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Abelian topological groups with host algebras

Hendrik Grundling, Karl-Hermann Neeb

Abstract. The concept of a host algebra generalises that of a group C∗ -algebra to groups
which are not locally compact in the sense that its non-degenerate representations are in one-to-
one correspondence with representations of the group under consideration. Here we consider the
question of the existence of host algebras for abelian topological groups and also for multiplier
representations. Our main negative result is essentially that a topological abelian group has a full
host algebra (covering all its continuous unitary representations) if and only if it embeds into a
locally compact group. On the positive side, we show that the canonical symplectic form on a
countably dimensional complex vector space leads to an abelian group with multiplier for which a
full host algebra exists. This provides a host algebra for the set of regular representations of the
CCR algebra.

Introduction

Group algebras and their generalizations (crossed products, groupoid algebras etc.) are
important tools in the analysis of the continuous representation theory of locally compact groups
and a range of related algebraic systems. Since non–locally compact groups (e.g., infinite
dimensional Lie groups) regularly occur in physics and mathematics, there is a need to generalize
the notion of a group algebra to topological groups which are not locally compact. Such a
generalization, called a full host algebra, has been proposed and analyzed in [Gr05]. Briefly, it is
a C∗ -algebra A which has in its multiplier algebra M(A) a unitary representation of the group
G, such that the (unique) extension of the representation theory of A to M(A) coincides exactly
with the continuous (unitary) representation theory of G through the copy of G in M(A) . There
is also an analogous concept for projective σ–representations where σ is a continuous T-valued
2-cocycle on G . Thus, given a full host algebra A, the continuous representation theory of G can
be analyzed on A . In [Gr05], a very general existence and uniqueness theorem for host algebras
was obtained, which unfortunately is very hard to apply to concrete topological groups. Here we
want to start a more detailed program with the aim of characterizing which classes of topological
groups have host algebras for their continuous (projective) representation theory, and which do
not.

We have two main results in this paper. Our first result is negative, and states that a
topological abelian group G (whose continuous unitary representations separate its points) has
a full host algebra if and only if it embeds densely into a locally compact group such that its
continuous representations factor through the embedding. As a corollary, we prove that a locally
convex linear space, regarded as a topological group, has a full host algebra if and only if it is
finite dimensional. Our second result is positive;- we give an explicit construction of a full host
algebra for the σ–representations of an infinite dimensional topological linear space S, regarded
as a group. Specifically, S is the countably dimensional symplectic space with the (locally
convex) inductive limit topology, and σ(·, ·) = exp[iB(·, ·)/2], where B is the symplectic form.
This example is important for physics, in that it provides a host algebra for the set of regular
representations of the CCR algebra of (S, B) . Moreover, it demonstrates that the concept of a
full host algebra is not a trivial extension of the concept of a (twisted) group algebra, in fact,
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we conclude that there are interesting pairs (G, σ) of non-locally compact topological groups G
and continuous T-valued 2-cocycles σ for which full host algebras exist. The example (S, σ)
developed here, is the natural pair associated with a countably dimensional symplectic vector
space.

From this point of view, it seems natural to conjecture the following: Let (G, σ) be a
(separable) abelian topological group with a (locally) continuous 2-cocycle and assume that this
pair is non-degenerate in the sense that the center of the corresponding central extension Gσ

coincides with T . Then the pair (G, σ) has a full host algebra.

Another natural class of pairs to consider are given by (G, σ), where G is a direct limit
of finite-dimensional Lie groups. When do these pairs have full host algebras? In this context,
the class of restricted direct products seems to be a natural testing ground, and it includes the
example treated below.

This paper is structured as follows;- in Sect. I we state the notation and definitions necessary
for the subsequent material, and in Sect. II we state our main results in full. In Sect. III, we
prove our first result concerning the embedding of an abelian group with host algebra in a locally
compact group. In Sect IV, we construct the host algebra for the pair (S, σ) mentioned above,
and in the Appendix we add general results concerning host algebras and the strict topology
which are required for our proofs. These results may be of independent interest.

I. Definitions and notation

We will need the following notation and concepts for our main results.

• In the following, we write M(A) for the multiplier algebra of a C∗ -algebra A and, if A
has a unit, U(A) for its unitary group. We have an injective morphism of C∗ -algebras
ιA:A →M(A) and will just denote A for its image in M(A). Then A is dense in M(A)
with respect to the strict topology, which is the locally convex topology defined by the
seminorms

pa(m) := ‖m · a‖ + ‖a ·m‖, a ∈ A, m ∈M(A).

• For a complex Hilbert space H , we write Rep(A,H) for the set of non-degenerate represen-
tations of A on H . Note that the collection RepA of all non-degenerate representations
of A is not a set, but a (proper) class in the sense of von Neumann–Bernays–Gödel set
theory, cf. [TZ75], and in this framework we can consistently manipulate the object RepA.
However, to avoid set–theoretical subtleties, we will express our results below concretely,
i.e., in terms of Rep(A,H) for given Hilbert spaces H. We have an injection

Rep(A,H) →֒ Rep(M(A),H), π 7→ π̃ with π̃ ◦ ιA = π,

which identifies the non-degenerate representation π of A with that representation π̃ of
its multiplier algebra which extends π and is continuous with respect to the strict topology
on M(A) and the topology of pointwise convergence on B(H).

• For topological groups G and H we write Hom(G,H) for the set of continuous group homo-
morphism G→ H . We also write Rep(G,H) for the set of all (strong operator) continuous
unitary representations of G on H . Endowing U(H) with the strong operator topology
turns it into a topological group, denoted U(H)s , so that Rep(G,H) = Hom(G,U(H)s).

• Let T ⊆ C
× denote the unit circle, viewed as a multiplicative subgroup and σ:G×G→ T

be a continuous 2-cocycle, i.e.,

σ(1, x) = σ(x,1) = 1, σ(x, y)σ(xy, z) = σ(x, yz)σ(y, z) for x, y, z ∈ G.

We then form the topological group

Gσ := T ×G, (t, g)(t′, g′) := (tt′σ(g, g′), gg′)
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and note that the projection q:Gσ → G defines a central extension of G by T . A continuous
unitary representation (π,H) of Gσ is called a σ -representation of G if π(t,1) = t1 holds
for each t ∈ T . Then

G→ U(H), g 7→ π(1, g)

is continuous with respect to the strong operator topology, but

π(1, g)π(1, g′) = σ(g, g′)π(1, gg′) for g, g′ ∈ G.

We write Rep((G, σ),H) for the set of all continuous σ -representations of G on H .

Definition I.1. Let A be a C∗ -algebra, G a topological group and σ a continuous 2-cocycle.
A host algebra for the pair (G, σ) is a pair (A, η), where η:Gσ → U(M(A)) is a homomorphism
such that for each complex Hilbert space H the corresponding map

η∗: Rep(A,H) → Rep((G, σ),H), π 7→ π̃ ◦ η

is injective. We then write Rep(G,H)η ⊆ Rep(G,H) for the range of η∗ . We say that (G, σ)
has a full host algebra if it has a host algebra for which η∗ is surjective for each Hilbert space H .

In the case that σ = 1, we simply speak of a host algebra for G . In this case, Gσ = G×T

is a direct product, so that a host algebra for G is a pair (A, η), where η:G → U(M(A)) is a
homomorphism into the unitary group of M(A) such that for each complex Hilbert space H the
corresponding map

η∗: Rep(A,H) → Rep(G,H), π 7→ π̃ ◦ η

is injective. We then write Rep(G,H)η ⊆ Rep(G,H) for the range of η∗ . We say that G has a
full host algebra if it has a host algebra for which η∗ is surjective for each Hilbert space H .

It is well known that for each locally compact group G , the group C∗ -algebra C∗(G), and
the natural map ηG:G→ M(C∗(G)) provide a full host algebra ([Dix64, Sect. 13.9]) and for each
pair (G, σ), where G is locally compact, the corresponding twisted group C∗ -algebra C∗(G, σ),
which is isomorphic to an ideal of C∗(Gσ), is a full host algebra for the pair (G, σ). This is
most easily seen by decomposition of representations of Gσ into isotypic summands with respect
to the action of the central subgroup T × {1} (apply [BS70], [PR89] with A = C ). The map
ηG : G→M(C∗(G, σ)) is continuous w.r.t. the strict topology of M(C∗(G, σ)).1 In Section III
below, we show a partial converse of these facts for the class of abelian groups.

II. Main results

Theorem II.2. For any abelian topological group G the following assertions hold:

(a) If G has a full host algebra, then there exists a locally compact abelian group G̃ and a
continuous homomorphism γG:G→ G̃ with dense range for which each continuous unitary
representation of G factors through γG .

(b) If there exists a locally compact abelian group G̃ and a continuous homomorphism γG:G→ G̃
with dense range for which all continuous unitary representation of G factor through γG ,
then η

G̃
◦ γG:G→M(C∗(G̃)) defines a full host algebra of G .

(c) Condition (b) is satisfied for any dense subgroup G of a locally compact group G̃ .

Remark II.3. (a) If we are interested in the continuous unitary representations of a topo-
logical group G , we can always mod out the common kernel N E G of all continuous unitary
representations and endow G/N with the coarsest topology for which all continuous unitary rep-
resentations of G lead to continuous representations of G/N . We write Gu for the so obtained

1 This is an easy consequence of the fact that im(ηG) is bounded and that the action on the
corresponding L1 -algebra is continuous.
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topological group. Then G and Gu have the same continuous unitary representations in the
sense that for the natural homomorphism q:G → Gu the map q∗: Rep(Gu,H) → Rep(G,H) is
bijective for each complex Hilbert space H .

