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Abstract

We consider graphs %™ C R™ with prescribed mean curvature and
flat normal bundle. Using techniques of Schoen, Simon and Yau [14]
and Ecker-Huisken [4], we derive the interior curvature estimate

C
sup |A]2 < =
EHBPR| | _R2

up to dimension n < 5, where C is a constant depending on natural
geometric data of ¥ only. This generalizes previous results of Smoczyk,
Wang and Xin [16] and Wang [20] for minimal graphs with flat normal
bundle.

Mathematics Subject Classification (2000): 35J60, 53A10, 49Q05

1 Introduction

Let ¥ : © — RF be a smooth function defined on a domain © C R"™, and
denote by ¥ = {(z,¢(z)) : € Q} the corresponding graph in R™="+*,
In this paper we assume the normal bundle of ¥ to be flat and prove the
interior curvature estimate

C

sup |A]? < — 1
sup (4P < 5 1)

up to dimension n < 5, where |A| denotes the length of the second funda-
mental form, Bg C R is a closed ball of radius R centered at some point
p € 3, and C is a constant depending on natural geometric data of X only,
see Theorem 3.3.

Recently, curvature estimates for minimal graphs with flat normal bundle
have been established independently by Smoczyk, Wang and Xin [16] and
Wang [20]. In particular, they have obtained higher dimensional analogues of
the famous Schoen-Simon-Yau estimates [14] and Ecker-Huisken’s Bernstein
result [3] for entire minimal graphs of controlled growth.



Without any geometric restrictions on the normal bundle the situation
turns out to be more complicated as can be seen from the counter example of
Lawson-Osserman [10]. In [8] Hildebrandt, Jost and Widman have studied
entire solutions of the minimal surface system

d O™
A V| = =1,...,k.
Ot <\/§g B > 07 « ) 7k

Here, gij = 6i + >, %ﬁl %, (97) = (gij)~" and g = det(gi;). Using a
regularity estimate for harmonic maps they could prove a Bernstein result

under a suitable lower bound on the function

~1/2
w = [det ((5@] + Z Di¢aDj¢a>] .

Later, their result has been improved by Jost-Xin [9] and Wang [19]. In fact,
Wang’s Bernstein result holds for the entire class of area decreasing maps
with bounded gradient. For a detailed survey on minimal graphs in higher
co-dimension and further comments on the literature we refer to the recent
monograph of Giaquinta-Martinazzi [6, Chapter 11]. We also remark, that
more explicit estimates for two-surfaces in R” can been obtained by using
strictly two-dimensional techniques, cf. Osserman [13] and Bergner-Frohlich
[1].

The paper is organized as follows: In section 2 we first collect some
basic facts on graphs with flat normal bundle. Using ideas of Ecker-Huisken
[4] we then prove a rather general Simons inequality (Lemma 2.4) for the
Laplacian of the length of the second fundamental form. In section 3 we use
this estimate to derive the LP curvature bound

/ |A]P dH" < CR™™P
>NBRr

for some p > n with a constant C' depending only on the geometric data
of the problem, see Theorem 3.1. Here, we can proceed similarly as Winkl-
mann [21] who established a corresponding estimate for hypersurfaces of
prescribed anisotropic mean curvature. In view of a general mean value
inequality (Lemma 3.2), which is of independent interest on its own, this
leads to the desired curvature estimate (1). As an application of our results
we recover the Bernstein result of Smoczyk, Wang and Xin [16] and Wang
[20] for minimal graphs with flat normal bundle.
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2 Notation and preliminary results

Let f : " — R™="*% be a smooth immersion of an n-dimensional, oriented
manifold without boundary into euclidean m-space of arbitrary co-dimension
k > 1. We denote by

9(X,Y) = (df(X),df (V)
the induced metric with corresponding Levi-Civita connection
VxY = (DxY)"
and curvature tensor
R(X,Y)Z =VxVyZ -VyVxZ -V xyZ

Here, X,Y, Z are smooth vectorfields on X, D denotes the covariant deriva-
tive on R™ and (-)' is the projection onto T'Y, the tangent bundle of ¥,
which we will always identify with df (7T'%).

