagen studied the
integrability problem for Banach–Lie algebras and found the first example of a non-integrable
Banach–Lie algebra ([EK64]). Based on Kuiper’s Theorem that the unitary group of an infinite-
dimensional Hilbert space is contractible ([Ku65]), simpler examples were given later by Douady

and Lazard ([DL66]). Chapters 2 and 3 in Bourbaki’s “Lie groups and Lie algebras” contain
in particular the basic local theory of Banach–Lie groups and Lie algebras and also some global
aspects ([Bou89]). Although most of the material in Hofmann’s Tulane Lecture Notes ([Hof68]),
approaching the subject from a topological group perspective, was never published until recently
([HoMo98]), it was an important source of information for many people working on Banach–Lie
theory (see also [Hof72/75]).

In the early 1970s, de la Harpe extended É. Cartan’s classification of Riemannian
symmetric spaces to Hilbert manifolds associated to a certain class of Hilbert–Lie algebras,
called L∗ -algebras, and studied different classes of operator groups related to Schatten ideals.
Another context, where a structure-theoretic approach leads quite far is the theory of bounded
symmetric domains in Banach spaces and the related theory of (normed) symmetric spaces,
developed by Kaup and Upmeier (cf. [Ka81/83a/b], [Up85]). For a more general approach
to Banach symmetric spaces in the sense of Loos ([Lo69]), extending the class of all finite-
dimensional symmetric spaces, not only Riemannian ones, we refer to [Ne02c] (cf. also [La99]
for the corresponding basic differential geometry). In the context of symplectic geometry, resp.,
Hamiltonian flows, Banach manifolds were introduced by Marsden ([Mar67]), and Weinstein

obtained a Darboux Theorem in this context ([Wei69]). Schmid’s monograph [Sch87] provides
a nice introduction to infinite-dimensional Hamiltonian systems. For more recent results on
Banach–Kähler manifolds and their connections to representation theory, we refer to ([Ne04b],
[Bel06]) and for Banach–Poisson manifolds to the recent work of Ratiu, Odzijewicz and
Beltita ([RO03/04], [BR05a/b]).

Although Birkhoff was already aware of the fact that his theory covered groups of
operators on Banach spaces, but not groups of diffeomorphisms, it took 30 years until infinite-
dimensional Lie groups modeled on (complete) locally convex spaces occurred for the first time, as
an attempt to understand the Lie structure of the group Diff(M) of diffeomorphisms of a compact
manifold M , in the work of Leslie ([Les67]) and Omori ([Omo70]). This theory was developed
further by Omori in the context of strong ILB–Lie groups (cf. [Omo74]). A large part of [Omo74]
is devoted to the construction of a strong ILB–Lie group structure on various types of groups
of diffeomorphisms. In the 1980s, this theory was refined substantially by imposing and proving
additional regularity conditions for such groups ([OMYK82/83a], [KYMO85]). A different type
of Lie group was studied by Pisanelli in [Pis76/77/79], namely the group Ghn(C) of germs of
biholomorphic maps of Cn fixing 0. This group carries the structure of a Silva–Lie group and
is one of the first non-Fréchet–Lie groups studied systematically in a Lie theoretic context. In
[BCR81], Boseck, Czichowski and Rudolph approach infinite-dimensional Lie groups from a
topological group perspective. They use the same concept of an infinite-dimensional manifold as
we do here, but a stronger Lie group concept. This leads them to a natural setting for mapping
groups of non-compact manifolds modeled on spaces of rapidly decreasing functions.

In his lecture notes [Mil84], Milnor undertook the first attempt to develop a general theory
of Lie groups modeled on complete locally convex spaces, which already contained important
cornerstones of the theory. This paper and the earlier preprint [Mil82] had a strong influence on
the development of the theory. Both contain precise formulations of several problems, some of
which have been solved in the meantime and some of which are still open, as we shall see in more
detail below (see also [Gl06b] for the state of the art on some of these problems).

In the middle of the 1980s, groups of smooth maps, and in particular groups of smooth
loops became popular because of their intimate connection with Kac–Moody theory and topology
(cf. [PS86], [Mick87/89]). The interest in direct limits of finite-dimensional Lie groups grew in
the 1990s (cf. [NRW91/93/94/99]). They show up naturally in the structure and representation
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theory of Lie algebras (cf. [Ne98/01b], [DiPe99], [NRW99], [NS01], [Wol05]). The general Lie
theory of these groups was put into its definitive form by Glöckner in [Gl05].

There are other, weaker, concepts of Lie groups, resp., infinite-dimensional manifolds. One
is based on the “convenient setting” for global analysis developed by Frölicher, Kriegl and
Michor ([FB66], [Mi84], [FK88] and [KM97]). In the context of Fréchet manifolds, this setting
leads to Milnor’s concept of a regular Lie group, but for more general model spaces, it provides a
concept of a smooth map which does not imply continuity, hence leads to Lie groups which are not
topological groups. Another approach, due to Souriau, is based on the concept of a diffeological
space ([So84/85], [DoIg85], [Los92]; see [HeMa02] for applications to diffeomorphism groups)
which can be used to study spaces like quotients of R by non-discrete subgroups in a differential
geometric context. On the one hand, it has the advantage that the category of diffeological spaces
is cartesian closed and that any quotient of a diffeological space carries a natural diffeology. But
on the other hand, this incredible freedom makes it harder to distinguish “regular” objects from
“non-regular” ones. Our discussion of smoothness of maps with values in diffeomorphism groups
of (possibly infinite-dimensional) manifolds is inspired by the diffeological approach. We shall
see in particular, that, to some extent, one can use differential methods to deal with groups with
no Lie group structure, such as groups of diffeomorphisms of non-compact manifolds or groups
of linear automorphisms of locally convex spaces, and that this provides a natural framework for
a Lie theory of smooth actions on manifolds and smooth linear representations.

There are other purposes, for which a Lie group structure on an infinite-dimensional group
G is indispensable. The most crucial one is that without the manifold structure, there is simply
not enough structure available to pass from the infinitesimal level to the global level. For instance,
to integrate abelian or central extensions of Lie algebras to corresponding group extensions, the
manifold structure on the group is of crucial importance (cf. (FP4)). To deal with these extension
problems, one is naturally lead to certain classes of closed differential 2-forms on Lie groups,
which in turn leads to infinite-dimensional symplectic geometry and Hamiltonian group actions.
Although we do not know which coadjoint orbits of an infinite-dimensional Lie group carry
manifold structures, for any such orbit, we have a natural Hamiltonian action of the group G on
itself with respect to a closed invariant 2-form which in general is degenerate; so the reduction of
free actions of infinite-dimensional Lie groups causes similar difficulties as singular reduction does
in finite-dimensions; but still all the geometry is visible in the non-reduced system. It is our hope
that this kind of symplectic geometry will ultimately lead to a more systematic “orbit method”
for infinite-dimensional Lie groups, in the sense that it paves the way to a better understanding
of the unitary representations of infinite-dimensional Lie groups, based on symplectic geometry
and Hamiltonian group actions (cf. [Ki05] for a recent survey on various aspects of the orbit
method).

Acknowledgement: We are most grateful to H. Glöckner for many useful comments
on earlier versions of the manuscript and for supplying immediate answers to some questions we
thought still open. We also thank K. H. Hofmann for explaining many features of projective
limits of Lie groups.
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anything is known in this direction.
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Notation

We write N := {1, 2, . . .} for the natural numbers and N0 := N ∪ {0} . Throughout this
paper all vector spaces, algebras and Lie algebras are defined over the field K , which is R
or C . If E is a real vector space, we write EC := C ⊗R E for its complexification, considered
as a complex vector space. For two topological vector spaces E,F , we write L(E,F ) for the
space of continuous linear operators E → F and put L(E) := L(E,E). For F = K , we write
E′ := L(E,K) for the topological dual space of E .

If G is a group, we denote the identity element by 1 , and for g ∈ G , we write

λg:G→ G, x 7→ gx for the left multiplication by g ,

ρg:G→ G, x 7→ xg for the right multiplication by g ,

mG:G×G→ G, (x, y) 7→ xy for the multiplication map, and

ηG:G→ G, x 7→ x−1 for the inversion.

We always write G0 for the connected component of the identity and, if G is connected,
we write qG: G̃→ G for the universal covering group.

We call a manifold M 1-connected if it is connected and simply connected.

Index of notation and concepts

LF-space, Silva space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition I.1.2

(Split) submanifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition I.3.5

Smoothly paracompact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Remark I.4.5

CIA (continuous inverse algebra) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition II.1.3

xl(g) = g.x (left invariant vector fields) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition II.1.5

L(ϕ) = T1(ϕ) (Lie functor) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition II.1.7

CrX(M,K) (Cr -maps supported in X , 0 ≤ r ≤ ∞) . . . . . . . . . . . . . . . . . . . . . . . . . .Definition II.2.7

Crc (M,K) (compactly supported Cr -maps, 0 ≤ r ≤ ∞) . . . . . . . . . . . . . . . . . . . . . .Definition II.2.7
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FlXt (time t flow of vector field X ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Example II.3.14

κG (left Maurer–Cartan form of G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Section II.4

Z(G) (center of the group G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Corollary II.4.2

evolG:C∞([0, 1], g) → G (evolution map) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition II.5.2

κg(x) =
∫ 1

0 e
−t ad x dt (Maurer–Cartan form of g) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Remark II.5.8

z(g) (center of the Lie algebra g) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Proposition II.5.11

Cr∗(M,K) (base point preserving Cr -maps) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Proposition II.6.3

Ld(H) (differential Lie algebra of subgroup H ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Proposition II.6.3

gop and Gop (opposite Lie algebra/group) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Example II.3.14

Hp
sing(M,A) (A-valued singular cohomology) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Theorem III.1.9

Diff(M,ω), V(M,ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Theorem III.3.1

BCH (Baker–Campbell–Hausdorff) Lie algebra/group . . . . . . . . . . . . . . . . . . . . Definitions IV.1.5, 9

gau(P ) (gauge Lie algebra of principal bundle P ) . . . . . . . . . . . . . . . . . . . . . . . . . . .Theorem IV.1.12

gauc(P ) (compactly supported gauge Lie algebra) . . . . . . . . . . . . . . . . . . . . . . . . . . .Theorem IV.1.12

Pro-nilpotent Lie algebra/group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Example IV.1.13

Gfn(K) (formal diffeomorphisms in dim. n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Example IV.1.14

Locally exponential topological group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Remark IV.1.22

L(G) := Homc(R, G) (for a top. group G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition IV.1.23

Le(H) (exponential Lie algebra of subgroup H ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lemma IV.3.1

Locally exponential Lie subgroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition IV.3.2

Stable Lie subalgebra, resp., ideal (ead xh = h for x ∈ h , resp., g) . . . . . . . . . . . .Definition IV.4.1

Integral subgroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition IV.4.7

Hp
c (g, a) (continuous Lie algebra cohomology) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition V.2.2

ωeq (equivariant p-form on G with ωeq
1

= ω ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition V.2.3

Hp
s (G,A) (locally smooth cohomology group) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition V.2.5

perΩ:πk(G) → E (period homo. of closed E -val. k -form) . . . . . . . . . . . . . . . . . . . Definition V.2.12

Fω :π1(G) → H1
c (g, a) (flux homo., ω ∈ Z2

c (g, a)) . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition V.2.12

Integrable/enlargible Lie algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition VI.1.1

Generalized central extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition VI.1.3

gfn(R) (formal vector fields in dim. n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Example VI.2.8

Gsn(R), gsn(R) (germs of smooth diffeomorphisms/vector fields) . . . . . . . . . . . . .Theorem VI.2.9

Ghn(C), ghn(C) (germs of holomorphic diffeomorphisms/vector fields) . . . . . . Example VI.2.10

Linear Lie group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition VIII.1

pro-Lie group/algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Section X.1

I. Locally convex manifolds

In this section, we briefly explain the natural setup for manifolds modeled on locally convex
spaces, vector fields and differential forms on these manifolds. An essential difference to the
finite-dimensional, resp., the Banach setting is that we use a Ck -concept which on Banach
spaces is slightly weaker than Fréchet differentiability, but implies Ck−1 in the Fréchet sense,
so that we obtain the same class of smooth functions. The main point is that, for a non-
normable locally convex space E , the space L(E,F ) of continuous linear maps to some locally
convex space F does not carry any vector topology for which the evaluation map is continuous
([Mais63]). Therefore it is more natural to develop calculus independently of any topology on
spaces of linear maps and thus to deal instead with the differential of a function as a function
of two arguments, not as an operator-valued function of one variable. One readily observes that
once the Fundamental Theorem of Calculus is available, which is not in general the case beyond
locally convex spaces, most basic calculus results can simply be reduced to the familiar finite-
dimensional situation. This is done by restricting to finite-dimensional subspaces and composing
with linear functionals, which separate the points due to the Hahn–Banach Theorems.



10 japsurv.tex May 23, 2006

The first steps towards a calculus on locally convex spaces have been taken by Michal (cf.
[MicA38/40]), whose work was developed further by Bastiani in [Bas64], so that the calculus we
present below is named after Michal–Bastiani, and the Ck -concept is denoted CkMB accordingly
(if there is any need to distinguish it from other Ck -concepts). Keller’s comparative discussion
of various notions of differentiability on topological vector spaces ([Ke74]) shows that the Michal–
Bastiani calculus is the most natural one since it does not rely on convergence structures or
topologies on spaces of linear maps. Streamlined discussions of the basic results of calculus, as
we use it, can be found in [Mi80] and [Ham82]. In [Gl02a], Glöckner treats real and complex
analytic functions over not necessarily complete spaces, which presents some subtle difficulties.
Beyond Fréchet spaces, it is more convenient to work with locally convex spaces which are not
necessarily complete because quotients of complete non-metrizable locally convex spaces need not
be complete (cf. [Kö69], §31.6). Finally we mention that the MB-calculus can even be developed
for topological vector spaces over general non-discrete topological fields (see [BGN04] for details).

One of the earliest references for smooth manifolds modeled on (complete) locally convex
spaces is Eell’s paper [Ee58], but he uses a different smoothness concept, based on the topology
of bounded convergence on the space of linear maps (cf. also [Bas64] and [FB66]). Lie groups
in the context of MB-calculus show up for the first time in Leslie’s paper on diffeomorphism
groups of compact manifolds ([Les67]).

I.1. Locally convex spaces

Definition I.1.1. A topological vector space E is said to be locally convex if each 0-
neighborhood in E contains a convex one. Throughout, topological vector spaces E are assumed
to be Hausdorff.

It is a standard result in functional analysis that local convexity is equivalent to the
embeddability of E into a product of normed spaces. This holds if and only if the topology
can be defined by a family (pi)i∈I of seminorms in the sense that a subset U of E is a 0-
neighborhood if and only if it contains a finite intersection of sets of the form

V (pi, εi) := {x ∈ E: pi(x) < εi}, i ∈ I, εi > 0.

Definition I.1.2. (a) A locally convex space E is called a Fréchet space if there exists a
sequence {pn:n ∈ N} of seminorms on E , such that the topology on E is induced by the metric

d(x, y) :=
∑

n∈N

2−n
pn(x− y)

1 + pn(x− y)
,

and the metric space (E, d) is complete. Important examples of Fréchet spaces are Banach
spaces, which are the ones where the topology is defined by a single (semi-)norm.

(b)Let E be a vector space which can be written as E =
⋃∞
n=1 En , where En ⊆ En+1

are subspaces of E , endowed with structures of locally convex spaces in such a way that the
inclusion mappings En → En+1 are continuous.

Then we obtain a locally convex vector topology on E by defining a seminorm p on E to
be continuous if and only if its restriction to all the subspaces En is continuous. We call E the
inductive limit (or direct limit) of the spaces (En)n∈N .

If all maps En →֒ En+1 are embeddings, we speak of a strict inductive limit. If, in addition,
the spaces En are Fréchet spaces, then each En is closed in En+1 and E is called an LF space.
If the spaces En are Banach spaces and the inclusion maps En → En+1 are compact, then E is
called a Silva space.

Examples I.1.3. To given an impression of the different types of locally convex spaces occurring
below, we take a brief look at function spaces on the real line.
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(a) For r ∈ N0 and a < b , the spaces Cr([a, b],R) of r -times continuously differentiable
functions on [a, b] form a Banach space with respect to the norms

‖f‖r :=
r∑

k=0

‖f (k)‖∞

and C∞([a, b],R) is a Fréchet space with respect to the topology defined by the sequence
(‖ · ‖r)r∈N0 of norms.

(b) For each fixed r ∈ N0 , the space Cr(R,R) is a Fréchet space with respect to the
sequence of seminorms pn(f) := ‖f | [−n,n]‖r . It is the projective limit of the Banach spaces
Cr([−n, n],R). On C∞(R,R) we also obtain a Fréchet space structure defined by the countable
family of seminorms pn,r(f) := ‖f |[−n,n]‖r , n, r ∈ N .

(c) For each r ∈ N0 ∪ {∞} , the space Crc (R,R) of compactly supported Cr -functions on
R is the union of the subspaces Cr[−n,n](R,R) of all those functions supported by the interval

[−n, n] . As a closed subspace of the Fréchet space Cr([−n, n],R), Cr[−n,n](R,R) inherits a

Fréchet space structure, so that we obtain on Crc (R,R) the structure of an LF space.

(d) For each r > 0, the space of all sequences (an)n∈N0 for which
∑∞
n=0 |an|rn converges

can be identified with the space Er of all functions f : [−r, r] → R which can be represented by a
power series, uniformly convergent on [−r, r] . This is a Banach space with respect to the norm

‖f‖r :=
∑∞

n=0
|f(n)(0)|

n! rn . The direct limit space E :=
⋃∞
r>0Er is the space of germs of analytic

function in 0. Since the inclusion maps E 1
n
→ E 1

n+1
are compact operators, E carries a natural

Silva space structure. Note that the subspaces Er , r > 0, are dense and not closed, so that E
is not an LF space.

The natural completeness requirement for calculus on locally convex spaces is the following:

Definition I.1.4. A locally convex space E is said to be Mackey complete if for each smooth
curve ξ: [0, 1] → E there exists a smooth curve η: [0, 1] → E with η′ = ξ .

For each continuous linear functional λ:E → R on a locally convex space E and each
continuous curve ξ: [0, 1] → E , we have a continuous real-valued function λ ◦ ξ: [0, 1] → R which
we may integrate to obtain a linear functional

Iξ:E
′ → R, λ 7→

∫ 1

0

λ(ξ(t)) dt,

called the weak integral of ξ . On the other hand, we have a natural embedding

ηE :E → (E′)∗, ηE(x)(λ) := λ(x)

which is injective, because E′ separates the points of E by the Hahn–Banach Theorem. Therefore
Mackey completeness means that for each smooth curve ξ the weak integral Iξ is represented

by an element of E , i.e., contained in ηE(E). If this is the case, we simply write
∫ 1

0 ξ(t) dt for

the representing element of E . The curve η(s) :=
∫ s
0 ξ(t) dt then is differentiable and satisfies

η′ = ξ .

For a more detailed discussion of Mackey completeness and equivalent conditions, we refer
to [KM97, Th. 2.14], where it is shown in particular that integrals exist for Lipschitz curves and
in particular for each η ∈ C1([0, 1], E).

I.2. Calculus on locally convex spaces

The following notion of Ck -maps is also known as CkMB (Ck in the Michal–Bastiani sense)
([MicA38/40], [Bas64]) or Keller’s Ckc -maps ([Ke74]). Its main advantage is that it does not refer
to any topology on spaces of linear maps or any quasi-topology (cf. [Bas64]).



12 japsurv.tex May 23, 2006

Definition I.2.1. (a) Let E and F be locally convex spaces, U ⊆ E open and f :U → F a
map. Then the derivative of f at x in the direction h is defined as

df(x)(h) := (Dhf)(x) :=
d

dt t=0
f(x+ th) = lim

t→0

1

t
(f(x+ th) − f(x))

whenever it exists. The function f is called differentiable at x if df(x)(h) exists for all h ∈ E .
It is called continuously differentiable, if it is differentiable at all points of U and

df :U × E → F, (x, h) 7→ df(x)(h)

is a continuous map. It is called a Ck -map, k ∈ N ∪ {∞} , if it is continuous, the iterated
directional derivatives

djf(x)(h1, . . . , hj) := (Dhj
· · ·Dh1f)(x)

exist for all integers j ≤ k , x ∈ U and h1, . . . , hj ∈ E , and all maps djf :U × Ej → F are
continuous. As usual, C∞ -maps are called smooth.

(b) If E and F are complex vector spaces, then a map f is called complex analytic if it is
continuous and for each x ∈ U there exists a 0-neighborhood V with x+V ⊆ U and continuous
homogeneous polynomials βk:E → F of degree k such that for each h ∈ V we have

f(x+ h) =
∞∑

k=0

βk(h),

as a pointwise limit ([BoSi71]).

If E and F are real locally convex spaces, then we call f real analytic, resp., Cω , if for each
point x ∈ U there exists an open neighborhood V ⊆ EC and a holomorphic map fC :V → FC

with fC |U∩V = f |U∩V (cf. [Mil84]). The advantage of this definition, which differs from the one
in [BoSi71], is that it works nicely for non-complete spaces, any analytic map is smooth, and the
corresponding chain rule holds without any condition on the underlying spaces, which is the key
to the definition of analytic manifolds (see [Gl02a] for details).

The map f is called holomorphic if it is C1 and for each x ∈ U the map df(x):E → F is
complex linear (cf. [Mil84, p. 1027]). If F is sequentially complete, then f is holomorphic if and
only if it is complex analytic (cf. [Gl02a], [BoSi71, Ths. 3.1, 6.4], [Mil82, Lemma 2.11]).

Remark I.2.2. If E and F are Banach spaces, then the Michal–Bastiani C1
MB -concept from

above is weaker than continuous Fréchet differentiability, which requires that the map x 7→ df(x)
is continuous with respect to the operator norm (cf. [Mil82, Ex. 6.8]). Nevertheless, one can
show that Ck+1

MB implies Ck in the sense of Fréchet differentiability, which in turn implies
CkMB . Therefore the different Ck -concepts lead to the same class of smooth functions (cf. [Mil82,
Lemma 2.10], [Ne01a, I.6 and I.7]).

After clarifying the Ck -concept, we recall the precise statements of the most fundamental
facts from calculus on locally convex spaces.

Proposition I.2.3. Let E and F be locally convex spaces, U ⊆ E an open subset, and
f :U → F a continuously differentiable function.

(i) For any x ∈ U , the map df(x):E → F is real linear and continuous.

(ii) (Fundamental Theorem of Calculus) If x+ [0, 1]h ⊆ U , then

f(x+ h) = f(x) +

∫ 1

0

df(x+ th)(h) dt.

In particular, f is locally constant if and only if df = 0 .

(iii) f is continuous.

(iv) If f is Cn , n ≥ 2 , then the functions dnf(x) , x ∈ U , are symmetric n-linear maps.
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(v) If x+ [0, 1]h ⊆ U and f is Cn , then we have the Taylor Formula

f(x+ h) = f(x) + df(x)(h) + . . .+
1

(n− 1)!
dn−1f(x)(h, . . . , h)

+
1

(n− 1)!

∫ 1

0

(1 − t)n−1dnf(x+ th)(h, . . . , h) dt.

(vi) (Chain Rule) If, in addition, Z is a locally convex space, V ⊆ F is open, and f1:U → V ,
f2:V → Z are C1 , then f2 ◦ f1:U → Z is C1 with

d(f2 ◦ f1)(x) = df2
(
f1(x)

)
◦ df1(x) for x ∈ U.

If f1 and f2 are Ck , k ∈ N ∪ {∞} , the Chain Rule implies that f2 ◦ f1 is also Ck .

Remark I.2.4. A continuous k -linear map m:E1× . . .×Ek → F is continuously differentiable
with

dm(x)(h1, . . . , hk) = m(h1, x2, . . . , xk) + · · · +m(x1, . . . , xk−1, hk).

Inductively, one obtains that m is smooth with dk+1m = 0.

Example I.2.5. The following example shows that local convexity is crucial for the validity of
the Fundamental Theorem of Calculus.

Let E denote the space of measurable functions f : [0, 1] → R for which

|f | :=

∫ 1

0

|f(x)| 12 dx

is finite and identify functions that coincide on a set whose complement has measure zero. Then
d(f, g) := |f−g| defines a metric on E . We thus obtain a metric topological vector space (E, d).

For a subset S ⊆ [0, 1], let χS denote its characteristic function. Consider the curve

γ: [0, 1] → E, γ(t) := χ[0,t].

Then |h−1
(
γ(t+h)−γ(t)

)
| = |h|− 1

2 |h| → 0 for each t ∈ [0, 1] as h→ 0. Hence γ is continuously
differentiable with γ′ = 0. Since γ is not constant, the Fundamental Theorem of Calculus does
not hold in E .

The defect in this example is caused by the non-local convexity of E . In fact, one can even
show that all continuous linear functionals on E vanish.

The preceding phenomenon could also be excluded by requiring that the topological vector
spaces under consideration have the property that the continuous linear functionals separate
the points, which is automatic for locally convex spaces. Another reason for working with
locally convex spaces is that local convexity is also crucial for approximation arguments, more
specifically to approximate continuous maps by smooth ones in the same homotopy class (cf.
[Ne04c], [Wo05a]). Local convexity it also crucial for the continuous parameter-dependence of
integrals which in turn goes into the proof of the Chain Rule.

One frequently encounters situations where it is convenient to describe multilinear maps
m:E1 × · · · × Ek → F as continuous linear maps on the tensor product space E1 ⊗ · · · ⊗ Ek ,
endowed with a suitable topology. For locally convex spaces, there is a natural such topology,
the projective tensor topology, and it has the nice property that projective tensor products are
associative. That this is no longer true for more general topological vector spaces is one more
reason to work in the locally convex setting (cf. [Gl04a]).
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Remark I.2.6. (Inverse Function Theorems) In the context of Banach spaces, one has an
Inverse Function Theorem and also an Implicit Function Theorem (cf. [La99]). Such results
cannot be expected in general for Fréchet spaces. One of the simplest examples demonstrating
this fact arises from the algebra A := C(R,R) of all continuous functions on R , endowed with
the topology of uniform convergence on compact subsets, turning A into a Fréchet space on
which the algebra multiplication is continuous. We have a smooth exponential map

expA:A→ A, f 7→ ef

with T0(expA) = idA . Since the range of expA lies in the unit group A× = C(R,R×), which
apparently is not a neighborhood of the constant function 1 , the Inverse Function Theorem fails
in this case (cf. [Ee66, p.761]).

In Example II.5.9 below, we shall even encounter examples of exponential functions of Lie
groups which, in spite of T1(expG) = idL(G) , are not a local diffeomorphism in 0. In view of
these examples, the usual Inverse Function Theorem cannot be generalized in any straightforward
manner to arbitrary Fréchet spaces.

Nevertheless, Glöckner ([Gl03a]) obtained a quite useful Implicit Function Theorem for
maps of the type f :E × F → F , where F is a Banach space and E is locally convex. These
results have many interesting applications, even in the case where F is finite-dimensional. Similar
results have been achieved by Hiltunen in [Hi99], but he uses a different notion of smoothness.

A complementary Inverse Function Theorem is due to Nash and Moser (cf. [Mo61] and
[Ham82] for a nice exposition). This is a variant that can be applied to Fréchet spaces endowed
with an additional structure, called a grading, and to smooth maps which are “tame” in the
sense that they are compatible with the grading.

Another variant based on compatibility with a projective limit of Banach spaces is the
ILB-Implicit Function Theorem to be found in Omori’s book ([Omo97]).

Remark I.2.7. (Non-complemented subspaces) Another serious pathology occurring already
for Banach spaces is that a closed subspace F of a locally convex space E need not have a closed
complement. A simple example is the subspace F := c0(N,R) of the Banach space E := ℓ∞(N,R)
(cf. [Wer95, Satz IV.6.5] for an elementary proof).

This implies that if q:E → E/F is a quotient map of locally convex spaces, there need not
be any continuous linear map σ:E/F → E with q ◦ σ = idE/F . If such a map σ exists, then

F × E/F → E, (x, y) 7→ x+ σ(y)

is a linear isomorphism of topological vector spaces, which implies that σ(E/F ) is a closed
complement of F in E . We then call the quotient map q , resp., the subspace F , topologically
split. If E is a Fréchet space, then the Open Mapping Theorem implies that the existence of a
closed complement for F is equivalent to the existence of a splitting map σ .

For Fréchet spaces, it is quite easy to find natural examples of non-splitting quotient maps:
Let E := C∞([0, 1],R) be the Fréchet space of smooth functions on the unit interval and

q:E → RN, q(f) = (f (n)(0))n∈N.

In view of E. Borel’s Theorem, this map is surjective, hence a quotient map by the Open
Mapping Theorem. Since every 0-neighborhood in RN contains a non-trivial subspace, there
is no continuous norm on RN , hence there is no continuous linear cross section σ: RN → E for q
because the topology on E is defined by a sequence of norms.

If a continuous linear cross section σ does not exist, then q has no smooth local sections
either, because for any such section σ:U → E , U open in E/F , the differential of σ in any
point would be a continuous linear section of q . If E is Fréchet, then q has a continuous global
section by Michael’s Selection Theorem ([MicE59], [Bou87]), and the preceding argument shows
that no such section is continuously differentiable.

For more detailed information on splitting conditions for extensions of Fréchet spaces, we
refer to [Pala71] and [Vo87].
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I.3. Smooth manifolds

Since the Chain Rule is valid for smooth maps between open subsets of locally convex
spaces, we can define smooth manifolds as in the finite-dimensional case (see [Ee58] for one of
the first occurrences of manifolds modeled on complete locally convex spaces).

Definition I.3.1. Let M be a Hausdorff space and E a locally convex space. An E -chart of
M is a pair (ϕ,U) of an open subset U ⊆M and a homeomorphism ϕ:U → ϕ(U) ⊆ E onto an
open subset ϕ(U) of E . For k ∈ N0 ∪ {∞, ω} , two E -charts (ϕ,U) and (ψ, V ) are said to be
Ck -compatible if the maps

ψ ◦ ϕ−1 |ϕ(U∩V ):ϕ(U ∩ V ) → ψ(U ∩ V )

and ϕ ◦ ψ−1 are Ck , where k = ω stands for analyticity. Since compositions of Ck -maps are
Ck -maps, Ck -compatibility of E -charts is an equivalence relation. An E -atlas of class Ck

of M is a set A := {(ϕi, Ui): i ∈ I} of pairwise compatible E -charts of M with
⋃
i Ui =

M . A smooth/analytic E -structure on M is a maximal E -atlas of class C∞ /Cω , and a
smooth/analytic E -manifold is a pair (M,A), where A is a maximal smooth/analytic E -atlas
on M .

We call a manifold modeled on a locally convex, resp., Fréchet, resp., Banach space a locally
convex, resp., Fréchet, resp., Banach manifold.

We do not make any further assumptions on the topology of smooth locally convex man-
ifolds, such as regularity (as in [Mil84]) or paracompactness. But we impose the Hausdorff
condition, an assumption not made in some textbooks (cf. [La99], [Pa57]). We refer to Example
6.9 in [Mil82] for a non-regular manifold.

Remark I.3.2. If M1, . . . ,Mn are smooth manifolds modeled on the spaces Ei , i = 1, . . . , n ,
then the product set M := M1 × . . .×Mn carries a natural manifold structure with model space
E =

∏n
i=1 Ei .

Smooth maps between smooth manifolds are defined as usual.

Definition I.3.3. For p ∈ M , tangent vectors v ∈ Tp(M) are defined as equivalence classes
of smooth curves γ: ]−ε, ε[→ M with ε > 0 and γ(0) = p , where the equivalence relation is
given by γ1 ∼ γ2 if (ϕ ◦ γ1)

′(0) = (ϕ ◦ γ2)
′(0) holds for a chart (ϕ,U) with p ∈ U . Then

Tp(M) carries a natural vector space structure such that for any E -chart (ϕ,U), the map
Tp(M) → E, [γ] 7→ (ϕ ◦ γ)′(0) is a linear isomorphism. We write T (M) :=

⋃
p∈M Tp(M) for the

tangent bundle of M . The map πTM :T (M) → M mapping elements of Tp(M) to p is called
the bundle projection.

If f :M → N is a smooth map between smooth manifolds, we obtain for each p ∈ M a
linear tangent map

Tp(f):Tp(M) → Tf(p)(N), [γ] 7→ [f ◦ γ],
and these maps combine to the tangent map T (f):T (M) → T (N). On the tangent bundle T (M)
we obtain for each E -chart (ϕ,U) of M an E × E -chart by

T (ϕ):T (U) :=
⋃

p∈U

Tp(M) → T (ϕ(U)) ∼= ϕ(U) × E.

Endowing T (M) with the topology for which O ⊆ T (M) is open if and only if for each E -chart
(ϕ,U) of M the set T (ϕ)(O ∩ T (U)) is open in ϕ(U)×E , we obtain on T (M) the structure of
an E × E -manifold defined by the charts (T (ϕ), T (U)), obtained from E -charts (ϕ,U) of M .
This leads to an endofunctor T on the category of smooth manifolds, preserving finite products
(cf. Remark I.3.2).

If f :M → V is a smooth map into a locally convex space, then T (f):T (M) → T (V ) ∼=
V × V is smooth, and can be written as T (f) = (f, df), where df :T (M) → V is called the
differential of f .
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As a consequence of Proposition I.2.3(ii), we have:

Proposition I.3.4. A smooth map f :M → N is locally constant if and only if T (f) = 0 .

Definition I.3.5. Let M be a smooth manifold modeled on the space E , and N ⊆ M a
subset.

(a) N is called a submanifold of M if there exists a closed subspace F ⊆ E and for each
n ∈ N there exists an E -chart (ϕ,U) of M with n ∈ U and ϕ(U ∩N) = ϕ(U) ∩ F .

(b) N is called a split submanifold of M if, in addition, there exists a subspace G ⊆ E for
which the addition map F ×G→ E, (f, g) 7→ f + g is a topological isomorphism.

Definition I.3.6. A (smooth) vector field X on M is a smooth section of the tangent bundle
πTM :TM → M , i.e. a smooth map X :M → TM with πTM ◦X = idM . We write V(M) for
the space of all vector fields on M . If f ∈ C∞(M,V ) is a smooth function on M with values in
some locally convex space V and X ∈ V(M), then we obtain a smooth function on M via

X.f := df ◦X :M → V.

For X,Y ∈ V(M), there exists a unique vector field [X,Y ] ∈ V(M) determined by the
property that on each open subset U ⊆M we have

(1.3.1) [X,Y ].f = X.(Y.f) − Y.(X.f)

for all f ∈ C∞(U,R). We thus obtain on V(M) the structure of a Lie algebra.

Remark I.3.7. If M = U is an open subset of the locally convex space E , then TU = U ×E
with the bundle projection πTU :U ×E → U, (x, v) 7→ x . Each smooth vector field is of the form

X(x) = (x, X̃(x)) for some smooth function X̃:U → E , and we may thus identify V(U) with
the space C∞(U,E). Then the Lie bracket satisfies

[X,Y ]̃ (p) = dỸ (p)X̃(p) − dX̃(p)Ỹ (p) for each p ∈ U.

Definition I.3.8. Let M be a smooth E -manifold and F a locally convex space. A smooth
vector bundle of type F over M is a pair (π,F, F ), consisting of a smooth manifold F , a smooth
map π: F →M and a locally convex space F , with the following properties:

(a) For each m ∈ M , the fiber Fm := π−1(m) carries a locally convex vector space structure
isomorphic to F .

(b) Each point m ∈M has an open neighborhood U for which there exists a diffeomorphism

ϕU :π−1(U) → U × F

with ϕU = (π |U , gU ), where gU :π−1(U) → F is linear on each fiber Fm , m ∈ U .

We then call U a trivializing subset of M and ϕU a bundle chart. If ϕU and ϕV are two
bundle charts and U ∩ V 6= Ø, then we obtain a diffeomorphism

ϕU ◦ ϕ−1
V : (U ∩ V ) × F → (U ∩ V ) × F

of the form (x, v) 7→ (x, gV U (x)v). This leads to a map

gUV :U ∩ V → GL(F )

for which it does not make sense to speak about smoothness because GL(F ) is not a Lie group if
F is not a Banach space. This is a major difference between the Banach and the locally convex
context. Nevertheless, gUV is smooth in the sense that the map

ĝUV : (U ∩ V ) × F → F × F, (x, v) 7→ (gUV (x)v, gUV (x)−1v) = (gUV (x)v, gV U (x)v)

is smooth (cf. Definition II.3.1 below).

Obviously, the tangent bundle T (M) of a smooth (locally convex) manifold is an example
of a vector bundle, but the cotangent bundle is more problematic:
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Remark I.3.9. We define for each E -manifold M the cotangent bundle by T ∗(M) :=⋃
m∈M Tm(M)′ and observe that, as a set, it carries a natural structure of a vector bundle

over M , but to endow it with a smooth manifold structure we need a locally convex topology
on the dual space E′ such that for each local diffeomorphism f :U → E , U open in E , the map
U × E′ → E′, (x, λ) 7→ λ ◦ df(x) is smooth. If E is a Banach space, then the norm topology on
E′ has this property, but in general this property fails for non-Banach manifolds.

Indeed, let E be a locally convex space which is not normable and pick a non-zero α0 ∈ E′ .
We consider the smooth map

f :E → E, x 7→ x+ α0(x)x = (1 + α0(x))x.

Then df(x)v = (1 + α0(x))v + α0(v)x implies that df(x) = (1 + α0(x))1 + α0 ⊗ x , which is
invertible for α0(x) 6∈ {−1,− 1

2} . If ϕ: ]− 1
4 ,∞[→ R is the inverse function of ψ(x) = x + x2

on ]− 1
2 ,∞[ , then an easy calculation gives on {y ∈ E:α0(y) > − 1

4} the inverse function
f−1(y) = (1 + ϕ(α0(y)))

−1 · y . We conclude that f is a local diffeomorphism on some 0-
neighborhood of E .

On the other hand, the map U × E′ → E′, (x, λ) 7→ λ ◦ df(x) satisfies

λ ◦ df(x) = (1 + α0(x))λ + λ(x)α0.

Since the evaluation map E′ × E → R is discontinuous in 0 for any vector topology on E′

([Mais63]), f does not induce a continuous map on T ∗(E) ∼= E × E′ for any such topology.
Hence there is no natural smooth vector bundle structure on T ∗(M) if E is not normable.

In view of the difficulties caused by the cotangent bundle, we shall introduce differential
forms directly, not as sections of a vector bundle.

I.4. Differential forms

Differential forms play a significant role throughout infinite-dimensional Lie theory. In the
present section, we describe a natural approach to differential forms on manifolds modeled on
locally convex spaces. A major difference to the finite-dimensional case is that in local charts there
is no natural coordinate description of differential forms in terms of basic forms, that differential
forms cannot be defined as the smooth sections of a natural vector bundle (Remark I.3.9), and
that, even for Banach manifolds, smooth partitions of unity need not exist, so that one has to
be careful with localization arguments.

In [KM97], one finds a discussion of various types of differential forms, containing in
particular those introduced below, which are also used by Beggs in [Beg87].

Definition I.4.1. (a) If M is a differentiable manifold and E a locally convex space, then an
E -valued p-form ω on M is a function ω which associates to each x ∈M a p-linear alternating
map ωx:Tx(M)p → E such that in local coordinates the map (x, v1, . . . , vp) 7→ ωx(v1, . . . , vp) is
smooth. We write Ωp(M,E) for the space of E -valued p-forms on M and identify Ω0(M,E)
with the space C∞(M,E) of smooth E -valued functions on M .

(b) Let E1, E2, E3 be locally convex spaces and β:E1 ×E2 → E3 be a continuous bilinear
map. Then the wedge product

Ωp(M,E1) × Ωq(M,E2) → Ωp+q(M,E3), (ω, η) 7→ ω ∧ η
is defined by (ω ∧ η)x := ωx ∧ ηx , where

(ωx ∧ ηx)(v1, . . . , vp+q) :=
1

p!q!

∑

σ∈Sp+q

sgn(σ)β
(
ωx(vσ(1), . . . , vσ(p)), ηx(vσ(p+1), . . . , vσ(p+q))

)
.

Important special cases, where such wedge products are used, are:

(1) β: R × E → E is the scalar multiplication of E .

(2) β:A×A→ A is the multiplication of an associative algebra.

(3) β: g× g → g is the Lie bracket of a Lie algebra. In this case, we also write [ω, η] := ω ∧ η .
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The definition of the exterior differential d: Ωp(M,E) → Ωp+1(M,E) is a bit more subtle
than in finite dimensions, where one usually uses local coordinates to define it in charts. Here
the exterior differential is determined uniquely by the property that for each open subset U ⊆M
we have for X0, . . . , Xp ∈ V(U) in the space C∞(U,E) the identity

(dω)(X0, . . . , Xp) :=

p∑

i=0

(−1)iXi.ω(X0, . . . , X̂i, . . . , Xp)

+
∑

i<j

(−1)i+jω([Xi, Xj], X0, . . . , X̂i, . . . , X̂j, . . . , Xp).

The main point is to show that in a point x ∈ U the right hand side only depends on the values
of the vector fields Xi in x . The exterior differential has the usual properties, such as d2 = 0
and the compatibility with pullbacks: ϕ∗(dω) = d(ϕ∗ω).

Extending d to a linear map on the space Ω(M,E) :=
⊕

p∈N0
Ωp(M,E) of all E -valued

differential forms on M , the relation d2 = 0 implies that the space

ZpdR(M,E) := ker(d |Ωp(M,E))

of closed p-forms contains the space BpdR(M,E) := d(Ωp−1(M,E)) of exact p-forms, so that we
may define the E -valued de Rham cohomology space by

Hp
dR(M,E) := ZpdR(M,E)/BpdR(M,E).

For finite-dimensional manifolds, one usually defines the Lie derivative of a differential form
in the direction of a vector field X by using its local flow t 7→ FlXt :

LXω :=
d

dt t=0
(FlX−t)

∗ω.

Since vector fields on infinite-dimensional manifold need not have a local flow (cf. Example II.3.11
below), we introduce the Lie derivative more directly.

Definition I.4.2. (a) For any smooth manifold M and each locally convex space, we have a
natural representation of the Lie algebra V(M) on the space Ωp(M,E) of E -valued p-forms on
M , given by the Lie derivative, which for Y ∈ V(M) is uniquely determined by

(LY ω)(X1, . . . , Xp) = Y.ω(X1, . . . , Xp) −
p∑

j=1

ω(X1, . . . , [Y,Xj], . . . , Xp)

for Xi ∈ V(U), U ⊆ M open. Again one has to verify that the value of the right hand side in
some x ∈M only depends on the values of the vector fields Xi in x .

(b) We further obtain for each X ∈ V(M) and p ≥ 1 a unique linear map

iX : Ωp(M,E) → Ωp−1(M,E) with (iXω)x = iX(x)ωx,

where (ivωx)(v1, . . . , vp−1) := ωx(v, v1, . . . , vp−1). For ω ∈ Ω0(M,E) = C∞(M,E), we put
iXω := 0.

Proposition I.4.3. For X,Y ∈ V(M) , we have on Ω(M,E) the Cartan formulas:

[LX , iY ] = i[X,Y ], LX = d ◦ iX + iX ◦ d and LX ◦ d = d ◦ LX .

Remark I.4.4. Clearly integration of differential forms ω ∈ Ωp(M,E) only makes sense if
M is a p-dimensional compact oriented manifold (possibly with boundary) and E is Mackey
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complete (Definition I.1.4). We need the Mackey completeness to ensure that each smooth
function f :Q→ E on a cube Q :=

∏p
i=1[ai, bi] ⊆ Rp has an iterated integral

∫

Q

fdx :=

∫ b1

a1

· · ·
∫ bp

ap

f(x1, . . . , xp) dxp · · · dx1.

Remark I.4.5. (a) We call a smooth manifold M smoothly paracompact if every open cover
has a subordinated smooth partition of unity. De Rham’s Theorem holds for every smoothly
paracompact manifold (cf. [Ee58], [KM97,Thm. 34.7], [Beg87]). Smoothly Hausdorff second
countable manifolds modeled on a smoothly regular space are smoothly paracompact ([KM97,
Th. 34.7]). Typical examples of smoothly regular spaces are nuclear Fréchet spaces ([KM97,
Th. 16.10]).

(b) Examples of Banach spaces which are not smoothly paracompact are C([0, 1],R) and
ℓ1(N,R). On these spaces, there exists no non-zero smooth function supported in the unit ball
([KM97, 14.11]).

I.5. The topology on spaces of smooth functions

In this subsection, we describe a natural topology on spaces of smooth maps which is
derived from the compact open topology, the compact open Cr -topology (cf. [Mil82, Ex. 6.10] for
a comparison of different topologies on spaces of smooth maps). Unfortunately, this topology
has certain defects for functions on infinite-dimensional manifolds.

Definition I.5.1. (a) If X and Y are topological Hausdorff spaces, then the compact open
topology on the space C(X,Y ) is defined as the topology generated by the sets of the form

W (K,U) := {f ∈ C(X,Y ): f(K) ⊆ U},

where K is a compact subset of X and U an open subset of Y . We write C(X,Y )c for the
topological space obtained by endowing C(X,Y ) with the compact open topology.

(b) If G is a topological group and X is Hausdorff, then C(X,G) is a group with respect to
the pointwise product. Then the compact open topology on C(X,G) coincides with the topology
of uniform convergence on compact subsets of X , for which the sets W (K,U), K ⊆ X compact
and U ⊆ G a 1-neighborhood, form a basis of 1-neighborhoods. In particular, C(X,G)c is a
topological group.

(c) If Y is a locally convex space, then C(X,Y ) is a vector space with respect to the
pointwise operations. In view of the preceding remark, the topology on C(X,Y )c is defined by
the seminorms

pK(f) := sup{p(f(x)):x ∈ K},

where K ⊆ X is compact and p is a continuous seminorm on Y . It follows in particular that
C(X,Y )c is a locally convex space.

(d) If M and N are smooth (possibly infinite-dimensional) manifolds, then every smooth
map f :M → N defines a sequence of smooth maps T kf :T kM → T kN on the iterated tangent
bundles. We thus obtain for r ∈ N0 ∪ {∞} an embedding

Cr(M,N) →֒
r∏

k=0

C(T kM,T kN)c,

into a topological product space, that we use to define a topology on Cr(M,N), called the
compact open Cr -topology. For r < ∞ , it suffices to consider the embedding Cr(M,N) →֒
C(T r(M), T r(N))c . On the set C∞(M,N), the compact open C∞ -topology is the common
refinement of all Cr -topologies for r < ∞ . Since every compact subset of M is contained in
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a finite union of chart domains, the topology on Cr(M,N) is generated by sets of the form
W (K,U) in C(T k(M), T k(N)), where K lies in T k(U) for a chart (ϕ,U) of M .