(b) If G is locally compact, then N = {1} and G = Gu . In fact, as we shall see below,
the left regular representation of G already leads to a topological embedding G →֒ U(L2(G))s

(Proposition III.2).

(c) For any abelian group G with full host algebras we have N = ker γG , and Gu = γG(G)

is a dense subgroup of the locally compact group G̃ , endowed with the subspace topology
(Theorem II.2).

Theorem II.4. A locally convex space, considered as an abelian topological group, has a full
host algebra if and only if it is finite-dimensional.

In the light of Proposition A.9 below, this implies that if a topological group has a quotient
consisting of an infinite dimensional locally convex space, then it cannot have a full host algebra.
In the context of these negative results, we have one positive result:

Theorem II.5. For the locally convex space S := C
(N) , endowed with the natural pre-Hilbert

structure (v, w) :=
∑

j vjwj and the cocycle σ(v, w) := exp[i Im(v, w)/2] , the pair (S, σ) has a
full host algebra.

This particular example is of some importance for physics, in that it provides a host algebra
for the regular representations of the C∗ -algebra of the canonical commutation relations.

III. Abelian groups with full host algebras

In this section, we prove Theorem II.2 and apply it to prove Theorem II.4.

Let G be an abelian topological group and A a full host algebra for G . We recall from
[Gr05, Prop. 2.1(5)] that A is commutative and the canonical map

η∗G: Â = Hom(A,C) \ {0} → Ĝ := Hom(G,T), χ 7→ χ̃ ◦ ηG

is a bijection. The set Â is a locally compact space with respect to the topology of pointwise
convergence on the elements of A . In the following, we endow the character group Ĝ of G with
the locally compact topology for which the map η∗G is a homeomorphism.

Proposition III.1. Ĝ is a locally compact topological group w.r.t. pointwise multiplication.

Proof. We have to show that multiplication and inversion of Ĝ are continuous maps.

In view of Lemma A.6, the spatial tensor product A⊗A is a host algebra for the product
group G×G . Since commutative C∗ -algebras are nuclear ([Fi96, Th. 7.4.1]), we have

A⊗A ∼= C0(Â,A) ∼= C0(Â, C0(Â)) ∼= C0(Â × Â)

([Fi96, 7.4.2]), and this implies that the topological product space Ĝ× Ĝ can be identified with
the spectrum of A⊗A .

Next we note that

ϕ:G×G→ G×G, (g1, g2) 7→ (g1g2, g2)

is an isomorphism of topological groups, hence induces an automorphism ϕA:A ⊗A → A ⊗ A
of host algebras satisfying

M(ϕA) ◦ ηG×G = ηG×G ◦ ϕ
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(Corollary A.3). Since Ĝ× Ĝ coincides with the spectrum of A⊗A , ϕA induces a homeomor-

phism ϕ̂A of Ĝ× Ĝ . For g, h ∈ G and χ1, χ2 ∈ Ĝ we then have

ϕ̂A(χ1, χ2)(g, h) = (χ1, χ2)
(
M(ϕA)(ηG(g), ηG(h))

)
= (χ1, χ2)

(
M(ϕA)(ηG×G(g, h))

)

= (χ1, χ2)(ηG×G(ϕ(g, h))) = (χ1, χ2)(ηG×G(gh, h))

= χ1(gh)χ2(h) = χ1(g)(χ2χ1)(h).

We conclude that
ϕ̂A(χ1, χ2) = (χ1, χ2χ1),

and hence that this map is a homeomorphism of Ĝ × Ĝ . This implies that the multiplication
map of Ĝ is continuous, and since ϕ̂−1

A
(χ1, χ2) = (χ1, χ2χ

−1
1 ) also is continuous, the inversion

in Ĝ also is continuous.

Proposition III.2. If G is a locally compact group, then the left regular representation induces
a topological embedding π:G→ U(L2(G))s.

Proof. Since the left regular representation is continuous, π is a continuous group homomor-
phism ([Dix64, 13.3.6]).

Let U be a compact symmetric 1-neighborhood of G and f ∈ C(G,R+) with f = 0 on
G \ U and

∫
G
f2 dmG = 1, where mG is a left Haar measure on G .

Let (gi) be a net in G with π(gi) → 1 in U(L2(G))s . Then

〈π(gi).f, f〉 → 〈f, f〉 =

∫

G

f2 dmG = 1, and 〈π(gi).f, f〉 =

∫

G

f(g−1
i x)f(x) dµG(x)

vanishes if giU ∩ U = Ø, i.e., gi 6∈ U2 . Since U was arbitrary, we conclude that gi → 1 , and
hence that π is a topological embedding.

Since Ĝ is a locally compact group, its character group
̂̂
G is a locally compact abelian

group, if we endow it with the compact open topology ([HoMo98, Th. 7.7(ii)]). By definition,

each element g ∈ G defines a character ĝ of Ĝ , which leads to a natural homomorphism

γG:G→
̂̂
G, γG(χ) := χ(g).

Lemma III.3. γG is continuous with dense range, and each continuous unitary representation
of G factors through γG .

Proof. (1) Density of im(γG): From the Pontrjagin–van Kampen duality theory of locally

compact abelian groups, it follows that γG(G) is dense in
̂̂
G if and only if its annihilator in Ĝ

is trivial ([HoMo98, Th. 7.63]), but this is a consequence of the fact that Ĝ consists of functions
on G .

(2) Continuity of γG : To see that γG:G → H :=
̂̂
G is continuous, we recall from the

preceding proposition that the regular representation of H yields a topological embedding. It
therefore suffices to verify that for each continuous unitary representation π:H → U(H), the
representation π ◦ γG is continuous.

Next we recall that Pontrjagin–van Kampen duality theory also implies that the natural
map γ

Ĝ
: Ĝ → Ĥ is an isomorphism of topological groups ([HoMo98, Th. 7.63]). We also

note that the spectrum of the C∗ -algebra C∗(H) coincides with Ĥ ∼= Ĝ , so that we obtain

C∗(H) ∼= C0(Ĥ) ∼= C0(Ĝ) = C0(Â) ∼= A . Therefore A is a host algebra of H with respect to
the inclusion map

ηH :H = Hom(Ĝ,T) →֒ Cb(Ĝ) = M(A).

Now
ηH ◦ γG:G→ Cb(Ĝ) ∼= M(A)
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(cf. [Bla98, Ex. 12.1.1(b)]) coincides with ηG . The host algebra properties of A w.r.t. G and H
implies that for each continuous unitary representation π of H the corresponding representation
π̃ of M(A) yields a continuous unitary representation

π̃ ◦ ηG = π̃ ◦ ηH ◦ γG = π ◦ γG

of G .

(3) Factorization of unitary representations: If π:G → U(H) is a continuous unitary
representation, then the host algebra property of A implies the existence of a representation
π̃:A → B(H) for which the corresponding representation M(π̃) satisfies M(π̃) ◦ ηG = π .

Then the representation πH = M(π̃) ◦ ηH is also continuous, and we have

πH ◦ γG = M(π̃) ◦ ηH ◦ γG = M(π̃) ◦ ηG = π.

Proposition III.4. If G is an abelian topological group, then each unitary representation of
G extends to a continuous unitary representation of its completion G .

Proof. Let ϕ:G → C be a continuous positive definite function on G . Then there exists a
continuous unitary representation π:G → U(H) and some v ∈ H with ϕ(g) = 〈π(g).v, v〉 . We
then have

|ϕ(g) − ϕ(h)| = |〈(π(g) − π(h)).v, v〉| = |〈π(h−1g).v − v, π(h−1).v〉| ≤ ‖π(h−1g).v − v‖ · ‖v‖,

showing that ϕ is uniformly continuous, hence extends to a continuous function on G .

Since each continuous positive definite function of G extends to G , the GNS construction
implies the same for cyclic representations. As each representation is a direct sum of cyclic ones,
the assertion follows.

Corollary III.5. If H is a locally compact abelian group and G ⊆ H a dense subgroup,
then each continuous unitary representation of G extends to a continuous unitary representation
of H . In particular, the morphism ηG := ηH |G:G → M(C∗(H)) ∼= Cb(Ĥ) defines a full host
algebra for G .

Proof of Theorem II.2: Part (a) follows from Propositions III.1 and Lemma III.3. Part (b) is
trivial, and Part (c) is an immediate consequence of Corollary III.5.

Theorem III.6. A locally convex space, considered as an abelian topological group, has a full
host algebra if and only if it is finite-dimensional.

Proof. Let E be a locally convex space and G := (E,+) the underlying abelian topological

group. Then its character group Ĝ can be identified in a natural way with the topological dual
space E′ .

If G is finite-dimensional, it is locally compact, so that C∗(G) is a host algebra of G .

Suppose, conversely, that G has a host algebra and let G̃ be as in Theorem II.2. Then the
continuous homomorphism γG:G→ G̃ has dense range, so that G̃ is a connected locally compact
abelian group, hence isomorphic to Rn ×C for some compact group C ([HoMo98, Th. 7.57]). In
this sense, we write γG = (γ1, γ2). Then γ1:G→ Rn is a continuous homomorphism with dense
range, hence a surjective linear map.