The second fundamental form is given by

A(X,Y) = (DxY)t = DxY — VxY,

where (-)* is the projection onto the normal bundle N¥.. Taking its trace
defines the mean curvature vector

H = trace(A).

We also have an induced connection on the normal bundle NY defined
by the relation

Vxn = (Dxn)*

for any normal section 7. The corresponding curvature tensor is given by
RH(X,Y)( = VxVy¢ — VyVxC = Vix y(C

We remark that these connections extend naturally to higher order tensor
bundles formed from 73 and NX. For example, for an (0, r)-tensor 7" with
values in NY the covariant derivative VT is given by

(VxT)(Y1,...,Y,) = VxT(Y1,....Y,) =T(VxYi,...,Y;)
— .. =T(Y,...,VxY,).
Let us now choose local orthonormal frames {e; };=1,.. » and {eq }a=n+1,..m

for TY and NX, respectively. In these frames the coefficients of the second
fundamental form are given by

haij = <A(eiaej)aea> = _<De¢6a,6j>



and the mean curvature vector by
H = Haea with Ha = haz'i-

Here and in the following we are using Einstein’s summation convention:
Repeated Latin and Greek indices are automatically summed from 1 to n
and from n+1 to m, respectively, unless not otherwise stated. We also write

vkhaz’j = <(v6k A)(ei’ ej)’ 6a>,

Rijri = g(R(ei,ej)er, er)
and
Rz’LjaB = <R(ei7 ej)em 65>

for the coefficients of VA, R and R*. The fundamental equations of Gaus8,
Codazzi and Ricci then take the form

Rijki = haithajk — haikhagis (2)
and
Riljaﬁ = hﬁikhajk - hm'khﬁjk. (4)

We also write V;V ;¢ for the coefficients of VV¢, the second covariant
derivative of a smooth function ¢. The Laplace-Beltrami operator is then
given by Ap = V;V,p. More generally, for any (0, r)-tensor with values in
NY we write V;V;Tok, .k, for the coefficients of VVT'. Finally, we denote
by IT]> =32, i [T(eiys -, ei)]? the square of the length of T

The following identity was first proved by Simons [15] and is a direct
consequence of (2), (3) and (4). For further details see also Wang [17,
Section 7).

Lemma 2.1 For an arbitrary immersion f : X" — R™ the second funda-
mental form satisfies

1
§A\Ay2 = VAP + haijViViHa + Hohaijhgjrhgr
=Y (haijhar)® — R, (5)
,7,k,l

Next, we consider the parallel n-form Q = dz' A ... A dz™ on R™ and
put
w =% =Qe1,...,en),

where x is the Hodge operator. The following equation is due to Fischer-
Colbrie [5] and Wang [18], [19]. For an alternative exposition we also refer
to Giaquinta-Martinazzi [6, Chapter 11]:



Lemma 2.2 For an arbitrary immersion f : X" — R™ the function w = %
satisfies

Aw+ [APw = QuiViHo =2 > QupijRiaps, (6)
a<(3,1<j
where Qo; = Qe1, ..., eqy...,n) With e, occupying the i-th position, and

Qagij = Qet, ... €a,...,€5,...,e,) with ey, eg occupying the i-th and j-th
position, respectively.

In this paper we are particularly interested in immersions with flat nor-
mal bundle, that is the case R = 0. The above equations then simplify as
follows:

1
§A|A|2 = |VA|2 + haijViVjHa + Hahaijhﬁjkhﬁki
=Y (haijhar)? (7)
i,5.k,l
and
Aw + |A]Pw = Q0 ViHy,. (8)

Suppose now that ¥ = {(z,¢(x)) : = € Q} is the graph of a smooth
function ¢ : Q — R* over some domain  C R”. In this case one easily
checks the identity

w = [det (8 + Dis*Dy*)] /2.
In particular we have w > 0. Define the quantity K; by
K = (w*IQmViHa)”L, (9)

where g* denotes the positive part of the function g. Moreover, denote by
‘H" the n-dimensional Hausdorff measure. Then we can state an energy-type
estimate as follows:

Lemma 2.3 Suppose 3™ C R™ is a graph with flat normal bundle. Then
we have

[1ape anr < [ Vel + ki) an (10
b b
for all testfunctions ¢ € C°(X).