If E is a locally convex space, then all spaces C(T kM,T kE) are locally convex, by (c)
above. Therefore the corresponding product topology is locally convex, and hence C∞(M,E) is
a locally convex space. If M is finite-dimensional, for each chart (ϕ,U) of M , the topology on
C∞(U,E) coincides with the topology of uniform convergence of all partial derivatives on each
compact subset of U .

Definition I.5.2. Since smooth vector fields are smooth functions X :M → TM , we have a
natural embedding V(M) →֒ C∞(M,TM), defining a topology on V(M). If (ϕ,U) is an E -
chart of M , then TU ∼= U × E, and smooth vector fields on U correspond to smooth functions
U → E . This shows that, endowed with its natural topology, V(M) is a locally convex space.

Remark I.5.3. As a consequence of Remark I.3.7, the bracket on V(M) is continuous if M is
finite-dimensional.

It is interesting to observe that, in general, the bracket on V(M) is not continuous if M
is infinite-dimensional. To see this, we assume that M = U is an open subset of a locally
convex space E and consider the subalgebra aff(E) ∼= E ⋊ gl(E) of affine vector fields XA,b

with XA,b(v) = Av + b . It is easy to see that the natural topology on V(U) induces on
aff(E) the product topology of the original topology on E and the compact open topology
on gl(E) ∼= L(E)c . In view of

[XA,b, XA′,b′ ] = X[A′,A],A′b−Ab′ ,

it therefore suffices to show that the bilinear evaluation map L(E)c × E → E is not continuous
if dimE = ∞ . Pick 0 6= v ∈ E and embed E′c →֒ L(E)c by assigning to α ∈ E′ the operator
v ⊗ α:x 7→ α(x)v . Hence it suffices to see that the evaluation map

ev:E′c × E → R, (α, v) 7→ α(v)

is not continuous. Basic neighborhoods of (0, 0) in E′c × E are of the form K̂ × UE , where

UE ⊆ U is a 0-neighborhood, K ⊆ E is compact, and K̂ := {f ∈ E′: (∀k ∈ K) |f(k)| ≤ 1} is

the polar set of K . On K̂ × UE the evaluation map is bounded if and only if UE is contained

in some multiple of the bipolar
̂̂
K , which, according to the Bipolar Theorem, coincides with

the balanced convex closure of K , which is pre-compact ([Tr67, Prop. 7.11]). Then
̂̂
K is a pre-

compact 0-neighborhood in E , so that E is finite-dimensional (cf. [Ru73, proof of Th. 1.22]).
A similar argument shows that, if we endow E′ with the finer topology of uniform convergence
on bounded subsets of E , then the evaluation map is continuous if and only if E is normable,
which is equivalent to the existence of a (weakly) bounded 0-neighborhood ([Ru73]).

Remark I.5.4. The fact that for an infinite-dimensional locally convex space E the evaluation
map ev:E′c × E → R is not continuous also causes trouble if one wants to associate to transfor-
mation groups corresponding continuous, resp., smooth representations on function spaces.

A very simple example of a smooth group action is the translation action of E on itself.
The corresponding representation of (E,+) on the space of smooth functions on E is given
by (x.f)(y) := f(x + y). Clearly, the subspace of affine functions in C∞(E,R) is isomorphic
to R × E′c as a locally convex space, and on this subspace the representation of E is given
by x.(t, α) = (t + α(x), α), which is discontinuous because ev(α, x) = α(x) is not continuous
(Remark I.5.3). In view of [Mais63], the same pathology occurs for any locally convex topology
on C∞(E,R) if E is not normable.
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II. Locally convex Lie groups

In this section, we give the definition of a locally convex Lie group. We explain how its Lie
algebra and the corresponding Lie functor are defined and describe some basic properties. In our
discussion of Lie groups, we essentially follow [Mil82/84], but, as for manifolds, we do not assume
that the model space of a Lie group is complete ([Gl02a]). The natural strategy to endow groups
with (infinite-dimensional) Lie group structures is to construct a chart around the identity in
which the group operations are smooth. As we shall see in Subsection II.2, this suffices in many
situations to specify a global Lie group structure.

In Subsection II.3, we discuss a smoothness concept for maps with values in diffeomorphism
groups of locally convex manifolds. This specializes in particular to maps into general linear
groups of locally convex spaces. The main point of this subsection is to obtain uniqueness
results for solutions of certain ordinary differential equations on locally convex manifolds. In
Subsection II.4, we apply all this to smooth maps with values in Lie groups, where it shows in
particular that morphisms of connected Lie groups are determined by their differential in 1 .

We conclude this section with some basic results on the behavior of the exponential function
(Subsection II.5), and a discussion of the concept of an initial Lie subgroup in Subsection II.6.

II.1. Infinite-dimensional Lie groups and their Lie algebras

Definition II.1.1. A locally convex Lie group G is a locally convex manifold endowed with
a group structure such that the multiplication map mG:G × G → G and the inversion map
ηG:G→ G are smooth.

A morphism of Lie groups is a smooth group homomorphism. In the following, we call
locally convex Lie groups simply Lie groups.

Example II.1.2. (Vector groups) Each locally convex space E is an abelian Lie group with
respect to addition and the obvious manifold structure.

Vector groups (E,+) form the most elementary Lie groups. The next natural class are
unit groups of algebras. This leads us to the concept of a continuous inverse algebra, which came
up in the 1950s (cf. [Wae54a/b] and [Wae71]):

Definition II.1.3. (a) A locally convex algebra is a locally convex space A , endowed with an
associative continuous bilinear multiplication A × A → A, (a, b) 7→ ab . A unital locally convex
algebra A is called a continuous inverse algebra (CIA for short) if its unit group A× is open and
the inversion is a continuous map A× → A, a 7→ a−1 .

(b) If A is a locally convex algebra which is not unital, then we obtain a monoid structure
on A by x∗y := x+y+xy for which 0 is the identity element. In this case, we write A× for the
unit group of (A, ∗) and say that A is a non-unital CIA if A× is open and the (quasi-)inversion
map ηA:A× → A is continuous.

If A+ := A×K is the unital locally convex algebra with the multiplication (x, t)(x′, t′) :=
(xx′ + tx′ + t′x, tt′), then the map (A, ∗) → A× {1}, a 7→ (a, 1) is an isomorphism of monoids,
and it is easy to see that A+ is a CIA if and only if A is a (not necessarily unital) CIA.

Example II.1.4. Let A be a continuous inverse algebra over K and A× its unit group. As
an open subset of A , the group A× carries a natural manifold structure. The multiplication on
A is bilinear and continuous, hence a smooth map (Remark I.2.4). Therefore the multiplication
of A× is smooth. One can further show quite directly that the continuity of the inversion
ηA:A× → A× implies that dηA(x)(y) = −x−1yx−1 exists for each pair (x, y), and this formula
implies inductively that ηA is smooth and hence that A× is a Lie group.
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In some cases, it is also possible to obtain a Lie group structure on the unit group A× of
a unital locally convex algebra if A× is not open (cf. Remark II.2.10 below).

Definition II.1.5. A vector field X on the Lie group G is called left invariant if

X ◦ λg = T (λg) ◦X :G→ T (G)

holds for each g ∈ G , i.e., X is λg -related to itself for each g ∈ G . We write V(G)l for the set of
left invariant vector fields in V(G). The left invariance of a vector field X implies in particular
that for each g ∈ G , we have X(g) = g.X(1), where G × T (G) → T (G), (g, v) 7→ g.v denotes
the smooth action of G on T (G), induced by the left multiplication action of G on itself. For
each x ∈ g , we have a unique left invariant vector field xl ∈ V(G)l defined by xl(g) := g.x , and
the map

ev1:V(G)l → T1(G), X 7→ X(1)

is a linear bijection. If X,Y are left invariant, then they are λg -related to themselves, and their
Lie bracket [X,Y ] inherits this property. We thus obtain a unique Lie bracket [·, ·] on T1(G)
satisfying

(2.1.1) [x, y]l = [xl, yl] for all x, y ∈ T1(G),

and from the formula for the bracket in local coordinates, it follows that it is continuous (cf.
Remark II.1.8 below).

Remark II.1.6. The tangent map T (mG):T (G×G) ∼= T (G) × T (G) → T (G) defines on the
tangent bundle T (G) of G the structure of a Lie group with inversion map T (ηG).

In fact, let εG:G → G, g 7→ 1 , be the constant homomorphism. Then the group axioms
for G are encoded in the relations

(1) mG ◦ (mG × idG) = mG ◦ (idG×mG) (associativity),

(2) mG ◦ (ηG, idG) = mG ◦ (idG, ηG) = εG (inversion), and

(3) mG ◦ (εG, idG) = mG ◦ (idG, εG) = idG (unit element).

Applying the functor T to these relations, it follows that T (mG) defines a Lie group structure
on T (G) for which T (ηG) is the inversion and 01 ∈ T1(G) is the identity.

Definition II.1.7. (The Lie functor) For a Lie group G , the locally convex Lie algebra
L(G) := (T1(G), [·, ·]) is called the Lie algebra of G .

To each morphism ϕ:G→ H of Lie groups we further associate its tangent map

L(ϕ) := T1(ϕ):L(G) → L(H),

and the usual argument with related vector fields implies that L(ϕ) is a homomorphism of Lie
algebras.

This means that the assignments G 7→ L(G) and ϕ 7→ L(ϕ) define a functor L from the
category of (locally convex) Lie groups to the category of locally convex Lie algebras. Since each
functor maps isomorphisms to isomorphisms, for each isomorphism ϕ:G→ H of Lie groups, the
map L(ϕ) is an isomorphism of locally convex Lie algebras.

The following remark describes a convenient way to calculate the Lie algebra of a given
group.

Remark II.1.8. For each chart (ϕ,U) of G with 1 ∈ U and ϕ(1) = 0, we identify g := T1(G)
via the topological isomorphism T1(ϕ) with the corresponding model space. Then the second
order Taylor expansion in (0, 0) of the multiplication x ∗ y := ϕ(ϕ−1(x)ϕ−1(y)) (cf. Proposi-
tion I.2.3) is of the form

x ∗ y = x+ y + b(x, y) + higher order terms,
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where b: g × g → g is a continuous bilinear map satisfying

(2.1.2) [x, y] = b(x, y) − b(y, x).

Using the chain rule for Taylor polynomials, it is easy to show that the second order Taylor
polynomial of the commutator map x ∗ y ∗ x−1 ∗ y−1 is given by the Lie bracket:

x ∗ y ∗ x−1 ∗ y−1 = [x, y] + higher order terms

We now take a look at the Lie algebras of the Lie groups from Examples II.1.2/4.

Examples II.1.9. (a) If G is an abelian Lie group, then the map b: g×g → g in Remark II.1.8
is symmetric, which implies that L(G) is abelian. This applies in particular to the additive Lie
group (E,+) of a locally convex space E .

(b) Let A be a CIA. Then the map ϕ:A× → A, x 7→ x − 1 is a global chart of A× ,
satisfying ϕ(1) = 0. In this chart, the group multiplication is given by

x ∗ y := ϕ(ϕ−1(x)ϕ−1(y)) = (x+ 1)(y + 1) − 1 = x+ y + xy.

In the terminology of Remark II.1.8, we then have b(x, y) = xy and therefore L(A×) = (A, [·, ·]) ,
where [x, y] = xy − yx is the commutator bracket on the associative algebra A .

We conclude this subsection with the observation that the passage from groups to Lie
algebras can also be established on the local level.

Definition II.1.10. (The Lie algebra of a local Lie group) There is a natural notion of a local
Lie group. The corresponding algebraic concept is that of a local group: Let G be a set and
D ⊆ G×G a subset on which we are given a map

mG:D → G, (x, y) 7→ xy.

We say that the product xy of two elements x, y ∈ G is defined if (x, y) ∈ D . The quadruple
(G,D,mG,1), where 1 is a distinguished element of G , is called a local group if the following
conditions are satisfied:

(1) Suppose that xy and yz are defined. If (xy)z or x(yz) is defined, then the other product
is also defined and both are equal.

(2) For each x ∈ G , the products x1 and 1x are defined and equal to x .

(3) For each x ∈ G , there exists a unique element x−1 ∈ G such that xx−1 and x−1x are
defined and xx−1 = x−1x = 1 .

(4) If xy is defined, then y−1x−1 is defined.

If (G,D,mG,1) is a local group and, in addition, G has a smooth manifold structure, D
is open, and the maps

mG:D → G and ηG:G→ G, x 7→ x−1

are smooth, then G , resp., (G,D,mG,1) is called a local Lie group.

Let G be a local Lie group and T1(G) its tangent space in 1 . For each x ∈ T1(G), we then
obtain a left invariant vector field xl(g) := g.x := 0g · x . The Lie bracket of two left invariant
vector fields is left invariant and we thus obtain on T1(G) a locally convex Lie algebra structure.
We call L(G) := L(G,D,mG,1) := (T1(G), [·, ·]) the Lie algebra of the local group G . For more
details on local Lie groups, we refer to [GN06].

Remark II.1.11. If G is a Lie group and U = U−1 ⊆ G an open identity neighborhood,
then U carries a natural local Lie group structure with D := {(x, y) ∈ U × U :xy ∈ U} and
mU := mG |D . Clearly U and G have the same Lie algebras.

Local groups of this type are called enlargeable. As we shall see in Example VI.1.7 below, not
all local Lie groups are enlargeable because not all Banach–Lie algebras are integrable (Example
VI.1.16).
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II.2. From local data to global Lie groups

We now give the precise formulation of an elementary but extremely useful tool which helps
to construct Lie group structures on groups containing a local Lie group. This theorem directly
carries over from the finite-dimensional case, which can be found in [Ch46, §14, Prop. 2] or [Ti83,
p.14]. In [GN06], it is our main method to endow groups with Lie group structures.

Theorem II.2.1. Let G be a group and U = U−1 a symmetric subset. We further assume
that U is a smooth manifold such that

(L1) there exists an open symmetric 1-neighborhood V ⊆ U with V · V ⊆ U such that the group
multiplication mV :V × V → U is smooth,

(L2) the inversion map ηU :U → U, u 7→ u−1 is smooth, and

(L3) for each g ∈ G there exists an open symmetric 1-neighborhood Ug ⊆ U with cg(Ug) ⊆ U ,
and such that the conjugation map cg:Ug → U, x 7→ gxg−1 is smooth.

Then there exists a unique Lie group structure on G for which there exists an open 1-
neighborhood U0 ⊆ U such that the inclusion map U0 → G induces a diffeomorphism onto an
open subset of G .

If the group G is generated by V , then condition (L3) can be omitted.

If V is as above, then D := {(x, y) ∈ V ×V :xy ∈ V } defines on V the structure of a local
Lie group, and the preceding theorem implies that the smooth structure of this local Lie group,
together with the group structure of G , determines the global Lie group structure of G . The
subtlety of condition (L3) is that it mixes local and global objects because it requires that each
element of G induces an isomorphism of the corresponding germ of local groups. The following
corollary is a converse of Remark II.1.11 (cf. [Swi65]). It is the central tool to pass from local to
global subgroups of Lie groups.

Corollary II.2.2. Let (U,D,mU ,1) be a local Lie group, G a group, and η:U → G an
injective morphism of local groups. Then the subgroup H := 〈η(U)〉 ⊆ G generated by η(U)
carries a unique Lie group structure for which η is a diffeomorphism onto an open subset of H .

The preceding corollary shows in particular that if, in addition to the assumptions of
Theorem II.2.1, the group multiplication of G restricts to a smooth map on the domain DU :=
{(x, y) ∈ U × U :xy ∈ U} , then the inclusion U →֒ G is a diffeomorphism onto an open subset
of G , endowed with the Lie group structure determined by U .

Corollary II.2.3. Let G be a group and N E G a normal subgroup that carries a Lie group
structure. Then there exists a Lie group structure on G for which N is an open subgroup if and
only if for each g ∈ G , the restriction cg |N is a smooth automorphism of N .

The preceding corollary is of particular interest for abelian groups. In this case, it leads for
each Lie group structure on any subgroup N ⊆ G to a Lie group structure on G for which N is
an open subgroup.

The following corollary implies in particular that quotients of Lie groups by discrete normal
subgroups are Lie groups.

Corollary II.2.4. Let ϕ:G → H be a covering of topological groups. If G or H is a Lie
group, then the other group has a unique Lie group structure for which ϕ is a morphism of Lie
groups which is a local diffeomorphism.

Remark II.2.5. (a) (Lie subgroups) If G is a Lie group with Lie algebra g and H ⊆ G is a
submanifold which is a group, then H inherits a Lie group structure from G . Moreover, there
exists a closed subspace h ⊆ g ∼= T1(G) and a chart (ϕ,U) of G with 1 ∈ U = U−1 , ϕ(1) = 0
and

ϕ(U ∩H) = ϕ(U) ∩ h.



Towards a Lie theory of locally convex groups 25

The local multiplication x ∗ y := ϕ(ϕ−1(x)ϕ−1(y)) on

D := {(x, y) ∈ ϕ(U) × ϕ(U):ϕ−1(x)ϕ−1(y) ∈ U}
then satisfies

(2.2.1) x ∗ y ∈ h for (x, y) ∈ D ∩ (h × h)

and

(2.2.2) x−1 ∈ h for x ∈ h ∩ ϕ(U).

In view of Remark II.1.8, this implies that h is a closed Lie subalgebra of g .

If, conversely, h ⊆ g is a closed Lie subalgebra for which there is a chart (ϕ,U) as
above, satisfying (2.2.1/2), then ϕ(U) ∩ h carries a local Lie group structure and we can apply
Corollary II.2.2 to the embedding ϕ−1:ϕ(U) ∩ h → G , which leads to a Lie group structure on
the subgroup H := 〈ϕ−1(ϕ(U) ∩ h)〉 of G . We know already from the finite dimensional theory
that, in general, this does not lead to a submanifold of G .

(b) A weaker concept of a “Lie subgroup” is obtained by requiring only that H ⊆ G a
subgroup, for which there exists an identity neighborhood UH whose smooth arc-component UH0
of 1 is a submanifold of G (cf. [KYMO85, p.45]). Then we can use Theorem II.2.1 to obtain a
Lie group stucture on H for which some identity neighborhood is diffeomorphic to an identity
neighborhood in UH0 .

Remark II.2.6. Since it also makes sense to consider manifolds without assuming that they
are Hausdorff (cf. [Pa57], [La99]), it is worthwhile to observe that this does not lead to a larger
class of Lie groups.

In fact, let G be a Lie group which is not necessarily Hausdorff. Then G is in particular a
topological group which possesses an identity neighborhood U homeomorphic to an open subset
of a locally convex space. As U is Hausdorff, and since the subgroup {1} of G coincides with
the intersection of all 1-neighborhoods, the closedness of {1} in U implies that {1} is a closed
subgroup of G and hence that G is a Hausdorff topological group.

To see how Theorem II.2.1 can be applied, we now take a closer look at groups of differen-
tiable maps. First we introduce a natural topology on these groups.

Definition II.2.7. (Groups of differentiable maps as topological groups) Let M be a smooth
manifold (possibly infinite-dimensional), K a Lie group with Lie algebra k and r ∈ N0 ∪ {∞} .
We endow the group G := Cr(M,K) with the compact open Cr -topology (Definition I.5.1).

We know already that the tangent bundle TK of K is a Lie group (Remark II.1.6).
Iterating this procedure, we obtain a Lie group structure on all higher tangent bundles T nK .
For each n ∈ N0 , we thus obtain topological groups C(T nM,T nK)c by using the topology
of uniform convergence on compact subsets of T nM , which coincides with the compact open
topology (Definition I.5.1). We also observe that for two smooth maps f1, f2:M → K , the
functoriality of T yields

T (f1 · f2) = T (mG ◦ (f1 × f2)) = T (mG) ◦ (Tf1 × Tf2) = Tf1 · Tf2.
Therefore the inclusion map

Cr(M,K) →֒
r∏

n=0

C(T nM,T nK)c, f 7→ (T nf)0≤n≤r

is a group homomorphism, so that the inverse image of the product topology from the right hand
side is a group topology on Cr(M,K). Hence the compact open Cr -topology turns Cr(M,K)
into a topological group, even if M and K are infinite-dimensional.

We define the support of a Lie group-valued map f :M → G by

supp(f) := {x ∈M : f(x) 6= 1},
for a closed subset X ⊆M we put

CrX(M,K) := {f ∈ Cr(M,K): supp(f) ⊆ X},
and write Crc (M,K) for the subgroup of compactly supported Cr -maps.
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Theorem II.2.8. Let K be a Lie group with Lie algebra k , M a finite-dimensional manifold
(possibly with boundary), and r ∈ N0 ∪ {∞} .

(a) If M is compact, then Cr(M,K) carries a Lie group structure compatible with the
compact open Cr -topology, and its Lie algebra is Cr(M, k) , endowed with the pointwise bracket.

(b) If M is σ -compact, then Crc (M, k) , endowed with the locally convex direct limit topology
of the spaces CrX(M, k) , X ⊆ M compact, is a topological Lie algebra and Crc (M,K) carries a
natural Lie group structure with Lie algebra Crc (M, k) .

Proof. (Sketch) (a) Let G := Cr(M,K) and g := Cr(M, k). The Lie group structure on G
can be constructed with Theorem II.2.1 as follows. Let ϕK :UK → k be a chart of K . Then the
set UG := {f ∈ G: f(M) ⊆ UK} is an open subset of G . Assume, in addition, that 1 ∈ UK and
ϕK(1) = 0. Then the map

ϕG:UG → g, f 7→ ϕK ◦ f

defines a chart (ϕG, UG) of G . To apply Theorem II.2.1, one has to verify that in this chart the
inversion is a smooth map, that the multiplication map

DG := {(f, g) ∈ UG × UG: fg ∈ UG} → UG

is smooth and that conjugation maps are smooth in some 1-neighborhood of UG . For details,
we refer to [Gl02c], resp., [GN06].

To calculate the Lie algebra of this group, we observe that for m ∈ M , we have for the
multiplication in local coordinates

(f ∗G g)(m) := ϕG

(
ϕ−1
G (f)ϕ−1

G (g)
)
(m) = ϕK

(
ϕ−1
K (f(m))ϕ−1

K (g(m))
)

= f(m) ∗K g(m) = f(m) + g(m) + bk(f(m), g(m)) + · · · .

In view of Remark II.1.8, this implies that bg(f, g)(m) = bk(f(m), g(m)), and hence that

[f, g](m) = bg(f, g)(m) − bg(g, f)(m) = bk(f(m), g(m)) − bk(g(m), f(m)) = [f(m), g(m)].

Therefore L(Cr(M,K)) = Cr(M, k), endowed with the pointwise defined Lie bracket.

(b) is proved along the same lines. Note that it is not obvious that the Lie bracket on
Crc (M, k) is continuous because it is a bilinear map.

If K is finite-dimensional, then the preceding Lie group construction can be found in
Michor’s book [Mi80], and also in [AHMTT93] (which basically deals with the topological
level). In [BCR81], one finds interesting variants of groups of smooth maps on open subsets
U ⊆ Rn which are rapidly decreasing at the boundary with respect to certain weight functions.
In particular, there is a Lie group S(Rn,K) whose Lie algebra is the space S(Rn, k) of k-valued
Schwartz functions on Rn .

Remark II.2.9. (a) If M is a non-compact finite-dimensional manifold, then one cannot expect
the topological groups Cr(M,K) to be Lie groups. A typical example arises for M = N (a 0-
dimensional manifold) and K = T := R/Z . Then Cr(M,K) ∼= TN is a compact topological group
for which no 1-neighborhood is contractible, so that it carries no smooth manifold structure.

(b) Non-linear maps on spaces of compactly supported functions such as E := C∞c (R,R)
(Examples I.1.3) require extreme caution. E.g., the map

f :C∞c (R,R) → C∞c (R,R), γ 7→ γ ◦ γ − γ(0)

is smooth on each closed Fréchet subspace En := C∞[−n,n](R,R), but it is discontinuous in 0

([Gl06a]). Therefore the LF space E = lim
−→

En is a direct limit in the category of locally convex

spaces, but not in the category of topological spaces.
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Remark II.2.10. (a) Let A be a commutative unital locally convex algebra with a smooth
exponential function

expA:A→ A×,

i.e., expA: (A,+) → (A×, ·) is a group homomorphism with T0(expA) = idA .

Then ΓA := ker(expA) is a closed subgroup of A not containing any line. Suppose that
ΓA is discrete. Then N := A/ΓA carries a natural Lie group structure (Corollary II.2.4)
and the exponential function factors through an injection N →֒ A× . We may therefore use
Corollary II.2.3 to define a Lie group structure on the group A× for which the identity component
is expA(A) ∼= N .

(b) If M is a σ -compact finite-dimensional manifold, then A := C∞(M,C) is a complex
locally convex algebra with respect to the compact open C∞ topology, and

expA:A→ A× = C∞(M,C×), f 7→ ef

is a smooth exponential function.

If M is non-compact, then A× is not open because for each unbounded function f :X → C
the element 1 + λf is not invertible for λ ∈ C arbitrarily close to 0. It follows that A is a CIA
if and only if M is compact.

The closed subgroup ΓA = ker(expA) = C∞(M, 2πiZ) ∼= C∞(M,Z) is discrete if and only
if M has only finitely many connected components. In this case, (a) implies that A× carries a
Lie group structure for which expA is a local diffeomorphism.

A typical example is M = R and A = C∞(R,C) with

A× = C∞(R,C×) ∼= C∞∗ (R,C×) × C× ∼= C∞∗ (R,C) × C×

as topological groups, where C∞∗ denotes functions mapping 0 to 1, resp., to 0. For M = N ,
we have A ∼= CN , and ΓA ∼= ZN is not discrete.

If M is connected, it is not hard to see that the map

δ:A× ∼= C∞(M,C×) → Z1
dR(M,C), f 7→ df

f

induces a topological isomorphism of A×/C× onto the group Z1
dR(M,Z) of closed 1-forms whose

periods are contained in 2πiZ , and the arc-component A×a of the identity is mapped onto the
set of exact 1-forms. We conclude that, as topological groups,

π0(A
×) ∼= A×/A×a

∼= H1
dR(M,Z) ∼= Hom(π1(M),Z) ∼= Hom(H1(M),Z),

and this group is discrete if and only if H1
sing(M,Z) ∼= Hom(H1(M),Z) is finitely generated (cf.

[NeWa06b]). This shows that the arc-component of the identity in A× is open if and only if
H1

sing(M,Z) is finitely generated.

For M := C \ N , the group H1(M) ∼= Z(N) is of infinite rank, H1
sing(M,Z) ∼= ZN is not

discrete, but M is connected, so that A× carries a Lie group structure whose underlying topology
is finer than the original topology of A× induced from A .

II.3. Smoothness of maps into diffeomorphism groups

Although the notion of a smooth manifold provides us with a natural notion of a smooth
map between such manifolds, it turns out to be convenient to have a notion of a smooth map
of a manifold into spaces of smooth maps which do not carry a natural manifold structure. In
this subsection, we discuss this notion of smoothness with an emphasis on maps with values in
groups of diffeomorphisms of locally convex manifolds.



28 japsurv.tex May 23, 2006

Definition II.3.1. Let M be a smooth locally convex manifold and Diff(M) the group of
diffeomorphisms of M . Further let N be a smooth manifold. Although, in general, Diff(M) has
no natural Lie group structure, we call a map ϕ:N → Diff(M) smooth if the map

ϕ̂:N ×M →M ×M, (n, x) 7→ (ϕ(n)(x), ϕ(n)−1(x))

is smooth. If N is an interval in R , we obtain in particular a notion of a smooth curve.

To discuss derivatives of such smooth map, we take a closer look at the “tangent bundle”
of Diff(M), which can be done without a Lie group structure on Diff(M) (which does not exist
in a satisfactory fashion for non-compact M ; cf. Theorem VI.2.6). We think of the set

T (Diff(M)) := {X ∈ C∞(M,TM):πTM ◦X ∈ Diff(M)}

as the tangent bundle of Diff(M), with the map

π:T (Diff(M)) → Diff(M), X 7→ πTM ◦X

as the bundle projection, and Tϕ(Diff(M)) := π−1(ϕ) is considered as the tangent space in
ϕ ∈ Diff(M). We have natural left and right actions of Diff(M) on T (Diff(M)) by

ϕ.X = T (ϕ) ◦X and X.ϕ := X ◦ ϕ.

The action

Ad: Diff(M) × V(M) → V(M), (ϕ,X) 7→ ϕ∗X := Ad(ϕ).X := T (ϕ) ◦X ◦ ϕ−1

is called the adjoint action of Diff(M) on V(M).

Smooth curves ϕ: J ⊆ R → Diff(M) have (left) logarithmic derivatives

δ(ϕ): J → V(M), δ(ϕ)t := ϕ(t)−1.ϕ′(t)

which are smooth curves in the Lie algebra V(M) of smooth vector fields on M , i.e., time-
dependent vector fields. For general N , the logarithmic derivatives are V(M)-valued 1-forms
on N , defined as follows:

If ϕ:N → Diff(M) is smooth and ϕ̂1:N ×M → M, (n, x) 7→ ϕ(n)(x), then we have a
smooth tangent map

T (ϕ̂1):T (N ×M) ∼= T (N) × T (M) → T (M),

and for each v ∈ Tp(N) the partial map

Tp(ϕ)v:M → T (M), m 7→ T(p,m)(ϕ̂1)(v, 0)

is an element of Tϕ(p)(Diff(M)). We thus obtain a tangent map

T (ϕ):T (N) → T (Diff(M)), v ∈ Tp(N) 7→ Tp(ϕ)v.

Definition II.3.2. We define the (left) logarithmic derivative of ϕ in p by

δ(ϕ)p:Tp(N) → V(M), v 7→ ϕ(p)−1.Tp(ϕ)(v) = T (ϕ(p)−1) ◦ Tp(ϕ)(v).

It can be shown that δ(ϕ) is a smooth V(M)-valued 1-form on N (see [GN06] for details),
but recall that V(M) need not be a topological Lie algebra if M is not finite-dimensional
(Remark I.5.3).

For calculations, it is convenient to observe the Product- and Quotient Rule, both easy
consequences of the Chain Rule:
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Lemma II.3.3. For two smooth maps f, g:N → Diff(M) , define (fg)(n) := f(n) ◦ g(n) and
(fg−1)(n) := f(n) ◦ g(n)−1 . Then we have the

(1) Product Rule: δ(fg) = δ(g) + Ad(g−1).δ(f) , and the

(2) Quotient Rule: δ(fg−1) = Ad(g).(δ(f) − δ(g)) ,

where we write (Ad(f).α)n := Ad(f(n)).αn for a V(M)-valued 1-form α on N .

Remark II.3.4. Although we shall only use the left logarithmic derivative, we note that one
can also define the right logarithmic derivative of a smooth map ϕ:N → Diff(M) by

δr(ϕ)p(v) =
(
Tp(ϕ)v

)
◦ ϕ(p)−1,

which also defines an element of Ω1(N,V(M)), satisfying δr(ϕ) = Ad(ϕ).δ(ϕ) = −δ(ϕ−1).

We then have for two smooth maps f, g:N → Diff(M) the

(1) Product Rule: δr(fg) = δr(f) + Ad(f).δr(g), and the

(2) Quotient Rule: δr(fg−1) = δr(f) − Ad(fg).δr(g).

The following lemma generalizes Lemma 7.4 in [Mil84] which deals with Lie group-valued
curves.

Lemma II.3.5. (Uniqueness Lemma) Suppose that N is connected. For two smooth maps
f, g:N → Diff(M) , the relation δ(f) = δ(g) is equivalent to the existence of ϕ ∈ Diff(M) with
g(p) = ϕ ◦ f(p) for all p ∈ N . In particular, g(p0) = f(p0) for some p0 ∈ N implies f = g .

Proof. If g(p) = ϕ◦f(p) for each p ∈ N , then Tp(g) = ϕ(p).Tp(f), and therefore δ(g) = δ(f).

If, conversely, δ(g) = δ(f) and γ := gf−1 , then the Quotient Rule implies δ(γ) =
δ(gf−1) = 0, which in turn implies that for each x ∈ M the map p 7→ γ(p)(x) has vanishing
derivative, hence is locally constant (Proposition I.3.4). Since N is connected, γ is constant.
We conclude that g = ϕ ◦ f for some ϕ ∈ Diff(M).

The Uniqueness Lemma is a key tool which implies in particular that solutions to certain
initial value problems are unique whenever they exist (which need not be the case). In this
generality, this is quite remarkable because there are ordinary linear differential equations with
constant coefficients on Fréchet spaces E for which solutions are not unique (cf. Example
II.3.11 below). Nevertheless, the Uniqueness Lemma implies that solutions of the corresponding
operator-valued initial value problems on the group GL(E) ⊆ Diff(E) are unique whenever they
exist.

Remark II.3.6. Smooth maps with values in Diff(M) can be specialized in several ways:

(a) Let E be a locally convex space and GL(E) the group of linear topological automor-
phisms of E . Then GL(E) consists of all diffeomorphisms of E commuting with the scalar
multiplications µt(v) = tv , t ∈ K× , and gl(E) = (L(E), [·, ·]) can be identified with the Lie
subalgebra of V(E) consisting of linear vector fields which can be characterized in a similar way.
This observation implies that the logarithmic derivative of a smooth map ϕ:N → GL(E) is a
gl(E)-valued 1-form on N and that the Uniqueness Lemma applies to GL(E)-valued smooth
maps.

(b) If K is a Lie group with Lie algebra k , then we consider the group C∞(M,K) of
smooth maps, endowed with the pointwise bracket, as a subgroup of Diff(M × K), by letting

f ∈ C∞(M,K) act on M × K by f̃(m, k) := (m, f(m)k). The corresponding Lie algebra of
vector fields on M ×K is C∞(M, k), where ξ ∈ C∞(M, k) corresponds to the vector field given
by

ξ̃(m, k) = T1(ρk)ξ(m) ∈ Tk(K) ⊆ T(m,k)(M ×K).

A map ϕ:N → C∞(M,K) is smooth as a map into Diff(M ×K) if and only if the map

N ×M ×K → (M ×K)2, (n,m, k) 7→
(
(m,ϕ(n)(m)k), (m,ϕ(n)(m)−1k)

)

is smooth, which in turn means that the map ϕ̂:N×M → K, (n,m) 7→ ϕ(n)(m) is smooth. Hence
the Uniqueness Lemma also applies to functions ϕ:N → C∞(M,K) which are smooth in the
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sense that ϕ̂ is smooth. Their logarithmic derivatives δ(ϕ) can be viewed as C∞(M, k)-valued
1-forms on N .

(c) If G is a Lie group, then G itself can be identified with the subgroup {λg: g ∈ G}
of Diff(G), consisting of all left translations. On the Lie algebra level, this corresponds to the
embedding L(G) →֒ V(G) as the right invariant vector fields. Then a map ϕ:N → G ⊆ Diff(G)
is smooth if and only if it is smooth as a G-valued map, and we thus obtain a Uniqueness Lemma
for G-valued smooth maps and L(G)-valued 1-forms.

Remark II.3.7. (a) The Uniqueness Lemma implies in particular that a smooth left action of
a connected Lie group G on a smooth manifold M , given by a homomorphism σ:G→ Diff(M),
is uniquely determined by the corresponding homomorphism of Lie algebras

σ̇ := −δ(σ)1:L(G) → V(M)

because δ(σ) is a left invariant V(M)-valued 1-form on G , hence determined by its value in 1 .

(b) It likewise follows that any smooth representation π:G → GL(E) of a connected Lie
group G on some locally convex space E is uniquely determined by its derived representation

L(π) := δ(π)1:L(G) → gl(E) ⊆ V(E).

Remark II.3.8. (Complete vector fields) (a) Another consequence of the Uniqueness Lemma
is that we may define a complete vector field X on M as a vector field for which there exists a
smooth one-parameter group γX : R → Diff(M) with γ′X(0) = X . In this sense, we consider the
complete vector fields as the domain of the exponential function exp(X) := γX(1) of Diff(M).

(b) Likewise, the domain of the exponential function of GL(E), E a locally convex space,
is the set of all continuous linear operators D on E for which the corresponding linear vector
field XD(v) = Dv is complete, i.e., there exists a smooth representation α: R → GL(E) with
α′(0) = D . We call these operators D integrable.

(c) We may further define for each Lie group G the domain of the exponential function
of G as those elements x ∈ L(G) for which the corresponding left invariant vector field xl is
complete.

Example II.3.9. (The adjoint representation of a Lie group) The adjoint action encodes a
good deal of structural information of a Lie group G . It provides a linearized picture of the
non-commutativity of G .

For each g ∈ G , the map cg:G → G, x 7→ gxg−1, is a smooth automorphism of G , hence
induces a continuous linear automorphism

Ad(g) := L(cg):L(G) → L(G).

We thus obtain a smooth action G× L(G) → L(G), (g, x) 7→ Ad(g).x, called the adjoint action
of G on L(G). By considering the Taylor expansion of the map (g, h) 7→ ghg−1 , one shows that
the derived representation of L(G) on L(G) satisfies

(2.3.1) L(Ad) = ad, i.e., L(Ad)(x)(y) = [x, y] for x, y ∈ L(G).

If L(G)′ := L(L(G),K) denotes the topological dual of L(G), then we also obtain a
representation of G on L(G)′ by Ad∗(g).f := f ◦Ad(g)−1 , called the coadjoint action. Since we
do not endow L(G)′ with a topology, we will not specify any smoothness or continuity properties
of this action.

The following lemma shows that, whenever there is a smooth curve γ: J → Diff(M)
satisfying the initial value problem

(2.3.2) γ(0) = idM and γ′(t) = Xt ◦ γ(t)
for a time-dependent vector field X : J → V(M), then all integral curves of X on M are of the
form

(2.3.3) η(t) = γ(t)(m),

hence unique. It follows in particular, that the existence of multiple integral curves of X implies
that (2.3.2) has no solution. Below we shall see examples where this situation arises, even for
linear differential equations.
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Lemma II.3.10. Let J ⊆ R be an interval containing 0 and γ: J → Diff(M) be a smooth
curve with γ(0) = idM . Let Xt := δr(γ)t be the corresponding time-dependent vector field on
M with Xt ◦ γ(t) = γ′(t) , m0 ∈M , and assume that η: J →M is a solution of the initial value
problem:

η(0) = m0 and η′(t) = Xt(η(t)) for t ∈ J.

Then η(t) = γ(t)(m0) holds for all t ∈ J .

Proof. The smooth curve α: J →M, t 7→ γ(t)−1(η(t)) satisfies α(0) = m0 and

α′(t) = (γ−1)′(η(t)) + T (γ(t)−1)(η′(t)) = T (γ(t)−1)
(
δ(γ−1)t(η(t)) + η′(t)

)

= T (γ(t)−1)
(
− δr(γ)t(η(t)) + η′(t)

)
= T (γ(t)−1)

(
−Xt(η(t)) + η′(t)

)
= 0.

Hence α is constant m0 , and the assertion follows.

In [OMYK82], one finds the particular version of the preceding lemma dealing with solutions
of the initial value problem

η′(t) = [η(t), ξ(t)] + η(t), η(0) = x

in the Lie algebra of a regular Lie group (see also [KYMO85, 2.5/2/6]).

Example II.3.11. (A linear ODE with multiple solutions) (cf. [Ham82, 5.6.1], [Mil84]) We
give an example of a linear ODE for which solutions to initial value problems exist, but are not
unique. We consider the Fréchet space E := C∞([0, 1],R) of smooth functions on the closed unit
interval, and the continuous linear operator Df := f ′ on E . We are asking for solutions of the
initial value problem

(2.3.4) γ̇(t) = Dγ(t), γ(0) = v0, γ: I ⊆ R → E.

As a consequence of E. Borel’s Theorem that each power series is the Taylor series of a smooth
function, each v0 ∈ E has an extension to a smooth function on R . Let h be such a function
and consider the curve

γ: R → E, γ(t)(x) := h(t+ x).

Then γ(0) = h |[0,1] = v0 and γ̇(t)(x) = h′(t+ x) = γ(t)′(x) = (Dγ(t))(x). It is clear that these
solutions of (2.3.4) depend on the choice of the extension h of v0 .

Lemma II.3.10 and the discussions preceding it now imply that D is not integrable. In fact,
for any smooth homomorphism α: R → GL(E) with α′(0) = D , we would have δr(α) = D , so
that any solution of (2.3.4) is of the form γ(t) = α(t).v0 , contradicting the existence of multiple
solutions.

Example II.3.12. (A linear ODE without solutions; [Mil84]) We identify E := C∞(S1,C)
with the space of 2π -periodic smooth functions on the real line. We consider the linear operator
Df := −f ′′ and the equation (2.3.4), which in this case is the heat equation with reversed
time. If γ is a solution of (2.3.4) and γ(t)(x) =

∑
n∈Z

an(t)e
inx its Fourier expansion, then

a′n(t) = n2an(t) for each n ∈ Z leads to an(t) = an(0)etn
2

. If the Fourier coefficients an(0) of

γ0 do not satisfy
∑

n |an(0)|eεn2

< ∞ for any ε > 0 (which need not be the case for a smooth
function γ0 ), then (2.3.4) does not have a solution on [0, ε] .

As a consequence, the operator exp(tD) is not defined in GL(E) for any t > 0. Neverthe-
less, we may use the Fourier series expansion to see that β(t) := (1+ it2)1+ tD defines a smooth
curve β: R → GL(E). We further have β′(0) = D , so that D arises as the tangent vector of a
smooth curve in GL(E), but not of any smooth one-parameter group.

The following example is of some interest for the integrability of Lie algebras of formal
vector fields (Example VI.2.8).
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Example II.3.13. We consider the space E := R[[x]] of formal power series
∑∞
n=0 anx

n in
one variable. We endow it with the Fréchet topology for which the map RN0 → R[[x]], (an) 7→∑

n anx
n is a topological isomorphism. Then Df := f ′ with f ′(x) :=

∑∞
n=1 annx

n−1 =∑∞
n=0 an+1(n + 1)xn for f(x) =

∑∞
n=0 anx

n defines a continuous linear operator on E . We
claim that this operator is not integrable.

We argue by contradiction, and assume that α: R → GL(E) is a smooth R-action of E with
α′(0) = D . For each n ∈ N , the curve γ: R → E, γ(t) := (x+ t)n , satisfies γ̇(t) = n(x+ t)n−1 =
Dγ(t), so that Lemma II.3.10 implies that α(t)xn = (x + t)n for all t ∈ R . Then we obtain
α(1)xn = 1 + nx + . . . . In view of limn→∞ xn → 0 in E , this contradicts the continuity of the
operator α(1). Therefore D is not integrable.

Example II.3.14. Let M be a compact manifold and g = V(M), the Lie algebra of smooth
vector fields on M . We now sketch how the group G := Diff(M) can be turned into a Lie group,
modeled on V(M), endowed with its natural Fréchet topology (Definition I.5.2) ([Les67]).

If FlX : R ×M → M, (t,m) 7→ FlXt (m) denotes the flow of the vector field X , then the
exponential function of the group Diff(M) should be given by the time-1-map of the flow of a
vector field:

expDiff(M):V(M) → Diff(M), X 7→ FlX1 .

For the Lie group structure described below, this is indeed the case. Unfortunately, it is not a
local diffeomorphism of a 0-neighborhood in V(M) onto any identity neighborhood in Diff(M).
Therefore we cannot use it to define a chart around 1 = idM (cf. [Grab88], [Pali68/74], and also
[Fre68], which deals with local smooth diffeomorphisms in two dimensions).

Fortunately, there is an easy way around this problem. Let g be a Riemannian metric
on M and Exp:TM → M be its exponential function, which assigns to v ∈ Tm(M) the point
γv(1), where γv: [0, 1] → M is the geodesic segment with γv(0) = m and γ′v(0) = v . We then
obtain a smooth map

Φ:TM →M ×M, v 7→ (m,Exp v), v ∈ Tm(M).

There exists an open neighborhood U ⊆ TM of the zero section such that Φ maps U diffeo-
morphically onto an open neighborhood of the diagonal in M ×M . Now

Ug := {X ∈ V(M):X(M) ⊆ U}
is an open subset of the Fréchet space V(M), and we define a map

ϕ:Ug → C∞(M,M), ϕ(X)(m) := Exp(X(m)).

It is clear that ϕ(0) = idM . One can show that after shrinking Ug to a sufficiently small 0-
neighborhood in the compact open C1 -topology on V(M), we achieve that ϕ(Ug) ⊆ Diff(M).
To see that Diff(M) carries a Lie group structure for which ϕ is a chart, one has to verify that
the group operations are smooth in a 0-neighborhood when transferred to Ug via ϕ , so that
Theorem II.2.1 applies. We thus obtain a Lie group structure on Diff(M) (cf. [Omo70], [GN06]).

From the smoothness of the map Ug × M → M, (X,m) 7→ ϕ(X)(m) = Exp(X(m)) it
follows that the canonical left action σ: Diff(M) ×M → M, (ϕ,m) 7→ ϕ(m) is smooth in an
identity neighborhood of Diff(M), and hence smooth, because it is an action by smooth maps.
The corresponding homomorphism of Lie algebras σ̇:L(Diff(M)) → V(M) (Remark II.3.7(a)) is
given by

σ̇(X)(m) = −Tσ(X, 0m) = −X(m),

i.e., σ̇ = − idV(M) , which leads to

L(Diff(M)) = (V(M), [·, ·])op,
where gop is the opposite of the Lie algebra g with the bracket [x, y]op := [y, x] .

This “wrong” sign is caused by the fact that we consider Diff(M) as a group acting on M
from the left. If we consider it as a group acting on the right, we obtain the opposite multiplication
ϕ ∗ψ := ψ ◦ϕ and L(Diff(M)op) ∼= (V(M), [·, ·]) . Here we write Gop for the opposite group with
the order of multiplication reversed.
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II.4. Applications to Lie group-valued smooth maps

In this subsection, we describe some applications of the Uniqueness Lemma to Lie group-
valued smooth maps (cf. Remark II.3.6(c)).

Let G be a Lie group with Lie algebra g = L(G). The Maurer–Cartan form κG ∈ Ω1(G, g)
is the unique left invariant 1-form on G with κG,1 = idg , i.e., κG(v) = g−1.v for v ∈ Tg(G). In
various disguises, this form plays a central role in the approach to (local) (Banach–)Lie groups
via partial differential equations ([Mau88], [CaE01], [Lie95], [Bir38], [MicA48], [Lau56]).

Identifying G with the subgroup of left translations in Diff(G), the concepts of the pre-
ceding subsection apply to any smooth map f :M → G (Remark II.3.6(c)). The logarithmic
derivative of f can be described as a pull-back of the Maurer–Cartan form:

δ(f) = f∗κG ∈ Ω1(M, g).

Proposition II.4.1. Let G and H be Lie groups.

(1) If ϕ:G→ H is a morphism of Lie groups, then δ(ϕ) = L(ϕ) ◦ κG.
(2) If G is connected and ϕ1, ϕ2 : G → H are morphisms of Lie groups with L(ϕ1) = L(ϕ2) ,

then ϕ1 = ϕ2 .

(3) For a smooth function f :G→ H with f(1) = 1 , the following are equivalent:

(a) δ(f) is a left invariant 1-form.

(b) f is a group homomorphism.