Using the Hahn–Banach Theorem, we can split off a finite-dimensional subspace G1
∼= Rn

supplementing G2 := kerγ1 , such that G ∼= G1 ×G2 is a product of locally convex spaces and
γ1(g1, g2) = g1 . Now ϕ(v, c) := (v, γ2(v)c) defines a topological automorphism of G̃ ∼= G1 × C ,
and we have ϕ−1 ◦ γ = idG1

×γC . Here γG:G2 → C is a continuous homomorphism with
dense range into the compact abelian group C , and each continuous unitary representation of
G2 factors through γC . Since continuous unitary representations of compact groups decompose
into direct sums of irreducibles, the same holds for G2 . If G2 is non-zero, we have G2

∼=
R ×G3 for some locally convex space G3 . Then the left regular representation of R on L2(R)
yields a continuous unitary representation of G2 which does not decompose into irreducibles,
contradicting the properties of C . we conclude that G2 = {0} , and hence that G = G1 is
finite-dimensional.
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The analogous theorem concerning host algebras for σ -representations of a locally convex
space does not hold, as our Theorem IV.1 below shows. However, Theorem III.6 provides a set of
counterexamples for the general claim in [Gr97] that any inductive limit group of locally compact
groups has a full host algebra.

From Proposition A.9, we get the following easy Corollary of Theorem III.6:

Corollary III.7. If G is a topological group and N is a closed normal subgroup such that
G/N is isomorphic to an infinite dimensional locally convex space S (regarded as a group), then
G does not have a full host algebra.

IV. An example of a full host algebra

Here we want to present an example of a host algebra for an infinite-dimensional group. Let
(en)n∈N be an orthonormal basis for an infinite-dimensional separable Hilbert space H . Let

S := span{en|n ∈ N} ⊂ H . Then S is clearly a dense subspace. We consider S ∼= C
(N) as an

inductive limit of the subspaces Sn := span{e1, . . . , en} and endow it with the inductive limit
topology, which turns it into an abelian topological group with respect to addition (which is
only true for countably dimensional spaces; cf. [Gl03]). Moreover, S is a symplectic space with
the symplectic form B(v, w) := Im (v, w) and hence σ(v, w) := exp[iB(v, w)/2] defines a group
two-cocycle σ on S . Let Sσ denote the corresponding central extension of S by T (cf. above
Definition I.1). Since S is a quotient of Sσ , it follows from Corollary III.7 that Sσ does not have
a full host algebra. However, we show in this section that the pair (S, σ) does:

Theorem IV.1. The pair (S, σ) has a full host algebra.

Let A denote the discrete twisted σ–group algebra of S , i.e. it is the unique (simple)
C∗ -algebra generated by a collection of unitaries

{
δs

∣∣ s ∈ S
}

satisfying the (Weyl) relations
δs1
δs2

= σ(s1, s2) δs1+s2
([BR97, Th. 5.2.8]). In physics, A is called the C∗ -algebra of the

canonical commutation relations of (S, σ), and the representations important for physics are
those for which the restrictions to all one-dimensional subspaces of S are strongly continuous.
Such representations are called regular, and we denote the set of regular representations on the
Hilbert space H by R(H) . Through the identification π(s) := π(δs), R(H) corresponds exactly
with the σ -representations of S on H, i.e. with Rep((S, σ),H) .

Lemma IV.2. With the notation above, we have A =
∞⊗

n=1
An with the spatial (minimal) tensor

norms, where An := C∗
{
δzen

∣∣ z ∈ C
}
.

Proof. This follows directly from Proposition 11.4.3 of Kadison and Ringrose [KR83], we
only need to verify that its conditions hold in the present context. For this, observe that

A = C∗
{ ∞⋃

n=1
An

}
, 11 ∈ An ,

[
An, Am

]
= 0 when n 6= m . Moreover, the linear maps

ψk : A1 ⊗ · · · ⊗ Ak → A by ψk

(
A1 ⊗ · · · ⊗Ak) := A1A2 · · ·Ak

are *–monomorphisms because each image subalgebra C∗
{ k⋃

n=1
An

}
is the unique C∗ -algebra

generated by the unitaries
{
δzei

∣∣ z ∈ C, i = 1, . . . , k
}

, and this is also true for A1 ⊗ · · · ⊗ Ak .
This is enough to apply the proposition loc. cit.

Observe that each An is just the discrete σ -group algebra of the subgroup Cen ⊂ S , and
as the latter is locally compact, we can construct its σ–twisted group algebra which we denote
by Ln (recall that Ln is just the enveloping C∗ -algebra of L1(C), equipped with σ-twisted
convolution). It is well-known that Ln

∼= K(L2(R)) (cf. Segal [Se67]). Note that for each
finite set F ⊂ N, the algebra

⊗
n∈F

Ln
∼= K(

⊗
n∈F

L2(R)) ∼= K(L2(RF )) is a host algebra for the
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regular representations of
⊗

n∈F

An = C∗
{
δzen

∣∣ z ∈ C, n ∈ F
}

, i.e. for the σ–representations of

span{en |n ∈ F} ⊂ S .

It is natural to try some infinite tensor product
∞⊗

n=1

Ln for a host algebra, but because the

algebras Ln are non-unital, the definition of the infinite tensor product needs some care [Bla77].
For each n ∈ N , choose a nonzero projection Pn ∈ Ln

∼= K(H) and define C∗ -embeddings

Ψℓk : L(k) → L(ℓ) by Ψℓk(A1 ⊗ · · · ⊗Ak) := A1 ⊗ · · · ⊗Ak ⊗ Pk+1 ⊗ · · · ⊗ Pℓ,

where k < ℓ and L(k) :=
k⊗

n=1
Ln . Then the inductive limit makes sense, so we define

L :=

∞⊗

n=1

Ln := lim
−→

{
L(n), Ψℓk

}

and write Ψk:L(k) → L for the corresponding embeddings, satisfying Ψk ◦ Ψkj = Ψj for j ≤ k .
Since each Ln is simple, so are the finite tensor products L(k) ([WO93], Prop. T.6.25), and as
inductive limits of simple C∗ -algebras are simple ([KR83], Prop. 11.4.2), so is L . It is also clear
that L is separable.

Since Ψk+n,k(Lk) = Lk ⊗ Pk+1 ⊗ · · · ⊗ Pk+n, where Lk ∈ L(k) , this means that we can
consider L to be built up out of elementary tensors of the form

Ψk(L1 ⊗ · · · ⊗ Lk) = L1 ⊗ L2 ⊗ · · · ⊗ Lk ⊗ Pk+1 ⊗ Pk+2 ⊗ · · · , where Li ∈ Li , (4.1)

i.e. eventually they are of the form · · · ⊗ Pk ⊗ Pk+1 ⊗ · · · . We will use this picture below, and
generally will not indicate the maps Ψk .

Lemma IV.3.

(i) With respect to componentwise multiplication, we have an inclusion

A =

∞⊗

n=1

An ⊂M(L) = M
( ∞⊗

n=1

Ln

)
.

(ii) There is a natural embedding ιn:M(L(n)) →֒ M(L) . This is a topological embedding on
each bounded subset of M(L(n)) . Moreover, L(n) is dense in M(L(n)) with respect to the
restriction of the strict topology of M(L) .

(iii) Let π ∈ Rep(L,H) , and let πn denote the unique representation which it induces on
L(n) ⊂M(L(n)) ⊂M(L) by strict extension. Then

π(L1 ⊗ L2 ⊗ · · ·) = s− lim
n→∞

πn(L1 ⊗ · · · ⊗ Ln)

for all L1 ⊗ L2 ⊗ · · · ∈ L as in (4.1).

Proof. (i) For each k we obtain a homomorphism Θk :
k⊗

n=1
An → M(L) by componentwise

multiplication in the first k entries of L , leaving all entries further up invariant. By simplicity

of its domain, each Θk is a monomorphism. From Θk

( k⊗
n=1

An

)
⊂ M(L) for each k ∈ N , we

obtain all the generating unitaries δs in M(L), then they generate A in M(L) by uniqueness
of the C∗ -algebra of the canonical commutation relations.

(ii) Now L = L(n) ⊗ B for a C∗ -algebra B (cf. Blackadar [Bla77, p. 315]), and M(L(n))
embeds in M(L) as M(L(n)) ⊗ 11. Therefore (ii) follows from Lemma A.4.

(iii) Note that Un := Ψn(11) = 11 ⊗ · · · ⊗ 11 ⊗ Pn+1 ⊗ Pn+2 ⊗ · · · ∈ L ⊆ M(L) converges
strictly to 11. Recall that L = L1 ⊗ L2 ⊗ · · · ∈ L as in (4.1) is of the form

A1 ⊗A2 ⊗ · · · ⊗Ak ⊗ Pk+1 ⊗ Pk+2 ⊗ · · · ,
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where Ai ∈ Li , so for n ≥ k we get for all ψ ∈ Hπ that for the strictly continuous extension π̃
of π to M(L):

∥∥π̃(L− L1 ⊗ · · · ⊗ Ln ⊗ 11 ⊗ 11 ⊗ · · ·)ψ
∥∥ =

∥∥∥π̃
(
L1 ⊗ · · · ⊗ Ln ⊗ (Pn+1 ⊗ Pn+2 ⊗ · · · − 11)

)
ψ

∥∥∥

=
∥∥∥π̃

(
L1 ⊗ · · · ⊗ Ln ⊗ 11 ⊗ · · ·

)
· π̃(Un − 11)ψ

∥∥∥

≤ C ·
∥∥π(Un − 11)ψ

∥∥ → 0

as n→ ∞ , where C > 0 is chosen such that ‖L1 ⊗ · · · ⊗ Ln‖ < C for all n , and this is possible
because ‖Pk+1 ⊗ Pk+2 ⊗ · · · ‖ = 1. But this is exactly the claim we needed to prove.