Proof: We test (8) with w™1y? and perform a partial integration. This leads
to

/\A[2cp2d7-(” = 2/wlch<prdH"—/w2]Vw]2ap2dH”
) b b

+ / w‘lQm-Vl-Ha@Q dH™.
b
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The desired estimate now follows from the Cauchy-Schwarz inequality. [

The next inequality generalizes the Simons inequality of Schoen, Simon
and Yau [14] and Ecker-Huisken [4] for hypersurfaces in R” to immersions
with arbitrary co-dimension. Note that for H = 0 we can let ¢ \, 0 in
(11) to obtain a corresponding estimate of Smoczyk, Wang and Xin [16] and
Wang [20] for minimal immersions with flat normal bundle.

Lemma 2.4 Let f : X" — R™ be an immersion with flat normal bundle.
Then we have the estimate

1 2
—A‘AP > (1 + —) ‘V’AH2 + haijViViHg
2 n-+e
+Hohaijhgjrher — |A|* — C(n, )| VH|? (11)
for all e > 0.

Proof: From (7) we infer the estimate
1
§A1A\2 > VA2 + haijViViHa + Hohoijhgichae — |AL. (12)
In any point py € ¥ where |A| does not vanish, we have

Vildl = A7) Vidaijheis.
a7/[:7j
Since Rilj ap = 0 we infer from the Ricci equation that we may choose our

frames such that in pg all hqsj, @ = n+1, ..., m, are simultaneously diagonal.
Hence, we obtain

V] AP

A2 Z Z Vihaiihai
k .l
> (Vihai)?

a,i,k

= Z (Vihaii)? + Z(thakk)2' (13)

a,i,k ak
i#k

IN

Moreover, we have

VAP — V|4

v

> (Vihai)? = > (Vihaii)

a,i,j,k a,i,k

= Y (Vihay)
a,i,j,k
i#]
2> (Vihaii)?, (14)

a,i,k

ik

v
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where the last line follows from the Codazzi equation.
From ViyH, = ), Vihai; we infer for fixed o and k

2
(Vihare)® = (ViHa)? = 2ViHo | Y Vihaii | + | Y Vihaii

Applying Young’s inequality and summing over o and k leads to

-1
> (Vihare)? < (n=142) Y (Vihaii)® + <1 + = . > IVH?.  (15)
a,k a,i,k

ik

Combining (12), (13), (14) and (15) now gives the desired estimate
(11) in all points where |A|(py) # 0. However, since |[A| € W2 with

loc

V|A|(po) = 0 whenever |A|(pg) = 0, we see that (11) must be globally true
in the weak sense. U

3 Curvature estimates

Following Ecker-Huisken [4] we define a quantity Ko by

hai;ViViHa \ .
Ky = _< AT ) EA[> 0 (16)
0 it A =0

where ¢~ denotes the negative part of the function g. Clearly, we have the
estimate

K, < |VVH]|.

We will now prove the following integral curvature estimate:

Theorem 3.1 If 3" C R™ is a graph with flat normal bundle, then we have
[ 1aper ane
%
< c/ (vl + (1EP + IVHP? + KP? + K2®) o) ane (17)
b

for allp € [4,4+ +/8/n) and for all non-negative testfunctions p € C°(X),
the constant C depending on n and p only.



Proof: We test (10) with |A|9 1, where ¢ € C°(¥) is a non-negative
testfunction and ¢ > 0 is yet to be chosen, and obtain

/E AP AR < (g4 1) / A2V A] 2% A
12(g+ 1) / AP GV AV dH”
>
+/ |APP2(|V|? + K19%) dH™. (18)
b

On the other hand, multiplying the Simons inequality (11) by |A[?4©?,
integrating by parts and applying Young’s inequality in the form

C(n
‘Hahozijhﬁjkhﬁki’ S C(n)]HHA]?’ S 8’14‘4 + —((6 )’HP‘AP
leads to
2
14+ ——+2 APV |A|?? dH
(14 5+ 20) [1aPavIAIRg? an

< (1+8)/ ]A\2q+4<p2d7'["—/haijViVjHa\APq(P? dH"
> >
—|—C/ ’A‘2q+2’H’2(p2 dHn—i-C/ ’A‘Zq’v[_[’Q(pQ dHn
> >
_2/ AT+ GV | AV o dH™ (19)
»

with C' = C(n,¢).
Combining (18) and (19) and recalling the definition of Ky we arrive at