Proof. (1) is a simple computation, and (2) follows with (1) and the Uniqueness Lemma (cf.
Remark II.3.6(c)).

The proof of (3) follows a similar pattern, applying the Uniqueness Lemma to the relations
λ∗gδ(f) = δ(f).

Applying (2) to the conjugation automorphisms cg ∈ Aut(G), we obtain:

Corollary II.4.2. If G is a connected Lie group, then kerAd = Z(G) .

It follows in particular, that the adjoint action of a connected Lie group G is trivial if
and only if G is abelian. In view of Remark II.3.6(b), this is equivalent to the triviality of the
corresponding derived action, which is the adjoint action of L(G) (Example II.3.9). We thus
obtain the following affirmative answer to a question of J. Milnor ([Mil84]):

Proposition II.4.3. A connected Lie group is abelian if and only if its Lie algebra is abelian.

This argument can be refined by investigating the structure of logarithmic derivatives of
iterated commutators of smooth curves in a Lie group G . A systematic use of the Uniqueness
Lemma then leads to the following result (see [GN06]):

Theorem II.4.4. A connected Lie group G is nilpotent, resp., solvable, if and only if its Lie
algebra L(G) is nilpotent, resp., solvable.

II.5. The exponential function and regularity

In the Lie theory of finite-dimensional and Banach–Lie groups, the exponential function
is a central tool used to pass information from the group to the Lie algebra and vice versa.
Unfortunately, the exponential function is less powerful in the context of locally convex Lie
groups. Here we take a closer look at its basic properties, and in Section IV below we study
the class of locally exponential Lie groups for which the exponential function behaves well in the
sense that it is a local diffeomorphism in 0.
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Definition II.5.1. For a Lie group G with Lie algebra g = L(G), we call a smooth function
expG: g → G an exponential function for G if for each x ∈ g the curve γx(t) := expG(tx) is a
one-parameter group with γ′x(0) = x .

It is easy to see that any such curve is a solution of the initial value problem (IVP)

γ(0) = 1, δ(γ) = x,

so that the Uniqueness Lemma implies that solutions are unique whenever they exist. Hence a
Lie group G has at most one exponential function.

The question for the existence of an exponential function leads to the more general question
when for a smooth curve ξ ∈ C∞(I, g) (I = [0, 1]), the initial value problem (IVP)

(2.5.1) γ(0) = 1, δ(γ) = ξ,

has a solution. If this is the case for constant functions ξ(t) = x , the corresponding solutions are
the curves γx required to obtain an exponential function. The solutions of (2.5.1) are unique by
the Uniqueness Lemma (Remark II.3.6(c)).

Definition II.5.2. A Lie group G is called regular if for each ξ ∈ C∞(I, g), the initial value
problem (2.5.1) has a solution γξ ∈ C∞(I,G), and the evolution map

evolG:C∞(I, g) → G, ξ 7→ γξ(1)

is smooth.

Remark II.5.3. If G is regular, then G has a smooth exponential function, given by

expG(x) := evolG(ξx),

where ξx(t) = x for t ∈ I .

Remark II.5.4. As a direct consequence of the existence of solutions to ordinary differential
equations on open domains of Banach spaces and their smooth dependence on parameters (cf.
[La99]), every Banach–Lie group is regular.

All Lie groups known to the author which are modeled on Mackey complete spaces are
regular. In concrete situations, it is sometimes hard to verify regularity, and in some case it
is not known if the Lie groups under consideration are regular. We shall take a closer look at
criteria for regularity in Section III below. In particular, we shall see that essentially all groups
belonging to the major classes discussed in the introduction are in fact regular.

Example II.5.5. If the model space is no longer assumed to be Mackey complete, one can
construct non-regular Lie groups as follows (cf. [Gl02b, Sect. 7]): Let A ⊆ C([0, 1],R) denote
the unital subalgebra of all rational functions, i.e., of all quotients p(x)/q(x), where q(x) is a
polynomial without zeros in [0, 1]. We endow A with the induced norm ‖f‖ := sup0≤t≤1 |f(t)| .
If an element f ∈ A is invertible in C([0, 1],R), then it has no zero in [0, 1], which implies that
it is also invertible in A , i.e.,

A× = C([0, 1],R)× ∩A.
This shows that A× is open in A , and since the Banach algebra C([0, 1],R) is a CIA, the
continuity of the inversion is inherited by A , so that A is a CIA. In particular, A× is a Lie
group (Example II.1.4).

Let f ∈ A and assume that there exists a smooth homomorphism γf : R → A× with
γ′f (0) = f . Then Proposition II.4.1, applied to γf as a map R → C([0, 1],R)× , leads to

γf (t) = etf for each t ∈ R . Since ef is not rational if f is not constant, we conclude that f is
constant. Therefore the Lie group A× does not have an exponential function and in particular
it is not regular.

The following proposition illustrates the relation between regularity and Mackey complete-
ness.
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Proposition II.5.6. The additive Lie group (E,+) of a locally convex space E is regular if
and only if E is Mackey complete.

Proof. For a smooth curve ξ: I → E , any solution γξ: I → E of (2.5.1) satisfies γ′ξ = ξ and
vice versa. Therefore regularity implies that E is Mackey complete (Definition I.1.4). Conversely,

Mackey completeness of E implies that evolG(ξ) :=
∫ 1

0
ξ(s) ds defines a continuous linear map

evolG:C∞(I, E) → E , so that it is in particular smooth.

Proposition II.5.7. Suppose that the Lie group G has a smooth exponential function
expG: g → G . Then its logarithmic derivative is given by

(2.5.2) δ(expG)(x) =

∫ 1

0

Ad(expG(−tx)) dt,

where the operator-valued integral is defined pointwise, i.e.,

δ(expG)(x)y =

∫ 1

0

Ad(expG(−tx))y dt for each y ∈ g.

Proof. ([Grab93]) For t, s ∈ R , we consider the three smooth functions f, ft, fs: g → G, given
by

f(x) := expG((t+ s)x), ft(x) := expG(tx) and fs(x) := expG(sx),

satisfying f = ftfs pointwise on g . The Product Rule (Lemma II.3.3) implies that

δ(f) = δ(fs) + Ad(fs)
−1δ(ft).

For the smooth curve ψ: R → g, ψ(t) := δ(expG)tx(ty), we therefore obtain

(2.5.3) ψ(t+ s) = δ(f)x(y) = δ(fs)x(y) + Ad(fs)
−1.δ(ft)x(y) = ψ(s) + Ad(expG(−sx)).ψ(t).

We have ψ(0) = 0 and ψ′(0) = limt→0 δ(expG)tx(y) = δ(expG)0(y) = y, so that taking
derivatives with respect to t in 0, (2.5.3) leads to ψ′(s) = Ad(expG(−sx)).y. Now the assertion

follows by integration from δ(expG)x(y) = ψ(1) =
∫ 1

0
ψ′(s) ds .

If g is integrable to a group with exponential function, then the one-parameter groups
Ad(expG(tx)) have the infinitesimal generator adx (Remark II.3.7(b), Example II.3.9), so that
we may also write

(2.5.4) Ad(expG(tx)) = et ad x.

If, in addition, g is Mackey complete, then the operator-valued integral

(2.5.5) κg(x) :=

∫ 1

0

e−t ad x dt

exists pointwise because the curves t 7→ e−t ad xy are smooth, and the preceding theorem states
that for each x ∈ g :

(2.5.6) δ(expG)x = κg(x).

The advantage of κg(x) is that it is expressed completely in Lie algebraic terms.
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Remark II.5.8. If g is a Banach–Lie algebra, then κg(x) can be represented by a convergent
power series

κg(x) =

∫ 1

0

e−t ad x dt =
1− e− ad x

adx
=

∞∑

k=0

(−1)k

(k + 1)!
(adx)k.

This means that κg(x) = f(adx) holds for the entire function

f(z) :=

∞∑

k=0

(−1)k

(k + 1)!
zk =

1 − e−z

z
.

As f−1(0) = 2πiZ \ {0} , and Spec(κg(x)) = f(Spec(adx)) by the Spectral Mapping Theorem,
we see that κg(x) is invertible if and only if Spec(adx) ∩ 2πiZ ⊆ {0}.

Part of this observation can be saved in the general case. If g is Mackey complete one can
show that κg(x) is not injective if and only if there exists some n ∈ N with

ker((adx)2 + 4π2n21) 6= {0}.

If g is a complex Lie algebra, this means that some 2πin ∈ 2πiZ \ {0} is an eigenvalue of adx
(cf. [GN06] for details).

Examples II.5.9. Let α: R → GL(E) be a smooth representation of R on the Mackey complete
locally convex space E with the infinitesimal generator D = α′(0). Then the semi-direct product
group

G := E ⋊α R, (v, t)(v′, t′) = (v + α(t)v′, t+ t′)

is a Lie group with Lie algebra g = E ⋊D R and exponential function

expG(v, t) =
(
β(t)v, t

)
with β(t) =

∫ 1

0

α(st) ds =

{
idE for t = 0
1
t

∫ t
0
α(s) ds for t 6= 0.

From this formula it is clear that (w, t) ∈ im(expG) is equivalent to w ∈ im(β(t)). We conclude
that expG is injective on some 0-neighborhood if and only if β(t) is injective for t close to 0,
and it is surjective onto some 1-neighborhood in G if and only if β(t) is surjective for t close
to 0 (cf. Problem IV.4 below).

Note that the eigenvector equation Dv = λv for tλ 6= 0 implies that

β(t)v =

∫ 1

0

estλv ds =
etλ − 1

tλ
v,

so that β(t)v = 0 is equivalent to tλ ∈ 2πiZ \ {0} .

(a) For the Fréchet space E = CN and the diagonal operator D given by D(zn) = (2πinzn),
we see that β( 1

n )en = 0 holds for en = (δmn)m∈N , and en 6∈ im
(
β( 1

n )
)
. We conclude that (en,

1
n )

is not contained in the image of expG , and since (en,
1
n ) → (0, 0), the identity of G , im(expG)

does not contain any identity neighborhood of G . Hence the exponential function of the Fréchet–
Lie group G = E ⋊α R is neither locally injective nor locally surjective in 0.

(b) For the Fréchet space E = RN and the diagonal operator D given by D(zn) = (nzn),
it is easy to see that all operators β(t) are invertible and that β: R → GL(E) is a smooth map.
This implies that expG: g → G is a diffeomorphism.

Remark II.5.10. If G is the unit group A× of a Mackey complete CIA, then we identify
T (G) ⊆ T (A) ∼= A × A with A× × A and note that adx = λx − ρx and ead xy = exye−x.
Therefore (2.5.2) can be written as

Tx(expG)y = ex
∫ 1

0

e−txyetx dt =

∫ 1

0

e(1−t)xyetx dt

(cf. [MicA45] for the case of Banach algebras).

A closer investigation of (2.5.5) leads to the following results on the behavior of the
exponential function (cf. [GN06]; and [LaTi66] for the finite-dimensional case):
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Proposition II.5.11. Let G be a Lie group with Lie algebra g and a smooth exponential
function. Then the following assertions hold for x, y ∈ g :

(1) If κg(x)y = 0 , then

expG(et ad y.x) = expG(x) for all t ∈ R.

(2) If κg(x) is not injective and g is Mackey complete, then expG is not injective in any
neighborhood of x.

(3) If κg(x) is injective, then

(a) expG(y) = expG(x) implies [x, y] = 0 and expG(x− y) = 1 .

(b) expG(x) ∈ Z(G) implies x ∈ z(g) and equivalence holds if G is connected.

(c) expG(x) = 1 implies x ∈ z(g) .

(4) Suppose that 0 is isolated in exp−1
G (1) . Then x is isolated in exp−1

G (expG(x)) if and only
if κg(x) is injective.

(5) If a ⊆ g is an abelian subalgebra, then expa := expG |a: a → G is a morphism of Lie groups.
Its kernel Γa := ker(expa) is a closed subgroup of a in which all C1 -curves are constant. It
intersects each finite-dimensional subspace of a in a discrete subgroup.

Remark II.5.12. (a) Let U ⊆ g be a 0-neighborhood with the property that κg(z) is injective
for each z ∈ U − U . Then the preceding proposition implies for x, y ∈ U with expG x = expG y
that expG(x − y) = 1 , [x, y] = 0, and since x − y ∈ U , it further follows that x − y ∈ z(g).
If we assume, in addition, that the closed subgroup Γz(g) := ker(expz(g)) intersects U − U only
in {0} , expG is injective on U .

(b) If G is a Banach–Lie group and g = L(G) carries a norm with ‖[x, y]‖ ≤ ‖x‖ · ‖y‖ ,
then ‖ adx‖ ≤ ‖x‖ . Therefore ‖x‖ < 2π implies that κg(x) is invertible (Remark II.5.8). If
expG |z(g) is injective, i.e., Z(G) is simply connected, the preceding remark implies that expG is
injective on the open ball Bπ := {x ∈ g: ‖x‖ < π} (cf. [LaTi66]). In general, we may put

δG := inf{‖x‖: 0 6= x ∈ Γz(g)}

to see that expG is injective on the ball of radius r := min{π, δG

2 } (cf. [GN03, [Bel04, Rem.
2.3]).

Example II.5.13. In [Omo70], [Ham82] and [Mil84], it is shown that for the group G :=
Diff(S1) of diffeomorphisms of the circle, the image of the exponential function is not a neigh-
borhood of 1 (cf. also [KM97, Ex. 43.2], [PS86, p. 28]). Small perturbations of rigid rotations
of order n lead to a sequence of diffeomorphisms converging to idS1 which do not lie on any
one-parameter group.

More generally, for any compact manifold M , the image of the exponential function of
Diff(M) does not contain any identity neighborhood (cf. [Grab88], [Pali68/74], and [Fre68] for
some 2-dimensional cases).

Identifying the Lie algebra g := V(S1) of Diff(S1) with smooth 2π -periodic functions on R ,
the Lie bracket corresponds to

[f, g] = fg′ − f ′g.

For the constant function f0 = 1 and cn(t) := cos(nt) and sn(t) = sin(nt), this leads to

[f0, sn] = ncn and [f0, cn] = −nsn,

so that span{f0, sn, cn} ⊆ V(S1) is a Lie subalgebra isomorphic to sl2(R). It further follows
that ((ad f0)

2 + n21)sn = 0, so that κg(
2π
n f0)sn = 0 implies that expG is not injective in any

neighborhood of 2π
n f0 (Proposition II.5.11(1)) (cf. [Mil82, Ex. 6.6]). Therefore expG is neither

locally surjective nor injective.
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Remark II.5.14. (Surjectivity of expG ) The global behavior of the exponential function and
in particular the question of its surjectivity is a quite complicated issue, depending very much
on specific properties of the groups under consideration (cf. [Wü03/05]).

(a) For finite-dimensional Lie groups, the most basic general result is that if G is a connected
Lie group with compact Lie algebra g , then expG is surjective. Since the compactness of g

is equivalent to the existence of an Ad(G)-invariant scalar product, which in turn leads to a
biinvariant Riemannian metric on G , the surjectivity of expG can be derived from the Hopf–
Rinow Theorem in Riemannian geometry.

(b) A natural generalization of the notion of a compact Lie algebra to the Banach context
is to say that a real Banach–Lie algebra (g, ‖ · ‖) is elliptic if the norm on g is invariant under
the group Inn(g) := 〈ead g〉 ⊆ Aut(g) of inner automorphisms (cf. [Ne02c, Def. IV.3]). A finite-
dimensional Lie algebra g is elliptic with respect to some norm if and only if it is compact. In
this case, the requirement of an invariant scalar product leads to the same class of Lie algebras,
but in the infinite-dimensional context this is different. Here the existence of an invariant scalar
product turning g into a real Hilbert space leads to the structure of an L∗ -algebra. Simple
L∗ -algebras can be classified, and each L∗ -algebra is a Hilbert space direct sum of simple ideals
and its center (cf. [Sc60/61], [dlH72], [CGM90], [Neh93], [St99]). In particular, the classification
shows that every L∗ -algebra can be realized as a closed subalgebra of the L∗ -algebra B2(H)
of Hilbert–Schmidt operators on a complex Hilbert space H . Therefore the requirement of an
invariant scalar product on g leads to the embeddability into the Lie algebra u2(H) of skew-
hermitian Hilbert–Schmidt operators on a Hilbert space H .

The class of elliptic Lie algebras is much bigger. It contains the algebra u(A) of skew-
hermitian elements of any C∗ -algebra A and in particular the Lie algebra u(H) of the full
unitary group U(H) of a Hilbert space H .

Although finite-dimensional connected Lie groups with compact Lie algebra have a surjec-
tive exponential function, this is no longer true for connected Banach–Lie groups with elliptic
Lie algebra. This is a quite remarkable phenomenon discovered by Putnam and Winter in
[PW52]: the orthogonal group O(H) of a real infinite-dimensional Hilbert space is a connected
Banach–Lie group with elliptic Lie algebra, but its exponential function is not surjective. This
contrasts the fact that the exponential function of the unitary group U(H) of a complex Hilbert
space is always surjective, as follows from the spectral theory of unitary operators.

II.6. Initial Lie subgroups

It is one of the fundamental problems of Lie theory (FP5) to understand to which extent
subgroups of Lie groups carry natural Lie group structures. In this subsection, we briefly discuss
the rather weak concept of an initial Lie subgroup. As a consequence of the universal property
built into its definition, such a structure is unique whenever it exists. As the discussion in Remark
II.6.5 and further results in Section IV below show, it is hard to prove that a subgroup does not
carry any initial Lie group structure (cf. Problem II.6).

Definition II.6.1. An injective morphism ι:H → G of Lie groups is called an initial Lie
subgroup if L(ι):L(H) → L(G) is injective, and for each Ck -map f :M → G (k ∈ N ∪ {∞})
from a Ck -manifold M to G with im(f) ⊆ H , the corresponding map ι−1 ◦ f :M → H is Ck .

The following lemma shows that the existence of an initial Lie group structure only depends
on the subgroup H , considered as a subset of G .

Lemma II.6.2. Any subgroup H of a Lie group G carries at most one structure of an initial
Lie subgroup.

Proof. If ι′:H ′ →֒ G is another initial Lie subgroup with the same range as ι:H → G , then
ι−1 ◦ ι′:H ′ → H and ι′−1 ◦ ι:H → H ′ are smooth morphisms of Lie groups, so that H and H ′

are isomorphic.
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A priori, any subgroup H of a Lie group G can be an initial Lie subgroup. A first step to a
better understanding of initial subgroups is to find a natural candidate for the Lie algebra of such
a subgroup. In the following, we write C1

∗ (I,G) for the set of all C1 -curves γ: I = [0, 1] → G
with γ(0) = 1 . Then the following definition works well for all subgroups (cf. [Lau56]; see also
[vN29; pp. 18/19]):

Proposition II.6.3. Let H ⊆ G be a subgroup of the Lie group G . Then the differential
tangent set

Ld(H) := {α′(0) ∈ L(G) = T1(G):α ∈ C1
∗([0, 1], G), im(α) ⊆ H}

is a Lie subalgebra of L(G) . If, in addition, H carries the structure ιH :H → G of an initial
Lie subgroup, then Ld(H) = im(L(ιH)) .

Proof. If α, β ∈ C1
∗ (I,G), then (αβ)′(0) = α′(0) + β′(0), (α−1)′(0) = −α(0), and for

0 ≤ λ ≤ 1 the curve αλ(t) := α(λt) satisfies α′λ(0) = λα′(0). This implies that Ld(H) is a real
linear subspace of L(G).

Next we recall that [x, y] is the lowest order term in the Taylor expansion of the commutator
map (x, y) 7→ xyx−1y−1 in any local chart around 1 (Remark II.1.8). This implies that the curve

γ(t) := α(
√
t)β(

√
t)α(

√
t)−1β(

√
t)−1

with γ(0) = 1 is C1 with γ′(0) = [α′(0), β′(0)] .1 We conclude that Ld(H) is a Lie subalgebra
of L(G).

If, in addition, H is initial, then C1
∗([0, 1], H) = {α ∈ C1

∗([0, 1], G): im(α) ⊆ H} implies
that L(ιH)(L(H)) = Ld(H).

We put the superscript d (for differentiable) to distinguish Ld(H) from the Lie algebra of
a Lie group. Later, we shall encounter another approach to the Lie algebra of a subgroup which
works well for closed subgroups of locally exponential Lie groups.

Remark II.6.4. Let α ∈ C1
∗ ([0, 1], G) and H ⊆ G be a subgroup. If im(α) ⊆ H , then the

image of the continuous curve δ(α) ∈ C([0, 1],L(G)) is contained in Ld(H). If, conversely,
im(δ(α)) ⊆ Ld(H), then it is not clear why this should imply that im(α) ⊆ H . We shall see
below that the concept of regularity helps to deal with this problem.

Remark II.6.5. The following facts demonstrate that it is not easy to find subgroups with no
initial Lie subgroup structure ([Ne05, Lemma I.7]):

(a) Let H ⊆ G be a subgroup such that all C1 -arcs in H are constant. Then the discrete
topology defines on H an initial Lie subgroup structure.

(b) If dimG < ∞ , then any subgroup H ⊆ G carries an initial Lie group structure:
According to Yamabe’s Theorem ([Go69]), the arc-component Ha of G is of the form 〈exp h〉
for some Lie subalgebra h ⊆ L(G), which can be identified with Ld(H). To obtain the initial Lie
group structure on H , we endow Ha with its intrinsic Lie group structure and extend it with
Corollary II.2.3 to all of H .

(c) If the connected Lie group G has a smooth exponential function, the center z(g) of
g = L(G) is Mackey complete, and the subgroup Γz(g) := exp−1

G (1)∩ z(g) is discrete, then Z(G)
carries an initial Lie group structure with Lie algebra z(g).

We endow expG(z(g)) ∼= z(g)/Γz(g) with the quotient Lie group structure (Corollary II.2.4)
and use Corollary II.2.3 to extend it to all of Z(G).

Remark II.6.6. If H ⊆ G is a Lie subgroup in the sense of Remark II.2.5(b), then some
identity neighborhood of H is a submanifold of G and its intrinsic Lie group structure turns H
into an initial Lie subgroup of G .

1 Note that in general this curve is not twice differentiable.
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Open Problems for Section II

Problem II.1. Show that every Lie group G modeled on a Mackey complete locally convex
space has a smooth exponential function, or find a counterexample (cf. Example II.5.5).

The following assertion is even stronger:

Problem II.2. ([Mil84]) Show that every Lie group G modeled on a Mackey complete locally
convex space is regular, or find a counterexample.

The assumption of Mackey completeness of L(G) is necessary because for any regular Lie
group the differential of the evolution map evolG:C∞([0, 1], g) → G is given by

T0(evolG)ξ =

∫ 1

0

ξ(t) dt.

Therefore the regularity of G implies the Mackey completeness of L(G) (cf. Proposition II.5.6).

Problem II.3. ([Mil84]) Show that two 1-connected Lie groups G with isomorphic Lie al-
gebras are isomorphic. For groups with Mackey complete Lie algebras, this would follow from
Theorem III.1.5 and a positive solution to Problem II.2.

Problem II.4. Prove or disprove the following claims for all Lie groups G with a smooth
exponential function expG: g = L(G) → G :

(1) 0 is isolated in exp−1
G (1).

(2) 0 is isolated in Γz(g) := exp−1
G (1) ∩ z(g), where z(g) denotes the center of g .

In view of Remark II.6.5(c), a solution of (2) would be of particular interest to classify
classes of extensions of Lie groups by non-abelian Lie groups (cf. Theorem V.1.5). Note that (2)
is equivalent to the discreteness of the group Γz(g) . We know that all C1 -curves in this closed
subgroup of z(g) are constant and that all intersections with finite-dimensional subspaces are
discrete (Proposition II.5.11(5)).

Problem II.5. (Small Torsion Subgroup Problem; (FP8)) Show that for any Lie group G there
exists an identity neighborhood U such that 1 is the only element of finite order generating a
subgroup lying in U .

If the answer to Problem II.4(1) is negative for some Lie group G , then each identity
neighborhood contains the range of a homomorphism T ∼= R/Z → G obtained by expG(Rx) for
x ∈ exp−1

G (1) sufficiently close to 0. This implies in particular that each identity neighborhood
contains non-trivial torsion subgroups.

It is a classical result that Banach–Lie groups do not contain small subgroups, i.e., there
exists a 1-neighborhood U for which {1} is the only subgroup contained in U . This is no longer
true for locally convex vector groups, such as G = RN , with the product topology. Then each
0-neighborhood contains non-zero vector subspaces, so that G has small subgroups. However,
G is torsion free.

For a locally convex space E , the non-existence of small subgroups is equivalent to the
existence of a continuous norm on E . Every locally exponential Lie group G for which L(G)
has a continuous norm has no small subgroups (cf. Section IV). Since any real vector space is
torsion free, this implies that no locally exponential Lie group contains small torsion subgroups.
For strong ILB–Lie groups, it is also known that they do not contain small subgroups (cf.
Theorem III.2.3), and this implies in particular that for each compact manifold M the group
Diff(M) does not contain small subgroups. We also know that direct limits of finite-dimensional
Lie groups do not contain small subgroups (Theorem VII.1.3).
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Problem II.6. (Initial Subgroup Problem) Give an example of a subgroup H of some infinite-
dimensional Lie group which does not possess any initial Lie subgroup structure.

We think that such examples exist, but in view of Remark II.6.5(b), there is no such
example in any finite-dimensional Lie group. Moreover, Theorem IV.4.17 below implies that all
closed subgroups of Banach–Lie groups carry initial Lie subgroup structures. Therefore the most
natural candidates of groups to consider are (non-closed) subgroups of Banach spaces which are
connected by smooth arcs. For E := C([0, 1],R), the subgroup H ⊆ E generated by the smooth
curve γ: [0, 1] → E, γ(t)(x) := etx − 1 is a natural candidate. Since the values γ(t) for t > 0 are
linearly independent, H =

∑
t∈]0,1] Zγ(t) is a free abelian group.

Problem II.7. (Canonical factorization for Lie groups) Let ϕ:G → H be a morphism of Lie
groups. Does the quotient group G/ kerϕ ∼= ϕ(G) ⊆ H carry a natural Lie group structure
for which the induced map G/ ker(ϕ) → H is smooth and each other morphism ψ:G → H ′

with kerϕ ⊆ kerψ factors through G/ ker(ϕ)? Does ϕ(G) carry the structure of an initial Lie
subgroup of H ? Maybe it helps to assume that G is a regular Lie group (cf. Section III below).

Problem II.8. (Locally Compact Subgroup Problem; (FP9)) Show that any locally compact
subgroup of a Lie group G is a (finite-dimensional) Lie group. Since locally compact subgroups
are Lie groups if and only if they have no small subgroups, this is closely related to Problem
II.5. We shall see below that this problem has a positive solution for most classes of concrete
groups (cf. Theorem IV.3.15 for locally exponential Lie groups; [MZ55, Th. 5.2.2, p. 208] for the
Lie group Diff(M) of diffeomorphisms of a compact manifold, and Theorem VII.1.3 for direct
limits of finite-dimensional Lie groups).

Problem II.9. (Completeness of Lie groups) Suppose that the Lie algebra L(G) of the Lie
group G is a complete locally convex space. Does this imply that the group G is complete with
respect to the left, resp., right uniform structure?

Problem II.10. (Large tori in Lie groups) Suppose that G is a Lie group with a smooth
exponential function and that a ⊆ L(G) is a closed abelian subalgebra for which the closed
subgroup Γa := exp−1

G (1) ∩ a spans a dense subspace of a . Then the exponential function
Expa := expG |a: a → G factors through a continuous map a/Γa → G . Characterize the groups
A := a/Γa for which this may happen.

If a is finite-dimensional, then A is a torus (Proposition II.5.11(5)), so that we may think
of these groups A as generalized tori. If Γa is discrete, then A is a Lie group. If, in addition,
a is separable, then Γa is a free group ([Ne02a, Rem. 9.5(c)]). If Problem II.4 has a positive
solution, then Γa is always discrete.

An interesting example in this context is E = RN with the closed subgroup ΓE := ZN . In
this case, the quotient E/ΓE ∼= TN is the compact torus which is not a Lie group because it is
not locally contractible. Do pairs (a,Γa) ∼= (RN,ZN) occur? For the free vector space E = R(N)

over N , the subgroup ΓE := Z(N) is discrete and E/ΓE is a Lie group, a direct limit of finite-
dimensional tori (cf. Theorem VII.1.1).

Problem II.11. Does the adjoint group Ad(G) ⊆ Aut(L(G)) of a Lie group G always carry
a natural Lie group structure for which the adjoint representation Ad:G→ Ad(G) is a quotient
morphism of topological groups? Since, in general, the group Aut(L(G)) is not a Lie group if
L(G) is not Banach, this does not follow from a positive solution of Problem II.7. Closely related
is the question if expG x ∈ Z(G) for x small enough implies x ∈ z(g).

Problem II.12. Let G be a connected Lie group with a smooth exponential function and
a ⊆ L(G) a Mackey complete abelian subalgebra for which the group Γa := exp−1

G (1) ∩ a is
discrete. Then expG |a factors through an injective smooth map A := a/Γa →֒ G and A carries
a natural Lie group structure (Corollary II.2.4). Is this Lie group always initial? According to
Remark II.6.5(c), this is the case for a = z(g).
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III. Regularity

In this section, we discuss regularity of Lie groups in some more detail. In particular, we shall
see how regularity of a Lie group can be used to obtain a Fundamental Theorem of Calculus for
Lie group-valued smooth functions. This implies solutions to many integrability questions. For
example, for each homomorphism ψ:L(G) → L(H) from the Lie algebra of a 1-connected Lie
group G into the Lie algebra of a regular Lie group H , there exists a unique morphism of Lie
groups ϕ with L(ϕ) = ψ . In Section III.2, we turn to the concepts of strong ILB–Lie groups and
µ-regularity and their relation to our context. In the remaining two subsections III.3 and III.4,
we discuss some applications to groups of diffeomorphisms and groups of smooth maps, resp.,
gauge groups.

III.1. The Fundamental Theorem for Lie group-valued functions

Definition III.1.1. Let G be a Lie group with Lie algebra g = L(G). We call a g-valued
1-form α ∈ Ω1(M, g) integrable if there exists a smooth function f :M → G with δ(f) = α . The
1-form α is said to be locally integrable if each point m ∈M has an open neighborhood U such
that α |U is integrable.

We recall from Definition I.4.1(b) the brackets Ωp(M, g) × Ωq(M, g) → Ωp+q(M, g). If f
is a solution of the equation δ(f) = f∗κG = α ∈ Ω1(M, g), then the fact that κG satisfies the
Maurer–Cartan equation dκG + 1

2 [κG, κG] = 0 implies that so does α :

(MC) dα+
1

2
[α, α] = 0.

The following theorem is a version of the Fundamental Theorem of Calculus for functions
with values in regular Lie groups ([GN06]).

Theorem III.1.2. (Fundamental Theorem for Lie group-valued functions) Let M be a smooth
manifold, G a Lie group and α ∈ Ω1(M,L(G)) . Then the following assertions hold:

(1) If G is regular and α satisfies the Maurer–Cartan equation, then α is locally integrable.

(2) If M is 1-connected and α is locally integrable, then it is integrable.

(3) If M is connected, m0 ∈M , and α is locally integrable, then there exists a homomorphism

perα:π1(M,m0) → G

that vanishes if and only if α is integrable. For a piecewise smooth representative σ: [0, 1] →
M of a loop in M , the element perα([σ]) is given by γ(1) for γ: [0, 1] → G satisfying
δ(γ) = σ∗α .

Remark III.1.3. If M is one-dimensional, then each g-valued 2-form on M vanishes, so that
[α, β] = 0 = dα for α, β ∈ Ω1(M, g). Therefore all 1-forms trivially satisfy the Maurer–Cartan
equation.

This remark applies in particular to the manifold with boundary M = I = [0, 1]. The
requirement that for each smooth curve ξ ∈ C∞(I, g) ∼= Ω1(I, g), the IVP

γ(0) = 1, γ′(t) = γ(t).ξ(t) for t ∈ I,

has a solution depending smoothly on ξ leads to the concept of a regular Lie group.
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Remark III.1.4. (a) If M is a complex manifold, G is a complex Lie group and α ∈ Ω1(M, g)
is a holomorphic 1-form, then for any smooth function f :M → G with δ(f) = α , the differential
of f is complex linear in each point, so that f is holomorphic. Conversely, the logarithmic
derivative of any holomorphic function f is a holomorphic 1-form.

If, in addition, M is a one-dimensional complex manifold, then for each holomorphic 1-
form α ∈ Ω1(M, g) the 2-forms dα and [α, α] are holomorphic, which implies that they vanish.
Therefore the Maurer–Cartan equation is automatically satisfied by all holomorphic 1-forms.

The following theorem is one of the main motivations for introducing the notion of regular-
ity. It was proved in [OMYK82] under the stronger assumption of µ-regularity (cf. Subsection
III.2 below) and by Milnor (who attributed it to Thurston) in the following form ([Mil82/84]):

Theorem III.1.5. If H is a regular Lie group, G is a 1-connected Lie group, and ϕ:L(G) →
L(H) is a continuous homomorphism of Lie algebras, then there exists a unique Lie group
homomorphism f :G→ H with L(f) = ϕ .

Proof. This is Theorem 8.1 in [Mil84] (see also [KM97, Th. 40.3]). The uniqueness assertion
follows from Proposition II.4.1 and does not require the regularity of H .

On G , we consider the smooth L(H)-valued 1-form α := ϕ ◦ κG and it is easily verified
that α satisfies the MC equation. Therefore the Fundamental Theorem implies the existence
of a unique smooth function f :G → H with δ(f) = α and f(1G) = 1H . In view of Proposi-
tion II.4.1(3), the function f is a homomorphism of Lie groups with L(f) = α1 = ϕ .

Corollary III.1.6. If G1 and G2 are regular 1-connected Lie groups with isomorphic Lie
algebras, then G1 and G2 are isomorphic.

Corollary III.1.7. Let G be a connected Lie group with Lie algebra g and n E g a closed
ideal which is not Ad(G)-invariant. Then the quotient Lie algebra g/n is not integrable to a
regular Lie group.

Proof. If Q is a regular Lie group with Lie algebra q := g/n , then the quotient map q: g → n

integrates to a morphism of Lie groups ϕ: G̃ → Q with L(ϕ) = q (Theorem III.1.5), so that

n = ker(L(ϕ)), contradicting its non-invariance under Ad(G̃) = Ad(G).

Remark III.1.8. Let G be a regular Lie group and h ⊆ L(G) a closed Lie subalgebra. Let
ι:H → G be a regular connected initial Lie subgroup of G with Ld(H) = h . Then for each
smooth curve γ: I → H the curve δ(γ) has values in h , and, conversely, for any smooth curve
ξ: I → h , the regularity of H and the Uniqueness Lemma imply that the corresponding curve γξ
has values in H . Hence H coincides with the set of endpoints of all curves γξ , ξ ∈ C∞(I, h).
In particular, H is uniquely determined by the Lie algebra h .

For the groups of smooth maps on a compact manifold, it is quite easy to find charts
of the corresponding mapping groups, such as C∞(M,K), by composing with charts of K
(Theorem II.2.8). This does no longer work for non-compact manifolds, as the discussion in
Remark II.2.9(a) shows. The Fundamental Theorem implies that for any regular Lie group K
with Lie algebra k , any 1-connected manifold M , m0 ∈M and

C∞∗ (M,K) := {f ∈ C∞(M,K): f(m0) = 1},

the map
δ:C∞∗ (M,K) → {α ∈ Ω1(M, k): dα + 1

2 [α, α] = 0}

is a bijection, which can be shown to be a homeomorphism. If the solution set of the MC
equation carries a natural manifold structure, we thus obtain a manifold structure on the group
C∞∗ (M,K) and hence on C∞(M,K). This is the case if K is abelian, M is one-dimensional
(all 2-forms vanish), and for holomorphic 1-forms on complex one-dimensional manifolds (cf.
Remark III.1.4). Following this strategy and using Glöckner’s Implicit Function Theorem to
take care of the period conditions if M is not simply connected, we get the following result
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([NeWa06b]). To formulate the real and complex case in one statement, let K ∈ {R,C} , K be
a K -Lie group, and C∞

K
(M,K) be the group of K -smooth K -valued maps. For K = C , these

are the holomorphic maps, and in this case the smooth C∞ -topology on C∞
C

(M,K) = O(M,K)
coincides with the compact open topology.

Theorem III.1.9. Let K be a regular K-Lie group and M a finite-dimensional connected
σ -compact K-manifold. We endow the group C∞

K
(M,K) with the compact open C∞ -topology,

turning it into a topological group. This topology is compatible with a Lie group structure if

(1) dimKM = 1 , π1(M) is finitely generated and K is a Banach–Lie group.

(2) H1
sing(M,Z) is finitely generated and K is abelian.

(3) H1
sing(M,Z) is finitely generated and K is finite-dimensional and solvable.

(4) K is diffeomorphic to a locally convex space.

III.2. Strong ILB–Lie groups and µ-regularity

An important criterion for regularity of a Lie group rests on the concept of a (strong)
ILB–Lie group, a concept developed by Omori by abstracting a common feature from groups of
smooth maps and diffeomorphism groups ([Omo74]). The bridge from ILB–Lie groups to Milnor’s
regularity concept was built in [OMYK82], where even a stronger regularity concept, called µ-
regularity below, is used. In this subsection, we explain some of the key results concerning
µ-regularity and how they apply to diffeomorphism groups. In his book [Omo97], Omori works
with a slight variant of the axiomatics of µ-regularity, as defined below, but since it is quite close
to the original concept, we shall not go into details on this point.

Definition III.2.1. (ILB–Lie groups; [Omo74, p.2])

(a) An ILB chain is a sequence (En)n≥d , d ∈ N , of Banach spaces with continuous dense
inclusions ηn:En →֒ En+1 . The projective limit E := lim

←−
En of this system is a Fréchet space.

Realizing E as {(xn)n≥d ∈
∏
n≥dEn: (∀n) ηn(xn) = xn+1} , we see that for each k ≥ d the

projection map
qk:E → Ek, (xn) 7→ xk

is injective. We may therefore think of E and all spaces En as subspaces of Ed , which leads to
the identification of E with the intersection

⋂
n≥dEn .

(b) A topological group G is called an ILB–Lie group modeled on the ILB chain (En)n≥d
if there exists a sequence of topological groups Gn , n ≥ d , satisfying the conditions (G1)–(G7)
below. If, in addition, (G8) holds, then G is called a strong ILB–Lie group.

(G1) Gn is a smooth Banach manifold modeled on En .

(G2) Gn+1 is a dense subgroup of Gn and the inclusion map Gn+1 →֒ Gn is smooth.

(G3) G = lim
←−

Gn as topological groups, so that we may identify G with
⋂
n≥dGn ⊆ Gd .

(G4) The group multiplication of G extends to a Cℓ -map µn,ℓG :Gn+ℓ ×Gn → Gn .

(G5) The inversion map of G extends to a Cℓ -map Gn+ℓ → Gn .

(G6) The right translations in the groups Gn are smooth.

(G7) The tangent map T (µn,ℓG ) induces a Cℓ -map T1(Gn+ℓ) ×Gn → T (Gn).

(G8) There exists a chart (ϕd, Ud) of Gd with 1 ∈ Ud and ϕd(1) = 0 such that Un := Ud ∩ Gn
and ϕn := ϕd |Un

define an En -chart (ϕn, Un) of Gn .

If all spaces En are Hilbert, we call (En)n≥d an ILH chain and G an ILH–Lie group.

Remark III.2.2. (Omori) Every strong ILB–Lie group G carries a natural Fréchet–Lie group
structure with L(G) ∼=

⋂
n≥d En = E . A chart (ϕ,U) in the identity is obtained by U := G∩Ud

and ϕ := ϕd |U (notation as in (G8)).

A complete solution to (FP8) for a large class of Lie groups is provided by:
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Theorem III.2.3. ([Omo74, Th.1.4.2]) Strong ILB-Lie groups have no small subgroups, i.e.,
there exists an identity neighborhood containing no non-trivial subgroups.

We now give the slightly involved definition of the regularity concept introduced in
[OMYK82/83a].

Definition III.2.4. Let G be a Lie group with Lie algebra g and ∆ := {t0, . . . , tm} a division
of the real interval J := [a, b] with a = t0 and b = tm . We write

|∆| := max{tj+1 − tj j = 0, . . . ,m− 1}.

For |∆| ≤ ε , a pair (h,∆) is called a step function on [0, ε] × J if h: [0, ε] × J → G is a map
satisfying

(1) h(0, t) = 1 for all t ∈ J and all maps ht(s) := h(s, t) are C1 .

(2) h(s, t) = h(s, tj) for tj ≤ t < tj+1 .

For a step function (h,∆), we define the product integral
∏t
a(h,∆) ∈ G by

t∏

a

(h,∆) := h(t− tk, tk)h(tk − tk−1, tk−1) · · ·h(t1 − t0, t0) for tk ≤ t < tk+1.

Now let (hn,∆n) be a sequence of step functions with |∆n| → 0 for which the sequence
(hn,

∂hn

∂s ) converges uniformly to a pair (h, ∂h∂s ) for a function h: [0, ε]× J → G . Then the limit

function h is a C1 -hair in 1 , i.e., it is continuous, differentiable with respect to s , and ∂h
∂s is

continuous on [0, ε] × J .

The Lie group G is called µ-regular 1 (called “regular” in [OMYK82/83a]) if the product
integrals

∏t
a(hn,∆n) converges uniformly on J for each sequence (hn,∆n) converging in the

sense explained above to some C1 -hair in 1 . Then the limit is denoted
∏t
a(h, dτ) and called

the product integral of h .

Remark III.2.5. The First Fundamental Theorem in [OMYK82] asserts that the product
integral

∏t
a(h, dτ) is C1 with respect to t and satisfies

d

dt

t∏

a

(h, dτ) = u(t) ·
t∏

a

(h, dτ) for u(t) =
∂h

∂s
(0, t),

where u ∈ C(J, g) is a continuous curve. Hence the product integral is the unique C1 -curve
γu: J → G with γu(a) = 1 and δr(γu) = u . The Second Fundamental Theorem in [OMYK82] is
that the right logarithmic derivative

δr:C1
∗(J,G) → C(J, g)

is a C∞ -diffeomorphism, where C1
∗(J,G) is the group of C1 -paths γ: J → G with γ(a) = 1 ,

endowed with the compact open C1 -topology (cf. Theorem II.2.8).

Since the inclusion map C∞([0, 1], g) → C0([0, 1], g) is continuous and the evaluation map
ev1:C

1
∗ ([0, 1], G) → G, γ 7→ γ(1) is smooth, it follows in particular that each µ-regular Lie group

is regular.

Theorem III.2.6. ([OMYK82, Th. 6.9]) Strong ILB-Lie groups are µ-regular, hence in
particular regular.

1 µ stands for “multiplicative”
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Lemma III.2.7. ([OMYK83a, Lemma 1.1]) In each µ-regular Fréchet–Lie group G , we have
for each C1 -curve γ: [0, 1] → G with γ(0) = 1 the relation

lim
n→∞

γ
(
t
n

)n
= expG(tγ′(0)) for 0 ≤ t ≤ 1.

Theorem III.2.8. ([OMYK83a, Th. 4.2]) Let G be a µ-regular Fréchet–Lie group. For each
closed finite-codimensional subalgebra h ⊆ L(G) , there exists a connected Lie group H with
L(H) = h and an injective morphism of Lie groups ηh:H → G for which L(ηh):L(H) → L(G)
is the inclusion of h .

Theorem III.2.9. ([OMYK83a, Prop. 6.6]) Let M be a compact manifold, G a locally expo-
nential µ-regular Fréchet–Lie group, r ∈ N0 ∪{∞} , and q: G →M a smooth fiber bundle whose
fibers are groups isomorphic to G , for which the transition functions are group automorphisms.
Then the group Cr(M,G) of Cr -sections of this bundle is a group with respect to pointwise mul-
tiplication, and it carries a natural Lie group structure, turning it into a µ-regular Fréchet–Lie
group.

A slightly weaker version of the preceding theorem can already be found in [Les68]. Note
that it applies in particular to gauge groups of G-bundles over M . We have added the assumption
that G is locally exponential because this is needed for the standard constructions of charts of
the group Cr(M,G) (cf. Theorem IV.1.12 below for gauge groups).

Theorem III.2.10. ([OMYK83a, Prop. 2.4]) Let G be a µ-regular Fréchet–Lie group and
H ⊆ G a subgroup for which there exists an identity neighborhood UH whose smooth arc-
component of 1 is a submanifold of G . Then H carries the structure of an initial Lie subgroup
(Remark II.6.6) which is µ-regular.

III.3. Groups of diffeomorphisms

As an important consequence of Theorem III.2.6, several classes of groups of diffeomor-
phisms are regular:

Theorem III.3.1. Let M be a compact smooth manifold. Then the following groups carry
natural structures of strong ILH–Lie groups, and hence are µ-regular:

(1) Diff(M) .

(2) Diff(M,ω) := {ϕ ∈ Diff(M):ϕ∗ω = ω} , where ω is a symplectic 2-form on M .

(3) Diff(M,µ) , where µ is a volume form on M .

(4) Diff(M,α) , where α is a contact form on M .

The corresponding Lie algebras are V(M) , V(M,ω) := {X ∈ V(M):LXω = 0} , V(M,µ) , resp.,
V(M,α) .

The preceding results on the Lie group structure of groups of diffeomorphisms have a long
history. The Lie group structure on Diff(M) for a compact manifold M has first been constructed
by J. Leslie in [Les67], and Omori proved in [Omo70] that Diff(M) can be given the structure
of a strong ILH–Lie group (cf. also [Eb68] for the ILH structure). Ebin and Marsden extended
the ILH results to compact manifolds with boundary ([EM69/70]). Later expositions of this
result can be found in [Gu77], [Mi80] and [Ham82]. The regularity of Diff(M) is proved in
[Mil84/82] with direct arguments, not using ILB techniques.

In [Arn66], Arnold studies the group Diff(M,µ), where µ is a volume form on the
compact manifold M , as the configuration space of a perfect fluid. Arguing by analogy with
finite-dimensional groups, he showed that, for a suitable right invariant Riemannian metric on
this group, the Euler equation of a perfect fluid corresponds to the geodesic equation for a left
invariant Riemannian metric on Diff(M,µ). This was made rigorous by Marden and Abraham
in [MA70]. For a more recent survey on this circle of ideas, we refer to [EMi99].
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Using Hodge theory, Ebin and Marsden show in [EM70] that if ω either is a volume form
or a symplectic form on a compact manifold M , then Diff(M,ω) carries the structure of an
ILH–Lie group (see also [Wei69]). They further show that the group Diff+(M) of orientation
preserving diffeomorphisms of M is diffeomorphic to the direct product Diff(M,µ) × Vol1(M),
where Vol1(M) denotes the convex set of volume forms of total mass 1 on M . This refines a
result of Omori on the topological level (cf. [KM97, Th. 43.7]). For the symplectic case, a more
direct proof of the regularity assertion can be found in [KM97, Th. 43.12], where it is also shown
that Diff(M,ω) is a submanifold of Diff(M).