Let π ∈ Rep(A,H) be regular. Observe that π is regular on all An , hence there are unique
π̂n ∈ Rep(Ln,H) which extend (on H) to π↾An by the host algebra property of Ln . For the
distinguished projections Pn ∈ Ln , we simplify the notation to π(Pn) := π̂n(Pn). Observe that
the projections π(Pj) all commute, and so the strong limit

Pk := s− lim
n→∞

π(Pk) · · ·π(Pn)

exists, and it is the projection onto the intersection of the ranges of of all π(Pj), j ≥ k . Since
Pk = π(Pk) Pk+1 we note that Pk+1 ≥ Pk and so also s− lim

k→∞
Pk ≤ 11 exists.

We will use the notation A(n) :=
n⊗

j=1

Aj below.

Proposition IV.4. Define a monomorphism η : Sσ → U(M(L)) by η((s, t)) := tδs ∈ A ⊂
M(L) (by Lemma IV.3(i)). Then η is continuous with respect to the strict topology on M(L)
and L is a host algebra of (S, σ) , i.e., the maps η∗ : Rep(L,H) → Rep((S, σ),H) are injective.
The range of η∗ consists of those π ∈ Rep

(
(S, σ),H

)
such that s− lim

k→∞
Pk = 11 .

Proof. Let π be a representation of L and π̃ its strictly continuous extension to M(L). To
see that the representation η∗π̃ of Sσ is continuous, we show that η is continuous with respect to
the strict topology on M(L). Since Sσ is a topological direct limit of the subgroups Sm,σ , where
Sm = spanC{e1, . . . , em} , it suffices to show that η is continuous on each subgroup Sm,σ . Recall
that the twisted group algebra C∗(Sm, σ) ∼= L(m) is a full host algebra for (Sm, σ) and that the
corresponding strictly continuous homomorphism ηm:Sm,σ → M(L(m)) is compatible with the
embedding ιm:M(L(m)) →֒ M(L) in the sense that η |Sm,σ

= ιm ◦ ηm . Since ιm restricts to an
embedding on the unitary group (Lemma IV.3(ii)), the continuity of ηm implies the continuity
of η on Sm,σ , which in turn implies the continuity of η . As a consequence, π̃ ◦ η is a continuous
unitary representation of Sσ for each strictly continuous representation π̃ of M(L).

To see that η∗ is injective, we have to show that two representations π1, π2 of L for which
η∗π1 = η∗π2 coincide are equal. If η∗π1 = η∗π2 , then we obtain for each m ∈ N the relation
η∗mπ1 = η∗mπ2 on Sm,σ . This means that the corresponding unitary representations of the group
Sm,σ coincide. In view of Lemma IV.3(iii), it suffices to argue that the two non-degenerate
representations π1,m and π2,m of L(m) coincide (cf. Lemma A.5 for the non-degeneracy), which
in turn follows from the host algebra property of L(m) for Sm,σ .

To characterize the range of η∗ , let π ∈ Rep(A,H) be the strictly continuous extension of
a π0 ∈ Rep(L,H). Then, by Lemma IV.3(iii), it must satisfy

π0(L1 ⊗ L2 ⊗ · · ·) = s− lim
n→∞

πn(L1 ⊗ · · · ⊗ Ln)

for all L1 ⊗ L2 ⊗ · · · ∈ L . Now we have

πn(L1 ⊗ · · · ⊗ Ln−1 ⊗ Pn) = π̃n(L1 ⊗ · · · ⊗ Ln−1 ⊗ 11) π̃n(11 ⊗ · · · 11 ⊗ Pn)

where π̃n denotes the strictly continuous extension to M(L(n)), and it is obvious that these two
operators commute. From the algebra relations A(n) ⊃ A(n−1) ⊂ M(L(n−1)) ⊂ M(L(n)), and
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the host algebra properties we get that π̃n(L1 ⊗ · · · ⊗ Ln−1 ⊗ 11) = πn−1(L1 ⊗ · · · ⊗ Ln−1) and
π̃n(11 ⊗ · · · 11 ⊗ Pn) = π(Pn), so

πn(L1 ⊗ · · · ⊗ Ln−1 ⊗ Pn) = πn−1(L1 ⊗ · · · ⊗ Ln−1)π(Pn) .

Thus, for

L = L1 ⊗ L2 ⊗ · · · = A1 ⊗A2 ⊗ · · · ⊗Ak ⊗ Pk+1 ⊗ Pk+2 ⊗ · · · ∈ L, we get for n > k :

πn(L1 ⊗ · · · ⊗ Ln) = πk(A1 ⊗ · · · ⊗Ak)π(Pk+1) · · ·π(Pn) .

Using the fact that the projections π(Pj) all commute,

π0(L1 ⊗ L2 ⊗ · · ·) = s− lim
n→∞

πn(L1 ⊗ · · · ⊗ Ln) = πk(A1 ⊗ · · · ⊗Ak) Pk+1 .

Since π0 is non-degenerate, and all πk↾L(k) are non-degenerate, it follows that s− lim
k→∞

Pk = 11.

Conversely, if we start from a regular representation π of A which satisfies s− lim
k→∞

Pk = 11,

we will define a representation π0 on L by

π0(L) =: πk(A1 ⊗ · · · ⊗Ak) Pk+1 for L = A1 ⊗A2 ⊗ · · · ⊗Ak ⊗ Pk+1 ⊗ Pk+2 ⊗ · · ·

where πk ∈ RepL(k) is obtained from π↾A(k) , using the host algebra property of L(k) . To see
that this can be done, note that for A ∈ L(k) we have

πk(A)Pk+1 = πk+1(Ψk+1,k(A))Pk+2.

Therefore the universal property of the direct limit algebra L implies the existence of a repre-
sentation π0 of L , satisfying

π0(Ψk(A)) = πk(A)Pk+1 for A ∈ L(k).

That it is non-degenerate follows from the fact that each πk is non-degenerate, and that
s− lim
k→∞

Pk = 11. To see that π̃0↾A = π , recall that πk is the representation obtained from

from π↾A(k) , using the host algebra property of L(k) . Let B ∈ A(k) , then for A ∈ L(k) we have

π̃0(B)π0(Ψk(A)) = π0(B · Ψk(A)) = πk(B · A)Pk+1 = π(B)πk(A)Pk+1 = π(B)π0(Ψk(A))

from which it follows that π̃0↾A = π .

Thus for every family of projections Pk ∈ Lk we get a host algebra. Now recall that
Lk

∼= K(ℓ2(N)), and that there is a (countable) approximate identity (En)n∈N in K(ℓ2(N))
consisting of a strictly increasing sequence of projections En with dim(Enℓ

2(N)) = n . For each k ,

choose such an approximate identity (E
(k)
n ) ⊂ Lk , then for each sequence n = (n1, n2, . . .) ∈ N∞ ,

we have a sequence of projections
(
E

(1)
n1 , E

(2)
n2 , . . .

)
from which we can construct an infinite tensor

product as above, and we will denote it by L[n] . For the elementary tensors, we streamline the

notation to: A1 ⊗ · · · ⊗ Ak ⊗ E[n]k+1 := A1 ⊗ · · · ⊗ Ak ⊗ E
(k+1)
nk+1

⊗ E
(k+2)
nk+2

⊗ · · · ∈ L[n] , where
Ai ∈ Li , and their closed span is the simple C∗ -algebra L[n] . Note that we can multiply these,
in fact, since for componentwise multiplication, the sequences give:

(
E(1)

n1
, E(2)

n2
, . . .

)
·
(
E(1)

m1
, E(2)

m2
, . . .

)
=

(
E(1)

p1
, E(2)

p2
, . . .

)

where pj := min(nj , mj), we can consistently define a product between the equivalence classes
which define the inductive limit algebras L[n] and L[m] to get one in L[p] , i.e. we have that

(4.3) L[n] · L[m] ⊆ L[p],



11 abgrp10.tex 15th May 2006

and in fact

(4.4) L[n] ⊂M(L[p]) ⊃ L[m].

Thus L[n] ⊆ M(L[1]) for all n , where 1 := (1, 1, . . .) and so we can form the C∗ -algebra in
M(L[1]) generated by all L[n] , and denote it by L[E] . By (4.3), this is just the closed span of
all L[n] and hence the closure of the dense *-subalgebra L0 ⊂ L[E] , where:

L0 :=
∑

n∈N∞

L[n]0 and L[n]0 :=
⋃

k∈N

L(k) ⊗ E[n]k+1.

We still have A ⊂ M(L[E]) ⊃ L(n) for each n ∈ N . Note that if two sequences n and
m differ only in a finite number of entries, then L[n] = L[m] , and hence we actually have that
the correct index set for the algebras L[n] is not the sequences N∞ , but the set of equivalence
classes N∞

/
∼ where n ∼ m if they differ only in finitely many entries. Some of the structures of

N∞ will factor through to N∞
/
∼, e.g. we have a partial ordering of equivalence classes defined

by [n] ≥ [m] if for any representatives n and m resp., we have that there is an N (depending
on the representatives) such that nk ≥ mk for all k > N . In particular, we note that products
reduce sequences, i.e., we have L[n] · L[p] ⊆ L[q] for qi = min(ni, pi), so [n] ≥ [q] ≤ [p] .

Let ϕ : N∞
/
∼ → N∞ be a section of the factor map. Then L[E] is the C∗ -algebra gener-

ated in M(L[1]) by
{
L[ϕ(γ)]

∣∣ γ ∈ N∞
/
∼

}
, and it is the closure of the span of the elementary

tensors in this generating set.

Below we will prove that L[E] is a full host algebra for (S, σ), and so it is of some interest
to explore its algebraic structure. From the reducing property of products, we already know that
L[E] has the ideal L[1] (we will show that it is proper), hence that it is not simple. However,
it has in fact infinitely many proper ideals and each of the generating algebras L[n] is contained
in such an ideal:

Proposition IV.5. For the C*–algebra L[E] we have the following:

(i) L[E] is nonseparable,

(ii) Define I[n1, . . . ,nk] to be the closed span of

{
L[q]0 | [q] ≤ [nℓ] for some ℓ = 1, . . . , k

}
.