2
<1+—+2q—(1+€)(Q+1)2>/ |A|%|V|A|[>? dH™
n—+e¢ )
< O [IAPTR(TR + PG + Ko?) di”
>

+C/ |A|2q|VH|2g02dH"+C/ | A2 Ky 0? dH™
> >

c / AP |V | A]|[Vo| dHT (20)
>

with C' = C(n,q,e). We now choose ¢ such that p =4 + 2¢q. Then we have
q € [0,4/2/n) and thus we can find £ > 0 small enough depending on n and
q only such that

2
1+ — 42— (1 1)2 > 0.
oot 21+ +1)



Hence, with this choice of ¢ we obtain
[ 1aPav1a262 are
D
< O [IAPTR(TR + [HP G + Ka?) di”
b
+C [JAPVHRR ane +C [ 147 Ko ane
b b
+C [ AP 1AV "
b
with C' = C(n,q). In view of Young’s inequality and (18) this leads to
/ |A|2q+4g02 dH"
b
< O [IAPTR(TR + PG + Ki?) die”
b
+C/ |APPYVH|?p? dH™ + C/ |APPIT Ky o? dH™ (21)
D )

with C' = C(n,q).
To complete the proof we replace ¢ by 972 in (21) and obtain

/ ’A‘2q+4tp2q+4 dHn
by
< O [ 1APTRAE (T 4 |HPG + Kog?) dH”
by
—|—C/ |A|2qg02q|VH|2QD4 dHn + C/ |A|2q+1802q+1K2s03 dHn
by by
with C' = C(n,q). The desired inequality
/ ‘A’2q+4ﬁp2q+4 dHn
by
< c/ |V p|?aH4 dH™
by

2q+4

2q+4 2q+4
+C/ <|H|2q*4+IVH|2q34+K12 +HG° >¢2q+4dH"
by

now follows easily in view of the interpolation inequality ab < va® + Wfﬁbt
foralla,b20,7>0ands,t>1with%+%:1. O

Denote by Br = Br(p) C R™ the closed ball of radius R > 0 with center
p € 3. In order to obtain a sup curvature estimate we need the following
mean value inequality. The proof is similar to [7, Theorem 8.17], however
we assume less regularity on the coefficients of (22). For the convenience of
the reader we sketch the argument below.



Lemma 3.2 Let X" C R™ be an arbitrary graph, and suppose that u is a
non-negative solution of

Au+Qu>g onX, (22)

where Q € LY%(X) and g € LP/*(X) with q,p > n. If ¥ N Bag CC X then
we have the estimate

sup w < C (R ull 2 + k(R)) (23)
>NBRr

where
k(R) = R2(1’"/p)||9\|Lp/2(szQR)’ (24)

the constant C depending onn, q, p, Rz(l_"/q)HQHLq/g(EmBm), Rsupsnp,, | H]|
and R™"H™(X N Bag).

Proof: First, note that by scaling R™ — R™, p — Rp it suffices to consider
the case R = 1.

We now put v = u + k, where k = ||g[| ,p/2(vnp,), and let n € CZ°(X) be
a non-negative function supported in ¥ N By. For f > 1 we multiply (22)
with v%n? and perform a partial integration. This leads to

3 /Z VP dH < =2 /Z VInVnVudH"
+ /E(Qu — g)PntdH". (25)
Using Young’s inequality we find
120V Vu| < §Uﬁ71|Vu|2772 + %v6+1|V77|2. (26)
Furthermore, since v > max(u, k) we have
(@Qu gl < o (101 + ). (27)

where % is to be considered 0 in case kK = 0. Combining (25), (26) and (27)
yields

4
/vﬁ—1|vu|2n2 dH™ < _2/vﬁ+1|v,'7|2 dH"
by ﬁ 3

2 g1
- B+1,2 Il n
+ﬂ/2v 77<|Q|+k>dH.
B+1

Hence, abbreveating w = v 2~ we arrive at the estimate
/ \Vw|*n? dH™ < 4/ w?|Vn)? dH"
b b
+20 / w?n’ (!Q\ + %) dH". (28)
)

10



Next, we apply the Sobolev-inequality of Michael-Simon [11] followed by
Hoélder’s inequality to obtain

1
)
>
< c / (V2w + 72|Vl + P HI2) dH",
>

where Y = %Withﬁ:nfornZ?)and? < n < min{q,p} for n = 2,

respectively, and where C' is a constant depending on n and H™(X N By).
Combining this with (28) leads to

( [ dH")X < © [P+ (vi) e

+Cﬁ/zw2772 (yQ\ +%> dH", (29)

the constant C' now depending additionally on supynp, |H|.