In [EM70], one also finds that the following groups are ILH–Lie groups:

(1) Diff(M,N) := {ϕ ∈ Diff(M):ϕ(N) = N} and DiffN (M) := {ϕ ∈ Diff(M):ϕ |N = idN},
where N ⊆M is a closed submanifold and M compact without boundary.

(2) Diff∂M (M) := {ϕ ∈ Diff(M): (∀x ∈ ∂M) ϕ(x) = x} , if M has a boundary.

(3) Diff(M,µ) and Diff∂M (M,µ) := Diff(M,µ) ∩ Diff∂M (M) for any volume form µ on M .

(4) If, in addition, ω = dθ is an exact symplectic 2-form on M , then Diff∂M (M,ω) and

Ham(M,ω) := {ϕ ∈ Diff∂M (M):ϕ∗θ − θ ∈ B1
dR(M,R)}

are ILH–Lie groups (see also Remark V.2.14(c)).

The following result of Michor ([Mi91]) concerns the Lie group structure of a gauge group
in a setting where the gauge group is a Lie subgroup of a diffeomorphism group of a compact
manifold.

Theorem III.3.2. If q:B → M is a locally trivial fiber bundle over the compact manifold
M with compact fiber F , then the gauge group Gau(B) is a split submanifold of the regular
Fréchet–Lie group Diff(B) .

III.4. Groups of compactly supported smooth maps and diffeomorphisms

In the preceding subsection, we discussed diffeomorphisms of compact manifolds. We now
briefly take a look at the corresponding picture for compactly supported maps on σ -compact
manifolds.

It is interesting that if M is a σ -compact finite-dimensional manifold, then for each locally
convex space E , the space C∞c (M,E) has two natural topologies. The first one is the locally
convex direct limit structure

C∞c (M,E) = lim
−→

C∞Mn
(M,E),

where (Mn)n∈N is an exhaustion of M , which for the case that E is Fréchet, defines an LF
space structure on C∞c (M,E) (cf. Examples I.1.3 and Theorem II.2.8). The other locally convex
topology is obtained by endowing for each r ∈ N the space Crc (M,E) with the direct limit
structure lim

−→
CrMn

(M,E) and then topologize C∞c (M,E) as the projective limit lim
←−

Crc (M,E)

of these spaces. These two topologies do not coincide (cf. [Gl02b], see also [Gl06a]).

Similar phenomena occur for the space C∞c (M,E) of smooth compactly supported sections
of a vector bundle E →M whose fibers are locally convex spaces. In the context of Lie algebras,
this problem affects the model spaces C∞c (M, k) of the Lie groups C∞c (M,K) and the space
Vc(M) of compactly supported vector fields on M . For the natural LF space structure on
Vc(M), the corresponding Lie group structure on Diffc(M) has been constructed by Michor

in [Mi80,pp. 39, 197], where he even endows Diff(M) with the Lie group structure for which
Diffc(M) is an open subgroup (Corollary II.2.3).

The following theorem complements Theorem II.2.8 in a natural way (cf. [GN06], based on
[Gl02d]).
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Theorem III.4.1. Let M be a σ -compact finite-dimensional smooth manifold and K a
regular Lie group. Both natural topologies turn C∞c (M,L(K)) into a topological Lie algebra.
Accordingly, the group C∞c (M,K) carries two regular Lie group structures for which the Lie
algebra is C∞c (M,L(K)) , endowed with these two topologies. If M is non-compact, these two
regular Lie groups are not isomorphic.

The corresponding result for diffeomorphism groups is proved by Glöckner in [Gl02b]
(for corresponding statements without proof see also [Mil82]).

Theorem III.4.2. Let M be a σ -compact finite-dimensional manifold. Both natural topolo-
gies turn Vc(M) into a topological Lie algebra, and the group Diffc(M)op carries two correspond-
ing regular Lie group structure turning Vc(M) into its Lie algebra. For M non-compact, these
two regular Lie groups are not isomorphic.

Open Problems for Section III

Problem III.1. Show that every abelian Lie group G modeled on a Mackey complete locally
convex space g is regular.

We may w.l.o.g. assume that G is 1-connected (cf. Theorem V.1.8 below). Then the
regularity of the additive group of g = L(G) (Proposition II.5.6) implies that idg integrates
to a smooth homomorphism LogG:G → g (Theorem III.1.5), so that the assumption implies
the existence of a logarithm function, but it is not clear how to get an exponential function (cf.
[Mil82, p.36]). One would like to show that LogG is an isomorphism of Lie groups, but also
weaker information would be of interest: Is LogG surjective or injective?

If H := im(LogG) were a proper subgroup of g , it would be a strange object: Since
L(LogG) = idg , we have Ld(H) = g (Remark II.6.4). For any α ∈ C1

∗ ([0, 1], H), the relation
α′(0) = limn→∞ nα( 1

n ) implies that H is dense in g . Is H a vector space? Let

P := {ξ ∈ C∞([0, 1], g): (∃γ ∈ C∞([0, 1], G) δ(γ) = ξ}.

For γ(0) = 1 and δ(γ) = ξ , we then have LogG(γ(1)) =
∫ 1

0 ξ(t) dt. Therefore H is the image of
the additive group P under the integration map. Is P a vector subspace of C∞([0, 1], g)?

Problem III.2. Let G be a regular Lie group (not necessarily Fréchet or µ-regular). Show
that for each closed finite-codimensional subalgebra h ⊆ L(G) there exists a connected Lie
group H with L(H) = h and an injective morphism of Lie groups ηh:H → G for which
L(ηh):L(H) → L(G) is the inclusion of h (cf. Theorem III.2.8).

Problem III.3. Let K ∈ {R,C} , M be a σ -compact finite-dimensiomal K -manifold, and K
a (finite-dimensional) K -Lie group. We endow the group C∞

K
(M,K) of K -valued K -smooth

functions M → K with the compact open C∞ -topology, turning it into a topological group.
For K = C , this is the group of holomorphic functions and the compact open C∞ -topology
coincides with the compact open topology (cf. [NeWa06b]). When is this topology on the group
C∞

K
(M,K) compatible with a Lie group structure? See Theorem III.1.9, for partial results in

this direction.

Problem III.4. Consider a topological group G = lim
←−

Gj which is a projective limit of the

Banach–Lie groups Gj (or more general locally exponential groups).

(1) Characterize the situations where G is locally exponential in the sense that it carries a
(locally exponential) Lie group structure (cf. Remark IV.1.22). For the case where all Gj
are finite-dimensional, this is done in [HoNe06] (cf. Theorem X.1.9).

(2) Can we say more in the special case G =
∏
j∈J Gj ?

(3) Suppose that G carries a compatible Fréchet–Lie group structure. Does this imply that G
is regular? (cf. [Ga97] for some results in this direction).
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Problem III.5. Let ιj :Hj → G , j = 1, 2, be two initial Lie subgroups of the Lie group

G with Ld(H1) = Ld(H2). Which additional assumptions are necessary to conclude that
H1 = H2 as subgroups of G , hence that H1 and H2 are isomorphic as Lie groups? Note
that Remark III.1.8 implies that this is the case if H1 and H2 are µ-regular or at least if the
maps δ:C1

∗([0, 1], Hj) → C0([0, 1],Ld(Hj)) are surjective.

IV. Locally exponential Lie groups

In this section, we turn to Lie groups with an exponential function expG:L(G) → G which
is well-behaved in the sense that it maps a 0-neighborhood in L(G) diffeomorphically onto a
1-neighborhood in G . We call such Lie groups locally exponential.

This class of Lie groups has been introduced by Milnor in [Mil84]1 , where one finds some
of the basic results explained below. In [GN06], we devote a long chapter to this important
class of infinite-dimensional Lie groups, which properly contains the class of BCH–Lie groups as
those for which the BCH–series defines an analytic local multiplication on a 0-neighborhood in
L(G) (cf. [Gl02c] for basic results in the BCH context). In particular, it contains all Banach–Lie
groups, but also many other interesting types of groups such as unit groups of Mackey complete
CIAs, groups of the form C∞c (M,K), where M is σ -compact and K is locally exponential,
and moreover, all projective limits of nilpotent Lie groups. It therefore includes many classes of
“formal” Lie groups. The appeal of this class is due to its large scope and the strength of the
general Lie theoretic results that can be obtained for these groups. Up to certain refinements
of assumptions, a substantial part of the theory of Banach–Lie groups carries over to locally
exponential groups.

One of the most important structural consequences of local exponentiality is that it provides
canonical local coordinates given by the exponential function. This in turn permits us to develop
a good theory of subgroups and there even is a characterization of those subgroups for which
we may form Lie group quotients. Moreover, we shall see in Section VI below that integrability
of a locally exponential Lie algebra (to be defined below) can be characterized similarly as for
Banach algebras.

Not all regular Lie groups are locally exponential. The simplest examples can be found
among groups of the form G = E ⋊α R for a smooth R-action on E (Example II.5.9). Another
prominent example of a regular Lie group which is not locally exponential is the group Diff(S1)
of diffeomorphisms of the circle (Example II.5.13).

IV.1. Locally exponential Lie groups and BCH–Lie groups

Definition IV.1.1. We call a Lie group G locally exponential if it has a smooth exponential
function expG:L(G) → G which is a local diffeomorphism in 0, i.e., there exists an open 0-
neighborhood U ⊆ L(G) mapped diffeomorphically onto an open 1-neighborhood of G .

A Lie group is called exponential if, in addition, expG is a global diffeomorphism.

If expG:L(G) → G is an exponential function, then T0(expG) = idL(G) by definition. This
observation is particularly useful in the finite-dimensional or Banach context, where it follows
from the Inverse Function Theorem that expG is a local diffeomorphism in 0, so that we can use
the exponential function to obtain charts around 1 :

Proposition IV.1.2. Banach–Lie groups are locally exponential.

We shall see below that a similar conclusion does not work for general Fréchet–Lie groups,
because in this context there is no general Inverse Function Theorem. From that it follows

1 In [Rob96/97], these groups are called “of the first kind.”
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that to integrate a Lie algebra homomorphism ϕ:L(G) → L(H) to a group homomorphisms, it
is in general not enough to start with the prescription expG x 7→ expH ϕ(x) to obtain a local
homomorphism, because expG(L(G)) need not be a 1-neighborhood in G (cf. Example II.5.9).

For Banach–Lie groups, the existence of “canonical” coordinates provided by the exponen-
tial map leads to a description of the local multiplication in a canonical form, given by the BCH
series:

Definition IV.1.3. For two elements x, y in a Lie algebra g , we define

H1(x, y) := x+ y, H2(x, y) :=
1

2
[x, y],

and for n ≥ 3:

Hn(x, y) :=
∑

k,m≥0
pi+qi>0

(−1)k

(k + 1)(q1 + . . .+ qk + 1)

(adx)p1(ad y)q1 . . . (adx)pk (ad y)qk(adx)m

p1!q1! . . . pk!qk!m!
y,

where the sum is extended over all summands with p1 + q1 + . . . + pk + qk + m + 1 = n. The
formal series

∑∞
n=1Hn(x, y) is called the Baker–Campbell–Hausdorff series.

There are many different looking ways to write the polynomials Hn(x, y). We have chosen
the one obtained from the integral formula

(4.1.1) x ∗ y = x+

∫ 1

0

ψ(ead xet ad y)y dt,

where ψ denotes the analytic function ψ(z) := z
z−1 log z , defined in a neighborhood of 1. Formula

(4.1.1) is valid for sufficiently small elements x and y in a Banach–Lie algebra, because we may
use functional calculus in Banach algebras to make sense of ψ(ead xead y) for x, y close to 0.
Then the explicit expansion of the BCH series is obtained from the series expansion of ψ and
the exponential series of ead x and ead ty .

Remark IV.1.4. (History of the BCH series) In [SchF90a], F. Schur derived recursion
formulas for the summands of the series describing the multiplication of a Lie group in canonical
coordinates (i.e., in an exponential chart). He also proved the local convergence of the series
given by this recursion relations, which can in turn be used to obtain the associativity of the
BCH multiplication (cf. [BCR81, p. 93], [Va84, Sect. 2.15]). His approach is quite close to our
treatment of locally exponential Lie algebras in the sense that he derived the series from the
Maurer–Cartan form by integration of a partial differential equation of the form f∗κg = κg with
f(0) = x , whose unique solution is the left multiplication f = λx in the local group.

The BCH series was made more explicit by Campbell in [Cam97/98], and in [Hau06]
Hausdorff approached the BCH series on a formal level, showing that the formal expansion of
log(exey) can be expressed in terms of Lie polynomials. Part of his results had been obtained
earlier by Baker ([Bak01/05]). See [Ei68] for a more recent short argument that all terms in
the BCH series are Lie brackets.

Definition IV.1.5. A topological Lie algebra g is called BCH–Lie algebra if there exists an
open 0-neighborhood U ⊆ g such that for x, y ∈ U the BCH series

∞∑

n=1

Hn(x, y)

converges and defines an analytic function U × U → g, (x, y) 7→ x ∗ y (cf. Definition I.2.1). In
view of [Gl02a, 2.9], the analyticity of the product x ∗ y is automatic if g is a Fréchet space.
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Example IV.1.6. (a) If g is a nilpotent locally convex Lie algebra of nilpotency class m , then
the BCH series defines a polynomial multiplication

x ∗ y = x+ y +
1

2
[x, y] +

∑

n≤m

Hn(x, y)

on g . From the structure of the series it follows immediately that for t, s ∈ R and x ∈ g we have

tx ∗ sx = (t+ s)x,

so that (g, ∗) is an exponential nilpotent Lie group.

(b) If g is a Banach–Lie algebra whose norm is submultiplicative in the sense that ‖[x, y]‖ ≤
‖x‖ · ‖y‖ for x, y ∈ g , then the BCH series x ∗ y =

∑∞
n=1Hn(x, y) converges for ‖x‖, ‖y‖ <

1
3 log(3

2 ) ([Bir38]).

The following result is quite useful to show that certain Lie algebras are not BCH:

Theorem IV.1.7. (Robart’s Criterion; [Rob04]) If g is a sequentially complete BCH–Lie
algebra, then there exists a 0-neighborhood U ⊆ g such that f(x, y) :=

∑∞
n=0(adx)ny converges

and defines an analytic function on U × g .

On the global level we have the following result whose proof requires the uniqueness
assertion from Theorem IV.2.8 below:

Theorem IV.1.8. For a Lie group G the following are equivalent:

(1) G is analytic with an analytic exponential function which is a local analytic diffeomorphism
in 0 .

(2) G is locally exponential and L(G) is BCH.

In Examples IV.1.14(b) and IV.1.16 below, we describe an analytic Lie group with an
analytic exponential function which is a smooth diffeomorphism, but such that L(G) is not
BCH. This is a negative answer to a question raised in [Mil84, p.31].

Definition IV.1.9. A group satisfying the equivalent conditions of the preceding theorem is
called a BCH–Lie group.

Our introductory discussion now can be stated as:

Corollary IV.1.10. Each Banach–Lie group is BCH.

The Lie group concept used in [BCR81] is stronger than our concept of a BCH–Lie group
because additional properties of the Lie algebra are required, namely that it is a so-called AE–Lie
algebra, a property which encodes the existence of certain seminorms, compatible with the Lie
bracket.

The following two theorems show that many interesting classes of Lie groups are in fact
BCH.

Theorem IV.1.11. If A is a Mackey complete CIA, then its unit group A× is BCH. If, in
addition, A is sequentially complete, then A× is regular.

Proof. (Sketch) If A is a Mackey complete complex CIA, then the fact that A× is open
implies that for each a ∈ A the spectrum Spec(a) is a compact subset of C , and the holomorphic
functional calculus works as for Banach algebras (cf. [Wae54a/b]1 , [Al65], [Gl02b]). This provides
an analytic exponential function, and on the open star-like subset

U := {a ∈ A: Spec(a)∩]−∞, 0] = Ø} ⊆ A×

1 Waelbroeck even introduces a functional calculus in several variables for tuples in complete locally convex

algebras which are not necessarily CIAs, but where spectra and resolvents satisfy certain regularity conditions.
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we likewise obtain an analytic logarithm function log:U → A . From that, local exponentiality
for complex CIAs follows easily.

That the multiplication on A× is analytic follows from its bilinearity on A , and the
analyticity of the inversion is obtained from functional calculus, which in turn leads to the
expansion by the Neumann series (1 − x)−1 =

∑∞
n=0 x

n. We conclude that A× is a BCH–Lie
group.

The real case can be reduced to the complex case, because for each real CIA A its
complexification AC is a complex CIA ([Gl02b]).

Now assume that A is sequentially complete. For u ∈ C([0, 1], A) we want to solve the
linear initial value problem

(4.1.2) γ(0) = 1, γ′(t) = γ(t)u(t).

According to an idea of T. Robart ([Rob04]), the BCH property of A× implies that this can
be done by Picard iteration:

γ0(t) := 1, γn+1(t) := 1 +

∫ t

0

γn(τ)u(τ) dτ,

which leads to

γn(t) = 1 +

n∑

k=1

∫ t

0

∫ τn

0

· · ·
∫ τ2

0

u(τ1)u(τ2) · · ·u(τn) dτ1 dτ2 · · · dτn.

Now one argues that the analyticity of the function (1−x)−1 =
∑∞

n=0 x
n implies that all sums of

the form
∑∞
n=0 xn1 · · ·xnn converge for xij in some sufficiently small 0-neighborhood. A closer

inspection of the limiting process implies that the limit curve γ := limn→∞ γn is C1 , solves the
initial value problem (4.1.2), and depends analytically on u . This implies the regularity of A× .

Theorem IV.1.12. If K is a locally exponential Lie group and q:P → M a smooth K -
principal bundle over the σ -compact finite-dimensional manifold M , then the group Gauc(P ) of
compactly supported gauge transformations is a locally exponential Lie group. In particular, the
Lie group C∞c (M,K) is locally exponential.

If, in addition, K is regular, then Gauc(P ) is regular and if K is BCH, then so is Gauc(P ) .

Proof. (Sketch; cf. [GN06] and Theorem II.2.8) Let expK :L(K) → K be the exponential
function of K and realize Gau(P ) as the subgroup C∞(P,K)K of K -fixed points in C∞(P,K)
with respect to the K -action given by (k.f)(p) := kf(p.k)k−1 . Then we put

gau(P ) := C∞(P,L(K))K = {ξ ∈ C∞(M,L(K)): (∀p ∈ P )(∀k ∈ K) Ad(k).ξ(p.k) = ξ(p)},

and observe that for the group G := Gauc(P ) the map

expG: g := gauc(P ) → G, ξ 7→ expK ◦ξ

is a local homeomorphism in 0. Using Theorem II.2.1, this can be used to define a Lie group
structure on G . Then expG is an exponential function of G , and, by construction, it is a local
diffeomorphism in 0.

Various special cases of the preceding theorem can be found in the literature: [OMYK82],
[Sch04] (for M compact, K finite-dimensional), [Mil84] (without proofs), [KM97, 42.21] (in the
convenient setting), and [Gl02c], [Wo05a]). That Gau(P ) is µ-regular if K is µ-regular follows
from Theorem III.2.9.

Example IV.1.13. (Pro-nilpotent Lie groups) If g = lim
←−

gj is a projective limit of a family

of nilpotent Lie algebras (gj)j∈J (a so-called pro-nilpotent Lie algebra), then the corresponding
connecting homomorphisms of Lie algebras are also morphisms for the corresponding group
structures (Example IV.1.6(a)), so that (g, ∗) := lim

←−
(gj , ∗) defines on g a Lie group structure

with L(g, ∗) = g . We thus obtain an exponential Lie group G := (g, ∗) with expG = idg . This
group is pro-nilpotent in the sense that it is a projective limit of nilpotent Lie groups.
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Example IV.1.14. (Formal diffeomorphisms) (a) Important examples of pro-nilpotent Lie
groups arise as certain groups of formal diffeomorphisms. We write Gfn(K) for the group of
formal diffeomorphisms of Kn fixing 0, where K ∈ {R,C} . The elements of this group are
represented by formal power series of the form

ϕ(x) = gx+
∑

|m|>1

cmx
m,

where g ∈ GLn(K),

m = (m1, . . . ,mn) ∈ Nn0 , |m| := m1 + . . .+mn, xm := xm1
1 · · ·xmn

n , cm ∈ Kn,

and the group operation is given by composition of power series. We call ϕ pro-unipotent if
g = 1 . It is easy to see that the pro-unipotent formal diffeomorphisms form a pro-nilpotent
Lie group Gfn(K)1 = lim

←−
Gk , where Gk is the finite-dimensional nilpotent group obtained by

composing polynomials of the form

ϕ(x) = x+
∑

1<|m|≤k

cmx
m

modulo terms of order > k . The group Gfn(K) of all formal diffeomorphisms of Kn fixing 0 is
a semidirect product

(4.1.3) Gfn(K) ∼= Gfn(K)1 ⋊ GLn(K),

where the group GLn(K) of linear automorphisms acts by conjugation. As this action is smooth,
Gfn(K) is a Fréchet–Lie group.

These groups are µ-regular Lie groups (cf. [Omo80]): In view of the semidirect decom-
position and the fact that µ-regularity is an extension property (Theorem V.1.8), it suffices to
observe that pro-nilpotent Lie groups are µ-regular, which follows by an easy projective limit
argument.

The group Gfn(K) has been studied by Sternberg in [St61], where he shows in particular
that for K = C and n = 1 the elements

ϕm(x) = e
2πi
m x+ pxm+1, m ∈ N \ {1}, p ∈ C×,

are not contained in the image of the exponential function. This is of particular interest because
ϕm → 1 in the Lie group Gfn(C), so that the image of the exponential function in this group is
not an identity neighborhood. A detailed analysis of the exponential function of this group can
also be found in Lewis’s paper [Lew39].

To see that ϕm is not in the image of the exponential function of Gfn(C), it suffices to
verify this in the finite-dimensional solvable quotient group Gm+1 ⋊ C× , i.e., modulo terms of
order m+ 2. The subgroup Cxm+1 ⋊ C× is isomorphic to C ⋊ C× with the multiplication

(z, w)(z′, w′) = (z + wmz′, ww′)

and the exponential function

exp(z, w) =
(ewm − 1

wm
z, ew

)
=

((ew)m − 1

wm
z, ew

)
,

showing that ϕm is not contained in the exponential image of this subgroup. However, one can
use Proposition II.5.11(3) to see that any element ξ with exp ξ = ϕm must be contained in the
plane span{x, xm+1} . This completes the proof.

(b) For K = R the identity component Gf1(R)0 is exponential and analytic, but not BCH.
For n ≥ 2 the group Gfn(R) is analytic, but not locally exponential. If a subgroup H ⊆ GLn(R)
consists of matrices with real eigenvalues, then the subgroup Gfn(R)1 ⋊H ⊆ Gfn(R) is locally
exponential ([Rob02, Ths. 6/7]).
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Example IV.1.15. Let F = K[x1, . . . , xn] be the free associative algebra in n generators
S := {x1, . . . , xn} . Then F has a natural filtration

Fk := span{s1 · · · sm: si ∈ S,m ≥ k}.
Each quotient F/Fm is a finite-dimensional unital algebra, hence a CIA. Therefore the algebra

F̂ := lim
←−

F/Fn , which can be identified with the algebra of non-commutative formal power series

in the generators x1, . . . , xn , is a complete CIA ([GN06]).

We conclude that the unit group F̂× is a BCH–Lie group (Theorem IV.1.11). Let ε: F̂ → K
denote the homomorphism sending each xi to 0. Then the normal subgroup U := 1 + ker ε is a
pro-nilpotent Lie group and F̂× ∼= U ⋊ K× . In particular, the exponential function

Exp: ker ε→ U = 1 + ker ε, x 7→
∞∑

k=0

xk

k!

is an analytic diffeomorphism with the analytic inverse Log(x) :=
∑∞

k=1
(−1)k−1

k (x − 1)k. We
thus obtain on ker ε a global analytic multiplication

x ∗ y := Log(ExpxExp y)

given by the BCH series, so that its values lie in the completion L̂ of the free Lie algebra L
generated by x1, . . . , xn , which is a closed Lie subalgebra of F̂ .

In Section XI below, we shall discuss more aspects of projective limits of finite- and infinite-
dimensional Lie groups.

Example IV.1.16. We recall the group G = E ⋊α R from Example II.5.9(b), where E = RN

and α(t) = etD with the diagonal operator D(zn) = (nzn). Then the Lie group structure on G
is analytic and the explicit formula shows that

expG:L(G) → G, (v, t) 7→ (β(t)v, t)

is analytic. Further, it is a smooth diffeomorphism whose inverse

logG:G→ L(G), (v, t) 7→ (β(t)−1v, t)

is smooth but not analytic. In fact, β(t)−1en = tn
ent−1en, and for n fixed, the radius of

convergence of the Taylor series of this function in 0 is 2π
n . A similar argument shows that

the corresponding global multiplication x ∗ y := logG(expG(x) expG(y)) on L(G) is smooth but
not analytic. With Robart’s Criterion (Theorem IV.1.7), this follows from the fact that the power
series

∞∑

k=0

tkDken = (1 − tn)−1en

is not convergent for |t| > 1
n .

For details concerning the following results, we refer to [GN06] (see also [Mil82, 4.3] for some
of the statements). Minor modifications of the corresponding argument for finite-dimensional,
resp., Banach–Lie groups lead to the following lemma, which in turn is the key to the following
theorem:

Lemma IV.1.17. Let G be a locally exponential Lie group. For x, y ∈ L(G) , we have the
Trotter Product Formula

expG(x + y) = lim
n→∞

(
expG

(x
n

)
expG

( y
n

))n

and the Commutator Formula

expG([x, y]) = lim
n→∞

(
expG

(x
n

)
expG

( y
n

)
expG

(
− x

n

)
expG

(
− y

n

))n2

.

Theorem IV.1.18. (Automatic Smoothness Theorem) Each continuous homomorphism
ϕ:G→ H of locally exponential (BCH) Lie groups is smooth (analytic).
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For (local) Banach–Lie groups, Theorem IV.1.18 can already be found in [Bir38], and for
BCH–Lie groups in [Gl02c] (see also [Mil84] for the statement without proof). The special case
of one-parameter groups R → A× , where A is a Banach algebra is due to Nagumo ([Nag36])
and Nathan ([Nat35]). Mostly such “automatic smoothness” theorems concern continuous
homomorphisms ϕ:G→ H of Lie groups, where H is a Lie group with an exponential function
for which each continuous one-parameter group is of the form γx(t) = expH(tx) and G is locally
exponential. We then obtain a map L(ϕ):L(G) → L(H) by ϕ(expG(tx)) = expH(tL(ϕ)x) for
t ∈ R and x ∈ L(G), and then it remains to show that L(ϕ) is continuous and linear.

The following theorem is due to Maissen for Banach–Lie groups ([Mais62, Satz 10.3]):

Theorem IV.1.19. Let G and H be Lie groups and ψ:L(G) → L(H) a continuous homo-
morphism of Lie algebras. Assume that G is locally exponential and 1-connected and that H has
a smooth exponential function. Then there exists a unique morphism of Lie groups ϕ:G → H
with L(ϕ) = ψ .

Proof. (Idea) Let Ug ⊆ g = L(G) be a convex balanced 0-neighborhood mapped diffeomor-
phically by the exponential function to an open subset UG of G .

First one observes that ψ∗κL(H) = ψ ◦ κL(G) (cf. (2.5.5)). For the map

f :UG → H, expG(x) 7→ expH(ψ(x)),

this leads to δ(f) = f∗κH = ψ ◦ κG, showing that the L(H)-valued 1-form ψ ◦ κG is locally
integrable. Since this form on G is left invariant and G is 1-connected, it is globally integrable to
a function ϕ:G→ H with ϕ(1) = 1 and δ(ϕ) = ψ◦κG (Theorem III.1.2). Now Proposition II.4.1
implies that ϕ is a group homomorphism, and by construction L(ϕ) = α1 = ψ .

Since we do not know if all Lie groups with an exponential function are regular, the
preceding theorem is not a consequence of Theorem III.1.5.

Corollary IV.1.20. If G1 and G2 are locally exponential 1-connected Lie groups with
isomorphic Lie algebras, then G1 and G2 are isomorphic.

Remark IV.1.21. It is instructive to compare Corollary IV.1.20 with the corresponding state-
ment for regular Lie groups (Corollary III.1.6). They imply that there exists for each locally
convex Lie algebra g at most one 1-connected Lie group G which is regular and at most one
1-connected locally exponential Lie group H with L(G) = L(H) = g . The regularity of G
implies that idg integrates to a smooth homomorphism ϕ:H → G , but we do not know if there
is a morphism ψ:G→ H with L(ψ) = idg (cf. Problem III.1).

Presently we do not know if all locally exponential Lie groups (modeled on Mackey complete
spaces) are regular, therefore it is still conceivable that there might be locally exponential Lie
algebras which are the Lie algebra of a 1-connected regular Lie group and a non-isomorphic
1-connected locally exponential Lie group which is not regular.

Remark IV.1.22. Theorem IV.1.18 implies in particular that being a locally exponential Lie
group is a topological property: Any topological group G carries at most one structure of a locally
exponential Lie group. We thus adjust our terminology in the sense that we call a topological
group locally exponential if it carries a locally exponential Lie group structure compatible with
the topology.

Forgetting the differentiable structure on G , it becomes an interesting issue how to recover
it. In view of Theorem IV.1.18, we recover the Lie algebra L(G), as a set, by identifying
x ∈ L(G) ∼= T1(G) with the corresponding one-parameter group γx(t) = expG(tx). Starting
from G , as a topological group, we may then put L(G) := Homc(R, G), the set of continuous
homomorphisms R → G . The scalar multiplication of L(G) can be written as

(4.1.4) (λα)(t) := α(λt), λ ∈ R, α ∈ Homc(R, G),
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and, in view of Lemma IV.1.17, addition and Lie bracket may be written on the level of one-
parameter groups by

(4.1.5) (α+ β)(t) := lim
n→∞

(
α(
t

n
)β(

t

n
)
)n

and

(4.1.6) [α, β](t2) := lim
n→∞

(
α(
t

n
)β(

t

n
)α(− t

n
)β(− t

n
)
)n2

.

We can also recover the topology on L(G) as the compact open topology on L(G), and the
exponential function as the evaluation map

(4.1.7) expG: Homc(R, G) → G, γ 7→ γ(1).

In [HoMo05/06], Hofmann and Morris use (4.1.4-7) as the starting point in the investi-
gation of a remarkable class of topological groups:

Definition IV.1.23. Let G be a topological group and L(G) := Homc(R, G) the set of one-
parameter groups, endowed with the compact open topology. Then G is said to be a topological
group with Lie algebra if the limits in (4.1.5/6) exist for α, β ∈ Homc(R, G) and define elements
of L(G), addition and bracket are continuous maps L(G) × L(G) → L(G), and L(G) is a real
Lie algebra with respect to the scalar multiplication (4.1.4), the addition (4.1.5), and the bracket
(4.1.6). This implies that L(G) is a topological Lie algebra. The exponential function of G is
defined by (4.1.7).

In [BCR81], Boseck, Czichowski and Rudolph define smooth functions on a topological
group in terms of restrictions to one-parameter groups, which leads them to (4.1.4-7), together
with the assumption that L(G) can be identified with the set of derivations of the algebra of
germs of smooth functions in 1 ([BCR81, Sect. 1.5]).

We have just seen that any locally exponential Lie group is a topological group with Lie
algebra. Since R is connected, a topological group G has a Lie algebra if and only if its identity
component G0 does. In [HoMo05, Th. 2.3], it is also observed that any abelian topological group
is a group with Lie algebra, where the addition on L(G) is pointwise multiplication and the
bracket is trivial (cf. Problem IV.7).

Theorem IV.1.24. Each 2-step nilpotent topological group has a Lie algebra.

Proof. (Sketch) The commutator map c:G×G→ Z(G) is an alternating bihomomorphism.
Then direct calculations lead to the formulas

(α+ β)(t) = α(t)β(t)c(α(t), β(− t
2 )) and [α, β](t) = c(α(1), β(t)),

which can be used to verify all requirements.

We shall return to topological groups with Lie algebras in our discussion of projective limits
in Section X.

Remark IV.1.25. We have seen in Corollary IV.1.20 that a 1-connected locally exponential
Lie group G is completely determined up to isomorphism (as a topological group) by its Lie
algebra.

If G is connected but not simply connected, then we have a universal covering morphism
qG: G̃ → G and ker qG ∼= π1(G) is a discrete central subgroup of G̃ with G ∼= G̃/ ker qG . It

is easy to see that two discrete central subgroups Γ1,Γ2 ⊆ Z(G̃) lead to isomorphic quotient

groups G̃/Γ1 and G̃/Γ2 if and only if there exists an automorphism ϕ ∈ Aut(G̃) ∼= Aut(L(G))
with ϕ(Γ1) = Γ2 . Therefore the isomorphism classes of connected Lie groups G with a given
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Lie algebra g ∼= L(G) are parametrized by the orbits of Aut(g) ∼= Aut(G̃) in the set of discrete

central subgroup of G̃ .

If G0 and a discrete group Γ are given, then the determination of all Lie groups G with
identity component G0 and component group π0(G) ∼= Γ corresponds to the classification of all
Lie group extensions

1 → G0 →֒ G→→ Γ → 1,

i.e., to a description of the set Ext(Γ, G0). Extension problems of this type are discussed in
Section V.1 below.

IV.2. Locally exponential Lie algebras

We now turn to the Lie algebras which are candidates for Lie algebras of locally exponential
Lie groups. We call these Lie algebras “locally exponential”. They are defined by the requirement
that some 0-neighborhood carries a local group structure in “canonical” coordinates, i.e., the
additive one-parameter groups t 7→ tx , should also be one-parameter groups for the local group
structure (cf. [Bir38], [Lau55]).

Definition IV.2.1. A locally convex Lie algebra g is called locally exponential if there exists
a circular convex open 0-neighborhood U ⊆ g and an open subset D ⊆ U ×U on which we have
a smooth map

mU :D → U, (x, y) 7→ x ∗ y

such that (U,D,mU , 0) is a local Lie group (Definition II.1.10) satisfying:

(E1) For x ∈ U and |t|, |s|, |t+ s| ≤ 1, we have (tx, sx) ∈ D with tx ∗ sx = (t+ s)x.

(E2) The second order term in the Taylor expansion of mU is b(x, y) = 1
2 [x, y].

The Lie algebra g is called exponential if U = g and D = g × g .

Since any local Lie group on an open subset of a locally convex space V leads to a Lie
algebra structure on V (Definition II.1.10), condition (E2) only ensures that g is the Lie algebra
of the local group (cf. Remark II.1.8).

Using exponential coordinates, we directly get:

Lemma IV.2.2. The Lie algebra L(G) of a locally exponential Lie group G is locally expo-
nential.

Definition IV.2.3. We call a locally exponential Lie algebra g enlargeable if it is integrable
to a locally exponential Lie group G . As we shall see in Remark IV.2.5 below, this is equivalent
to the enlargeability of some associated local group in g .

Examples IV.2.4. (a) All BCH–Lie algebras, hence in particular all Banach–Lie algebras and
therefore all finite-dimensional Lie algebras are locally exponential (Example IV.1.6).

A different existence proof for the local multiplication on a Banach–Lie algebra g is given

by Laugwitz ([Lau56]): As a first step, we observe that κg(x) := 1−e− ad x

ad x defines a smooth map
κg: g → L(g) with κg(0) = idg , so that its values are invertible on some 0-neighborhood. We
consider κg as a g-valued 1-form on g . Then one verifies that κg satisfies the Maurer–Cartan
equation, which implies the existence of an open 0-neighborhood U such that for each x ∈ U
the (partial differential) equation

f∗κg = κg, f(0) = x

has a unique solution fx on U . For x, y close to 0, the composition fx◦fy is then defined on some
0-neighborhood and satisfies fx◦fy(0) = fx(y) = ffx(y)(0) as well as (fx◦fy)∗κg = f∗y f

∗
xκg = κg ,
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which implies fx ◦ fy = ffx(y) on some 0-neighborhood. For x ∗ y := fx(y), this leads to the
associativity condition

x ∗ (y ∗ z) = (x ∗ y) ∗ z

on some 0-neighborhood in g , hence to a local group structure. As κg satisfies κg(x)x = x for
each x ∈ g , the curves t 7→ tx are local one-parameter groups. This corresponds to condition
(E1).

(b) If g is locally exponential and M a compact manifold, then C∞(M, g) is also locally
exponential with respect to (x ∗ y)(m) := x(m) ∗ y(m) for all m ∈M and x, y close to 0.

Remark IV.2.5. A similar reasoning as in the proof of Theorem IV.1.19 implies that any
morphism f : g → h of locally exponential Lie algebras satisfies f(x ∗ y) = f(x) ∗ f(y) for x, y
close to 0. Applying this to f = idg shows in particular that the Lie algebra g determines
the germ of the local multiplication x ∗ y (cf. [Lau56] for the Banach case). We know that this
multiplication need not be analytic, not even if it is defined on all of g × g (Example IV.1.16).

Suppose that g is an exponential Lie algebra for which the group (g, ∗) is regular. Then
(g, ∗) is the unique 1-connected regular Lie group with Lie algebra g . If G is any 1-connected Lie
group (regular or not) with L(G) = g , and G has an exponential function expG:L(G) = g → G ,
then expG is a group homomorphism (g, ∗) → G (cf. Propositions II.4.1 and II.5.7). The
regularity of (g, ∗) implies the existence of a unique homomorphism LogG:G → (g, ∗) with
L(LogG) = idg , and the uniqueness assertion of Proposition II.4.1 yields LogG ◦ expG = idg

and expG ◦LogG = idG . Since on any Mackey complete nilpotent Lie algebra g , the BCH
multiplication defines a regular Lie group structure ([GN06]), these arguments lead to the
following theorem:

Theorem IV.2.6. If G is a connected nilpotent Lie group with a smooth exponential function
and L(G) is Mackey complete, then the exponential function

expG: (L(G), ∗) → G

is a covering morphism of Lie groups. In particular, G ∼= (L(G), ∗)/Γ for a discrete subgroup
Γ ⊆ z(g) , isomorphic to π1(G) . Moreover, G is regular and locally exponential.

This generalizes a result of Michor and Teichmann who showed in [MT99] that any
connected regular abelian Lie group G is of the form L(G)/Γ for a discrete subgroup Γ ∼= π1(G)
of L(G). Related results can be found in [Ga96], where locally exponential abelian Fréchet–Lie
groups are studied as projective limits of Banach–Lie groups.

Without any completeness assumption we obtain the following very natural intrinsic char-
acterization of the BCH series as the only Lie series which leads on nilpotent Lie algebras to a
group multiplication satisfying (E1).

Proposition IV.2.7. If G is a 1-connected exponential nilpotent Lie group, then G ∼=
(L(G), ∗) , where ∗ denotes the (polynomial) BCH multiplication on L(G) .

We have already seen that the Lie bracket on a locally exponential Lie algebra g determines
the germ of the corresponding local multiplication (Remark IV.2.5), hence in particular its Taylor
series in (0, 0). The preceding proposition is the key step to the following theorem, identifying
this series as the BCH series. In the Banach context, the corresponding result is due to Birkhoff
([Bir38]). Its statement can be found in [Mil82] as Lemma 4.4, with the hint that it can be
proved with the methods used in [HS68] in the finite-dimensional case, which is based on formula
(4.1.1). Since the spectra of the operators adx and ad y are possibly unbounded, formula (4.1.1)
makes no sense for general locally exponential Lie algebras. The situation is much better if g is
nilpotent. In this case, the operators ead x are unipotent, so that ψ(ead xead y) is a polynomial
in x and y . The reduction to this case is a key point in the proof of the following theorem.
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Theorem IV.2.8. (Universality Theorem) If g is locally exponential, then the Taylor series
of the local multiplication x ∗ y in (0, 0) is the BCH series.

Proof. (Sketch) A central idea is the following. For each Lie algebra we obtain by extension
of scalars from R to the two-dimensional algebra R[ε] of dual numbers (ε2 = 0), the Lie algebra
T (g) := g⊗R R[ε] . One can show that T (g) is also locally exponential. The local multiplication
mT (g) is the tangent map of the local multiplication mg of g and UT (g) = T (Ug) = Ug × g is
the tangent bundle of Ug ⊆ g .

Iterating this procedure, we obtain a sequence of locally exponential Lie algebras

T n(g) := g ⊗ R[ε1, . . . , εn] with εiεj = εjεi, ε
2
i = 0,

whose local multiplication T n(mg) induces a global multiplication on the nilpotent ideal J E

T n(g) which is the kernel of the augmentation map T n(g) → g . Applying Proposition IV.2.7 to
(J, T n(mg)) now shows that the n-th order Taylor polynomial of mg in (0, 0) is given by the
BCH series.

For the discussion of quotients of locally exponential groups below, the following theorem
is crucial:

Theorem IV.2.9. (Quotient Theorem for locally exponential Lie algebras) Let g be a locally
exponential Mackey complete Lie algebra and n E g a closed ideal. Then g/n is locally exponential
if and only if

(1) n is stable, i.e., ead x(n) = n for each x ∈ g , and

(2) κg(x)n = n for each x in some 0-neighborhood of g .

If n is the kernel of a morphism ϕ: g → h of locally exponential Lie algebras, then n is
locally exponential and both conditions are satisfied, so that ϕ factors through the quotient map
q: g → g/n to an injective morphism ϕ: g/n → h of locally exponential Lie algebras.

The preceding result is nicely complemented by the following observation on extensions:

Theorem IV.2.10. ([GN07]) Let g be a locally exponential Lie algebra and q: ĝ → g be a
central extension, i.e., a quotient morphism with central kernel z. If z is Mackey complete, then
ĝ is locally exponential.

Remark IV.2.11. In [Hof72/75], K. H. Hofmann advocates an approach to Banach–Lie
groups by defining a Banach–Lie group as a topological group possessing an identity neighborhood
isomorphic (as a topological local group) to the local group defined by the BCH multiplication
in a 0-neighborhood of a Banach–Lie algebra. A key point of this perspective is that Banach–
Lie groups form a full sub-category of the category of topological groups (Theorem IV.1.18,
Remark IV.1.22). Due to the analyticity of the BCH multiplication, this approach works quite
well for Banach–Lie groups, and also for the larger class of BCH Lie groups which behave in almost
all respects like Banach–Lie groups. Although one may think that one can adopt a similar point
of view for locally exponential Lie groups, a closer analysis of the arguments used in this theory
to pass from infinitesimal to local information shows that the behavior of locally exponential
groups is far from being controlled by topology. Actually the arguments we use are much closer
to the original approach to Lie theory via differential equations (cf. Examples IV.2.4).

Giving up the analyticity requirement of the local multiplication in an identity neighbor-
hood implies that we have to work in a smooth category to prove uniqueness assertions. The
Maurer–Cartan form and the Uniqueness Lemma are the fundamental tools. In the analytic
context, one can often argue quite directly by analytic continuation.
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IV.3. Locally exponential Lie subgroups

It is a well-known result in finite-dimensional Lie theory that each closed subgroup H of a
Lie group G carries a natural Lie group structure turning it into a submanifold of G (see [vN29]
for closed subgroups of GLn(R)). This becomes already false for closed subgroups of infinite-
dimensional Hilbert spaces, which contain contractible subgroups not containing any smooth arc.
Therefore additional assumptions on closed subgroups are needed to make them accessible by
Lie theoretic methods. Since we already know that each topological group carries at most one
locally exponential Lie group structure, it is clear that a closed subgroup deserves to be called
a Lie subgroup if it is a locally exponential Lie group with respect to the induced topology. For
Banach–Lie groups, this is precisely Hofmann’s approach, and for several of the results described
below, Banach versions can be found in [Hof75].

Lie subgroups and factor groups

Lemma IV.3.1. For every closed subgroup H of the locally exponential Lie group G , we have

Ld(H) = Le(H) := {x ∈ L(G): expG(Rx) ⊆ H},

and this is a closed Lie subalgebra of L(G) .

Proof. The equality Le(H) = Ld(H) follows from limn→∞ γ
(
t
n

)n
= expG(tγ′(0)) for each

curve γ: [0, 1] → H with γ(0) = 1 which is differentiable in 0 because we can write it on some
interval [0, ε] as γ = expG ◦η with some C1 -curve η in L(G) with η(0) = 0. The closedness
follows from the obvious closedness of Le(H).

In the following we shall keep the notation Le(H) = {x ∈ L(G): expG(Rx) ⊆ H} for a
subgroup H of a Lie group G with an exponential function, because if H is not closed or G is
not locally exponential, it is not clear that this set coincides with Ld(H)

Definition IV.3.2. A closed subgroup H of a locally exponential Lie group G is called a
locally exponential Lie subgroup, or simply a Lie subgroup, if H is a locally exponential Lie group
with respect to the induced topology (cf. Remark IV.1.22).

A Banach version of the following theorem is Proposition 3.4 in [Hof75].

Theorem IV.3.3. For a closed subgroup H of the locally exponential Lie group G the
following are equivalent:

(1) H is a locally exponential Lie group.

(2) There exists an open 0-neighborhood V ⊆ L(G) such that expG |V is a diffeomorphism onto
an open 1-neighborhood in G and expG(V ∩ Le(H)) = expG(V ) ∩H.
In particular, each locally exponential Lie subgroup is a submanifold of G .

Proposition IV.3.4. If ϕ:G′ → G is a morphism of locally exponential Lie groups and
H ⊆ G is a locally exponential Lie subgroup, then H ′ := ϕ−1(H) is a locally exponential Lie
subgroup. In particular, kerϕ is a locally exponential Lie subgroup of G′ .

The preceding proposition implies in particular that if a quotient G/N by a closed normal
subgroup N is locally exponential, then N is a locally exponential Lie subgroup. But the
converse is more subtle:
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Theorem IV.3.5. (Quotient Theorem for locally exponential groups) For a closed normal
subgroup N E G the following are equivalent:

(1) G/N is a locally exponential Lie group.

(2) N is a locally exponential Lie subgroup and L(G)/Le(N) is a locally exponential Lie algebra.

(3) N is a locally exponential Lie subgroup and κL(G)(x)(L
e(N)) = Le(N) for x ∈ L(G)

sufficiently close to 0 .

If N is the kernel of a morphism ϕ:G→ H of locally exponential Lie groups, then G/ kerϕ
is a Lie group, so that ϕ factors through a quotient map G→ G/ kerϕ and an injective morphism
ϕ:G/ kerϕ of locally exponential Lie groups.

Since quotients of BCH–Lie algebras are BCH–Lie algebras, no matter whether they are
complete or not ([Gl02c, Th. 2.20]), we get the following corollary, whose Banach version is also
contained in [Hof75, Prop. 3.6] and [GN03].

Corollary IV.3.6. (Quotient Theorem for BCH–Lie groups) A closed normal subgroup N of
a BCH–Lie group G is a BCH–Lie group if and only if the quotient G/N is a BCH–Lie group.