Let [p] > [nℓ] strictly for all ℓ ∈ {1, . . . , k} , then L[p] ∩ I[n1, . . . ,nk] = {0} .

(iii) I[n1, . . . ,nk] is a proper closed two sided ideal of L[E] .

(iv) Define L[n1, . . . ,nk] := C∗ (L[n1] ∪ · · · ∪ L[nk]) . Then L[n1, . . . ,nk] ⊂ I[n1, . . . ,nk] and

C∗ (L[n1, . . . ,nk] · L[nk+1]) ⊆ L[q1, . . . ,qk], where: (qj)ℓ = min
(
(nj)ℓ, (nk+1)ℓ

)
.

Proof. (i) L[E] ⊃ Q :=
{
E[n]1 := E

(1)
n1 ⊗ E

(2)
n2 ⊗ · · · | n ∈ N∞

}
. If n 6= p , there is some k

for which E
(k)
nk 6= E

(k)
pk and as the approximate identity is linearly increasing, one of these must

be larger than the other, so take E
(k)
nk > E

(k)
pk strictly. Group the remaining parts of the tensor

product together, i.e., write

E[n]1 = E(k)
nk

⊗A and E[p]1 = E(k)
pk

⊗B ,

where A and B are projections, then choose a product representation π = π1 ⊗ π2 in which π1

is faithful on Lk and π2 is faithful on the C∗ -algebra generated by A and B . Thus there is a

unit vector ψ ∈ H1 such that
∥∥π1(E

(k)
nk )ψ

∥∥ = 1 and π1(E
(k)
pk )ψ = 0 . For any unit vector ϕ ∈ H2

we get

∥∥E[n]1 − E[p]1
∥∥ ≥

∥∥∥(π1 ⊗ π2)
(
E(k)

nk
⊗A− E(k)

pk
⊗B

)
(ψ ⊗ ϕ)

∥∥∥

=
∥∥π1(E

(k)
nk

)ψ ⊗ π2(A)ϕ
∥∥ =

∥∥π1(E
(k)
nk

)ψ
∥∥ ·

∥∥π2(A)ϕ
∥∥ =

∥∥π2(A)ϕ
∥∥
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and by letting ϕ range over the unit ball we get that
∥∥E[n]1 − E[p]1

∥∥ ≥ ‖A‖ = 1 . Thus, since
Q is uncountable and its elements far apart, L[E] cannot be separable.

(ii) Here we adapt the argument in (i) as follows. It suffices to show that for q1, . . . ,qd

with qi ≤ nj for some j , the norm distance between
d∑

i=1

L[qi]0 and any C ∈ L[p]0 is always

≥ ‖C‖ . Let C ∈ L[p]0 be nonzero and consider a sum
d∑

i=1

Ci with Ci ∈ L[qi]0 and [p] > [nj ]

for all j , which implies [p] > [qi] for all i . Choose an M > 0 large enough so that all C and
Ci can be expressed in the form:

Ci = C
(0)
i ⊗ E[ni]M , for C

(0)
i ∈ L(M−1) .

Then by [p] > [qi] there is an entry of the tensor products, say for j > M , which consist only of

elements of the approximate identity (E
(j)
n )∞n=1 ⊂ Lj and for which B > Bi for all i, where B

(resp. Bi ) is the jth entry of C (resp. Ci ). Denote the remaining parts of the tensor products
by A (resp. Ai ), i.e.,

C = A⊗B, Ci = Ai ⊗Bi, where B > Bi ∀ i

and B, Bi consist of commuting projections. Then ‖C −
d∑

i=1

Ci‖ =
∥∥A ⊗ B −

d∑
i=1

(Ai ⊗ Bi)
∥∥ .

Choose a product representation π = π1 ⊗ π2 such that π1 is faithful on L[p] and π2 is faithful

on the C∗ -algebra generated by (E
(j)
n )∞n=1 ⊂ Lj . Thus there is a unit vector ϕ ∈ Hπ2

such that
‖π2(B)ϕ‖ = 1 and π2(Bi)ϕ = 0 for all i (which exists because B > Bi for all i). Then we have
for any unit vector ψ ∈ Hπ1

that

‖C −
d∑

i=1

Ci‖ ≥
∥∥∥(π1 ⊗ π2)

(
A⊗B −

d∑

i=1

Ai ⊗Bi

)
(ψ ⊗ ϕ)

∥∥∥

= ‖π1(A)ψ ⊗ π2(B)ϕ‖ = ‖π1(A)ψ‖ · ‖π2(B)ϕ‖ = ‖π1(A)ψ‖

and by letting ψ range over the unit ball of Hπ1
, we find that ‖C −

∑d
i=1 Ci‖ ≥ ‖A‖ = ‖C‖

since ‖B‖ = 1 . This establishes the claim.

(iii) It is obvious from the reduction property L[n] · L[p] ⊆ L[q] for qj = min(nj , pj),
that I[n1, . . . ,nk] is a two–sided ideal (hence a *–algebra). To see that it is proper, note that
[p] > [ni] strictly for all i where pj = max((n1)j , . . . , (nk)j) + 1 . Thus, by (ii) we see that
L[p] ∩ I[n1, . . . ,nk] = {0} and hence that I[n1, . . . ,nk] is proper.

(iv) L[n1, . . . ,nk] ⊂ I[n1, . . . ,nk] because I[n1, . . . ,nk] is a C∗ -algebra which contains all
the generating elements L[ni] of L[n1, . . . ,nk] . Next we need to prove that

C∗ (L[n1, . . . ,nk] · L[nk+1]) ⊆ L[q1, . . . ,qk], where: (qj)ℓ = min
(
(nj)ℓ, (nk+1)ℓ

)
.

By definition, C∗ (L[n1, . . . ,nk] · L[nk+1]) is the closed linear span of monomials
N∏

i=1

Li , where

Li can be either of the form AiBi or BiAi , where Ai ∈ L[n1, . . . ,nk] and Bi ∈ L[nk+1] . So it
suffices to show that

AB ∈ L[q1, . . . ,qk] for A ∈ L[n1, . . . ,nk] and B ∈ L[nk+1]

(since then BA ∈ L[q1, . . . ,qk] by involution). Since L[n]0 is dense in L[n] , it suffices to prove
this for A = A1A2 . . . Ap where Ai = Ci ⊗ E[nki

]ri+1 and Ci ∈ L(ri) , ki ∈ {1, . . . , k} , and
B = D ⊗ E[nk+1]r+1 , where D ∈ L(r) . Now

ApB = F ⊗ E[qkp
]s+1 ∈ L[qkp

]
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for some F ∈ L(s) , s ≥ max(rp, r) . Then

Ap−1ApB =
(
Cp−1 ⊗ E[nkp−1

]rp−1+1

)(
F ⊗ E[qkp

]s+1

)
= G⊗ E[m]t+1,

where t ≥ max(rp−1, s) and

mi = min
(
(nkp−1

)i, (qkp
)i)

)
= min

(
(nkp−1

)i, min
(
(nkp

)i, (nk+1)i

))

= min
(
min

(
(nkp−1

)i, (nk+1)i

)
, min

(
(nkp

)i, (nk+1)i

))
= min

(
(qkp−1

)i, (qkp
)i

)

and so we have in fact that

Ap−1ApB =
(
C̃ ⊗ E[qkp−1

]t+1

)(
F̃ ⊗ E[qkp

]t+1

)
∈ L[qkp−1

] · L[qkp
]

where C̃, F̃ ∈ L(t). Hence Ap−1ApB ∈ L[qkp−1
, qkp

] . We continue the process to get AB =
A1A2 . . . ApB ∈ L[q1, . . . ,qk] .

For each strictly increasing sequence
(
[n1], [n2], . . .

)
⊂ N

∞/∼ we get from part (ii) a strictly
increasing chain of proper ideals Jk := I[n1, . . . ,nk] .

Now we want to prove our main theorem in this section.

Theorem IV.6. The monomorphism η : Sσ → U(M(L[E])) from above, defined by

η((s, t)) := tδs ∈ A ⊂M(L[E]),

is continuous with respect to the strict topology on M(L[E]) and L[E] is a host algebra, i.e., the
map

η∗ : Rep(L[E],H) → Rep((S, σ),H)

is injective. The range of η∗ is exactly R(H) .

Proof. First we show that η is continuous with respect to the strict topology on M(L[E]) .
This implies that for each π ∈ Rep(L[E],H) the representation π̃ ∈ Rep(A,H) is regular, hence

η∗
(
Rep(L[E],H)

)
⊆ R(H).

Since im(η) is bounded, it suffices to show that the set

{
L ∈ L[E] | g 7→ η(g)L is norm continuous in g ∈ Sσ

}

spans a dense subspace of L[E] . This reduces the assertion to the corresponding result for the
action of Sσ on L[n] for each n , which follows from the continuity of the corresponding map
Sσ →M(L[n]) (Proposition IV.4).

To prove that η∗ is injective we show that A separates Rep(L[E],H) for all H . Let
π ∈ Rep(L[E],H), then by Proposition IV.4 we know that the values which π̃(A) takes on Hn

uniquely determine the values of π
(
L[n]) on Hn , hence on all H , as π

(
L[n]

)
is zero on the

orthogonal complement of Hn . This holds for all n , hence π̃(A) uniquely determines the values
of π on L[E] , i.e., η∗ is injective.