Next we use interpolation inequalities for LP-spaces, cf. [7, Section 7.1],
and obtain

/w2772!Q\ dH"
>

q—2

(/ (wn)a-z dH")q (/ ]Q\gdH">q (30)
> YNB2

a1 172
[8 </E(w77)2X dHn> X 4 egH </2w2772 dHn> ] HQ”L‘I/Q(EﬁBﬂ

for all € > 0 with p = (FLﬁ > 0. Similarly, we have

/ wanM dH"
5 k

o) (foven)]

with g = p%ﬁ > 0. Hence, using (30), (31) with ¢ ~ [3(
1)]~Y2 in (29) we finally arrive at

IN

IN

1@ Lar2(znmy) +

< /Z (w)* dH")i < Cp” /Z w2(n + | V%) dH (32)

with C' depending on n, ¢, p, supsnp, [H|, H"(X N B2) and [|Q| Le/2(sn5,):
and a = a(n,p,q) > 1.

11



From here we can employ Moser’s iteration technique [12] in a manner
similar to [4] and [21, Section 4]. Put v := 8+ 1 > 2 such that w? = v7.
Let p,p’ be radii satisfying 1 < p/ < p < 2 and let n € C°(X) to be a
cut-off function with 0 < <1, n = 1in XN By, supp(n) C X N B, and

|Vl < p?p,. Then we infer from (32) the estimate

1 N 1
X A~ Y
( / VXY dH") < O < / v dH") (33)
£NB, (p—1p')~ SNB,

with a constant C' depending on n, ¢, p, supynpg, [H|, H"(X N By) and
HQHLQ/Q(EOBQ) only. Now, let

pk:1+2_k, Ok = Prt1, yk:2xk for k=0,1,2,....

Replacing p, p' and « in (33) by pk, p), and v, and iterating the resulting
inequalities as k — 0o, we obtain the estimate

1

2
sup U§C</ v2dH">
¥NBy YNB2

with C depending on the same data as before. Recalling that v = u + k,
this gives the desired result. O

Now we are ready to prove our main result.

Theorem 3.3 Let X" C R™, 2 < n <5, be a graph with flat normal bundle,
and suppose that > N Byr CC X with

H™" (XN Bsr) < KR".
Then we have the estimate

sup [AP < = (34)

with a constant C' depending onn, K, Rsupsnp, . |H|, R?supgnp, . (|VH|+
K1) and R®supgp, , Ko.

Proof: In view of the Simons identity (7) and the estimate
|Hohaijhgishari| < C(n)|Al*
we infer

AJAPR + C(n)|AP* > —2F,|A].

12



Furthermore, since 2 < n < 5, we can apply Theorem 3.1 with a suitable
cut-off function as before to obtain

/ |A[ dH™ < CR"™1
YNBsr

for some ¢ > max{n, 4}, with a constant C' depending on n, K, Rsupynp,,, |H]|,
R?supsnp,, (IVH| 4 K1) and R®supyep,, Ko.

Hence, applying Lemma 3.2 with u = |A|?, Q = C(n)|A|?, g = —2K,|A]
and p = 2q, the desired estimate follows easily. O

In case H = 0 the constant in Theorem 3.3 is independent of R. There-
fore, letting R — oo in (34) we obtain the Bernstein result of Smoczyk,
Wang and Xin [16] and Wang [20]:

Corollary 3.4 Suppose that ¥ = {(x,¥(x)) : 2 € R"} CR™, 2<n <5, is
an entire minimal graph with flat normal bundle. If

H"(¥N Br(p)) < KR"

for some point p € ¥ and some sequence R — oo with a constant K inde-
pendent of R, then 1 is an affine linear function.
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