If ϕ:G→ H is an injective morphism of locally exponential Lie groups, then the preceding
theorem provides no additional information. In Section IV.4, we shall encounter this situation
for integral subgroups of G . The following example provides a bijective morphism ϕ for which
L(ϕ) is not surjective. The only way to avoid this pathology is to assume that L(G) is separable
(cf. Theorems IV.4.14/15 below). That not all surjective morphisms of locally exponential Lie
groups are quotient morphisms can already be seen for surjective continuous linear maps between
non-Fréchet spaces.

Example IV.3.7. We give an example of a proper closed subalgebra h of the Lie algebra L(G)
of some Banach–Lie group G for which 〈exp h〉 = G ([HoMo98, p.157]).

We consider the abelian Lie group g := ℓ1(R,R)×R , where the group structure is given by
addition. We write (er)r∈R for the canonical topological basis elements of ℓ1(R,R). Then the
subgroup D generated by the pairs (er,−r), r ∈ R , is closed and discrete, so that G := g/D is
an abelian Lie group. Now we consider the closed subalgebra h := ℓ1(R,R) of g . As h +D = g ,
we have H := expG h = G , and therefore (0, 1) ∈ Le(H) \ h.

The map ϕ := expG |h: (h,+) → G is a surjective morphism of Lie groups for which L(ϕ)
is the inclusion of the proper subalgebra h .

That for connected Banach–Lie groups G the center Z(G) = kerAd is a locally exponential
Lie subgroup follows immediately from Proposition IV.3.4 (cf. [Lau55]). For non-Banach–Lie
algebras g , Aut(g) carries no natural Lie group structure, so that Proposition IV.3.4 does not
apply. This makes the following theorem quite remarkable. The crucial point in its proof is to
show that for the exponential function

(4.3.1) Exp: g/z(g) → Aut(g), x 7→ ead x,

the point 0 is isolated in Exp−1(idg) (cf. Problems II.4 and IX.1).

Theorem IV.3.8. Let g be a locally exponential Lie algebra. Then the adjoint group Gad :=
〈ead g〉 ⊆ Aut(g) carries the structure of a locally exponential Lie group whose Lie algebra is the
quotient gad := g/z(g) and (4.3.1) its exponential function.

Combining the preceding theorem with Proposition IV.3.4, we get:

Corollary IV.3.9. If G is a connected locally exponential Lie group, then its center Z(G) =
kerAd is a locally exponential Lie subgroup.
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Algebraic subgroups

The concept of an algebraic subgroup of a Banach–Lie algebra, introduced by Harris and
Kaup ([HK77]), provides very convenient criteria which in many concrete cases can be used to
verify that a closed subgroup H of a Banach–Lie group is a Banach–Lie subgroup.

Definition IV.3.10. Let A be a unital Banach algebra. A subgroup G ⊆ A× is called
algebraic if there exists a d ∈ N0 and a set F of Banach space-valued polynomial functions on
A×A of degree ≤ d such that

G = {g ∈ A×: (∀f ∈ F) f(g, g−1) = 0}.

Theorem IV.3.11. ([HK77], [Ne04b, Prop. IV.14]) Every algebraic subgroup G ⊆ A× of the
unit group A× of a Banach algebra A is a Banach–Lie subgroup.

Corollary IV.3.12. Let E be a Banach space and F ⊆ E a closed subspace. Then

GL(E,F ) := {g ∈ GL(E): g(F ) = F}

is a Banach–Lie subgroup of GL(E) .

Corollary IV.3.13. Let E be a Banach space and v ∈ E . Then

GL(E)v := {g ∈ GL(E): g(v) = v}

is a Banach–Lie subgroup of GL(E) .

Corollary IV.3.14. For each continuous bilinear map β:E ×E → E on a Banach space E ,
the group

Aut(E, β) := {g ∈ GL(E):β ◦ (g × g) = g ◦ β}

is a Banach–Lie subgroup of GL(E) with Lie algebra

der(E, β) := {D ∈ gl(E): (∀v, w ∈ E) D.β(v, w) = β(D.v, w) + β(v,D.w)}.

Corollary IV.3.15. For each bilinear map β:E × E → K , the group

O(E, β) := {g ∈ GL(E):β ◦ (g × g) = β}

is a Banach–Lie subgroup of GL(E) with Lie algebra

o(E, β) := {D ∈ gl(E): (∀v, w ∈ E) β(D.v, w) + β(v,D.w) = 0}.

Closed subgroups versus Lie subgroups

For finite-dimensional Lie groups, closed subgroups are Lie subgroups (cf. [vN29]), but for
Banach–Lie groups this is no longer true. What remains true is that locally compact subgroups
(which are closed in particular) are Lie subgroups. For subgroups of Banach algebras the following
theorem is due to Yosida ([Yo36]) and for general Banach–Lie groups to Laugwitz ([Lau55],
[Les66]). Although the arguments in the Banach case do not immediately carry over because unit
spheres for seminorms are no longer bounded, one can use Glöckner’s Implicit Function Theorem
([Gl03a]) to get:
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Theorem IV.3.16. ([GN06]) Each locally compact subgroup of a locally exponential Lie group
is a finite-dimensional Lie subgroup.

Remark IV.3.17. How bad closed subgroups may behave is illustrated by the following exam-
ple ([Hof75, Ex. 3.3(i)]): We consider the real Hilbert space G := L2([0, 1],R) as a Banach–Lie
group. Then the subgroup H := L2([0, 1],Z) of all those functions which almost everywhere take
values in Z is a closed subgroup. Since the one-parameter subgroups of G are of the form Rf ,
f ∈ G , we have Le(H) = {0} . On the other hand, the group H is arc-wise connected. It is
contractible, because the map F : [0, 1]×H → H given by

F (t, f)(x) :=

{
f(x) for 0 ≤ x ≤ t
0 for t < x ≤ 1

is continuous with F (1, f) = f and F (0, f) = 0.

IV.4. Integral subgroups

It is a well-known result in finite-dimensional Lie theory that for each subalgebra h of the
Lie algebra g = L(G) of a finite-dimensional Lie group G , there exists a Lie group H with Lie
algebra h together with an injective morphism of Lie groups ι:H → G for which L(ι): h → g is
the inclusion map. As a group, H coincides with 〈exp h〉 , the analytic subgroup corresponding
to h , and h can be recovered from this subgroup as the set Le(H) = {x ∈ L(G): exp(Rx) ⊆ H}.
This nice and simple theory of analytic subgroups and integration of Lie algebra inclusions
h →֒ L(G) becomes much more subtle for infinite-dimensional Lie groups. Even for Banach–Lie
groups some pathologies arise. Here any inclusion h →֒ L(G) of Banach–Lie algebras integrates
to an “integral” subgroup H →֒ G , but if the Banach–Lie algebra h is not separable, then it may
happen that h cannot be recovered from the abstract subgroup H of G . In Example IV.3.7, it
even occurs that h 6= L(G) and H = G .

Definition IV.4.1. Let G be a Lie group with an exponential function, so that we obtain for
each x ∈ L(G) an automorphism ead x := Ad(expG x) ∈ Aut(L(G)). A subalgebra h ⊆ L(G) is
called stable if

ead x(h) = Ad(expG x)(h) = h for all x ∈ h.

An ideal n E L(G) is called a stable ideal if ead x(n) = n for all x ∈ L(G).

The following lemma shows that stability of kernel and range is a necessary requirement
for the integrability of a homomorphism of Lie algebras.

Lemma IV.4.2. If ϕ:G→ H is a morphism of Lie groups with an exponential function, then
im(L(ϕ)) is a stable subalgebra of L(H) , and ker(L(ϕ)) is a stable ideal of L(G) .

Proof. We have ϕ ◦ expG = expH ◦L(ϕ), which leads to

L(ϕ) ◦ ead x = L(ϕ) ◦ Ad(expG x) = L(ϕ ◦ cexpG x) = L(cϕ(expG x) ◦ ϕ)

= Ad(expH L(ϕ)x) ◦ L(ϕ) = eadL(ϕ)(x) ◦ L(ϕ).

We conclude in particular that im(L(ϕ)) is a stable subalgebra and that ker(L(ϕ)) is a stable
ideal.

Lemma IV.4.3. (a) Each closed subalgebra which is finite-dimensional or finite-codimensional
is stable.

(b) Let g be a BCH Lie algebra. Then each closed subalgebra h ⊆ g and each closed ideal
n E g is stable.
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(c) If h →֒ g is a continuous inclusion of locally convex Lie algebras such that for each
x ∈ h the operators adh x and adg x are integrable on h , resp., g , then h is a stable subalgebra
of g .

Proof. (a) (cf. [Omo97, Lemma III.4.8]) If h is finite-dimensional, then the Uniqueness Lemma
implies for x ∈ h the relation eadx |h = eadx|h . If h is finite-codimensional and q: g → g/h the
projection map, then the curve γ(t) := q(et ad xy) satisfies the linear ODE γ′(t) = adg/h(x)γ(t),
hence vanishes for y ∈ h .

(b) Since g is BCH, the map x 7→ ead xy = x ∗ y ∗ (−x) is analytic on some open 0-
neighborhood, hence given by the power series

∑∞
n=0

1
n!(adx)ny . Therefore the closedness of h

implies that for x close to 0 we have ead x(h) ⊆ h . This implies stability. A similar argument
yields the stability of closed ideals.

(c) We apply Lemma II.3.10 to see that eadg xy = eadh xy ∈ h holds for x, y ∈ h .

In view of the preceding lemma, stability causes no problems for BCH–Lie algebras, but
the condition becomes crucial in the non-analytic context.

Example IV.4.4. The first example of a closed Lie subalgebra h of some L(G) which does
not integrate to any group homomorphism is due to H. Omori (cf. [Mil84, 8.5]).

We consider the group G := Diff(T2) of diffeomorphisms of the 2-dimensional torus and
use coordinates (x, y) ∈ [0, 1]2 corresponding to the identification T2 ∼= R2/Z2 . Then

h :=
{
f
∂

∂x
+ g

∂

∂y
:
1

2
≤ x ≤ 1 ⇒ g(x, y) = 0

}

is easily seen to be a closed Lie subalgebra of g = V(T2). The vector field X := ∂
∂x generates

the smooth action α: T → Diff(T2) of T on T2 given by [z].([x], [y]) = ([x+ z], [y]) . This vector
field is contained in h , but

e
1
2 adXh = Ad(α(1

2 ))h =
{
f
∂

∂x
+ g

∂

∂y
: 0 ≤ x ≤ 1

2
⇒ g(x, y) = 0

}
6= h.

This shows that h is not stable and hence that it does not integrate to any subgroup of Diff(T2)
with an exponential function.

Example IV.4.5. Let E := C∞(R,R) and consider the one-parameter group α: R → GL(E)
given by α(t)(f)(x) = f(x + t). Then R acts smoothly on E , so that we can form the
corresponding semi-direct product group G := E ⋊α R. This is a Lie group with a smooth
exponential function given by

expG(v, t) =
( ∫ 1

0

α(st).v ds, t
)
, where

(∫ 1

0

α(st).v ds
)
(x) =

∫ 1

0

v(x + st) ds.

The Lie algebra g = L(G) has the corresponding semi-direct product structure g = E⋊DR with
Dv = v′ , i.e.,

[(f, t), (g, s)] = (tg′ − sf ′, 0).

In g , we now consider the subalgebra h := E[0,1] ⋊ R , where

E[0,1] := {f ∈ E: supp(f) ⊆ [0, 1]}.

Then h is a closed subalgebra of g . It is not stable because α(−t)E[0,1] = E[t,t+1]. The subgroup
of G generated by expG h contains {0} ⋊ R , E[0,1] , and hence all subspaces E[t,t+1] , which
implies that 〈expG h〉 = C∞c (R) ⋊ R .

Lemma IV.4.2 implies that the inclusion h →֒ g does not integrate to a homomorphism
ϕ:H → G for any Lie group H with an exponential function and L(H) = h .
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Example IV.4.6. Let E ⊆ C∞(R,C) be the closed subspace of 1-periodic functions, µ ∈ R× ,
and consider the homomorphism α: R → GL(E) given by

(α(t)f)(x) := eµtf(x+ t).

That the corresponding R-action on E is smooth follows from the smoothness of the translation
action and one can show that the group G := E⋊αR is exponential with Lie algebra g = E⋊DR
and Df = µf + f ′ ([GN06]). In particular, the product x ∗ y := exp−1

G (expG(x) expG(y)) is
globally defined on g .

Let M ⊆ [0, 1] be an open subset which is not dense and put

EM := {f ∈ E: f |M = 0}.

Then EM is a closed subspace of E with DEM ⊆ EM but α(t)(EM ) = EM−t 6⊆ EM for some
t ∈ R . Therefore hM := EM ⋊D R ⊆ g = E ⋊D R is a closed subalgebra of the exponential
Fréchet–Lie algebra g which is not stable. Since ead xy = x∗y ∗ (−x) for all x, y ∈ g , this implies
in particular that h is not closed under the ∗ -multiplication.

Definition IV.4.7. Let G be a Lie group. An integral subgroup is an injective morphism
ι:H → G of Lie groups such that H is connected and the differential L(ι):L(H) → L(G) is
injective.

Remark IV.4.8. Let ι:H → G be an integral subgroup and assume that H and G have
exponential functions. Then the relation

(4.4.1) expG ◦L(ι) = ι ◦ expH

implies that ker(L(ι)) = L(ker ι) = {0}, so that L(ι):L(H) → L(G) is an injective morphism
of topological Lie algebras, which implies in particular that h := im(L(ι)) is a stable subalgebra
of L(G) (Lemma IV.4.2). Moreover, (4.4.1) shows that the subgroup ι(H) of G coincides, as
a set, with the subgroup 〈expG h〉 of G generated by expG h . Therefore a locally exponential
integral subgroup can be viewed as a locally exponential Lie group structure on the subgroup of
G generated by expG h .

Theorem IV.4.9. (Integral Subgroup Theorem) Let G be a Lie group with a smooth expo-
nential function and α: h → L(G) an injective morphism of topological Lie algebras, where h is
locally exponential. We assume that the closed subgroup

Γ := {x ∈ z(h): expG(α(x)) = 1}

is discrete. Then there exists a locally exponential integral subgroup ι:H → G with L(H) = h

and L(ι) = α . In particular, h is integrable to a locally exponential Lie group.

The discreteness of Γ is automatic in the following two special cases (cf. Problem II.4).

Corollary IV.4.10. Let G be a Lie group with a smooth exponential function and h locally
exponential. Then any injective morphism α: h → L(G) integrates to a locally exponential integral
subgroup if one of the following two conditions is satisfied:

(1) z(h) is finite-dimensional.

(2) G is locally exponential.

Corollary IV.4.10(1) is a substantial generalization of the main result of [Pe95b] which
assumes that G is regular and h is Banach. Other special cases can be found in many places
in the literature, such as [MR95, Th. 2]. The versions given in [RK97, Th. 2] and [Rob97,
Cor. 2] contradict the existence of unstable closed subalgebras in locally exponential Lie algebras
(Example IV.4.6). For Banach–Lie groups it is contained in [EK64], and for BCH–Lie groups in
[Rob97].
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Remark IV.4.11. (a) In [Rob97], Robart gives a criterion for the existence of integral
subgroups of a locally exponential Lie group G for a prescribed injective morphism α: h → g =
L(G): The Lie algebra morphism α can be integrated to an integral subgroup if and only if h/z(h)
is the Lie algebra of a locally exponential Lie group isomorphic to Had := 〈ead h〉 ⊆ Aut(h) with
exponential function as in (4.3.1). In view of Theorems IV.2.10 and IV.3.8, for Mackey complete
Lie algebras, this condition is equivalent to h being locally exponential. This argument shows
in particular, that Robart’s concept of a Lie algebra of the first kind coincides with our concept
of a locally exponential Lie algebra. In the light of this remark, Theorem 5 in [Rob97] can be
read as a version of our Corollary IV.4.10(2), whereas Corollary IV.4.10(1) corresponds to his
Theorem 8. We do not understand the precise meaning of his remark concerning a generalization
to the case where z(h) is infinite-dimensional by simply refining the topology.

(b) Even for a closed subalgebra h ⊆ g := L(G), the condition that it is locally exponential
is quite subtle. It means that for x, y sufficiently close to 0 in h , we have x ∗ y ∈ h . If g is
BCH and h is closed, this is clearly satisfied, but if g is not BCH, not every closed subalgebra
satisfies this condition because it implies stability (Example IV.4.5).

To verify this condition, one would like to show that the integral curve γ(t) := x ∗ ty of
the left invariant vector field yl through x does not leave the closed subspace h of g . This leads
to the necessary condition T0(λx)(h) ⊆ h , which, under the assumption that h is stable, means

that the operator κg(x) =
∫ 1

0 e
−t ad x dt satisfies κg(x)(h) = h for x ∈ h sufficiently close to 0

(cf. Theorem IV.3.8 and Problem IV.5 below).

Example IV.4.12. (a) Applying Corollary IV.4.10 to the CIA F̂ obtained by completing the
free associative algebra in n generators x1, . . . , xn (Example IV.1.15), it follows that the closed
Lie subalgebra generated by x1, . . . , xn , i.e., the completion of the free Lie algebra, integrates
to a subgroup. As F̂ is topologically isomorphic to RN , each closed subspace is complemented
([HoMo98, Th. 7.30(iv)]), so that the existence of the corresponding integral subgroup could also
be obtained by the methods developed in [Les92, Sect. 4] which require complicated assumptions
on groups and Lie algebras.

(b) If K is a Banach–Lie group with Lie algebra k and M a compact manifold, then
the group C∞(M,K) is BCH (Theorem IV.1.12), so that the Integral Subgroup Theorem also
applies to each closed subalgebra h ⊆ C∞(M, k) (cf. [Les92, Sect. 4]).

Remark IV.4.13. (a) In [La99], S. Lang calls a subgroup H of a Banach–Lie group G a
“Lie subgroup” if H carries a Banach–Lie group structure for which there exists an immersion
η:H → G . This requires the Lie algebra L(H) of H to be a closed subalgebra of L(G) which is
complemented in the sense that there exists a closed vector space complement (cf. Remark I.2.7).
From that, it follows that his Lie subgroups coincide with the integral subgroups with closed
complemented Lie algebra (cf. Corollary IV.4.10).

The advantage of Lang’s more restrictive concept is that for a closed complemented Lie
subalgebra h ⊆ L(G) one obtains the existence of corresponding integral subgroups from the
Frobenius Theorem for Banach manifolds ([La99, Th. VI.5.4]). But it excludes in particular
closed non-complemented subspaces of Banach spaces.

(b) The most restrictive concept of a Lie subgroup is the one used in [Bou89, Ch. 3],
where a “Lie subgroup” of a Banach–Lie group G is a Banach–Lie subgroup H with the
additional property that L(H) is complemented, i.e., H is required to be a split submanifold
of G . This concept has the advantage that it implies that the quotient space G/H carries a
natural manifold structure for which the quotient map q:G → G/H is a submersion ([Bou89,
Ch. 3, §1.6, Prop. 11]). However, the condition that L(H) is complemented is very hard to check
in concrete situations and, as the Quotient Theorem and the Integral Subgroup Theorem show,
not necessary.

(c) For closed subalgebras which are not necessarily complemented, the Integral Subgroup
Theorem can already be found in [Mais62] who also shows that kernels are Banach–Lie subgroups
and that G/N is a Lie group if N is a Banach–Lie subgroup with complemented Lie algebra as
in (b). This case is also dealt with in [Hof68], [Hof75, Th. 4.1], and a local version can be found
in [Lau56].
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The following theorem generalizes [Hof75, Prop. 4.3] from Banach–Lie groups to locally
exponential ones, which is quite straightforward ([GN06]). The necessity of the separability
assumption follows from Example IV.3.7.

Theorem IV.4.14. (Initiality Theorem for integral subgroups) Let G be a Lie group with
a smooth exponential function expG:L(G) → G which is injective on some 0-neighborhood.
Further let ιH :H →֒ G be a locally exponential integral subgroup whose Lie algebra L(H) is
separable. Then the subgroup ιH(H) of G satisfies

Le(ιH(H)) = {x ∈ L(G): expG(Rx) ⊆ ιH(H)} = im(L(ιH)).

In particular, the surjectivity of ιH implies the surjectivity of L(ιH) .

If, in addition, G is locally exponential and L(H) is a closed subalgebra of L(G) , then
ιH :H → G is an initial Lie subgroup of G .

Theorem IV.4.15. ([Hof75, Prop. 4.6]) Let G be a separable Banach–Lie group and assume
that ιH :H → G is an integral subgroup with closed range. Then ιH is an embedding. In
particular, H is a Banach–Lie subgroup of G .

We conclude this section with a discussion of initial Lie subgroup structures on closed
subgroups of Banach–Lie groups and locally convex spaces.

Theorem IV.4.16. (Initiality Theorem for closed subgroups of Banach–Lie groups) Let G
be a Banach–Lie group and H ⊆ G a closed subgroup. Then H carries the structure of an
initial Lie subgroup with Lie algebra Le(H) = Ld(H) . Its identity component is an integral Lie
subgroup for the closed Lie subalgebra Le(H) of L(G) .

Proof. (Idea) We know from Lemma IV.3.1 that Ld(H) = Le(H) is a closed Lie subalgebra
of L(G). Let ι:H0 → G be the corresponding integral Lie subgroup. Since each smooth curve
γ: [0, 1] → ι(H0) ⊆ H satisfies δ(γ)(t) ∈ Ld(H) for each t and H0 is regular (Remark II.5.4),
γ is smooth as a curve to H0 , and this further permits us to conclude that H0 is initial and
coincides with the smooth arc–component of H . Now one uses Corollary II.2.3 to extend the Lie
group structure to all of H .

Theorem IV.4.17. (Initiality Theorem for closed subgroups of locally convex spaces) Let E
be a locally convex space and H ⊆ (E,+) a closed subgroup. Then H carries an initial Lie group
structure, for which H0 = Ld(H) = Le(H) is the largest vector subspace contained in H .

Proof. (Idea) For each curve α ∈ C1
∗(I, E) with im(α) ⊆ H we have tx = limn→∞ nα( tn ) ∈ H,

which leads to Ld(H) = Le(H), a closed subspace of E . For each C1 -curve γ: [0, 1] → E with
range in H , all tangent vectors lie in Ld(H). This implies that γ lies in a coset of Ld(H).
Defining the Lie group structure in such a way that Ld(H) becomes an open subgroup of H , it
follows easily that H is initial (Corollary II.2.3).

Remark IV.4.18. (Stability and distributions) (a) For a subset D ⊆ V(M), we call the
subset ∆D ⊆ T (M) defined by ∆D(m) := span{X(m):X ∈ D} the corresponding smooth
distribution. Conversely, we associate to a (smooth) distribution ∆ ⊆ T (M) the subspace
D∆ := {X ∈ V(M): (∀m ∈ M) X(m) ∈ ∆} . The distribution ∆ is said to be involutive if D∆

is a Lie subalgebra of V(M). A smooth distribution ∆D is called D -invariant if it is preserved
by the local flows generated by elements of D , and integrable it possesses (maximal) integral
submanifolds through each point of M .

Sussman’s Theorem asserts that ∆D is integrable if and only if it is D -invariant ([Sus73,
Th. 4.2]). As a special case, where all subspaces ∆D(m), m ∈ M , are of the same dimension,
we obtain Frobenius’ Theorem. The invariance condition on ∆D implies that it is involutive,
but the converse does not hold. E.g., consider on M = R2 the set D , consisting of two vector
fields

∂

∂x1
, f(x1)

∂

∂x2
with f−1(0) =] −∞, 0]



68 japsurv.tex May 23, 2006

(see also Example IV.4.4).

If M is analytic and D consists of analytic vector fields, then Nagano shows in [Naga66]
that the involutivity of the corresponding distribution is sufficient for the existence of integral
submanifolds.

(b) The invariance condition for a distribution is quite analogous to the stability condition
for a Lie subalgebra h ⊆ L(G). If, furthermore, G is analytic with an analytic exponential
function, then each closed subalgebra is stable, which is analogous to Nagano’s result (cf.
Lemma IV.4.3(b)).

To relate this to stability of Lie algebras of vector fields, assume that M is compact. If
h ⊆ V(M) is a stable subalgebra (not necessarily closed), then the corresponding distribution
∆h is stable, and Sussman’s Theorem implies that its maximal integral submanifolds are the
orbits of the subgroup H := 〈expDiff(M)(h)〉 of Diff(M) generated by the flows of elements of h

([KYMO85, Sect. 3.1]).

If, conversely, we start with a smooth distribution ∆, then the closed space h∆ of all vector
fields with values in ∆ is a Lie subalgebra if and only if ∆ is involutive. Furthermore, it is not
hard to see that Sussman’s Theorem implies that ∆ is involutive if and only if h∆ is stable. If this
is the case, the corresponding subgroup H∆ of Diff(M) satisfies h∆ ⊆ Le(H∆) ⊆ Ld(H∆) ⊆ h∆.
Now is is a natural question whether H∆ carries the structure of a Lie group. For more details
and related examples, we refer to Section 3.1 in [KYMO85].

Open Problems for Section IV

Problem IV.1. Show that for each subgroup H of a locally exponential Lie group G , the set
Le(H) = {x ∈ L(G): expG(Rx) ⊆ H} is a Lie subalgebra of G or find a counterexample.

If G is finite-dimensional, then Yamabe’s Theorem implies that the arc-component of H
is an integral subgroup (Remark II.6.5) which proves the assertion in this case. If H is closed,
then Le(H) is a Lie subalgebra by Lemma IV.3.1.

We further observe that Le(H) is invariant under all operators Ad(expG(x)) = eadx for
x ∈ Le(H). If Le(H) is closed (which is the case for each closed subgroup) and closed under
addition, then it is a closed vector subspace of L(G), and for x, y ∈ h it contains the derivative
of the curves t 7→ et ad xy in 0. This implies that it is a Lie subalgebra.

Problem IV.2. Show that for each closed subgroup H of a locally exponential Lie group G
the closed Lie subalgebra Le(H) ⊆ L(G) is locally exponential.

Problem IV.3. Find an example of a locally exponential normal Lie subgroup N of a locally
exponential Lie group G for which L(G)/L(N) is not locally exponential or prove that it always
is. In view of Theorem IV.3.5, this would imply that G/N is locally exponential.

Problem IV.4. (One-parameter groups and local exponentiality) Let α: R → GL(E) define
a smooth action of R on the Mackey complete locally convex space and D := α′(0) be its
infinitesimal generator. We then obtain a 2-step solvable Lie group G := E ⋊α R with the
product

(v, t)(v′, t′) = (v + α(t).v′, t+ t′)

and the Lie algebra g = E ⋊D R . Characterize local exponentiality of G in terms of the
infinitesimal generator D .

Writing the exponential function as expG(v, t) = (β(t).v, t) with β(t) =
∫ 1

0
α(st) ds, we

obtain the curve β: R → L(E). We are looking for a characterization of those operators D for
which there exists some T > 0 such that

(1) β(]−T , T [) ⊆ GL(E), and

(2) β̃: ]−T , T [×E → E, (t, v) 7→ β(t)−1v is smooth.
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Note that (t, v) 7→ β(t)v is always smooth. If E is a Banach space, then G is a Banach–Lie
group, hence locally exponential. In this case, D is a bounded operator and we have for each
t 6= 0:

β(t) =
1

t

∫ t

0

esD ds =
1

t

etD − 1

D
=
etD − 1

tD
=

∞∑

k=0

tk

(k + 1)!
Dk.

As β: R → L(E) is analytic w.r.t. to the operator norm on L(E), β(0) = 1 , and GL(E) is open,
conditions (1) and (2) follow immediately. Moreover, the Spectral Theorem implies that

Spec(β(t)) =
{etλ − 1

tλ
:λ ∈ Spec(D)

}
,

which means that β(t) is invertible for |t| < 2π
sup{Im(λ):λ∈Spec(D)} .

Problem IV.5. (Invariant subspaces) Let α: R → GL(E) be a smooth action of R on the
Mackey complete locally convex space E and β(t) as in Problem IV.4.

Suppose that F ⊆ E is a closed invariant subspace. Then we also have β(t)(F ) ⊆ F for
each t ∈ R . Assume that for some ε > 0 the operator β(t) is invertible for |t| ≤ ε . Show that
β(t)−1(F ) ⊆ F for |t| ≤ ε or find a counterexample. Note that this is trivially the case if F is
of finite dimension or codimension.

Problem IV.6. Show that BCH–Lie groups are regular. In [Rob04], Robart has obtained
substantial results in this direction, including that for each BCH–Lie group G with Lie algebra
g and each smooth path ξ ∈ C∞(I, g), the initial value problem

η(0) = idg, η′(t) = [η(t), ξ(t)]

has a solution in L(g). Unfortunately, it is not clear whether these solutions define curves in
GL(g).

Problem IV.7. Show that each nilpotent topological group is a topological group with Lie
algebra in the sense of Definition IV.1.23 (cf. Theorem IV.1.24).

Problem IV.8. In Theorem IV.3.3, we have seen that a locally exponential Lie subgroup H of
a locally exponential Lie group G is a submanifold, where the submanifold chart in the identity
can be obtained from the exponential function of G .

It is an interesting question whether every Lie group H which is a submanifold of a locally
exponential Lie group G is in fact a locally exponential Lie group. This is true if G is a Banach–
Lie group because this property is inherited by every subgroup which is a submanifold.

This point also concerns the use of the term “Lie subgroup,” which would also be natural
for subgroups which are submanifolds.

Problem IV.9. Develop a theory of algebraic subgroups for CIAs in the context of locally
exponential, resp., BCH–Lie groups. A typical question such a theory should answer is: For
which linear actions of a locally exponential Lie group G on a locally convex space E are the
stabilizers Gv , v ∈ E , locally exponential Lie subgroups?

Problem IV.10. Show that Theorems IV.4.15/16 remain valid for locally exponential Lie
groups.

Problem IV.11. Let G be a regular Lie group and H ⊆ G a closed subgroup. Then Le(H) is
a closed subset of L(G), stable under scalar multiplication. On the other hand, Ld(H) is a Lie
subalgebra containing Le(H). Do these two sets always coincide? If, in addition, G is µ-regular,
this follows from Lemma III.2.7.
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Problem IV.12. (a) Let G be a Lie group with a smooth exponential function. Find examples
where the Trotter Formula and/or the Commutator Formula (Lemma IV.1.17) do not hold. For
which classes of groups (beyond the locally exponential ones) are these formulas, or the more
general Lemma III.2.7, valid? What about the group Diffc(M)?

(b) What can be said about the sequence of power maps pn(x) = xn in a local Lie group?
In local coordinates with 0 as neutral element, it is interesting to consider for an element x the
sequence

(
x
n

)n
. Does it converge (to x)?

Problem IV.13. Let ∆ be an integrable distribution on the compact manifold M and H∆

the corresponding subgroup of Diff(M) preserving the maximal integral submanifolds of ∆
(Remark IV.4.18(b)). Show that H∆ is a regular Lie group.

Problem IV.14. (cf. [Rob97, p.837, Prop. 3]) Let G be a µ-regular Lie group and h ⊆ L(G) a
closed stable subalgebra. Does h integrate to an integral Lie subgroup? Since product integrals
converge in G , for two smooth curves α, β: [0, 1] → h , the curve

(α ∗ β)(t) := α(t) + Ad(γα(t)).β(t)

has values in h , which leads to a Lie group structure on C∞(I, h) with Lie algebra C∞([0, 1], h),
where the bracket is given by

[ξ, η](t) :=
[
ξ(t),

∫ t

0

η(τ) dτ
]

+
[ ∫ t

0

ξ(τ) dτ, η(t)
]

([Rob97, Th. 9]). The map E:α 7→ γα(1) is a group homomorphism, so that the problem is to
see that the quotient group (C∞(I, h), ∗)/ kerE ∼= im(E) carries a natural Lie group structure.

V. Extensions of Lie groups

In this section, we turn to some general results on extensions of infinite-dimensional Lie groups.
In Section V.1, we explain how an extension of G by N is described in terms of data associated
to G and N . This description is easily adapted from the abstract group theoretic setting (cf.
[ML68]). In Section V.2, we describe the appropriate cohomological setup for Lie theory and
explain criteria for the integrability of Lie algebra cocycles to group cocycles. This is applied in
Section V.3 to integrate abelian extensions of Lie algebras to corresponding group extensions.

V.1. General extensions

Definition V.1.1. An extension of Lie groups is a short exact sequence

1 → N
ι−−→Ĝ

q−−→G→ 1

of Lie group morphisms, for which Ĝ is a smooth (locally trivial) principal N -bundle over G
with respect to the right action of N given by (ĝ, n) 7→ ĝn . In the following, we identify N with

the subgroup ι(N) E Ĝ .

We call two extensions N →֒ Ĝ1 →→ G and N →֒ Ĝ2 →→ G of the Lie group G by the Lie
group N equivalent if there exists a Lie group morphism ϕ: Ĝ1 → Ĝ2 such that the following
diagram commutes:

N →֒ Ĝ1 →→ GyidN

yϕ
yidG

N →֒ Ĝ2 →→ G.
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It is easy to see that any such ϕ is an isomorphism of Lie groups and that we actually obtain
an equivalence relation. We write Ext(G,N) for the set of equivalence classes of Lie group
extensions of G by N .1

We call an extension q: Ĝ → G with ker q = N split if there exists a Lie group morphism
σ:G→ Ĝ with q ◦ σ = idG . This implies that Ĝ ∼= N ⋊S G for S(g)(n) := σ(g)nσ(g)−1 .

Remark V.1.2. A Lie group extension N →֒ Ĝ →→ G can also be described in terms of data
associated to G and N as follows: Let q: Ĝ → G be a Lie group extension of G by N . By
assumption, the map q has a smooth local section. Hence there exists a global section σ:G→ Ĝ
smooth in an identity neighborhood and normalized by σ(1) = 1 . Then the map

Φ:N ×G→ Ĝ, (n, g) 7→ nσ(g)

is a bijection which restricts to a local diffeomorphism on an identity neighborhood. In general,
Φ is not continuous, but we may nevertheless use it to identify Ĝ with the product set N ×G ,
endowed with the multiplication

(5.1.1) (n, g)(n′, g′) = (nS(g)(n′)ω(g, g′), gg′),

where

(5.1.2) S := CN ◦ σ:G→ Aut(N) for CN : Ĝ→ Aut(N), CN (g) = gng−1,

and

(5.1.3) ω:G×G→ N, (g, g′) 7→ σ(g)σ(g′)σ(gg′)−1.

Note that ω is smooth in an identity neighborhood and that the map Ŝ:G ×N → N, (g, n) 7→
S(g)(n) is smooth in a set of the form UG × N , where UG is an identity neighborhood of G .
The maps S and ω satisfy the relations

(C1) σ(g)σ(g′) = ω(g, g′)σ(gg′),

(C2) S(g)S(g′) = CN (ω(g, g′))S(gg′),

(C3) ω(g, g′)ω(gg′, g′′) = S(g)
(
ω(g′, g′′)

)
ω(g, g′g′′).

Definition V.1.3. Let G and N be Lie groups. A smooth outer action of G on N is a map
S:G→ Aut(N) with S(1) = idN for which

Ŝ:G×N → N, (g, n) 7→ S(g)(n)

is smooth on a set of the form UG×N , where UG ⊆ G is an open identity neighborhood, and for
which there exists a map ω:G×G→ N with ω(1,1) = 1 , smooth in an identity neighborhood,
such that (C2) holds. We call (S, ω) a locally smooth non-abelian 2-cocycle.

We define an equivalence relation on the set of all smooth outer actions of G on N by
S′ ∼ S if S′ = (CN ◦ α) · S for some map α:G → N with α(1) = 1 , smooth in an identity
neighborhood. We write [S] for the equivalence class of S .

Remark V.1.2 implies that for each extension q: Ĝ → G of Lie groups and any section
σ:G→ Ĝ which is smooth in an identity neighborhood with σ(1) = 1 , (5.1.2) defines a smooth
outer action of G on N . Different choices of such sections lead to equivalent outer actions.

1 From the description of Lie group extensions as in Theorem V.1.4 below, one obtains cardinality estimates

showing that the equivalence classes actually form a set.
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Theorem V.1.4. Let G be a connected Lie group, N a Lie group and (S, ω) a smooth outer
action of G on N . Then (5.1.1) defines a group structure on N ×G if and only if (C3) holds.
If this is the case, then this group carries a unique Lie group structure, denoted N ×(S,ω) G , for
which the identity N ×G→ N ×(S,ω) G is smooth in an identity neighborhood and

q:N ×(S,ω) G→ G, (n, g) 7→ g

defines a Lie group extension of G by N .

All Lie group extensions of G by N arise in this way, so that we obtain a partition

Ext(G,N) =
⋃

[S]

Ext(G,N)[S],

where Ext(G,N)[S] denote the set of equivalence classes of extensions corresponding to the
equivalence class [S] .

If N is abelian, then each class [S] contains a unique representative S , which is a smooth
action of G on N . Fixing S , the set Ext(G,N)S carries a natural abelian group structure,

where the addition is given by the Baer sum: For two extensions q1: Ĝ1 → G , q2: Ĝ2 → G of G
by N , the Baer sum is defined by

Ĝ := {(ĝ1, ĝ2) ∈ Ĝ1 × Ĝ2: q1(ĝ1) = q2(ĝ2)}/∆′N , ∆′N := {(n, n−1):n ∈ N},

and the projection map q(ĝ1, ĝ2) := q1(ĝ1). This defines an abelian group structure on the set

Ext(G,N)S whose neutral element is the class of the split extension Ĝ = N ⋊S G (cf. [ML63,
Sect. IV.4]). In Theorem V.2.8 below, we shall recover this group structure in terms of group
cohomology.

Theorem V.1.5. ([Ne05]) Assume that Z(N) carries an initial Lie subgroup structure
(Remark II.6.5). Then each class [S] determines a smooth G-action on Z(N) by g.z := S(g)(z)
and the abelian group Ext(G,Z(N))S acts simply transitively on Ext(G,N)[S] by

[H ] ∗ [Ĝ] := [(α∗Ĝ)/∆′Z(N)],

where α:H → G is a Lie group extension of G by the G-module Z(N) ,

α∗Ĝ = {(ĝ1, ĝ2) ∈ H × Ĝ:α(ĝ1) = q(ĝ2)} and ∆′Z(N) := {(n, n−1):n ∈ Z(N)}.

Examples V.1.6. Interesting classes of extensions of Lie groups arise as follows.

(a) Projective unitary representations: Let H be a complex Hilbert space, U(H) its unitary
group with center Z(U(H)) = T1 , and PU(H) := U(H)/T1 the projective unitary group (all
these groups are Banach–Lie groups). If H is a complex Hilbert space and π:G → PU(H) a
projective representation of the Lie group G with at least one smooth orbit in the projective
space P(H), then the pull-back diagram

T = R/Z →֒ U(H) →→ PU(H)x=

x π

x
T →֒ Ĝ →→ G

defines a central Lie group extension of G by the circle group (cf. [Lar99]). This leads to a
partition of the set of equivalence classes of projective unitary representations according to the
set Ext(G,T) of central extensions of G by T (cf. [Ne02a]).

(b) Hamiltonian actions: Let G be a connected Lie group, M a locally convex manifold and
ω ∈ Ω2(M,R) a closed 2-form which is the curvature of a pre-quantum line bundle p:P → M
with connection 1-form θ ∈ Ω1(P,R). Assume further that σ:G → Diff(M) defines a smooth
action of G on M for which all associated vector fields σ̇(x) ∈ V(M) are Hamiltonian, i.e., the
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closed 1-forms iσ̇(x)ω are exact. Then the range of the map σ:G → Diff(M) lies in the group
Ham(M,ω) of Hamiltonian automorphisms of (M,ω), and the diagram

T →֒ Aut(P, θ) →→ Ham(M,ω)x=

x σ

x
T →֒ Ĝ →→ G

defines a central Lie group extension of G by T (cf. [Kos70], [RS81], [NV03]).

(c) (Extensions by gauge groups) Let q:P →M be a smooth K -principal bundle, where M
is compact and K is locally exponential (cf. Theorem IV.1.12). Further, let σ:G→ Diff(M) de-
fine a smooth action of G on M , whose range lies in the subgroup Diff(M)[P ] of diffeomorphisms
ϕ with ϕ∗P ∼ P , i.e., fixing the equivalence class [P ] . Then the diagram

Gau(P ) →֒ Aut(P ) = Diff(P )K →→ Diff(M)[P ]x=

x σ

x
Gau(P ) →֒ Ĝ →→ G

defines an extension of G by the gauge group Gau(P ) of this bundle.

(d) If q: V → M is a finite-dimensional vector bundle and K = GL(V ), the preceding
remark applies to the corresponding frame bundle, and leads to the diagram

Gau(V) →֒ Aut(V) →→ Diff(M)[V]x=

x σ

x
Gau(V) →֒ Ĝ →→ G.

In view of [KYMO85, p.89], the Lie group Aut(V) is µ-regular if M is compact.

(e) (Non-commutative generalizations; cf. [GrNe06], [KYMO85, Sect. 3.2]) Let A be a CIA
and E a finitely generated projective right A-module. Then the group GLA(E) of A-linear
endomorphisms of E is a Lie group, which is a subgroup of the larger group

ΓL(E) := {ϕ ∈ GL(E): (∃ϕA ∈ Aut(A))(∀s ∈ E)(∀a ∈ A) ϕ(s.a) = ϕ(s).ϕA(a)}

of semilinear automorphisms of E . These are the linear automorphisms ϕ ∈ GL(E) for which
there exists an automorphism ϕA of A with ϕ(s.a) = ϕ(s).ϕA(a) for s ∈ E, a ∈ A . Then
for each homomorphism σ:G → Aut(A), G a connected Lie group, whose range lies in the set
Aut(A)E of those automorphisms of A preserving E by pull-backs, the diagram

GLA(E) →֒ ΓL(E) →→ Aut(A)Ex=

x σ

x
GLA(E) →֒ Ĝ →→ G

defines an extension of G by the linear Lie group GLA(E).

For the special case A = C∞(M,R), finitely generated projective modules correspond to
vector bundles over M (cf. [Ros94], [Swa62]), so that (e) specializes to (d).

Remark V.1.7. Non-abelian extensions of Lie groups also play a crucial role in the structural
analysis of the group of invertible Fourier integral operators of order zero on a compact mani-
fold M ([OMYK81], [ARS86a/b]), which is an extension of a group of symplectomorphisms of
the complement of the zero section in the cotangent bundle T ∗(M) whose Lie algebra corre-
sponds to smooth functions homogeneous of degree 1 on the fibers.

The following theorem is an important tool to verify that given Lie groups are regular (cf.
[KM97], [OMYK83a, Th. 5.4] in the context of µ-regularity, and [Rob04]). A variant of this
result for ILB–Lie groups is Theorem 3.4 in [ARS86b].
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Theorem V.1.8. Let Ĝ be a Lie group extension of the Lie group G by N . Then Ĝ is
regular if and only if the groups G and N are regular.

Remark V.1.9. A typical class of examples illustrating the difference between abelian and
central extensions of Lie groups arises from abelian principal bundles. If q:P →M is a smooth
principal bundle with the abelian structure group Z over the compact connected manifold
M , then the group Aut(P ) = Diff(P )Z of all diffeomorphisms of P commuting with Z (the
automorphism group of the bundle) is an extension of the open subgroup Diff(M)[P ] of Diff(M)
by the gauge group Gau(P ) ∼= C∞(M,Z) of the bundle (Example V.1.6(c)). Here the conjugation
action of Diff(M) on Gau(P ) is given by composing functions with diffeomorphisms. Central
extensions corresponding to the bundle q:P →M are obtained by choosing a principal connection
1-form θ ∈ Ω1(P, z). Let ω ∈ Ω2(M, z) denote the corresponding curvature form. Then the
subgroup Aut(P, θ) of those elements of Aut(P ) preserving θ is a central extension of an open
subgroup of Diff(M,ω), which is substantially smaller that Diff(M). This example shows
that the passage from central extensions to abelian extensions is similar to the passage from
symplectomorphism groups to diffeomorphism groups (see also [Ne06a]).

As the examples of principal bundles over compact manifolds show, abelian extensions of
Lie groups occur naturally in geometric contexts and in particular in symplectic geometry, where
the pre-quantization problem is to find for a symplectic manifold (M,ω) a T-principal bundle
with curvature ω , which leads to an abelian extension of Diff(M)0 by the group C∞(M,T).

Conversely, every abelian extension q: Ĝ→ G of a Lie group G by an abelian Lie group A is in
particular an A-principal bundle over G . This leads to an interesting interplay between abelian
extensions of Lie groups and abelian principal bundles over (finite-dimensional) manifolds.

A shift from central to abelian extensions occurs naturally as follows: Suppose that a
connected Lie group G acts on a smooth manifold M which is endowed with a Z -principal
bundle q:P →M (Z an abelian Lie group) and that each element of G lifts to an automorphism
of the bundle. If all elements of G lift to elements of the group Aut(P, θ) for some principal
connection 1-form θ , then we obtain a central extension as in Example V.1.6(b). But if there is
no such connection 1-form θ , then we are forced to consider the much larger abelian extension
of G by the group Gau(P ) ∼= C∞(M,Z) or at least some subgroup containing non-constant
functions. The case where M is a restricted Graßmannian of a polarized Hilbert space and the
groups are restricted operator groups of Schatten class p > 2, resp., mapping groups C∞(M,K),
where K is finite-dimensional and M is a compact manifold of dimension ≥ 2, is discussed in
detail in [Mick89] (see also [PS86] for a discussion of related topics).

V.2. Cohomology of Lie groups and Lie algebras

Any good setting for a cohomology theory on Lie groups should be fine enough to take
the smooth structure into account and flexible enough to parameterize equivalence classes of
group extensions. All these criteria are met by the locally smooth cohomology we describe in
this subsection (cf. [Ne02a], [Ne04a]). The traditional approach in finite dimensions uses globally
smooth cochains ([Ho51]), which is too restrictive in infinite dimensions.

From Lie group cohomology to Lie algebra cohomology

Definition V.2.1. (a) Let g be a topological Lie algebra and E a locally convex space.
We call E a topological g-module if E is a g-module for which the action map g × E → E is
continuous.

(b) Let G be a Lie group and A an abelian Lie group. We call A a smooth G-module if
it is endowed with a G-module structure defined by a smooth action map G×A→ A .
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Definition V.2.2. Let g be a topological Lie algebra and E a topological g-module. For
p ∈ N0 , let Cpc (g, E) denote the space of continuous alternating maps gp → E , i.e., the
Lie algebra p-cochains with values in the module E . We identify C0

c (g, E) with E and put
C•c (g, E) :=

⊕∞
p=0 C

p
c (g, E). We then obtain a cochain complex with the Lie algebra differential

dg:C
p
c (g, E) → Cp+1

c (g, E) given on f ∈ Cpc (g, E) by

(dgf)(x0, . . . , xp) :=

p∑

j=0

(−1)jxj .f(x0, . . . , x̂j , . . . , xp)

+
∑

i<j

(−1)i+jf([xi, xj ], x0, . . . , x̂i, . . . , x̂j , . . . , xp),

where x̂j indicates omission of xj ([ChE48]). In view of d2
g = 0, the space Zpc (g, E) :=

ker(dg |Cp
c (g,E)) of p-cocycles contains the space Bpc (g, E) := dg(C

p−1
c (g, E)) of p-coboundaries.