It remains to prove that η∗
(
Rep(L,H)

)
= R(H). Start from a π ∈ Rep(A,H) which is

regular. Then we have to show how to obtain a π0 ∈ RepL[E] such that π̃0↾A = π . Observe
that π is regular on all A(n) , hence there are unique πn ∈ Rep(L(n),H) which extend (on H)
to coincide with π↾A(n) by the host algebra property of L(n) . For each n define the projections

E
n
k := s− lim

m→∞
π(E(k)

nk
) · · ·π(E(m)

nm
) and E

n := s− lim
k→∞

E
n
k .

Now each πn(L(n)) commutes with the projections En
k for k > n , and in particular preserves

the space Hn := EnH , and hence so does π(A(n)). Then by Proposition IV.4 we know that we
can define a (non-degenerate) representation πn

0 : L[n] → B(Hn) by

πn
0 (L) = πk(A1 ⊗ · · · ⊗Ak) E

n
k+1
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for L = A1 ⊗ · · ·⊗Ak ⊗E
(k+1)
nk+1

⊗E
(k+2)
nk+2

⊗ · · · ∈ L[n] such that π̃n
0 ↾A is π(A), restricted to Hn .

We extend πn
0 to all of H , by putting it to zero on the orthogonal complement of Hn . Note that

n ≤ m ⇒ Hn ⊆ Hm.

We now argue that these representations πn
0 combine into a single representation of L[E] .

First, we want to extend by linearity the maps πn
0 : L[n] → B(H) to define a linear map π0 from

the dense ∗ -subalgebra L0 ⊂ L[E] to B(H), where we recall that L0 :=
∑

n∈N∞

L[n]0 .

This linear extension π0 is possible if the sum of the spaces L[n]0 is direct for different

n ∈ ϕ
(
N∞

/
∼

)
, i.e., if 0 =

m∑
k=1

Bk for Bk ∈ L[nk]0, where nk 6∼ nℓ if k 6= ℓ implies that Bk = 0

for all k . Let us prove this implication, so assume 0 =
m∑

k=1

Bk as above. Choose an M > 0

large enough so that for all k, the Bk can be expressed in the form Bk = Ak ⊗ E[nk]M for
Ak ∈ L(M−1) , define the projections Pk := 11 ⊗ · · · ⊗ 11 ⊗ E[1]k (there are k − 1 factors of 11),
and note that Pℓ commutes with all Bk for ℓ ≥M. In fact, for Bk as above, we have (simplifying
notation to nk = n):

BkPℓ = Ak ⊗ E(M)
nM

⊗ · · · ⊗E(ℓ−1)
nℓ−1

⊗ E[1]ℓ ∈ L(ℓ−1) ⊗ E[1]ℓ

and so multiplication by Pℓ for ℓ ≥ M maps the Bk to elementary tensors of the form

Ak ⊗E
(M)
nM ⊗ · · · ⊗E

(ℓ−1)
nℓ−1

in L(ℓ−1) (after identifying L(ℓ−1) ⊗E[1]ℓ with L(ℓ−1) ). Now a set of
elementary tensors (in a finite tensor product) will be linearly independent if the entries in a fixed

slot are linearly independent so it suffices to find ℓ > M such that the pieces E
(M)
nM ⊗ · · · ⊗E

(ℓ−1)
nℓ−1

are linearly independent for n ∈ N :=
{
nk | k = 1, . . . , m

}
. Since the approximate identities

(E
(k)
n )∞n=1 ⊂ Lk consist of strictly increasing projections, their terms are linearly independent

from which it follows that tensor products of these with distinct entries are linearly independent.
Thus we only have to identify an ℓ large enough so that the portions of the sequences nk between
the entries M and ℓ can distinguish all the sequences in N , and this is always possible since
the nk are representatives of distinct equivalence classes in N∞/∼ . Thus {B1Pℓ, . . . , BmPℓ} is

linearly independent for this ℓ, so 0 =
m∑

k=1

BkPℓ implies that all Bk = 0. We conclude that the

linear extension π0 exists.

That π0 respects involution is clear. To see that it is a homomorphism, consider the
elementary tensors

L = A1 ⊗A2 ⊗ · · · ⊗Ak ⊗ E[n]k+1 ∈ L[n] and M = B1 ⊗B2 ⊗ · · · ⊗Bm ⊗ E[p]m+1 ∈ L[p]

where m > k and n 6∼ p ∈ N
∞ . Then

π0(L)π0(M) = πk(A1 ⊗ · · · ⊗Ak) E
n
k+1πm(B1 ⊗ · · · ⊗Bm) E

p

m+1

= πm

(
A1 ⊗ · · · ⊗Ak ⊗ E(k+1)

nk+1
⊗ · · · ⊗E(m)

nm

)
E

n
m+1πm(B1 ⊗ · · · ⊗Bm) E

p

m+1

= πm

(
A1B1 ⊗ · · · ⊗AkBk ⊗ E(k+1)

nk+1
Bk+1 · · · ⊗E(m)

nm
Bm

)
E

n
m+1 E

p

m+1 .

Now recall that the operator product is jointly continuous on bounded sets in the strong operator
topology, hence

E
n
k E

p

k = s− lim
m→∞

π(E(k)
nk

) · · ·π(E(m)
nm

) · s− lim
r→∞

π(E(k)
pk

) · · ·π(E(r)
pr

)

= s− lim
m→∞

π(E(k)
nk

) · · ·π(E(m)
nm

)π(E(k)
pk

) · · ·π(E(m)
pm

)

= s− lim
m→∞

π(E(k)
qk

) · · ·π(E(m)
qm

) = E
q

k

where qj := min(nj , pj). Thus we get exactly that π0(L)π0(M) = π0(LM).
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We now verify that π0 is bounded. For this, we first need to prove the following:

Claim: Recall that L[n1, . . . ,nk] = C∗ (L[n1] ∪ · · · ∪ L[nk]) . Then for each k ≥ 1 and k -

tuple (n1, . . . ,nk) such that nk 6∼ nℓ if k 6= ℓ the map π0 on L0 ∩ L[n1, . . . ,nk] extends to a

representation of the C∗ -algebra L[n1, . . . ,nk] .

Proof: Note that the claim implies the compatibility of the representations, i.e., on intersec-
tions L[p1, . . . ,pℓ] ∩ L[n1, . . . ,nk] , the representations produced by π0 on L[n1, . . . ,nk] and
L[p1, . . . ,pℓ] coincide. This is because π0 is given as a consistent map on the dense space L0 .
We now prove the claim by induction on k. We already have by definition that π0 is the repre-
sentation πn on L[n] for each n, hence the claim is true for k = 1 . Assume the claim is true for
all values of k up to a fixed k ≥ 1, then we now prove it for k+1 . Observe that L[n1, . . . ,nk+1]
contains the closed two–sided ideals

J1 :=C∗ (L[n1, . . . ,nk] · L[nk+1]) ⊂ J2 ∩ J3,

J2 :=J1 + L[n1, . . . ,nk] and J3 := J1 + L[nk+1]where:

and that L[n1, . . . ,nk+1] = J2 + J3 . We will prove below that J1 is proper (hence that
the ideal structure above is nontrivial). Consider the factorization ξ : L[n1, . . . ,nk+1] →
L[n1, . . . ,nk+1]

/
J1 . Then

ξ
(
L[n1, . . . ,nk+1]

)
= ξ

(
L[n1, . . . ,nk]

)
+ ξ

(
L[nk+1]

)

and ξ(J2) · ξ(J3) = 0 . If J1 is not proper, then

L[nk+1] ⊂ J1 ⊃ L[n1, . . . ,nk] .

By Proposition IV.5(iv), we have that

J1 ⊂ L[q1, . . . ,qk] ⊂ I[q1, . . . ,qk] for (qj)ℓ = min
(
(nj)ℓ, (nk+1)ℓ

)
,

and hence L[nk+1] ⊂ J1 ⊂ I[q1, . . . ,qk] . Thus, by Proposition IV.5(ii) we conclude that [nk+1]
cannot be strictly greater than all the [qi] , i.e., there is one member of the set {q1, . . . ,qk},
say qj , which satisfies [qj ] = [nk+1], and so by definition of qj , we have that eventually
(nk+1)ℓ = min

(
(nj)ℓ, (nk+1)ℓ

)
, i.e., [nj ] ≥ [nk+1] .

Likewise, the inclusion L[n1, . . . ,nk] ⊂ C∗ (L[n1, . . . ,nk] · L[nk+1]) = J1 implies that
no nj , j = 1, . . . , k, is reduced through multiplication by nk+1, i.e., eventually (nj)ℓ =
min

(
(nj)ℓ, (nk+1)ℓ

)
for all j, i.e., [nj ] ≤ [nk+1] . So, together with the previous inequality,

we see that there must be a j ∈ {1, . . . , k} such that [nj ] = [nk+1] . This contradicts the initial
assumption that all [nℓ] are distinct, and so J1 must be proper.

Now consider π0 on L0 ∩ L[n1, . . . ,nk+1] . By the induction assumption, π0 on

L0 ∩ L[n1, . . . ,nk]

is the restriction of a representation on L[n1, . . . ,nk] ,- we denote the projection onto its essential
subspace by E[n1, . . . ,nk] . Note that E[nk+1] commutes with E[n1, . . . ,nk] because it commutes
with all the generating elements π0(Li) = πni(Li) , Li ∈ L[ni] . Thus we have an orthogonal
decomposition H = H1 ⊕H2 ⊕H3 ⊕H4 , where

H1 :=E[n1, . . . ,nk]E[nk+1]H , H2 := E[n1, . . . ,nk]
(
11 − E[nk+1]

)
H

H3 :=E[nk+1]
(
11 − E[n1, . . . ,nk]

)
H , H4 :=

(
11 − E[nk+1]

)(
11 − E[n1, . . . ,nk]

)
H

and π0 preserves these subspaces. Now by Proposition IV.5(iv) and the induction assumption,
π0 extends from the L0∩J1 to a representation on J1, and as J1 = C∗ (L[n1, . . . ,nk] · L[nk+1]) ,
the essential projection for π0 ↾ J1 is E[n1, . . . ,nk]E[nk+1] , i.e., its essential subspace is H1 .
But since J1 is a closed two–sided ideal of L[n1, . . . ,nk+1] , its non-degenerate representations



16 Abelian topological groups with host algebras 15th May 2006

extend uniquely to L[n1, . . . ,nk+1] . Thus on H1, π0 extends from L0 ∩ L[n1, . . . ,nk+1] to a
representation on L[n1, . . . ,nk+1] .

Next observe that on H⊥
1 = H2 ⊕ H3 ⊕ H4 we have {0} = π0(J1). We show that one

can define a consistent representation of ξ
(
L[n1, . . . ,nk+1]

)
by ρ(ξ(A)) := π0(A) ↾ H⊥

1 , for

A ∈ L[nk+1] + L[n1, . . . ,nk] , using the structure of ξ
(
L[n1, . . . ,nk+1]

)
above. First observe

that ρ is well-defined on ξ
(
L[nk+1]

)
and ξ

(
L[n1, . . . ,nk]

)
separately, because if A1 −A2 ∈ J1 ,

then π0(A1 − A2) ↾ H⊥
1 = 0 . Next, ρ is well-defined on the set ξ

(
L[nk+1] + L[n1, . . . ,nk]

)

by the induction assumption, and the consistency of the extensions of π0 . To see that ρ is
well-defined on the algebra ξ

(
L[n1, . . . ,nk+1]

)
= ξ

(
L[n1, . . . ,nk]

)
+ ξ

(
L[nk+1]

)
, it suffices by

the direct sum decomposition to check it on H2, H3 and H4 separately. On H2 , π0 vanishes
on L[nk+1] , so since ξ

(
L[nk+1]

)
is an ideal of ξ

(
L[n1, . . . ,nk+1]

)
(and ξ(J2) · ξ(J3) = {0}),

it follows that we can extend ρ(ξ(A)) ↾ H2 by linearity, i.e., ρ(ξ(A) + ξ(B)) = ρ(ξ(A)) for
A ∈ L[n1, . . . ,nk], B ∈ L[nk+1] to define a representation on ξ

(
L[n1, . . . ,nk+1]

)
. Likewise, on

H3, π0 vanishes on L[n1, . . . ,nk] , so we can show ρ defines a representation of ξ
(
L[n1, . . . ,nk+1]

)

and on H4, ρ is zero. Then ρ lifts to a representation of L[n1, . . . ,nk+1] on H⊥
1 which coincides

with π0 on L0 ∩ L[n1, . . . ,nk+1] . Taking the direct sum of this with the representation we ob-
tained on H1, produces a representation of L[n1, . . . ,nk+1] on all H which coincides with π0 on
L0∩L[n1, . . . ,nk+1] . Thus, we have proven the claim for k+1, which completes the induction. H

That π0 is bounded on L0 now follows immediately from the claim, because any A ∈ L0

is of the form A =
m∑

k=1

Bk for Bk ∈ L[nk]0 , where nk 6∼ nℓ if k 6= ℓ . But this is an element of

L[n1, . . . ,nm] and by the claim π0 extends as a representation to it, hence ‖π0(A)‖ ≤ ‖A‖ . We
conclude that π0 is a bounded representation, hence extends to all of L[E] . To see that π0 is non-

degenerate, recall that {E
(k)
n } ⊂ Lk is an approximate identity of increasing projections. Thus we

can find a sequence n such that s− lim
m→∞

π(E
(m)
nm ) = 11, and hence En = 11 by π(E

(m)
nm ) ≤ En ≤ 11

for all m. Since the essential subspace of π0↾L[n] is EnH, it follows that π0 is non-degenerate.
It then follows from Proposition IV.4 applied to L[n] that π̃0↾A = π .

It now follows from the uniqueness of host algebras (Theorem A.2) that up to isomorphism,
L[E] is independent of the initial choice of approximate identities.

The following lemma shows that our seemingly special choice of (S,B) covers all countably
dimensional symplectic vector spaces:

Lemma IV.7. In each countably dimensional symplectic vector space (V,Ω) , there exists a
basis (pn, qn)n∈N with

Ω(pn, qm) = δnm and Ω(pn, pm) = Ω(qn, qm) = 0 for n,m ∈ N.

Then Ipn := −qn and Iqn = pn defines a complex structure on V for which (v, w) := Ω(Iv, w)
is positive definite and extends to a positive definite hermitian form on (V, I) with

Ω(v, w) = −Re(Iv, w) = Im(v, w).

Proof. Let (en)n∈N be a linear basis of V . We construct the basis elements pn, qn inductively
as follows. If p1, . . . , pk and q1, . . . , qk are already chosen, pick a minimal m with em 6∈
span{p1, . . . , pk, q1, . . . , qk} and put

pk+1 := em −

k∑

i=1

(
B(em, qi)pi +B(pi, em)qi

)

to ensure that this element is B -orthogonal to all previous ones. Then pick ℓ minimal, such that
B(pk+1, eℓ) 6= 0, put

q̃k+1 := eℓ −

k∑

i=1

(
B(eℓ, qi)pi + B(pi, eℓ)qi

)

and pick qk+1 ∈ Rq̃k+1 with B(pk+1, qk+1) = 1. This process can be repeated ad infinitum and
produces the required bases of V because for each k , the span of p1, . . . , pk, q1, . . . , qk contains
at least e1, . . . , ek .
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Appendix. Host algebras and the strict topology

Lemma A.1. Let X be a locally compact space.

(a) On each bounded subset of M(C0(X)) ∼= Cb(X) the strict topology coincides with the
topology of compact convergence, i.e., the compact open topology. This holds in particular for the
subgroup C(X,T) ∼= U(Cb(X)) .

(b) A unital ∗-subalgebra S ⊆ Cb(X) is strictly dense if and only if it separates the points
of X .

Proof. (a) ([Bl98, Ex. 12.1.1(b)]) Let B ⊆ Cb(X) be a bounded subset with ‖f‖ ≤ C for
each f ∈ B .

For each ϕ ∈ C0(X) and ε > 0 we now find a compact subset K ⊆ X with |ϕ| ≤ ε outside
K . For fi → f in B with respect to the compact open topology, we then have

‖(f − fi)ϕ‖ ≤ ‖(f − fi) |K‖‖ϕ‖ + ε‖f − fi‖ ≤ ε‖ϕ‖ + 2εC

for sufficiently large i . Therefore the maps B → C0(X), f 7→ fϕ are continuous if B carries the
compact open topology. This means that the strict topology on B is coarser than the compact
open topology.

If, conversely, K ⊆ X is a compact subset and h ∈ C0(X) with h |K = 1, then

‖(f − fi) |K‖ ≤ ‖(f − fi)h‖

shows that the strict topology on Cb(X) is finer than the compact open topology. This proves (a).

(b) If S is strictly dense, then it obviously separates the points of X because the point
evaluations are strictly continuous.

Suppose, conversely, that S separates the points of X . Replacing S by its norm closure,
we may w.l.o.g. assume that S is norm closed. Let K ⊆ X be compact. Since S separates the
points of K , the Stone-Weierstraß Theorem implies that S |K = C(K). For any f ∈ Cb(X) we
therefore find some fK ∈ S with ‖fK‖ ≤ 2‖f‖ and fK |K = f |K because the restriction map is
a quotient morphism of C∗ -algebras. Since the net (fK) is bounded and converges to f in the
compact open topology, (a) implies that it also converges in the strict topology. Therefore S is
strictly dense in Cb(X).

Theorem A.2. (Uniqueness of host algebras) Suppose that (A, ηG) and (B, η′G) are both host
algebras of the group G for the same set of representations. Then there exists a unique isomor-
phism of C∗ -algebras ϕ:A → B such that the corresponding homomorphism M(ϕ):M(A) →
M(B) satisfies M(ϕ) ◦ ηG = η′G .

Proof. From [Gr05, Th. 3.4], we obtain the existence of some ϕ with the required properties.
The uniqueness follows from the fact that M(ϕ) is continuous with respect to the strict topology
on M(A) and ηG(G) spans a strictly dense subspace of M(A) ([Gr05, Prop. 2.1]).

Corollary A.3. If (A, ηG) and (B, ηH) are host algebras of the groups G , resp., H and
ϕ:G → H is an isomorphism of topological groups, then there exists a unique isomorphism
ϕA:A → B with

M(ϕA) ◦ ηG = ηH ◦ ϕ.

Proof. Apply Theorem A.2 with η′G := ηH ◦ ϕ .
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Tensor products of C∗ -algebras

Let A and B be C∗ -algebras and A⊗ B their spatial C∗ -tensor product (defined by the
minimal cross norm) ([Fi96]), which is a suitable completion of the algebraic tensor product
A⊗ B , turning it into a C∗ -algebra. We then have homomorphisms

iA:M(A) →M(A⊗ B), iB:M(B) →M(A⊗ B),

uniquely determined by

iA(ϕ)(A ⊗B) = (ϕ ·A) ⊗B, iB(ϕ)(A ⊗B) = A⊗ (ϕ · B).

Moreover, for each complex Hilbert space H , we have

Rep(A⊗ B,H) ∼= {(α, β) ∈ Rep(A,H) × Rep(B,H): [α(A), β(B)] = {0}}.