The quotient
Hp
c (g, E) := Zpc (g, E)/Bpc (g, E)

is the p-th continuous cohomology space of g with values in the g-module E . We write [f ] :=
f +Bpc (g, E) for the cohomology class of the cocycle f .

Definition V.2.3. Let G be a Lie group and E a smooth locally convex G-module, i.e. a
smooth G-module which is a locally convex space. We write

ρE :G× E → E, (g, v) 7→ ρE(g, v) =: ρE(g)(v) =: g.v

for the action map. We call a p-form α ∈ Ωp(G,E) equivariant if we have for each g ∈ G the
relation

λ∗gα = ρE(g) ◦ α.
If E is a trivial module, then an equivariant form is a left invariant E -valued form on G .

We write Ωp(G,E)G for the subspace of equivariant p-forms in Ωp(G,E) and note that this
is the space of G-fixed elements with respect to the action given by g.α := ρE(g)◦(λg−1 )∗α . The
subcomplex (Ω•(G,E)G, d) of equivariant differential forms in the E -valued de Rham complex on
G has been introduced in the finite-dimensional setting by Chevalley and Eilenberg in [ChE48].

Let g := L(G) ∼= T1(G). An equivariant p-form α is uniquely determined by the
corresponding element α1 ∈ Cpc (g, E):

(5.2.1) αg(g.x1, . . . , g.xp) = ρE(g) ◦ α1(x1, . . . , xp) for g ∈ G, xi ∈ g.

Conversely, (5.2.1) provides for each ω ∈ Cpc (g, E) a unique equivariant p-form ωeq on G with
ωeq

1
= ω .

The following observation is due to Chevalley/Eilenberg ([ChE48, Th. 10.1]). For an
adaptation to the infinite-dimensional setting, we refer to [Ne04a].

Proposition V.2.4. The evaluation maps

ev1: Ωp(G,E)G → Cpc (g, E), ω 7→ ω1

define an isomorphism from the cochain complex (Ω•(G,E)G, d) of equivariant E -valued differ-
ential forms on G to the continuous E -valued Lie algebra complex (C•c (g, E), dg) .

Definition V.2.5. Let A be a smooth G-module and Cns (G,A) denote the space of all
functions f :Gn → A which are smooth in an identity neighborhood and normalized in the sense
that f(g1, . . . , gn) vanishes if gj = 1 holds for some j . We call these functions normalized locally
smooth group cochains. The differential dG:Cns (G,A) → Cn+1

s (G,A), defined by

(dGf)(g0, . . . , gn) := g0.f(g1, . . . , gn)

+

n∑

j=1

(−1)jf(g0, . . . , gj−1gj , . . . , gn) + (−1)n+1f(g0, . . . , gn−1).
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turns (C•s (G,A), dG) into a differential complex. We write Zns (G,A) := ker(dG |Cn
s (G,A)) for the

corresponding group of cocycles, Bns (G,A) := dG(Cn−1
s (G,A)) for the subgroup of coboundaries,

and
Hn
s (G,A) := Zns (G,A)/Bns (G,A)

for the n-th locally smooth cohomology group with values in the smooth module A .

Let M1, . . . ,Mk be smooth manifolds, A an abelian Lie group and f :M1 × . . .×Mk → A
a smooth function. For vk ∈ Tmk

(Mk) we obtain a smooth function

∂k(vk)f :M1 × . . .×Mk−1 → a := L(A), (m1, . . . ,mk−1) 7→ δ(f)(m1,...,mk)(0, . . . , 0, vk).

Iterating this process, we obtain for each tuple (m1, . . . ,mk) ∈ M1 × . . . × Mk a continuous
k -linear map

Tm1(M1) × . . .× Tmk
(Mk) → a, (v1, . . . , vk) 7→

(
∂1(v1) · · · ∂k(vk)f

)
(m1, . . . ,mk).

The following theorem describes the natural map from Lie group to Lie algebra cohomology
([Ne04a, App. B]; see also [EK64]):

Theorem V.2.6. For f ∈ Cns (G,A) , n ≥ 1 , and x1, . . . , xn ∈ g ∼= T1(G) we put

(Dnf)(x1, . . . , xn) :=
∑

σ∈Sn

sgn(σ)
(
∂1(xσ(1)) · · · ∂n(xσ(n))f

)
(1, . . . ,1).

Then Dn(f) ∈ Cnc (g, a) , and these maps induce a morphism of cochain complexes

D: (Cns (G,A), dG)n≥1 → (Cnc (g, a), dg)n≥1

and in particular homomorphisms Dn:H
n
s (G,A) → Hn

c (g, a) for n ≥ 2.

For A = a these assertions hold for all n ∈ N0 , and if A ∼= a/ΓA holds for a discrete
subgroup ΓA of a , then D1 also induces a homomorphism D1:H

1
s (G,A) → H1

c (g, a), [f ] 7→
[df(1)].

Integrability of Lie algebra cocycles

We have seen above that for n ≥ 2 there is a natural derivation map

Dn:H
n
s (G,A) → Hn

c (g, a)

from locally smooth Lie group cohomology to continuous Lie algebra cohomology. Since the Lie
algebra cohomology spaces Hn

c (g, a) are much better accessible by algebraic means than those
of G , it is important to understand the amount of information lost by the map Dn . Thus one
is interested in kernel and cokernel of Dn . A determination of the cokernel can be considered
as describing integrability conditions on cohomology classes [ω] ∈ Hn

c (g, a) which have to be
satisfied to ensure the existence of f ∈ Zns (G,A) with Dnf = ω .

Before we turn to the complete solution for n = 2 ([Ne04a, Sect. 7]), we take a closer look
at the much simpler case n = 1.

Remark V.2.7. For n = 1 we consider the more general setting of a Lie group action on a
non-abelian group: Let G and N be Lie groups with Lie algebras g and n and σ:G×N → N
a smooth action of G on N by automorphisms. A crossed homomorphism, or a 1-cocycle, is a
smooth map f :G→ N with

f(gh) = f(g) · g.f(h) for g, h ∈ G,
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which is equivalent to (f, idG):G → N ⋊G being a group homomorphism. We note that for a
1-cocycle smoothness in an identity neighborhood implies smoothness and write Z1

s (G,N) for
the set of smooth 1-cocycles G→ N .

It is easy to see that for each crossed homomorphism f :G→ N , the logarithmic derivative
δ(f) ∈ Ω1(G, n) is an equivariant 1-form with values in the smooth G-module n , hence uniquely
determined by D1(f) := T1(f): g → n . Conversely, an easy application of the Uniqueness Lemma
shows that if G is connected, then a smooth function f :G → N is a crossed homomorphism if
and only if f(1) = 1 and δ(f) is an equivariant 1-form.

To see the infinitesimal picture, we call a continuous linear map α: g → n a crossed
homomorphism, or a 1-cocycle, if

(5.2.2) α([x, y]) = x.α(y) − y.α(x) + [α(x), α(y)],

which is equivalent to (α, idg): g → n ⋊ g being a homomorphism of Lie algebras. We write
Z1
c (g, n) for the set of continuous 1-cocycles g → n . If G is connected, we obtain an injective

map

D1:Z
1
s (G,N) → Z1

c (g, n).

The cocycle condition (5.2.2) for α holds if and only if αeq ∈ Ω1(G, n) satisfies the Maurer–
Cartan equation. Therefore the Fundamental Theorem (Theorem III.1.2) shows that if G is
connected and N is regular, then a 1-cocycle α ∈ Z1

c (g, n) is integrable to some group 1-cocycle
if and only if the period homomorphism

perα := perαeq :π1(G) → N

vanishes. This can also be expressed by the exactness of the sequence

0 → Z1
s (G,N)

D1−−−−−−→Z1
c (g, n)

per−−−−−−→Hom(π1(G), N)

which already gives an idea of what kind of obstructions to expect for 2-cocycles.

The special importance of the group H2
s (G,A) stems from the following theorem, which

can be derived easily from the construction in Section V.1.

Theorem V.2.8. If G is a connected Lie group and S:G → Aut(A) a smooth action of G
on the abelian Lie group A , then we obtain an isomorphism of abelian groups

H2
s (G,A) → Ext(G,A)S , [ω] 7→ A×(S,ω) G.

Remark V.2.9. (a) If the group G is not connected, then condition (L3) in Theorem II.2.1
requires an additional smoothness condition on cocycles, which is equivalent to smoothness of
the functions

fg:G→ A, fg(g
′) := f(g, g′) − f(gg′g−1, g)

on an identity neighborhood for each g ∈ G . For g ∈ G0 this is automatically the case for each
f ∈ Z2

s (G,A). We write Z2
ss(G,A) ⊆ Z2

s (G,A) for the set of all cocycles satisfying this addi-
tional condition. Then B2

s(G,A) ⊆ Z2
ss(G,A), and we put H2

ss(G,A) := Z2
ss(G,A)/B2

s (G,A).
Theorem V.2.8 remains valid for general G with H2

ss(G,A) instead of H2
s (G,A).

(b) The second cohomology groups do not only classify abelian extensions of G . In
view of Theorem V.1.5, the sets Ext(G,N)[S] are principal homogeneous spaces of the groups
Ext(G,Z(N))S ∼= H2

ss(G,Z(N)), provided Z(N) is an initial Lie subgroup of the Lie group N
(Remark II.6.5(c)). Therefore the knowledge of the second cohomology groups is also crucial for
an understanding of non-abelian extension classes.

On the Lie algebra level, we similarly have for topologically split extensions of Lie algebras
(cf. Remark I.2.7):
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Proposition V.2.10. Let (a, S) be a topological g-module, where S: g → End(a) denotes the
module structure, and write Ext(g, a)S for the set of all equivalence classes of topologically split
a-extensions ĝ of g for which the adjoint action of ĝ on a induces the given g-module structure
on a . Then the map

Z2
c (g, a) → Ext(g, a)S , ω 7→ [a ⊕ω g],

where a ⊕ω g denotes a × g , endowed with the bracket

[(a, x), (a′, x′)] := (x.a′ − x′.a+ ω(x, x′), [x, x′]),

factors through a bijection H2
c (g, a) → Ext(g, a)S , [ω] 7→ [a ⊕ω g].

We now turn to the description of the obstruction for the integrability of Lie algebra 2-
cocycles.

Theorem V.2.11. (Approximation Theorem; [Ne02a; Th. A.3.7]) Let M be a compact
manifold. Then the inclusion map C∞(M,G) →֒ C(M,G) is a morphism of Lie groups which is
a weak homotopy equivalence, i.e., it induces isomorphisms of homotopy groups

πk(C
∞(M,G)) → πk(C(M,G))

for each k ∈ N0 . In particular, we have

[M,G] ∼= π0(C
∞(M,G))

for the group [M,G] of homotopy classes of maps M → G .

Below, a denotes a smooth Mackey complete G-module.

Definition V.2.12. (a) If M is a compact oriented manifold of dimension k and Ω ∈ Ωk(G, a)
a closed a -valued k -form, then the map

p̃erΩ:C∞(M,G) → a, σ 7→
∫

σ

Ω :=

∫

M

σ∗Ω

is locally constant. If, in addition, Ω is equivariant, then its values lie in the closed subspace
ag of g-fixed elements in a , hence defines a period map [M,G] → ag ([Ne02a, Lemma 5.7]). If
M = Sk is a sphere, so that πk(G) ⊆ [Sk, G] corresponds to base point preserving maps, then
restriction to πk(G) defines a group homomorphism

perΩ:πk(G) → ag,

called the period homomorphism defined by Ω.

(b) For k = 2 and ω ∈ Z2
c (g, a), we obtain a Lie algebra 1-cocycle

fω: g → C1
c (g, a)/dga, x 7→ [ixω],

and it is shown in [Ne04a, Lemma 6.2] that this 1-cocycle gives rise to a well-defined period
homomorphism, called the flux homomorphism,

Fω :π1(G) → H1
c (g, a)

as follows. For each piecewise smooth loop γ: S1 → G , we define a 1-cocycle

Iγ : g → a, Iγ(x) :=

∫

γ

ixr
ωeq,

where xr is the right invariant vector field on x with xr(1) = x , and put Fω([γ]) := [Iγ ] .

Now we turn to the main result of this section ([Ne04a, Th. 7.2]):
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Theorem V.2.13. Let G be a connected Lie group, A a smooth G-module of the form
A ∼= a/ΓA , where ΓA ⊆ a is a discrete subgroup of the Mackey complete space a and qA: a → A
the quotient map. Then the map

P̃ :Z2
c (g, a) → Hom

(
π2(G), A

)
× Hom

(
π1(G), H1

c (g, a)
)
, P̃ (ω) = (qA ◦ perω, Fω)

factors through a homomorphism

P :H2
c (g, a) → Hom

(
π2(G), A

)
× Hom

(
π1(G), H1

c (g, a)
)
, P ([ω]) = (qA ◦ perω, Fω),

and the following sequence is exact:

0 → H1
s (G,A)

I−−→H1
s (G̃, A)

R−−→H1
(
π1(G), A

)G ∼= Hom
(
π1(G), AG

) δ−−−−→
δ−−−−→H2

s (G,A)
D2−−−−→H2

c (g, a)
P−−−−→Hom

(
π2(G), A

)
× Hom

(
π1(G), H1

c (g, a)
)
.

Here the map δ assigns to a group homomorphism γ:π1(G) → AG the quotient of the semi-direct

product A ⋊ G̃ by the graph {(γ(d), d): d ∈ π1(G)} of γ which is a discrete central subgroup, I

denotes the inflation map and R the restriction map to the subgroup ker qG ∼= π1(G) of G̃ .

If, in particular, π1(G) and π2(G) vanish, we obtain an isomorphism

D2:H
2
s (G,A) → H2

c (g, a).

Remark V.2.14. (a) If G is 1-connected, things become much simpler and the criterion
for the integrability of a Lie algebra cocycle ω to a group cocycle is that im(perω) ⊆ ΓA .
Similar conditions arise in the theory of abelian principal bundles on smoothly paracompact
presymplectic manifolds (M,Ω) (Ω is a closed 2-form on M ). Here the integrality of the
cohomology class [Ω] is equivalent to the existence of a pre-quantum bundle, i.e., a T-principal

bundle T →֒ M̂ →→M whose curvature 2-form is Ω (cf. [Bry93], [KYMO85]).

(b) For finite-dimensional Lie groups the integrability criteria simplify significantly because
π2(G) vanishes ([CaE36]). This has been used by É. Cartan to construct central extensions
and thus to prove that each finite-dimensional Lie algebra belongs to a global Lie group, which
is known as Lie’s third theorem (cf. [CaE30/52], [Est88]).

(c) Let (M,ω) denote a compact symplectic manifold and D̃iff(M,ω) the universal cov-
ering group of the identity component Diff(M,ω)0 of the Fréchet–Lie group Diff(M,ω) (Theo-
rem III.3.1). Then the Lie algebra homomorphism

(5.2.3) fω:V(M,ω) := {X ∈ V(M):LXω = 0} → H1
dR(M,R), X 7→ [iXω],

where H1
dR(M,R) is considered as an abelian Lie algebra, integrates to a Lie group homomor-

phism

F : D̃iff(M,ω) → H1
dR(M,R),

whose restriction perfω
to the discrete subgroup π1(Diff(M,ω)) is called the flux homomorphism.

Let ham(M,ω) := ker fω denote the Lie subalgebra of Hamiltonian vector fields. In [KYMO85,
2.2], it is shown that

H̃am(M,ω) := kerF
is a µ-regular Lie group.

Recently, there has been quite some activity concerning the flux homomorphism for sym-
plectic manifolds and generalizations thereof ([Ban97, Ch. 3], [KKM05], [Ne06a]), including a
proof of the flux conjecture ([Ono04]), formulated by Calabi ([Cal70]). It asserts that the image
of the flux homomorphism perfω

is discrete for each compact symplectic manifold (cf. [MD05],
[LMP98] for a survey).

(d) In [RS81], Ratiu and Schmid address the existence problem of ILH–Lie group struc-
tures for the following three classes of groups: Under the assumption that the image of the
flux homomorphism is discrete, which is always the case ([Ono04]), they show that the group
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Ham(M,ω) of Hamiltonian diffeomorphisms carries an ILH–Lie group structure. If q:P → M
is a pre-quantum T-bundle with curvature ω and connection 1-form θ , they further show
that the quantomorphism group Aut(P, θ), a central T-extension of Ham(M,ω) (cf. Exam-
ple IV.1.6(b)), is an ILH–Lie group, and they obtain an ILH–Lie group G for the Lie algebra
of real-valued smooth functions on T ∗(M) which are homogeneous of degree 1 with respect to
the Poisson bracket. The latter group is of particular interest for the Lie group structure on the
group of invertible Fourier–integral operators of order zero, which is a Lie group extension of G
([ARS84,86a/b]).

For a discussion of the relation between quantomorphisms and Hamiltonian diffeomor-
phisms, extending some of these structures, such as Kostant’s Theorem ([Kos70]) to infinite
dimensional manifolds, we refer to [NV03].

(e) The period and the flux homomorphism annihilate the torsion subgroups of π2(G), resp.,
π1(G). Hence they factor through the rational homotopy groups π2(G) ⊗ Q , resp., π1(G) ⊗ Q .

(f) If a is a trivial module and ω ∈ Z2
c (g, a), then ĝ := a ⊕ω g is a central extension of g ,

and x.(a, y) := (ω(x, y), [x, y]) turns ĝ into a topological g-module. A 1-cocycle f : g → a is the
same as a Lie algebra homomorphism, and B1

c (g, a) = {0} , so that H1
c (g, a) = HomLie(g, a) ∼=

L(g/[g, g], a). In this case, the flux homomorphism

Fω :π1(G) → HomLie(g, a)

vanishes if and only if the action of g on ĝ integrates to a smooth action of the group G on ĝ

([Ne02a, Prop. 7.6]).

We emphasize that Theorem V.2.13 holds for Lie groups which are not necessarily smoothly
paracompact. On these groups de Rham’s Theorem is not available, so that one has to get along
without it and to use more direct methods. This is important because many interesting Banach–
Lie groups are not smoothly paracompact, because their model spaces do not permit smooth
bump functions (cf. Remark I.4.5).

Remark V.2.15. Let G be a connected smoothly paracompact Lie group and A a smooth
G-module of the form a/ΓA , where ΓA is a discrete subgroup of a . Let Z2

gs(G,A) denote the
group of smooth 2-cocycles G × G → A and B2

gs(G,A) ⊆ Z2
gs(G,A) the cocycles of the form

dGh , where h ∈ C∞(G,A) is a smooth function with h(1) = 0. Then we have an injection

H2
gs(G,A) := Z2

gs(G,A)/B2
gs(G,A) →֒ H2

s (G,A),

and the space H2
gs(G,A) classifies those A-extensions of G with a smooth global section. We

further have an exact sequence

Hom(π1(G), aG)
δ−−→H2

gs(G,A)
D−−→H2

c (g, a)
P−−−−→H2

dR(G, a) × Hom
(
π1(G), H1

c (g, a)
)
,

where P ([ω]) = ([ωeq], Fω) (cf. Section 8 in [Ne02a] and Remark 8.5 in [Ne04a]).

Remark V.2.16. Let G be a Lie group with Lie algebra g and a := C∞(G,R), endowed
with the compact open C∞ -topology. Note that G acts on a by (g.f)(x) := f(xg), and that
the corresponding action of g corresponds to the embedding g → V(G), x 7→ xl . Using the left
trivialization of T (G), we see that R-valued p-forms are in one-to-one correspondence with those
smooth functions G× gp → R which are p-linear and alternating in the last p arguments. This
implies in particular, that each p-form ω ∈ Ωp(G,R) defines an element of Cpc (g, a), and it is
easy to see that this leads to an injection of cochain complexes

η: (Ω•(G,R), d) →֒ (C•(g, a), dg).

If G is a Fréchet–Lie group, then the cartesian closedness argument from the convenient
calculus (cf. [KM97, p.30]) implies that η is bijective, which leads to an isomorphism

Hp
dR(G,R) ∼= Hp

c (g, a).

If, in addition, G is smoothly paracompact, we thus obtain a description of real-valued singular
cohomology of G in terms of Lie algebra cohomology (cf. [Mi87], [Ne04a, Ex. 7.6]).

In [Mi87], Michor applies this construction in particular to the group Diff(M) for a
compact manifold M . For more detailed information on the de Rham cohomology of groups like
Diff(M) or C∞(M,K), where M is compact and K finite-dimensional, we refer to [Beg87].
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We have seen above that period homomorphisms arise naturally in the integration theory
of Lie algebra extensions to group extensions. Below we describe some interesting classes of Lie
algebra 2-cocycles which have some independent topological interpretation.

Let G = C∞c (M,K), where K is a Lie group with Lie algebra k and M is a σ -compact
finite-dimensional manifold, so that g = L(G) ∼= C∞c (M, k), endowed with the natural locally
convex direct limit structure (Theorem II.2.8). For detailed proofs of the results below we refer
to [MN03] for the compact case and to [Ne04c] for the non-compact case.

The Lie algebra cocycles we are interested in are those of product type, constructed as
follows. Let E be a Mackey complete space and κ: k× k → E an invariant continuous symmetric
bilinear form. Then the quotient space z := Ω1

c(M,E)/dC∞c (M,E) carries a natural locally
convex topology because the space of exact forms is closed with respect to the natural direct
limit topology. We then obtain a continuous Lie algebra cocycle

ω ∈ Z2
c (g, z) by ω(ξ, η) := [κ(ξ, dη)].

Of particular interest is the case E = V (k), where κ: k × k → V (k) is the universal invariant
symmetric bilinear form and the case E = R , where κ is the Cartan–Killing form of a finite-
dimensional Lie algebra. We write ΠM

κ ⊆ z for the corresponding period group. Other types of
cocycles, which are not of product type, are described in [NeWa06a]. If k is a compact simple
Lie algebra and M = S1 , then H2

c (g,R) is one-dimensional and generated by the cocycle defined
by the Cartan–Killing form κ . The associated central extensions and their integrability to Lie
groups are discussed in some detail in Section 4.2 in [PS86].

Theorem V.2.17. The following assertions hold:

(1) For M = S1 we have z ∼= E , and the period group ΠS
1

κ is the image of a homomorphism

perκ:π3(K) → E,

obtained by identifying the subgroup π2(C∗(S
1,K)) of π2(G) with π3(K) .

(2) ΠM
κ is contained in H1

dR,c(M,E) and coincides with the set of all those cohomology classes
[α] for which integration over circles and properly embedded copies of R , we obtain elements

of ΠS
1

κ .

(3) ΠM
κ is discrete if and only if ΠS

1

κ is discrete.

(4) If dimK <∞ and κ is universal, then ΠS
1

κ ⊆ V (k) is discrete.

(5) If K is compact and simple, then the Cartan–Killing form κ is universal, for a suitable

normalization of κ we have ΠS
1

κ = Z, and ΠM
κ ⊆ H1

dR,c(M,R) is the subgroup of all
cohomology classes with integral periods in the sense of (2).

Remark V.2.18. A particularly interesting class of corresponding central extensions has been
studied by Etingof and Frenkel in [EF94]. They investigate the situation where M is a
compact complex manifold, K is a simple complex Lie group, κ is the Cartan–Killing form,
and by projecting onto the subspace of H1

dR(M,C) ⊆ Ω1(M,C)/dC∞(M,C) generated by the
holomorphic 1-forms, they obtain a central extension of the complex Lie group C∞(M,K) by a
compact complex Lie group, which in some cases is an elliptic curve or an abelian variety.

V.3. Abelian extensions of Lie groups

In this section, we use the results of the preceding section to integrate abelian extensions
of Lie algebras to Lie group extensions.

If S:G → Aut(A) defines on A the structure of a smooth G-module, G is connected
and A ∼= a/ΓA with ΓA ⊆ a discrete, then H2

s (G,A) ∼= Ext(G,A)S (Theorem V.2.8), so that
Theorem V.2.13 provides in particular necessary and sufficient conditions for a Lie algebra cocycle
ω ∈ Z2

c (g, a) to correspond to a global Lie group extension ([Ne04a, Th. 6.7]):



82 japsurv.tex May 23, 2006

Theorem V.3.1. (Integrability Criterion) Let G be a connected Lie group and A a smooth
G-module with A0

∼= a/ΓA , where ΓA is a discrete subgroup of the Mackey complete space a .
For each ω ∈ Z2

c (g, a) , the abelian Lie algebra extension a →֒ ĝ := a ⊕ω g →→ g integrates to a

Lie group extension A →֒ Ĝ→→ G with a connected Lie group Ĝ if and only if

(1) Πω := im(perω) ⊆ ΓA , and

(2) there exists a surjective homomorphism γ:π1(G) → π0(A) such that the flux homomorphism
Fω :π1(G) → H1

c (g, a) is related to the characteristic homomorphism

θA:π0(A) → H1
c (g, a), [a] 7→ [D1(dG(a))] by Fω = θA ◦ γ.

If A is connected, then (2) is equivalent to Fω = 0 .

Corollary V.3.2. Let G be a connected Lie group, a a smooth Mackey complete G-module
and ω ∈ Z2

c (g, a) . Then there exists a smooth G-module A with Lie algebra a such that
the abelian Lie algebra extension a →֒ ĝ := a ⊕ω g →→ g integrates to a Lie group extension
A →֒ Ĝ→→ G with a connected Lie group Ĝ if and only if Πω is a discrete subgroup of aG .

Proof. The necessity is immediate from Theorem V.3.1. For the converse, we first use this
theorem to find an extension q0:G

♯ → G̃ of the universal covering group G̃ of G by the smooth
G-module A0 := a/Πω . Then A := q−1

0 (π1(G)) ⊆ G♯ is a Lie group with identity component
A0 , so that G♯ is an A-extension of G .

Note that it may happen that the group A constructed in the preceding proof is not abelian.
Since A0 and π1(G) are abelian, it is at most 2-step nilpotent.

Remark V.3.3. (a) Suppose that only (1) in Theorem V.3.1 is satisfied, and that A is

connected. Consider the corresponding extension q♯:G♯ → G̃ of G̃ by A ∼= a/ΓA . Then
G ∼= G♯/π̂1(G) , where π̂1(G) := (q♯)−1(π1(G)) is a central A-extension of π1(G), hence 2-step
nilpotent. This group is abelian if and only if the induced commutator map

C:π1(G) × π1(G) → A

vanishes. It is shown in [Ne04a, Rem. 6.8] that, up to sign, this map is given by

C([γ], [η]) =

∫

γ∗η

ωeq, where γ ∗ η: T2 → G, (t, s) 7→ γ(t)η(s).

(b) According to a result of H. Hopf ([Hop42]), we have for each arcwise connected
topological space X an exact sequence

0 → H2(π1(X), A) → H2
sing(X,A) ∼= Hom(H2(X), A) → Hom(π2(X), A) → 0

(cf. [ML78, p.5]). If G is smoothly paracompact, then the closed 2-form ωeq defines a singular
cohomology class in H2

sing(G, a) ∼= Hom(H2(M), a) and after composition with the quotient map

qA: a → A , a singular cohomology class cω ∈ H2
sing(G,A). The inclusion Πω ⊆ ΓA means

that this class vanishes on the spherical cycles, i.e., the image of π2(G) in H2(G). Hence it
determines a central extension of π1(G) by A , and if A is divisible, this central extension is
determined by the commutator map C:π1(G) × π1(G) → A . If this map vanishes, then cω = 0,
but Example V.3.5(b) below shows that this does not imply the existence of a corresponding
global group cocycle. If G is 1-connected, then cω vanishes if and only if ω integrates to a
group cocycle (cf. [EK64]), but in general this simple criterion fails.

(c) If F ′ω([γ]) ∈ H1
dR(G, a) denotes the de Rham class obtained as in Proposition V.2.4,

then we have for each piecewise smooth loop η: S1 → G the formula
∫
η
F ′ω(γ) =

∫
γ∗η

ωeq .

The following proposition displays another facet of Hopf’s result mentioned under (b) above
for the special case of topological groups (cf. [Ne04a, Prop. 6.11]). In the context of rational
homotopy theory, it can be extended to the Cartan–Serre Theorem, that the rational homology
algebra of an arcwise connected topological group is generated by the homology classes defined
by maps Sk → G , k ∈ N (cf. [BuGi02, Th. 3.17]).
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Proposition V.3.4. Let G be a topological group, S2(G) ⊆ H2(G) the subgroup of spherical
2-cycles, i.e., the image of π2(G) under the Hurewicz homomorphism π2(G) → H2(G) , and
Λ2(G) := H2(G)/S2(G) the quotient group. Then Λ2(G) is generated by the images of cycles
defined by maps of the form

α ∗ β: T2 → G, (t, s) 7→ α(t)β(s),

where α, β: T → G are loops in G .

Example V.3.5. (a) Let G := Diff(M)op0 be the opposite group of the identity component
of Diff(M) for a connected compact manifold M . Recall that its Lie algebra is g := V(M)
(Example II.3.14). For each Fréchet space E , the abelian Lie group a = C∞(M,E) is a smooth
G-module with respect to ϕ.f := f ◦ ϕ . Each closed E -valued 2-form ωM defines a continuous
Lie algebra 2-cocycle by ω(X,Y ) := ωM (X,Y ). In this case, the period map and the flux cocycle
can be described in geometrical terms. In [Ne04a, Sect. 9], it is shown that the period map

perω:π2(Diff(M)) → ag = C∞(M,E)V(M) = E

factors for each m0 ∈ M through the evaluation map evm0 : Diff(M) → M,ϕ 7→ ϕ(m0), to the
map

perωM
:π2(M,m0) → E, [σ] 7→

∫

σ

ωM .

Likewise, the flux homomorphism can be interpreted as a map

Fω :π1(Diff(M)) → H1
dR(M,E) ∼= Hom(π1(M), E),

that vanishes if and only if all integrals of the 2-form ωM over smooth cycles of the form
H : T2 →M, (s, t) 7→ α(s).β(t) with loops α in Diff(M) and β in M vanish.

This easily leads to the sufficient condition for the integrability of ω that the period group
ΓE of the 2-form ωM should be discrete in E . This in turn implies the existence of a Z -
principal bundle for Z := E/ΓE with curvature ωM over M , and the identity component of the
group Aut(P ) = Diff(P )Z is a Lie group extension of G by Gau(P ) ∼= C∞(M,Z), integrating
ω (Example V.1.6(c)).

It would be very interesting to understand to which extent the discreteness of the periods
of ωM is necessary for the discreteness of the period group of ω (see also the discussion in
[KYMO85, p.86] and Problem V.4).

(b) We consider the special case M = T2 , realized as the unit torus in C2 and let ωM be
an invariant 2-form on M with

∫
M
ωM = 1.

Since π2(M,m0) is trivial, perω vanishes. By α(z)(w1, w2) = (zw1, w2), we obtain a loop
α in Diff(M), and the loop β(z) := (1, z) in M satisfies α(z1).β(z2) = (z1, z2), so that

∫

α∗β

ωM = 1.

We conclude that Fω 6= 0. Hence the Lie algebra cocycle ω on V(M) does not integrate to a
group cocycle with values in the connected group a = C∞(T2,R).

Since ωM is integral, it is the curvature of a natural T-bundle q:P → M , which leads to
an abelian extension

1 → A := Gau(P ) ∼= C∞(M,T) →֒ D̂iff(M)0 →→ Diff(M)0 → 1

whose Lie algebra cocycle coincides with ω . Note that π0(A) ∼= [T2,T] ∼= Z2 is non-trivial.

(c) The same phenomenon occurs already for the subgroup T := T2 , acting on itself by
translations, and accordingly on a . By restriction, we obtain an abelian extension

1 → A = C∞(T2,T) →֒ T̂2 →→ T2 → 1



84 japsurv.tex May 23, 2006

whose flux homomorphism Fω :π1(T
2) → H1(R2, a) ∼= H1

dR(T2,R) ∼= R2 is injective. In this case,
there is a reduction of the extension of T to an extension by the subgroup

B := T × Hom(T,T) ∼= T × Z2 ⊆ A = C∞(T2,T),

generated by the constant maps and the characters of T . The corresponding extension T̃ of T
by B is isomorphic to the Heisenberg group

H :=

{ 


1 a c
0 1 b
0 0 1


 : a, b, c ∈ R

}
=




1 R R
0 1 R
0 0 1


 modulo




1 0 Z
0 1 0
0 0 1


 .

Example V.3.6. Let G := SL2(R). From the natural action of G on P1(R) ∼= S1 , we derive
an action on the space a := Ω1(S1,R). In Section 10 of [Ne04a], it is shown that there exists a
non-trivial ω ∈ Z2(sl2(R), a) which integrates to an abelian extension

ŜL2(R) = Ω1(S1,R) ⋊f SL2(R),

so that we obtain a non-trivial infinite-dimensional abelian extension of SL2(R) which is a
Fréchet–Lie group.

Since all finite-dimensional Lie group extensions of SL2(R) by vector spaces split on the Lie
algebra level, this example illustrates the difference between the finite- and infinite-dimensional
theory.

For more references dealing specifically with central extensions, we refer to [Ne02a]. In
particular, [CVLL98] is a nice survey on central T-extensions of Lie groups and their role in
quantum physics (see also [Rog95]). It also contains a description of the universal central exten-
sion for finite-dimensional groups. For infinite-dimensional groups, universal central extensions
are constructed in [Ne02d], and for root graded Lie algebras in [Ne03] (cf. Subsection VI.1).

Example V.3.8. (The Virasoro group) Let G := Diff+(T) be the group of orientation pre-
serving diffeomorphisms of the circle T . Then the inclusion T →֒ G of the rigid rotations is a
homotopy equivalence, so that π2(G) vanishes and π1(G) ∼= Z (cf. [Fu86, p. 302]).

Furthermore, H2
c (g,R) = R[ω] is one-dimensional ([PS86]), and the corresponding flux

homomorphism Fω vanishes ([Ne02a, Ex. 9.3]), so that Theorem V.3.1 implies the existence of
a corresponding central R-extension of G , called the Bott–Virasoro group Vir. Remark V.2.15
implies that this extension has a smooth global section, hence can be described by a smooth
global cocycle. Such a cocycle, and other related ones, are described explicitly by Bott in
[Bo77]. A more direct construction of this and related cocycles has been described recently by
Billig ([BiY03]).

In [Se81], G. Segal studies projective unitary representations of Diff(S1) via representa-
tions of loop groups, which implicitly define unitary representations of the Bott–Virasoro group.
In [GW84/85], Goodman and Wallach give an analytic construction of the unitary highest
weight representations of Vir by directly integrating the corresponding Lie algebra representation
on the representations of loop groups, using scales of Banach spaces.

The Bott–Virasoro group is also a very interesting geometric object. One aspect of its rich
geometric structure is that, although it is only a smooth real Lie group which is not analytic
(Remark VI.2.3 below), it carries the structure of a complex Fréchet manifold, which is obtained
by identifying it with the complement of the zero section in the holomorphic line bundles over
Diff+(S1)/T ([Lem95], [KY87]).
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Open Problems for Section V

Problem V.1. Generalize Theorem V.2.13 in an appropriate way to non-connected Lie groups
G and A .

The generalization to non-connected Lie groups G means to derive accessible criteria for
the extendibility of a 2-cocycle on the identity component G0 to the whole group G . From the
short exact sequence G0 →֒ G→→ π0(G), we obtain maps

H2(π0(G), A)
I−−→H2(G,A)

R−−→H2(G0, A)G,

but it is not clear how to describe the image of the restriction map R from G to G0 .

If A is a trivial module, one possible approach is to introduce additional structures on a
central extension Ĝ of G0 by A , so that the map q: Ĝ → G describes a crossed module, which
requires an extension of the natural G0 -action of G on Ĝ to an action of G (cf. [Ne05]).

To deal with non-connected groups A seems to be tractable if we assume that A0
∼= a/ΓA

as in Theorem V.2.13. Under the assumption that G is connected, the crucial information is
contained in an exact sequence

0 → H2
s (G,A0) → H2

s (G,A)
γ−−→Hom(π1(G), π0(A)) → H3

s (G,A0),

where γ assigns to an extension of G by A the corresponding connecting homomorphism
π1(G) → π0(A) in the long exact homotopy sequence (cf. [Ne04a, App. E]). To determine
H2
s (G,A) in terms of Hs(G,A0) and known data, one has to determine the image of H2

s (G,A)
in Hom(π1(G), π0(A)).

Problem V.2. Do the spaces Z2
s (G,A) and Z2

ss(G,A) (Remark V.2.9) coincide for each non-
connected Lie group G and each smooth G-module A?

This is true if G is connected ([Ne04a, Prop. 2.6]), but in general we do not know if
Z2
ss(G,A) is a proper subgroup of Z2

s (G,A), which is equivalent to H2
ss(G,A) being a proper

subgroup of H2
s (G,A). In terms of abelian extensions, this means that there exists an abelian

extension Ĝ of G by the G-module A for which the restriction Ĝ0 to the identity component G0

is a Lie group extension, but Ĝ cannot be turned into a Lie group because for certain elements
ĝ ∈ Ĝ the conjugation action on Ĝ0 is not an action by smooth group automorphisms (cf.
condition (L3) in Theorem II.2.1).

Problem V.3. Give an explicit description of kernel and cokernel of the derivation maps

Dn:H
n
s (G,A) → Hn

c (g, a) for n ≥ 3.

For A ∼= a/ΓA for some discrete subgroup ΓA ⊆ a , the first necessary condition for [ω] ∈ Hn
c (g, a)

to lie in the image of D , one obtains quite easily is that the range of the period homomorphism

perω:πn(G) → a

must be contained in ΓA ∼= π1(A) (cf. [GN07]).

Problem V.4. An interesting special case of the preceding problem arises for G = Diff(M)op0 ,
M a compact manifold, a = C∞(M,R), where G acts by (ϕ.f)(m) := f(ϕ(m)), and ω ∈
Ω2(M,R) is a closed 2-form. Then ω defines a Lie algebra cocycle in Z2

c (V(M), a), and it is an
interesting question when this cocycle integrates to a group cocycle on G . We know that this is
the case if the period group 〈[ω], H2(M)〉 ⊆ R is discrete, but this is not necessary (cf. [KYMO85,
p,86]). The approach described in Example V.3.5 may be useful to analyze this problem. The
crucial point is to understand the range of the homomorphism π2(Diff(M)) → π2(M,m0) and of
the natural map π1(Diff(M)) × π1(M,m0) → [T2,M ] → H2(M) (Example V.3.5) (see [Ban97,
Ch. 3] for more details on such maps).
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Problem V.5. Give a characterization of those principal K -bundles q:P →M for which the
extension Aut(P ) of the subgroup Diff(M)[P ] by the gauge group Gau(P ) splits on the group
level (cf. Example V.1.6). On the Lie algebra level, such conditions are given by Lecomte in
[Lec85]. Note that this is obviously the case if the bundle is trivial, which implies Aut(P ) ∼=
C∞(M,K) ⋊ Diff(M). It is also the case for natural bundles to which the action of Diff(M)
lifts, such as the frame bundle and other natural bundles.

VI. Integrability of locally convex Lie algebras

In this section, we take a systematic look at the integrability problem for locally convex Lie
algebras with an emphasis on locally exponential ones, because they permit a quite satisfying
general theory. For Lie algebras which are not locally exponential only isolated results are
available.

VI.1. Enlargeability of locally exponential Lie algebras

Definition VI.1.1. A locally convex Lie algebra g is said to be integrable if there exists
a Lie group G with L(G) ∼= g . It is called locally integrable if there exists a local Lie group
(G,D,mG,1) with Lie algebra L(G) ∼= g . A locally exponential Lie algebra is called enlargeable
if it is integrable to a locally exponential Lie group, i.e., if some of the corresponding local groups
are enlargeable (cf. Definition IV.2.3).

Although every finite-dimensional Lie algebra is integrable, integrability of infinite-dimen-
sional Lie algebras turns out to be a very subtle property.

Examples VI.1.2. (a) If g is a finite-dimensional Lie algebra, endowed with its unique locally
convex topology, then g is integrable. This is Lie’s Third Theorem. One possibility to prove
this is first to use Ado’s Theorem to find an embedding g →֒ gln(R) and then to endow the
integral subgroup G := 〈exp g〉 ⊆ GLn(R) with a Lie group structure such that L(G) = g (cf.
Corollary IV.4.10).

(b) If g is locally exponential, then it is locally integrable by definition. In particular, every
Banach–Lie algebra is locally integrable (Examples IV.2.4).

Enlargeability and generalized central extensions

The criteria described in Section V.3 provide good tools to understand the difference
between the group and Lie algebra picture for abelian extensions. However, not all quotient
maps q: ĝ → g of Lie algebras are topologically split in the sense that there is a continuous linear
section, therefore they are not extensions of the type just discussed. An important example is
the map ad: g → g/z(g), where z(g) is the center. The fact that for each locally exponential Lie
algebra g , the Lie algebra gad := g/z(g) is always integrable (Theorem IV.3.8) shows that the
question of the integrability of central extensions has to be addressed even for those which are
not topologically split. Fortunately, there is a method to circumvent the problems caused by this
topological difficulty by reducing all assertions to topologically split central extensions. The key
concept is that of a generalized central extension (cf. [Ne03], [GN07]).

Definition VI.1.3. A morphism q: ĝ → g of locally convex Lie algebras is called a generalized
central extension if it has dense range and there exists a continuous bilinear map b: g × g → ĝ

for which b ◦ (q × q) is the Lie bracket on ĝ . It is called a central extension if, in addition, q is
a quotient map.
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The subtlety of generalized central extensions is that q need not be surjective and if it
is surjective, it need not be a quotient map. Fortunately, these difficulties are compensated
by the following nice fact. Let us call a locally convex Lie algebra g topologically perfect if its
commutator algebra is dense. We call a generalized central extension qg: g̃ → g universal if for
any generalized central extension q: ĝ → g there exists a unique morphism of locally convex Lie
algebras α: g̃ → ĝ with q ◦ α = qg . Then one can show that each topologically perfect locally
convex Lie algebra g has a universal generalized central extension (unique up to isomorphism).
For the basic results on generalized central extensions we refer to [Ne03, Sect. III], where one also
finds descriptions of the universal generalized central extensions of several classes of Lie algebras.

Remark VI.1.4. If q: ĝ → g is a central extension, then q× q: ĝ× ĝ → g× g also is a quotient
map. Therefore the Lie bracket of ĝ factors through a continuous bilinear map b: g×g → ĝ with
b(q(x), q(y)) = [x, y] for x, y ∈ ĝ , showing that q is a generalized central extension of g .

Proposition VI.1.5. ([Ne03, Lemma III.4])1 For a generalized central extension q: ĝ → g

the following assertions hold:

(1) The corresponding map b is a Lie algebra cocycle in Z2
c (g, |ĝ|) , where |ĝ| denotes ĝ , con-

sidered as a trivial g-module.

(2) If |g| denotes the space g , endowed with the trivial Lie bracket, then the maps

ψ: ĝ → |ĝ| ⊕b g, x 7→ (x, q(x)) and η: |ĝ| ⊕b g → |g|, (x, y) 7→ y − q(x)

are homomorphisms of Lie algebras, ψ is a topological embedding, η is a quotient map, and
the sequence

0 → ĝ
ψ−−→|ĝ| ⊕b g

η−−→|g| → 0

is exact.

For the following theorem from [GN07], we recall that central extensions of locally expo-
nential Lie algebras by Mackey complete spaces are locally exponential (Theorem IV.2.10).

Theorem VI.1.6. (Enlargeability criterion for generalized central extensions) Let G be a
connected locally exponential Lie group with Lie algebra g and q: ĝ → g a generalized central
extension for which ĝ is Mackey complete. Let ω ∈ Z2

c (g, |ĝ|) be the associated Lie algebra
cocycle and perω:π2(G) → |ĝ| the corresponding period homomorphism. Then the following
assertions hold:

(1) Πω := im(perω) is contained in z.

(2) ĝ is enlargeable if Πω is discrete.

(3) If q is a central extension, then ĝ is enlargeable if and only if Πω is discrete.

Proof. (1) follows from the fact that the cocycle q◦ω = −dg idg is trivial. It is the Lie bracket
of g .

(2) Corollary V.3.2 implies that g̃ := |ĝ| ⊕b g is enlargeable if and only if Πω is discrete. If
this is the case, then the closed ideal ĝ of g̃ is also enlargeable because ĝ ∼= ker η implies that it
is locally exponential (Theorem IV.2.9), so that Corollary IV.4.10 applies.

(3) Suppose that q is a quotient map, i.e., a central extension, and that ĝ is enlargeable.

Since the cocycle b̃ := q∗b coincides with the Lie bracket on ĝ , the corresponding central extension
ĝ♯ := |ĝ| ⊕

b̃
ĝ is split by the section σ(x) := (x, x), hence is enlargeable. Furthermore,

g̃ = |ĝ| ⊕b g ∼= ĝ♯/({0} × z)

is locally exponential by Theorem IV.2.9, which applies in particular to all quotients by central
ideals. In view of Theorem VI.1.10 below, it now suffices to show that the integral subgroup
Z generated by z is a locally exponential Lie subgroup. But this follows from the fact that
the projection onto |ĝ| × {0} along im(σ) restricts to a homeomorphism on z . Hence the
corresponding subgroup is a locally exponential Lie subgroup, and this completes the proof.

1 For the case of central extensions of Banach–Lie algebras, part of the assertions below can be found in a

footnote in [ES73, p.58].
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The preceding theorem applies in particular to central extensions z →֒ ĝ →→ g = L(G) of
Banach–Lie algebras, for which it characterizes integrability in terms of the discreteness of Πb .
In this case, a similar criterion is given by van Est and Korthagen in [EK64]. On the surface,
their criterion has the same formulation, but their period homomorphism arises as an element of
H2

sing(G, z)
∼= Hom(H2(G), z) obtained from the enlargeability theory of local groups ([Est62]).

Under their assumption that G is 1-connected, the Hurewicz homomorphism π2(G) → H2(G)
is an isomorphism, so that their period homomorphism also is a homomorphism π2(G) → z , and
one can even show that both coincide up to sign. We think that the definition of the period
homomorphism in terms of integration of differential forms makes it much more accessible than
the implicit construction in [EK64].

Definition VI.1.7. Let g be a locally exponential Lie algebra and consider the central
extension

0 → z(g) → g → gad := g/z → 0.

Let Gad ⊆ Aut(g) be endowed with its locally exponential group structure with Lie algebra gad

(Theorem IV.3.8) and
perg:π2(Gad) → z(g)

the corresponding period homomorphism (Theorem VI.1.6(1)). We write Π(g) := im(perg) for
its image and call it the period group of g .

The following theorem generalizes the enlargeability criterion of [EK64] for Banach algebras.
It follows immediately from Theorem IV.3.8 on the integrability of g/z(g) and Theorem VI.1.6.

Theorem VI.1.8. (Enlargeability Criterion for locally exponential Lie algebras) A Mackey
complete locally exponential Lie algebra g is enlargeable if and only if its period group Π(g) is
discrete.