This correspondence is established by assigning to each pair (α, β) with commuting range the
representation

π := α⊗ β:A⊗ B → B(H), a⊗ b 7→ α(a)β(b).

Note that this representation of A⊗ B is non-degenerate if α and β are non-degenerate.

Lemma A.4. The following assertions hold for the embedding iA:M(A) →M(A⊗ B) :

(1) The map

i−1
A :M(A) ⊗ 1 →M(A), m⊗ idB 7→ m

is continuous with respect to the strict topology on its domain obtained from A⊗B and the
strict topology on its range obtained from A.

(2) Its restriction to bounded subsets is a homeomorphism.

(3) iA(A) is dense in M(A) ⊗ 1 with respect to the strict topology on M(A⊗ B) .

Proof. (1) The strict topology on M(A) is defined by the seminorms

pa(m) = ‖m · a‖ + ‖a ·m‖,

satisfying pa ◦ i−1
A = pa⊗1 , which shows immediately that i−1

A is continuous.

(2) Since the embedding iA is isometric, it suffices to show that for each bounded subset
M ⊆ M(A), the restriction of iA to M is continuous. Since iA is linear, it suffices to show
that for each bounded net (Mν) with limMν = 0 in the strict topology of M(A), we also have
lim iA(Mν) = 0 in M(A⊗ B). For A ∈ A and B ∈ B we have

‖Mν(A⊗B)‖ = ‖MνA⊗B‖ = ‖MνA‖‖B‖ → 0

and likewise (A ⊗ B)Mν → 0. Since the elementary tensors span a dense subset of A ⊗ B , the
boundedness of the net (Mν) implies that iA(Mν) → 0 holds in the strict topology of M(A⊗B)
(cf. Wegge–Olsen [WO93], Lemma 2.3.6).

(3) Let {Eα} be any approximate identity of A , satisfying ‖Eα‖ ≤ 1. Then for any
A ∈ M(A), the net {AEα} ⊂ M(A) is bounded by ‖A‖ and converges to A in the strict
topology of M(A), and hence in the strict topology of M(A⊗ B) by (2). This proves (3).
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Lemma A.5. For each non-degenerate representation π ∈ Rep(A ⊗ B,H) the representations
π1(a) := π̃(a⊗1) and π2(b) := π̃(1⊗b) are non-degenerate, where π̃ denotes the unique extension
of π from A ⊗ B to M(A⊗ B) . Moreover, the corresponding extensions π̃1 ∈ Rep(M(A),H)
and π̃2 ∈ Rep(M(B),H) from π1, π2 on A, B resp., satisfy

π̃1 = π̃ ◦ iA and π̃2 = π̃ ◦ iB.

In particular, the representations π̃ ◦ iA and π̃ ◦ iB are continuous with respect to the strict
topology on M(A) , M(B) resp., and the the topology of pointwise convergence on B(H) .

Proof. To see that π1 is non-degenerate, we observe that for a ⊗ b ∈ A ⊗ B we have
π(a⊗ b) = π1(a)π2(b) = π2(b)π1(a), so that any vector annihilated by π1(A) is also annihilated
by A⊗ B , hence zero. The same argument proves non-degeneracy of π2 .

For m ∈M(A) we have

π̃(m⊗ 1)π1(a) = π̃(m)π̃(a⊗ 1) = π̃(ma⊗ 1) = π1(ma) = π̃1(m)π̃1(a),

so that the non-degeneracy of π1 implies π̃ ◦ iA = π̃1 , and likewise π̃ ◦ iB = π̃2 .

The last assertion follows from the general fact that for a non-degenerate representation
of A , the corresponding extension to M(A) is continuous with respect to the strict topology on
M(A) and the topology of pointwise convergence on B(H); similary for B .

Lemma A.6. Let G1, G2 be topological groups and suppose that (A1, η1) , resp., (A2, η2) are
full host algebras for G1 , resp., G2 . Then

η:G1 ×G2 →M(A1 ⊗A2), (g1, g2) 7→ iA1
(η1(g1))iA2

(η2(g2))

defines a full host algebra of G1 ×G2 .

Proof. This follows from the observation that unitary representations of the direct product
group G := G1 ×G2 can be viewed as pairs of commuting representations πj :Gj → U(H), and
we have the same picture on the level of non-degenerate representations of C∗ -algebras. We
only have to observe that both pictures are compatible. In fact, let πj be commuting unitary
representations of Gj , j = 1, 2, and π̃j the corresponding representations of the host algebras
Aj . Then we have

(
η∗(π̃1 ⊗ π̃2)

)
(g1, g2) = (π̃1 ⊗ π̃2)(η1(g1) ⊗ η2(g2)) = π̃1(η1(g1))π̃2(η2(g2)) = π1(g1)π2(g2).

Corollary A.10 below provides a converse to this lemma.

Ideals of multiplier algebras

Let A be a C∗ -algebra and M(A) its multiplier algebra. We are interested in the relation
between the ideals of A and M(A).

Lemma A.7. (a) Each strictly closed ideal J ⊆ M(A) coincides with the strict closure of the
ideal J ∩ A of A , which is norm-closed.

(b) For each norm closed ideal I E A its strict closure Ĩ satisfies Ĩ ∩ A = I .

(c) The map J 7→ J ∩ A induces a bijection from the set of strictly closed ideals of M(A)
onto the set of norm-closed ideals of A .

Proof. (a) Let (ui)i∈I be an approximate identity in A and µ ∈ J . Then µ.ui ∈ J ∩ A
converges to µ in the strict topology, and the assertion follows. Since on A the norm topology
is finer than the strict topology, the ideal J ∩A of A is norm-closed.

(b) The ideal I is automatically ∗ -invariant, so that A/I is a C∗ -algebra. Let q:A → A/I
denote the quotient homomorphism. The existence of an approximate identity in A implies that
I is invariant under the left and right action of the multiplier algebra, so that we obtain a natural
homomorphism

M(q):M(A) →M(A/I),

which is strictly continuous ([Bu68, Prop. 3.8]). Then Ĩ := kerM(q) E M(A) is a strictly closed

ideal satisfying Ĩ ∩ A = I , and (a) implies that Ĩ is the strict closure of I .

(c) follows from (a) and (b).
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The following proposition shows that for each closed normal subgroup N of a topological
group G with a host algebra, the quotient group G/N also has a host algebra.

Proposition A.9. Let G be a topological group and suppose that A is a host algebra for G
with respect to the homomorphism

ηG:G→M(A).

Let N E G be a closed normal subgroup, ĨN E M(A) the strictly closed ideal generated by

ηG(N) − 1 , and IN := A ∩ ĨN . Then ηG factors through a homomorphism

ηG/N :G/N →M(A/IN ),

turning A/IN into a host algebra for the quotient group G/N . If, in addition, A is a full host
algebra of G , then A/IN is a full host algebra of G/N .

Proof. If π is a unitary representation of G , then we write πA for the corresponding
representation of A and π̃A for the extension to M(A) with π̃A ◦ ηG = π . Further, let
qG:G→ G/N denote the quotient map.

We consider the C∗ -algebra B := A/IN and recall that the quotient morphism q:A → B
induces a strictly continuous morphism M(q):M(A) → M(B) ([Bu68, Prop. 3.8]). In view of

IN = ker q = kerM(q) ∩ A , Lemma A.7 implies that kerM(q) = ĨN .

Next we observe that ηG(N) − idA ⊆ ĨN implies that N acts by trivial multipliers on the
algebra B = A/IN . We therefore obtain a group homomorphism

ηG/N :G/N → U(M(B)) with ηG/N ◦ qG = M(q) ◦ ηG.

To see that ηG/N turns B into a host algebra for the quotient group G/N , we first note
that every non-degenerate representation π:B → B(H) can be viewed as a non-degenerate
representation πA:A → B(H) with πA := π ◦ q . The corresponding representations of the
multiplier algebras satisfy

π̃ ◦M(q) = π̃A:M(A) → B(H).

This leads to
π̃ ◦ ηG/N ◦ qG = π̃ ◦M(q) ◦ ηG = π̃A ◦ ηG,

showing that the unitary representation of π̃ ◦ ηG/N of G/N is continuous. We thus obtain a
map

η∗G/N : Rep(B) → Rep(G/N), π 7→ π̃ ◦ ηG/N .

If two representations π and γ of B lead to the same representation of G/N , i.e.,

η∗G/N (π) = π̃ ◦ ηG/N = γ̃ ◦ ηG/N = η∗G/N (γ),

then the corresponding representations on G coincide, i.e., π̃A ◦ ηG = γ̃A ◦ ηG but since A is a
host algebra for G , we have πA = γA i.e., π ◦ q = γ ◦ q and as q is surjective, we get π = γ .

If, in addition, η∗G is surjective, then every continuous unitary representation π of G/N
pulls back to a continuous unitary representation of G which defines a unique representation
ρA of A which in turn extends to the representation ρ̃A of M(A) satisfying ρ̃A ◦ ηG = π ◦ qG .

Further, ĨN ⊆ ker ρ̃A implies IN ⊆ kerρA , so that ρ̃A factors via M(q):M(A) →M(B) through
a strictly continuous representation π̃B of M(B), satisfying π̃B ◦ ηG/N = π . This implies that
η∗G/N is also surjective.

Corollary A.10. Let G1, G2 be topological groups and G := G1 × G2 . If G has a full host
algebra (A, η) , then G1 and G2 have full host algebras (A1, η1) and (A2, η2) with A ∼= A1⊗A2 .

Proof. The existence of host algebras of G1
∼= G/({1}×G2) and G2

∼= G/(G1 ×{1}) follows
directly from the last statement in Proposition A.9. Now Lemma A.6 applies.
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