Proposition VI.1.9. If g is a separable locally exponential Lie algebra, then Π(g) is count-
able. If, in addition, g is Fréchet, then Π(g) is closed if and only if it is discrete.

Proof. If g is separable, then the same holds for the connected group Gad and hence for the
identity component C∗(S

1, Gad)0 of the loop group. Its universal covering group is also separable,
so that its fundamental group, which is isomorphic to π2(Gad), is countable. This implies that
Π(g) is countable.

If Π(g) is closed and g is Fréchet, it is a countable complete metric space, hence discrete.

For the second part of the preceding proposition, the Fréchet assumption on g is crucial:
the space RR contains a non-discrete closed subgroup isomorphic to Z(N) ([HMP04, Cor. 3.2(i)]).

Combining the fact that kernels of morphisms are locally exponential Lie subgroups (Propo-
sition IV.3.4) and Theorem IV.1.19 on the integration of morphisms of Lie algebras, one ob-
tains the equivalence of (1) and (2) in the following integrability criterion for quotient algebras
([GN06]):

Theorem VI.1.10. (Enlargeability Criterion for quotients) Let G be a 1-connected locally
exponential Lie group and n E g a closed ideal for which the quotient Lie algebra q := g/n is
locally exponential. Let

Z(G, n) := {g ∈ G: (Ad(g) − 1)(g) ⊆ n}.
Then Z(G, n) E G is a normal locally exponential Lie subgroup with Lie algebra

z(g, n) := {x ∈ g: [x, g] ⊆ n},
and the Lie algebra homomorphism q: z(g, n) → z(q) defines a period homomorphism

perq:π1(Z(G, n)) → z(q), perq([γ]) =

∫ 1

0

q(δ(γ)t) dt,

where γ: [0, 1] → Z(G, n) is a piecewise smooth loop. The following assertions are equivalent:

(1) The locally exponential Lie algebra q = g/n is enlargeable.

(2) The normal integral subgroup N := 〈expG n〉 E G is a locally exponential Lie subgroup.

(3) The image of perq is a discrete subgroup of z(q) .
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Remark VI.1.11. In addition to the assumptions of the preceding theorem, suppose that G
is a Fréchet–Lie group. We then have Qad

∼= G/Z(G, n), and since Michael’s Selection Theorem
([MicE59]) applies to the quotient map g → q , this leads to a surjective homomorphism

δ:π2(Qad) → π1(Z(G, n)).

The surjectivity of δ follows from the 1-connectedness of G and the exactness of the long exact
homotopy sequence of the bundle G→ Qad . Then it is not hard to see that

perq ◦δ = perq:π2(Qad) → z(q),

which shows that (3) in Theorem VI.1.10 is equivalent to the discreteness of the Π(q) (Theo-
rem VI.1.8).

Proposition VI.1.12. (Functoriality of the period group) Let ϕ: g → h be a morphism
of Mackey complete locally exponential Lie algebras with ϕ(z(g)) ⊆ z(h) and ϕad: gad → had

the induced homomorphism. Then ϕad integrates to a group homomorphism ϕ̃ad: G̃ad → H̃ad ,
ϕ(Π(g)) ⊆ Π(h) , and the following diagram commutes

π2(Gad)
π2(ϕ̃ad)−−−−−−→ π2(Had)yperg

yperh

z(g)
ϕ−−−−−−→ z(h)

.

Corollary VI.1.13. If g1, g2 are Mackey complete locally exponential Lie algebras, then

Π(g1 × g2) = Π(g1) × Π(g2).

Remark VI.1.14. (Constructing non-enlargeable Lie algebras) Suppose that g is a locally
exponential Lie algebra with Π(g) ∼= Z . Let θ ∈ R \Q . Then z := {(x, θx):x ∈ z(g)} is a central
ideal of g × g , so that h := (g × g)/z is locally exponential. Corollary VI.1.13 and Proposition
VI.1.12 imply that, writing Π(g) = Zd , we get

Π(h) ∼= Z[(d, 0)] + Z[(0, d)] = (Z + Zθ)[(d, 0)],

which is not discrete. Hence h is not integrable.

Using the construction of the group G via Theorem VI.1.6 and the long exact homotopy
sequence, one can identify the period group of enlargeable Fréchet–Lie algebras in terms of the
center:

Proposition VI.1.15. If G is a locally exponential 1-connected Fréchet–Lie group and
g = L(G) its Lie algebra, then

Π(g) = ker(expG |z(g)) ∼= π1(Z(G)).

Example VI.1.16. The first example of a non-enlargeable Banach–Lie algebra was given by
van Est and Korthagen with the method described in Remark VI.1.14 ([EK64]). It is the central
extension g of the Banach–Lie algebra C1(S1, su2(C)) by R , defined by the cocycle

ω(f, g) :=

∫ 1

0

tr(f(t)g′(t)) dt,

where we identify functions on S1 ∼= R/Z with 1-periodic functions on R . Then gad
∼=

C1(S1, su2(C)) and Gad
∼= C1(S1, SU2(C)) leads to π2(Gad) ∼= π3(SU2(C)) ∼= π3(S

3) ∼= Z .
Now one shows that perg = perω is non-trivial to verify that Π(g) ∼= Z .

Using Kuiper’s Theorem ([Ku65]), Douady and Lazard gave a simpler example ([DL66]):
by observing that the 1-connectedness of the unitary group U(H) of an infinite-dimensional
complex Hilbert space H implies that its Lie algebra u(H) := {X ∈ L(H):X∗ = −X} satisfies

Π(u(H)) ∼= π1(Z(U(H))) = π1(T) ∼= Z

(Proposition VI.1.15).

Based on the fact that U(H) is 1-connected, one can also give the following direct argu-
ment. For any irrational θ ∈ R \ Q the line n := Ri(1, θ1) generates a dense subgroup of the
center Z(U(H)×U(H)) ∼= T2 of the 1-connected group U(H)×U(H), so that Theorem VI.1.10
implies that the quotient Lie algebra (u(H) × u(H))/n is not enlargeable.



90 japsurv.tex May 23, 2006

Enlargeability of quotients

One may take Theorem VI.1.10 as a starting point of a theory of certain topological groups
which are more general than Lie groups, namely quotients of Lie groups. This leads to the
concept of a scheme of Lie groups, or S -Lie group (cf. [Ser65], [DL66] and [Est84]). The strength
of this concept for Banach–Lie algebras and, more generally, locally exponential Lie algebras,
follows from the fact that each such Lie algebra is a quotient of an enlargeable one:

Theorem VI.1.17. ([Swi71] for the Banach case) For each locally exponential Fréchet–Lie
algebra g , the Lie algebra

Λ(g) := C∗([0, 1], g) := {γ ∈ C([0, 1], g): γ(0) = 0}

is enlargeable.

Proof. Clearly, z(Λ(g)) = Λ(z(g)), so that Λ(g)ad ∼= Λ(gad) follows from Michael’s Theorem
([MicE59]). The corresponding group C∗([0, 1], Gad) is contractible, and this leads to Π(Λ(g)) =
{0} , which implies enlargeability.

A central point of the preceding theorem is that it implies that each locally exponential
Fréchet–Lie algebra g is a quotient of an enlargeable Fréchet–Lie algebra (cf. [Rob02, Th. 5]):
the evaluation map ev1: Λ(g) → g, γ 7→ γ(1) is a quotient map. Now one can address the
enlargeability problem along the lines of Theorem VI.1.10.

Remark VI.1.18. (a) In [Woj06], Wojtyński describes a variant of this approach for Banach–
Lie algebras. Instead of considering the Banach–Lie algebra Λ(g), he considers analytic paths
γ(t) :=

∑∞
n=1 ant

n , for which ‖γ‖1 :=
∑∞

n=1 ‖an‖ is finite. Identifying these curves with their
coefficient sequences, we denote this space by ℓ1(g) := ℓ1(N, g). The Lie bracket on this sequence
space is given by

(6.1.1) [(an), (bn)] = (cn) with cn =

n−1∑

j=1

[aj , bn−j ].

With the same Lie bracket, we also turn the full sequence space gN into a pro-nilpotent
Fréchet–Lie algebra, which is exponential for trivial reasons. Since the Banach–Lie algebra ℓ1(g)
injects into the exponential Lie algebra gN , it is enlargeable by Corollary IV.4.10. Again, we
have an evaluation map

q: ℓ1(g) → g, (an) 7→
∞∑

n=1

an,

which is a quotient morphism of Lie algebras and since the subgroup 〈exp ℓ1(g)〉 is contractible
(cf. [Woj06]), one may proceed with Theorem VI.1.10 as for Λ(g).

(b) In [Pe93a/95a], Pestov shows that if E is a Banach space of dimE > 1, then the free
Banach–Lie algebra over E has trivial center. As a consequence, every Banach–Lie algebra g of
dimension > 1 is a quotient of a centerless Banach–Lie algebra F (g), the free Banach–Lie algebra
over the Banach space g , which is enlargeable because its center is trivial (Theorem IV.3.8).
Again, we can proceed with Theorem VI.1.10 to obtain enlargeability criteria.

The following enlargeability criterion of Swierczkowski for extensions by not necessarily
abelian ideals is a powerful tool. It would be very interesting to see if it can be extended to the
locally exponential setting. It applies in particular to all situations where q is finite-dimensional
or abelian (cf. [Swi65]; Remark V.2.14(b)).

Theorem VI.1.19. ([Swi67, Th., Sect. 12]) Suppose that g is a Banach–Lie algebra and
n E g a closed enlargeable ideal for which q := g/n is enlargeable to some group Q with vanishing
π2(Q) , then g is enlargeable.
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Definition VI.1.20. A Banach–Lie algebra is said to be lower solvable if there exists an
ordinal number α and an ascending chain of closed subalgebras

{0} = g0 ⊆ g1 ⊆ g2 ⊆ . . . ⊆ gβ ⊆ gβ+1 ⊆ . . . ⊆ gα = g

such that

(a) If β ≤ α is not a limit ordinal, then Xβ−1 is an ideal of Xβ containing all commutators.

(b) If β ≤ α is a limit ordinal, then Xβ is the closure of
⋃
γ<βXγ .

The following theorem is an immediate consequence of Theorem VI.1.19, applied to the
situation where q is abelian:

Theorem VI.1.21. ([Swi65, Th. 2]) Each lower solvable Banach–Lie algebra is enlargeable.

Some of the methods used above for Banach–Lie groups have some potential to work in
greater generality. Here are some ideas:

Remark VI.1.22. If G is a Lie group with Lie algebra g , then

P (G) := C∞∗ (I,G) := {γ ∈ C∞(I,G): γ(0) = 1}

also is a Lie group with Lie algebra P (g) := C∞∗ (I, g), endowed with the pointwise bracket.
The logarithmic derivative δ:P (G) → C∞(I, g) is a smooth map satisfying δ(αβ) = δ(β) +
Ad(β)−1.δ(α) and T1(δ)(ξ) = ξ′. (Lemma II.3.3). As [ξ, η]′ = [ξ′, η] + [ξ, η′] , it follows that
T1(δ):P (g) → C∞(I, g) becomes a topological isomorphism of Lie algebras if C∞(I, g) is
endowed with the bracket

(6.1.2) [ξ, η](t) :=
[
ξ(t),

∫ t

0

η(τ) dτ
]

+
[ ∫ t

0

ξ(τ) dτ, η(t)
]
.

The evaluation map ev1:P (g) → g corresponds to the quotient map

C∞(I, g) → g, ξ 7→
∫ 1

0

ξ(τ) dτ.

If, in addition, G is regular, then δ is a diffeomorphism, and it follows that C∞(I, g),
endowed with the bracket (6.1.2), is integrable. Since this property is clearly necessary for the
regular integrability of g , Lie algebras with this property are called pre-integrable in [RK97] (see
also [Les93]).

If G is a real BCH–Lie group, then a morphism κG:G → GC to a complex BCH–Lie
group GC is called a universal complexification if for each other morphism α:G → H to a
complex BCH–Lie group H , there exists a unique morphism β:GC → H with α = β ◦ κG . It
is well known that if G is finite-dimensional, then a universal complexification always exists (cf.
[Ho65] , [Ne99, Th. XIII.5.6]), but it need not be locally injective, so that it may occur that
dimC GC < dimR G . The following theorem shows that, due to the existence of non-enlargeable
Lie algebras, the situation becomes more complicated in infinite dimensions.

Theorem VI.1.23. (Existence of universal complexifications; [GN03], [Gl02c]) Given a real
BCH–Lie group G , let NG be the intersection of all kernels of smooth homomorphisms from G
to complex BCH–Lie groups. Then G has a universal complexification if and only if NG is a
BCH–Lie subgroup of G and the complexification of L(G)/Le(NG) is enlargeable.

Note that Theorem VI.1.10 implies that if G is 1-connected, the existence of a universal
complexification is equivalent to the enlargeability of L(G)/Le(NG). In [GN03], one finds an
example of a Banach-Lie group for which NG fails to be a Lie subgroup ([GN03, Sect. V]) and
also examples where NG = {1} but L(G)C is not enlargeable. The setting of BCH–Lie groups is
the natural one for complexifications because if g is a locally exponential Lie algebra for which gC

is locally exponential as a complex Lie algebra, then the local multiplication is complex analytic.
This implies that gC is BCH which in turns entails that g is BCH.
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Localizing enlargeability

We call a norm ‖ · ‖ on a Lie algebra g submultiplicative if ‖[x, y]‖ ≤ ‖x‖‖y‖ for all
x, y ∈ g . A Banach–Lie algebra (g, ‖ · ‖) is called contractive if its norm is submultiplicative. For
any contractive Lie algebra, we define

δg := inf{‖x‖: 0 6= x ∈ Π(g)} ∈ [0,∞]

and note that g is enlargeable if and only if δg > 0, which is equivalent to the discreteness of the
period group Π(g) (Theorem VI.1.8). The following theorem is originally due to Pestov who
proved it with non-standard methods. A “standard” proof has been given in [Bel04] by Beltita.

Theorem VI.1.24. (Pestov’s Local Theorem on Enlargeability) A contractive Banach–Lie
algebra g is enlargeable if and only if there exists a directed family H of closed subalgebras of g

for which
⋃H is dense in g and inf{δh: h ∈ H} > 0 .

Since for each finite-dimensional Lie algebra g the period group is trivial, we have δg = ∞ ,
and the preceding theorem, applied to the directed family of finite-dimensional subalgebras of g

leads to:

Corollary VI.1.25. ([Pe92], [Bel04]) If g is a Banach–Lie algebra containing a locally finite-
dimensional dense subalgebra, then g is enlargeable.

Corollary VI.1.26. ([Pe93b, Th. 7]) A Banach–Lie algebra g is enlargeable if and only if all
its separable closed subalgebras are.

Period groups for continuous inverse algebras

Another interesting class of cocycles arises for complete CIAs A ([Ne06c]). A continuous
alternating bilinear map α:A×A→ E , E a locally convex space, is said to be a cyclic 1-cocycle
if

α(ab, c) + α(bc, a) + α(ca, b) = 0 for a, b, c ∈ A.

We write ZC1(A,E) for the set of all cyclic 1-cocycles with values in E . Let AL = gl1(A)
denote the Lie algebra (A, [·, ·]) obtained by endowing A with the commutator bracket. Then
each cyclic cocycle defines a Lie algebra cocycle α ∈ Z2

c (AL, E) with respect to the trivial module
structure on E . To describe the universal cyclic cocycle, we endow A ⊗ A with the projective
tensor topology and define 〈A,A〉 as the completion of the quotient space

(A⊗A)/span{a⊗ a, ab⊗ c+ bc⊗ a+ ca⊗ b; a, b, c ∈ A}.

We write αu(a, b) := 〈a, b〉 for the image of a⊗ b in 〈A,A〉 . Then the universal property of the
projective tensor product implies that

L(〈A,A〉, E) → ZC1(A,E), f 7→ f ◦ αu

is a bijection for each complete locally convex space E , so that αu is a universal cyclic 1-cocycle.
Of particular interest is the map bA: 〈A,A〉 → A, 〈a, b〉 → [a, b] defined by the commutator
bracket. Its kernel

HC1(A) := ker bA ⊆ 〈A,A〉
is the first cyclic homology space of A (cf. [Lo98]). We write ωu for the universal cyclic 1-cocycle,
interpreted as a Lie algebra 2-cocycle. Then the corresponding period map

perωu
:π2(A

×) → 〈A,A〉
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actually has values in the subspace HC1(A), which leads to a homomorphism

perωu
:π2(A

×) → HC1(A).

It is a remarkable fact that this structure behaves nicely if we replace A by a matrix
algebra Mn(A). Let ηn:A → Mn(A), a 7→ aE11 denote the natural inclusion map and observe
that it induces maps 〈A,A〉 → 〈Mn(A),Mn(A)〉 , taking HC1(A) into HC1(Mn(A)). In the
other direction, we have maps

tr(2): 〈Mn(A),Mn(A)〉 → 〈A,A〉, 〈(aij), (bij)〉 7→
n∑

i,j=1

〈aij , bji〉,

and the topological version of the Morita invariance of cyclic homology ([Lo98, Th. 2.2.9]) asserts
that these maps restrict to isomorphisms HC1(Mn(A)) → HC1(A). This leads to extensions of
the universal cocycle to a cocycle ωnu ∈ Z2

c (gln(A), 〈A,A〉) with η∗nω
n
u = ωu for each n ∈ N . In

terms of the tensor product structure gln(A) ∼= A⊗ gln(K), it is given by

ωnu(a⊗ x, b⊗ y) = tr(xy)〈a, b〉.

To explain the corresponding compatibility on the level of period homomorphisms, we
define the topological K -groups of A by

Ki+1(A) := lim
−→

πi(GLn(A)) for i ∈ N0,

where the direct limit on the right hand side corresponds to the embeddings

GLn(A) → GLn+1(A), a 7→
(
a 0
0 1

)
,

induced by the corresponding embeddings Mn(A) →֒ Mn+1(A). The group K0(A) is defined as
the Grothendieck group of the abelian monoid lim

−→
π0(Idem(Mn(A))), endowed with the addition

[e] + [f ] :=
[(

e 0
0 f

) ]
(cf. [Bl98]).

The naturality of the universal cocycles now implies that the period maps

perωn
u
:π2(GLn(A)) → HC1(A)

combine to a group homomorphism

per1A:K3(A) = lim
−→

π2(GLn(A)) → HC1(A),

which is a natural transformation from the functor K3 with values in abelian groups to the
functor HC1 with values in complete locally convex spaces.

It is of some interest to know whether the group

Π1
A := im(per1A) ⊆ HC1(A)

is discrete. If this is the case, then each period homomorphism perωn
u

has discrete image,

which implies that the corresponding central extension ĝln(A) of the Lie algebra gln(A) by
〈Mn(A),Mn(A)〉 is enlargeable.

This central extension is of particular interest when restricted to the subalgebra sln(A) :=
[gln(A), gln(A)] . We define a Lie bracket on 〈Mn(A),Mn(A)〉 by

[〈a, b〉, 〈a′, b′〉] := 〈[a, b], [a′, b′]〉,
turning it into a locally convex Lie algebra. Now the bracket map of Mn(A) induces a generalized
central extension

q: ŝln(A) := 〈Mn(A),Mn(A)〉 → sln(A), 〈a, b〉 7→ [a, b]

with ker q = HC1(Mn(A)) ∼= HC1(A), which is a universal generalized central extension,
called the topological Steinberg–Lie algebra ([Ne03, Ex. 4.10]). The enlargeability criterion in
Theorem VI.1.6 immediately leads to:
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Theorem VI.1.27. If the subgroup Π1
A of HC1(A) is discrete, then all Steinberg–Lie algebras

ŝln(A) are enlargeable.

Remark VI.1.28. Let ω ∈ ZC1(A,E) be a cyclic cocycle, considered as a Lie algebra cocycle

on (A, [·, ·]) . Then the adjoint action of A on the Lie algebra ÂL := E ⊕ω AL integrates to an
action of A× by

g.(z, a) = (z − ω(ag−1, g), gag−1).

In view of Remark V.2.14(f), this implies the triviality of the flux homomorphism

Fω:π1(A
×) → H1

c (AL, E) ⊆ L(A,E).

According to [Bos90], we have for each complex complete CIA A natural isomorphisms

βiA:Ki(A) → Ki+2(A), i ∈ N0.

This is an abstract version of Bott periodicity. In particular, the range of

PA := per1A ◦β1
A:K1(A) → HC1(A)

coincides with ΠA
1 . The main advantage of this picture is that natural transformations from K1

to HC1 are unique, which leads to the explicit formula

PA([g]) =
∑

i,j

〈(g−1)ij , gji〉 for [g] ∈ K1(A), g ∈ GLn(A)

(cf. [Ne06c]). If, in addition, A is commutative, then HC1(A) is the completion of the quotient
Ω1(A)/dA(A), where Ω1(A) is the (topological) universal differential module of A . In these
terms, we then have

PA(g) = 〈det(g)−1, det(g)〉 = [det(g)−1dA(det(g))],

which leads to
im(PA) = PA([A×]) = {[a−1dA(a)]: a ∈ A×}.

Examples VI.1.29. (1) For A = C∞c (M,C), M a σ -compact finite-dimensional manifold, we
have

HC1(A) ∼= Ω1
c(M,C)/dC∞c (M,C)

([Co94], [Mai02]). Moreover, Mn(A) ∼= C∞c (M,Mn(C)) and

ωnu(f, g) = [tr(f · dg)]
is a cocycle of product type, which implies that its period group coincides with the group

im(PA) = δ(C∞c (M,C×))/dC∞c (M,C)

of integral cohomology classes in H1
dR,c(M,C), which is discrete (Theorem V.2.17).

(2) For A = C(X,C), where X is a compact space, Johnson’s Theorem entails that
Ω1(A), and hence HC1(A) ∼= Ω1(A)/dA(A), vanish ([BD73, Th. VI.12]). This further implies
that for each C∗ -Algebra A the homomorphism PA vanishes.

A particularly interesting class of Fréchet CIAs are the d-dimensional smooth quantum
tori. These algebras are parametrized by skew-symmetric matrices Θ ∈ Skewd(R), as follows.
They are topologically generated by d invertible elements u1, . . . , ud , together with their inverses,
satisfying the commutation relations

upuq = e2πiΘpququp for 1 ≤ p, q ≤ d.

Moreover,

AΘ =
{ ∑

I∈Zd

αIu
I : (∀k ∈ N)

∑

I

|I|k|αI | <∞
}
,

where |I| = i1+ . . .+id and uI := ui11 · · ·uidd , so that, as a Fréchet space, AΘ is isomorphic to the
space of smooth functions on the d-dimensional torus. In particular, we have the commutative
case A0

∼= C∞(Td,C). The following theorem characterizes those for which the image of PA is
discrete ([Ne06c]):
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Theorem VI.1.30. For the d-dimensional smooth quantum torus AΘ , the group im(PAΘ) is
discrete if and only if d ≤ 2 or the matrix Θ has rational entries.

An interesting consequence of the preceding theorem is that there exists a CIA A for
which im(PA) is not discrete. The smallest examples are of the form A := C∞(T, AΘ), where

Θ =

(
0 θ
−θ 0

)
, θ ∈ R \ Q , so that AΘ is a so-called irrational rotation algebra.

VI.2. Integrability of non-locally exponential Lie algebras

After the discussion of the enlargeability of locally exponential and Banach–Lie algebras
in the preceding subsection, we now turn to more general classes of Lie algebras. Unfortunately,
there is no general theory beyond the locally exponential class, so that all positive and negative
results are quite particular.

We start with a discussion of some obstructions to the integrability to an analytic Lie
group, then turn to complexifications of Lie algebras of vector fields, and finally to Lie algebras
of formal vector fields, resp., Lie algebras of germs.

Proposition VI.2.1. ([Mil84, Lemma 9.1]) Let G be a connected analytic Lie group. Then
each closed ideal n E L(G) is invariant under Ad(G) .

Corollary VI.2.2. If g is a Lie algebra containing a closed ideal which is not stable, then g

is not integrable to an analytic Lie group with an analytic exponential function.

Remark VI.2.3. Proposition VI.2.1 implies that the Lie group Diff(M) of all diffeomorphisms
of a compact manifold M does not possess an analytic Lie group structure for which its Lie
algebra is V(M). Indeed, for each non-dense open subset K ⊆M , the subspace

V(M)K := {X ∈ V(M):X |K = 0}

is a closed ideal of V(M) not invariant under Ad(Diff(M)) because Ad(ϕ).V(M)K = V(M)ϕ(K)

for ϕ ∈ Diff(M).

The situation improves if we restrict our attention to analytic diffeomorphisms:

Theorem VI.2.4. ([Les82/83]) Let M be a compact analytic manifold and Vω(M) the Lie
algebra of analytic vector fields on M . Then Vω(M) carries a natural Silva space structure,
turning it into a topological Lie algebra, and the group Diffω(M) of analytic diffeomorphisms
carries a smooth Lie group structure for which Vω(M)op is its Lie algebra.

It is shown by Tognoli in [Ta68] that the group Diffω(M), M a compact analytic
manifold, carries no analytic Lie group structure (cf. [Mil82, Ex. 6.12]). That there is no analytic
Lie group with an analytic exponential function and Lie algebra Vω(M) can be seen by verifying
that the map (X,Y ) 7→ Ad(FlX1 ).Y is not analytic on a 0-neighborhood in Vω(M)×Vω(M) (cf.
[Mil82, Ex. 6.17]).

The following non-integrability result is quite strong because it does not assume the exis-
tence of an exponential function. Its outcome is that complexifications of Lie algebras of vector
fields are rarely integrable. For complexifications of Lie algebras of ILB–Lie groups, similar
results are described by Omori in [Omo97, Cor. 4.4].

Theorem VI.2.5. ([Lem97]) Let M be a compact manifold of positive dimension. Then the
complexifications gC of the following Lie algebras g are not integrable:

(1) The Lie algebra V(M) of smooth vector fields on M .

(2) If M is analytic, the Lie algebra Vω(M) of analytic vector fields on M .

(3) If Ω is a symplectic 2-form on M , the Lie algebra V(M,Ω) := {X ∈ V(M):LXΩ = 0} of
symplectic vector fields on M .
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(4) If M is analytic and Ω is an analytic symplectic 2-form on M , the Lie algebra Vω(M,Ω)
of analytic symplectic vector fields on M .

Proof. (Idea) Lempert’s proof is based on the following result, which is obtained by PDE
methods: If ξ: R → gC is a smooth curve such that for each x ∈ gC the IVP

γ(0) = x, γ̇(t) = [ξ(t), γ(t)]

has a smooth solution, then ξ(0) ∈ g .

For (1) he gives another argument, based on the fact that

(6.2.1) Aut(V(M)C) ∼= Aut(V(M)) ⋊ {1, σ} ∼= Diff(M) ⋊ {1, σ},

where σ denotes the complex conjugation on V(M)C . The first isomorphism is obtained in
[Lem97], using [Ame75], and the second is an older result of Pursell and Shanks ([PuSh54];
cf. Theorem IX.2.1).

Clearly (6.2.1) implies that for any connected Lie group G with Lie algebra L(G) = V(M)C ,
the group Ad(G) ⊆ Aut(V(M)C) preserves the real subspace V(M). Taking derivatives of orbit
maps, this leads to the contradiction [V(M)C ,V(M)] ⊆ V(M).

Theorem VI.2.6. ([Omo81]) For any non-compact σ -compact smooth manifold M of positive
dimension, the Lie algebra V(M) is not integrable to any Lie group with an exponential function.

Proof. (Sketch) If G is a Lie group with Lie algebra L(G) = V(M) and an exponential
function, then for each X ∈ V(M) we obtain a smooth 1-parameter group t 7→ Ad(expG(tX))
of automorphisms of V(M) with generator adX . By [Ame75, Thm. 2], Aut(V(M)) ∼= Diff(M),
so that we obtain a one-parameter group γX of Diff(M) which then is shown to coincide with the
flow generated by X (cf. Lemma II.3.10; [KYMO85, Sect. 3.4]). This contradicts the existence
of non-complete vector fields on M .

Since the BCH series can be used to defined a Lie group structure on any nilpotent locally
convex Lie algebra, all these Lie algebras are integrable. The following theorem shows that the
integrability problem for solvable locally convex Lie algebras contains the integrability problem
for continuous linear operators on locally convex spaces, which is highly non-trivial (Problem
VI.1). E.g., if M is a finite-dimensional σ -compact manifold and X ∈ V(M) a vector field, then
the corresponding derivation of the Fréchet algebra C∞(M,R) is integrable if and only if the
vector field X is complete.

Theorem VI.2.7. Let E be a locally convex space and D ∈ gl(E) . Then the solvable Lie
algebra g := E ⋊D R with the bracket [(v, t), (v′, t′)] := (tDv′ − t′Dv, 0) is integrable if and only
if D is integrable to a smooth R-action on E .

Proof. If D is integrable to a smooth representation α: R → GL(E) with α′(0) = D , then
the semi-direct product G := E ⋊α R is a Lie group with the Lie algebra g .

Suppose, conversely, that G is a connected Lie group with Lie algebra g . Replacing G
by its universal covering group, we may assume that G is 1-connected. Then the regularity
of the additive group (R,+) implies the existence of a smooth homomorphism χ:G → R with
L(χ) = q , where q(v, t) = t is the projection g = E ⋊D R → R (Theorem III.1.5).

Using Glöckner’s Implicit Function Theorem ([Gl03a]), it follows that kerχ is a submanifold
of G and there exists a smooth curve γ: R → G with γ(0) = 1 and χ ◦ γ = idR .

Next we observe that [g, g] ⊆ E implies that E is Ad(G)-invariant, so that AdE(g) :=
Ad(g) |E defines a smooth action of G on E whose derived representation is given by adE(x, t) =
tD . We now put α(t) := AdE(γ(t)) and observe that

δ(α)(t) = adE(δ(γ)(t)) = q(δ(γ)(t)) ·D = δ(χ ◦ γ)(t) ·D = D.

Hence D is integrable.
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Example VI.2.8. Let gfn(R)−1 := Rn[[x1, . . . , xn]] denote the space of all Rn -valued formal
power series in n variables, considered as the Lie algebra of formal vector fields, endowed with
the bracket

[f, g](x) := dg(x)f(x) − df(x)g(x),

which makes sense on the formal level because if f is homogeneous of degree p and g is
homogeneous of degree q , then [f, g] is of degree p+ q − 1.

We have already seen in Example IV.1.14 that the subalgebra gfn(R) of all elements
with vanishing constant term is the Lie algebra of the Fréchet–Lie group Gfn(R) of formal
diffeomorphisms of Rn fixing 0. We obviously have the split short exact sequence

0 → gfn(R) →֒ gfn(R)−1 →→ Rn → 0,

where Rn is considered as an abelian Lie algebra, corresponding to the constant vector fields.

We claim that the Lie algebra gfn(R)−1 is not integrable to any Lie group with an
exponential function. This strengthens a statement in [KYMO85, p.80], that it is not integrable
to a µ-regular Fréchet–Lie group. Let us assume that G is a Lie group with Lie algebra gfn(R)−1 .
With a similar argument as in the proof of Theorem VI.2.7, one can show that for each constant
function x the operator adx on gfn(R)−1 is integrable. We consider the constant function e1 .
Then [e1, g] = ∂g

∂x1
, and we can now justify as in Example II.3.13 that ad e1 is not integrable,

hence that gfn(R)−1 cannot be integrable to any Lie group with an exponential function.

The preceding example shows that the constant terms create problems in integrating Lie
algebras of formal vector fields, which is very natural because the formal completion distinguishes
the point 0 ∈ Rn . A similar phenomenon arises in the context of groups of germs of local
diffeomorphisms. For germs of functions in 0, the non-integrability of vector fields with non-zero
constant term follows from the fact that all automorphisms preserve the unique maximal ideal
of functions vanishing in 0 (cf. [GN06]).

Let gsn(R)−1 denote the space of germs of smooth maps Rn → Rn in 0, identified with
germs of vector fields in 0. According to [RK97, Sect. 5.2], this space carries a natural Silva
structure, turning it into a locally convex Lie algebra. Let gsn(R) denote the subspace of all
germs vanishing in 0 and gsn(R)1 the set of germs vanishing of second order in 0.

Theorem VI.2.9. ([RK97, Th. 3]) The group Gsn(R) of germs of diffeomorphism of Rn in
0 fixing 0 carries a Lie group structure for which the Lie algebra is the space gsn(R) of germs
of vector fields vanishing in 0 .

We have a semidirect product decomposition Gsn(R) ∼= Gsn(R)1 ⋊GLn(R) , where Gsn(R)1
is the normal subgroup of those germs [ϕ] for which ϕ− idRn vanishes of order 2 . The map

Φ: gsn(R)1 → Gsn(R)1, ξ 7→ id +ξ

is a global diffeomorphism.

In view of the preceding theorem, it is a natural problem to integrate Lie algebras of germs
of vector fields vanishing in the base point to Lie groups of germs of diffeomorphisms. This
program is carried out by Kamran and Robart in several papers (cf. [RK97], [KaRo01/04],
[Rob02]). It results in several interesting classes of Silva–Lie groups of germs of smooth and also
analytic local diffeomorphisms, where the corresponding Silva–Lie algebras depend on certain
parameters which are used to obtain a good topology.

Example VI.2.10. The formal analog of the Lie algebra gs1(R)1 is the Lie algebra gf1(R)1
which is pro-nilpotent, hence in particular BCH. In contrast to this fact, Robart observed that
gs1(R)1 is not BCH. In fact, for the elements ξ(x) = ax2 , λ ∈ R and η(x) = x3 , we have

∞∑

n=0

(
(ad ξ)nη

)
(x) = x3

∞∑

n=0

ann!xn,

which converges for no x 6= 0 if a 6= 0. With Floret’s results from [Fl71, p.155], it follows
that this series does not converge in the Silva space gs1(R)1 , so that Theorem IV.1.7 shows that
gs1(R)1 is not BCH.
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The following proposition is a variant of E. Borel’s theorem on the Taylor series of smooth
functions. It provides an interesting connection between the smooth global and the formal
perspective on diffeomorphism groups.

Proposition VI.2.11. (Glöckner) Let M be a smooth finite-dimensional manifold, m0 ∈M
and Diffc(M)m0 the stabilizer of m0 . For each ϕ ∈ Diffc(M)m0 , let T∞m0

(ϕ) ∈ Gfn(R) denote
the Taylor series of ϕ in m0 with respect to some local chart. Then the map

T∞m0
: Diffc(M)m0,0 → Gfn(R)0

is a surjective homomorphism of Lie groups, where Gfn(R)0 is the subgroup of index 2 , consisting
of those formal diffeomorphisms ψ with det(T0(ψ)) > 0 .

Example VI.2.12. Let ghn(C) denote the space of germs of holomorphic maps f : Cn → Cn

in 0 satisfying f(0) = 0. We endow this space with the locally convex direct limit topology of
the Banach spaces Ek of holomorphic functions on the closed unit disc of radius 1

k in Cn (with
respect to any norm). Thinking of the elements of ghn(C) as germs of vector fields in 0 leads
to the Lie bracket

[f, g](z) := dg(z)f(z) − df(z)g(z),

which turns ghn(C) into a topological Lie algebra.

The set Ghn(C) of all germs [f ] with det(f ′(0)) 6= 0 is an open subset of ghn(C) which
is a group with respect to composition [f ][g] := [f ◦ g] . In [Pis77], Pisanelli shows that
composition and inversion in Ghn(C) are holomorphic, so that Ghn(C) is a complex Lie group
with respect to the manifold structure it inherits as an open subset of ghn(C). This Lie group
has a holomorphic exponential function which is not locally surjective, where the latter fact can
be obtained by adapting Sternberg’s example f(z) = e

2πi
m z+pzm+1 (Example IV.1.14) ([Pis76]).

Note that Ghn(C) ∼= Ghn(C)1 ⋊ GLn(C), where Ghn(C)1 is the subgroup of all diffeo-
morphisms with linear term idCn .

Remark VI.2.13. Let g(A) be a symmetrizable Kac–Moody Lie algebra. In [Rod89], Rod-

riguez-Carrington describes certain Fréchet completions of g(A), including smooth g∞(A)
and analytic versions gω(A), which are BCH–Lie algebras ([Rod89, Prop. 1]). Corresponding
groups are constructed for the unitary real forms by unitary highest weight modules of g(A), as
subgroups of the unitary groups of a Hilbert space (Corollary IV.4.10). In [Su88], Suto obtains
closely related results, but no Lie group structures.

In a different direction, Leslie describes in [Les90] a certain completion g(A) of g(A)
which leads to a Lie group structure on the space C∞([0, 1], g(A)), corresponding to the natural
Lie algebra structure on this space. One thus obtains an integrable Lie algebra extension of g(A)
in the spirit of pre-integrable Lie algebras (Remark IV.1.22). For an approach to Kac–Moody
groups in the context of diffeological groups, we refer to [Les03] (cf. [So84]).

Open Problems for Section VI

Problem VI.1. (Generators of smooth one-parameter groups) Let E be a locally convex space
and D:E → E a continuous linear endomorphism. Characterize those linear operators D for
which there exists a homomorphism α: R → GL(E) defining a smooth action of R on E . In
view of Theorem VI.2.7, this is equivalent to the integrability of the 2-step solvable Lie algebra
g := E ⋊D R .

If E is a Banach space, then each D integrates to a homomorphism α which is continuous
with respect to the norm topology on GL(E) and given by the convergent exponential series

α(t) :=
∑∞
k=0

tk

k!D
k.

Since for each smooth linear R-action on E , given by some α as above, the infinitesimal
generator α′(0) is everywhere defined, this problem is not a problem about operators which are
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unbounded in the sense that they are only defined on dense subspaces. In some sense, the passage
from Banach spaces to locally convex spaces takes care of this problem. If, e.g., α: R → GL(E)
is a strongly continuous one-parameter group on a Banach space E , then the subspace E∞ ⊆ E
of smooth vectors carries a natural Fréchet topology inherited from the embedding

E∞ →֒ C∞(R, E), v 7→ αv, αv(t) = α(t)v,

and the induced one-parameter group α∞: R → GL(E∞) defines a smooth action. In this
sense, each generator of a strongly continuous one-parameter group also generates a smooth one-
parameter group on a suitable Fréchet space.

Problem VI.2. (Integrability of 2-step solvable Lie algebras) Theorem VI.2.7 gives an inte-
grability criterion for solvable Lie algebras of the type g = E ⋊D R .

Since abelian Lie algebras are integrable for trivial reasons, it is natural to address the
integrability problem for solvable Lie algebras by first restricting to algebras of solvable class 2,
i.e., D1(g) := [g, g] is an abelian ideal of g . Clearly, the adjoint action defines a natural
topological module structure for the abelian Lie algebra W := g/D1(g) on E := D1(g). Here
are some problems concerning this situation:

(1) Does the integrability of g imply that the Lie algebra module structure of W on E integrates
to a smooth action of the Lie group (W,+) on E ? If E is finite-dimensional, this can be
proved by an argument similar to the proof of Theorem VI.2.7.

(2) Assume that the Lie algebra module structure of W on E integrates to a smooth action of
(W,+). Does this imply that g is integrable?

If g ∼= V ⋊W is a semidirect product, the latter is obvious, but if g is a non-trivial extension
of W by V , the situation is more complicated. Note that all solvable Banach–Lie algebras are
integrable by Theorem VI.1.21.

Problem VI.3. Is the group Gsn(R)1 of germs of diffeomorphisms ϕ of Rn fixing 0, for which
the linear term of ϕ− idRn vanishes, exponential?

Problem VI.4. Let G be a regular Lie group. Is every finite codimensional closed subalgebra
h ⊆ L(G) integrable to an integral subgroup? For µ-regular groups this follows from Theo-
rem III.2.8.

Problem VI.5. Is the group Ghn(C) defined in Example VI.2.12 a regular Lie group? Is the
subgroup Ghn(C)1 an exponential Lie group? (cf. Problem VI.3)

Problem VI.6. Does Pestov’s Theorem VI.1.24 generalize to locally exponential Lie algebras?

Problem VI.7. For quotient maps q:E → Q of Fréchet spaces, we may use [MicE59] to
find a continuous linear cross section σ:Q → E , which implies in particular that q defines a
topologically trivial fiber bundle. For more general locally convex spaces, cross sections might
not exist, but it would still be interesting if quotient maps of locally convex spaces are Serre
fibrations, i.e., have the homotopy lifting property for cubes (cf. [Bre93]). If this is the case, the
long exact homotopy sequence would also be available for quotient maps of locally exponential
Lie groups, which would be an important tool to calculate homotopy groups of such Lie groups.

Problem VI.8. Prove an appropriate version of Theorem VI.1.23 on the existence of a universal
complexification for locally exponential Lie algebras.

Note that this already becomes an interesting issue on the level of Lie algebras because
the complexification of a locally exponential Lie algebra need not be locally exponential. In
fact, in Example IV.4.6 we have seen an exponential Lie algebra g containing an unstable closed
subalgebra h . If gC is locally exponential, as a complex Lie algebra, then the local multiplication
in gC is holomorphic, so that g is BCH, contradicting the existence of unstable closed subalgebras.
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VII. Direct limits of Lie groups

The systematic study of Lie group structures on direct limit Lie groups G = lim
−→

Gn was started

in the 1990s by J. Wolf and his coauthors ([NRW91/93]). They used certain conditions on
the groups Gn and the maps Gn → Gn+1 to ensure that the direct limit groups are locally
exponential. Since not all direct limit groups are locally exponential (Example VII.1.4(c)), their
approach does not cover all cases. The picture for countable direct limits of finite-dimensional Lie
groups was nicely completed by Glöckner who showed that arbitrary countable limits of finite-
dimensional Lie groups exist ([Gl03b/05a]). The key to these results are general construction
principles for direct limits of finite-dimensional manifolds. These results are discussed in Section
VII.1. In Section VII.2, we briefly turn to other types of direct limit constructions where the
groups Gn are infinite-dimensional Lie groups.

VII.1. Direct limits of finite-dimensional Lie groups

Theorem VII.1.1. ([Gl05]) (a) For every sequence (Gn)n∈N of finite-dimensional Lie groups
Gn with morphisms ϕn:Gn → Gn+1 , the direct limit group G := lim

−→
Gn carries a regular Lie

group structure. The model space L(G) ∼= lim
−→

L(Gn) is countably dimensional and carries the

finest locally convex topology, and G has the universal property of a direct limit in the category
of Lie groups.

(b) Every countably dimensional locally finite Lie algebra g , endowed with the finest locally
convex topology, is integrable to a regular Lie group G .

(c) Every connected regular Lie group G whose Lie algebra is countably dimensional, locally
finite and carries the finest locally convex topology is a direct limit of finite-dimensional Lie
groups.

In the following, we shall call the class of Lie groups described by the preceding theorem
locally finite-dimensional (regular) Lie groups.

Remark VII.1.2. (a) Beyond countable directed systems, several serious obstacles arise. First
of all, for countably dimensional vector spaces, the finest locally convex topology coincides with
the finest topology for which all inclusions of finite-dimensional subspaces are continuous. This
is crucial for many arguments in this context. If E is not of countable dimension, the addition
on E is not continuous for the latter topology. Similar problems occur for uncountable direct
limits of topological groups: in many cases the direct limit topology does not lead to a continuous
multiplication (cf. [Gl03b] for more details).

(b) Any countably dimensional space E , endowed with the finest locally convex topology
can be considered as a direct limit space of finite-dimensional subspaces En of dimEn = n .
Since each En is a closed subspace which is Banach, and all inclusions En → En+1 are compact
operators, E is an LF space and a Silva space at the same time.

Theorem VII.1.3. ([Gl05/06d]) Let G be a locally finite-dimensional Lie group. Then the
following assertions hold:

(1) Every subalgebra h ⊆ L(G) integrates to an integral subgroup.

(2) Every closed subgroup H is a split submanifold, so that H is a locally finite-dimensional Lie
group, and the quotient space G/H carries a natural manifold structure.

(3) Every locally compact subgroup H ⊆ G is a finite-dimensional Lie group.

(4) G does not contain small subgroups.
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Example VII.1.4. (a) One of the most famous examples of a direct limit Lie group is the
group

GL∞(R) := lim
−→

GLn(R)

with the connecting maps

ϕn: GLn(R) → GLn+1(R), a 7→
(
a 0
0 1

)
.

Its Lie algebra is the Lie algebra gl∞(R) of all (N×N)-matrices with only finitely many non-zero
entries (cf. [NRW91], [Gl03b]).

In [KM97, Thm. 47.9], it is shown that every subalgebra h of gl∞(R) is integrable to an
integral subgroup, which is a special case of Theorem VII.1.3. Here h is even BCH.

(b) In the context of C∗ -algebras, direct limits of finite-dimensional ones are particularly
interesting objects. On the level of unit groups one encounters in particular groups of the form

G := lim
−→

GL2n(C), ϕn(a) =

(
a 0
0 a

)
.

(c) Let E := C(N) be the free vector space with basis (en)n∈N and D ∈ L(E) be defined by
D(en) = 2πinen (cf. Example II.5.9(a)). Then the Lie algebra g := E ⋊D R is locally finite and
we obtain a corresponding locally finite-dimensional Lie group G = E ⋊α R , where α(t) = etD .
Since the sequence (0, 1

n )n∈N consists of singular points for the exponential function, the Lie
algebra g is not locally exponential (cf. Remark II.5.8).

Theorem VII.1.5. Every continuous homomorphism between locally finite-dimensional Lie
groups is smooth.

As the corresponding result for locally exponential Lie groups (Theorem IV.1.18) did, the
preceding theorem implies that locally finite-dimensional Lie groups form a full sub-category of
topological groups. We even have the following stronger version of the preceding theorem:

Theorem VII.1.6. Let G = lim
−→

Gn be a locally finite-dimensional Lie group and H a Lie
group.

(a) A group homomorphism ϕ:G → H is smooth if and only if the corresponding homomor-
phisms ϕn:Gn → H are smooth.

(b) If H has a smooth exponential map, then each continuous homomorphism ϕ:G → H is
smooth.

Proof. (a) is contained in [Gl05]. In view of (a), part (b) follows from the finite-dimensional
case, which in turn follows from the existence of local coordinates of the second kind: (t1, . . . , tn)
7→ ∏n

i=1 expG(tixi).

VII.2. Direct limits of infinite-dimensional Lie groups

Direct limit constructions also play an important role when applied to sequences of infinite-
dimensional Lie groups. On the level of Banach-, resp., Fréchet spaces, different types of directed
systems lead to the important classes of LF spaces and Silva spaces (cf. Definition I.1.2).

If M is a σ -compact finite-dimensional manifold and K a Lie group, then the groups
C∞c (M,K) of compactly supported smooth maps M → K are direct limits of the subgroups
C∞X (M,K) := {f ∈ C∞(M,K): supp(f) ⊆ X} , which, for Banach–Lie groups K , are Fréchet–
Lie groups. On C∞c (M,K) this leads to the structure of an LF–Lie group if K is Fréchet, but
the construction of a Lie group structure works for general K (Theorem II.2.8). For dimK <∞ ,
these groups are also discussed in [NRW94] as direct limit Lie groups which are BCH.

Many interesting direct limits of mapping groups and other interesting classes embed
naturally into certain direct sums, also called restricted direct products, often given by a nice
atlas of a manifold. Therefore the following theorem turns out to be quite useful because it
provides realizations as subgroups of a Lie group, and it usually is easier to verify that subgroups
of Lie groups are Lie groups, than to construct the Lie group structures directly.
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Theorem VII.2.1. ([Gl03c]) If (Gi)i∈I is a family of locally exponential Lie groups, then
their direct sum

G :=
⊕

i∈I

Gi :=
{

(gi)i∈I ∈
∏

i∈I

Gi: |{i: gi 6= 1}| <∞
}

carries a natural Lie group structure, where L(G) ∼=
⊕

i∈I L(Gi) carries the locally convex direct
sum topology.

Theorem VII.2.2. ([Gl06c]) For a σ -compact, non-compact manifold M of positive di-
mension, the Lie group Diffc(M) of compactly supported diffeomorphisms, endowed with the
Lie group structure modeled on the LF space Vc(M) is not a direct limit of the subgroups
DiffMn

(M) , (Mn)n∈N an exhaustion of M , in the category of smooth manifolds, but a ho-
momorphism Diffc(M) → H to a Lie group H is smooth if and only if it is smooth on each
subgroup DiffMn

(M) .

A crucial tool for the proof of the preceding theorem is the following lemma:

Lemma VII.2.3. (Fragmentation Lemma) Let M be a σ -compact finite-dimensional mani-
fold. Then there exists a locally finite cover (Kn)n∈N of M by compact sets, an open identity
neighborhood U ⊆ Diffc(M) and a smooth mapping Φ:U → ⊕

n∈N
DiffKn

(M) which satisfies
γ = Φ(γ)1 ◦ . . . ◦ Φ(γ)n for each γ ∈ U .

Theorem VII.2.4. ([Gl06c]) For a σ -compact, non-compact manifold M of positive dimen-
sion and a finite-dimensional Lie group K of positive dimension, the Lie group C∞c (M,K) of
compactly supported K -valued smooth functions, endowed with the Lie group structure modeled
on the direct limit space C∞c (M,K) = lim

−→
C∞Mn

(M,K) , (Mn)n∈N an exhaustion of M , is not a

direct limit of the subgroups C∞Mn
(M,K) in the category of smooth manifolds, but a homomor-

phism C∞c (M,K) → H to a Lie group H is smooth if and only if it is smooth on each subgroup
C∞Mn

(M,K) .

Open Problems for Section VII

Problem VII.1. Is every Lie group G whose Lie algebra L(G) is countably dimensional,
locally finite, and endowed with the finest locally convex topology regular? (cf. Problem II.2).

Problem VII.2. Are locally finite-dimensional Lie groups topological groups with Lie algebra?
It is not clear that the compact open topology on L(G) ∼= Hom(R, G) coincides with the given
one on L(G) if the group is not locally exponential.

Problem VII.3. Does every subgroup H of a locally finite-dimensional Lie group G carry an
initial Lie subgroup structure? (cf. (FP5))

Problem VII.4. Let M be a locally convex manifold and g ⊆ V(M) a countably dimensional
locally finite-dimensional subalgebra consisting of complete vector fields. Does the inclusion
g → V(M) integrate to a smooth action of a corresponding Lie group G with L(G) = g? (cf.
(FP7))

The first step should be to prove this for finite-dimensional Lie algebras g , using local
coordinates of the second kind and then to use that locally finite-dimensional Lie groups are
direct limits in the category of smooth manifolds ([Gl05]).

Problem VII.5. The methods developed in [Gl03b] for the analysis of direct limit Lie groups
seem to have potential to apply to more general classes of Lie groups G which are direct limits
of finite-dimensional manifolds Mn , n ∈ N , with the property that for n,m ∈ N there exist
c(n,m) and d(n) with

Mn ·Mm ⊆Mc(n,m) and M−1
n ⊆Md(n),
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a situation which occurs in free constructions. Similar situations, with infinite-dimensional M ,
occur in the ind-variety description of Kac–Moody groups (cf. [Kum02], [BiPi02]).

VIII. Linear Lie groups

In this section, we take a closer look at linear Lie groups, i.e., Lie subgroups of CIAs. The point
of departure is that the unit group of a Mackey complete CIA A is a BCH–Lie group (Theorem
IV.1.11). This permits us to use the full machinery described Section IV for linear Lie groups.

Definition VIII.1. A linear Lie group is a Lie group which can be realized as a locally
exponential Lie subgroup of the unit group of some unital CIA.

We collect some of the basic tools in the following theorem.

Theorem VIII.2. The following assertions hold:

(1) Linear Lie groups are BCH.

(2) Continuous homomorphisms of linear Lie groups are analytic.

(3) If G is a linear Lie group, then each closed Lie subalgebra h ⊆ L(G) integrates to a linear
Lie group.

(4) For each morphism ϕ:G→ H of linear Lie groups the kernel is a linear Lie group.

(5) For each n ∈ N , the algebra Mn(A) also is a CIA and GLn(A) = Mn(A)× is a linear Lie
group.

Proof. (1)-(4) follow from the fact that A× is BCH (Theorem IV.1.11), Theorem IV.1.8, and
the corresponding assertions on BCH–Lie groups in Section IV.

For (5), we refer to [Gl02b] (see also [Sw77]).

Linear Lie groups traditionally play an important role as groups of operators on Hilbert
spaces, where they mostly occur as Banach–Lie subgroups (cf. [PS86], [Ne02b]). The connection
between Lie theory and CIAs is more recent. The first systematic investigation of CIAs from a Lie
theoretic perspective has been undertaken by Glöckner in [Gl02b]. Originally, complex CIAs
came up in the 1950s as a natural class of locally convex associative algebras still permitting a
powerful holomorphic functional calculus (cf. [Wae54a/b], [Al65]; see also [Hel93], and [Gram84]
for Fréchet algebras of pseudo-differential operators).

In K-theory, the condition on a topological ring R that its unit group R× is open and
that the inversion map is continuous is quite natural because it is a crucial assumption for the
analysis of idempotents in matrix algebras, resp., finitely generated projective modules, and the
natural equivalence classes ([Swa62]; Section VI.1).

To get an impression of the variety of linear Lie groups, we describe some examples of CIAs:

Examples VIII.3. (a) Unital Banach algebras are CIAs.

(b) If M is a compact smooth manifold (with boundary) and A is a CIA over K ∈ {R,C} ,
then for each r ∈ N0 ∪ {∞} , the algebra Cr(M,A) of A-valued Cr -functions on M is a CIA
([Gl02b]). If M is non-compact, but σ -compact, then C∞c (M,A), endowed with the direct limit
topology of the subalgebras C∞X (M,A), is a non-unital CIA (Definition II.1.3(b)).

(c) For A = Mn(C), the preceding construction leads in particular to the CIAs

Cr(M,Mn(C)) ∼= Mn(C
r(M,C)),

whose unit groups are the mapping groups Cr(M,GLn(C)).

(d) Let X be a compact subset of Cn and (Un)n∈N a sequence of compact neighborhoods
of X with

⋂
n Un = X . In [Wae54b], Waelbroeck shows that the algebra O(X,C) of germs of

holomorphic functions on X is a CIA if it is endowed with the locally convex direct limit topology
of the Banach algebras CO(Un,C) of those continuous functions on Un which are holomorphic
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on the interior of Un (the van Hove topology). This defines on O(X,C) the structure of a Silva
space. The continuity of the multiplication and the completeness of this algebra is due to van

Hove ([vHo52a]).

(e) If A is a Banach algebra, M a smooth manifold, α:M → Aut(A) a map and αa(m) :=
α(m)(a), then the subspace A∞ := {a ∈ A:αa ∈ C∞(M,A)} is a CIA ([Gram84]).

Part (d) of the preceding example shows in particular that for each compact subset X ⊆ Cn

the unit group O(X,C×) of the CIA O(X,C) is a Lie group. In [Gl04b], Glöckner generalizes
this Lie group construction as follows:

Theorem VIII.4. Let X be a compact subset of a metrizable topological vector space,
K ∈ {R,C} and K a Banach–Lie group over K . Then the group O(X,K) of germs of K -
valued analytic maps on open neighborhoods of X is a K-analytic BCH–Lie group.

Examples VIII.5. The following examples are Fréchet algebras with continuous inversion
which are not CIAs because their unit groups are not open:

(1) A = C∞(M,C), where M is a non-compact σ -compact finite-dimensional manifold
(cf. Remark II.2.10).

(2) A = O(M,C), where M is a complex submanifold of some Cn , i.e., a Stein manifold.

(3) A = RN with componentwise multiplication.

In finite dimensions, a connected Lie group is called linear if it is isomorphic to a Lie
subgroup of some GLn(R). Not all connected finite-dimensional Lie groups are linear. Typical

examples of non-linear Lie groups are the universal covering S̃L2(R) of SL2(R) and the quotient
H/Z , where

H =




1 R R
0 1 R
0 0 1




is the 3-dimensional Heisenberg group (Example V.3.5(c)) and Z ⊆ Z(H) is a non-trivial cyclic
subgroup of its center ([Wie49]). It is a natural question whether the linearity condition on a
connected finite-dimensional Lie group becomes weaker if we only require that it is a Lie subgroup
of the unit group of some Banach algebra or even a CIA. According to the following theorem,
this is not the case ([BelNe06]). Its Banach version is due to Luminet and Valette ([LV94]).

Theorem VIII.6. For a connected finite-dimensional Lie group G , the following are equiva-
lent:

(1) The continuous homomorphisms η:G→ A× into the unit groups of Mackey complete CIAs
separate the points of G .

(2) G is linear in the classical sense.

Remark VIII.7. Let us call a Banach–Lie algebra g linear if it has a faithful homomorphism
into some Banach algebra A .

According to Ado’s Theorem ([Ado36]), each finite-dimensional Lie algebra is linear, but
the situation becomes more interesting, and also more complicated, for Banach–Lie algebras.

In view of Corollary IV.4.10, enlargeability is necessary for linearity, but it is not sufficient.
In fact, if the Lie algebra g of a 1-connected Banach–Lie group G contains elements p, q for
which [p, q] is a non-zero central element with expG([p, q]) = 1 , then g is not linear, because any
morphism g → A would lead to a linear representation of the quotient H/Z of the 3-dimensional
Heisenberg group modulo a cyclic central subgroup Z . Such elements exist in the Lie algebra
ĝ of the central extension of the Banach–Lie algebra C1(S1, su2(C)) by R (Example VI.1.16;
[ES73]).

Since for each Banach–Lie algebra g the quotient gad = g/z(g) is linear, the intersection n

of all kernels of linear representations of g is a central ideal of g . This links the linearity problem
intimately with central extensions: When is a central extension of a linear Banach–Lie algebra
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linear? As the enlargeability is necessary, the discreteness of the corresponding period group is
necessary (Theorem VI.1.6), but what else?

In [ES73], van Est and Świerczkowski describe a condition on the cohomology class
of a central extension which is sufficient for linearity. They apply this in particular to show
that, under some cohomological condition involving the center, for a Banach–Lie algebra g , the
Banach–Lie algebra C1

∗ ([0, 1], g) of C1 -curves γ in g with γ(0) = 0 is linear. It is remarkable
that their argument does not work for C0 -curves. Closely related to this circle of ideas is van

Est’s proof of Ado’s theorem, based on the vanishing of π2 for each finite-dimensional Lie group
([Est66]).

It is also interesting to note that for a real Banach–Lie algebra g , linearity implies the
linearity of the complexification gC , which in turn implies that gC is enlargeable, which is crucial
for the existence of universal complexifications of the corresponding groups (cf. Theorem VI.1.23).
In view of Corollary IV.4.10, we thus have the implications

g linear ⇒ gC enlargeable ⇒ g.

Remark VIII.8. [GN07] (a) Let A be a unital CIA and n ∈ N . Further let sln(A) E gln(A)
denote the closed commutator algebra (cf. the end of Section VI.1). As this is a closed subalgebra,
it generates some integral subgroup S → GLn(A) with L(S) = sln(A). But in general S will
not be a Lie subgroup. This problem is caused by the fact that GLn(A) need not be simply
connected.

Let q: G̃Ln(A) → GLn(A)0 denote the universal covering group of the identity component
of GLn(A). Then the Lie algebra morphism

Tr: gln(A) → A/[A,A], (aij) 7→
[ n∑

i=1

aii

]

satisfies kerTr = sln(A). Let HC0(A) denote the completion of A/[A,A] . Then Tr: gln(A) →
HC0(A) integrates to a morphism of BCH–Lie groups

D̃: G̃Ln(A) → HC0(A),

and Ŝ := kerD E G̃Ln(A) is a BCH–Lie subgroup whose identity component Ŝ0 is a covering
group of S . If the image of the induced period homomorphism

(8.1) perTr:π1(GLn(A)) → HC0(A)

is discrete, then Z := HC0(A)/ im(perTr) is a Lie group and D factors through a homomorphism
D: GLn(A)0 → Z , which can be considered as a generalization of the determinant. Now kerD
is a BCH–Lie subgroup of GLn(A) with Lie algebra sln(A), which implies that (kerD)0 = S .
It is interesting to compare this situation with the one in Remark V.2.14(c), where the group of
Hamiltonian diffeomorphisms of a symplectic manifolds plays a similar role.

If A is commutative, then the determinant det: GLn(A) → A× is a morphism of Lie groups
and SLn(A) E GLn(A) is a normal BCH–Lie subgroup with Lie algebra sln(A).

Since the period maps (8.1) are compatible for different n , they lead to a homomorphism

per0A:K2(A) = lim
−→

π1(GLn(A)) → HC0(A)

(cf. the end of Section VI.1). If A is complex, we may compose with the Bott isomorphism
β0
A:K0(A) → K2(A) to get a natural transformation

TA := per0A ◦β0
A:K0(A) → HC0(A),

which is unique and therefore given by TA([e]) = Tr(e). It follows that the image of per0A is
discrete if and only if the image of the trace map

Tr:

∞⋃

n=1

Idem(Mn(A)) → HC0(A)

is discrete.

If A is commutative, then HC0(A) = A , and the image of the trace map lies in the
discrete subgroup 1

2πi ker(expAC
) of AC . Hence the image of the trace map is discrete for each

commutative CIA.
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Remark VIII.9. The set Idem(A) of idempotents of a CIA plays a central role in (topological)
K -theory. In [Gram84], Gramsch shows that this set always carries a natural manifold structure,
which implies in particular that its connected components are open subsets. The key point is to
use rational methods to obtain charts on this set.

In a similar spirit, it is explained in [BerN04/05] how Jordan methods can be used in an
infinite-dimensional context to obtain manifold structures on geometrically defined manifolds
generalizing symmetric spaces and Graßmann manifolds.

Open Problems for Section VIII

Problem VIII.1. Show that the completion of a CIA A is again a CIA or give a counterex-
ample.

Problem VIII.2. Characterize those Banach–Lie algebras which are linear in the sense that
they have an injective homomorphism into some Banach algebras (Remark VIII.7).

Not much seems to be known about this problem, which is partly related to the non-
existence of Lie’s theorem on the representation of solvable Banach–Lie algebras. In view of this
connection, the class of Banach–Lie algebras of the form g = E ⋊D R , where D is a continuous
linear operator on the Banach space E should be a good testing ground.

As each real Banach space E is isomorphic to L(R, E), which can be embedded as a
Banach–Lie algebra into the Banach algebra L(E ⊕ R), each abelian Banach–Lie algebra is
linear. What about nilpotent ones?

Problem VIII.3. Show that each linear Lie group is regular. We know that this is the case
for unit groups of CIAs. If, in addition, A is µ-regular in the sense of Definition III.2.4, then
Theorem III.2.10 implies the µ-regularity of each Lie subgroup.

Problem VIII.4. Is the tensor product A⊗B of two CIAs, endowed with the projective tensor
topology a CIA? This is true for B = Mn(K), n ∈ N , where A⊗B ∼= Mn(A). Is it also true if B
is the algebra of rapidly decreasing matrices or the direct limit algebra M∞(K) := lim

−→
Mn(K)?

Problem VIII.5. Let g be a locally convex Lie algebra. Does the enveloping algebra U(g)
carry a natural topology for which the multiplication is continuous and the natural map g → U(g)
is continuous?

More generally, let E be a locally convex space and endow its tensor algebra T (E) =⊕∞
n=0E

⊗n with the locally convex direct limit topology, where the subspaces E⊗n carry the
projective tensor topology. Is the multiplication on T (E) continuous?

Problem VIII.6. (a) Does every locally convex Lie algebra g have a faithful topological
module E ? If Problem VIII.5 has a positive solution, then we may simply take E := U(g).

(b) Does every nilpotent locally convex Lie algebra have a faithful nilpotent topological
module? Is this true in the Banach category?

IX. Lie transformation groups

One of the fundamental references on topological transformation groups is the monograph [MZ55]
by Montgomery and Zippin. Since it also deals with differentiability properties of transforma-
tion groups on manifolds, some of the techniques described there have interesting applications in
the context of infinite-dimensional Lie theory.



Towards a Lie theory of locally convex groups 107

IX.1. Smooth Lie group actions

Theorem IX.1.1. ([BoMo45], [MZ55, p.212]) Any continuous action σ:G ×M → M of a
finite-dimensional Lie group on a finite-dimensional smooth manifold M by diffeomorphisms is
smooth.

For compact manifolds we obtain the following “automatic smoothness” result on homomor-
phisms of Lie groups (see also [CM70] for one-parameter groups; and [Gl02d] for the non-compact
case).

Corollary IX.1.2. If M is a σ -compact finite-dimensional manifold and G a finite-dimen-
sional Lie group, then any continuous homomorphism ϕ:G→ Diffc(M) is smooth.

The following result provides a positive answer to (FP9) for diffeomorphism groups.

Theorem IX.1.3. ([MZ55, Th. 5.2.2, p. 208]) If a locally compact group G acts faithfully on
a smooth finite-dimensional manifold M by diffeomorphisms, then G is a finite-dimensional Lie
group. If M is compact, then each locally compact subgroup of Diff(M) is a Lie group.

The preceding results take care of the actions of locally compact groups on manifolds. As
the work of de la Harpe and Omori ([OdH71/72]) shows, the situation for Banach–Lie groups
is more subtle:

Theorem IX.1.4. ([OdH72]) Let G be a Banach–Lie group. If L(G) has no proper finite-
codimensional closed ideals, then L(G) has no proper finite-codimensional closed subalgebra and
each smooth action of G on a finite-dimensional manifold is trivial.

If α: g → V(M) is an injective map, then for each p ∈M the subspace

gp := {x ∈ g:α(x)(p) = 0}
is a finite-codimensional subalgebra with

⋂
p gp = {0} . Therefore the existence of many finite-

codimensional subalgebras is necessary for Lie algebras to be realizable by vector fields on a
finite-dimensional manifold.

Theorem IX.1.5. ([OdH72]) If a Banach–Lie group G acts smoothly, effectively, amply (for
each m ∈M the evaluation map g → Tm(M) is surjective), and primitively (it leaves no foliation
invariant) on a finite-dimensional manifold M , then it is finite-dimensional.

Theorem IX.1.6. ([Omo78, Th. B/C]) Let G be a connected Banach–Lie group acting
smoothly, effectively and transitively on a finite-dimensional manifold M .

(1) If M is compact, then G is finite-dimensional.

(2) If M is non-compact, then L(G) contains a finite-codimensional closed solvable ideal.

Since Diff(M) acts smoothly, effectively and transitively on M , this implies:

Corollary IX.1.7. Diff(M) cannot be given a Banach-Lie group structure for which the
natural action on M is smooth.

In Section 4 of [OdH72], Omori and de la Harpe construct an example of a Banach–Lie
group G acting smoothly and amply, but not primitively on R2 .

The preceding discussion implies in particular that Banach–Lie groups rarely act on finite-
dimensional manifolds. As the gauge groups of principal bundles q:P →M over compact mani-
folds M show, the situation is different for locally exponential Lie groups (cf. Theorem IV.1.12).
Therefore it is of some interest to have good criteria for the integrability of infinitesimal actions
of locally exponential Lie algebras on finite-dimensional manifolds (cf. (FP7)).

We start with a more general setup for infinite-dimensional manifolds which need extra
smoothness assumptions:
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Theorem IX.1.8. (Integration of locally exponential Lie algebras of vector fields; [AbNe06])
Let M be a smooth manifold modeled on a locally convex space, g a locally exponential Lie
algebra and α: g → V(M) a homomorphism of Lie algebras whose range consists of complete
vector fields. Suppose further that the map

Exp: g → Diff(M), x 7→ Fl
α(x)
1

is smooth in the sense of Definition II.3.1 and that 0 is isolated in z(g) ∩ Exp−1(idM ) . Then
there exists a locally exponential Lie group G and a smooth action σ:G×M →M whose derived
action σ̇: g → V(M) coincides with α .

In the finite-dimensional case, the smoothness assumptions in Theorem IX.1.8 follows from
the smooth dependence of solutions of ODEs on parameters and initial values, and the condition
on the exponential function can be verified with methods to be found in [MZ55]. This leads to the
following less technical generalization of the Lie–Palais Theorem which subsumes in particular
Omori’s corresponding results for Banach–Lie algebras ([Omo80, Th. A], [Pe95b, Th.4.4]).

Theorem IX.1.9. Let M be a smooth finite-dimensional manifold, g a locally exponential
Lie algebra and α: g → V(M) a continuous homomorphism of Lie algebras whose range consists
of complete vector fields. Then there exists a locally exponential Lie group G and a smooth action
σ:G×M →M with σ̇ = α .

The following result is a generalization of Palais’ Theorem in another direction. Since
Diff(M) is µ-regular (Theorem III.3.1), it also follows from Theorem III.2.8.

Theorem IX.1.10. ([Les68]) If M is compact, then a subalgebra g ⊆ V(M) is integrable to
an integral subgroup if g is finite-dimensional or closed and finite-codimensional.

IX.2. Groups of diffeomorphisms as automorphism groups

In this subsection, we simply collect some results stating that automorphism groups of
certain algebra, Lie algebra or groups associated to geometric structure on manifolds are what
one expects. Most of the results formulated below for automorphisms of structures attached
to a manifold M generalize to results saying that if M1 and M2 are two manifolds and two
objects of the same kind attached to M1 and M2 are isomorphic, then this isomorphism can be
implemented by a diffeomorphism M1 → M2 , compatible with the geometric structures under
consideration.

Theorem IX.2.1. Let M be a σ -compact finite-dimensional smooth manifold. Then the
following assertions hold:

(1) For the Fréchet algebra C∞(M,R) , each homomorphism to R is a point evaluation.

(2) Aut(C∞(M,R)) ∼= Diff(M) .

(3) Aut(Vc(M)) ∼= Aut(V(M)) ∼= Diff(M) .

(4) If, in addition, M is complex and V(1,0)(M) ⊆ V(M)C is the Lie algebra of complex
vector fields of type (1, 0) , then Aut(V(1,0)(M)) ∼= AutO(M) is the group of biholomorphic
automorphisms of M .

(5) For each finite-dimensional σ -compact manifold M and each simple (real or complex) finite-
dimensional Lie algebra k , the natural homomorphism

C∞(M,Aut(k)) ⋊ Diff(M) → Aut(C∞(M, k))

is surjective.

(6) If M is a Stein manifold and k is a finite-dimensional complex simple Lie algebra, then
Aut(O(M, k)) ∼= O(M,Aut(k)) ⋊ AutO(M) , where AutO(M) denotes the group of biholo-
morphic diffeomorphisms of M .
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(7) If K ⊆ Cn is a polyhedral domain and O(K,C) the algebra of germs of holomorphic C -
valued functions in K , then the group Aut(O(K,C)) consists of the germs of biholomorphic
maps of K and der(O(K,C)) consists of the germs holomorphic vector fields on K .

Proof. (1) (cf. [My54] for the compact case; [Pu52]; [Co94]).

(2) follows easily from (1) because each automorphism of the algebra C∞(M,R) acts on
Hom(C∞(M,R),R) ∼= M .

(3) The representability of each isomorphism of Vc(M) by a diffeomorphism is due to
Pursell and Shanks ([PuSh54]), and the other assertion follows from Theorem 2 in [Ame75]. It is
based on the fact that the maximal proper subalgebras of finite codimension are all of the form
V(M)m := {X ∈ V(M):X(m) = 0} for some m ∈ M , hence permuted by each automorphism;
resp. the fact that all maximal ideals consist of all vector fields whose jet vanishes in some
m ∈M .

(4) follows from Theorem 1 in [Ame75].

(5) [PS86, Prop. 3.4.2]. A central point is that every non-zero endomorphism of k is
an automorphism. Further, it is used that [k, C∞(M, k)] = C∞(M, k)] and that distributions
supported by one point are of finite order.

(6) [NeWa06b].

(7) This is [vHo52b, Th. III], where it is first shown that the maximal ideals in the Silva
CIA O(K,C) (Example VIII.3(d)) are the kernels of the point evaluations ([vHo52b, Th. I]).

Remark IX.2.2. Let K ⊆ Cn be a compact subset and AutO(K) the group of germs of
bihomolorphic maps, defined on some neighborhood of K , mapping K onto itself. In [vHo52a],
van Hove introduces a group topology on this group as the topology for which the map

AutO(K) → O(K,Cn) ×O(K,Cn), g 7→ (g, g−1)

is an embedding. He shows that, under certain geometric conditions on the set K , this group
is complete and contains no small subgroups. Moreover, its natural action on O(K,C) is
continuous.

Theorem IX.2.3. ([Omo74], §10]) Let M be a σ -compact finite-dimensional smooth man-
ifold. For a differential form α on M we put V(M,α) := {X ∈ V(M):LXα = 0}. Then the
following assertions hold:

(1) If µ is a volume form or a symplectic form on M , then every (algebraic) automorphism of
V(M,µ) is induced by an element of the group

{ϕ ∈ Diff(M):ϕ∗µ ∈ Rµ}.

(2) If α is a contact 1-form on M , then every (algebraic) automorphism of V(M,α) is induced
by an element of the group {ϕ ∈ Diff(M):ϕ∗α ∈ C∞(M,R×) · α}.
In [Omo80], one finds another interesting result of this type. Let V be a germ of an affine

variety in 0 ∈ Cn . Two such germs V and V ′ are said to be biholomorphically equivalent if
there exists an element ϕ ∈ Ghn(C) of the group of germs of biholomorphic maps fixing 0 (as
in Example VI.2.12), such that ϕ(V ) = ϕ(V ′). On the infinitesimal level the automorphisms of
a germ V are given by the Lie algebra

g(V ) := {X ∈ ghn(C):X.J(V ) ⊆ J(V )},
where J(V ) ⊆ O(0,C) (the germs of holomorphic functions in 0) is the annihilator ideal of V .
Let g(V )k E g(V ) denote the ideal consisting of all vector fields vanishing of order k in 0 and
form the projective limit Lie algebra

g(V ) := lim
←−

g(V )/g(V )k,

which can be viewed as a Fréchet completion of g(V ).

An element X ∈ ghn(C) is called semi-expansive if it is Ghn(C)-conjugate to a linear
diagonalizable vector field for which all eigenvalues lie in some open halfplane. The germ V is
called an expansive singularity if g(V ) contains an expansive vector field.
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Theorem IX.2.4. Two expansive singularities V and V ′ are biholomorphically equivalent
if and only if the pro-finite Lie algebras g(V ) and g(V ′) are isomorphic. Moreover, Aut(g(V ))
can be identified with the stabilizer Ghn(C)V of V in the group Ghn(C) .

On the group level, we have the following analog of Theorem IX.2.3 (cf. [Fil82] for (1) and
[Ban97, Thms. 7.1.4/5/6] for (2)-(4)):

Theorem IX.2.5. Let M be a σ -compact connected finite-dimensional smooth manifold.
Then the following assertions hold:

(1) Every (algebraic) automorphism of Diff(M) is inner.

(2) If α is a contact 1-form on M , then every (algebraic) automorphism of Diff(M,α) is
conjugation with an element of the group {ϕ ∈ Diff(M):ϕ∗α ∈ C∞(M,R×) · α}.

(3) If ω is a symplectic form and M is compact of dimension ≥ 2 , then every (algebraic)
automorphism of Diff(M,ω) is conjugation by an element of the group

{ϕ ∈ Diff(M):ϕ∗ω ∈ Rω}.

(4) If µ is a volume form and M is of dimension ≥ 2 , then every (algebraic) automorphism of
Diff(M,µ) is conjugation by an element of the group {ϕ ∈ Diff(M):ϕ∗µ ∈ Rµ}.

Open Problems for Section IX

Problem IX.1. Let V(M)cp denote the set of complete vector fields on the finite-dimensional
manifold M (Remark II.3.8). Then we have an exponential function

Exp:V(M)cp → Diff(M), X 7→ FlX1 .

Is it true that 0 is isolated in Exp−1(idM ) with respect to the natural Fréchet topology on V(M)
(cf. Definition I.5.2)?

That this is true for compact manifolds follows from Newman’s Theorem ([Dr69, Th. 2]).
For the proof of Theorem IX.1.9, we show for each continuous homomorphism α: g → V(M)
of a locally exponential Lie algebra g to V(M) with range in V(M)cp that 0 is isolated in
(Exp ◦α)−1(idM ), which is a weaker statement.

Since the set Exp−1(idM ) is in one-to-one correspondence with the smooth T-actions on
M , the problem is to show that the trivial action is isolated in this “space” of all smooth T-
actions on M .

If M is the real Hilbert space ℓ2(N,R) with the Hilbert basis en , n ∈ N , then we have
linear vector fields Xn(v) := 2πi〈v, en〉en with exp(Xn) = idM and Xn → 0 uniformly on
compact subsets of E . Hence the finite-dimensionality of M is crucial.

Problem IX.2. (Banach symmetric spaces) Let M be a smooth manifold. We say that (M,µ)
is a symmetric space (in the sense of Loos) (cf. [Lo69]) if µ:M ×M → M, (x, y) 7→ x · y is a
smooth map with the following properties:

(S1) x · x for all x ∈M .

(S2) x · (x · y) = y for all x, y ∈M .

(S3) x · (y · z) = (x · y) · (x · z) for all x, y ∈M .

(S4) Tx(µx) = − idTx(M) for µx(y) := µ(x, y) and each x ∈M .

(a) Is it true that the automorphism group Aut(M,µ) of a Banach symmetric space (M,µ)
is a Banach–Lie group? (cf. [Ne02c], [La99])

(b) The tangent spaces Tx(M) of a symmetric space carry natural structures of Lie triple
systems. Develop a Lie theory for locally exponential, resp., Banach–Lie triple systems, including
criteria for the integrability of morphisms and enlargeability (cf. Sections IV and VI).
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Problem IX.3. A fundamental problem in the theory of Banach transformation groups is that
we do not know if orbits carry natural manifold structures. As in finite dimensions, the main
point is to find good criteria for a closed subgroup H of a Banach–Lie group G to ensure that the
coset space G/H has a natural manifold structure for which the action of G on G/H is smooth
and the quotient map q:G→ G/H is a “weak” submersion in the sense that all its differentials
are linear quotient maps. In view of Remark IV.4.13, this is true if

(1) H is a split submanifold (the same proof as in finite dimensions works),

(2) H is a normal Banach–Lie subgroup (without any splitting requirements) (Corollary IV.3.6),
and

(3) G is a Hilbert–Lie group, which implies the splitting condition (1).

Here are some concrete problems:

(a) Suppose that G/H is a smooth manifold with submersive q and a smooth action of G .
Does this imply that H is a Lie subgroup of G?

(b) Are the stabilizer groups Gm for a smooth action of a Banach–Lie group G on a Banach
manifold M Lie subgroups? For linear actions this follows from Proposition IV.3.4 and
Corollary IV.3.13.

(c) Characterize those Lie subgroups H for which G/H is a smooth manifold.

(d) Let H ⊆ G be a closed subgroup and h := Le(H) its Lie algebra. Then the normalizer
NG(h) of h is a Lie subgroup (Proposition IV.3.4, Corollary IV.3.12). Is it true that
Ad(G).h ∼= G/NG(h) carries a natural manifold structure?

Note that, if H is connected, it is a normal subgroup of NG(h). If H is a Lie subgroup,
this implies that NG(h)/H carries a Lie group structure and therefore a manifold structure.

Problem IX.4. Show that for each compact subset K ⊆ Cn the group AutO(K) from
Remark IX.2.2 is a Lie group with respect to the manifold structure inherited from the embedding
into O(K,Cn) (cf. Remark IX.2.2).

Problem IX.5. (Automorphisms of gauge algebras) Let q:P → M be a smooth K -principal
bundle over the (compact) manifold M . Determine the group Aut(gau(P )) of automorphisms of
the gauge Lie algebra. Does it coincide with the automorphism group Aut(ad(P )) of the adjoint
bundle, whose space of sections gau(P ) is? If K is a simple complex Lie group, then the results
in [Lec80, Th. 16] provide a local description of the automorphisms of this Lie algebra in terms
of diffeomorphisms of M and sections of the automorphism bundle Aut(ad(P )).

Problem IX.6. Determine the automorphism groups of the Lie algebras gfn(K), gsn(K) and
ghn(C).

Problem IX.7. Describe all connected Banach–Lie groups acting smoothly, effectively and
transitively on a finite-dimensional manifold. In view of Theorem IX.1.6, for each Banach–Lie
group G , the Lie algebra L(G) contains a finite-codimensional closed solvable ideal. If, con-
versely, g is a Banach–Lie algebra with a finite-dimensional closed solvable ideal, then Theorem
VI.1.19 implies that g is enlargeable. Under which conditions do the corresponding groups G act
effectively on some finite-dimensional homogeneous space? (see also the corresponding discussion
in [Omo97]).

Problem IX.8. Let G be a Banach–Lie group and H ⊆ G a closed subgroup for which Le(H)
has finite codimension. Does this imply that G/H is a manifold?

X. Projective limits of Lie groups

Projective limits play an important role in several branches of Lie theory. Since complete locally
convex spaces are nothing but closed subspaces of products of Banach spaces, on the level of the
model spaces, the projective limit construction leads us from Banach spaces to the locally convex
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setting. On the group level, the situation is more involved because, although projective limits of
Lie groups are often well-behaved topological groups, in general they are not Lie groups. In this
section, we briefly report on some aspects of projective limit Lie theory and the recent theory of
Hofmann and Morris of projective limits of finite-dimensional Lie groups.

X.1. Projective limits of finite-dimensional Lie groups

In their recent monograph [HoMo06], Hofmann and Morris approach projective limits
of finite-dimensional Lie groups, so-called pro-Lie groups, from a topological point of view. We
refer to [HoMo06] for details on the results mentioned in this subsection.

Clearly, arbitrary products of finite-dimensional Lie groups, such as

RJ , ZJ , SL2(R)J

for an arbitrary set J , are pro-Lie groups. The following theorem gives an abstract characteri-
zation of pro-Lie groups:

Theorem X.1.1. A topological group G is a pro–Lie group if and only if it is isomorphic to
a closed subgroup of a product of finite-dimensional Lie groups. In particular, closed subgroups
of pro-Lie groups are pro-Lie groups.

A crucial observation is that the class of topological groups with Lie algebra (cf. Definition
IV.1.23) is closed under projective limits and that

L(lim
←−

Gj) ∼= lim
←−

L(Gj)

as locally convex Lie algebras. Let us call topological vector spaces isomorphic to RJ for some
set J weakly complete. These are the dual spaces of the vector spaces R(J) , endowed with the
weak-∗ -topology. This provides a duality between real vector spaces and weakly complete locally
convex spaces, which implies in particular that each closed subspace of a weakly complete space
is weakly complete and complemented. In particular, weakly complete spaces are nothing but
the projective limits of finite-dimensional vector spaces. These considerations lead to:

Theorem X.1.2. Every pro-Lie group has a Lie algebra which is a a projective limit of finite-
dimensional Lie algebras, hence a weakly complete topological Lie algebra. The image of the
exponential function

expG: L(G) → G, γ 7→ γ(1)

generates a dense subgroup of the identity component G0 .

In the following, we call projective limits of finite-dimensional Lie algebras pro-finite Lie
algebras (called pro-Lie algebras in [HoMo06]).

Remark X.1.3. According to Yamabe’s Theorem ([MZ55]), each locally compact group G
for which G/G0 is compact is a pro-Lie group. Since the totally disconnected locally compact
group G/G0 contains an open compact subgroup, each locally compact group G contains an
open subgroup with a Lie algebra, hence is a topological group with a Lie algebra (cf. [Las57],
[HoMo05, Prop. 3.5]).

In view of Theorem X.1.1, the category of pro-Lie groups is closed under products and
projective limits, which are remarkable closedness properties which in turn lead to the existence
of an adjoint functor Γ for the Lie functor L :

Theorem X.1.4. (Lie’s Third Theorem for Pro-Lie Groups; [HoMo05]) The Lie functor L

from the category of pro-Lie groups to the category of pro-Lie algebras has a left adjoint Γ .
It associates with each pro-finite Lie algebra g a connected pro-Lie group Γ(g) and a natural
isomorphism ηg: g → L(Γ(g)) , such that for every morphism ϕ: g → L(G) there exists a unique
morphism ϕ′: Γ(g) → G with L(ϕ′) ◦ ηg = ϕ .
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The first part of the following structure theorem can be found in [HoMo06]. The second
part follows from the fact that finite-dimensional tori are the only abelian connected compact
Lie groups.

Theorem X.1.5. A connected abelian pro-Lie group is of the form RJ × C for a compact
connected abelian group C . It is a Lie group if and only if C is a finite-dimensional torus.

It is quite remarkable that the category of pro-finite Lie algebras permits to develop a
structure theory which is almost as strong as in finite dimensions. In particular, there is a Levi
decomposition. To describe it, we call a pro-finite Lie algebra g pro-solvable if it is a projective
limit of finite-dimensional solvable Lie algebras:

Theorem X.1.6. (Levi decomposition of pro-finite Lie algebras and groups; [HoMo06]) Each
pro-finite Lie algebra g contains a unique maximal pro-solvable ideal r . There is a family (sj)j∈J
of finite-dimensional simple Lie algebras such that s :=

∏
j∈J sj satisfies

g ∼= r ⋊ s.

For the corresponding pro-finite Lie group Γ(g) we then have

Γ(g) ∼= R⋊ S, where S ∼=
∏

j∈J

Sj,

where Sj is a 1-connected Lie group with Lie algebra sj and R is diffeomorphic to N ×RK for
some set K and some simply connected pro-nilpotent Lie group N ∼= (L(N), ∗) .

More concretely, the closed commutator algebra n := [r, r] is pro-nilpotent, because all
images of this subalgebra in finite-dimensional solvable quotients of r are nilpotent. If e ⊆ r is
a closed vector space complement of n in r ([HoMo06, 4.20/21]), then the map

(10.1.1) Φ: n × e 7→ R, (x, y) 7→ expR(x) expR(y)

is a homeomorphism ([HoMo06, Th. 8.13]). The point of view of [HoMo06] is purely topological,
so that infinite-dimensional Lie group structures are not discussed. We note that (10.1.1) can be
viewed as a chart of the topological group R , and it is not hard to see that it defines on R the
structure of a smooth Lie group.

Based on the preceding theorem, one can characterize those pro-finite Lie algebras which
are integrable to locally convex Lie groups ([HoNe06]):

Theorem X.1.7. For a pro-finite Lie algebra g the following are equivalent:

(1) g is the Lie algebra of a locally convex Lie group G with smooth exponential function.

(2) g is the Lie algebra of a regular locally convex Lie group G .

(3) g has a Levi decomposition g ∼= r ⋊ s , where only finitely many factors in s =
∏
j∈J sj are

not isomorphic to sl2(R) .

(4) The group Γ(g) is locally contractible.

Proof. (Sketch) Let R denote the 1-connected group with Lie algebra r constructed from
the chart (10.1.1) and Sj be the 1-connected Lie group with Lie algebra sj . If sj is isomorphic

to sl2(R), then Sj ∼= S̃L2(R) is diffeomorphic to R3 , so that S :=
∏
j∈J Sj carries a natural

manifold structure, turning it into a Lie group. One verifies that S acts smoothly on R , so that
G := R⋊ S is a Lie group with Lie algebra g .

For the converse, let G be a Lie group with Lie algebra g and a smooth exponential
function expG: g → G ; put J0 := {j ∈ J : sj 6∼= sl2(R)}. For each j ∈ J0 , we then have
morphisms αj :Sj → G , βj :G → Sj with βj ◦ αj = idSj

. If J0 is infinite, this contradicts
the local contractibility of G .
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Remark X.1.8. To describe all connected regular Lie groups G with a pro-finite Lie algebra g ,
we have to describe the discrete central subgroups of the 1-connected ones, which are isomorphic,
as topological groups, to some G := Γ(g) (cf. [HoMo06]). In all these groups, the exponential
function restricts to an isomorphism z(g) → Z(G)0 of topological groups, so that Z(G)0 ∼= RX

for some set X . Based on the information provided in the preceding theorem, it is shown in
[HoMo06] that a subgroup Γ ⊆ Z(Γ(g))0 is discrete if and only if it is finitely generated and
its intersection with Z(G)0 is discrete. This characterization provides a quite good description
of all discrete subgroups of Z(G), hence all non-simply connected regular Lie groups with Lie
algebra g .

If S ∼=
∏
j∈J Sj and J is infinite, then infinitely many factors Sj are isomorphic to S̃L2(R),

whose center is isomorphic to Z . The subgroup of index 2 acts trivially in each finite-dimensional
representation, which leads to Z(G)∩ Sj ∼= Z . Hence Z(G)∩ S contains a subgroup isomorphic
to ZJ\J0 , which implies in particular that the adjoint group of g is not a Lie group.

We have already seen that all pro-nilpotent Lie algebras are exponential, which applies
in particular to all pro-nilpotent pro-finite Lie algebras. The following theorem provides a
characterization of the locally exponential pro-Lie algebras ([HoNe06]):

Theorem X.1.9. For a pro-Lie algebra g , the following are equivalent:

(1) g is locally exponential.

(2) There exists a 0-neighborhood U ⊆ g , consisting of exp-regular points, i.e., κg(x) is
invertible for each x ∈ U .

(3) Γ(g) is a locally exponential topological group.

If these conditions are satisfied, then g contains a closed ideal of finite codimension which
is exponential. In particular, g is virtually pro-solvable, i.e., g = r ⋊ s with a finite-dimensional
semisimple Lie algebra s , and g is enlargeable.

Recall that we have seen in Example II.5.9(a) an example of a pro-finite Lie algebra g ∼=
RN⋊DR which is not locally exponential. Since this Lie algebra has an abelian closed hyperplane,
the existence of an exponential hyperplane ideal is not sufficient for local exponentiality.

X.2. Projective limits of infinite-dimensional Lie groups

As we have seen in the preceding Subsection X.1, the extent to which the structure theory
of finite-dimensional Lie groups can be carried forward to projective limits is quite surprising.
There are also natural classes of topological groups which are natural projective limits of infinite-
dimensional Lie groups. Therefore it would be of some interest to develop a systematic “pro–Lie
theory” for such groups.

One of the most natural classes of such groups are the mapping groups. Let M be a σ -
compact finite-dimensional smooth manifold, r ∈ N0∪{∞} , K a Lie group, and G := Cr(M,K),
endowed with the compact open Cr -topology (Definition II.2.7).

Then there exists a sequence (Mn)n∈N of compact subsets of M which is an exhaustion,
in the sense that Mn ⊆ int(Mn+1). Using the usual Morse theoretic arguments, we may assume
that the subsets Mn are compact manifolds with boundary. Then each compact subset of M is
contained in some Mn , which implies that

G = Cr(M,K) ∼= lim
←−

Cr(Mn,K)

is a projective limit, where the projection maps are given by restriction. In view of Theorem II.2.8,
the groups Cr(Mn,K) are Lie groups, so that the topological group Cr(M,K) is a projective
limit of Lie groups.

If K is locally exponential, then each Cr(Mn,K) inherits this property, so that Cr(Mn,K)
is a topological group with Lie algebra (Definition IV.1.23), and this implies that Cr(M,K) also
is a topological group with Lie algebra, where

L(Cr(M,K)) ∼= lim
←−

L(Cr(Mn,K)) = lim
←−

L(Cr(Mn,K)) = lim
←−

Cr(Mn,L(K)) = Cr(M,L(K)).
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As in the case of compact manifolds M , the exponential function of Cr(M,K) is given by

exp:Cr(M,L(K)) → Cr(M,K), ξ 7→ expK ◦ξ.

If M is a compact complex manifold and K is a linear complex Lie group, then all
holomorphic functions M → K are constant. Therefore the groups O(M,K) are trivial in this
case. If M is non-compact and K is a complex Lie group, we use the compact open topology
to turn O(M,K) into a topological group and observe that we have a topological embedding
O(M,K) →֒ Cr(M,K) for each r ∈ N0 ∪ {∞} . Those cases for which we know to have honest
Lie group structures on O(M,K) are quite limited (cf. Theorem III.1.9), but it seems that
projective limit theory is also a useful tool to study these groups of holomorphic maps. Let
(Mn)n∈N , as above, be an exhaustion of M by compact submanifolds with boundary. Then the
groups O(Mn,K), defined appropriately, carry Lie group structures, for which O(Mn,L(K)) is
the corresponding Lie algebra (cf. [Wo05b]), so that

O(M,K) ∼= lim
←−

O(Mn,K)

is a projective limit of Lie groups.

It would be of considerable interest to find a good categorical framework for such classes of
projective limits of Lie groups. Of particular relevance would be to understand the “right class”
of central extensions of the groups O(M,K) and Cr(M,K) in the same spirit as for the groups
C∞c (M,K) of compactly supported maps (cf. [Ne04c]).

Open Problems for Section X

Problem X.1. Are strong ILB–Lie groups, resp., µ-regular Lie groups, topological groups with
Lie algebra? What about diffeomorphism groups? Does it suffice that the Lie group G has a
smooth exponential function (cf. Problem VII.2)?

Problem X.2. Let g be a pro-finite Lie algebra and n E g a closed exponential ideal of finite
codimension. Characterize the local exponentiality of g in terms of the spectra of the operators
adn x := adx |n (cf. Proposition X.1.9). Are all locally exponential pro-finite Lie algebras BCH?

Problem X.3. For the description of the non-simply connected Lie groups among the projective
limits of finite-dimensional Lie groups, it is important to understand the structure of the center
of the simply connected ones. Let G be a such a 1-connected group and Z(G) its center. The
Lie algebra of Z(G) is z(g), which lies in the pro-solvable radical, so that Z(G)0 ∼= z(g). On
the other hand, we have seen in Remark X.1.8 that Z(G) may contain non-discrete subgroups
isomorphic to ZN . Is it possible to determine the structure of Z(G) as a topological group (see
[HoMo06] for more details)?

Problem X.4. Determine the automorphism groups of pro-finite Lie algebras. Under which
conditions are they Lie groups? An interesting situation where the automorphism group of a
pro-finite Lie algebra is a closed subgroup of a Lie groups is described in Theorem IX.2.4.
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